Sample records for active seismic methods

  1. Redistribution Principle Approach for Evaluation of Seismic Active Earth Pressure Behind Retaining Wall

    NASA Astrophysics Data System (ADS)

    Maskar, A. D.; Madhekar, S. N.; Phatak, D. R.

    2017-11-01

    The knowledge of seismic active earth pressure behind the rigid retaining wall is very essential in the design of retaining wall in earthquake prone regions. Commonly used Mononobe-Okabe (MO) method considers pseudo-static approach. Recently there are many pseudo-dynamic methods used to evaluate the seismic earth pressure. However, available pseudo-static and pseudo-dynamic methods do not incorporate the effect of wall movement on the earth pressure distribution. Dubrova (Interaction between soils and structures, Rechnoi Transport, Moscow, 1963) was the first, who considered such effect and till date, it is used for cohesionless soil, without considering the effect of seismicity. In this paper, Dubrova's model based on redistribution principle, considering the seismic effect has been developed. It is further used to compute the distribution of seismic active earth pressure, in a more realistic manner, by considering the effect of wall movement on the earth pressure, as it is displacement based method. The effects of a wide range of parameters like soil friction angle (ϕ), wall friction angle (δ), horizontal and vertical seismic acceleration coefficients (kh and kv); on seismic active earth pressure (Kae) have been studied. Results are presented for comparison of pseudo-static and pseudo-dynamic methods, to highlight the realistic, non-linearity of seismic active earth pressure distribution. The current study results in the variation of Kae with kh in the same manner as that of MO method and Choudhury and Nimbalkar (Geotech Geol Eng 24(5):1103-1113, 2006) study. To increase in ϕ, there is a reduction in static as well as seismic earth pressure. Also, by keeping constant ϕ value, as kh increases from 0 to 0.3, earth pressure increases; whereas as δ increases, active earth pressure decreases. The seismic active earth pressure coefficient (Kae) obtained from the present study is approximately same as that obtained by previous researchers. Though seismic earth pressure obtained by pseudo-dynamic approach and seismic earth pressure obtained by redistribution principle have different background of formulation, the final earth pressure distribution is approximately same.

  2. Development of a low cost method to estimate the seismic signature of a geothermal field from ambient seismic noise analysis, Authors: Tibuleac, I. M., J. Iovenitti, S. Pullammanapallil, D. von Seggern, F.H. Ibser, D. Shaw and H. McLahlan

    NASA Astrophysics Data System (ADS)

    Tibuleac, I. M.; Iovenitti, J. L.; Pullammanappallil, S. K.; von Seggern, D. H.; Ibser, H.; Shaw, D.; McLachlan, H.

    2015-12-01

    A new, cost effective and non-invasive exploration method using ambient seismic noise has been tested at Soda Lake, NV, with promising results. Seismic interferometry was used to extract Green's Functions (P and surface waves) from 21 days of continuous ambient seismic noise. With the advantage of S-velocity models estimated from surface waves, an ambient noise seismic reflection survey along a line (named Line 2), although with lower resolution, reproduced the results of the active survey, when the ambient seismic noise was not contaminated by strong cultural noise. Ambient noise resolution was less at depth (below 1000m) compared to the active survey. Useful information could be recovered from ambient seismic noise, including dipping features and fault locations. Processing method tests were developed, with potential to improve the virtual reflection survey results. Through innovative signal processing techniques, periods not typically analyzed with high frequency sensors were used in this study to obtain seismic velocity model information to a depth of 1.4km. New seismic parameters such as Green's Function reflection component lateral variations, waveform entropy, stochastic parameters (Correlation Length and Hurst number) and spectral frequency content extracted from active and passive surveys showed potential to indicate geothermal favorability through their correlation with high temperature anomalies, and showed potential as fault indicators, thus reducing the uncertainty in fault identification. Geothermal favorability maps along ambient seismic Line 2 were generated considering temperature, lithology and the seismic parameters investigated in this study and compared to the active Line 2 results. Pseudo-favorability maps were also generated using only the seismic parameters analyzed in this study.

  3. Seismic retrofit guidelines for Utah highway bridges.

    DOT National Transportation Integrated Search

    2009-05-01

    Much of Utahs population dwells in a seismically active region, and many of the bridges connecting transportation lifelines predate the rigorous seismic design standards that have been developed in the past 10-20 years. Seismic retrofitting method...

  4. Passive seismic imaging based on seismic interferometry: method and its application to image the structure around the 2013 Mw6.6 Lushan earthquake

    NASA Astrophysics Data System (ADS)

    Gu, N.; Zhang, H.

    2017-12-01

    Seismic imaging of fault zones generally involves seismic velocity tomography using first arrival times or full waveforms from earthquakes occurring around the fault zones. However, in most cases seismic velocity tomography only gives smooth image of the fault zone structure. To get high-resolution structure of the fault zones, seismic migration using active seismic data needs to be used. But it is generally too expensive to conduct active seismic surveys, even for 2D. Here we propose to apply the passive seismic imaging method based on seismic interferometry to image fault zone detailed structures. Seismic interferometry generally refers to the construction of new seismic records for virtual sources and receivers by cross correlating and stacking the seismic records on physical receivers from physical sources. In this study, we utilize seismic waveforms recorded on surface seismic stations for each earthquake to construct zero-offset seismic record at each earthquake location as if there was a virtual receiver at each earthquake location. We have applied this method to image the fault zone structure around the 2013 Mw6.6 Lushan earthquake. After the occurrence of the mainshock, a 29-station temporary array is installed to monitor aftershocks. In this study, we first select aftershocks along several vertical cross sections approximately normal to the fault strike. Then we create several zero-offset seismic reflection sections by seismic interferometry with seismic waveforms from aftershocks around each section. Finally we migrate these zero-offset sections to create seismic structures around the fault zones. From these migration images, we can clearly identify strong reflectors, which correspond to major reverse fault where the mainshock occurs. This application shows that it is possible to image detailed fault zone structures with passive seismic sources.

  5. Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory

    NASA Astrophysics Data System (ADS)

    Deyi, Feng; Ichikawa, M.

    1989-11-01

    In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.

  6. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry)more » are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.« less

  7. Development of a low cost method to estimate the seismic signature of a geothermal field form ambient noise analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tibuleac, Ileana

    2016-06-30

    A new, cost effective and non-invasive exploration method using ambient seismic noise has been tested at Soda Lake, NV, with promising results. The material included in this report demonstrates that, with the advantage of initial S-velocity models estimated from ambient noise surface waves, the seismic reflection survey, although with lower resolution, reproduces the results of the active survey when the ambient seismic noise is not contaminated by strong cultural noise. Ambient noise resolution is less at depth (below 1000m) compared to the active survey. In general, the results are promising and useful information can be recovered from ambient seismic noise,more » including dipping features and fault locations.« less

  8. The Utility of the Extended Images in Ambient Seismic Wavefield Migration

    NASA Astrophysics Data System (ADS)

    Girard, A. J.; Shragge, J. C.

    2015-12-01

    Active-source 3D seismic migration and migration velocity analysis (MVA) are robust and highly used methods for imaging Earth structure. One class of migration methods uses extended images constructed by incorporating spatial and/or temporal wavefield correlation lags to the imaging conditions. These extended images allow users to directly assess whether images focus better with different parameters, which leads to MVA techniques that are based on the tenets of adjoint-state theory. Under certain conditions (e.g., geographical, cultural or financial), however, active-source methods can prove impractical. Utilizing ambient seismic energy that naturally propagates through the Earth is an alternate method currently used in the scientific community. Thus, an open question is whether extended images are similarly useful for ambient seismic migration processing and verifying subsurface velocity models, and whether one can similarly apply adjoint-state methods to perform ambient migration velocity analysis (AMVA). Herein, we conduct a number of numerical experiments that construct extended images from ambient seismic recordings. We demonstrate that, similar to active-source methods, there is a sensitivity to velocity in ambient seismic recordings in the migrated extended image domain. In synthetic ambient imaging tests with varying degrees of error introduced to the velocity model, the extended images are sensitive to velocity model errors. To determine the extent of this sensitivity, we utilize acoustic wave-equation propagation and cross-correlation-based migration methods to image weak body-wave signals present in the recordings. Importantly, we have also observed scenarios where non-zero correlation lags show signal while zero-lags show none. This may be a valuable missing piece for ambient migration techniques that have yielded largely inconclusive results, and might be an important piece of information for performing AMVA from ambient seismic recordings.

  9. 3D basin structure of the Santa Clara Valley constrained by ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Cho, H.; Lee, S. J.; Rhie, J.; Kim, S.

    2017-12-01

    The basin structure is an important factor controls the intensity and duration of ground shaking due to earthquake. Thus it is important to study the basin structure for better understanding seismic hazard and also improving the earthquake preparedness. An active source seismic survey is the most appropriate method to determine the basin structure in detail but its applicability, especially in urban areas, is limited. In this study, we tested the potential of an ambient noise tomography, which can be a cheaper and more easily applicable method compared to a traditional active source survey, to construct the velocity model of the basin. Our testing region is the Santa Clara Valley, which is one of the major urban sedimentary basins in the States. We selected this region because continuous seismic recordings and well defined velocity models are available. Continuous seismic recordings of 6 months from short-period array of Santa Clara Valley Seismic Experiment are cross-correlated with 1 hour time window. And the fast marching method and the subspace method are jointly applied to construct 2-D group velocity maps between 0.2 - 4.0 Hz. Then, shear wave velocity model of the Santa Clara Valley is calculated up to 5 km depth using bayesian inversion technique. Although our model cannot depict the detailed structures, it is roughly comparable with the velocity model of the US Geological Survey, which is constrained by active seismic surveys and field researches. This result indicate that an ambient noise tomography can be a replacement, at least in part, of an active seismic survey to construct the velocity model of the basin.

  10. Strong earthquakes, novae and cosmic ray environment

    NASA Technical Reports Server (NTRS)

    Yu, Z. D.

    1985-01-01

    Observations about the relationship between seismic activity and astronomical phenomena are discussed. First, after investigating the seismic data (magnitude 7.0 and over) with the method of superposed epochs it is found that world seismicity evidently increased after the occurring of novae with apparent magnitude brighter than 2.2. Second, a great many earthquakes of magnitude 7.0 and over occurred in the 13th month after two of the largest ground level solar cosmic ray events (GLEs). The causes of three high level phenomena of global seismic activity in 1918-1965 can be related to these, and it is suggested that according to the information of large GLE or bright nova predictions of the times of global intense seismic activity can be made.

  11. Analysis of seismic signals related to rockfalls in the Dolomieu crater, Piton de la Fournaise, La Réunion

    NASA Astrophysics Data System (ADS)

    Durand, Virginie; Mangeney, Anne; Lebouteiller, Pauline; Hibert, Clément; Ovpf Team

    2015-04-01

    The seismic and photogrammetric networks of the volcano of the Piton de la Fournaise (La Réunion Island), maintained by the OVPF, are well appropriate for the study of seismic signals generated by rockfalls. In this work, we focus on the signals generated by rockfalls occurring in the Dolomieu crater. The aim of this study is to understand the link between rockfall and volcanic activity. One key question is as to whether the number and characteristics of rockfalls can provide a precursor to the occurrence of an eruption. Another scope of this work is to determine if there is a link between the rockfall activity and the precipitations, changes of temperature and seismic activity. For this, we analyze the rockfall activity preceding the June 2014 eruption. To detect the events, we use a method based on the Kurtosis function that picks the beginning of the signals. Then we localize the events using the arrival time of the waves and a propagation model computed with the Fast Marching Method. Finally, we calculate the seismic energy generated by these rockfalls. Thus, we obtain a catalog of events that we can exploit to determine the characteristics and the temporal evolution of the rockfall activity in the Dolomieu crater. A power law is observed between the seismic energy and the duration of rockfalls, making possible to calculate the rockfall volume from the ratio between seismic and potential energy. From previous studies on the Piton de la Fournaise volcano, we can infer that rockfall activity in the crater is correlated with eruptions: the rockfall activity seems to begin before the eruption time. We compare the spatio-temporal changes of the rockfall characteristics to the volcanic, seismic, and rain activity. We show in particular that the rockfall size seems to be different if the intrusion of magma reaches the surface or not, providing potential precursors to the occurrence of an eruption.

  12. High-Resolution Analysis of Seismicity Induced at Berlín Geothermal Field, El Salvador

    NASA Astrophysics Data System (ADS)

    Kwiatek, G.; Bulut, F.; Dresen, G. H.; Bohnhoff, M.

    2012-12-01

    We investigate induced microseismic activity monitored at Berlín Geothermal Field, El Salvador, during a hydraulic stimulation. The site was monitored for a time period of 17 months using thirteen 3-component seismic stations located in shallow boreholes. Three stimulations were performed in the well TR8A with a maximum injection rate and well head pressure of 160l/s and 130bar, respectively. For the entire time period of our analysis, the acquisition system recorded 581 events with moment magnitudes ranging between -0.5 and 3.7. The initial seismic catalog provided by the operator was substantially improved: 1) We re-picked P- and S-wave onsets and relocated the seismic events using the double-difference relocation algorithm based on cross-correlation derived differential arrival time data. Forward modeling was performed using a local 1D velocity model instead of homogeneous full-space. 2) We recalculated source parameters using the spectral fitting method and refined the results applying the spectral ratio method. We investigated the source parameters and spatial and temporal changes of the seismic activity based on the refined dataset and studied the correlation between seismic activity and production. The achieved hypocentral precision allowed resolving the spatiotemporal changes in seismic activity down to a scale of a few meters. The application of spectral ratio method significantly improved the quality of source parameters in a high-attenuating and complex geological environment. Of special interest is the largest event (Mw3.7) and its nucleation process. We investigate whether the refined seismic data display any signatures that the largest event is triggered by the shut-in of the well. We found seismic activity displaying clear spatial and temporal patterns that could be easily related to the amount of water injected into the well TR8A and other reinjection wells in the investigated area. The migration of seismicity outside of injection point is observed while injection rate is increasing. The locations of migrating seismic events are related to the existing fault system that is independently supported by calculated focal mechanisms. We found that the event migration occurs until the shut-in of the well. We observe that the large magnitude events are observed right after the shut-in, located in undamaged parts of the fault system. Results show that the following stimulation episodes require increased injection rate level (or increased well head pressure) to re-activate the seismic activity (Kaiser Effect, "Crustal memory" effect). The static stress drop values increase with the distance from injection point that is interpreted to be related to pore pressure perturbations introduced by stimulation of the injection well.

  13. Seismic energy data analysis of Merapi volcano to test the eruption time prediction using materials failure forecast method (FFM)

    NASA Astrophysics Data System (ADS)

    Anggraeni, Novia Antika

    2015-04-01

    The test of eruption time prediction is an effort to prepare volcanic disaster mitigation, especially in the volcano's inhabited slope area, such as Merapi Volcano. The test can be conducted by observing the increase of volcanic activity, such as seismicity degree, deformation and SO2 gas emission. One of methods that can be used to predict the time of eruption is Materials Failure Forecast Method (FFM). Materials Failure Forecast Method (FFM) is a predictive method to determine the time of volcanic eruption which was introduced by Voight (1988). This method requires an increase in the rate of change, or acceleration of the observed volcanic activity parameters. The parameter used in this study is the seismic energy value of Merapi Volcano from 1990 - 2012. The data was plotted in form of graphs of seismic energy rate inverse versus time with FFM graphical technique approach uses simple linear regression. The data quality control used to increase the time precision employs the data correlation coefficient value of the seismic energy rate inverse versus time. From the results of graph analysis, the precision of prediction time toward the real time of eruption vary between -2.86 up to 5.49 days.

  14. Seismic energy data analysis of Merapi volcano to test the eruption time prediction using materials failure forecast method (FFM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anggraeni, Novia Antika, E-mail: novia.antika.a@gmail.com

    The test of eruption time prediction is an effort to prepare volcanic disaster mitigation, especially in the volcano’s inhabited slope area, such as Merapi Volcano. The test can be conducted by observing the increase of volcanic activity, such as seismicity degree, deformation and SO2 gas emission. One of methods that can be used to predict the time of eruption is Materials Failure Forecast Method (FFM). Materials Failure Forecast Method (FFM) is a predictive method to determine the time of volcanic eruption which was introduced by Voight (1988). This method requires an increase in the rate of change, or acceleration ofmore » the observed volcanic activity parameters. The parameter used in this study is the seismic energy value of Merapi Volcano from 1990 – 2012. The data was plotted in form of graphs of seismic energy rate inverse versus time with FFM graphical technique approach uses simple linear regression. The data quality control used to increase the time precision employs the data correlation coefficient value of the seismic energy rate inverse versus time. From the results of graph analysis, the precision of prediction time toward the real time of eruption vary between −2.86 up to 5.49 days.« less

  15. Studies of the Correlation Between Ionospheric Anomalies and Seismic Activities in the Indian Subcontinent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasmal, S.; Chakrabarti, S. K.; S. N. Bose National Centre for Basic Sciences, JD Block, Salt-Lake Kolkata-70098

    2010-10-20

    The VLF (Very Low Frequency) signals are long thought to give away important information about the Lithosphere-Ionosphere coupling. It is recently established that the ionosphere may be perturbed due to seismic activities. The effects of this perturbation can be detected through the VLF wave amplitude. There are several methods to find this correlations and these methods can be used for the prediction of these seismic events. In this paper, first we present a brief history of the use of VLF propagation method for the study of seismo-ionospheric correlations. Then we present different methods proposed by us to find out themore » seismo-ionospheric correlations. At the Indian Centre for Space Physics, Kolkata we have been monitoring the VTX station at Vijayanarayanam from 2002. In the initial stage, we received 17 kHz signal and latter we received 18.2 kHz signal. In this paper, first we present the results for the 17 kHz signal during Sumatra earthquake in 2004 obtained from the terminator time analysis method. Then we present much detailed and statistical analysis using some new methods and present the results for 18.2 kHz signal. In order to establish the correlation between the ionospheric activities and the earthquakes, we need to understand what are the reference signals throughout the year. We present the result of the sunrise and sunset terminators for the 18.2 kHz signal as a function of the day of the year for a period of four years, viz, 2005 to 2008 when the solar activity was very low. In this case, the signal would primarily be affected by the Sun due to normal sunrise and sunset effects. Any deviation from this standardized calibration curve would point to influences by terrestrial (such as earthquakes) and extra-terrestrial (such as solar activities and other high energy phenomena). We present examples of deviations which occur in a period of sixteen months and show that the correlations with seismic events is significant and typically the highest deviation in terminator shift takes place up to a couple of days prior to the seismic event. We introduce a new method where we find the effects of the seismic activities on D-layer preparation time (DLPT) and the D-layer disappearance time (DLDT). We identify those days in which DLPT and DLDT exhibit deviations from the average value and we correlate those days with seismic events. Separately, we compute the energy release by the earthquakes and using this, we compute the total energy released locally from distant earthquakes and find correlations of the deviations with them. In this case also we find pre-cursors a few days before the seismic events. In a third approach, we consider the nighttime fluctuation method (differently quantified than the conventional way). We analyzed the nighttime data for the year 2007 to check the correlation between the night time fluctuation of the signal amplitude and the seismic events. Using the statistical method for all the events of the year and for the individual individual earthquakes (Magnitude > 5) we found that the night time signal amplitude becomes very high on three days prior to the seismic events.« less

  16. Active and passive seismic investigations in Alpine Permafrost at Hoher Sonnblick (Austria)

    NASA Astrophysics Data System (ADS)

    Steiner, Matthias; Maierhofer, Theresa; Pfeiler, Stefan; Chwatal, Werner; Behm, Michael; Reisenhofer, Stefan; Schöner, Wolfgang; Straka, Wolfgang; Flores Orozco, Adrian

    2017-04-01

    Different geophysical measurements have been applied at the Hoher Sonnblick study area to gain information about permafrost distribution as well as heterogeneities controlling heat circulation, in the frame of the ÖAW-AtmoPerm project, which aims at the understanding the impacts of atmospheric extreme events on the thermal state of the active layer. Electrical Resistivity Tomography (ERT) has been widely accepted as a suitable method to characterize permafrost processes; however, limitations are imposed due to the challenges to inject high current densities in the frozen periods and the loss of resolution of electrical images at depth require the application of further geophysical methods. To overcome such problems, we investigate here the application of active and seismic methods. Seismic campaigns were performed using permanent borehole and temporarily installed surface geophones. A total of 15 borehole geophones are installed at depths of 1 m, 2 m, 5 m, 10 m and 20 m in three boreholes which are separated by a horizontal distance of 30 m between each other. Active measurements utilized 41 surface and 15 borehole geophones and a total of 199 excitation points. Surface geophones were laid out along two crossing lines with lengths of 92 m and 64 m, respectively. The longer line was placed directly along the borehole transect and the shorter one was oriented perpendicular to it. Hammer blows were performed with a spacing of 1 m inline the geophones and 4 m in crosslines rotated by 45 degrees, permitting 3D acquisition geometry. In addition to the active sources, data loggers connected to the borehole geophones permitted the collection of continuous 36-hours datasets for two different thermal conditions. Seismic ambient noise interferometry is applied to this data and aims at the identification of velocity changes in the subsurface related to seasonal changes of the active layer. A potential source of ambient seismic energy is the noise excited by hikers and the activity from the nearby cable cars station. Results obtained from the 3D-hammer seismics and interferometry are compared and benchmarked against each other. Changes in the seismic velocities in the subsurface permitted the delineation of the active layer and improved permafrost investigation when combined with ERT monitoring. Seismic results were then interpreted together with those obtained with ERT monitoring, electromagnetic induction (EMI) and ground-penetrating radar (GPR).

  17. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    NASA Astrophysics Data System (ADS)

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-01

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA's) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 - April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  18. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lestari, Titik, E-mail: t2klestari@gmail.com; Faculty of Earth Science and Technology, Bandung Institute of Technology, Jalan Ganesa No.10, Bandung 40132; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id

    2015-04-24

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vsmore » and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.« less

  19. 2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach

    EPA Science Inventory

    We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...

  20. Rippability Assessment of Weathered Sedimentary Rock Mass using Seismic Refraction Methods

    NASA Astrophysics Data System (ADS)

    Ismail, M. A. M.; Kumar, N. S.; Abidin, M. H. Z.; Madun, A.

    2018-04-01

    Rippability or ease of excavation in sedimentary rocks is a significant aspect of the preliminary work of any civil engineering project. Rippability assessment was performed in this study to select an available ripping machine to rip off earth materials using the seismic velocity chart provided by Caterpillar. The research area is located at the proposed construction site for the development of a water reservoir and related infrastructure in Kampus Pauh Putra, Universiti Malaysia Perlis. The research was aimed at obtaining seismic velocity, P-wave (Vp) using a seismic refraction method to produce a 2D tomography model. A 2D seismic model was used to delineate the layers into the velocity profile. The conventional geotechnical method of using a borehole was integrated with the seismic velocity method to provide appropriate correlation. The correlated data can be used to categorize machineries for excavation activities based on the available systematic analysis procedure to predict rock rippability. The seismic velocity profile obtained was used to interpret rock layers within the ranges labelled as rippable, marginal, and non-rippable. Based on the seismic velocity method the site can be classified into loose sand stone to moderately weathered rock. Laboratory test results shows that the site’s rock material falls between low strength and high strength. Results suggest that Caterpillar’s smallest ripper, namely, D8R, can successfully excavate materials based on the test results integration from seismic velocity method and laboratory test.

  1. The Search for Fluid Injection-induced Seismicity in California Oilfields

    NASA Astrophysics Data System (ADS)

    Layland-Bachmann, C. E.; Brodsky, E. E.; Foxall, W.; Goebel, T.; Jordan, P. D.

    2017-12-01

    During recent years, earthquakes associated with human activity have become a matter of heightened public concern. Wastewater injection is a major concern, as seismic events with magnitudes larger than M5.5 have been linked to this practice. Much of the research in the United States is focused on the mid-continental regions, where low rates of naturally-occurring seismicity and high-volume injection activities facilitate easier identification by statistical correlation of potentially induced seismic events . However, available industry data are often limited in these regions and therefore limits our ability to connect specific human activities to earthquakes. Specifically, many previous studies have focused primarily on injection activity in single wells, ignoring the interconnectivity of production and injection in a reservoir. The situation in California differs from the central U.S. in two ways: (1) A rich dataset of oilfield activity is publically available from state agencies, which enables a more in-depth investigation of the human forcing; and (2) the identification of potential anthropogenically-induced earthquakes is complex as a result of high tectonic activity. Here we address both differences. We utilize a public database of hydrologically connected reservoirs to assess whether there are any statistically significant correlations between the net injected volumes, reservoir pressures and injection depths, and the earthquake locations and frequencies of occurrence. We introduce a framework of physical and empirical models and statistical techniques to identify potentially induced seismic events. While the aim is to apply the methods statewide, we first apply our methods in the Southern San Joaquin Valley. Although, we find an anomalously high earthquake rate in Southern Kern County oilfields, which is consistent with previous studies, we do not find a simple straightforward correlation. To successfully study induced seismicity we need a seismic catalog that is complete and consistent down to small magnitudes. During this study, we found some important seismic coverage gaps in critical oilfields in the Central Valley that need to be addressed in order to provide societally relevant assessments.

  2. Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Probabilistic-Deterministic Method

    NASA Astrophysics Data System (ADS)

    mouloud, Hamidatou

    2016-04-01

    The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.

  3. Continuous micro-earthquake catalogue of the central Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Michailos, Konstantinos; Townend, John; Savage, Martha; Chamberlain, Calum

    2017-04-01

    The Alpine Fault is one of the most prominent tectonic features in the South Island, New Zealand, and is inferred to be late in its seismic cycle of M 8 earthquakes based on paleoseismological evidence. Despite this, the Alpine Fault displays low levels of contemporary seismic activity, with little documented on-fault seismicity. This low magnitude seismicity, often below the completeness level of the GeoNet national seismic catalogue, may inform us of changes in fault character along-strike and might be used for rupture simulations and hazard planning. Thus, compiling a micro-earthquake catalogue for the Southern Alps prior to an expected major earthquake is of great interest. Areas of low seismic activity, like the central part of the Alpine Fault, require data recorded over a long duration to reveal temporal and spatial seismicity patterns and provide a better understanding for the processes controlling seismogenesis. The continuity and density of the Southern Alps Microearthquake Borehole Array (SAMBA; deployed in late 2008) allows us to study seismicity in the Southern Alps over a more extended time period than has ever been done previously. Furthermore, by using data from other temporary networks (e.g. WIZARD, ALFA08, DFDP-10) we are able to extend the region covered. To generate a spatially and temporally continuous catalogue of seismicity in New Zealand's central Southern Alps, we used automatic detection and phase-picking methods. We used an automatic phase-picking method for both P- and S- wave arrivals (kPick; Rawles and Thurber, 2015). Using almost 8 years of seismic data we calculated about 9,000 preliminary earthquake. The seismicity is clustered and scattered and a previously observed seismic gap between the Wanganui and Whataroa rivers is also identified.

  4. Imaging near surface mineral targets with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Dales, P.; Audet, P.; Olivier, G.

    2017-12-01

    To keep up with global metal and mineral demand, new ore-deposits have to be discovered on a regular basis. This task is becoming increasingly difficult, since easily accessible deposits have been exhausted to a large degree. The typical procedure for mineral exploration begins with geophysical surveys followed by a drilling program to investigate potential targets. Since the retrieved drill core samples are one-dimensional observations, the many holes needed to interpolate and interpret potential deposits can lead to very high costs. To reduce the amount of drilling, active seismic imaging is sometimes used as an intermediary, however the active sources (e.g. large vibrating trucks or explosive shots) are expensive and unsuitable for operation in remote or environmentally sensitive areas. In recent years, passive seismic imaging using ambient noise has emerged as a novel, low-cost and environmentally sensitive approach for exploring the sub-surface. This technique dispels with active seismic sources and instead uses ambient seismic noise such as ocean waves, traffic or minor earthquakes. Unfortunately at this point, passive surveys are not capable of reaching the required resolution to image the vast majority of the ore-bodies that are being explored. In this presentation, we will show the results of an experiment where ambient seismic noise recorded on 60 seismic stations was used to image a near-mine target. The target consists of a known ore-body that has been partially exhausted by mining efforts roughly 100 years ago. The experiment examined whether ambient seismic noise interferometry can be used to image the intact and exhausted ore deposit. A drilling campaign was also conducted near the target which offers the opportunity to compare the two methods. If the accuracy and resolution of passive seismic imaging can be improved to that of active surveys (and beyond), this method could become an inexpensive intermediary step in the exploration process and result in a large decrease in the amount of drilling required to investigate and identify high-grade ore deposits.

  5. A one year long continuous record of seismic activity and surface motion at the tongue of Rhonegletscher (Valais, Switzerland)

    NASA Astrophysics Data System (ADS)

    Dalban Canassy, Pierre; Röösli, Claudia; Walter, Fabian; Gabbi, Jeannette

    2014-05-01

    A critical gap in our current understanding of glaciers is how high sub-glacial water pressure controls the coupling of the glacier to its bed. Processes at the base of a glacier are inherently difficult to investigate due to their remoteness. Investigation of the sub-glacial environment with passive seismic methods is an innovative, rapidly growing interdisciplinary and promising endeavor. In combination with observations of surface motion and basal water pressure, this method is ideally suited to localize and quantify frictional and fracture processes which occur during periods of rapidly changing sub-glacial water pressure with consequent stress redistribution at the contact interface between ice and bed. Here we present the results of the first one-year-long glacier seismic monitoring performed on an Alpine glacier to our knowledge. Together with records of surface motion and hydrological measurements, we examine whether seasonal changes can be captured by seismic recording. Experiments were carried out from June 2012 to July 2013 on Rhonegletscher (Valais, Switzerland), by means of 3 three-components seismometers settled close to the tongue in 2 meters boreholes. An additional array of eleven sensors installed at the ice surface was also maintained during September 2012, in order to achieve more accurate icequakes locations. A high seismic emission is observed on Rhonegletscher, with icequakes located close to the surface or in the vicinity of the bedrock. The temporal distribution of seismic activity is shown to nicely reflect the seasonal evolution of the glacier hydrology, with a dramatic seismic release in early spring. During summer, released seismic activity is generally driven by diurnal ice/snow melting cycle. In winter, snow-cover conditions are associated with a reduced seismic release, with nevertheless some unexpected activity possibly related to snow-pack metamorphism. Based on icequake locations derived from data recorded in September, we discuss seasonal changes of the icequakes hypocenters distribution and possible source mechanisms are proposed.

  6. Considering potential seismic sources in earthquake hazard assessment for Northern Iran

    NASA Astrophysics Data System (ADS)

    Abdollahzadeh, Gholamreza; Sazjini, Mohammad; Shahaky, Mohsen; Tajrishi, Fatemeh Zahedi; Khanmohammadi, Leila

    2014-07-01

    Located on the Alpine-Himalayan earthquake belt, Iran is one of the seismically active regions of the world. Northern Iran, south of Caspian Basin, a hazardous subduction zone, is a densely populated and developing area of the country. Historical and instrumental documented seismicity indicates the occurrence of severe earthquakes leading to many deaths and large losses in the region. With growth of seismological and tectonic data, updated seismic hazard assessment is a worthwhile issue in emergency management programs and long-term developing plans in urban and rural areas of this region. In the present study, being armed with up-to-date information required for seismic hazard assessment including geological data and active tectonic setting for thorough investigation of the active and potential seismogenic sources, and historical and instrumental events for compiling the earthquake catalogue, probabilistic seismic hazard assessment is carried out for the region using three recent ground motion prediction equations. The logic tree method is utilized to capture epistemic uncertainty of the seismic hazard assessment in delineation of the seismic sources and selection of attenuation relations. The results are compared to a recent practice in code-prescribed seismic hazard of the region and are discussed in detail to explore their variation in each branch of logic tree approach. Also, seismic hazard maps of peak ground acceleration in rock site for 475- and 2,475-year return periods are provided for the region.

  7. Applying the seismic interferometry method to vertical seismic profile data using tunnel excavation noise as source

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Teixido, Teresa; Martin, Elena; Segarra, Miguel; Segura, Carlos

    2013-04-01

    In the frame of the research conducted to develop efficient strategies for investigation of rock properties and fluids ahead of tunnel excavations the seismic interferometry method was applied to analyze the data acquired in boreholes instrumented with geophone strings. The results obtained confirmed that seismic interferometry provided an improved resolution of petrophysical properties to identify heterogeneities and geological structures ahead of the excavation. These features are beyond the resolution of other conventional geophysical methods but can be the cause severe problems in the excavation of tunnels. Geophone strings were used to record different types of seismic noise generated at the tunnel head during excavation with a tunnelling machine and also during the placement of the rings covering the tunnel excavation. In this study we show how tunnel construction activities have been characterized as source of seismic signal and used in our research as the seismic source signal for generating a 3D reflection seismic survey. The data was recorded in vertical water filled borehole with a borehole seismic string at a distance of 60 m from the tunnel trace. A reference pilot signal was obtained from seismograms acquired close the tunnel face excavation in order to obtain best signal-to-noise ratio to be used in the interferometry processing (Poletto et al., 2010). The seismic interferometry method (Claerbout 1968) was successfully applied to image the subsurface geological structure using the seismic wave field generated by tunneling (tunnelling machine and construction activities) recorded with geophone strings. This technique was applied simulating virtual shot records related to the number of receivers in the borehole with the seismic transmitted events, and processing the data as a reflection seismic survey. The pseudo reflective wave field was obtained by cross-correlation of the transmitted wave data. We applied the relationship between the transmission response and the reflection response for a 1D multilayer structure, and next 3D approach (Wapenaar 2004). As a result of this seismic interferometry experiment the 3D reflectivity model (frequencies and resolution ranges) was obtained. We proved also that the seismic interferometry approach can be applied in asynchronous seismic auscultation. The reflections detected in the virtual seismic sections are in agreement with the geological features encountered during the excavation of the tunnel and also with the petrophysical properties and parameters measured in previous geophysical borehole logging. References Claerbout J.F., 1968. Synthesis of a layered medium from its acoustic transmision response. Geophysics, 33, 264-269 Flavio Poletto, Piero Corubolo and Paolo Comeli.2010. Drill-bit seismic interferometry whith and whitout pilot signals. Geophysical Prospecting, 2010, 58, 257-265. Wapenaar, K., J. Thorbecke, and D. Draganov, 2004, Relations between reflection and transmission responses of three-dimensional inhomogeneous media: Geophysical Journal International, 156, 179-194.

  8. Seismic risk assessment for road in Indonesia

    NASA Astrophysics Data System (ADS)

    Toyfur, Mona Foralisa; Pribadi, Krishna S.

    2016-05-01

    Road networks in Indonesia consist of 446,000 km of national, provincial and local roads as well as toll highways. Indonesia is one of countries that exposed to various natural hazards, such as earthquakes, floods, landslides, etc. Within the Indonesian archipelago, several global tectonic plates interact, such as the Indo-Australian, Pacific, Eurasian, resulting in a complex geological setting, characterized by the existence of seismically active faults and subduction zones and a chain of more than one hundred active volcanoes. Roads in Indonesia are vital infrastructure needed for people and goods movement, thus supporting community life and economic activities, including promoting regional economic development. Road damages and losses due to earthquakes have not been studied widely, whereas road disruption caused enormous economic damage. The aim of this research is to develop a method to analyse risk caused by seismic hazard to roads. The seismic risk level of road segment is defined using an earthquake risk index, adopting the method of Earthquake Disaster Risk Index model developed by Davidson (1997). Using this method, road segments' risk level can be defined and compared, and road risk map can be developed as a tool for prioritizing risk mitigation programs for road networks in Indonesia.

  9. Data-Intensive Discovery Methods for Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Richards, P. G.; Schaff, D. P.; Young, C. J.; Slinkard, M.; Heck, S.; Ammon, C. J.; Cleveland, M.

    2011-12-01

    For most regions of our planet, earthquakes and explosions are still located one-at-a-time using seismic phase picks-a procedure that has not fundamentally changed for more than a century. But methods that recognize and use seismogram archives as a major resource, enabling comparisons of waveforms recorded from neighboring events and relocating numerous events relative to each other, have been successfully demonstrated, especially for California, where they have enabled new insights into earthquake physics and Earth structure, and have raised seismic monitoring to new levels. We are beginning a series of projects to evaluate such data-intensive methods on ever-larger scales, using cross correlation (CC) to analyze seismicity in three different ways: (1) to find repeating earthquakes (whose waveforms are very similar, so the CC value measured over long windows must be high); (2) to measure time differences and amplitude differences to enable precise relocations and relative amplitude studies, of seismic events with respect to their neighboring events (then CC can be much lower, yet still give a better estimate of arrival time differences and relative amplitudes, compared to differencing phase picks and magnitudes); and, perhaps most importantly, (3) as a detector, to find new events in current data streams that are similar to events already in the archive, or to add to the number of detections of an already known event. Experience documented by Schaff and Waldhauser (2005) for California and Schaff (2009) for China indicates that the great majority of events in seismically active regions generate waveforms that are sufficiently similar to the waveforms of neighboring events to allow CC methods to be used to obtain relative locations. Schaff (2008, 2010) has demonstrated the capability of CC methods to achieve detections, with minimal false alarms, down to more than a magnitude unit below conventional STA/LTA detectors though CC methods are far more computationally-intensive. Elsewhere at this meeting Cleveland, Ammon, and Van DeMark report in more detail on greatly-improved event locations along oceanic fracture zones using CC methods applied to 40-80s Rayleigh waves; and Slinkard, Carr, Heck and Young at Sandia have reported greatly-improved computational approaches that reduce CPU demands from hours using a fast workstation to minutes using a GPU, when a continuous data stream lasting several days is searched (using CC methods) for seismic signals similar to those of hundreds of previously documented events. From diverse results such as these, it seems appropriate to consider the future possibility of radical improvement in monitoring virtually all seismically active areas, using archives of prior events as the major resource-though we recognize that such an approach does not directly help to characterize seismic events in inactive regions, or events in active regions which are dissimilar to previously recorded events.

  10. Seismic-monitoring changes and the remote deployment of seismic stations (seismic spider) at Mount St. Helens, 2004-2005: Chapter 7 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    McChesney, Patrick J.; Couchman, Marvin R.; Moran, Seth C.; Lockhart, Andrew B.; Swinford, Kelly J.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The instruments in place at the start of volcanic unrest at Mount St. Helens in 2004 were inadequate to record the large earthquakes and monitor the explosions that occurred as the eruption developed. To remedy this, new instruments were deployed and the short-period seismic network was modified. A new method of establishing near-field seismic monitoring was developed, using remote deployment by helicopter. The remotely deployed seismic sensor was a piezoelectric accelerometer mounted on a surface-coupled platform. Remote deployment enabled placement of stations within 250 m of the active vent.

  11. Seismic Monitoring of Permafrost During Controlled Thaw: An Active-Source Experiment Using a Surface Orbital Vibrator and Fiber-Optic DAS Arrays

    NASA Astrophysics Data System (ADS)

    Dou, S.; Wood, T.; Lindsey, N.; Ajo Franklin, J. B.; Freifeld, B. M.; Gelvin, A.; Morales, A.; Saari, S.; Ekblaw, I.; Wagner, A. M.; Daley, T. M.; Robertson, M.; Martin, E. R.; Ulrich, C.; Bjella, K.

    2016-12-01

    Thawing of permafrost can cause ground deformations that threaten the integrity of civil infrastructure. It is essential to develop early warning systems that can identify critically warmed permafrost and issue warnings for hazard prevention and control. Seismic methods can play a pivotal role in such systems for at least two reasons: First, seismic velocities are indicative of mechanical strength of the subsurface and thus are directly relevant to engineering properties; Second, seismic velocities in permafrost systems are sensitive to pre-thaw warming, which makes it possible to issue early warnings before the occurrence of hazardous subsidence events. However, several questions remain: What are the seismic signatures that can be effectively used for early warning of permafrost thaw? Can seismic methods provide enough warning times for hazard prevention and control? In this study, we investigate the feasibility of using permanently installed seismic networks for early warnings of permafrost thaw. We conducted continuous active-source seismic monitoring of permafrost that was under controlled heating at CRREL's Fairbanks permafrost experiment station. We used a permanently installed surface orbital vibrator (SOV) as source and surface-trenched DAS arrays as receivers. The SOV is characterized by its excellent repeatability, automated operation, high energy level, and the rich frequency content (10-100 Hz) of the generated wavefields. The fiber-optic DAS arrays allow continuous recording of seismic data with dense spatial sampling (1-meter channel spacing), low cost, and low maintenance. This combination of SOV-DAS provides unique seismic datasets for observing time-lapse changes of warming permafrost at the field scale, hence providing an observational basis for design and development of early warning systems for permafrost thaw.

  12. Reflection seismic imaging in the volcanic area of the geothermal field Wayang Windu, Indonesia

    NASA Astrophysics Data System (ADS)

    Polom, Ulrich; Wiyono, Wiyono; Pramono, Bambang; Krawczyk, CharLotte M.

    2014-05-01

    Reflection seismic exploration in volcanic areas is still a scientific challenge and requires major efforts to develop imaging workflows capable of an economic utilization, e.g., for geothermal exploration. The SESaR (Seismic Exploration and Safety Risk study for decentral geothermal plants in Indonesia) project therefore tackles still not well resolved issues concerning wave propagation or energy absorption in areas covered by pyroclastic sediments using both active P-wave and S-wave seismics. Site-specific exploration procedures were tested in different tectonic and lithological regimes to compare imaging conditions. Based on the results of a small-scale, active seismic pre-site survey in the area of the Wayang Windu geothermal field in November 2012, an additional medium-scale active seismic experiment using P-waves was carried out in August 2013. The latter experiment was designed to investigate local changes of seismic subsurface response, to expand the knowledge about capabilities of the vibroseis method for seismic surveying in regions covered by pyroclastic material, and to achieve higher depth penetration. Thus, for the first time in the Wayang Windu geothermal area, a powerful, hydraulically driven seismic mini-vibrator device of 27 kN peak force (LIAG's mini-vibrator MHV2.7) was used as seismic source instead of the weaker hammer blow applied in former field surveys. Aiming at acquiring parameter test and production data southeast of the Wayang Windu geothermal power plant, a 48-channel GEODE recording instrument of the Badan Geologi was used in a high-resolution configuration, with receiver group intervals of 5 m and source intervals of 10 m. Thereby, the LIAG field crew, Star Energy, GFZ Potsdam, and ITB Bandung acquired a nearly 600 m long profile. In general, we observe the successful applicability of the vibroseis method for such a difficult seismic acquisition environment. Taking into account the local conditions at Wayang Windu, the method is superior to the common seismic explosive source techniques, both with respect to production rate as well as resolution and data quality. Source signal frequencies of 20-80 Hz are most efficient for the attempted depth penetration, even though influenced by the dry subsurface conditions during the experiment. Depth penetration ranges between 0.5-1 km. Based on these new experimental data, processing workflows can be tested the first time for adapted imaging strategies. This will not only allow to focus on larger exploration depths covering the geothermal reservoir at the Wayang Windu power plant site itself, but also opens the possibility to transfer the lessons learned to other sites.

  13. NSR&D Program Fiscal Year (FY) 2015 Call for Proposals Mitigation of Seismic Risk at Nuclear Facilities using Seismic Isolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Justin

    2015-02-01

    Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysismore » of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure. Figure 1: Project activities The study will consider a representative NPP reinforced concrete reactor building and representative plant safety system. This study will leverage existing research and development (R&D) activities at INL. Figure 1 shows the proposed study steps with the steps in blue representing activities already funded at INL and the steps in purple the activities that would be funded under this proposal. The following results will be documented: 1) Comparison of seismic risk for the non-seismically isolated (non-SI) and seismically isolated (SI) NPP, and 2) an estimate of construction cost savings when implementing SI at the site of the generic NPP.« less

  14. An examination of the earthquake behaviour of a retaining wall considering soil-structure interaction

    NASA Astrophysics Data System (ADS)

    Köktan, Utku; Demir, Gökhan; Kerem Ertek, M.

    2017-04-01

    The earthquake behavior of retaining walls is commonly calculated with pseudo static approaches based on Mononobe-Okabe method. The seismic ground pressure acting on the retaining wall by the Mononobe-Okabe method does not give a definite idea of the distribution of the seismic ground pressure because it is obtained by balancing the forces acting on the active wedge behind the wall. With this method, wave propagation effects and soil-structure interaction are neglected. The purpose of this study is to examine the earthquake behavior of a retaining wall taking into account the soil-structure interaction. For this purpose, time history seismic analysis of the soil-structure interaction system using finite element method has been carried out considering 3 different soil conditions. Seismic analysis of the soil-structure model was performed according to the earthquake record of "1971, San Fernando Pacoima Dam, 196 degree" existing in the library of MIDAS GTS NX software. The results obtained from the analyses show that the soil-structure interaction is very important for the seismic design of a retaining wall. Keywords: Soil-structure interaction, Finite element model, Retaining wall

  15. Time-lapse Seismic Refraction Monitoring of an Active Landslide in Lias Group Mudrocks, North Yorkshire, UK

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Whiteley, J.; Chambers, J. E.; Inauen, C.; Swift, R. T.

    2017-12-01

    Geophysical monitoring of the internal moisture content and processes of landslides is an increasingly common approach to the characterisation and assessment of the hydrogeological condition of rainfall-triggered landslides. Geoelectrical monitoring methods are sensitive to changes in the subsurface moisture conditions that cause the failure of unstable slopes, typically through the increase of pore water pressures and softening of materials within the landslide system. The application of seismic methods to the monitoring of landslides has not been as extensively applied as geoelectrical approaches, but the seismic method can determine elastic properties of landslide materials that can characterise and identify changes in the geomechanical condition of landslide systems that also lead to slope failure. We present the results of a seismic refraction monitoring campaign undertaken at the Hollin Hill Landslide Observatory in North Yorkshire, UK. This campaign has involved the repeat acquisition of surface acquired high resolution P- and S-wave seismic refraction data. The monitoring profile traverses a 142m long section from the crest to the toe of an active landslide comprising of mudstone and sandstone. Data were acquired at six to nine week intervals between October 2016 and October 2017. This repeat acquisition approach allowed for the imaging of seismically determined property changes of the landslide throughout the annual climatic cycle. Initial results showed that changes in the moisture dynamics of the landslide are reflected by changes in the seismic character of the inverted tomograms. Changes in the seismic properties are linked to the changes in the annual climatic cycle, particularly in relation to effective rainfall. The results indicate that the incorporation of seismic monitoring data into ongoing geoelectrical monitoring programmes can provide complementary geomechanical data to enhance our understanding of the internal condition of landslide systems. Future development of this integrated approach will allow for the imaging and monitoring of these systems at unprecedented spatial and temporal scales.

  16. A Predictive Model of Daily Seismic Activity Induced by Mining, Developed with Data Mining Methods

    NASA Astrophysics Data System (ADS)

    Jakubowski, Jacek

    2014-12-01

    The article presents the development and evaluation of a predictive classification model of daily seismic energy emissions induced by longwall mining in sector XVI of the Piast coal mine in Poland. The model uses data on tremor energy, basic characteristics of the longwall face and mined output in this sector over the period from July 1987 to March 2011. The predicted binary variable is the occurrence of a daily sum of tremor seismic energies in a longwall that is greater than or equal to the threshold value of 105 J. Three data mining analytical methods were applied: logistic regression,neural networks, and stochastic gradient boosted trees. The boosted trees model was chosen as the best for the purposes of the prediction. The validation sample results showed its good predictive capability, taking the complex nature of the phenomenon into account. This may indicate the applied model's suitability for a sequential, short-term prediction of mining induced seismic activity.

  17. Environmental protection problems in the vicinity of the Zelazny most flotation wastes depository in Poland.

    PubMed

    Lasocki, Stanislaw; Antoniuk, Janusz; Moscicki, Jerzy

    2003-08-01

    The Zelazny Most depository of wastes from copper-ore processing, located in southwest Poland, is the largest mineral wastes repository in Europe. Moreover, it is located in a seismically active area. The seismicity is induced and is connected with mining works in the nearby underground copper mines. Any release of the contents of the repository to the environment could have devastating and even catastrophic consequences. For this reason, geophysical methods are used for continuous monitoring the state of the repository containment dams. The article presents examples of the application of geoelectric methods for detecting sites of leakage of contaminated water and a sketch of the seismic hazard analysis, which was used to predict future seismic vibrations of the repository dams.

  18. Microseismic monitoring of soft-rock landslide: contribution of a 3D velocity model for the location of seismic sources.

    NASA Astrophysics Data System (ADS)

    Floriane, Provost; Jean-Philippe, Malet; Cécile, Doubre; Julien, Gance; Alessia, Maggi; Agnès, Helmstetter

    2015-04-01

    Characterizing the micro-seismic activity of landslides is an important parameter for a better understanding of the physical processes controlling landslide behaviour. However, the location of the seismic sources on landslides is a challenging task mostly because of (a) the recording system geometry, (b) the lack of clear P-wave arrivals and clear wave differentiation, (c) the heterogeneous velocities of the ground. The objective of this work is therefore to test whether the integration of a 3D velocity model in probabilistic seismic source location codes improves the quality of the determination especially in depth. We studied the clay-rich landslide of Super-Sauze (French Alps). Most of the seismic events (rockfalls, slidequakes, tremors...) are generated in the upper part of the landslide near the main scarp. The seismic recording system is composed of two antennas with four vertical seismometers each located on the east and west sides of the seismically active part of the landslide. A refraction seismic campaign was conducted in August 2014 and a 3D P-wave model has been estimated using the Quasi-Newton tomography inversion algorithm. The shots of the seismic campaign are used as calibration shots to test the performance of the different location methods and to further update the 3D velocity model. Natural seismic events are detected with a semi-automatic technique using a frequency threshold. The first arrivals are picked using a kurtosis-based method and compared to the manual picking. Several location methods were finally tested. We compared a non-linear probabilistic method coupled with the 3D P-wave model and a beam-forming method inverted for an apparent velocity. We found that the Quasi-Newton tomography inversion algorithm provides results coherent with the original underlaying topography. The velocity ranges from 500 m.s-1 at the surface to 3000 m.s-1 in the bedrock. For the majority of the calibration shots, the use of a 3D velocity model significantly improve the results of the location procedure using P-wave arrivals. All the shots were made 50 centimeters below the surface and hence the vertical error could not be determined with the seismic campaign. We further discriminate the rockfalls and the slidequakes occurring on the landslide with the depth computed thanks to the 3D velocity model. This could be an additional criteria to automatically classify the events.

  19. Discrimination and Assessment of Induced Seismicity in Active Tectonic Zones: A Case Study from Southern California

    NASA Astrophysics Data System (ADS)

    Bachmann, C. E.; Lindsey, N.; Foxall, W.; Robertson, M.

    2014-12-01

    Earthquakes induced by human activity have become a matter of heightened public concern during recent years. Of particular concern is seismicity associated with wastewater injection, which has included events having magnitudes greater than 5. The causes of the induced events are primarily changes in pore-pressure, fluid volume and perhaps temperature due to injection. Recent research in the US has focused on mid-continental regions having low rates of naturally-occurring seismicity, where induced events can be identified by relatively straightforward spatial and temporal correlation of seismicity with high-volume injection activities. Recent examples include events correlated with injection of wastewater in Oklahoma, Arkansas, Texas and Ohio, and long-term brine injection in the Paradox Valley in Colorado. Even in some of the cases where there appears at first sight to be a clear spatial correlation between seismicity and injection, it has been difficult to establish causality definitively. Here, we discuss methods to identify induced seismicity in active tectonic regions. We concentrate our study on Southern California, where large numbers of wastewater injection wells are located in oil-producing basins that experience moderate to high rates of naturally-occurring seismicity. Using the catalog of high-precision CISN relocations produced by Hauksson et al. (BSSA, 2012), we aim to discriminate induced from natural events based on spatio-temporal patterns of seismicity occurrence characteristics and their relationships to injection activities, known active faults and other faults favorably oriented for slip under the tectonic stress field. Since the vast majority of induced earthquakes are very small, it is crucial to include all events above the detection threshold of the CISN in each area studied. In addition to exploring the correlation of seismicity to injection activities in time and space, we analyze variations in frequency-magnitude distributions, which can be related to differences between the physical conditions at the sources of fluid-induced and natural earthquakes. While induced seismicity often does not show different mechanisms than tectonic earthquakes, an abundance of induced microseismicity causes the slope of the frequency-magnitude distribution to increase locally.

  20. Applying Binary Forecasting Approaches to Induced Seismicity in the Western Canada Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Kahue, R.; Shcherbakov, R.

    2016-12-01

    The Western Canada Sedimentary Basin has been chosen as a focus due to an increase in the recent observed seismicity there which is most likely linked to anthropogenic activities related to unconventional oil and gas exploration. Seismicity caused by these types of activities is called induced seismicity. The occurrence of moderate to larger induced earthquakes in areas where critical infrastructure is present can be potentially problematic. Here we use a binary forecast method to analyze past seismicity and well production data in order to quantify future areas of increased seismicity. This method splits the given region into spatial cells. The binary forecast method used here has been suggested in the past to retroactively forecast large earthquakes occurring globally in areas called alarm cells. An alarm cell, or alert zone, is a bin in which there is a higher likelihood for earthquakes to occur based on previous data. The first method utilizes the cumulative Benioff strain, based on earthquakes that had occurred in each bin above a given magnitude over a time interval called the training period. The second method utilizes the cumulative well production data within each bin. Earthquakes that occurred within an alert zone in the retrospective forecast period contribute to the hit rate, while alert zones that did not have an earthquake occur within them in the forecast period contribute to the false alarm rate. In the resulting analysis the hit rate and false alarm rate are determined after optimizing and modifying the initial parameters using the receiver operating characteristic diagram. It is found that when modifying the cell size and threshold magnitude parameters within various training periods, hit and false alarm rates are obtained for specific regions in Western Canada using both recent seismicity and cumulative well production data. Certain areas are thus shown to be more prone to potential larger earthquakes based on both datasets. This has implications for the potential link between oil and gas production and induced seismicity observed in the Western Canada Sedimentary Basin.

  1. Improvement forecasting of volcanic activity by applying a Kalman filter to the SSEM signal. The case of the El Hierro Island eruption (October 2011)

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Berrocoso, M.; Marrero, J. M.; Ortiz, R.

    2012-04-01

    The FFM (Failure Forecast Method) is developed from the eruption of St. Helens, being repeatedly applied to forecast eruptions and recently to the prediction of seismic activity in active volcanic areas. The underwater eruption of El Hierro Island has been monitored from three months before starting (October 10, 2011). This allowed a large catalogue of seismic events (over 11000) and continuous recording seismic signals that cover the entire period. Since the beginning of the seismic-volcanic crisis (July 2011), the FFM was applied to the SSEM signal of seismic records. Mainly because El Hierro is a very small island, the SSEM has a high noise (traffic and oceanic noise). To improve the signal / noise ratio has been used a Kalman filter. The Kalman filter coefficients are adjusted using an inversion process based on forecasting errors occurred in the twenty days preceding. The application of this filter has been a significant improvement in the reliability of forecasts. The analysis of the results shows, before the start of the eruption, that 90% of the forecasts are obtained with errors less than 10 minutes with more than 24 hours in advance. It is noteworthy that the method predicts the events of greater magnitude and especially the beginning of each swarm of seismic events. At the time the eruption starts reducing the efficiency of the forecast 50% with a dispersion of more than one hour. This fact is probably due to decreased detectability by saturation of some of the seismic stations and decreased the average magnitude. However, the events of magnitude greater than 4 were predicted with an error less than 20 minutes.

  2. 76 FR 20325 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... stock(s) for subsistence uses (where relevant). The authorization must set forth the permissible methods..., with research funding from the U.S. National Science Foundation (NSF), plans to conduct the seismic... Seismic Research Funded by the [[Page 20327

  3. Detailed investigation of Long-Period activity at Campi Flegrei by Convolutive Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Capuano, P.; De Lauro, E.; De Martino, S.; Falanga, M.

    2016-04-01

    This work is devoted to the analysis of seismic signals continuously recorded at Campi Flegrei Caldera (Italy) during the entire year 2006. The radiation pattern associated with the Long-Period energy release is investigated. We adopt an innovative Independent Component Analysis algorithm for convolutive seismic series adapted and improved to give automatic procedures for detecting seismic events often buried in the high-level ambient noise. The extracted waveforms characterized by an improved signal-to-noise ratio allows the recognition of Long-Period precursors, evidencing that the seismic activity accompanying the mini-uplift crisis (in 2006), which climaxed in the three days from 26-28 October, had already started at the beginning of the month of October and lasted until mid of November. Hence, a more complete seismic catalog is then provided which can be used to properly quantify the seismic energy release. To better ground our results, we first check the robustness of the method by comparing it with other blind source separation methods based on higher order statistics; secondly, we reconstruct the radiation patterns of the extracted Long-Period events in order to link the individuated signals directly to the sources. We take advantage from Convolutive Independent Component Analysis that provides basic signals along the three directions of motion so that a direct polarization analysis can be performed with no other filtering procedures. We show that the extracted signals are mainly composed of P waves with radial polarization pointing to the seismic source of the main LP swarm, i.e. a small area in the Solfatara, also in the case of the small-events, that both precede and follow the main activity. From a dynamical point of view, they can be described by two degrees of freedom, indicating a low-level of complexity associated with the vibrations from a superficial hydrothermal system. Our results allow us to move towards a full description of the complexity of the source, which can be used, by means of the small-intensity precursors, for hazard-model development and forecast-model testing, showing an illustrative example of the applicability of the CICA method to regions with low seismicity in high ambient noise.

  4. Detailed Velocity and Density models of the Cascadia Subduction Zone from Prestack Full-Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Fortin, W.; Holbrook, W. S.; Mallick, S.; Everson, E. D.; Tobin, H. J.; Keranen, K. M.

    2014-12-01

    Understanding the geologic composition of the Cascadia Subduction Zone (CSZ) is critically important in assessing seismic hazards in the Pacific Northwest. Despite being a potential earthquake and tsunami threat to millions of people, key details of the structure and fault mechanisms remain poorly understood in the CSZ. In particular, the position and character of the subduction interface remains elusive due to its relative aseismicity and low seismic reflectivity, making imaging difficult for both passive and active source methods. Modern active-source reflection seismic data acquired as part of the COAST project in 2012 provide an opportunity to study the transition from the Cascadia basin, across the deformation front, and into the accretionary prism. Coupled with advances in seismic inversion methods, this new data allow us to produce detailed velocity models of the CSZ and accurate pre-stack depth migrations for studying geologic structure. While still computationally expensive, current computing clusters can perform seismic inversions at resolutions that match that of the seismic image itself. Here we present pre-stack full waveform inversions of the central seismic line of the COAST survey offshore Washington state. The resultant velocity model is produced by inversion at every CMP location, 6.25 m laterally, with vertical resolution of 0.2 times the dominant seismic frequency. We report a good average correlation value above 0.8 across the entire seismic line, determined by comparing synthetic gathers to the real pre-stack gathers. These detailed velocity models, both Vp and Vs, along with the density model, are a necessary step toward a detailed porosity cross section to be used to determine the role of fluids in the CSZ. Additionally, the P-velocity model is used to produce a pre-stack depth migration image of the CSZ.

  5. Detecting aseismic strain transients from seismicity data

    USGS Publications Warehouse

    Llenos, A.L.; McGuire, J.J.

    2011-01-01

    Aseismic deformation transients such as fluid flow, magma migration, and slow slip can trigger changes in seismicity rate. We present a method that can detect these seismicity rate variations and utilize these anomalies to constrain the underlying variations in stressing rate. Because ordinary aftershock sequences often obscure changes in the background seismicity caused by aseismic processes, we combine the stochastic Epidemic Type Aftershock Sequence model that describes aftershock sequences well and the physically based rate- and state-dependent friction seismicity model into a single seismicity rate model that models both aftershock activity and changes in background seismicity rate. We implement this model into a data assimilation algorithm that inverts seismicity catalogs to estimate space-time variations in stressing rate. We evaluate the method using a synthetic catalog, and then apply it to a catalog of M???1.5 events that occurred in the Salton Trough from 1990 to 2009. We validate our stressing rate estimates by comparing them to estimates from a geodetically derived slip model for a large creep event on the Obsidian Buttes fault. The results demonstrate that our approach can identify large aseismic deformation transients in a multidecade long earthquake catalog and roughly constrain the absolute magnitude of the stressing rate transients. Our method can therefore provide a way to detect aseismic transients in regions where geodetic resolution in space or time is poor. Copyright 2011 by the American Geophysical Union.

  6. Seismic Interface Waves in Coastal Waters: A Review

    DTIC Science & Technology

    1980-11-15

    Being at the low- 4 frequency end of classical sonar activity and at the high-frequency end of seismic research, the propagation of infrasonic energy...water areas. Certainly this and other seismic detection methods will never replace the highly-developed sonar techniques but in coastal waters they...for many sonar purposes [5, 85 to 90) shows that very simple bottom models may already be sufficient to make allowance for the influence of the sea

  7. Possibility of Earthquake-prediction by analyzing VLF signals

    NASA Astrophysics Data System (ADS)

    Ray, Suman; Chakrabarti, Sandip Kumar; Sasmal, Sudipta

    2016-07-01

    Prediction of seismic events is one of the most challenging jobs for the scientific community. Conventional ways for prediction of earthquakes are to monitor crustal structure movements, though this method has not yet yield satisfactory results. Furthermore, this method fails to give any short-term prediction. Recently, it is noticed that prior to any seismic event a huge amount of energy is released which may create disturbances in the lower part of D-layer/E-layer of the ionosphere. This ionospheric disturbance may be used as a precursor of earthquakes. Since VLF radio waves propagate inside the wave-guide formed by lower ionosphere and Earth's surface, this signal may be used to identify ionospheric disturbances due to seismic activity. We have analyzed VLF signals to find out the correlations, if any, between the VLF signal anomalies and seismic activities. We have done both the case by case study and also the statistical analysis using a whole year data. In both the methods we found that the night time amplitude of VLF signals fluctuated anomalously three days before the seismic events. Also we found that the terminator time of the VLF signals shifted anomalously towards night time before few days of any major seismic events. We calculate the D-layer preparation time and D-layer disappearance time from the VLF signals. We have observed that this D-layer preparation time and D-layer disappearance time become anomalously high 1-2 days before seismic events. Also we found some strong evidences which indicate that it may possible to predict the location of epicenters of earthquakes in future by analyzing VLF signals for multiple propagation paths.

  8. Monitoring the development of volcanic eruptions through volcanic lightning - Using a lightning mapping array, seismic and infrasound array, and visual plume analysis

    NASA Astrophysics Data System (ADS)

    Smith, C. M.; Thompson, G.; McNutt, S. R.; Behnke, S. A.; Edens, H. E.; Van Eaton, A. R.; Gaudin, D.; Thomas, R. J.

    2017-12-01

    The period of 28 May - 7 June 2015 at Sakurajima Volcano, Japan witnessed a multitude of Vulcanian eruptive events, which resulted in plumes reaching 500-3000m above the vent. These plumes varied from white, gas-rich plumes to dark grey and black ash-rich plumes, and were recorded on lowlight and infrared cameras. A nine-station lightning mapping array (LMA) was deployed to locate sources of VHF (67-73 MHz) radiation produced by lightning flashes and other types of electrical activity such as `continuous RF (radio frequency)'. Two Nanometrics Trillium broadband seismometers and six BSU infrasound sensors were deployed. Over this ten day period we recorded 1556 events that consisted of both seismic and infrasound signals, indicating explosive activity. There are an additional 1222 events that were recorded as only seismic or infrasound signals, which may be a result of precursory seismic signals or noise contamination. Plume discharge types included both distinct lightning flashes and `continuous RF'. The LMA ran continuously for the duration of the experiment. On 30 May 2015 at least seven lightning flashes were also detected by the Vaisala Global Lightning Detection 360 network, which detects VLF (3-30 kHz) radiation. However the University of Washington's World Wide Lightning Location Network, which also detects VLF radiation, detected no volcanic lightning flashes in this time period. This indicates that the electrical activity in Sakurajima's plume occurs near the lower limits of the VLF detection threshold. We investigate relationships between the plume dynamics, the geophysical signal and the corresponding electrical activity through: plume velocity and height; event waveform cross-correlation; volcano acoustic-seismic ratios; overall geophysical energy; RSAM records; and VHF sources detected by the LMA. By investigating these relationships we hope to determine the seismic/infrasound energy threshold required to generate measurable electrical activity. Seismic and infrasound are two of the most common volcanic monitoring methods. By developing the relationships between plume electrification and these geophysical methods we hope to expand the use of lightning for active volcano monitoring.

  9. Tsunamis hazard assessment and monitoring for the Back Sea area

    NASA Astrophysics Data System (ADS)

    Partheniu, Raluca; Ionescu, Constantin; Constantin, Angela; Moldovan, Iren; Diaconescu, Mihail; Marmureanu, Alexandru; Radulian, Mircea; Toader, Victorin

    2016-04-01

    NIEP has improved lately its researches regarding tsunamis in the Black Sea. As part of the routine earthquake and tsunami monitoring activity, the first tsunami early-warning system in the Black Sea has been implemented in 2013 and is active during these last years. In order to monitor the seismic activity of the Black Sea, NIEP is using a total number of 114 real time stations and 2 seismic arrays, 18 of the stations being located in Dobrogea area, area situated in the vicinity of the Romanian Black Sea shore line. Moreover, there is a data exchange with the Black Sea surrounding countries involving the acquisition of real-time data for 17 stations from Bulgaria, Turkey, Georgia and Ukraine. This improves the capability of the Romanian Seismic Network to monitor and more accurately locate the earthquakes occurred in the Black Sea area. For tsunamis monitoring and warning, a number of 6 sea level monitoring stations, 1 infrasound barometer, 3 offshore marine buoys and 7 GPS/GNSS stations are installed in different locations along and near the Romanian shore line. In the framework of ASTARTE project, few objectives regarding the seismic hazard and tsunami waves height assessment for the Black Sea were accomplished. The seismic hazard estimation was based on statistical studies of the seismic sources and their characteristics, compiled using different seismic catalogues. Two probabilistic methods were used for the evaluation of the seismic hazard, the Cornell method, based on the Gutenberg Richter distribution parameters, and Gumbel method, based on extremes statistic. The results show maximum values of possible magnitudes and their recurrence periods, for each seismic source. Using the Tsunami Analysis Tool (TAT) software, a set of tsunami modelling scenarios have been generated for Shabla area, the seismic source that could mostly affect the Romanian shore. These simulations are structured in a database, in order to set maximum possible tsunami waves that could be generated and to establish minimum magnitude values that could trigger tsunamis in this area. Some particularities of Shabla source are: past observed magnitudes > 7 and a recurrence period of 175 years. Some other important objectives of NIEP are to continue the monitoring of the seismic activity of the Black Sea, to improve the data base of the tsunami simulations for this area, near real time fault plane solution estimations used for the warning system, and to add new seismic, GPS/GNSS and sea level monitoring equipment to the existing network. Acknowledgements: This work was partially supported by the FP7 FP7-ENV2013 6.4-3 "Assessment, Strategy And Risk Reduction For Tsunamis in Europe" (ASTARTE) Project 603839/2013 and PNII, Capacity Module III ASTARTE RO Project 268/2014. This work was partially supported by the "Global Tsunami Informal Monitoring Service - 2" (GTIMS2) Project, JRC/IPR/2015/G.2/2006/NC 260286, Ref. Ares (2015)1440256 - 01.04.2015.

  10. The characteristics of seismic activity during the 2016 Kumamoto Earthquake sequence

    NASA Astrophysics Data System (ADS)

    Yano, T. E.; Matsubara, M.

    2016-12-01

    We have relocated hypocenters (total number of hypocenters to be relocated within five independent regions; N= 37,136) during the 2016 Kumamoto Earthquake sequence applying the NIED Hi-net phase pick data and waveform cross-correlations to hypoDD (Waldhauser and Ellsworth, 2000), the double-difference method. The relocated seismicity clearly trace linearly to the background seismicity, such as the Hinagu, Futagawa, and Beppu-Haneyama fault zone, and Mt. Aso area, but also form a linear seismic activity at the previously quiet area including northern edge of the caldera of Mt. Aso (Aso caldera) and some areas within the Beppu-Haneyama fault zone. Two mainshocks of M6.5 on April 14th and M7.3 on April 16th occurred at the region where the Hinagu and Futagawa faults meet each other. Our results show that the seismicity forming a shape enough to identify a line along the Hinagu fault for about 20 km immediately after the M6.3 and continues after the M7.5 event. It also make enable to trace a line of seismicity along the Futagawa fault to the east (total of about 28 km), northern part of the Aso caldera, and Ohita region along the Beppu-Haneyama fault zone becomes active only after the M7.5 event. Not only seismicity following the known faults but also seismicity unconfirmed from background seismicity in previous relocation study between 2000 and 2012 (Yano, et al., 2016) appears during the Kumamoto Earthquake sequence. By comparing our high resolution relocated catalog in the Kumamoto region from previous study and this study enable us to identified interesting characteristics; (1) the quiet area making as a gap of seismicity between the northeast extension of the Futagawa fault zone and Mt. Aso region appears only after the M7.5 event, (2) the seismicity forming a vertical or high angle dip in Aso and Ohita regions are selectively activated, (3) the linear seismicity at previously unconfirmed regions where at the northern part of the Aso caldera and along the Beppu-Haneyama fault zone. We present these characteristics of seismicity during the Kumamoto Earthquake sequence in detail.

  11. Modeling of time-lapse multi-scale seismic monitoring of CO2 injected into a fault zone to enhance the characterization of permeability in enhanced geothermal systems

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Borgia, A.; Daley, T. M.; Oldenburg, C. M.; Jung, Y.; Lee, K. J.; Doughty, C.; Altundas, B.; Chugunov, N.; Ramakrishnan, T. S.

    2017-12-01

    Subsurface permeable faults and fracture networks play a critical role for enhanced geothermal systems (EGS) by providing conduits for fluid flow. Characterization of the permeable flow paths before and after stimulation is necessary to evaluate and optimize energy extraction. To provide insight into the feasibility of using CO2 as a contrast agent to enhance fault characterization by seismic methods, we model seismic monitoring of supercritical CO2 (scCO2) injected into a fault. During the CO2 injection, the original brine is replaced by scCO2, which leads to variations in geophysical properties of the formation. To explore the technical feasibility of the approach, we present modeling results for different time-lapse seismic methods including surface seismic, vertical seismic profiling (VSP), and a cross-well survey. We simulate the injection and production of CO2 into a normal fault in a system based on the Brady's geothermal field and model pressure and saturation variations in the fault zone using TOUGH2-ECO2N. The simulation results provide changing fluid properties during the injection, such as saturation and salinity changes, which allow us to estimate corresponding changes in seismic properties of the fault and the formation. We model the response of the system to active seismic monitoring in time-lapse mode using an anisotropic finite difference method with modifications for fracture compliance. Results to date show that even narrow fault and fracture zones filled with CO2 can be better detected using the VSP and cross-well survey geometry, while it would be difficult to image the CO2 plume by using surface seismic methods.

  12. Kernel Smoothing Methods for Non-Poissonian Seismic Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Woo, Gordon

    2017-04-01

    For almost fifty years, the mainstay of probabilistic seismic hazard analysis has been the methodology developed by Cornell, which assumes that earthquake occurrence is a Poisson process, and that the spatial distribution of epicentres can be represented by a set of polygonal source zones, within which seismicity is uniform. Based on Vere-Jones' use of kernel smoothing methods for earthquake forecasting, these methods were adapted in 1994 by the author for application to probabilistic seismic hazard analysis. There is no need for ambiguous boundaries of polygonal source zones, nor for the hypothesis of time independence of earthquake sequences. In Europe, there are many regions where seismotectonic zones are not well delineated, and where there is a dynamic stress interaction between events, so that they cannot be described as independent. From the Amatrice earthquake of 24 August, 2016, the subsequent damaging earthquakes in Central Italy over months were not independent events. Removing foreshocks and aftershocks is not only an ill-defined task, it has a material effect on seismic hazard computation. Because of the spatial dispersion of epicentres, and the clustering of magnitudes for the largest events in a sequence, which might all be around magnitude 6, the specific event causing the highest ground motion can vary from one site location to another. Where significant active faults have been clearly identified geologically, they should be modelled as individual seismic sources. The remaining background seismicity should be modelled as non-Poissonian using statistical kernel smoothing methods. This approach was first applied for seismic hazard analysis at a UK nuclear power plant two decades ago, and should be included within logic-trees for future probabilistic seismic hazard at critical installations within Europe. In this paper, various salient European applications are given.

  13. Seismic velocity structure of the incoming Pacific Plate subducting into the central part of the Japan Trench revealed by traveltime tomography using OBS data

    NASA Astrophysics Data System (ADS)

    Obana, K.; Fujie, G.; Kodaira, S.; Takahashi, T.; Yamamoto, Y.; Miura, S.; Shinohara, M.

    2016-12-01

    Subduction of oceanic plates plays an important role in the water transportation from the earth surface into the deep mantle. Recent active seismic survey studies succeed to image that the seismic velocities within the oceanic crust and the uppermost mantle in the outer rise region decreases toward the trench axis. These velocity changes are considered as an indication of the hydration and alteration of the incoming oceanic plates prior to the subduction. However, the area with sufficient resolution of the active seismic studies is often limited at depths corresponding to the oceanic crust and several km beneath the oceanic Moho. In this study, we have examined the seismic velocity structure of the incoming/subducting Pacific Plate beneath the trench axis and outer trench-slope of the central part of the Japan Trench. The seismicity in the Pacific Plate, including several M7-class intra-plate earthquakes, has been active since the 2011 Tohoku-Oki earthquake in the study area. These activities were observed by the ocean bottom seismographs (OBS) deployed repeatedly. The data obtained from these OBS observations allow us to resolve the seismic velocity structures at greater depths compared to the active seismic surveys. We conducted 3-D traveltime tomography by using double-difference tomography method (Zhang and Thurber, 2003). The results show that the seismic velocities within the oceanic mantle decreased toward the trench axis. The velocity reduction begins at about 80 km seaward of the trench axis and extended to a depth of at least 30 km beneath the trench axis area. If the observed P-wave velocity reduction from 8.4 km/s to 7.7 km/s at a depth of 15 km below the oceanic Moho is caused by the serpentinization of the oceanic mantle (Carlson and Miller, 2003), roughly 2.5 weight per cent of water is expected in the low velocity anomalies in the oceanic mantle.

  14. Seismic hazard assessment of Syria using seismicity, DEM, slope, active tectonic and GIS

    NASA Astrophysics Data System (ADS)

    Ahmad, Raed; Adris, Ahmad; Singh, Ramesh

    2016-07-01

    In the present work, we discuss the use of an integrated remote sensing and Geographical Information System (GIS) techniques for evaluation of seismic hazard areas in Syria. The present study is the first time effort to create seismic hazard map with the help of GIS. In the proposed approach, we have used Aster satellite data, digital elevation data (30 m resolution), earthquake data, and active tectonic maps. Many important factors for evaluation of seismic hazard were identified and corresponding thematic data layers (past earthquake epicenters, active faults, digital elevation model, and slope) were generated. A numerical rating scheme has been developed for spatial data analysis using GIS to identify ranking of parameters to be included in the evaluation of seismic hazard. The resulting earthquake potential map delineates the area into different relative susceptibility classes: high, moderate, low and very low. The potential earthquake map was validated by correlating the obtained different classes with the local probability that produced using conventional analysis of observed earthquakes. Using earthquake data of Syria and the peak ground acceleration (PGA) data is introduced to the model to develop final seismic hazard map based on Gutenberg-Richter (a and b values) parameters and using the concepts of local probability and recurrence time. The application of the proposed technique in Syrian region indicates that this method provides good estimate of seismic hazard map compared to those developed from traditional techniques (Deterministic (DSHA) and probabilistic seismic hazard (PSHA). For the first time we have used numerous parameters using remote sensing and GIS in preparation of seismic hazard map which is found to be very realistic.

  15. Locating scatterers while drilling using seismic noise due to tunnel boring machine

    NASA Astrophysics Data System (ADS)

    Harmankaya, U.; Kaslilar, A.; Wapenaar, K.; Draganov, D.

    2018-05-01

    Unexpected geological structures can cause safety and economic risks during underground excavation. Therefore, predicting possible geological threats while drilling a tunnel is important for operational safety and for preventing expensive standstills. Subsurface information for tunneling is provided by exploratory wells and by surface geological and geophysical investigations, which are limited by location and resolution, respectively. For detailed information about the structures ahead of the tunnel face, geophysical methods are applied during the tunnel-drilling activity. We present a method inspired by seismic interferometry and ambient-noise correlation that can be used for detecting scatterers, such as boulders and cavities, ahead of a tunnel while drilling. A similar method has been proposed for active-source seismic data and validated using laboratory and field data. Here, we propose to utilize the seismic noise generated by a Tunnel Boring Machine (TBM), and recorded at the surface. We explain our method at the hand of data from finite-difference modelling of noise-source wave propagation in a medium where scatterers are present. Using the modelled noise records, we apply cross-correlation to obtain correlation gathers. After isolating the scattered arrivals in these gathers, we cross-correlate again and invert for the correlated traveltime to locate scatterers. We show the potential of the method for locating the scatterers while drilling using noise records due to TBM.

  16. Pick- and waveform-based techniques for real-time detection of induced seismicity

    NASA Astrophysics Data System (ADS)

    Grigoli, Francesco; Scarabello, Luca; Böse, Maren; Weber, Bernd; Wiemer, Stefan; Clinton, John F.

    2018-05-01

    The monitoring of induced seismicity is a common operation in many industrial activities, such as conventional and non-conventional hydrocarbon production or mining and geothermal energy exploitation, to cite a few. During such operations, we generally collect very large and strongly noise-contaminated data sets that require robust and automated analysis procedures. Induced seismicity data sets are often characterized by sequences of multiple events with short interevent times or overlapping events; in these cases, pick-based location methods may struggle to correctly assign picks to phases and events, and errors can lead to missed detections and/or reduced location resolution and incorrect magnitudes, which can have significant consequences if real-time seismicity information are used for risk assessment frameworks. To overcome these issues, different waveform-based methods for the detection and location of microseismicity have been proposed. The main advantages of waveform-based methods is that they appear to perform better and can simultaneously detect and locate seismic events providing high-quality locations in a single step, while the main disadvantage is that they are computationally expensive. Although these methods have been applied to different induced seismicity data sets, an extensive comparison with sophisticated pick-based detection methods is still missing. In this work, we introduce our improved waveform-based detector and we compare its performance with two pick-based detectors implemented within the SeiscomP3 software suite. We test the performance of these three approaches with both synthetic and real data sets related to the induced seismicity sequence at the deep geothermal project in the vicinity of the city of St. Gallen, Switzerland.

  17. TOMO-ETNA Experiment -Etna volcano, Sicily, investigated with active and passive seismic methods

    NASA Astrophysics Data System (ADS)

    Luehr, Birger-G.; Ibanez, Jesus M.; Díaz-Moreno, Alejandro; Prudencio, Janire; Patane, Domenico; Zieger, Toni; Cocina, Ornella; Zuccarello, Luciano; Koulakov, Ivan; Roessler, Dirk; Dahm, Torsten

    2017-04-01

    The TOMO-ETNA experiment, as part of the European Union project "MEDiterranean SUpersite Volcanoes (MED-SUV)", was devised to image the crustal structure beneath Etna by using state of the art passive and active seismic methods. Activities on-land and offshore are aiming to obtain new high-resolution seismic images to improve the knowledge of crustal structures existing beneath the Etna volcano and northeast Sicily up to the Aeolian Islands. In a first phase (June 15 - July 24, 2014) at Etna volcano and surrounding areas two removable seismic networks were installed composed by 80 Short Period and 20 Broadband stations, additionally to the existing network belonging to the "Istituto Nazionale di Geofisica e Vulcanologia" (INGV). So in total air-gun shots could be recorded by 168 stations onshore plus 27 ocean bottom instruments offshore in the Tyrrhenian and Ionian Seas. Offshore activities were performed by Spanish and Italian research vessels. In a second phase the broadband seismic network remained operative until October 28, 2014, as well as offshore surveys during November 19 -27, 2014. Active seismic sources were generated by an array of air-guns mounted in the Spanish Oceanographic vessel "Sarmiento de Gamboa" with a power capacity of up to 5.200 cubic inches. In total more than 26.000 shots were fired and more than 450 local and regional earthquakes could be recorded and will be analyzed. For resolving a volcanic structure the investigation of attenuation and scattering of seismic waves is important. In contrast to existing studies that are almost exclusively based on S-wave signals emitted by local earthquakes, here air-gun signals were investigated by applying a new methodology based on the coda energy ratio defined as the ratio between the energy of the direct P-wave and the energy in a later coda window. It is based on the assumption that scattering caused by heterogeneities removes energy from direct P-waves that constitutes the earliest possible arrival to any part later in the seismic wave train. As an independent proxy of the scattering strength along the ray path, we measure the peak delay time of a direct P-wave, which is well correlated with the coda energy ratio. As a result the distribution of heterogeneities around Etna could be visualized as the projection of the observation in directions of incident rays at the stations. Increased seismic scattering could be detected in the volcano and east of it. The strong heterogeneous zone towards the east coast of Sicily supports earlier observations, and is interpreted as a potential signature of the eastward sliding volcano flank. Beside the investigation of P-wave scattering the new seismic tomography software PARTOS (Passive Active Ray Tomography Software) has been developed based on a joint inversion of active and passive seismic sources. With PARTOS real data inversion has been carried out using three different subsets: i) active data; ii) passive data; and iii) joint dataset, permitting to obtain a new tomographic approach of that region.

  18. Determining the sensitivity of the amplitude source location (ASL) method through active seismic sources: An example from Te Maari Volcano, New Zealand

    NASA Astrophysics Data System (ADS)

    Walsh, Braden; Jolly, Arthur; Procter, Jonathan

    2017-04-01

    Using active seismic sources on Tongariro Volcano, New Zealand, the amplitude source location (ASL) method is calibrated and optimized through a series of sensitivity tests. By applying a geologic medium velocity of 1500 m/s and an attenuation value of Q=60 for surface waves along with amplification factors computed from regional earthquakes, the ASL produced location discrepancies larger than 1.0 km horizontally and up to 0.5 km in depth. Through the use of sensitivity tests on input parameters, we show that velocity and attenuation models have moderate to strong influences on the location results, but can be easily constrained. Changes in locations are accommodated through either lateral or depth movements. Station corrections (amplification factors) and station geometry strongly affect the ASL locations laterally, horizontally and in depth. Calibrating the amplification factors through the exploitation of the active seismic source events reduced location errors for the sources by up to 50%.

  19. ActiveSeismoPick3D - automatic first arrival determination for large active seismic arrays

    NASA Astrophysics Data System (ADS)

    Paffrath, Marcel; Küperkoch, Ludger; Wehling-Benatelli, Sebastian; Friederich, Wolfgang

    2016-04-01

    We developed a tool for automatic determination of first arrivals in active seismic data based on an approach, that utilises higher order statistics (HOS) and the Akaike information criterion (AIC), commonly used in seismology, but not in active seismics. Automatic picking is highly desirable in active seismics as the number of data provided by large seismic arrays rapidly exceeds of what an analyst can evaluate in a reasonable amount of time. To bring the functionality of automatic phase picking into the context of active data, the software package ActiveSeismoPick3D was developed in Python. It uses a modified algorithm for the determination of first arrivals which searches for the HOS maximum in unfiltered data. Additionally, it offers tools for manual quality control and postprocessing, e.g. various visualisation and repicking functionalities. For flexibility, the tool also includes methods for the preparation of geometry information of large seismic arrays and improved interfaces to the Fast Marching Tomography Package (FMTOMO), which can be used for the prediction of travel times and inversion for subsurface properties. Output files are generated in the VTK format, allowing the 3D visualization of e.g. the inversion results. As a test case, a data set consisting of 9216 traces from 64 shots was gathered, recorded at 144 receivers deployed in a regular 2D array of a size of 100 x 100 m. ActiveSeismoPick3D automatically checks the determined first arrivals by a dynamic signal to noise ratio threshold. From the data a 3D model of the subsurface was generated using the export functionality of the package and FMTOMO.

  20. Recognizing and dating prehistoric liquefaction features: Lessons learned in the New Madrid seismic zone, central United States

    USGS Publications Warehouse

    Tuttle, M.P.; Schweig, E.S.

    1996-01-01

    The New Madrid seismic zone (NMSZ), which experienced severe liquefaction during the great New Madrid, Missouri, earthquakes of 1811 and 1812 as well as during several prehistoric earthquakes, is a superb laboratory for the study of world-class, arthquake-induced liquefaction features and their use in paleoseismology. In seismically active regions like the NMSZ, frequent large earthquakes can produce a complex record of liquefaction events that is difficult to interpret. Lessons learned studying liquefaction features in the NMSZ may help to unravel the paleoseismic record in other seismically active regions. Soil characteristics of liquefaction features, as well as their structural and sratigraphic relations to Native American occupation horizons and other cultural features, an help to distinguish prehistoric liquefaction features from historic features. In addition, analyses of artifact assemblages and botanical content of cultural horizons can help to narrow the age ranges of liquefaction features. Future research should focus on methods for defining source areas and estimating magnitudes of prehistoric earthquakes from liquefaction features. Also, new methods for dating liquefaction features are needed.

  1. Spatial heterogeneity of the structure and stress field in Hyuga-nada region, southwest Japan, deduced from onshore and offshore seismic observations

    NASA Astrophysics Data System (ADS)

    Uehira, K.; Yakiwara, H.; Yamada, T.; Umakoshi, K.; Nakao, S.; Kobayashi, R.; Goto, K.; Miyamachi, H.; Mochizuki, K.; Nakahigashi, K.; Shinohara, M.; Kanazawa, T.; Hino, R.; Goda, M.; Shimizu, H.

    2010-12-01

    In Hyuga-nada region, the Philippine Sea (PHS) plate is subducting beneath the Eurasian (EU) plate (the southwest Japan arc) along the Nankai trough at a rate of about 5 cm per year. The seismic activity in the boundary between the PHS and the Eurasian (EU) plates varies spatially along the Nankai trough. Especially the region from off coast of Shikoku to the Bungo channel and Hyuga-nada has large variation of seismicity. Although usual microearthquake activity is active in Hyuga-nada, it is inactive near Shikoku. On the other hand, although the great earthquake (M>8) has occurred repeatedly in near Shikoku at intervals of about 100 years, in Hyuga-nada, smaller earthquakes (M7 class) has occurred at intervals of about dozens of years, and so plate coupling varies dozens of kilometers specially. Big earthquakes (M7 class) have occurred in the north region from latitude 31.6 degrees north, but it has not occurred in the south region from latitude 31.6 degrees north. The largest earthquake ever recorded in Hyuga-nada region is the 1968 Hyuga-nada earthquake (Mw 7.5). And microseismicity varies spatially. It is important to understand seismic activity, stress field, and structure in such region in order to understand seismic cycle. We performed extraordinary seismic observation in and around Hyuga-nada region. More than 20 pop-up type OBSs were deployed above hypocentral region of Hyuga-nada using Nagasaki-maru and several data loggers were deployed in order to compensate a regular seismic network on land. We detected earthquakes more than 2 times of JMA. Seismic activity in source region of the 1961 Hyuga-nada Earthquake (M7.0) is low, but around its source region, seismic activity is very high. In order to obtain a 3D seismic velocity structure and precise hypocenter distribution and focal mechanisms around the Hyuga-nada region, we used Double-Difference (DD) Tomography method developed by Zhang and Thurber (2003). We could detect the structure of subduction of Kyushu-Palau Ridge at low seismicity area. We estimated the stress filed using a stress tensor inversion method by polarity of first arrivals from earthquakes [Horiuchi et al. (1995)], and we found that there is a good correlation between the slip distribution at large earthquakes and the angle between maximum principal axis and the plate boundary in northern part of Hyuga-nada region [Uehira et al. (2007)]. Because the shear stress of plate boundary is large on the subducted Kyushu-Palau Ridge, we suspected that it might be caused the strong interplate coupling. We also found a subducted seamount in the southwest margin of source region of the 1968 Hyuga-nada earthquake (Mw 7.5). This may acts as a barrier.

  2. Analysis of volcano-related seismicity to constrain the magmatic plumbing system beneath Fogo, Cape Verde, by (multi-)array techniques

    NASA Astrophysics Data System (ADS)

    Dietrich, Carola; Wölbern, Ingo; Faria, Bruno; Rümpker, Georg

    2017-04-01

    Fogo is the only island of the Cape Verde archipelago with regular occurring volcanic eruptions since its discovery in the 15th century. The volcanism of the archipelago originates from a mantle plume beneath an almost stationary tectonic plate. With an eruption interval of approximately 20 years, Fogo belongs to the most active oceanic volcanoes. The latest eruption started in November 2014 and ceased in February 2015. This study aims to characterize and investigate the seismic activity and the magmatic plumbing system of Fogo, which is believed to be related to a magmatic source close to the neighboring island of Brava. According to previous studies, using conventional seismic network configurations, most of the seismic activity occurs offshore. Therefore, seismological array techniques represent powerful tools in investigating earthquakes and other volcano-related events located outside of the networks. Another advantage in the use of seismic arrays is their possibility to detect events of relatively small magnitude and to locate seismic signals without a clear onset of phases, such as volcanic tremors. Since October 2015 we have been operating a test array on Fogo as part of a pilot study. This array consists of 10 seismic stations, distributed in a circular shape with an aperture of 700 m. The stations are equipped with Omnirecs CUBE dataloggers, and either 4.5 Hz geophones (7 stations) or Trillium-Compact broad-band seismometers (3 stations). In January 2016 we installed three additional broad-band stations distributed across the island of Fogo to improve the capabilities for event localization. The data of the pilot study is dominated by seismic activity around Brava, but also exhibit tremors and hybrid events of unknown origin within the caldera of Fogo volcano. The preliminary analysis of these events includes the characterization and localization of the different event types using seismic array processing in combination with conventional localization methods. In the beginning of August 2016, a "seismic crisis" occurred on the island of Brava which led to the evacuation of a village. The seismic activity recorded by our instruments on Fogo exhibits more than 40 earthquakes during this time. Locations and magnitudes of these events will be presented. In January 2017 the pilot project discussed here will be complemented by three additional seismic arrays (two on Fogo, one on Brava) to improve seismic event localization and structural imaging based on scattered seismic phases by using multi-array techniques. Initial recordings from the new arrays are expected to be available by April 2017.

  3. Picking vs Waveform based detection and location methods for induced seismicity monitoring

    NASA Astrophysics Data System (ADS)

    Grigoli, Francesco; Boese, Maren; Scarabello, Luca; Diehl, Tobias; Weber, Bernd; Wiemer, Stefan; Clinton, John F.

    2017-04-01

    Microseismic monitoring is a common operation in various industrial activities related to geo-resouces, such as oil and gas and mining operations or geothermal energy exploitation. In microseismic monitoring we generally deal with large datasets from dense monitoring networks that require robust automated analysis procedures. The seismic sequences being monitored are often characterized by very many events with short inter-event times that can even provide overlapped seismic signatures. In these situations, traditional approaches that identify seismic events using dense seismic networks based on detections, phase identification and event association can fail, leading to missed detections and/or reduced location resolution. In recent years, to improve the quality of automated catalogues, various waveform-based methods for the detection and location of microseismicity have been proposed. These methods exploit the coherence of the waveforms recorded at different stations and do not require any automated picking procedure. Although this family of methods have been applied to different induced seismicity datasets, an extensive comparison with sophisticated pick-based detection and location methods is still lacking. We aim here to perform a systematic comparison in term of performance using the waveform-based method LOKI and the pick-based detection and location methods (SCAUTOLOC and SCANLOC) implemented within the SeisComP3 software package. SCANLOC is a new detection and location method specifically designed for seismic monitoring at local scale. Although recent applications have proved an extensive test with induced seismicity datasets have been not yet performed. This method is based on a cluster search algorithm to associate detections to one or many potential earthquake sources. On the other hand, SCAUTOLOC is more a "conventional" method and is the basic tool for seismic event detection and location in SeisComp3. This approach was specifically designed for regional and teleseismic applications, thus its performance with microseismic data might be limited. We analyze the performance of the three methodologies for a synthetic dataset with realistic noise conditions as well as for the first hour of continuous waveform data, including the Ml 3.5 St. Gallen earthquake, recorded by a microseismic network deployed in the area. We finally compare the results obtained all these three methods with a manually revised catalogue.

  4. Causality between expansion of seismic cloud and maximum magnitude of induced seismicity in geothermal field

    NASA Astrophysics Data System (ADS)

    Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus

    2016-04-01

    Occurrence of induced seismicity with large magnitude is critical environmental issues associated with fluid injection for shale gas/oil extraction, waste water disposal, carbon capture and storage, and engineered geothermal systems (EGS). Studies for prediction of the hazardous seismicity and risk assessment of induced seismicity has been activated recently. Many of these studies are based on the seismological statistics and these models use the information of the occurrence time and event magnitude. We have originally developed physics based model named "possible seismic moment model" to evaluate seismic activity and assess seismic moment which can be ready to release. This model is totally based on microseismic information of occurrence time, hypocenter location and magnitude (seismic moment). This model assumes existence of representative parameter having physical meaning that release-able seismic moment per rock volume (seismic moment density) at given field. Seismic moment density is to be estimated from microseismic distribution and their seismic moment. In addition to this, stimulated rock volume is also inferred by progress of microseismic cloud at given time and this quantity can be interpreted as the rock volume which can release seismic energy due to weakening effect of normal stress by injected fluid. Product of these two parameters (equation (1)) provide possible seismic moment which can be released from current stimulated zone as a model output. Difference between output of this model and observed cumulative seismic moment corresponds the seismic moment which will be released in future, based on current stimulation conditions. This value can be translated into possible maximum magnitude of induced seismicity in future. As this way, possible seismic moment can be used to have feedback to hydraulic stimulation operation in real time as an index which can be interpreted easily and intuitively. Possible seismic moment is defined as equation (1), where D is seismic moment density (Mo/m3) and V stim is stimulated rock volume (m3). Mopossible = D ∗ V stim(1) We applied this conceptual model to real microseismic data set from Basel EGS project where several induced seismicity with large magnitude occurred and brought constructive damage. Using the hypocenter location determined by the researcher of Tohoku Univ., Japan and moment magnitude estimated from Geothermal Explorers Ltd., operating company, we were able to estimate reasonable seismic moment density meaning that one representative parameter exists and can characterize seismic activity at Basel at each time step. With stimulated rock volume which was also inferred from microseismic information, we estimated possible seismic moment and assess the difference with observed value. Possible seismic moment significantly increased after shut-in when the seismic cloud (stimulated zone) mostly progressed, resulting that the difference with the observed cumulative seismic moment automatically became larger. This suggests that there is moderate seismic moment which will be released in near future. In next few hours, the largest event actually occurred. Therefore, our proposed model was successfully able to forecast occurrence of the large events. Furthermore, best forecast of maximum magnitude was Mw 3 level and the largest event was Mw 3.41, showing reasonable performance in terms of quantitative forecast in magnitude. Our attempt to assess the seismic activity from microseismic information was successful and it also suggested magnitude release can be correlate with the expansion of seismic cloud as the definition of possible seismic moment model indicates. This relationship has been observed in microseismic observational study and several previous study also suggested their correlation with stress released rock volume. Our model showed harmonic results with these studies and provide practical method having clear physical meaning to assess the seismic activity in real time, based on microseismic data.

  5. Regional Observation of Seismic Activity in Baekdu Mountain

    NASA Astrophysics Data System (ADS)

    Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol

    2015-04-01

    Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.

  6. Seismic Sources for the Territory of Georgia

    NASA Astrophysics Data System (ADS)

    Tsereteli, N. S.; Varazanashvili, O.

    2011-12-01

    The southern Caucasus is an earthquake prone region where devastating earthquakes have repeatedly caused significant loss of lives, infrastructure and buildings. High geodynamic activity of the region expressed in both seismic and aseismic deformations, is conditioned by the still-ongoing convergence of lithospheric plates and northward propagation of the Afro-Arabian continental block at a rate of several cm/year. The geometry of tectonic deformations in the region is largely determined by the wedge-shaped rigid Arabian block intensively intended into the relatively mobile Middle East-Caucasian region. Georgia is partner of ongoing regional project EMME. The main objective of EMME is calculation of Earthquake hazard uniformly with heights standards. One approach used in the project is the probabilistic seismic hazard assessment. In this approach the first parameter requirement is the definition of seismic source zones. Seismic sources can be either faults or area sources. Seismoactive structures of Georgia are identified mainly on the basis of the correlation between neotectonic structures of the region and earthquakes. Requirements of modern PSH software to geometry of faults is very high. As our knowledge of active faults geometry is not sufficient, area sources were used. Seismic sources are defined as zones that are characterized with more or less uniform seismicity. Poor knowledge of the processes occurring in deep of the Earth is connected with complexity of direct measurement. From this point of view the reliable data obtained from earthquake fault plane solution is unique for understanding the character of a current tectonic life of investigated area. There are two methods of identification if seismic sources. The first is the seimsotectonic approach, based on identification of extensive homogeneous seismic sources (SS) with the definition of probability of occurrence of maximum earthquake Mmax. In the second method the identification of seismic sources will be obtained on the bases of structural geology, parameters of seismicity and seismotectonics. This last approach was used by us. For achievement of this purpose it was necessary to solve following problems: to calculate the parameters of seismotectonic deformation; to reveal regularities in character of earthquake fault plane solution; use obtained regularities to develop principles of an establishment of borders between various hierarchical and scale levels of seismic deformations fields and to give their geological interpretation; Three dimensional matching of active faults with real geometrical dimension and earthquake sources have been investigated. Finally each zone have been defined with the parameters: the geometry, the magnitude-frequency parameters, maximum magnitude, and depth distribution as well as modern dynamical characteristics widely used for complex processes

  7. Precise Hypocenter Determination around Palu Koro Fault: a Preliminary Results

    NASA Astrophysics Data System (ADS)

    Fawzy Ismullah, M. Muhammad; Nugraha, Andri Dian; Ramdhan, Mohamad; Wandono

    2017-04-01

    Sulawesi area is located in complex tectonic pattern. High seismicity activity in the middle of Sulawesi is related to Palu Koro fault (PKF). In this study, we determined precise hypocenter around PKF by applying double-difference method. We attempt to investigate of the seismicity rate, geometry of the fault and distribution of focus depth around PKF. We first re-pick P-and S-wave arrival time of the PKF events to determine the initial hypocenter location using Hypoellipse method through updated 1-D seismic velocity. Later on, we relocated the earthquake event using double-difference method. Our preliminary results show the distribution of relocated events are located around PKF and have smaller residual time than the initial location. We will enhance the hypocenter location through updating of arrival time by applying waveform cross correlation method as input for double-difference relocation.

  8. Dynamic of the volcanic activity of La Soufrière volcano (Guadeloupe, Lesser Antillles): Evidence for shallow fluid seismic sources

    NASA Astrophysics Data System (ADS)

    Ucciani, G.; Beauducel, F.; Bouin, M. P.; Nercessian, A.

    2015-12-01

    La Soufrière is one of the many hazardous volcanoes in the inner arc of Lesser Antilles. Located South of Basse-Terre island, it is the only active volcano of the Guadeloupe archipelago. Since the last significant magmatic eruption in 1535 AD, the activity has been exculsively phreatic. Since 1992 and the abrupt renewal of seismic and fumarollic activities, the Guadeloupe Volcanological and Seismological Observatory (OVSG-IPGP) has recorded a progressive increasing of seismicity and degassing that led scientists and authorities to set the alert level ``Vigilance'' and hold it until today. According to the recent geophysical, geochemical and geological studies, the current volcanic activity of la Soufrière volcano seems to be exclusively associated to the hydrothermal system, while the link with seismic activity is still poorly studied. In this context of possible pre-eruptive unrest, we investigated the spatial and temporal variations of the seismicity recorded between 1981 and 2013. From a consistent seismological framework coupling spectral, statistical, signal processing, clustering, and inverse problems methods, we demonstrate that this seismicity is largely generated by shallow hydrothermal fluid sources located in a complex plumbing system. Spatial variations of Vp/Vs ratio and B-value in seismogenic structures allow us to document three main seismic zones associated to : (1) migration of magmatic gas, (2) the storage and mixing of underground water and gas and (3) the shallow migration of hydrothermal fluids in high fractured and heterogeneous system. Waveform analysis revealed a low number of significant families consistent with fracturing process, and the temporal evolution of multiplet activities highlighted several variations associated with surface manifestations and brutal dynamic changes after major local tectonic earthquakes of Les Saintes (21 November 2004, Mw=6.3), its main aftershock (14 February 2005, Mw=5.7) and the last major earthquake of la Martinique (29 November 2007, Mw=7.4).

  9. Response in thermal neutrons intensity on the activation of seismic processes

    NASA Astrophysics Data System (ADS)

    Antonova, Valentina; Chubenko, Alexandr; Kryukov, Sergey; Lutsenko, Vadim

    2017-04-01

    Results of study of thermal and high-energy neutrons intensity during the activation of seismic activity are presented. Installations are located close to the fault of the earth's crust at the high-altitude station of cosmic rays (3340 m above sea level, 20 km from Almaty) in the mountains of Northern Tien-Shan. High correlation and similarity of responses to changes of space and geophysical conditions in the absence of seismic activity are obtained between data of thermal neutron detectors and data of the standard neutron monitor, recording the intensity of high-energy particles. These results confirm the genetic connection of thermal neutrons at the Earth's surface with high-energy neutrons of the galactic origin and suggest same sources of disturbances of their flux. However, observations and analysis of experimental data during the activation of seismic activity showed the frequent breakdown of the correlation between the intensity of thermal and high-energy neutrons and the absence of similarity between variations during these periods. We suppose that the cause of this phenomenon is the additional thermal neutron flux of the lithospheric origin, which appears under these conditions. Method of separating of thermal neutron intensity variations of the lithospheric origin from neutrons variations generated in the atmosphere is proposed. We used this method for analysis of variations of thermal neutrons intensity during earthquakes (with intensity ≥ 3b) in the vicinity of Almaty which took place in 2006-2015. The increase of thermal neutrons flux of the lithospheric origin during of seismic processes activation was observed for 60% of events. However, before the earthquake the increase of thermal neutron flux is only observed for 25-30% of events. It is shown that the amplitude of the additional thermal neutron flux from the Earth's crust is equal to 5-7% of the background level.

  10. Characteristics of Induced and Tectonic Seismicity in Oklahoma Based on High-precision Earthquake Relocations and Focal mechanisms

    NASA Astrophysics Data System (ADS)

    Aziz Zanjani, F.; Lin, G.

    2016-12-01

    Seismic activity in Oklahoma has greatly increased since 2013, when the number of wastewater disposal wells associated with oil and gas production was significantly increased in the area. An M5.8 earthquake at about 5 km depth struck near Pawnee, Oklahoma on September 3, 2016. This earthquake is postulated to be related with the anthropogenic activity in Oklahoma. In this study, we investigate the seismic characteristics in Oklahoma by using high-precision earthquake relocations and focal mechanisms. We acquire the seismic data between January 2013 and October 2016 recorded by the local and regional (within 200 km distance from the Pawnee mainshock) seismic stations from the Incorporated Research Institutions for Seismology (IRIS). We relocate all the earthquakes by applying the source-specific station term method and a differential time relocation method based on waveform cross-correlation data. The high-precision earthquake relocation catalog is then used to perform full-waveform modeling. We use Muller's reflection method for Green's function construction and the mtinvers program for moment tensor inversion. The sensitivity of the solution to the station and component distribution is evaluated by carrying out the Jackknife resampling. These earthquake relocation and focal mechanism results will help constrain the fault orientation and the earthquake rupture length. In order to examine the static Coulomb stress change due to the 2016 Pawnee earthquake, we utilize the Coulomb 3 software in the vicinity of the mainshock and compare the aftershock pattern with the calculated stress variation. The stress change in the study area can be translated into probability of seismic failure on other parts of the designated fault.

  11. Recent faulting in western Nevada revealed by multi-scale seismic reflection

    USGS Publications Warehouse

    Frary, Roxanna N.; Louie, John N.; Stephenson, William J.; Odum, Jackson K.; Kell, Annie; Eisses, Amy; Kent, Graham M.; Driscoll, Neal W.; Karlin, Robert; Baskin, Robert L.; Pullammanappallil, Satish; Liberty, Lee M.

    2011-01-01

    The main goal of this study is to compare different reflection methods used to image subsurface structure within different physical environments in western Nevada. With all the methods employed, the primary goal is fault imaging for structural information toward geothermal exploration and seismic hazard estimation. We use seismic CHIRP (a swept-frequency marine acquisition system), weight drop (an accelerated hammer source), and two different vibroseis systems to characterize fault structure. We focused our efforts in the Reno metropolitan area and the area within and surrounding Pyramid Lake in northern Nevada. These different methods have provided valuable constraints on the fault geometry and activity, as well as associated fluid movement. These are critical in evaluating the potential for large earthquakes in these areas, and geothermal exploration possibilities near these structures.

  12. Storage of fluids and melts at subduction zones detectable by seismic tomography

    NASA Astrophysics Data System (ADS)

    Luehr, B. G.; Koulakov, I.; Rabbel, W.; Brotopuspito, K. S.; Surono, S.

    2015-12-01

    During the last decades investigations at active continental margins discovered the link between the subduction of fluid saturated oceanic plates and the process of ascent of these fluids and partial melts forming a magmatic system that leads to volcanism at the earth surface. For this purpose the geophysical structure of the mantle and crustal range above the down going slap has been imaged. Information is required about the slap, the ascent paths, as well as the reservoires of fluids and partial melts in the mantle and the crust up to the volcanoes at the surface. Statistically the distance between the volcanoes of volcanic arcs down to their Wadati Benioff zone results of approximately 100 kilometers in mean value. Surprisingly, this depth range shows pronounced seismicity at most of all subduction zones. Additionally, mineralogical laboratory investigations have shown that dehydration of the diving plate has a maximum at temperature and pressure conditions we find at around 100 km depth. The ascent of the fluids and the appearance of partial melts as well as the distribution of these materials in the crust can be resolved by seismic tomographic methods using records of local natural seismicity. With these methods these areas are corresponding to lowered seismic velocities, high Vp/Vs ratios, as well as increased attenuation of seismic shear waves. The anomalies and their time dependence are controlled by the fluids. The seismic velocity anomalies detected so far are within a range of a few per cent to more than 30% reduction. But, to explore plate boundaries large and complex amphibious experiments are required, in which active and passive seismic investigations should be combined to achieve best results. The seismic station distribution should cover an area from before the trench up to far behind the volcanic chain, to provide under favorable conditions information down to 150 km depth. Findings of different subduction zones will be compared and discussed.

  13. Robust method to detect and locate local earthquakes by means of amplitude measurements.

    NASA Astrophysics Data System (ADS)

    del Puy Papí Isaba, María; Brückl, Ewald

    2016-04-01

    In this study we present a robust new method to detect and locate medium and low magnitude local earthquakes. This method is based on an empirical model of the ground motion obtained from amplitude data of earthquakes in the area of interest, which were located using traditional methods. The first step of our method is the computation of maximum resultant ground velocities in sliding time windows covering the whole period of interest. In the second step, these maximum resultant ground velocities are back-projected to every point of a grid covering the whole area of interest while applying the empirical amplitude - distance relations. We refer to these back-projected ground velocities as pseudo-magnitudes. The number of operating seismic stations in the local network equals the number of pseudo-magnitudes at each grid-point. Our method introduces the new idea of selecting the minimum pseudo-magnitude at each grid-point for further analysis instead of searching for a minimum of the L2 or L1 norm. In case no detectable earthquake occurred, the spatial distribution of the minimum pseudo-magnitudes constrains the magnitude of weak earthquakes hidden in the ambient noise. In the case of a detectable local earthquake, the spatial distribution of the minimum pseudo-magnitudes shows a significant maximum at the grid-point nearest to the actual epicenter. The application of our method is restricted to the area confined by the convex hull of the seismic station network. Additionally, one must ensure that there are no dead traces involved in the processing. Compared to methods based on L2 and even L1 norms, our new method is almost wholly insensitive to outliers (data from locally disturbed seismic stations). A further advantage is the fast determination of the epicenter and magnitude of a seismic event located within a seismic network. This is possible due to the method of obtaining and storing a back-projected matrix, independent of the registered amplitude, for each seismic station. As a direct consequence, we are able to save computing time for the calculation of the final back-projected maximum resultant amplitude at every grid-point. The capability of the method was demonstrated firstly using synthetic data. In the next step, this method was applied to data of 43 local earthquakes of low and medium magnitude (1.7 < magnitude scale < 4.3). These earthquakes were recorded and detected by the seismic network ALPAACT (seismological and geodetic monitoring of Alpine PAnnonian ACtive Tectonics) in the period 2010/06/11 to 2013/09/20. Data provided by the ALPAACT network is used in order to understand seismic activity in the Mürz Valley - Semmering - Vienna Basin transfer fault system in Austria and what makes it such a relatively high earthquake hazard and risk area. The method will substantially support our efforts to involve scholars from polytechnic schools in seismological work within the Sparkling Science project Schools & Quakes.

  14. Three dimensional images of geothermal systems: local earthquake P-wave velocity tomography at the Hengill and Krafla geothermal areas, Iceland, and The Geysers, California

    USGS Publications Warehouse

    Julian, B.R.; Prisk, A.; Foulger, G.R.; Evans, J.R.; ,

    1993-01-01

    Local earthquake tomography - the use of earthquake signals to form a 3-dimensional structural image - is now a mature geophysical analysis method, particularly suited to the study of geothermal reservoirs, which are often seismically active and severely laterally inhomogeneous. Studies have been conducted of the Hengill (Iceland), Krafla (Iceland) and The Geysers (California) geothermal areas. All three systems are exploited for electricity and/or heat production, and all are highly seismically active. Tomographic studies of volumes a few km in dimension were conducted for each area using the method of Thurber (1983).

  15. An evaluation of applicability of seismic refraction method in identifying shallow archaeological features A case study at archaeological site

    NASA Astrophysics Data System (ADS)

    Jahangardi, Morteza; Hafezi Moghaddas, Naser; Keivan Hosseini, Sayyed; Garazhian, Omran

    2015-04-01

    We applied the seismic refraction method at archaeological site, Tepe Damghani located in Sabzevar, NE of Iran, in order to determine the structures of archaeological interests. This pre-historical site has special conditions with respect to geographical location and geomorphological setting, so it is an urban archaeological site, and in recent years it has been used as an agricultural field. In spring and summer of 2012, the third season of archaeological excavation was carried out. Test trenches of excavations in this site revealed that cultural layers were often disturbed adversely due to human activities such as farming and road construction in recent years. Conditions of archaeological cultural layers in southern and eastern parts of Tepe are slightly better, for instance, in test trench 3×3 m²1S03, third test trench excavated in the southern part of Tepe, an adobe in situ architectural structure was discovered that likely belongs to cultural features of a complex with 5 graves. After conclusion of the third season of archaeological excavation, all of the test trenches were filled with the same soil of excavated test trenches. Seismic refraction method was applied with12 channels of P geophones in three lines with a geophone interval of 0.5 meter and a 1.5 meter distance between profiles on test trench 1S03. The goal of this operation was evaluation of applicability of seismic method in identification of archaeological features, especially adobe wall structures. Processing of seismic data was done with the seismic software, SiesImager. Results were presented in the form of seismic section for every profile, so that identification of adobe wall structures was achieved hardly. This could be due to that adobe wall had been built with the same materials of the natural surrounding earth. Thus, there is a low contrast and it has an inappropriate effect on seismic processing and identifying of archaeological features. Hence the result could be that application of the seismic method in order to determine the archaeological features, having the same conditions, is not affordable and efficient in comparison to GPR or magnetic methods which yield more desirable results.

  16. A comparison of Q-factor estimation methods for marine seismic data

    NASA Astrophysics Data System (ADS)

    Kwon, J.; Ha, J.; Shin, S.; Chung, W.; Lim, C.; Lee, D.

    2016-12-01

    The seismic imaging technique draws information from inside the earth using seismic reflection and transmission data. This technique is an important method in geophysical exploration. Also, it has been employed widely as a means of locating oil and gas reservoirs because it offers information on geological media. There is much recent and active research into seismic attenuation and how it determines the quality of seismic imaging. Seismic attenuation is determined by various geological characteristics, through the absorption or scattering that occurs when the seismic wave passes through a geological medium. The seismic attenuation can be defined using an attenuation coefficient and represented as a non-dimensional variable known as the Q-factor. Q-factor is a unique characteristic of a geological medium. It is a very important material property for oil and gas resource development. Q-factor can be used to infer other characteristics of a medium, such as porosity, permeability and viscosity, and can directly indicate the presence of hydrocarbons to identify oil and gas bearing areas from the seismic data. There are various ways to estimate Q-factor in three different domains. In the time domain, pulse amplitude decay, pulse rising time, and pulse broadening are representative. Logarithm spectral ratio (LSR), centroid frequency shift (CFS), and peak frequency shift (PFS) are used in the frequency domain. In the time-frequency domain, Wavelet's Envelope Peak Instantaneous Frequency (WEPIF) is most frequently employed. In this study, we estimated and analyzed the Q-factor through the numerical model test and used 4 methods: the LSR, CFS, PFS, and WEPIF. Before we applied these 4 methods to observed data, we experimented with the numerical model test. The numerical model test data is derived from Norsar-2D, which is the basis of the ray-tracing algorithm, and we used reflection and normal incidence surveys to calculate Q-factor according to the array of sources and receivers. After the numerical model test, we chose the most accurate of the 4 methods by comparing Q-factor through reflection and normal incidence surveys. We applied the method to the observed data and proved its accuracy.

  17. The Investigation of a Sinkhole Area in Germany by Near-Surface Active Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Tschache, S.; Becker, D.; Wadas, S. H.; Polom, U.; Krawczyk, C. M.

    2017-12-01

    In November 2010, a 30 m wide and 17 m deep sinkhole occurred in a residential area of Schmalkalden, Germany, which fortunately did not harm humans, but led to damage of buildings and property. Subsequent geoscientific investigations showed that the collapse was naturally caused by the subrosion of sulfates in a depth of about 80 m. In 2012, an early warning system was established including 3C borehole geophones deployed in 50 m depth around the backfilled sinkhole. During the acquisition of two shallow 2D shear wave seismic profiles, the signals generated by a micro-vibrator at the surface were additionally recorded by the four borehole geophones of the early warning system and a VSP probe in a fifth borehole. The travel time analysis of the direct arrivals enhanced the understanding of wave propagation in the area. Seismic velocity anomalies were detected and related to structural seismic images of the 2D profiles. Due to the promising first results, the experiment was further extended by distributing vibration points throughout the whole area around the sinkhole. This time, micro-vibrators for P- and S-wave generation were used. The signals were recorded by the borehole geophones and temporary installed seismometers at surface positions close to the boreholes. The travel times and signal attenuations are evaluated to detect potential instable zones. Furthermore, array analyses are performed. The first results reveal features in the active tomography datasets consistent with structures observed in the 2D seismic images. The advantages of the presented method are the low effort and good repeatability due to the permanently installed borehole geophones. It has the potential to determine P-wave and S-wave velocities in 3D. It supports the interpretation of established investigation methods as 2D surface seismics and VSP. In our further research we propose to evaluate the suitability of the method for the time lapse monitoring of changes in the seismic wave propagation, which could be related to subrosion processes.

  18. Comparing methods suitable for monitoring marine mammals in low visibility conditions during seismic surveys.

    PubMed

    Verfuss, Ursula K; Gillespie, Douglas; Gordon, Jonathan; Marques, Tiago A; Miller, Brianne; Plunkett, Rachael; Theriault, James A; Tollit, Dominic J; Zitterbart, Daniel P; Hubert, Philippe; Thomas, Len

    2018-01-01

    Loud sound emitted during offshore industrial activities can impact marine mammals. Regulations typically prescribe marine mammal monitoring before and/or during these activities to implement mitigation measures that minimise potential acoustic impacts. Using seismic surveys under low visibility conditions as a case study, we review which monitoring methods are suitable and compare their relative strengths and weaknesses. Passive acoustic monitoring has been implemented as either a complementary or alternative method to visual monitoring in low visibility conditions. Other methods such as RADAR, active sonar and thermal infrared have also been tested, but are rarely recommended by regulatory bodies. The efficiency of the monitoring method(s) will depend on the animal behaviour and environmental conditions, however, using a combination of complementary systems generally improves the overall detection performance. We recommend that the performance of monitoring systems, over a range of conditions, is explored in a modelling framework for a variety of species. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Time-Lapse Monitoring with 4D Seismic Coda Waves in Active, Passive and Ambient Noise Data

    NASA Astrophysics Data System (ADS)

    Lumley, D. E.; Kamei, R.; Saygin, E.; Shragge, J. C.

    2017-12-01

    The Earth's subsurface is continuously changing, due to temporal variations in fluid flow, stress, temperature, geomechanics and geochemistry, for example. These physical changes occur at broad tectonic and earthquake scales, and also at very detailed near-surface and reservoir scales. Changes in the physical states of the earth cause time-varying changes in the physical properties of rocks and fluids, which can be monitored with natural or manmade seismic waves. Time-lapse (4D) seismic monitoring is important for applications related to natural and induced seismicity, hydrocarbon and groundwater reservoir depletion, CO2 sequestration etc. An exciting new research area involves moving beyond traditional methods in order to use the full complex time-lapse scattered wavefield (4D coda waves) for both manmade active-source 3D/4D seismic data, and also to use continuous recordings of natural-source passive seismic data, especially (micro) earthquakes and ocean ambient noise. This research involves full wave-equation approaches including waveform inversion (FWI), interferometry, Large N sensor arrays, "big data" information theory, and high performance supercomputing (HPC). I will present high-level concepts and recent data results that are quite spectacular and highly encouraging.

  20. 1-D seismic velocity model and hypocenter relocation using double difference method around West Papua region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabtaji, Agung, E-mail: sabtaji.agung@gmail.com, E-mail: agung.sabtaji@bmkg.go.id; Indonesia’s Agency for Meteorological, Climatological and Geophysics Region V, Jayapura 1572; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id

    2015-04-24

    West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as inputmore » for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault.« less

  1. Continuous, Large-Scale Processing of Seismic Archives for High-Resolution Monitoring of Seismic Activity and Seismogenic Properties

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.

    2012-12-01

    Archives of digital seismic data recorded by seismometer networks around the world have grown tremendously over the last several decades helped by the deployment of seismic stations and their continued operation within the framework of monitoring earthquake activity and verification of the Nuclear Test-Ban Treaty. We show results from our continuing effort in developing efficient waveform cross-correlation and double-difference analysis methods for the large-scale processing of regional and global seismic archives to improve existing earthquake parameter estimates, detect seismic events with magnitudes below current detection thresholds, and improve real-time monitoring procedures. We demonstrate the performance of these algorithms as applied to the 28-year long seismic archive of the Northern California Seismic Network. The tools enable the computation of periodic updates of a high-resolution earthquake catalog of currently over 500,000 earthquakes using simultaneous double-difference inversions, achieving up to three orders of magnitude resolution improvement over existing hypocenter locations. This catalog, together with associated metadata, form the underlying relational database for a real-time double-difference scheme, DDRT, which rapidly computes high-precision correlation times and hypocenter locations of new events with respect to the background archive (http://ddrt.ldeo.columbia.edu). The DDRT system facilitates near-real-time seismicity analysis, including the ability to search at an unprecedented resolution for spatio-temporal changes in seismogenic properties. In areas with continuously recording stations, we show that a detector built around a scaled cross-correlation function can lower the detection threshold by one magnitude unit compared to the STA/LTA based detector employed at the network. This leads to increased event density, which in turn pushes the resolution capability of our location algorithms. On a global scale, we are currently building the computational framework for double-difference processing the combined parametric and waveform archives of the ISC, NEIC, and IRIS with over three million recorded earthquakes worldwide. Since our methods are scalable and run on inexpensive Beowulf clusters, periodic re-analysis of such archives may thus become a routine procedure to continuously improve resolution in existing global earthquake catalogs. Results from subduction zones and aftershock sequences of recent great earthquakes demonstrate the considerable social and economic impact that high-resolution images of active faults, when available in real-time, will have in the prompt evaluation and mitigation of seismic hazards. These results also highlight the need for consistent long-term seismic monitoring and archiving of records.

  2. Improvements of Real Time First Motion Focal Mechanism and Noise Characteristics of New Sites at the Puerto Rico Seismic Network

    NASA Astrophysics Data System (ADS)

    Williams, D. M.; Lopez, A. M.; Huerfano, V.; Lugo, J.; Cancel, J.

    2011-12-01

    Seismic networks need quick and efficient ways to obtain information related to seismic events for the purposes of seismic activity monitoring, risk assessment, and scientific knowledge among others. As part of an IRIS summer internship program, two projects were performed to provide a tool for quick faulting mechanism and improve seismic data at the Puerto Rico Seismic Network (PRSN). First, a simple routine to obtain a focal mechanisms, the geometry of the fault, based on first motions was developed and implemented for data analysts routine operations at PRSN. The new tool provides the analyst a quick way to assess the probable faulting mechanism that occurred while performing the interactive earthquake location procedure. The focal mechanism is generated on-the-fly when data analysts pick P wave arrivals onsets and motions. Once first motions have been identified, an in-house PRSN utility is employed to obtain the double couple representation and later plotted using GMT's psmeca utility. Second, we addressed the issue of seismic noise related to thermal fluctuations inside seismic vaults. Seismic sites can be extremely noisy due to proximity to cultural activities and unattended thermal fluctuations inside sensor housings, thus resulting in skewed readings. In the past, seismologists have used different insulation techniques to reduce the amount of unwanted noise that a seismometers experience due to these thermal changes with items such as Styrofoam, and fiber glass among others. PRSN traditionally uses Styrofoam boxes to cover their seismic sensors, however, a proper procedure to test how these method compare to other new techniques has never been approached. The deficiency of properly testing these techniques in the Caribbean and especially Puerto Rico is that these thermal fluctuations still happen because of the intense sun and humidity. We conducted a test based on the methods employed by the IRIS Transportable Array, based on insulation by sand burial of the sensor. Two Guralps CMG-3T's connected to RefTek's 150 digitizers were used at PRSN's MPR site seismic vault to compare the two types of insulation. Two temperature loggers were placed along each seismic sensor for a period of one week to observe how much thermal fluctuations occur in each insulation method and then compared its capability for noise reduction due to thermal fluctuations. With only a single degree Celsius fluctuation inside the sand (compared to almost twice that value for the foam) the sensor buried in sand provided the best insulation for the seismic vault. In addition, the quality of the data was analyzed by comparing both sensors using PQLX. We show results of this analysis and also provide a site characteristic of new stations to be included in the daily earthquake location operations at the PRSN.

  3. Magnetotelluric Studies of Fault Zones Surrounding the 2016 Pawnee, Oklahoma Earthquake

    NASA Astrophysics Data System (ADS)

    Evans, R. L.; Key, K.; Atekwana, E. A.

    2016-12-01

    Since 2008, there has been a dramatic increase in earthquake activity in the central United States in association with major oil and gas operations. Oklahoma is now considered one the most seismically active states. Although seismic networks are able to detect activity and map its locus, they are unable to image the distribution of fluids in the fault responsible for triggering seismicity. Electrical geophysical methods are ideally suited to image fluid bearing faults since the injected waste-waters are highly saline and hence have a high electrical conductivity. To date, no study has imaged the fluids in the faults in Oklahoma and made a direct link to the seismicity. The 2016 M5.8 Pawnee, Oklahoma earthquake provides an unprecedented opportunity for scientists to provide that link. Several injection wells are located within a 20 km radius of the epicenter; and studies have suggested that injection of fluids in high-volume wells can trigger earthquakes as far away as 30 km. During late October to early November, 2016, we are collecting magnetotelluric (MT) data with the aim of constraining the distribution of fluids in the fault zone. The MT technique uses naturally occurring electric and magnetic fields measured at Earth's surface to measure conductivity structure. We plan to carry out a series of short two-dimensional (2D) profiles of wideband MT acquisition located through areas where the fault recently ruptured and seismic activity is concentrated and also across the faults in the vicinity that did not rupture. The integration of our results and ongoing seismic studies will lead to a better understanding of the links between fluid injection and seismicity.

  4. Investigation of sea-level changes and shelf break prograding sequences during the Late Quaternary offshore of Kusadasi (West Anatolia) and surroundings by high resolution seismic methods

    NASA Astrophysics Data System (ADS)

    Gurcay, Savas; Cifci, Gunay; Dondurur, Derman; Okay, Seda; Atgin, Orhan; Ozel, Ozkan; Mert Kucuk, Hilmi

    2016-04-01

    High Resolution multi-channel seismic reflection and Chirp data were collected by K. Piri Reis, research vessel of Dokuz Eylül University, in the central Aegean coast of the West Anatolia by research cruises carried out in 2005 and 2008, respectively. Submarine stratigraphic and structural features of Sıǧacık Gulf, Kuşadası Gulf and surroundings were investigated under this survey. The data were processed and interpreted in SeisLab, D.E.U. Marine Sciences and Technology seismic laboratory. Thirteen distinct unconformities can be traced below the study area that separate thirteen progradational stacked paleo-delta sequences (Lob1-Lob13) on seismic profiles following and cutting each other. As a result of comparison with the oxygen isotopic stages (δ18), these deltas (Lob1-L13) were interpreted that they have been deposited during the sea-level lowstands within Pleistocene glacial stages. In the study area the basement surface which observed as the lowest unconformity surface of the seismic sections was called 'Acoustic Basement'. This basement which traced approximately all of the seismic sections has generally quite wavy surface and underlain the upper seismic units. It was observed that these seismic units which terminated their formation in Pleistocene (Lob1-Lob13) and Holocene period were cut and uplifted by acoustic basement, like an intrusion. These type deformations were interpreted as a result of magmatic intrusion into these upper seismic units occurred in Late Pleistocene and Holocene period. Tectonic and structural interpretation was carried out to constitute the submarine active tectonic map of the study area by correlated active faults identified on seismic sections. Submarine active tectonic map and, basement topography and sediment thickness map were correlated together to present the relationship between tectonic deformation and stratigraphy.

  5. Waveform classification of volcanic low-frequency earthquake swarms and its implication at Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Green, David N.; Neuberg, Jürgen

    2006-05-01

    Low-frequency volcanic earthquakes are indicators of magma transport and activity within shallow conduit systems. At a number of volcanoes, these events exhibit a high degree of waveform similarity providing a criterion for classification. Using cross-correlation techniques to quantify the degree of similarity, we develop a method to sort events into families containing comparable waveforms. Events within a family have been triggered within one small source volume from which the seismic wave has then travelled along an identical path to the receiver. This method was applied to a series of 16 low-frequency earthquake swarms, well correlated with cyclic deformation recorded by tiltmeters, at Soufrière Hills Volcano, Montserrat, in June 1997. Nine waveform groups were identified containing more than 45 events each. The families are repeated across swarms with only small changes in waveform, indicating that the seismic source location is stable with time. The low-frequency seismic swarms begin prior to the point at which inflation starts to decelerate, suggesting that the seismicity indicates or even initiates a depressurisation process. A major dome collapse occurred within the time window considered, removing the top 100 m of the dome. This event caused activity within some families to pause for several cycles before reappearing. This shows that the collapse did not permanently disrupt the source mechanism or the path of the seismic waves.

  6. Spatial extent of a hydrothermal system at Kilauea Volcano, Hawaii, determined from array analyses of shallow long-period seismicity 2. Results

    USGS Publications Warehouse

    Almendros, J.; Chouet, B.; Dawson, P.

    2001-01-01

    Array data from a seismic experiment carried out at Kilauea Volcano, Hawaii, in February 1997, are analyzed by the frequency-slowness method. The slowness vectors are determined at each of three small-aperture seismic antennas for the first arrivals of 1129 long-period (LP) events and 147 samples of volcanic tremor. The source locations are determined by using a probabilistic method which compares the event azimuths and slownesses with a slowness vector model. The results show that all the LP seismicity, including both discrete LP events and tremor, was generated in the same source region along the east flank of the Halemaumau pit crater, demonstrating the strong relation that exists between the two types of activities. The dimensions of the source region are approximately 0.6 X 1.0 X 0.5 km. For LP events we are able to resolve at least three different clusters of events. The most active cluster is centered ???200 m northeast of Halemaumau at depths shallower than 200 m beneath the caldera floor. A second cluster is located beneath the northeast quadrant of Halemaumau at a depth of ???400 m. The third cluster is <200 m deep and extends southeastward from the northeast quadrant of Halemaumau. Only one source zone is resolved for tremor. This zone is coincident with the most active source zone of LP events, northeast of Halemaumau. The location, depth, and size of the source region suggest a hydrothermal origin for all the analyzed LP seismicity. Copyright 2001 by the American Geophysical Union.

  7. Active and passive seismic methods for characterization and monitoring of unstable rock masses: field surveys, laboratory tests and modeling.

    NASA Astrophysics Data System (ADS)

    Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio

    2016-04-01

    Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous passive seismic monitoring at the site, from October 2013 to present, systematically highlighted clear energy peaks in the spectral content of seismic noise on the unstable sector, interpreted as resonant frequencies of the investigated volume. Both spectral analysis and cross-correlation of seismic noise showed seasonal reversible variation trends related to air temperature fluctuations. No irreversible changes, resulting from serious damage processes within the rock mass, were detected so far. Modal analysis and geomechanical modeling of the unstable cliff are currently under investigation to better understand the vibration modes that could explain the measured amplitude and orientation of ground motion at the first resonant frequencies. Classification and location of microseismic events still remains the most challenging task, due to the complex structural and morphological setting of the site.

  8. Recent faulting in western Nevada revealed by multi-scale seismic reflection

    USGS Publications Warehouse

    Frary, R.N.; Louie, J.N.; Stephenson, W.J.; Odum, J.K.; Kell, A.; Eisses, A.; Kent, G.M.; Driscoll, N.W.; Karlin, R.; Baskin, R.L.; Pullammanappallil, S.; Liberty, L.M.

    2011-01-01

    The main goal of this study is to compare different reflection methods used to image subsurface structure within different physical environments in western Nevada. With all the methods employed, the primary goal is fault imaging for structural information toward geothermal exploration and seismic hazard estimation. We use seismic CHIRP a swept-frequency marine acquisition system, weight drop an accelerated hammer source, and two different vibroseis systems to characterize fault structure. We focused our efforts in the Reno metropolitan area and the area within and surrounding Pyramid Lake in northern Nevada. These different methods have provided valuable constraints on the fault geometry and activity, as well as associated fluid movement. These are critical in evaluating the potential for large earthquakes in these areas, and geothermal exploration possibilities near these structures. ?? 2011 Society of Exploration Geophysicists.

  9. Using Seismic Interferometry to Investigate Seismic Swarms

    NASA Astrophysics Data System (ADS)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other's uncertainty ellipse. We use ANC to create a 3D model of the crust in the region. VSM provides better illumination of the active fault zone. Measures of amplitude and shape are used to refine source properties and locations in space and waveform modeling allows us to estimate near-fault seismic structure.

  10. High lateral resolution exploration using surface waves from noise records

    NASA Astrophysics Data System (ADS)

    Chávez-García, Francisco José Yokoi, Toshiaki

    2016-04-01

    Determination of the shear-wave velocity structure at shallow depths is a constant necessity in engineering or environmental projects. Given the sensitivity of Rayleigh waves to shear-wave velocity, subsoil structure exploration using surface waves is frequently used. Methods such as the spectral analysis of surface waves (SASW) or multi-channel analysis of surface waves (MASW) determine phase velocity dispersion from surface waves generated by an active source recorded on a line of geophones. Using MASW, it is important that the receiver array be as long as possible to increase the precision at low frequencies. However, this implies that possible lateral variations are discarded. Hayashi and Suzuki (2004) proposed a different way of stacking shot gathers to increase lateral resolution. They combined strategies used in MASW with the common mid-point (CMP) summation currently used in reflection seismology. In their common mid-point with cross-correlation method (CMPCC), they cross-correlate traces sharing CMP locations before determining phase velocity dispersion. Another recent approach to subsoil structure exploration is based on seismic interferometry. It has been shown that cross-correlation of a diffuse field, such as seismic noise, allows the estimation of the Green's Function between two receivers. Thus, a virtual-source seismic section may be constructed from the cross-correlation of seismic noise records obtained in a line of receivers. In this paper, we use the seismic interferometry method to process seismic noise records obtained in seismic refraction lines of 24 geophones, and analyse the results using CMPCC to increase the lateral resolution of the results. Cross-correlation of the noise records allows reconstructing seismic sections with virtual sources at each receiver location. The Rayleigh wave component of the Green's Functions is obtained with a high signal-to-noise ratio. Using CMPCC analysis of the virtual-source seismic lines, we are able to identify lateral variations of phase velocity inside the seismic line, and increase the lateral resolution compared with results of conventional analysis.

  11. GIS-based seismic shaking slope vulnerability map of Sicily (Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Nigro, Fabrizio; Arisco, Giuseppe; Perricone, Marcella; Renda, Pietro; Favara, Rocco

    2010-05-01

    Earthquakes often represent very dangerouses natural events in terms of human life and economic losses and their damage effects are amplified by the synchronous occurrence of seismically-induced ground-shaking failures in wide regions around the seismogenic source. In fact, the shaking associated with big earthquakes triggers extensive landsliding, sometimes at distances of more than 100 km from the epicenter. The active tectonics and the geomorphic/morphodinamic pattern of the regions affected by earthquakes contribute to the slopes instability tendency. In fact, earthquake-induced groun-motion loading determines inertial forces activation within slopes that, combined with the intrinsic pre-existing static forces, reduces the slope stability towards its failure. Basically, under zero-shear stress reversals conditions, a catastrophic failure will take place if the earthquake-induced shear displacement exceeds the critical level of undrained shear strength to a value equal to the gravitational shear stress. However, seismic stability analyses carried out for various infinite slopes by using the existing Newmark-like methods reveal that estimated permanent displacements smaller than the critical value should also be regarded as dangerous for the post-earthquake slope safety, in terms of human activities use. Earthquake-induced (often high-speed) landslides are among the most destructive phenomena related to slopes failure during earthquakes. In fact, damage from earthquake-induced landslides (and other ground-failures), sometimes exceeds the buildings/infrastructures damage directly related to ground-shaking for fault breaking. For this matter, several hearthquakes-related slope failures methods have been developed, for the evaluation of the combined hazard types represented by seismically ground-motion landslides. The methodologies of analysis of the engineering seismic risk related to the slopes instability processes is often achieved through the evaluation of the permanent displacement potentially induced by an seismic scenario. Such methodologies found on the consideration that the conditions of seismic stability and the post-seismic functionality of engineering structures are tightly related to the entity of the permanent deformations that an earthquake can induce. Regarding the existing simplified procedures among slope stability models, Newmark's model is often used to derive indications about slope instabilities due to earthquakes. In this way, we have evaluated the seismically-induced landslides hazard in Sicily (Central Mediterranean) using the Newmark-like model. In order to determine the map distribution of the seismic ground-acceleration from an earthquake scenario, the attenuation-law of Sabetta & Pugliese has been used, analyzing some seismic recordings occurred in Italy. Also, by evaluating permanent displacements, the correlation of Ambraseys & Menu has been assumed. The seismic shaking slope vulnerability map of Sicily has been carried out using GIS application, also considering max seismic ground-acceleration peak distribution (in terms of exceedance probability for fixed time), slope acclivity, cohesion/angle of internal friction of outcropping rocks, allowing the zoning of the unstable slopes under seismic forces.

  12. Multisensor of Remotely Sensed Data for Characterizing Seismotectonic Activities in Malaysia

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Rabieahtul; Azahari Razak, Khamarrul; Anuar Jamaludin, Tajul; Tongkul, Felix; Mohamad, Zakaria; Ramli, Zamri; Abd Manap, Mohamad; Rahman, Muhammad Zulkarnain Abdul

    2015-04-01

    Seismically induced events pose serious hazards yet are difficult to predict. Despite remarkable efforts of mapping, monitoring and modelling of such great events at regional or local scales, the understanding of the processes in the Earth's dynamic system remains elusive. Although Malaysia is in a relatively low seismic hazard zone, the current trend and pattern of seismotectonic activities triggered a series of fundamental study to better understand the relationship between the earthquakes, recent tectonics and seismically active fault zones. Several conventional mapping techniques have been intensively used but shown some limitations. Remote sensing is the preferable mean to quantify the seismic activity accurately in a larger area within a short period. Still, only few of such studies have been carried out in this subduction region. Characterization of seismotectonic activities from space in a tropical environment is very challenging given the complexity of its physiographic, climatic, geologic conditions and anthropogenic activities. There are many factors controlling the success rate of the implementation mainly due to the lack of historical earthquakes, geomorphological evidence, and proper identification of regional tectonic patterns. In this study, we aim at providing better insight to extract and characterize seismotectonic activities by integrating passive and active remotely-sensed data, geodetic data, historical records, GIS-based data analysis and in-situ measurements as well quantify them based on field investigation and expert knowledge. It is crucial to perform spatiotemporal analysis of its activities in the most seismically induced region in North-Western Sabah. A comprehensive geodatabase of seismotectonic events are developed and allowed us to analyse the spatiotemporal activities. A novelty of object-based image method for extracting tropical seismically active faults and related seismotectonic features are introduced and evaluated. We aim to develop the exchangeable and transferable rule-set with optimal parameterization for such aforementioned tasks. A geomorphometric-based remotely sensed approach is used to understand the tectonic geomorphology in processes affecting the environment at different spatial scales. As a result of this study, questions related to cascading natural disasters, e.g. landslides can be quantitatively answered. Development and applications of seismically induced landslide hazard and risk zonation at different scales are conceptually presented and critically discussed. So far, quantification evaluation of uncertainties associated to spatial seismic hazard and risks prediction remains very challenging to understand and it is an interest of on-going research. In the near-future, it is crucial to address the changes of climate and land-use-land-cover in relation to temporal and spatial pattern of seismically induced landslides. It is also important to assess, model and incorporate the changes due to natural disasters into a sustainable risk management. As a conclusion, the characteristics, development and function of tectonic movement, as one of the components for geomorphological process-response system is crucial for a regional seismic study. With newly emerging multi-sensor of remotely sensed data coupled with the satellite positioning system promises a better mapping and monitoring tool for seismotectonic activities in such a way that it can be used to map, monitor, and model related seismically induced processes for a comprehensive hazard and associated risk assessment.

  13. New inferences from spectral seismic energy measurement of a link between regional seismicity and volcanic activity at Mt. Etna, Italy

    NASA Astrophysics Data System (ADS)

    Ortiz, R.; Falsaperla, S.; Marrero, J. M.; Messina, A.

    2009-04-01

    The existence of a relationship between regional seismicity and changes in volcanic activity has been the subject of several studies in the last years. Generally, activity in basaltic volcanoes such as Villarica (Chile) and Tungurahua (Ecuador) shows very little changes after the occurrence of regional earthquakes. In a few cases volcanic activity has changed before the occurrence of regional earthquakes, such as observed at Teide, Tenerife, in 2004 and 2005 (Tárraga et al., 2006). In this paper we explore the possible link between regional seismicity and changes in volcanic activity at Mt. Etna in 2006 and 2007. On 24 November, 2006 at 4:37:40 GMT an earthquake of magnitude 4.7 stroke the eastern coast of Sicily. The epicenter was localized 50 km SE of the south coast of the island, and at about 160 km from the summit craters of Mt. Etna. The SSEM (Spectral Seismic Energy Measurement) of the seismic signal at stations at 1 km and 6 km from the craters highlights that four hours before this earthquake the energy associated with volcanic tremor increased, reached a maximum, and finally became steady when the earthquake occurred. Conversely, neither before nor after the earthquake, the SSEM of stations located between 80 km and 120 km from the epicentre and outside the volcano edifice showed changes. On 5 September, 2007 at 21:24:13 GMT an earthquake of magnitude 3.2 and 7.9 km depth stroke the Lipari Island, at the north of Sicily. About 38 hours before the earthquake occurrence, there was an episode of lava fountain lasting 20 hours at Etna volcano. The SSEM of the seismic signal recorded during the lava fountain at a station located at 6 km from the craters highlights changes heralding this earthquake ten hours before its occurrence using the FFM method (e.g., Voight, 1988; Ortiz et al., 2003). A change in volcanic activity - with the onset of ash emission and Strombolian explosions - was observed a couple of hours before the occurrence of the regional earthquakes. It can be interpreted as the magmatic response to a change of the distribution of tectonic stress in the edifice before the earthquake. In the light of this hypothesis, we surmise that the magmatic system behaved similar to a dilatometer and promise news lines to forecasting the volcano activity. References M. Tárraga, R. Carniel, R. Ortiz, J. M. Marrero, and A. García, 2006. On the predictability of volcano.tectonic events by low frequency seismic noise analysis at Teide-Pico Viejo volcanic complex, Canary Islands. Nat. Hazards Earth Syst. Sci., 6, 365-376. Ortiz, R., H. Moreno, A. García, G. Fuentealba, M. Astiz, P. Peña, N. Sánchez, M. Tárraga, 2003. Villarrica volcano (Chile): characteristics of the volcanic tremor and forecasting of small explosions by means of a material failure method. J. Volcanol. Geotherm. Res. 128: 247-259. B. Voight, 1988. A method for prediction of volcanic eruptions. Nature 332, 10:125-130.

  14. Motorized Activity on Legacy Seismic Lines: A Predictive Modeling Approach to Prioritize Restoration Efforts.

    PubMed

    Hornseth, M L; Pigeon, K E; MacNearney, D; Larsen, T A; Stenhouse, G; Cranston, J; Finnegan, L

    2018-05-11

    Natural regeneration of seismic lines, cleared for hydrocarbon exploration, is slow and often hindered by vegetation damage, soil compaction, and motorized human activity. There is an extensive network of seismic lines in western Canada which is known to impact forest ecosystems, and seismic lines have been linked to declines in woodland caribou (Rangifer tarandus caribou). Seismic line restoration is costly, but necessary for caribou conservation to reduce cumulative disturbance. Understanding where motorized activity may be impeding regeneration of seismic lines will aid in prioritizing restoration. Our study area in west-central Alberta, encompassed five caribou ranges where restoration is required under federal species at risk recovery strategies, hence prioritizing seismic lines for restoration is of immediate conservation value. To understand patterns of motorized activity on seismic lines, we evaluated five a priori hypotheses using a predictive modeling framework and Geographic Information System variables across three landscapes in the foothills and northern boreal regions of Alberta. In the northern boreal landscape, motorized activity was most common in dry areas with a large industrial footprint. In highly disturbed areas of the foothills, motorized activity on seismic lines increased with low vegetation heights, relatively dry soils, and further from forest cutblocks, while in less disturbed areas of the foothills, motorized activity on seismic lines decreased proportional to seismic line density, slope steepness, and white-tailed deer abundance, and increased proportional with distance to roads. We generated predictive maps of high motorized activity, identifying 21,777 km of seismic lines where active restoration could expedite forest regeneration.

  15. Relationship between seismic status of Earth and relative position of bodies in sun-earth-moon system

    NASA Astrophysics Data System (ADS)

    Kulanin, N. V.

    1985-03-01

    The time spectrum of variations in seismicity is quite broad. There are seismic seasons, as well as multiannual variations. The range of characteristic times of variation from days to about one year is studied. Seismic activity as a function of the position of the moon relative to the Earth and the direction toward the Sun is studied. The moments of strong earthquakes, over 5.8 on the Richter scale, between 1968 and June 1980 are plotted in time coordinates relating them to the relative positions of the three bodies in the sun-earth-moon system. Methods of mathematical statistics are applied to the points produced, indicating at least 99% probability that the distribution was not random. a periodicity of the earth's seismic state of 413 days is observed.

  16. Large Subduction Earthquake Simulations using Finite Source Modeling and the Offshore-Onshore Ambient Seismic Field

    NASA Astrophysics Data System (ADS)

    Viens, L.; Miyake, H.; Koketsu, K.

    2016-12-01

    Large subduction earthquakes have the potential to generate strong long-period ground motions. The ambient seismic field, also called seismic noise, contains information about the elastic response of the Earth between two seismic stations that can be retrieved using seismic interferometry. The DONET1 network, which is composed of 20 offshore stations, has been deployed atop the Nankai subduction zone, Japan, to continuously monitor the seismotectonic activity in this highly seismically active region. The surrounding onshore area is covered by hundreds of seismic stations, which are operated the National Research Institute for Earth Science and Disaster Prevention (NIED) and the Japan Meteorological Agency (JMA), with a spacing of 15-20 km. We retrieve offshore-onshore Green's functions from the ambient seismic field using the deconvolution technique and use them to simulate the long-period ground motions of moderate subduction earthquakes that occurred at shallow depth. We extend the point source method, which is appropriate for moderate events, to finite source modeling to simulate the long-period ground motions of large Mw 7 class earthquake scenarios. The source models are constructed using scaling relations between moderate and large earthquakes to discretize the fault plane of the large hypothetical events into subfaults. Offshore-onshore Green's functions are spatially interpolated over the fault plane to obtain one Green's function for each subfault. The interpolated Green's functions are finally summed up considering different rupture velocities. Results show that this technique can provide additional information about earthquake ground motions that can be used with the existing physics-based simulations to improve seismic hazard assessment.

  17. Scenarios for local seismic effects of Tulcea (Romania) crustal earthquakes, preliminary approach for the seismic microzoning of Tulcea city

    NASA Astrophysics Data System (ADS)

    Florin Bǎlan, Å.žTefan; Apostol, Bogdan; Chitea, F.; Anghelache, Mirela Adriana; Cioflan, Carmen O.; Serban, A.

    2010-05-01

    The discussed area, Tulcea, is delimitated by the Scythian Platform in the North and Moessian Platform in the South, not far from the Black Sea coast. Natural disasters in the city could occur due to Vrancea intermediate-depth (subcrustal) earthquakes and crustal earthquakes caused by active faults. In the last 30 years three important seismic events affected the region of interest with the following recorded magnitudes: MW = 5.1 (13.11.1981) followed in the same day by 6 aftershocks (at depth 0-9 km) with MW = 2.9-3.3; MW = 5 (27.04.1986) and MW = 4.9 (3.10.2004) followed by two aftershocks. Information about the seismic zone of Tulcea is from three seismic catalogues made by Florinescu (1958), Constantinescu and Mârza (1980) and ROMPLUS (2008), but for urban planning of Tulcea city is very important to be better understood the effect of active faults (Măcin-Cerna, Tulcea-Isaccea, Peceneaga-Camena etc) located in the Pre-Dobrogean Depression (our interest area) in the two parts of the city. Regarding the effects of Vrancea subcrustal earthquakes, as the Tulcea city is situated relatively at a large distance from the epicenters, there is necessary to improve the actual method of microzonation based on Medvedev's method. In order to discuss the local seismic site effects we have considered two scenarios, which take into account the characteristics of the seismogenic area. The first one considers the city exposed to a seismic event with magnitude Mw = 5.1 from Sf. Gheorghe fault and the second one considers the city exposed to an earthquake from the EV zone (superficial). The earthquake epicentres are located in very active seismic areas. The absolute response spectra at the bedrock and at surface will be calculated and the characteristic transfer functions, as well. Nonlinear effects induced by significant deformations need a certain method - linear equivalent - for a multistratified zone, as we considered for the Tulcea superficial area. Therefore, important nonlinear variations of shear modulus and damping function with state of strain during the earthquakes are expected in superficial soil deposits. Also, the epicenter distributions, the isobats map and 3D image of focal distribution surface will be presented together with the focal mechanisms of the most significant earthquakes which had affected the zone. All these give us a very complete image of the crustal seismic hazard of the Tulcea zone. This study proposes itself to take in consideration only the local effects of the crustal seismic hazard from Tulcea zone, like a preliminary step for the seismic microzoning of Tulcea city. The latter is a broader research which implies the interdisciplinary work between specialists from different fields of research. Finally, by comparing the seismic microzoning map with the vulnerability distribution mapping for each building type and damage distribution maps, the general aspect of the real earthquake effects over the city is figured out. Acknowledgements: The research was performed with financial support from the CNMP within 31036/ 2007 scientific project.

  18. Is the seismicity swarm at long-dormant Jailolo volcano (Indonesia) a signature of a magmatic unrest?

    NASA Astrophysics Data System (ADS)

    Passarelli, Luigi; Cesca, Simone; Heryandoko, Nova; Lopez Comino, Jose Angel; Strollo, Angelo; Rivalta, Eleonora; Rohadi, Supryianto; Dahm, Torsten; Milkereit, Claus

    2017-04-01

    Magmatic unrest is challenging to detect when monitoring is sparse and there is little knowledge about the volcano. This is especially true for long-dormant volcanoes. Geophysical observables like seismicity, deformation, temperature and gas emission are reliable indicators of ongoing volcanic unrest caused by magma movements. Jailolo volcano is a Holocene volcano belonging to the Halmahera volcanic arc in the Northern Moluccas Islands, Indonesia. Global databases of volcanic eruptions have no records of its eruptive activity and no geological investigation has been carried out to better assess the past eruptive activity at Jailolo. It probably sits on the northern rim of an older caldera which now forms the Jailolo bay. Hydrothermal activity is intense with several hot-springs and steaming ground spots around the Jailolo volcano. In November 2015 an energetic seismic swarm started and lasted until late February 2016 with four earthquakes with M>5 recorded by global seismic networks. At the time of the swarm no close geophysical monitoring network was available around Jailolo volcano except for a broadband station at 30km distant. We installed last summer a local dense multi-parametric monitoring network with 36 seismic stations, 6 GPS and 2 gas monitoring stations around Jailolo volcano. We revised the focal mechanisms of the larger events and used single station location methods in order to exploit the little information available at the time of the swarm activity. We also combined the old sparse data with our local dense network. Migration of hypocenters and inversion of the local stress field derived by focal mechanisms analysis indicate that the Nov-Feb seismicity swarm may be related to a magmatic intrusion at shallow depth. Data from our dense network confirms ongoing micro-seismic activity underneath Jailolo volcano but there are no indications of new magma intrusion. Our findings indicate that magmatic unrest occurred at Jailolo volcano and call for a revision of the volcanic hazard.

  19. Geophysical methods for identification of active faults between the Sannio-Matese and Irpinia areas of the Southern Apennines.

    NASA Astrophysics Data System (ADS)

    Gaudiosi, Germana; Nappi, Rosa; Alessio, Giuliana; Cella, Federico; Fedi, Maurizio; Florio, Giovanni

    2014-05-01

    The Southern Apennines is one of the Italian most active areas from a geodynamic point of view since it is characterized by occurrence of intense and widely spread seismic activity. Most seismicity of the area is concentrated along the chain, affecting mainly the Irpinia and Sannio-Matese areas. The seismogenetic sources responsible for the destructive events of 1456, 1688, 1694, 1702, 1732, 1805, 1930, 1962 and 1980 (Io = X-XI MCS) occurred mostly on NW-SE faults, and the relative hypocenters are concentrated within the upper 20 km of the crust. Structural observations on the Pleistocene faults suggest normal to sinistral movements for the NW-SE trending faults and normal to dextral for the NE-SW trending structures. The available focal mechanisms of the largest events show normal solutions consistent with NE-SW extension of the chain. After the 1980 Irpinia large earthquake, the release of seismic energy in the Southern Apennines has been characterized by occurrence of moderate energy sequences of main shock-aftershocks type and swarm-type activity with low magnitude sequences. Low-magnitude (Md<5) historical and recent earthquakes, generally clustered in swarms, have commonly occurred along the NE-SW faults. This paper deals with integrated analysis of geological and geophysical data in GIS environment to identify surface, buried and hidden active faults and to characterize their geometry. In particular we have analyzed structural data, earthquake space distribution and gravimetric data. The main results of the combined analysis indicate good correlation between seismicity and Multiscale Derivative Analysis (MDA) lineaments from gravity data. Furthermore 2D seismic hypocentral locations together with high-resolution analysis of gravity anomalies have been correlated to estimate the fault systems parameters (strike, dip direction and dip angle) through the application of the DEXP method (Depth from Extreme Points).

  20. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    NASA Astrophysics Data System (ADS)

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis, E. and Papathanassiou, G.: 'Aftershock relocation and frequency-size distribution, stress inversion and seismotectonic setting of the 7 August 2013 M=5.4 earthquake in Kallidromon Mountain, central Greece', Tectonophysics, vol. 617, pp. 101-113, 2014 [4] Maravelakis, E., Bilalis, N., Mantzorou, I., Konstantaras, A. and Antoniadis, A.: '3D modelling of the oldest olive tree of the world', International Journal Of Computational Engineering Research, vol. 2 (2), pp. 340-347, 2012 [5] Konstantaras, A., Katsifarakis, E, Maravelakis, E, Skounakis, E, Kokkinos, E. and Karapidakis, E.: 'Intelligent spatial-clustering of seismicity in the vicinity of the Hellenic seismic arc', Earth Science Research, vol. 1 (2), pp. 1- 10, 2012 [6] Georgoulas, G., Konstantaras, A., Katsifarakis, E., Stylios, C., Maravelakis, E and Vachtsevanos, G.: 'Seismic-mass" density-based algorithm for spatio-temporal clustering', Expert Systems with Applications, vol. 40 (10), pp. 4183-4189, 2013 [7] Konstantaras, A.: 'Classification of Distinct Seismic Regions and Regional Temporal Modelling of Seismicity in the Vicinity of the Hellenic Seismic Arc', Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of', vol. 99, pp. 1-7, 2013

  1. Natural or Induced: Identifying Natural and Induced Swarms from Pre-production and Co-production Microseismic Catalogs at the Coso Geothermal Field

    USGS Publications Warehouse

    Schoenball, Martin; Kaven, Joern; Glen, Jonathan M. G.; Davatzes, Nicholas C.

    2015-01-01

    Increased levels of seismicity coinciding with injection of reservoir fluids have prompted interest in methods to distinguish induced from natural seismicity. Discrimination between induced and natural seismicity is especially difficult in areas that have high levels of natural seismicity, such as the geothermal fields at the Salton Sea and Coso, both in California. Both areas show swarm-like sequences that could be related to natural, deep fluid migration as part of the natural hydrothermal system. Therefore, swarms often have spatio-temporal patterns that resemble fluid-induced seismicity, and might possibly share other characteristics. The Coso Geothermal Field and its surroundings is one of the most seismically active areas in California with a large proportion of its activity occurring as seismic swarms. Here we analyze clustered seismicity in and surrounding the currently produced reservoir comparatively for pre-production and co-production periods. We perform a cluster analysis, based on the inter-event distance in a space-time-energy domain to identify notable earthquake sequences. For each event j, the closest previous event i is identified and their relationship categorized. If this nearest neighbor’s distance is below a threshold based on the local minimum of the bimodal distribution of nearest neighbor distances, then the event j is included in the cluster as a child to this parent event i. If it is above the threshold, event j begins a new cluster. This process identifies subsets of events whose nearest neighbor distances and relative timing qualify as a cluster as well as a characterizing the parent-child relationships among events in the cluster. We apply this method to three different catalogs: (1) a two-year microseismic survey of the Coso geothermal area that was acquired before exploration drilling in the area began; (2) the HYS_catalog_2013 that contains 52,000 double-difference relocated events and covers the years 1981 to 2013; and (3) a catalog of 57,000 events with absolute locations from the local network recorded between 2002 and 2007. Using this method we identify 10 clusters of more than 20 events each in the pre-production survey and more than 200 distinct seismicity clusters that each contain at least 20 and up to more than 1000 earthquakes in the more extensive catalogs. The cluster identification method used yields a hierarchy of links between multiple generations of parent and offspring events. We analyze different topological parameters of this hierarchy to better characterize and thus differentiate natural swarms from induced clustered seismicity and also to identify aftershock sequences of notable mainshocks. We find that the branching characteristic given by the average number of child events per parent event is significantly different for clusters below than for clusters around the produced field.

  2. Analysis of the seismic activity associated with the 2010 eruption of Merapi Volcano, Java

    NASA Astrophysics Data System (ADS)

    Budi-Santoso, Agus; Lesage, Philippe; Dwiyono, Sapari; Sumarti, Sri; Subandriyo; Surono; Jousset, Philippe; Metaxian, Jean-Philippe

    2013-07-01

    The 2010 eruption of Merapi is the first large explosive eruption of the volcano that has been instrumentally observed. The main characteristics of the seismic activity during the pre-eruptive period and the crisis are presented and interpreted in this paper. The first seismic precursors were a series of four shallow swarms during the period between 12 and 4 months before the eruption. These swarms are interpreted as the result of perturbations of the hydrothermal system by increasing heat flow. Shorter-term and more continuous precursory seismic activity started about 6 weeks before the initial explosion on 26 October 2010. During this period, the rate of seismicity increased almost constantly yielding a cumulative seismic energy release for volcano-tectonic (VT) and multiphase events (MP) of 7.5 × 1010 J. This value is 3 times the maximum energy release preceding previous effusive eruptions of Merapi. The high level reached and the accelerated behavior of both the deformation of the summit and the seismic activity are distinct features of the 2010 eruption. The hypocenters of VT events in 2010 occur in two clusters at of 2.5 to 5 km and less than 1.5 km depths below the summit. An aseismic zone was detected at 1.5-2.5 km depth, consistent with studies of previous eruptions, and indicating that this is a robust feature of Merapi's subsurface structure. Our analysis suggests that the aseismic zone is a poorly consolidated layer of altered material within the volcano. Deep VT events occurred mainly before 17 October 2010; subsequent to that time shallow activity strongly increased. The deep seismic activity is interpreted as associated with the enlargement of a narrow conduit by an unusually large volume of rapidly ascending magma. The shallow seismicity is interpreted as recording the final magma ascent and the rupture of a summit-dome plug, which triggered the eruption on 26 October 2010. Hindsight forecasting of the occurrence time of the eruption is performed by applying the Material Failure Forecast Method (FFM) using cumulative Real-time Seismic Amplitude (RSAM) calculated both from raw records and on signals classified according to their dominant frequency. Stable estimates of eruption time with errors as small as ± 4 h are obtained within a 6 day lapse time before the eruption. This approach could therefore be useful to support decision making in the case of future large explosive episodes at Merapi.

  3. Single-station monitoring of volcanoes using seismic ambient noise

    NASA Astrophysics Data System (ADS)

    De Plaen, Raphael S. M.; Lecocq, Thomas; Caudron, Corentin; Ferrazzini, Valérie; Francis, Olivier

    2016-08-01

    Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity. However, this method is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-station" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multidisciplinary continuous monitoring. Over the past decade, this volcano has been increasingly studied using the traditional cross-correlation technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single three-component seismometer.

  4. Seismogenic zones and attenuation laws for probabilistic seismic hazard assessment in low deformation area =

    NASA Astrophysics Data System (ADS)

    Le Goff, Boris

    Seismic Hazard Analysis (PSHA), rather than the subjective methodologies that are currently used. This study focuses particularly in the definition of the seismic sources, through the seismotectonic zoning, and the determination of historical earthquake location. An important step in the Probabilistic Seismic Hazard Analysis consists in defining the seismic source model. Such a model expresses the association of the seismicity characteristics with the tectonically-active geological structures evidenced by seismotectonic studies. Given that most of the faults, in low seismic regions, are not characterized well enough, the source models are generally defined as areal zones, delimited with finite boundary polygons, within which the seismicity and the geological features are deemed homogeneous (e.g., focal depth, seismicity rate). Besides the lack of data (short period of instrumental seismicity), such a method generates different problems for regions with low seismic activity: 1) a large sensitivity of resulting hazard maps to the location of zone boundaries, while these boundaries are set by expert decisions; 2) the zoning cannot represent any variability or structural complexity in seismic parameters; 3) the seismicity rate is distributed throughout the zone and the location of the determinant information used for its calculation is lost. We investigate an alternative approach to model the seismotectonic zoning, with three main objectives: 1) obtaining a reproducible method that 2) preserves the information on the sources and extent of the uncertainties, so as to allow to propagate them (through Ground Motion Prediction Equations on to the hazard maps), and that 3) redefines the seismic source concept to debrief our knowledge on the seismogenic structures and the clustering. To do so, the Bayesian methods are favored. First, a generative model with two zones, differentiated by two different surface activity rates, was developed, creating synthetic catalogs drawn from a Poisson distribution as occurrence model, a truncated Gutenberg-Richter law as magnitudefrequency relationship and a uniform spatial distribution. The inference of this model permits to assess the minimum number of data, nmin, required in an earthquake catalog to recover the activity rates of both zones and the limit between them, with some level of accuracy. In this Bayesian model, the earthquake locations are essential. Consequently, these data have to be obtained with the best accuracy possible. The main difficulty is to reduce the location uncertainty of historical earthquakes. We propose to use the method of Bakun and Wentworth (1997) to reestimate the epicentral region of these events. This method uses directly the intensity data points rather than the isoseismal lines, set up by experts. The significant advantage in directly using individual intensity observations is that the procedures are explicit and hence the results are reproducible. The results of such a method provide an estimation of the epicentral region with levels of confidence appropriated for the number of intensity data points used. As example, we applied this methodology to the 1909 Benavente event, because of its controversial location and the particularly shape of its isoseismal lines. A new location of the 1909 Benavente event is presented in this study and the epicentral region of this event is expressed with confidence levels related to the number of intensity data points. This epicentral region is improved by the development of a new intensity-distance attenuation law, appropriate for the Portugal mainland. This law is the first one in Portugal mainland developed as a function of the magnitude (M) rather than the subjective epicentral intensity. From the logarithmic regression of each event, we define the equation form of the attenuation law. We obtained the following attenuation law: I= -1.9438 ln(D)+4.1Mw-9.5763 for 4.4 ≤ Mw ≤ 6.2 Using these attenuation laws, we reached to a magnitude estimation of the 1909 Benavente event that is in good agreement with the instrumental one. The epicentral region estimation was also improved with a tightening of the confidence level contours and a minimum of rms[MI] coming closer to the epicenter estimation of Karnik (1969). Finally, this two zone model will be a reference in the comparison with other models, which will incorporate other available data. Nevertheless, future improvements are needed to obtain a seismotectonic zoning. We emphasize that such an approach is reproducible once priors and data sets are chosen. Indeed, the objective is to incorporate expert opinions as priors, and avoid using expert decisions. Instead, the products will be directly the result of the inference, when only one model is considered, or the result of a combination of models in the Bayesian sense.

  5. Analysis of neotectonic structures in the Eastern Precordillera of Argentina in relation to seismic hazard by the application of integrated geophysical methods

    NASA Astrophysics Data System (ADS)

    Correa-Otto, Sebastián; Ariza, Juan; Lince Klinger, Federico; Giménez, Mario; López Hidalgo, Andrés

    2018-03-01

    The city of San Juan, in the Central-Western region of Argentina, has been the target of very destructive superficial earthquakes, some of which have not been associated to a clear structural source up to this date. The city is constantly growing outside the valley where it is located, towards the area of Eastern Precordillera which is currently having an increased socio-cultural activity. Thus, this study is focused on increasing the geological knowledge of the latter by studying the eastern flank of Sierra Chica de Zonda (Eastern Precordillera) whose proved neotectonic activity represents a geohazard. On the basis of the general geological setting the neotectonic structures in the study area are related to a major active synclinal folding located just under the western sector of the San Juan city. Geophysical potential methods (gravimetric and magnetometric surveys) were used to recognize contacts by contrast of density and magnetic susceptibility. In order to reduce the ambiguity of these methods the gravi-magnetometric results were constrained by using seismic and electrical tomographies. These contacts where geophysical properties abruptly change, were interpreted as faults despite many of them not having a superficial expression. The latter being of great importance to asses the seismic hazard of the study area.

  6. Fault specific GIS based seismic hazard maps for the Attica region, Greece

    NASA Astrophysics Data System (ADS)

    Deligiannakis, G.; Papanikolaou, I. D.; Roberts, G.

    2018-04-01

    Traditional seismic hazard assessment methods are based on the historical seismic records for the calculation of an annual probability of exceedance for a particular ground motion level. A new fault-specific seismic hazard assessment method is presented, in order to address problems related to the incompleteness and the inhomogeneity of the historical records and to obtain higher spatial resolution of hazard. This method is applied to the region of Attica, which is the most densely populated area in Greece, as nearly half of the country's population lives in Athens and its surrounding suburbs, in the Greater Athens area. The methodology is based on a database of 24 active faults that could cause damage to Attica in case of seismic rupture. This database provides information about the faults slip rates, lengths and expected magnitudes. The final output of the method is four fault-specific seismic hazard maps, showing the recurrence of expected intensities for each locality. These maps offer a high spatial resolution, as they consider the surface geology. Despite the fact that almost half of the Attica region lies on the lowest seismic risk zone according to the official seismic hazard zonation of Greece, different localities have repeatedly experienced strong ground motions during the last 15 kyrs. Moreover, the maximum recurrence for each intensity occurs in different localities across Attica. Highest recurrence for intensity VII (151-156 times over 15 kyrs, or up to a 96 year return period) is observed in the central part of the Athens basin. The maximum intensity VIII recurrence (115 times over 15 kyrs, or up to a 130 year return period) is observed in the western part of Attica, while the maximum intensity IX (73-77/15 kyrs, or a 195 year return period) and X (25-29/15 kyrs, or a 517 year return period) recurrences are observed near the South Alkyonides fault system, which dominates the strong ground motions hazard in the western part of the Attica mainland.

  7. Microseismic monitoring: a tool for reservoir characterization.

    NASA Astrophysics Data System (ADS)

    Shapiro, S. A.

    2011-12-01

    Characterization of fluid-transport properties of rocks is one of the most important, yet one of most challenging goals of reservoir geophysics. There are some fundamental difficulties related to using active seismic methods for estimating fluid mobility. However, it would be very attractive to have a possibility of exploring hydraulic properties of rocks using seismic methods because of their large penetration range and their high resolution. Microseismic monitoring of borehole fluid injections is exactly the tool to provide us with such a possibility. Stimulation of rocks by fluid injections belong to a standard development practice of hydrocarbon and geothermal reservoirs. Production of shale gas and of heavy oil, CO2 sequestrations, enhanced recovery of oil and of geothermal energy are branches that require broad applications of this technology. The fact that fluid injection causes seismicity has been well-established for several decades. Observations and data analyzes show that seismicity is triggered by different processes ranging from linear pore pressure diffusion to non-linear fluid impact onto rocks leading to their hydraulic fracturing and strong changes of their structure and permeability. Understanding and monitoring of fluid-induced seismicity is necessary for hydraulic characterization of reservoirs, for assessments of reservoir stimulation and for controlling related seismic hazard. This presentation provides an overview of several theoretical, numerical, laboratory and field studies of fluid-induced microseismicity, and it gives an introduction into the principles of seismicity-based reservoir characterization.

  8. Combined Application of Shallow Seismic Reflection and High-resolution Refraction Exploration Approach to Active Fault Survey, Central Orogenic Belt, China

    NASA Astrophysics Data System (ADS)

    Lin, S.; Luo, D.; Yanlin, F.; Li, Y.

    2016-12-01

    Shallow Seismic Reflection (SSR) is a major geophysical exploration method with its exploration depth range, high-resolution in urban active fault exploration. In this paper, we carried out (SSR) and High-resolution refraction (HRR) test in the Liangyun Basin to explore a buried fault. We used NZ distributed 64 channel seismic instrument, 60HZ high sensitivity detector, Geode multi-channel portable acquisition system and hammer source. We selected single side hammer hit multiple overlay, 48 channels received and 12 times of coverage. As there are some coincidence measuring lines of SSR and HRR, we chose multi chase and encounter observation system. Based on the satellite positioning, we arranged 11 survey lines in our study area with total length for 8132 meters. GEOGIGA seismic reflection data processing software was used to deal with the SSR data. After repeated tests from the aspects of single shot record compilation, interference wave pressing, static correction, velocity parameter extraction, dynamic correction, eventually got the shallow seismic reflection profile images. Meanwhile, we used Canadian technology company good refraction and tomographic imaging software to deal with HRR seismic data, which is based on nonlinear first arrival wave travel time tomography. Combined with drilling geological profiles, we explained 11 measured seismic profiles. Results show 18 obvious fault feature breakpoints, including 4 normal faults of south-west, 7 reverse faults of south-west, one normal fault of north-east and 6 reverse faults of north-east. Breakpoints buried depth is 15-18 meters, and the inferred fault distance is 3-12 meters. Comprehensive analysis shows that the fault property is reverse fault with northeast incline section, and fewer branch normal faults presenting southwest incline section. Since good corresponding relationship between the seismic interpretation results, drilling data and SEM results on the property, occurrence, broken length of the fault, we considered the Liangyun fault to be an active fault which has strong activity during the Neogene Pliocene and early Pleistocene, Middle Pleistocene period. The combined application of SSR and HRR can provide more parameters to explain the seismic results, and improve the accuracy of the interpretation.

  9. Identifying Faults Associated with the 2001 Avoca Induced(?) Seismicity Sequence of Western New York State Using Potential Field Wavelets.

    NASA Astrophysics Data System (ADS)

    Horowitz, F. G.; Ebinger, C.; Jordan, T. E.

    2017-12-01

    Results from recent DOE and USGS sponsored projects in the (intraplate) northeastern portions of the US and southeastern portions of Canada have identified locations of steeply dipping structures - many previously unknown - from a Poisson wavelet multiscale edge ('worm') analysis of gravity and magnetic fields. The Avoca sequence of induced(?) seismicity in western New York state occurred during January and February of 2001. The Avoca earthquake sequence is associated with industrial hydraulic fracturing activity "related to a proposed natural gas storage facility near Avoca to be constructed by solution mining" (Kim, 2001). The main Avoca event was a felt Mb = 3.2 earthquake on Feb. 3, 2001 recorded by the Lamont Cooperative Seismic Network. Earlier, smaller events were located by the Canadian Geological Survey's seismic network north of the Canadian border - implying that the event locations might be biased because they occurred off the southern edge of the array. Some of these events were also felt locally, according to local newspaper reports. By plotting the location of the seismic events and that of the injection well - reported via it's API number - we find a strong correlation with structures detected via our potential field worms. The injection occurred near a NE-SW striking structure that was not activated. All but one of the earthquakes occurred about 5 km north of the injection well on or nearby to an E-W striking structure that appears to intersect the NE-SW structure. The final, small (MN=2.2) earthquake was located on a different complex structure about 10 km north of the other events. We suggest that potential field methods such as ours might be appropriate to locating structures of concern for induced seismic activity in association with industrial activity. Reference: Kim, W.-Y. (2001). The Lamont cooperative seismic network and the national seismic system: Earthquake hazard studies in the northeastern United States. Tech. Rep. 98-01, Lamont Cooperative Seismic Network, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellors, R J

    The Comprehensive Nuclear Test Ban Treaty (CTBT) includes provisions for an on-site inspection (OSI), which allows the use of specific techniques to detect underground anomalies including cavities and rubble zones. One permitted technique is active seismic surveys such as seismic refraction or reflection. The purpose of this report is to conduct some simple modeling to evaluate the potential use of seismic reflection in detecting cavities and to test the use of open-source software in modeling possible scenarios. It should be noted that OSI inspections are conducted under specific constraints regarding duration and logistics. These constraints are likely to significantly impactmore » active seismic surveying, as a seismic survey typically requires considerable equipment, effort, and expertise. For the purposes of this study, which is a first-order feasibility study, these issues will not be considered. This report provides a brief description of the seismic reflection method along with some commonly used software packages. This is followed by an outline of a simple processing stream based on a synthetic model, along with results from a set of models representing underground cavities. A set of scripts used to generate the models are presented in an appendix. We do not consider detection of underground facilities in this work and the geologic setting used in these tests is an extremely simple one.« less

  11. Combined seismic and radar investigation to define ice properties and structure of a cold alpine site

    NASA Astrophysics Data System (ADS)

    Eisen, O.; Bohleber, P.; Drews, R.; Heilig, A.; Hofstede, C.

    2009-04-01

    The cold alpine saddle Colle Gnifetti, Monte Rosa, Swiss-Italian Alps resembles very much polar and subpolar ice masses in terms of glaciological conditions. It has been the site for several ice-core drilling campaigns over more than 20 years to determine paleoclimatological and glaciological conditions. To investigate the feasibility of geophysical methods for improved characterization of ice masses surrounding borehole and ice-core sites, a combined active reflection seismic and ground-penetrating radar pilot study has been carried out in summer 2008. Aims are the characterization of density, internal layering, seismic and radar wave speed and attenuation, identification of anisotropic features (like crystal orientation or bubble content and shape). Here we present the overall setup and first results. Seismic and GPR profiles were centered on an existing borehole location covering the full ice thickness of 62 m. Active seismics was carried out with 24-channel 3-m spacing recording, using a Seismic Impulse Source System (SISSY) along two profiles parallel and perpendicular to the ice-flow direction. The same profiles were complemented with GPR measurements utilizing 250, 500 MHz frequencies. Additionally, circular profiles with 250, 500 and 800 MHz were carried out circumferencing the borehole to detect anisotropic features.

  12. Improved moving window cross-spectral analysis for resolving large temporal seismic velocity changes in permafrost

    DOE PAGES

    James, S. R.; Knox, H. A.; Abbott, R. E.; ...

    2017-04-13

    Cross correlations of seismic noise can potentially record large changes in subsurface velocity due to permafrost dynamics and be valuable for long-term Arctic monitoring. We applied seismic interferometry, using moving window cross-spectral analysis (MWCS), to 2 years of ambient noise data recorded in central Alaska to investigate whether seismic noise could be used to quantify relative velocity changes due to seasonal active-layer dynamics. The large velocity changes (>75%) between frozen and thawed soil caused prevalent cycle-skipping which made the method unusable in this setting. We developed an improved MWCS procedure which uses a moving reference to measure daily velocity variationsmore » that are then accumulated to recover the full seasonal change. This approach reduced cycle-skipping and recovered a seasonal trend that corresponded well with the timing of active-layer freeze and thaw. Lastly, this improvement opens the possibility of measuring large velocity changes by using MWCS and permafrost monitoring by using ambient noise.« less

  13. Multichannel analysis of surface waves (MASW) - Active and passive methods

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.; Ivanov, J.

    2007-01-01

    The conventional seismic approaches for near-surface investigation have usually been either high-resolution reflection or refraction surveys that deal with a depth range of a few tens to hundreds meters. Seismic signals from these surveys consist of wavelets with frequencies higher than 50 Hz. The multichannel analysis of surface waves (MASW) method deals with surface waves in the lower frequencies (e.g., 1-30 Hz) and uses a much shallower depth range of investigation (e.g., a few to a few tens of meters). ?? 2007 Society of Exploration Geophysicists.

  14. Active seismic experiment

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.; Talwani, P.

    1972-01-01

    The Apollo 16 active seismic experiment (ASE) was designed to generate and monitor seismic waves for the study of the lunar near-surface structure. Several seismic energy sources are used: an astronaut-activated thumper device, a mortar package that contains rocket-launched grenades, and the impulse produced by the lunar module ascent. Analysis of some seismic signals recorded by the ASE has provided data concerning the near-surface structure at the Descartes landing site. Two compressional seismic velocities have so far been recognized in the seismic data. The deployment of the ASE is described, and the significant results obtained are discussed.

  15. Using a cross correlation technique to refine the accuracy of the Failure Forecast Method: Application to Soufrière Hills volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Salvage, R. O.; Neuberg, J. W.

    2016-09-01

    Prior to many volcanic eruptions, an acceleration in seismicity has been observed, suggesting the potential for this as a forecasting tool. The Failure Forecast Method (FFM) relates an accelerating precursor to the timing of failure by an empirical power law, with failure being defined in this context as the onset of an eruption. Previous applications of the FFM have used a wide variety of accelerating time series, often generating questionable forecasts with large misfits between data and the forecast, as well as the generation of a number of different forecasts from the same data series. Here, we show an alternative approach applying the FFM in combination with a cross correlation technique which identifies seismicity from a single active source mechanism and location at depth. Isolating a single system at depth avoids additional uncertainties introduced by averaging data over a number of different accelerating phenomena, and consequently reduces the misfit between the data and the forecast. Similar seismic waveforms were identified in the precursory accelerating seismicity to dome collapses at Soufrière Hills volcano, Montserrat in June 1997, July 2003 and February 2010. These events were specifically chosen since they represent a spectrum of collapse scenarios at this volcano. The cross correlation technique generates a five-fold increase in the number of seismic events which could be identified from continuous seismic data rather than using triggered data, thus providing a more holistic understanding of the ongoing seismicity at the time. The use of similar seismicity as a forecasting tool for collapses in 1997 and 2003 greatly improved the forecasted timing of the dome collapse, as well as improving the confidence in the forecast, thereby outperforming the classical application of the FFM. We suggest that focusing on a single active seismic system at depth allows a more accurate forecast of some of the major dome collapses from the ongoing eruption at Soufrière Hills volcano, and provides a simple addition to the well-used methodology of the FFM.

  16. Detecting Seismic Activity with a Covariance Matrix Analysis of Data Recorded on Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Seydoux, L.; Shapiro, N.; de Rosny, J.; Brenguier, F.

    2014-12-01

    Modern seismic networks are recording the ground motion continuously all around the word, with very broadband and high-sensitivity sensors. The aim of our study is to apply statistical array-based approaches to processing of these records. We use the methods mainly brought from the random matrix theory in order to give a statistical description of seismic wavefields recorded at the Earth's surface. We estimate the array covariance matrix and explore the distribution of its eigenvalues that contains information about the coherency of the sources that generated the studied wavefields. With this approach, we can make distinctions between the signals generated by isolated deterministic sources and the "random" ambient noise. We design an algorithm that uses the distribution of the array covariance matrix eigenvalues to detect signals corresponding to coherent seismic events. We investigate the detection capacity of our methods at different scales and in different frequency ranges by applying it to the records of two networks: (1) the seismic monitoring network operating on the Piton de la Fournaise volcano at La Réunion island composed of 21 receivers and with an aperture of ~15 km, and (2) the transportable component of the USArray composed of ~400 receivers with ~70 km inter-station spacing.

  17. Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo Presti, D.; Fontana, T.; Marchetti, D.

    2008-07-08

    Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysismore » (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area.« less

  18. Reconstructing the Seismic Wavefield using Curvelets and Distributed Acoustic Sensing

    NASA Astrophysics Data System (ADS)

    Muir, J. B.; Zhan, Z.

    2017-12-01

    Distributed Acoustic Sensing (DAS) offers an opportunity to produce cost effective and uniquely dense images of the surface seismic wavefield - DAS also produces extremely large data volumes that require innovative methods of data reduction and seismic parameter inversion to handle efficiently. We leverage DAS and the super-Nyquist sampling enabled by compressed sensing of the wavefield in the curvelet domain to produce accurate images of the horizontal velocity within a target region, using only short ( 1-10 minutes) records of either active seismic sources or ambient seismic signals. Once the wavefield has been fully described, modern "tomographic" techniques, such as Helmholtz tomography or Wavefield Gradiometry, can be employed to determine seismic parameters of interest such as phase velocity. An additional practical benefit of employing a wavefield reconstruction step is that multiple heterogeneous forms of instrumentation can be naturally combined - therefore in this study we also explore the addition of three component nodal seismic data into the reconstructed wavefield. We illustrate these techniques using both synthetic examples and data taken from the Brady Geothermal Field in Nevada during the PoroTomo (U. Wisconsin Madison) experiment of 2016.

  19. Prediction of subsurface fracture in mining zone of Papua using passive seismic tomography based on Fresnel zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setiadi, Herlan; Nurhandoko, Bagus Endar B.; Wely, Woen

    Fracture prediction in a block cave of underground mine is very important to monitor the structure of the fracture that can be harmful to the mining activities. Many methods can be used to obtain such information, such as TDR (Time Domain Relectometry) and open hole. Both of them have limitations in range measurement. Passive seismic tomography is one of the subsurface imaging method. It has advantage in terms of measurements, cost, and rich of rock physical information. This passive seismic tomography studies using Fresnel zone to model the wavepath by using frequency parameter. Fresnel zone was developed by Nurhandoko inmore » 2000. The result of this study is tomography of P and S wave velocity which can predict position of fracture. The study also attempted to use sum of the wavefronts to obtain position and time of seismic event occurence. Fresnel zone tomography and the summation wavefront can predict location of geological structure of mine area as well.« less

  20. Magma migration at the onset of the 2012-13 Tolbachik eruption revealed by Seismic Amplitude Ratio Analysis

    NASA Astrophysics Data System (ADS)

    Caudron, Corentin; Taisne, Benoit; Kugaenko, Yulia; Saltykov, Vadim

    2015-12-01

    In contrast of the 1975-76 Tolbachik eruption, the 2012-13 Tolbachik eruption was not preceded by any striking change in seismic activity. By processing the Klyuchevskoy volcano group seismic data with the Seismic Amplitude Ratio Analysis (SARA) method, we gain insights into the dynamics of magma movement prior to this important eruption. A clear seismic migration within the seismic swarm, started 20 hours before the reported eruption onset (05:15 UTC, 26 November 2012). This migration proceeded in different phases and ended when eruptive tremor, corresponding to lava flows, was recorded (at 11:00 UTC, 27 November 2012). In order to get a first order approximation of the magma location, we compare the calculated seismic intensity ratios with the theoretical ones. As expected, the observations suggest that the seismicity migrated toward the eruption location. However, we explain the pre-eruptive observed ratios by a vertical migration under the northern slope of Plosky Tolbachik volcano followed by a lateral migration toward the eruptive vents. Another migration is also captured by this technique and coincides with a seismic swarm that started 16-20 km to the south of Plosky Tolbachik at 20:31 UTC on November 28 and lasted for more than 2 days. This seismic swarm is very similar to the seismicity preceding the 1975-76 Tolbachik eruption and can be considered as a possible aborted eruption.

  1. Extracting physical parameters from marine seismic data: New methods in seismic oceanography and velocity inversion

    NASA Astrophysics Data System (ADS)

    Fortin, Will F. J.

    The utility and meaning of a geophysical dataset is dependent on good interpretation informed by high-quality data, processing, and attribute examination via technical methodologies. Active source marine seismic reflection data contains a great deal of information in the location, phase, and amplitude of both pre- and post-stack seismic reflections. Using pre- and post-stack data, this work has extracted useful information from marine reflection seismic data in novel ways in both the oceanic water column and the sub-seafloor geology. In chapter 1 we develop a new method for estimating oceanic turbulence from a seismic image. This method is tested on synthetic seismic data to show the method's ability to accurately recover both distribution and levels of turbulent diffusivity. Then we apply the method to real data offshore Costa Rica where we observe lee waves. Our results find elevated diffusivities near the seafloor as well as above the lee waves five times greater than surrounding waters and 50 times greater than open ocean diffusivities. Chapter 2 investigates subsurface geology in the Cascadia Subduction Zone and outlines a workflow for using pre-stack waveform inversion to produce highly detailed velocity models and seismic images. Using a newly developed inversion code, we achieve better imaging results as compared to the product of a standard, user-intensive method for building a velocity model. Our results image the subduction interface ~30 km farther landward than previous work and better images faults and sedimentary structures above the oceanic plate as well as in the accretionary prism. The resultant velocity model is highly detailed, inverted every 6.25 m with ~20 m vertical resolution, and will be used to examine the role of fluids in the subduction system. These results help us to better understand the natural hazards risks associated with the Cascadia Subduction Zone. Chapter 3 returns to seismic oceanography and examines the dynamics of nonlinear internal wave pulses in the South China Sea. Coupling observations from the seismic images with turbulent patterns, we find no evidence for hydraulic jumps in the Luzon passage. Our data suggests geometric resonance may be the underlying physics behind large amplitude nonlinear internal wave pulses seen in the region. We find increased levels of turbulent diffusivity in deep water below 1000 m, associated with internal tide pulses, and near the steep slopes of both the Heng-Chun and Lan-Yu ridges.

  2. Seismic activity preceding the 2016 Kumamoto earthquakes: Multiple approaches to recognizing possible precursors

    NASA Astrophysics Data System (ADS)

    Nanjo, K.; Izutsu, J.; Orihara, Y.; Furuse, N.; Togo, S.; Nitta, H.; Okada, T.; Tanaka, R.; Kamogawa, M.; Nagao, T.

    2016-12-01

    We show the first results of recognizing seismic patterns as possible precursory episodes to the 2016 Kumamoto earthquakes, using existing four different methods: b-value method (e.g., Schorlemmer and Wiemer, 2005; Nanjo et al., 2012), two kinds of seismic quiescence evaluation methods (RTM-algorithm, Nagao et al., 2011; Z-value method, Wiemer and Wyss, 1994), and foreshock seismic density analysis based on Lippiello et al. (2012). We used the earthquake catalog maintained by the Japan Meteorological Agency (JMA). To ensure data quality, we performed catalog completeness check as a pre-processing step of individual analyses. Our finding indicates the methods we adopted do not allow the Kumamoto earthquakes to be predicted exactly. However, we found that the spatial extent of possible precursory patterns differs from one method to the other and ranges from local scales (typically asperity size), to regional scales (e.g., 2° × 3° around the source zone). The earthquakes are preceded by periods of pronounced anomalies, which lasted decade scales (e.g., 20 years or longer) to yearly scales (e.g., 1 2 years). Our results demonstrate that combination of multiple methods detects different signals prior to the Kumamoto earthquakes with more considerable reliability than if measured by single method. This strongly suggests great potential to reduce the possible future sites of earthquakes relative to long-term seismic hazard assessment. This study was partly supported by MEXT under its Earthquake and Volcano Hazards Observation and Research Program and Grant-in-Aid for Scientific Research (C), No. 26350483, 2014-2017, by Chubu University under the Collaboration Research Program of IDEAS, IDEAS201614, and by Tokai University under Project Resarch of IORD. A part of this presentation is given in Nanjo et al. (2016, submitted).

  3. Noise-based body-wave seismic tomography in an active underground mine.

    NASA Astrophysics Data System (ADS)

    Olivier, G.; Brenguier, F.; Campillo, M.; Lynch, R.; Roux, P.

    2014-12-01

    Over the last decade, ambient noise tomography has become increasingly popular to image the earth's upper crust. The seismic noise recorded in the earth's crust is dominated by surface waves emanating from the interaction of the ocean with the solid earth. These surface waves are low frequency in nature ( < 1 Hz) and not usable for imaging smaller structures associated with mining or oil and gas applications. The seismic noise recorded at higher frequencies are typically from anthropogenic sources, which are short lived, spatially unstable and not well suited for constructing seismic Green's functions between sensors with conventional cross-correlation methods. To examine the use of ambient noise tomography for smaller scale applications, continuous data were recorded for 5 months in an active underground mine in Sweden located more than 1km below surface with 18 high frequency seismic sensors. A wide variety of broadband (10 - 3000 Hz) seismic noise sources are present in an active underground mine ranging from drilling, scraping, trucks, ore crushers and ventilation fans. Some of these sources generate favorable seismic noise, while others are peaked in frequency and not usable. In this presentation, I will show that the noise generated by mining activity can be useful if periods of seismic noise are carefully selected. Although noise sources are not temporally stable and not evenly distributed around the sensor array, good estimates of the seismic Green's functions between sensors can be retrieved for a broad frequency range (20 - 400 Hz) when a selective stacking scheme is used. For frequencies below 100 Hz, the reconstructed Green's functions show clear body-wave arrivals for almost all of the 153 sensor pairs. The arrival times of these body-waves are picked and used to image the local velocity structure. The resulting 3-dimensional image shows a high velocity structure that overlaps with a known ore-body. The material properties of the ore-body differ from the host rock and is likely the cause of the observed high velocity structure. For frequencies above 200 Hz, the seismic waves are multiply scattered by the tunnels and excavations and used to determine the scattering properties of the medium. The results of this study should be useful for future imaging and exploration projects in mining and oil and gas industries.

  4. The Propagation of Seismic Waves in the Presence of Strong Elastic Property Contrasts

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Jeyaraj, R.; Milkereit, B.; Liu, Q.; Valley, B.

    2012-12-01

    In an active underground mine there are many seismic activities taking place, such as seismic noises, blasts, tremors and microseismic events. In between the activities, the microseismic events are mainly used for monitoring purposes. The frequency content of microseismic events can be up to few KHz, which can result in wavelengths on the order of a few meters in hard rock environment. In an underground mine, considering the presence of both small wavelength and strong elastic contrasts, the simulation of seismic wave propagation is a challenge. With the recent availability of detailed 3D rock property models of mines, in addition to the development of efficient numerical techniques (such as Spectral Element Method (SEM)), and parallel computation facilities, a solution for such a problem is achievable. Most seismic wave scattering studies focus on large scales (>1 km) and weak elastic contrasts (velocity perturbations less than 10%). However, scattering in the presence of small-scale heterogeneities and large elastic contrasts is an area of ongoing research. In a mine environment, the presence of strong contrast discontinuities such as massive ore bodies, tunnels and infrastructure lead to discontinuities of displacement and/or stress tensor components, and have significant impact on the propagation of seismic waves. In order to obtain an accurate image of wave propagation in such a complex media, it is necessary to consider the presence of these discontinuities in numerical models. In this study, the effects of such a contrast are illustrated with 2D/3D modeling and compared with real broadband 3-component seismic data. The real broadband 3-component seismic data will be obtained in one of the Canadian underground mines in Ontario. One of the possible scenarios investigated in this study that may explain the observed complexity in seismic wavefield pattern in hard rock environments is the effect of near field displacements rather than far field. Considering the distribution of seismic sensors in a mine and the presence of seismic events within a mine, the recorded wavefield may represent a near-field displacement, which is not the case for most of seismic studies. The role of receiver characterization on the recorded event near the surface or around fault zones is also investigated. Using 2D/3D modeling, the effects of Vp/Vs variation on vertical and horizontal components of recorded amplitude has been shown.

  5. Evidences of a lithospheric fault zone in the Sicily Channel continental rift (southern Italy) from instrumental seismicity data

    NASA Astrophysics Data System (ADS)

    Calò, M.; Parisi, L.

    2014-10-01

    Sicily Channel is a portion of Mediterranean Sea, between Sicily (Southern Italy) and Tunisia, representing a part of the foreland Apennine-Maghrebian thrust belt. The seismicity of the region is commonly associated with the normal faulting related to the rifting process and volcanic activity of the region. However, certain seismic patterns suggest the existence of some mechanism coexisting with the rifting process. In this work, we present the results of a statistical analysis of the instrumental seismicity and a reliable relocalization of the events recorded in the last 30 yr in the Sicily Channel and western Sicily using the Double Difference method and 3-D Vp and Vs tomographic models. Our procedure allows us to discern the seismic regime of the Sicily sea from the Tyrrhenian one and to describe the main features of an active fault zone in the study area that could not be related to the rifting process. We report that most of the events are highly clustered in the region between 12.5°-13.5°E and 35.5°-37°N with hypocentral depth of 5-40 km, and reaching 70 km depth in the southernmost sector. The alignment of the seismic clusters, the distribution of volcanic and geothermal regions and the location of some large events occurred in the last century suggest the existence of a subvertical shear zone extending for least 250 km and oriented approximately NNE-SSW. The spatial distribution of the seismic moment suggests that this transfer fault zone is seismically discontinuous showing large seismic gaps in proximity of the Ferdinandea Island, and Graham and Nameless Bank.

  6. LANL seismic screening method for existing buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, S.L.; Feller, K.C.; Fritz de la Orta, G.O.

    1997-01-01

    The purpose of the Los Alamos National Laboratory (LANL) Seismic Screening Method is to provide a comprehensive, rational, and inexpensive method for evaluating the relative seismic integrity of a large building inventory using substantial life-safety as the minimum goal. The substantial life-safety goal is deemed to be satisfied if the extent of structural damage or nonstructural component damage does not pose a significant risk to human life. The screening is limited to Performance Category (PC) -0, -1, and -2 buildings and structures. Because of their higher performance objectives, PC-3 and PC-4 buildings automatically fail the LANL Seismic Screening Method andmore » will be subject to a more detailed seismic analysis. The Laboratory has also designated that PC-0, PC-1, and PC-2 unreinforced masonry bearing wall and masonry infill shear wall buildings fail the LANL Seismic Screening Method because of their historically poor seismic performance or complex behavior. These building types are also recommended for a more detailed seismic analysis. The results of the LANL Seismic Screening Method are expressed in terms of separate scores for potential configuration or physical hazards (Phase One) and calculated capacity/demand ratios (Phase Two). This two-phase method allows the user to quickly identify buildings that have adequate seismic characteristics and structural capacity and screen them out from further evaluation. The resulting scores also provide a ranking of those buildings found to be inadequate. Thus, buildings not passing the screening can be rationally prioritized for further evaluation. For the purpose of complying with Executive Order 12941, the buildings failing the LANL Seismic Screening Method are deemed to have seismic deficiencies, and cost estimates for mitigation must be prepared. Mitigation techniques and cost-estimate guidelines are not included in the LANL Seismic Screening Method.« less

  7. The buried active faults in southeastern China as revealed by the relocated background seismicity and fault plane solutions

    NASA Astrophysics Data System (ADS)

    Zhu, A.; Wang, P.; Liu, F.

    2017-12-01

    The southeastern China in the mainland corresponds to the south China block, which is characterized by moderate historical seismicity and low stain rate. Most faults are buried under thick Quaternary deposits, so it is difficult to detect and locate them using the routine geological methods. Only a few have been identified to be active in late Quaternary, which leads to relatively high potentially seismic risk to this region due to the unexpected locations of the earthquakes. We performed both hypoDD and tomoDD for the background seismicity from 2000 to 2016 to investigate the buried faults. Some buried active faults are revealed by the relocated seismicity and the velocity structure, no geologically known faults corresponding to them and no surface active evidence ever observed. The geometries of the faults are obtained by analyzing the hypocentral distribution pattern and focal mechanism. The focal mechanism solutions indicate that all the revealed faults are dominated in strike-slip mechanisms, or with some thrust components. While the previous fault investigation and detection results show that most of the Quaternary faults in southeastern China are dominated by normal movement. It suggests that there may exist two fault systems in deep and shallow tectonic regimes. The revealed faults may construct the deep one that act as the seismogenic faults, and the normal faults at shallow cannot generate the destructive earthquakes. The variation in the Curie-point depths agrees well with the structure plane of the revealed active faults, suggesting that the faults may have changed the deep structure.

  8. Back-Projection Imaging of extended, diffuse seismic sources in volcanic and hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Kelly, C. L.; Lawrence, J. F.; Beroza, G. C.

    2017-12-01

    Volcanic and hydrothermal systems exhibit a wide range of seismicity that is directly linked to fluid and volatile activity in the subsurface and that can be indicative of imminent hazardous activity. Seismograms recorded near volcanic and hydrothermal systems typically contain "noisy" records, but in fact, these complex signals are generated by many overlapping low-magnitude displacements and pressure changes at depth. Unfortunately, excluding times of high-magnitude eruptive activity that typically occur infrequently relative to the length of a system's entire eruption cycle, these signals often have very low signal-to-noise ratios and are difficult to identify and study using established seismic analysis techniques (i.e. phase-picking, template matching). Arrays of short-period and broadband seismic sensors are proven tools for monitoring short- and long-term changes in volcanic and hydrothermal systems. Time-reversal techniques (i.e. back-projection) that are improved by additional seismic observations have been successfully applied to locating volcano-seismic sources recorded by dense sensor arrays. We present results from a new computationally efficient back-projection method that allows us to image the evolution of extended, diffuse sources of volcanic and hydrothermal seismicity. We correlate short time-window seismograms from receiver-pairs to find coherent signals and propagate them back in time to potential source locations in a 3D subsurface model. The strength of coherent seismic signal associated with any potential source-receiver-receiver geometry is equal to the correlation of the short time-windows of seismic records at appropriate time lags as determined by the velocity structure and ray paths. We stack (sum) all short time-window correlations from all receiver-pairs to determine the cumulative coherence of signals at each potential source location. Through stacking, coherent signals from extended and/or repeating sources of short-period energy radiation interfere constructively while background noise signals interfere destructively, such that the most likely source locations of the observed seismicity are illuminated. We compile results to analyze changes in the distribution and prevalence of these sources throughout a systems entire eruptive cycle.

  9. Passive seismic experiment and receiver functions analysis to determine crustal structure at the contact of the northern Dinarides and southwestern Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Šumanovac, Franjo; Hegedűs, Endre; Orešković, Jasna; Kolar, Saša; Kovács, Attila C.; Dudjak, Darko; Kovács, István J.

    2016-06-01

    Passive seismic experiment was carried out at the SW contact of the Dinarides and Pannonian basin to determine the crustal structure and velocity discontinuities. The aim of the experiment was to define the relationship between the Adriatic microplate and the Pannonian segment as a part of the European plate. Most of the temporary seismic stations were deployed in Croatia along the Alp07 profile-a part of the active-source ALP 2002 project. About 300-km-long profile stretches from Istra peninsula to the Drava river, in a WSW-ESE direction. Teleseismic events recorded on 13 temporary seismic stations along the profile were analysed by P-receiver function method. Two types of characteristic receiver functions (RF) have been identified, belonging to Dinaridic and Pannonian crusts as defined on the Alp07 profile, while in transitional zone there are both types. Three major crustal discontinuities can be identified for the Dinaridic type: sedimentary basement, intracrustal discontinuity and Mohorovičić discontinuity, whereas the Pannonian type revealed only two discontinuities. The intracrustal discontinuity was not observed in the Pannonian type, thus pointing to a single-layered crust in the Pannonian basin. Two interpretation methods were applied: forward modelling of the receiver functions and H-κ stacking method, and the results were compared with the active-source seismic data at deep refraction profile Alp07. The receiver function modelling has given reliable results of the Moho depths that are in accordance with the seismic refraction results at the end of the Alp07 profile, that is in the area of Pannonian crust characterized by simple crustal structure and low seismic velocities (Vp between 5.9 and 6.2 km s-1). In the Dinarides and its peripheral parts, receiver function modelling regularly gives greater Moho depths, up to +15 per cent, due to more complex crustal structure. The depths of the Moho calculated by the H-κ stacking method vary within wide limits (±13 km), due to band limited data of short-period stations. The results at five stations have to be rejected because of huge deviations in comparison with all previous results, while at the other seven stations the Moho depths vary within ±15 per cent around the Moho discontinuity of the Alp07 profile.

  10. Seismic activity in northeastern Brazill-new perspectives

    NASA Astrophysics Data System (ADS)

    Ferreira, J. M.; Do Nascimento, A. F.; Vilar, C. S.; Bezerra, F. H.; Assumpcao, M.; Berrocal, J.; Fuck, R. A.

    2007-05-01

    Northeastern Brazil is the most seismic active region in the country. Some earthquakes with magnitude above 5.0 and intensity VII MM associated with swam-like seismic activity lasting for many years are a serious social concern. Since the 1980's macroseismic and instrumental surveys have been carried out in this region and they are an important data archive which allows the composition of a reliable catalogue of seismic activity for this region. Among the many scientific results it was possible to identify the main seismogenic areas, obtain reliable hypocentres and focal mechanisms. As a consequence, it was possible also to analyse the relationship between seismicity and geological features. It was also possible to determined maximum horizontal stress direction for the region. An important induced seismic activity case has also been reported in the area as being a classical example of pore pressure diffusion triggering mechanism. The majority of the results were obtained using analogic data. Recently, a new research project is being conducted and will allow us to provide a regional scale monitoring with 6 broad-band stations and a new portable six station digital seismic network equipped with short- period sensors. Thus, with the continuous seismic activity in the area we trust that the results of this project will increase the present knowledge of seismic activity in northeastern Brazil.

  11. Seismic array observations for monitoring phreatic eruptions in Iwojima Island, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, H.; Kawaguchi, R.; Chiba, K.; Fujita, E.; Tanada, T.

    2015-12-01

    Iwojima is an active volcanic island located within a 10 km wide submarine caldera about 1250 km to the south of Tokyo, Japan. The volcanic activity is characterized by intensive earthquake activity associated with an island-wide uplift with high uplift rate (30~40 cm/year) and hydrothermal activity. In the last 10 years, phreatic eruptions took place in and near the island in 2012, 2013, and 2015. In such restless volcano, predictions and detections of occurrence points of phreatic eruptions are important for ensuring safety of residents. In the previous studies, we found that the earthquake activity of Iwojima highly correlates with the island wide large uplift, but the precursory activity of the phreatic eruption in 2012 was deviated from the correlation (Ueda et al. 2013 AGU Fall Meeting). For prediction of occurrence points of phreatic eruptions and investigation of the eruption mechanism, we began observation by seismic arrays at two areas in December 2014. The seismic arrays enable to locate epicenters of volcanic tremors, which are not well located by existing seismic stations. In May and June 2015, Japan Maritime Self-Defense Force stayed in Iwojima and a live camera of Japan Meteorological Agency found very small phreatic eruptions occurred at the northern beach. Existing seismic stations could not detect seismic signals related with the eruptions. The seismic array could detect weak seismic signals related with the eruptions. Although the seismic arrays could not detect precursory signals because of too small eruption, we expect the seismic arrays can detect precursory seismic signals suggesting occurrence points of small or medium-sized phreatic eruptions. The seismic arrays also detected epicenters of harmonic and monotonic tremors took place at an active fumarolic field in the north earthen part of Iwojima. The apparent velocity of seismic waves (~1km/s) strongly suggests that the tremors relate with hydrothermal activity near ground surface.

  12. Reevaluation of the Seismicity and seismic hazards of Northeastern Libya

    NASA Astrophysics Data System (ADS)

    Ben Suleman, abdunnur; Aousetta, Fawzi

    2014-05-01

    Libya, located at the northern margin of the African continent, underwent many episodes of orogenic activities. These episodes of orogenic activities affected and shaped the geological setting of the country. This study represents a detailed investigation that aims to focus on the seismicity and its implications on earthquake hazards of Northeastern Libya. At the end of year 2005 the Libyan National Seismological Network starts functioning with 15 stations. The Seismicity of the area under investigation was reevaluated using data recorded by the recently established network. The Al-Maraj earthquake occurred in May 22nd 2005was analyzed. This earthquake was located in a known seismically active area. This area was the sight of the well known 1963 earthquake that kills over 200 people. Earthquakes were plotted and resulting maps were interpreted and discussed. The level of seismic activity is higher in some areas, such as the city of Al-Maraj. The offshore areas north of Al-Maraj seem to have higher seismic activity. It is highly recommended that the recent earthquake activity is considered in the seismic hazard assessments for the northeastern part of Libya.

  13. Combining Real-time Seismic and Geodetic Data to Improve Rapid Earthquake Information

    NASA Astrophysics Data System (ADS)

    Murray, M. H.; Neuhauser, D. S.; Gee, L. S.; Dreger, D. S.; Basset, A.; Romanowicz, B.

    2002-12-01

    The Berkeley Seismological Laboratory operates seismic and geodetic stations in the San Francisco Bay area and northern California for earthquake and deformation monitoring. The seismic systems, part of the Berkeley Digital Seismic Network (BDSN), include strong motion and broadband sensors, and 24-bit dataloggers. The data from 20 GPS stations, part of the Bay Area Regional Deformation (BARD) network of more than 70 stations in northern California, are acquired in real-time. We have developed methods to acquire GPS data at 12 stations that are collocated with the seismic systems using the seismic dataloggers, which have large on-site data buffer and storage capabilities, merge it with the seismic data stream in MiniSeed format, and continuously stream both data types using reliable frame relay and/or radio modem telemetry. Currently, the seismic data are incorporated into the Rapid Earthquake Data Integration (REDI) project to provide notification of earthquake magnitude, location, moment tensor, and strong motion information for hazard mitigation and emergency response activities. The geodetic measurements can provide complementary constraints on earthquake faulting, including the location and extent of the rupture plane, unambiguous resolution of the nodal plane, and distribution of slip on the fault plane, which can be used, for example, to refine strong motion shake maps. We are developing methods to rapidly process the geodetic data to monitor transient deformation, such as coseismic station displacements, and for combining this information with the seismic observations to improve finite-fault characterization of large earthquakes. The GPS data are currently processed at hourly intervals with 2-cm precision in horizontal position, and we are beginning a pilot project in the Bay Area in collaboration with the California Spatial Reference Center to do epoch-by-epoch processing with greater precision.

  14. Identification of ground motion features for high-tech facility under far field seismic waves using wavelet packet transform

    NASA Astrophysics Data System (ADS)

    Huang, Shieh-Kung; Loh, Chin-Hsiung; Chen, Chin-Tsun

    2016-04-01

    Seismic records collected from earthquake with large magnitude and far distance may contain long period seismic waves which have small amplitude but with dominant period up to 10 sec. For a general situation, the long period seismic waves will not endanger the safety of the structural system or cause any uncomfortable for human activity. On the contrary, for those far distant earthquakes, this type of seismic waves may cause a glitch or, furthermore, breakdown to some important equipments/facilities (such as the high-precision facilities in high-tech Fab) and eventually damage the interests of company if the amplitude becomes significant. The previous study showed that the ground motion features such as time-variant dominant frequencies extracted using moving window singular spectrum analysis (MWSSA) and amplitude characteristics of long-period waves identified from slope change of ground motion Arias Intensity can efficiently indicate the damage severity to the high-precision facilities. However, embedding a large hankel matrix to extract long period seismic waves make the MWSSA become a time-consumed process. In this study, the seismic ground motion data collected from broadband seismometer network located in Taiwan were used (with epicenter distance over 1000 km). To monitor the significant long-period waves, the low frequency components of these seismic ground motion data are extracted using wavelet packet transform (WPT) to obtain wavelet coefficients and the wavelet entropy of coefficients are used to identify the amplitude characteristics of long-period waves. The proposed method is a timesaving process compared to MWSSA and can be easily implemented for real-time detection. Comparison and discussion on this method among these different seismic events and the damage severity to the high-precision facilities in high-tech Fab is made.

  15. The Influence of Volcanic Processes on the Distribution of Seismic Velocity Changes at Piton de la Fournaise Volcano (La Reunion)

    NASA Astrophysics Data System (ADS)

    Sens-Schönfelder, Christoph; Pomponi, Eraldo

    2014-05-01

    The velocity of seismic waves propagating in the edifice of Piton de la Fournaise volcano (La Reunion) is known to change in response to volcanic eruptions. Here we present a detailed investigation of a the period from end of 2009 until end of 2011 that contains eruptions, non-eruptive intrusions and periods of relaxation and perform a detailed comparison of the associated velocity signals. We use data from by 21 seismograph stations of the IPGP/OVPF seismic network installed on Piton de la Fournaise volcano within the UnderVolc project. Seismic noise of vertical and horizontal components of all possible station pairs is cross-correlated in chunks of 24 hours to obtain daily approximations of Green's functions in order to monitor tiny changes in therein that are related to changes of the elastic properties in the volcano. Velocity changes are measured as apparent stretching of the coda. For some station pairs the apparent velocity changes exceed 1% and a decorrelation of waveforms is observed at the time of volcanic activity. This distorts monitoring results if changes are measured with respect to a global reference. To overcome this we present a method to estimate changes using multiple references that stabilizes the quality of estimated velocity changes. We observe abrupt changes that occur coincident with volcanic events as well as long term transient signals. Using a simple assumption about the spatial sensitivity of our measurements we can map the spatial distribution of velocity changes for selected periods. Comparing these signals with volcanic activity and GPS derived surface displacement we can identify patterns of the velocity changes that appear characteristic for the different types of volcanic activity. We can differentiate intrusive processes associated with inflation and increased seismic activity, periods of relaxation without seismicity and eruptions solely based on the velocity signal. This information can help to assess the processes acting in the volcano by offering an alternative observable to GPS, seismicity and tilt.

  16. Repeating ice-earthquakes beneath David Glacier from the 2012-2015 TAMNNET array

    NASA Astrophysics Data System (ADS)

    Walter, J. I.; Peng, Z.; Hansen, S. E.

    2017-12-01

    The continent of Antarctica has approximately the same surface area as the continental United States, though we know significantly less about its underlying geology and seismic activity. In recent years, improvements in seismic instrumentation, battery technology, and field deployment practices have allowed for continuous broadband stations throughout the dark Antarctic winter. We utilize broadband seismic data from a recent experiment (TAMNNET), which was originally proposed as a structural seismology experiment, for seismic event detection. Our target is to address fundamental questions about regional-scale crustal and environmental seismicity in the study region that comprises the Transantarctic Mountain area of Victoria and Oates Land. We identify most seismicity emanating from David Glacier, upstream of the Drygalski Ice Tongue, which has been documented by several other studies. In order to improve the catalog completeness for the David Glacier area, we utilize a matched-filter technique to identify potential missing earthquakes that may not have been originally detected. This technique utilizes existing cataloged waveforms as templates to scan through continuous data and to identify repeating or nearby earthquakes. With a more robust catalog, we evaluate relative changes in icequake positions, recurrence intervals, and other first-order information. In addition, we attempt to further refine locations of other regional seismicity using a variety of methods including body and surface wave polarization, beamforming, surface wave dispersion, and other seismological methods. This project highlights the usefulness of archiving raw datasets (i.e., passive seismic continuous data), so that researchers may apply new algorithms or techniques to test hypotheses not originally or specifically targeted by the original experimental design.

  17. Tomographic imaging of the shallow crustal structure of the East Pacific Rise at 9 deg 30 min N

    NASA Astrophysics Data System (ADS)

    Toomey, Douglas R.; Solomon, Sean C.; Purdy, G. M.

    1994-12-01

    Compressional wave travel times from a seismic tomography experiment at 9 deg 30 min N on the East Pacific Rise are analyzed by a new tomographic method to determine the three-dimensional seismic velocity structure of the upper 2.5 km of oceanic crust within a 20 x 18 km area centered on the rise axis. The data comprise the travel times and associated uncertainties of 1459 compressional waves that have propagated above the axial magma chamber. A careful analysis of source and receiver parameters, in conjunction with an automated method of picking P wave onsets and assigning uncertainties, constrains the prior uncertainty in the data to 5 to 20 ms. The new tomographic method employs graph theory to estimate ray paths and travel times through strongly heterogeneous and densely parameterized seismic velocity models. The nonlinear inverse method uses a jumping strategy to minimize a functional that includes the penalty function, horizontal and vertical smoothing constraints, and prior model assumptions; all constraints applied to model perturbations are normalized to remove bias. We use the tomographic method to reject the null hypothesis that the axial seismic structure is two-dimensional. Three-dimensional models reveal a seismic structure that correlates well with cross- and along-axis variations in seafloor morphology, the location of the axial summit caldera, and the distribution of seafloor hydrothermal activity. The along-axis segmentation of the seismic structure above the axial magma chamber is consistent with the hypothesis that mantle-derived melt is preferentially injected midway along a locally linear segment of the rise and that the architecture of the crustal section is characterized by an en echelon series of elongate axial volcanoes approximately 10 km in length. The seismic data are compatible with a 300- to 500-m-thick thermal anomaly above a midcrustal melt lens; such an interpretation suggests that hydrothermal fluids may not have penetrated this region in the last 10(exp 3) years. Asymmetries in the seismic structure across the rise support the inferences that the thickness of seismic layer 2 and the average midcrustal temperature increase to the west of the rise axis. These anomalies may be the result of off-axis magmatism; alternatively, the asymmetric thermal anomaly may be the consequence of differences in the depth extent of hydrothermal cooling.

  18. The discrimination of man-made explosions from earthquakes using seismo-acoustic analysis in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Jeon, Jeong-Soo

    2010-05-01

    Korea Institute of Geoscience and Mineral Resources (KIGAM) operates an infrasound network consisting of seven seismo-acoustic arrays in South Korea. Development of the arrays began in 1999, partially in collaboration with Southern Methodist University, with the goal of detecting distant infrasound signals from natural and anthropogenic phenomena in and around the Korean Peninsula. The main operational purpose of this network is to discriminate man-made seismic events from seismicity including thousands of seismic events per year in the region. The man-made seismic events are major cause of error in estimating the natural seismicity, especially where the seismic activity is weak or moderate such as in the Korean Peninsula. In order to discriminate the man-made explosions from earthquakes, we have applied the seismo-acoustic analysis associating seismic and infrasonic signals generated from surface explosion. The observations of infrasound at multiple arrays made it possible to discriminate surface explosion, because small or moderate size earthquake is not sufficient to generate infrasound. Till now we have annually discriminated hundreds of seismic events in seismological catalog as surface explosions by the seismo-acoustic analysis. Besides of the surface explosions, the network also detected infrasound signals from other sources, such as bolide, typhoons, rocket launches, and underground nuclear test occurred in and around the Korean Peninsula. In this study, ten years of seismo-acoustic data are reviewed with recent infrasonic detection algorithm and association method that finally linked to the seismic monitoring system of the KIGAM to increase the detection rate of surface explosions. We present the long-term results of seismo-acoustic analysis, the detection capability of the multiple arrays, and implications for seismic source location. Since the seismo-acoustic analysis is proved as a definite method to discriminate surface explosion, the analysis will be continuously used for estimating natural seismicity and understanding infrasonic sources.

  19. Centrality in earthquake multiplex networks

    NASA Astrophysics Data System (ADS)

    Lotfi, Nastaran; Darooneh, Amir Hossein; Rodrigues, Francisco A.

    2018-06-01

    Seismic time series has been mapped as a complex network, where a geographical region is divided into square cells that represent the nodes and connections are defined according to the sequence of earthquakes. In this paper, we map a seismic time series to a temporal network, described by a multiplex network, and characterize the evolution of the network structure in terms of the eigenvector centrality measure. We generalize previous works that considered the single layer representation of earthquake networks. Our results suggest that the multiplex representation captures better earthquake activity than methods based on single layer networks. We also verify that the regions with highest seismological activities in Iran and California can be identified from the network centrality analysis. The temporal modeling of seismic data provided here may open new possibilities for a better comprehension of the physics of earthquakes.

  20. Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method

    NASA Astrophysics Data System (ADS)

    Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang

    2017-06-01

    Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.

  1. Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics literature. The results of this study allow us to describe the seismic properties as a function of hydrothermal and geological features. We use it in a forward seismic modeling study to examine how the seismic response changes with temporally and/or spatially varying fluid properties.

  2. The Prospect of using Three-Dimensional Earth Models To Improve Nuclear Explosion Monitoring and Ground Motion Hazard Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zucca, J J; Walter, W R; Rodgers, A J

    2008-11-19

    The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of Earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring andmore » seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D Earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes two specific paths by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas. Seismic monitoring agencies are tasked with detection, location, and characterization of seismic activity in near real time. In the case of nuclear explosion monitoring or seismic hazard, decisions to further investigate a suspect event or to launch disaster relief efforts may rely heavily on real-time analysis and results. Because these are weighty decisions, monitoring agencies are regularly called upon to meticulously document and justify every aspect of their monitoring system. In order to meet this level of scrutiny and maintain operational robustness requirements, only mature technologies are considered for operational monitoring systems, and operational technology necessarily lags contemporary research. Current monitoring practice is to use relatively simple Earth models that generally afford analytical prediction of seismic observables (see Examples of Current Monitoring Practice below). Empirical relationships or corrections to predictions are often used to account for unmodeled phenomena, such as the generation of S-waves from explosions or the effect of 3-dimensional Earth structure on wave propagation. This approach produces fast and accurate predictions in areas where empirical observations are available. However, accuracy may diminish away from empirical data. Further, much of the physics is wrapped into an empirical relationship or correction, which limits the ability to fully understand the physical processes underlying the seismic observation. Every generation of seismology researchers works toward quantitative results, with leaders who are active at or near the forefront of what has been computationally possible. While recognizing that only a 3-dimensional model can capture the full physics of seismic wave generation and propagation in the Earth, computational seismology has, until recently, been limited to simplifying model parameterizations (e.g. 1D Earth models) that lead to efficient algorithms. What is different today is the fact that the largest and fastest machines are at last capable of evaluating the effects of generalized 3D Earth structure, at levels of detail that improve significantly over past efforts, with potentially wide application. Advances in numerical methods to compute travel times and complete seismograms for 3D models are enabling new ways to interpret available data. This includes algorithms such as the Fast Marching Method (Rawlison and Sambridge, 2004) for travel time calculations and full waveform methods such as the spectral element method (SEM; Komatitsch et al., 2002, Tromp et al., 2005), higher order Galerkin methods (Kaser and Dumbser, 2006; Dumbser and Kaser, 2006) and advances in more traditional Cartesian finite difference methods (e.g. Pitarka, 1999; Nilsson et al., 2007). The ability to compute seismic observables using a 3D model is only half of the challenge; models must be developed that accurately represent true Earth structure. Indeed, advances in seismic imaging have followed improvements in 3D computing capability (e.g. Tromp et al., 2005; Rawlinson and Urvoy, 2006). Advances in seismic imaging methods have been fueled in part by theoretical developments and the introduction of novel approaches for combining different seismological observables, both of which can increase the sensitivity of observations to Earth structure. Examples of such developments are finite-frequency sensitivity kernels for body-wave tomography (e.g. Marquering et al., 1998; Montelli et al., 2004) and joint inversion of receiver functions and surface wave group velocities (e.g. Julia et al., 2000).« less

  3. A Moore's cellular automaton model to get probabilistic seismic hazard maps for different magnitude releases: A case study for Greece

    NASA Astrophysics Data System (ADS)

    Jiménez, A.; Posadas, A. M.

    2006-09-01

    Cellular automata are simple mathematical idealizations of natural systems and they supply useful models for many investigations in natural science. Examples include sandpile models, forest fire models, and slider block models used in seismology. In the present paper, they have been used for establishing temporal relations between the energy releases of the seismic events that occurred in neighboring parts of the crust. The catalogue is divided into time intervals, and the region is divided into cells which are declared active or inactive by means of a threshold energy release criterion. Thus, a pattern of active and inactive cells which evolves over time is determined. A stochastic cellular automaton is constructed starting with these patterns, in order to simulate their spatio-temporal evolution, by supposing a Moore's neighborhood interaction between the cells. The best model is chosen by maximizing the mutual information between the past and the future states. Finally, a Probabilistic Seismic Hazard Map is given for the different energy releases considered. The method has been applied to the Greece catalogue from 1900 to 1999. The Probabilistic Seismic Hazard Maps for energies corresponding to m = 4 and m = 5 are close to the real seismicity after the data in that area, and they correspond to a background seismicity in the whole area. This background seismicity seems to cover the whole area in periods of around 25-50 years. The optimum cell size is in agreement with other studies; for m > 6 the optimum area increases according to the threshold of clear spatial resolution, and the active cells are not so clustered. The results are coherent with other hazard studies in the zone and with the seismicity recorded after the data set, as well as provide an interaction model which points out the large scale nature of the earthquake occurrence.

  4. A New Standard Installation Method of the Offline Seismic Observation Station in Heavy Snowfall Area of Tohoku Region

    NASA Astrophysics Data System (ADS)

    Hirahara, S.; Nakayama, T.; Hori, S.; Sato, T.; Chiba, Y.; Okada, T.; Matsuzawa, T.

    2015-12-01

    Soon after the 2011 Tohoku earthquake, seismic activity of Tohoku region, NE Japan is induced in the inland area of Akita prefecture and the border area between Fukushima and Yamagata prefectures. We plan to install a total of 80 offline seismic observation stations in these areas for studying the effect of megathrust earthquake on the activities of inland earthquakes. In our project, maintenance will be held twice-a-year for 4 years from 2015 by using 2.0Hz short-period 3-component seismometer, KVS-300 and ultra-low-power data logger, EDR-X7000 (DC12V 0.08W power supply). We installed seismometer on the rock surface or the slope of the natural ground at the possible sites confirmed with low noise level to obtain distinct seismic waveform data. We report an improvement in installation method of the offline seismic observation station in the heavy snowfall area of Tohoku region based on the retrieved data. In the conventional method, seismometer was installed in the hand-dug hole of a slope in case it is not waterproof. Data logger and battery were installed in the box container on the ground surface, and then, GPS antenna was installed on the pole fixed by stepladder. There are risks of the inclination of seismometer and the damage of equipment in heavy snowfall area. In the new method, seismometer is installed in the robust concrete box on the buried basement consists of precast concrete mass to keep its horizontality. Data logger, battery, and GPS antenna are installed on a high place by using a single pole with anchor bolt and a pole mount cabinet to enhance their safety. As a result, total costs of installation are kept down because most of the equipment is reusable. Furthermore, an environmental burden of waste products is reduced.

  5. Fast principal component analysis for stacking seismic data

    NASA Astrophysics Data System (ADS)

    Wu, Juan; Bai, Min

    2018-04-01

    Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.

  6. Numerical modeling of the 2017 active seismic infrasound balloon experiment

    NASA Astrophysics Data System (ADS)

    Brissaud, Q.; Komjathy, A.; Garcia, R.; Cutts, J. A.; Pauken, M.; Krishnamoorthy, S.; Mimoun, D.; Jackson, J. M.; Lai, V. H.; Kedar, S.; Levillain, E.

    2017-12-01

    We have developed a numerical tool to propagate acoustic and gravity waves in a coupled solid-fluid medium with topography. It is a hybrid method between a continuous Galerkin and a discontinuous Galerkin method that accounts for non-linear atmospheric waves, visco-elastic waves and topography. We apply this method to a recent experiment that took place in the Nevada desert to study acoustic waves from seismic events. This experiment, developed by JPL and its partners, wants to demonstrate the viability of a new approach to probe seismic-induced acoustic waves from a balloon platform. To the best of our knowledge, this could be the only way, for planetary missions, to perform tomography when one faces challenging surface conditions, with high pressure and temperature (e.g. Venus), and thus when it is impossible to use conventional electronics routinely employed on Earth. To fully demonstrate the effectiveness of such a technique one should also be able to reconstruct the observed signals from numerical modeling. To model the seismic hammer experiment and the subsequent acoustic wave propagation, we rely on a subsurface seismic model constructed from the seismometers measurements during the 2017 Nevada experiment and an atmospheric model built from meteorological data. The source is considered as a Gaussian point source located at the surface. Comparison between the numerical modeling and the experimental data could help future mission designs and provide great insights into the planet's interior structure.

  7. The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions

    USGS Publications Warehouse

    Keefer, D.K.

    1994-01-01

    This paper describes a general method for determining the amount of earthquake-induced landsliding that occurs in a seismically active region over time; this determination can be used as a quantitative measure of the long-term hazard from seismically triggered landslides as well as a measure of the importance of this process to regional slope-erosion rates and landscape evolution. The method uses data from historical earthquakes to relate total volume of landslide material dislodged by an earthquake to the magnitude, M, and seismic moment, M0, of the earthquake. From worldwide data, a linear-regression relation between landslide volume, V, and M0 is determined as: V = M0/1018.9(?? 0.13), where V is measured in m3 and M0 is in dyn-cm. To determine the amount of earthquake-generated landsliding over time, this relation is combined with data on seismic-moment release for a particular region, which may be derived from either earthquake-history or fault-slip data. The form of the M0-V relation allows the rate of production of earthquake-induced landslides over time to be determined from total rate of seismic-moment release without regard to the distribution of individual events, thus simplifying and generalizing the determination. Application of the method to twelve seismically active regions, with areas ranging from 13,275 to 2,308,000 km2, shows that erosion rates from earthquake-induced landslides vary significantly from region to region. Of the regions studied, the highest rates were determined for the island of Hawaii, New Zealand, western New Guinea, and the San Francisco Bay region of California. Significantly lower rates were determined for Iran, Tibet, the Sierra Nevada-Great Basin region of California, and central Japan (for the time period from 715 AD to the present). Intermediate rates were determined for Peru, southern California, onshore California, Turkey, and central Japan (for the time period from 1586 AD to the present). To determine the relative, long-term importance of seismically triggered landslides, these erosion rates are compared to erosion rates calculated for other slope processes and to rates calculated from fluvial sediment discharge. Comparisons with other slope processes indicate that earthquake-induced landslides are the predominant agents of slope erosion on the island of Hawaii, in the San Francisco Bay region, and in western New Guinea. For Hawaii, the San Francisco Bay region, and Sierra Nevada-Great Basin region of California, the erosion rates calculated for earthquake-induced landslides also exceed the regional erosion rates calculated from fluvial sediment discharge. ?? 1994.

  8. [Correlation between the microbiological (S. aureus) and seismic activities with regard to the sun-earth interactions and neutron flux generation].

    PubMed

    Shestopalov, I P; Rogozhin, Iu A

    2005-01-01

    The study searched for interactions between the solar activity, seismic energy of the Earth and microbiological processes in the period from 1969 to 1997. Microbiological processes were found dependent on as the solar, so intraterrestrial (e.g. seismic) activity. The 11-year seismic on biological cycles on Earth display a positive inter-correlation and a negative one with the solar activity (sun-spots cycles). There is also correlation between the Earth's seismic energy and neutron fluxes generated at the times of earthquakes on our planet, and microbiological parameters.

  9. Natural reservoirs and triggered seismicity: a study of two northern Utah Lakes

    NASA Astrophysics Data System (ADS)

    Whidden, K. M.; Hansen, K.; Timothy, M.; Boltz, M. S.; Pankow, K. L.; Koper, K. D.

    2014-12-01

    The Great Salt Lake (GSL) and Utah Lake (UL) in northern Utah are in the middle of the Intermountain Seismic Belt, a band of active seismicity extending from western Montana through central Utah to northern Arizona. The proximity of these water bodies to an active earthquake zone is ideal for an investigation of lake-triggered seismicity. Both GSL and UL are shallow (10 and 4.3 m, respectively). The fresh water UL drains via the Jordan River into the salty GSL, which has no outlet. GSL has an aerial extent of 4400 km2, and the shallow depth and lack of outlet cause the surface area to change greatly as the lake volume increases and decreases. UL is much smaller with an almost constant aerial extent of 385 km2. For each lake, we compare yearly earthquake counts near the lake to yearly average lake level for years 1975-2013. GSL seismicity and lake level data correlate well, with seismicity increasing 3-5 years after lake level rise (cross correlation coefficient=0.56, P-value=0.0005). There is an especially large increase in seismicity in 1989 NE of the GSL following the historic lake level high stand in the mid-1980s. The 1989 seismicity has characteristics of both a swarm and a traditional mainshock/aftershock sequence. We will use a double-difference method (HypoDD) to relocate these earthquakes. UL seismicity does not correlate well with the lake level. The different results for the two lakes could perhaps be explained by the lakes' different sizes and the fact that UL has an outlet while GSL does not. The difference might also be explained by subsurface fluid pathways and available faults for nucleating earthquakes. We will further explore the significance of the GSL seismicity and lake level correlation by generating synthetic earthquake catalogs and cross correlating their yearly earthquake counts with the lake level data.

  10. Seismicity of the St. Lawrence paleorift faults overprinted by a meteorite impact crater: Implications for crustal strength based on new earthquake relocations in the Charlevoix Seismic Zone, Eastern Canada

    NASA Astrophysics Data System (ADS)

    Yu, H.; Harrington, R. M.; Liu, Y.; Lamontagne, M.; Pang, M.

    2015-12-01

    The Charlevoix Seismic Zone (CSZ), located along the St. Lawrence River (SLR) ~100 km downstream from Quebec City, is the most active seismic zone in eastern Canada with five historic earthquakes of M 6-7 and ~ 200 events/year reported by the Canadian National Seismograph Network. Cataloged earthquake epicenters outline two broad linear zones along the SLR with little shallow seismicity in between. Earthquakes form diffuse clusters between major dipping faults rather than concentrating on fault planes. Detailed fault geometry in the CSZ is uncertain and the effect on local seismicity of a meteorite impact structure that overprints the paleorift faults remains ambiguous. Here we relocate 1639 earthquakes occurring in the CSZ between 01/1988 - 10/2010 using the double-difference relocation method HypoDD and waveforms primarily from 7 local permanent stations. We use the layered SLR north shore velocity model from Lamontagne (1999), and travel time differences based on both catalog and cross-correlated P and S-phase picks. Of the 1639 relocated earthquakes, 1236 (75.4%) satisfied selection criteria of horizontal and vertical errors less than 2 km and 1 km respectively. Cross-sections of relocated seismicity show hypocenters along distinct active fault segments. Earthquakes located beneath the north shore of the SLR are likely correlated with the NW Gouffre fault, forming a ~10 km wide seismic zone parallel to the river, with dip angle changing to near vertical at the northern edge of the impact zone. In contrast, seismicity beneath the SLR forms a diffuse cloud within the impact structure, likely representing a highly fractured volume. It further implies that faults could be locally weak and subject to high pore-fluid pressures. Seismicity outside the impact structure defines linear structures aligning with the Charlevoix fault. Relocated events of M > 4 all locate outside the impact structure, indicating they nucleated on the NE-SW-oriented paleorift faults.

  11. Excavatability Assessment of Weathered Sedimentary Rock Mass Using Seismic Velocity Method

    NASA Astrophysics Data System (ADS)

    Bin Mohamad, Edy Tonnizam; Saad, Rosli; Noor, Muhazian Md; Isa, Mohamed Fauzi Bin Md.; Mazlan, Ain Naadia

    2010-12-01

    Seismic refraction method is one of the most popular methods in assessing surface excavation. The main objective of the seismic data acquisition is to delineate the subsurface into velocity profiles as different velocity can be correlated to identify different materials. The physical principal used for the determination of excavatability is that seismic waves travel faster through denser material as compared to less consolidated material. In general, a lower velocity indicates material that is soft and a higher velocity indicates more difficult to be excavated. However, a few researchers have noted that seismic velocity method alone does not correlate well with the excavatability of the material. In this study, a seismic velocity method was used in Nusajaya, Johor to assess the accuracy of this seismic velocity method with excavatability of the weathered sedimentary rock mass. A direct ripping run by monitoring the actual production of ripping has been employed at later stage and compared to the ripper manufacturer's recommendation. This paper presents the findings of the seismic velocity tests in weathered sedimentary area. The reliability of using this method with the actual rippability trials is also presented.

  12. Martian seismicity

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.; Grimm, Robert E.

    1991-01-01

    The design and ultimate success of network seismology experiments on Mars depends on the present level of Martian seismicity. Volcanic and tectonic landforms observed from imaging experiments show that Mars must have been a seismically active planet in the past and there is no reason to discount the notion that Mars is seismically active today but at a lower level of activity. Models are explored for present day Mars seismicity. Depending on the sensitivity and geometry of a seismic network and the attenuation and scattering properties of the interior, it appears that a reasonable number of Martian seismic events would be detected over the period of a decade. The thermoelastic cooling mechanism as estimated is surely a lower bound, and a more refined estimate would take into account specifically the regional cooling of Tharsis and lead to a higher frequency of seismic events.

  13. Seismic gaps and source zones of recent large earthquakes in coastal Peru

    USGS Publications Warehouse

    Dewey, J.W.; Spence, W.

    1979-01-01

    The earthquakes of central coastal Peru occur principally in two distinct zones of shallow earthquake activity that are inland of and parallel to the axis of the Peru Trench. The interface-thrust (IT) zone includes the great thrust-fault earthquakes of 17 October 1966 and 3 October 1974. The coastal-plate interior (CPI) zone includes the great earthquake of 31 May 1970, and is located about 50 km inland of and 30 km deeper than the interface thrust zone. The occurrence of a large earthquake in one zone may not relieve elastic strain in the adjoining zone, thus complicating the application of the seismic gap concept to central coastal Peru. However, recognition of two seismic zones may facilitate detection of seismicity precursory to a large earthquake in a given zone; removal of probable CPI-zone earthquakes from plots of seismicity prior to the 1974 main shock dramatically emphasizes the high seismic activity near the rupture zone of that earthquake in the five years preceding the main shock. Other conclusions on the seismicity of coastal Peru that affect the application of the seismic gap concept to this region are: (1) Aftershocks of the great earthquakes of 1966, 1970, and 1974 occurred in spatially separated clusters. Some clusters may represent distinct small source regions triggered by the main shock rather than delimiting the total extent of main-shock rupture. The uncertainty in the interpretation of aftershock clusters results in corresponding uncertainties in estimates of stress drop and estimates of the dimensions of the seismic gap that has been filled by a major earthquake. (2) Aftershocks of the great thrust-fault earthquakes of 1966 and 1974 generally did not extend seaward as far as the Peru Trench. (3) None of the three great earthquakes produced significant teleseismic activity in the following month in the source regions of the other two earthquakes. The earthquake hypocenters that form the basis of this study were relocated using station adjustments computed by the method of joint hypocenter determination. ?? 1979 Birkha??user Verlag.

  14. A long-term earthquake rate model for the central and eastern United States from smoothed seismicity

    USGS Publications Warehouse

    Moschetti, Morgan P.

    2015-01-01

    I present a long-term earthquake rate model for the central and eastern United States from adaptive smoothed seismicity. By employing pseudoprospective likelihood testing (L-test), I examined the effects of fixed and adaptive smoothing methods and the effects of catalog duration and composition on the ability of the models to forecast the spatial distribution of recent earthquakes. To stabilize the adaptive smoothing method for regions of low seismicity, I introduced minor modifications to the way that the adaptive smoothing distances are calculated. Across all smoothed seismicity models, the use of adaptive smoothing and the use of earthquakes from the recent part of the catalog optimizes the likelihood for tests with M≥2.7 and M≥4.0 earthquake catalogs. The smoothed seismicity models optimized by likelihood testing with M≥2.7 catalogs also produce the highest likelihood values for M≥4.0 likelihood testing, thus substantiating the hypothesis that the locations of moderate-size earthquakes can be forecast by the locations of smaller earthquakes. The likelihood test does not, however, maximize the fraction of earthquakes that are better forecast than a seismicity rate model with uniform rates in all cells. In this regard, fixed smoothing models perform better than adaptive smoothing models. The preferred model of this study is the adaptive smoothed seismicity model, based on its ability to maximize the joint likelihood of predicting the locations of recent small-to-moderate-size earthquakes across eastern North America. The preferred rate model delineates 12 regions where the annual rate of M≥5 earthquakes exceeds 2×10−3. Although these seismic regions have been previously recognized, the preferred forecasts are more spatially concentrated than the rates from fixed smoothed seismicity models, with rate increases of up to a factor of 10 near clusters of high seismic activity.

  15. Volcanic Centers in the East Africa Rift: Volcanic Processes with Seismic Stresses to Identify Potential Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Patlan, E.; Wamalwa, A. M.; Kaip, G.; Velasco, A. A.

    2015-12-01

    The Geothermal Development Company (GDC) in Kenya actively seeks to produce geothermal energy, which lies within the East African Rift System (EARS). The EARS, an active continental rift zone, appears to be a developing tectonic plate boundary and thus, has a number of active as well as dormant volcanoes throughout its extent. These volcanic centers can be used as potential sources for geothermal energy. The University of Texas at El Paso (UTEP) and the GDC deployed seismic sensors to monitor several volcanic centers: Menengai, Silali, and Paka, and Korosi. We identify microseismic, local events, and tilt like events using automatic detection algorithms and manual review to identify potential local earthquakes within our seismic network. We then perform the double-difference location method of local magnitude less than two to image the boundary of the magma chamber and the conduit feeding the volcanoes. In the process of locating local seismicity, we also identify long-period, explosion, and tremor signals that we interpret as magma passing through conduits of the magma chamber and/or fluid being transported as a function of magma movement or hydrothermal activity. We used waveform inversion and S-wave shear wave splitting to approximate the orientation of the local stresses from the vent or fissure-like conduit of the volcano. The microseismic events and long period events will help us interpret the activity of the volcanoes. Our goal is to investigate basement structures beneath the volcanoes and identify the extent of magmatic modifications of the crust. Overall, these seismic techniques will help us understand magma movement and volcanic processes in the region.

  16. Variations of seismic parameters during different activity levels of the Soufriere Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Powell, T.; Neuberg, J.

    2003-04-01

    The low-frequency seismic events on Montserrat are linked to conduit resonance and the pressurisation of the volcanic system. Analysis of these events tell us more about the behaviour of the volcanic system and provide a monitoring and interpretation tool. We have written an Automated Event Classification Algorithm Program (AECAP), which finds and classifies seismic events and calculates seismic parameters such as energy, intermittency, peak frequency and event duration. Comparison of low-frequency energy with the tilt cycles in 1997 allows us to link pressurisation of the volcano with seismic behaviour. An empirical relationship provides us with an estimate of pressurisation through released seismic energy. During 1997, the activity of the volcano varied considerably. We compare seismic parameters from quiet periods to those from active periods and investigate how the relationships between these parameters change. These changes are then used to constrain models of magmatic processes during different stages of volcanic activity.

  17. Horizontal-to-vertical spectral ratio variability in the presence of permafrost

    NASA Astrophysics Data System (ADS)

    Kula, Damian; Olszewska, Dorota; Dobiński, Wojciech; Glazer, Michał

    2018-07-01

    Due to fluctuations in the thickness of the permafrost active layer, there exists a seasonal seismic impedance contrast in the permafrost table. The horizontal-to-vertical spectral ratio (HVSR) method is commonly used to estimate the resonant frequency of sedimentary layers on top of bedrock. Results obtained using this method are thought to be stable in time. The aim of the study is to verify whether seasonal variability in the permafrost active layer influences the results of the HVSR method. The research area lies in the direct vicinity of the Polish Polar Station, Hornsund, which is located in Southern Spitsbergen, Svalbard. Velocity models of the subsurface are obtained using the HVSR method, which are juxtaposed with electrical resistivity tomography profiles conducted near the seismic station. Survey results indicate that the active layer of permafrost has a major influence on the high-frequency section of the HVSR results. In addition, the depth of the permafrost table inferred using the HVSR method is comparable to the depth visible in electrical resistivity tomography results. This study proves that, in certain conditions, the HVSR method results vary seasonally, which must be taken into account in their interpretation.

  18. Shallow active-source imaging of an andesite dike in southern New Mexico: comparing Reftek Texan and Fairfield Z-Land recordings

    NASA Astrophysics Data System (ADS)

    Karplus, M. S.; Kaip, G.; Harder, S. H.; Johnson, K.

    2016-12-01

    In October 2015, the Advanced Exploration Seismology class at the University of Texas at El Paso together with additional volunteers acquired a 500-m active-source seismic profile across an andesite dike adjacent to the Rio Grande River near Sunland Park, New Mexico. Receivers included 100 RT-125 Reftek Texans with 4.5-Hz geophones, spaced every 5 m, and 47 Fairfield Z-Land nodes incorporating 5-Hz 3C geophones, spaced approximately every 10 m. A 8-gauge, 400 grain seismic gun source was fired every 5-10 m along most of the profile. Several locations at the ends of the profile experienced multiple gun shots, which have been stacked to increase signal-to-noise. We discuss similarities and differences in field methods and data acquired using the Texans compared to the nodes for a shallow active-source experiment. We extend the discussion to other types of active-source experiments using other recently-acquired nodal datasets. We observe changes in velocity between the andesite dike and surrounding lithologies, and create a seismic reflection image of the andesite dike.

  19. Method of migrating seismic records

    DOEpatents

    Ober, Curtis C.; Romero, Louis A.; Ghiglia, Dennis C.

    2000-01-01

    The present invention provides a method of migrating seismic records that retains the information in the seismic records and allows migration with significant reductions in computing cost. The present invention comprises phase encoding seismic records and combining the encoded seismic records before migration. Phase encoding can minimize the effect of unwanted cross terms while still allowing significant reductions in the cost to migrate a number of seismic records.

  20. Seismic activity of Tokyo area and Philippine Sea plate under Japanese Islands

    NASA Astrophysics Data System (ADS)

    Sakai, S.; Nakagawa, S.; Nanjo, K.; Kasahara, K.; Panayotopoulos, Y.; Tsuruoka, H.; Kurashimo, E.; Obara, K.; Hirata, N.; Kimura, H.; Honda, R.

    2012-12-01

    The Japanese government has estimated the probability of earthquake occurrence with magnitude 7-class during the next 30 years as 70 %. This estimation is based on five earthquakes that occurred in this area in the late 120 years. However, it has been revealed that this region is lying on more complicated tectonic condition due to the two subducted plates and the various types of earthquakes which have been caused by. Therefore, it is necessary to classify these earthquakes into inter-plate earthquakes and intra-plate ones. Then, we have been constructing a seismic observation network since 5 years ago. Tokyo Metropolitan area is a densely populated region of about 40 million people. It is the center of Japan both in politics and in economy. So that human activities have been conducting quite busily, this region is unsuitable for seismic observation. Then, we have decided to make an ultra high dense seismic observation network. We named it the Metropolitan Seismometer Observation Network; MeSO-net. MeSO-net consists of 296 seismic stations. Minimum interval is about 2km and average interval is about 5km.We picked the P- and S-wave arrival times manually. We applied double-difference tomography method to the dataset and estimated the velocity structure. We depicted the plate boundaries from the newly developed velocity model. And, we referred to the locations of the repeating earthquakes, the distributions of normal hypocenters and the focal mechanisms. Our plate model became relatively flat and a little shallower than previous one.Seismicity of Metropolitan area after the M9 event was compared to the one before M9 event. The seismic activity is about 4 times as high as before the M9 event occurred. We examined spatial distribution of the activated seismicity with respect to the newly developed plate configuration. The activated events are located on upper boundaries and they have almost thrust type mechanisms. Recently, a slow slip event has occurred on October in 2011. This observation suggests that shear stresses on the plate boundaries have increased due to eastwards movement of the eastern Japan driven by post-seismic slip of the M9.0 Tohoku-oki event. The present study is supported by two Special Projects for Earthquake Disaster Mitigation in Tokyo Metropolitan Area and reducing vulnerability for urban mega earthquake disasters from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

  1. Testing the structure of earthquake networks from multivariate time series of successive main shocks in Greece

    NASA Astrophysics Data System (ADS)

    Chorozoglou, D.; Kugiumtzis, D.; Papadimitriou, E.

    2018-06-01

    The seismic hazard assessment in the area of Greece is attempted by studying the earthquake network structure, such as small-world and random. In this network, a node represents a seismic zone in the study area and a connection between two nodes is given by the correlation of the seismic activity of two zones. To investigate the network structure, and particularly the small-world property, the earthquake correlation network is compared with randomized ones. Simulations on multivariate time series of different length and number of variables show that for the construction of randomized networks the method randomizing the time series performs better than methods randomizing directly the original network connections. Based on the appropriate randomization method, the network approach is applied to time series of earthquakes that occurred between main shocks in the territory of Greece spanning the period 1999-2015. The characterization of networks on sliding time windows revealed that small-world structure emerges in the last time interval, shortly before the main shock.

  2. Discovering new events beyond the catalogue—application of empirical matched field processing to Salton Sea geothermal field seismicity

    DOE PAGES

    Wang, Jingbo; Templeton, Dennise C.; Harris, David B.

    2015-07-30

    Using empirical matched field processing (MFP), we compare 4 yr of continuous seismic data to a set of 195 master templates from within an active geothermal field and identify over 140 per cent more events than were identified using traditional detection and location techniques alone. In managed underground reservoirs, a substantial fraction of seismic events can be excluded from the official catalogue due to an inability to clearly identify seismic-phase onsets. Empirical MFP can improve the effectiveness of current seismic detection and location methodologies by using conventionally located events with higher signal-to-noise ratios as master events to define wavefield templatesmore » that could then be used to map normally discarded indistinct seismicity. Since MFP does not require picking, it can be carried out automatically and rapidly once suitable templates are defined. In this application, we extend MFP by constructing local-distance empirical master templates using Southern California Earthquake Data Center archived waveform data of events originating within the Salton Sea Geothermal Field. We compare the empirical templates to continuous seismic data collected between 1 January 2008 and 31 December 2011. The empirical MFP method successfully identifies 6249 additional events, while the original catalogue reported 4352 events. The majority of these new events are lower-magnitude events with magnitudes between M0.2–M0.8. Here, the increased spatial-temporal resolution of the microseismicity map within the geothermal field illustrates how empirical MFP, when combined with conventional methods, can significantly improve seismic network detection capabilities, which can aid in long-term sustainability and monitoring of managed underground reservoirs.« less

  3. Probabilistic seismic hazard study based on active fault and finite element geodynamic models

    NASA Astrophysics Data System (ADS)

    Kastelic, Vanja; Carafa, Michele M. C.; Visini, Francesco

    2016-04-01

    We present a probabilistic seismic hazard analysis (PSHA) that is exclusively based on active faults and geodynamic finite element input models whereas seismic catalogues were used only in a posterior comparison. We applied the developed model in the External Dinarides, a slow deforming thrust-and-fold belt at the contact between Adria and Eurasia.. is the Our method consists of establishing s two earthquake rupture forecast models: (i) a geological active fault input (GEO) model and, (ii) a finite element (FEM) model. The GEO model is based on active fault database that provides information on fault location and its geometric and kinematic parameters together with estimations on its slip rate. By default in this model all deformation is set to be released along the active faults. The FEM model is based on a numerical geodynamic model developed for the region of study. In this model the deformation is, besides along the active faults, released also in the volumetric continuum elements. From both models we calculated their corresponding activity rates, its earthquake rates and their final expected peak ground accelerations. We investigated both the source model and the earthquake model uncertainties by varying the main active fault and earthquake rate calculation parameters through constructing corresponding branches of the seismic hazard logic tree. Hazard maps and UHS curves have been produced for horizontal ground motion on bedrock conditions VS 30 ≥ 800 m/s), thereby not considering local site amplification effects. The hazard was computed over a 0.2° spaced grid considering 648 branches of the logic tree and the mean value of 10% probability of exceedance in 50 years hazard level, while the 5th and 95th percentiles were also computed to investigate the model limits. We conducted a sensitivity analysis to control which of the input parameters influence the final hazard results in which measure. The results of such comparison evidence the deformation model and with their internal variability together with the choice of the ground motion prediction equations (GMPEs) are the most influencing parameter. Both of these parameters have significan affect on the hazard results. Thus having good knowledge of the existence of active faults and their geometric and activity characteristics is of key importance. We also show that PSHA models based exclusively on active faults and geodynamic inputs, which are thus not dependent on past earthquake occurrences, provide a valid method for seismic hazard calculation.

  4. Change-point detection of induced and natural seismicity

    NASA Astrophysics Data System (ADS)

    Fiedler, B.; Holschneider, M.; Zoeller, G.; Hainzl, S.

    2016-12-01

    Earthquake rates are influenced by tectonic stress buildup, earthquake-induced stress changes, and transient aseismic sources. While the first two sources can be well modeled due to the fact that the source is known, transient aseismic processes are more difficult to detect. However, the detection of the associated changes of the earthquake activity is of great interest, because it might help to identify natural aseismic deformation patterns (such as slow slip events) and the occurrence of induced seismicity related to human activities. We develop a Bayesian approach to detect change-points in seismicity data which are modeled by Poisson processes. By means of a Likelihood-Ratio-Test, we proof the significance of the change of the intensity. The model is also extended to spatiotemporal data to detect the area of the transient changes. The method is firstly tested for synthetic data and then applied to observational data from central US and the Bardarbunga volcano in Iceland.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, S. R.; Knox, H. A.; Abbott, R. E.

    Cross correlations of seismic noise can potentially record large changes in subsurface velocity due to permafrost dynamics and be valuable for long-term Arctic monitoring. We applied seismic interferometry, using moving window cross-spectral analysis (MWCS), to 2 years of ambient noise data recorded in central Alaska to investigate whether seismic noise could be used to quantify relative velocity changes due to seasonal active-layer dynamics. The large velocity changes (>75%) between frozen and thawed soil caused prevalent cycle-skipping which made the method unusable in this setting. We developed an improved MWCS procedure which uses a moving reference to measure daily velocity variationsmore » that are then accumulated to recover the full seasonal change. This approach reduced cycle-skipping and recovered a seasonal trend that corresponded well with the timing of active-layer freeze and thaw. Lastly, this improvement opens the possibility of measuring large velocity changes by using MWCS and permafrost monitoring by using ambient noise.« less

  6. Automated detection and characterization of harmonic tremor in continuous seismic data

    NASA Astrophysics Data System (ADS)

    Roman, Diana C.

    2017-06-01

    Harmonic tremor is a common feature of volcanic, hydrothermal, and ice sheet seismicity and is thus an important proxy for monitoring changes in these systems. However, no automated methods for detecting harmonic tremor currently exist. Because harmonic tremor shares characteristics with speech and music, digital signal processing techniques for analyzing these signals can be adapted. I develop a novel pitch-detection-based algorithm to automatically identify occurrences of harmonic tremor and characterize their frequency content. The algorithm is applied to seismic data from Popocatepetl Volcano, Mexico, and benchmarked against a monthlong manually detected catalog of harmonic tremor events. During a period of heightened eruptive activity from December 2014 to May 2015, the algorithm detects 1465 min of harmonic tremor, which generally precede periods of heightened explosive activity. These results demonstrate the algorithm's ability to accurately characterize harmonic tremor while highlighting the need for additional work to understand its causes and implications at restless volcanoes.

  7. 75 FR 18160 - Small Takes of Marine Mammals Incidental to Specified Activities; Antioch Bridge Seismic Retrofit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... of Marine Mammals Incidental to Specified Activities; Antioch Bridge Seismic Retrofit Project... pile driving associated with the Antioch Bridge Seismic Retrofit Project. DATES: Effective August 15... request from Caltrans to harass marine mammals incidental to the Antioch Bridge Seismic Retrofit Project...

  8. 75 FR 13498 - Small Takes of Marine Mammals Incidental to Specified Activities; Dumbarton Bridge Seismic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... of Marine Mammals Incidental to Specified Activities; Dumbarton Bridge Seismic Retrofit Project... pile driving associated with the Dumbarton Bridge Seismic Retrofit Project. DATES: Effective August 15... request from Caltrans to harass marine mammals incidental to the Dumbarton Bridge Seismic Retrofit Project...

  9. New insight on the increasing seismicity during Tenerife's 2004 volcanic reactivation

    NASA Astrophysics Data System (ADS)

    Cerdeña, I. Domínguez; del Fresno, C.; Rivera, L.

    2011-09-01

    Starting in April 2004, unusual seismic activity was observed in the interior of the island of Tenerife (Canary Islands, Spain) with much evidence pointing to a reawakening of volcanic activity. This seismicity is now analyzed with techniques unprecedented in previous studies of this crisis. The 200 earthquakes located onshore during 2004 and 2005 have been classified by cross-correlation, resulting in a small number of significant families. The application of a relative location algorithm (hypoDD) revealed important features about the spatial distribution of the earthquakes. The seismic catalog has been enhanced with more than 800 additional events, detected only by the closest seismic station. These events were assigned to families by correlation and as a consequence their hypocentral location and magnitude were estimated by comparing them to the earthquakes of each family. The new catalog obtained by these methods identifies two major seismogenic zones, one to the northwest and the other to the southwest of the Teide-Pico Viejo complex and having a separation of at least 10 km between them. These regions alternate their activity starting in January 2004, i.e., three months earlier than previously thought. We propose a simple model based on the results of this work which will also concur with all previous geophysical and geochemical studies of the 2004 crisis. The model proposes a single magma intrusion affecting the central part of the island with lateral dikes driven by the rifts to the northwest and southwest.

  10. A probabilistic assessment of waste water injection induced seismicity in central California

    NASA Astrophysics Data System (ADS)

    Goebel, T.; Hauksson, E.; Ampuero, J. P.; Aminzadeh, F.; Cappa, F.; Saleeby, J.

    2014-12-01

    The recent, large increase in seismic activity within the central and eastern U.S. may be connected to an increase in fluid injection activity since ~2001. Anomalous seismic sequences can easily be identified in regions with low background seismicity rates. Here, we analyze seismicity in plate boundary regions where tectonically-driven earthquake sequences are common, potentially masking injection-induced events. We show results from a comprehensive analysis of waste water disposal wells in Kern county, the largest oil-producing county in California. We focus on spatial-temporal correlations between seismic and injection activity and seismicity-density changes due to injection. We perform a probabilistic assessment of induced vs. tectonic earthquakes, which can be applied to different regions independent of background rates and may provide insights into the probability of inducing earthquakes as a function of injection parameters and local geological conditions. Our results show that most earthquakes are caused by tectonic forcing, however, waste water injection contributes to seismic activity in four different regions with several events above M4. The seismicity shows different migration characteristics relative to the injection sites, including linear and non-linear trends. The latter is indicative of diffusive processes which take advantage of reservoir properties and fault structures and can induce earthquakes at distances of up to 10 km. Our results suggest that injection-related triggering processes are complex, possibly involving creep, and delayed triggering. Pore-pressure diffusion may be more extensive in the presence of active faults and high-permeability damage zones thus altering the local seismic hazard in a non-linear fashion. As a consequence, generic "best-practices" for fluid injections like a maximum distance from the nearest active fault may not be sufficient to mitigate a potential seismic hazard increase.

  11. Hydromechanical Earthquake Nucleation Model Forecasts Onset, Peak, and Falling Rates of Induced Seismicity in Oklahoma and Kansas

    NASA Astrophysics Data System (ADS)

    Norbeck, J. H.; Rubinstein, J. L.

    2018-04-01

    The earthquake activity in Oklahoma and Kansas that began in 2008 reflects the most widespread instance of induced seismicity observed to date. We develop a reservoir model to calculate the hydrologic conditions associated with the activity of 902 saltwater disposal wells injecting into the Arbuckle aquifer. Estimates of basement fault stressing conditions inform a rate-and-state friction earthquake nucleation model to forecast the seismic response to injection. Our model replicates many salient features of the induced earthquake sequence, including the onset of seismicity, the timing of the peak seismicity rate, and the reduction in seismicity following decreased disposal activity. We present evidence for variable time lags between changes in injection and seismicity rates, consistent with the prediction from rate-and-state theory that seismicity rate transients occur over timescales inversely proportional to stressing rate. Given the efficacy of the hydromechanical model, as confirmed through a likelihood statistical test, the results of this study support broader integration of earthquake physics within seismic hazard analysis.

  12. Coupled High Speed Imaging and Seismo-Acoustic Recordings of Strombolian Explosions at Etna, July 2014: Implications for Source Processes and Signal Inversions.

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Del Bello, E.; Scarlato, P.; Ricci, T.; Andronico, D.; Kueppers, U.; Cannata, A.; Sesterhenn, J.; Spina, L.

    2015-12-01

    Seismic and acoustic surveillance is routinely performed at several persistent activity volcanoes worldwide. However, interpretation of the signals associated with explosive activity is still equivocal, due to both source variability and the intrinsically limited information carried by the waves. Comparison and cross-correlation of the geophysical quantities with other information in general and visual recording in particular is therefore actively sought. At Etna (Italy) in July 2014, short-lived Strombolian explosions ejected bomb- to lapilli-sized, molten pyroclasts at a remarkably repeatable time interval of about two seconds, offering a rare occasion to systematically investigate the seismic and acoustic fields radiated by this common volcanic source. We deployed FAMoUS (FAst, MUltiparametric Setup for the study of explosive activity) at 260 meters from the vents, recording more than 60 explosions in thermal and visible high-speed videos (50 to 500 frames per second) and broadband seismic and acoustic instruments (1 to 10000 Hz for the acoustic and from 0.01 to 30 Hz for the seismic). Analysis of this dataset highlights nonlinear relationships between the exit velocity and mass of ejecta and the amplitude and frequency of the acoustic signals. It also allows comparing different methods to estimate source depth, and to validate existing theory on the coupling of airwaves with ground motion.

  13. Post-blasting seismicity in Rudna copper mine, Poland - source parameters analysis.

    NASA Astrophysics Data System (ADS)

    Caputa, Alicja; Rudziński, Łukasz; Talaga, Adam

    2017-04-01

    The really important hazard in Polish copper mines is high seismicity and corresponding rockbursts. Many methods are used to reduce the seismic hazard. Among others the most effective is preventing blasting in potentially hazardous mining panels. The method is expected to provoke small moderate tremors (up to M2.0) and reduce in this way a stress accumulation in the rockmass. This work presents an analysis, which deals with post-blasting events in Rudna copper mine, Poland. Using the Full Moment Tensor (MT) inversion and seismic spectra analysis, we try to find some characteristic features of post blasting seismic sources. Source parameters estimated for post-blasting events are compared with the parameters of not-provoked mining events that occurred in the vicinity of the provoked sources. Our studies show that focal mechanisms of events which occurred after blasts have similar MT decompositions, namely are characterized by a quite strong isotropic component as compared with the isotropic component of not-provoked events. Also source parameters obtained from spectral analysis show that provoked seismicity has a specific source physics. Among others, it is visible from S to P wave energy ratio, which is higher for not-provoked events. The comparison of all our results reveals a three possible groups of sources: a) occurred just after blasts, b) occurred from 5min to 24h after blasts and c) not-provoked seismicity (more than 24h after blasting). Acknowledgements: This work was supported within statutory activities No3841/E-41/S/2016 of Ministry of Science and Higher Education of Poland.

  14. 3D shallow velocity model in the area of Pozzo Pitarrone, NE flank of Mt. Etna Volcano, by using SPAC array method.

    NASA Astrophysics Data System (ADS)

    Zuccarello, Luciano; Paratore, Mario; La Rocca, Mario; Ferrari, Ferruccio; Messina, Alfio; Contrafatto, Danilo; Galluzzo, Danilo; Rapisarda, Salvatore

    2016-04-01

    In volcanic environment the propagation of seismic signals through the shallowest layers is strongly affected by lateral heterogeneity, attenuation, scattering, and interaction with the free surface. Therefore tracing a seismic ray from the recording site back to the source is a complex matter, with obvious implications for the source location. For this reason the knowledge of the shallow velocity structure may improve the location of shallow volcano-tectonic earthquakes and volcanic tremor, thus contributing to improve the monitoring of volcanic activity. This work focuses on the analysis of seismic noise and volcanic tremor recorded in 2014 by a temporary array installed around Pozzo Pitarrone, NE flank of Mt. Etna. Several methods permit a reliable estimation of the shear wave velocity in the shallowest layers through the analysis of stationary random wavefield like the seismic noise. We have applied the single station HVSR method and SPAC array method to seismic noise to investigate the local shallow structure. The inversion of dispersion curves produced a shear wave velocity model of the area reliable down to depth of about 130 m. We also applied the Beam Forming array method in the 0.5 Hz - 4 Hz frequency range to both seismic noise and volcanic tremor. The apparent velocity of coherent tremor signals fits quite well the dispersion curve estimated from the analysis of seismic noise, thus giving a further constrain on the estimated velocity model. Moreover, taking advantage of a borehole station installed at 130 m depth in the same area of the array, we obtained a direct estimate of the P-wave velocity by comparing the borehole recordings of local earthquakes with the same event recorded at surface. Further insight on the P-wave velocity in the upper 130 m layer comes from the surface reflected wave visible in some cases at the borehole station. From this analysis we obtained an average P-wave velocity of about 1.2 km/s, in good agreement with the shear wave velocity found from the analysis of seismic noise. To better constrain the inversion we used the HVSR computed at each array station, which also give a lateral extension to the final 3D velocity model. The obtained results indicate that site effects in the investigate area are quite homogeneous among the array stations.

  15. Spatial organization of seismicity and fracture pattern at the boundary between Alps and Dinarides

    NASA Astrophysics Data System (ADS)

    Bressan, Gianni; Ponton, Maurizio; Rossi, Giuliana; Urban, Sandro

    2016-04-01

    The paper affords the study of the spatial organization of seismicity in the easternmost region of the Alps (Friuli, in NE Italy and W Slovenia), dominated by the interference between the Alpine and the Dinaric tectonic systems. Two non-conventional methods of spatial analysis are used: fractal analysis and principal component analysis (PCA). The fractal analysis helps to discriminate the cases in which hypocentres clearly define a plane, from the ones in which hypocenter distribution tends to the planarity, without reaching it. The PCA analysis is used to infer the orientation of planes fitting through earthquake foci, or the direction of propagation of the hypocentres. Furthermore, we study the spatial seismicity pattern at the shallow depths in the context of a general damage model, through the crack density distribution. The results of the three methods concur to a complex and composite model of fracturing in the region. The hypocentre pattern fills only partially a plane, i.e. has a fractal dimension close to 2. The three exceptions regard planes with Dinaric trend, without interference with Alpine lineaments. The shallowest depth range (0-10 km depth) is characterized by the activation of planes with variable orientations, reflecting the interference between the Dinaric and the Alpine tectonic structures, and closely bound to the variation of the mechanical properties of the crust. The seismicity occurs mostly in areas characterized by a variation from low to moderate crack density, indicating the sharp transition from zones of low damage to zones of moderate damage. Low crack density indicates the presence of more competent rocks capable of sustaining high strain energy while high crack density areas pertain to highly fractured rocks that cannot store high strain energy. Brittle failure, i.e. seismic activity, is favoured within the sharp transitions from low to moderate crack density zones. The orientation of the planes depicting the seismic activity, indeed, coincides with the orientation of the faults generated along the flanks of past carbonate platforms both in Friuli and western Slovenia. In the deepest depth range (10-20-km depth), on the contrary, the study evidences the dominance of the tectonic Dinaric system to the NW of the External Dinarides, in depth. This depth interval is characterized by a more organized pattern of seismicity. Seismic events mainly locate on the Dinaric lineaments in the northern and eastern parts of the region considered, while on Alpine thrusts in the western and southern parts.

  16. Back to the Future: Long-Term Seismic Archives Revisited

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.

    2007-12-01

    Archives of digital seismic data recorded by seismometer networks around the world have grown tremendously over the last several decades helped by the deployment of seismic stations and their continued operation within the framework of monitoring seismic activity. These archives typically consist of waveforms of seismic events and associated parametric data such as phase arrival time picks and the location of hypocenters. Catalogs of earthquake locations are fundamental data in seismology, and even in the Earth sciences in general. Yet, these locations have notoriously low spatial resolution because of errors in both the picks and the models commonly used to locate events one at a time. This limits their potential to address fundamental questions concerning the physics of earthquakes, the structure and composition of the Earth's interior, and the seismic hazards associated with active faults. We report on the comprehensive use of modern waveform cross-correlation based methodologies for high- resolution earthquake location - as applied to regional and global long-term seismic databases. By simultaneous re-analysis of two decades of the digital seismic archive of Northern California, reducing pick errors via cross-correlation and model errors via double-differencing, we achieve up to three orders of magnitude resolution improvement over existing hypocenter locations. The relocated events image networks of discrete faults at seismogenic depths across various tectonic settings that until now have been hidden in location uncertainties. Similar location improvements are obtained for earthquakes recorded at global networks by re- processing 40 years of parametric data from the ISC and corresponding waveforms archived at IRIS. Since our methods are scaleable and run on inexpensive Beowulf clusters, periodic re-analysis of entire archives may thus become a routine procedure to continuously improve resolution in existing catalogs. We demonstrate the role of seismic archives in obtaining the precise location of new events in real-time. Such information has considerable social and economic impact in the evaluation and mitigation of seismic hazards, for example, and highlights the need for consistent long-term seismic monitoring and archiving of records.

  17. Seismicity of the rocky mountains and Rio Grande Rift from the EarthScope Transportable Array and CREST temporary seismic networks, 2008-2010

    NASA Astrophysics Data System (ADS)

    Nakai, J. S.; Sheehan, A. F.; Bilek, S. L.

    2017-03-01

    We developed a catalog of small magnitude (ML -0.1 to 4.7) seismicity across Colorado and New Mexico from the EarthScope USArray Transportable Array and CREST (Colorado Rocky Mountains Experiment and Seismic Transects) seismic networks from 2008 to 2010 to characterize active deformation in the Rio Grande Rift. We recorded over 900 earthquakes in the Rio Grande Rift region, not including induced earthquakes and mine blasts, and find that the rift is actively deforming both broadly and in distinct regions. Seismic events that are likely induced, mostly in the Raton Basin, make up 66% of the catalog (1837 earthquakes). Neogene faults in the northern rift in north central Colorado are seismically active in the North Park Basin and northwestern Colorado. The central rift from the San Luis Basin (southern Colorado) to south of the Socorro Magma Body is the most seismically active rift region, and seismicity delineates the deformation in the Colorado Plateau transition zone, which is spatially correlated with volcanic vents, dikes, and faults within the western Jemez Lineament. The eastern Jemez Lineament is nearly aseismic and surrounded by a halo of seismicity culminating in boundaries defined by recent moderate (Mw 3.9 and Mw 3.3) earthquakes. The southern rift is characterized by diffuse seismicity in Texas and Mexico. This study provides an updated seismic catalog built with uniformity in seismometer coverage and low epicentral uncertainties ( 2 km) that allows for regional evaluation of seismicity. During this time period, clusters of seismicity and moderate magnitude earthquakes characterize deformation in a low-strain rate extensional environment.

  18. Source characterization of a small earthquake cluster at Edmond, Oklahoma using a very dense array

    NASA Astrophysics Data System (ADS)

    Ng, R.; Nakata, N.

    2017-12-01

    Recent seismicity in Oklahoma has caught the attention of the public in the last few years since seismicity is commonly related to loss in urban areas. To account for the increase in public interest, improve the understanding of damaging ground motions produced in earthquakes and develop better seismic hazard assessment, we must characterize the seismicity in Oklahoma and its associated structure and source parameters. Regional changes in subsurface stresses have increased seismic activities due to reactivation of faults in places such as central Oklahoma. It is imperative for seismic investigation and modeling to characterize subsurface structural features that may influence the damaging effects of ground motion. We analyze the full-waveform data collected from a temporary dense array of 72 portable seismometers with a 110 meter spacing that were active for a one-month period from May to June 2017, deployed at Edmond, Oklahoma. The data from this one-month duration array captured over 10,000 events and enabled us to make measurements of small-scale lateral variations of earthquake wavefields. We examine the waveform for events using advanced methods of detection, location and determine the source mechanism. We compare our results with selected events listed in the Oklahoma Geological Survey (OGS) and United States Geological Survey (USGS) catalogue. Based on the detection and located small events, we will discuss the causative fault structure at the area and present the results of the investigation.

  19. Worldwide seismicity in view of non-extensive statistical physics

    NASA Astrophysics Data System (ADS)

    Chochlaki, Kaliopi; Vallianatos, Filippos; Michas, George

    2014-05-01

    In the present work we study the distribution of worldwide shallow seismic events occurred from 1981 to 2011 extracted from the CMT catalog, with magnitude equal or greater than Mw 5.0. Our analysis based on the subdivision of the Earth surface into seismic zones that are homogeneous with regards to seismic activity and orientation of the predominant stress field. To this direction we use the Flinn-Engdahl regionalization (Flinn and Engdahl, 1965), which consists of 50 seismic zones as modified by Lombardi and Marzocchi (2007), where grouped the 50 FE zones into larger tectonically homogeneous ones, utilizing the cumulative moment tensor method. As a result Lombardi and Marzocchi (2007), limit the initial 50 regions to 39 ones, in which we apply the non- extensive statistical physics approach. The non-extensive statistical physics seems to be the most adequate and promising methodological tool for analyzing complex systems, such as the Earth's interior. In this frame, we introduce the q-exponential formulation as the expression of probability distribution function that maximizes the Sq entropy as defined by Tsallis, (1988). In the present work we analyze the interevent time distribution between successive earthquakes by a q-exponential function in each of the seismic zones defined by Lombardi and Marzocchi (2007).confirming the importance of long-range interactions and the existence of a power-law approximation in the distribution of the interevent times. Our findings supports the ideas of universality within the Tsallis approach to describe Earth's seismicity and present strong evidence on temporal clustering of seismic activity in each of the tectonic zones analyzed. Our analysis as applied in worldwide seismicity with magnitude equal or greater than Mw 5.5 and 6.) is presented and the dependence of our result on the cut-off magnitude is discussed. This research has been funded by the European Union (European Social Fund) and Greek national resources under the framework of the "THALES Program: SEISMO FEAR HELLARC" project of the "Education & Lifelong Learning" Operational Programme.

  20. Relocation of recent seismicity and seismotectonic properties in the Gulf of Corinth (Greece)

    NASA Astrophysics Data System (ADS)

    Mesimeri, Maria; Karakostas, Vassilios; Papadimitriou, Eleftheria; Tsaklidis, George; Jacobs, Katrina

    2018-02-01

    Recent seismicity (2008-2014) taking place in the Gulf of Corinth and recorded, since the establishment of the Hellenic Unified Seismological Network is relocated in this study. All the available P and S manually picked phases along with the waveforms of 55 broad-band, three-component seismological stations were used. The relocation is performed using the double difference method with differential times derived from phase-picked data and waveform cross-correlation. The accuracy of the relocated catalogue, estimated using a bootstrap approach, is of the order of few hundred metres. In an attempt to define the stress regime in the area, we compute moment tensors of 72 earthquakes with ML ≥ 3.0 and use them to calculate the total seismic moment tensor. A dominant strike of 270° that found in the westernmost part, was changed to 270°-290° at the centre of the gulf, perpendicular to the almost N-S extension of the rift. Further to the east, a gradual change in fault orientation is observed. In the easternmost part, the strike becomes 240°, in agreement with the geometry of the rift. The highly accurate earthquake catalogue, consisting of ˜26 000 events, reveals two patterns of activity in the western Corinth Gulf, namely, strongly clustered seismicity in both space and time in shallow depths and below that activity a very narrow shallow north-dipping seismic zone. Earthquake clusters, mainly located in the western study area, are identified using CURATE algorithm and associated with different north or south-dipping fault segments. The seismicity in the shallow north-dipping seismic zone, defined in detail in this study, is continuous and free of earthquake clusters. This continuous activity most probably defines the boundaries between brittle and ductile layers. The central and eastern parts of the study area mainly accommodate spatiotemporal clusters.

  1. Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Molino, Erik; Lopez, Carmen

    2013-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.

  2. Use of acoustic tools to reveal otherwise cryptic responses of forest elephants to oil exploration.

    PubMed

    Wrege, Peter H; Rowland, Elizabeth D; Thompson, Bruce G; Batruch, Nikolas

    2010-12-01

    Most evaluations of the effects of human activities on wild animals have focused on estimating changes in abundance and distribution of threatened species; however, ecosystem disturbances also affect aspects of animal behavior such as short-term movement, activity budgets, and reproduction. It may take a long time for changes in behavior to manifest as changes in abundance or distribution. Therefore, it is important to have methods with which to detect short-term behavioral responses to human activity. We used continuous acoustic and seismic monitoring to evaluate the short-term effects of seismic prospecting for oil on forest elephants (Loxodonta cyclotis) in Gabon, Central Africa. We monitored changes in elephant abundance and activity as a function of the frequency and intensity of acoustic and seismic signals from dynamite detonation and human activity. Elephants did not flee the area being explored; the relative number of elephants increased in a seasonal pattern typical of elsewhere in the ecosystem. In the exploration area, however, they became more nocturnal. Neither the intensity nor the frequency of dynamite blasts affected the frequency of calling or the daily pattern of elephant activity. Nevertheless, the shift of activity to nocturnal hours became more pronounced as human activity neared each monitored area of forest. This change in activity pattern and its likely causes would not have been detected through standard monitoring methods, which are not sensitive to behavioral changes over short time scales (e.g., dung transects, point counts) or cover a limited area (e.g., camera traps). Simultaneous acoustic monitoring of animal communication, human, and environmental sounds allows the documentation of short-term behavioral changes in response to human disturbance. © 2010 Society for Conservation Biology.

  3. Support Vector Machine Model for Automatic Detection and Classification of Seismic Events

    NASA Astrophysics Data System (ADS)

    Barros, Vesna; Barros, Lucas

    2016-04-01

    The automated processing of multiple seismic signals to detect, localize and classify seismic events is a central tool in both natural hazards monitoring and nuclear treaty verification. However, false detections and missed detections caused by station noise and incorrect classification of arrivals are still an issue and the events are often unclassified or poorly classified. Thus, machine learning techniques can be used in automatic processing for classifying the huge database of seismic recordings and provide more confidence in the final output. Applied in the context of the International Monitoring System (IMS) - a global sensor network developed for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) - we propose a fully automatic method for seismic event detection and classification based on a supervised pattern recognition technique called the Support Vector Machine (SVM). According to Kortström et al., 2015, the advantages of using SVM are handleability of large number of features and effectiveness in high dimensional spaces. Our objective is to detect seismic events from one IMS seismic station located in an area of high seismicity and mining activity and classify them as earthquakes or quarry blasts. It is expected to create a flexible and easily adjustable SVM method that can be applied in different regions and datasets. Taken a step further, accurate results for seismic stations could lead to a modification of the model and its parameters to make it applicable to other waveform technologies used to monitor nuclear explosions such as infrasound and hydroacoustic waveforms. As an authorized user, we have direct access to all IMS data and bulletins through a secure signatory account. A set of significant seismic waveforms containing different types of events (e.g. earthquake, quarry blasts) and noise is being analysed to train the model and learn the typical pattern of the signal from these events. Moreover, comparing the performance of the support-vector network to various classical learning algorithms used before in seismic detection and classification is an essential final step to analyze the advantages and disadvantages of the model.

  4. Bayesian identification of multiple seismic change points and varying seismic rates caused by induced seismicity

    NASA Astrophysics Data System (ADS)

    Montoya-Noguera, Silvana; Wang, Yu

    2017-04-01

    The Central and Eastern United States (CEUS) has experienced an abnormal increase in seismic activity, which is believed to be related to anthropogenic activities. The U.S. Geological Survey has acknowledged this situation and developed the CEUS 2016 1 year seismic hazard model using the catalog of 2015 by assuming stationary seismicity in that period. However, due to the nonstationary nature of induced seismicity, it is essential to identify change points for accurate probabilistic seismic hazard analysis (PSHA). We present a Bayesian procedure to identify the most probable change points in seismicity and define their respective seismic rates. It uses prior distributions in agreement with conventional PSHA and updates them with recent data to identify seismicity changes. It can determine the change points in a regional scale and may incorporate different types of information in an objective manner. It is first successfully tested with simulated data, and then it is used to evaluate Oklahoma's regional seismicity.

  5. Sublake geologic structure from high-resolution seismic-reflection data from four sinkhole lakes in the Lake Wales Ridge, Central Florida

    USGS Publications Warehouse

    Tihansky, A.B.; Arthur, J.D.; DeWitt, D.W.

    1996-01-01

    Seismic-reflection profiles from Lake Wales, Blue Lake, Lake Letta, and Lake Apthorp located along the Lake Wales Ridge in central Florida provide local detail within the regional hydrogeologic framework as described by litho- and hydrostratigraphic cross sections. Lakes located with the mantled karst region have long been considered to be sinkhole lakes, originating from subsidence activity. High-resolution seismic- reflection data confirm this origin for these four lakes. The geologic framework of the Lake Wales Ridge has proven to be a suitable geologic setting for continuous high-resolution seismic-reflection profiling in lakes; however, the nature of the lake-bottom sediments largely controls the quality of the seismic data. In lakes with significant organic-rich bottom deposits, interpretable record was limited to areas where organic deposits were minimal. In lakes with clean, sandy bottoms, the seismic-reflection methods were highly successful in obtaining data that can be correlated with sublake subsidence features. These techniques are useful in examining sublake geology and providing a better understanding of how confining units are affected by subsidence in a region where their continuity is of significant importance to local lake hydrology. Although local geologic control around each lake generally corresponds to the regional geologic framework, local deviations from regional geologic trends occur in sublake areas affected by subsidence activity. Each of the four lakes examined represents a unique set of geologic controls and provides some degree of structural evidence of subsidence activity. Sublake geologic structures identified include: (1) marginal lake sediments dipping into bathymetric lows, (2) lateral discontinuity of confining units including sags and breaches, (3) the disruption and reworking of overlying unconsolidated siliciclastic sediments as they subside into the underlying irregular limestone surface, and (4) sublake regions where confining units appear to remain intact and unaffected by nearby subsidence activity. Each lake likely is underlain by several piping features rather than one large subsidence feature.

  6. Thermal Alteration of Pyrite to Pyrrhotite During Earthquakes: New Evidence of Seismic Slip in the Rock Record

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Dekkers, Mark J.; Chen, Jianye

    2018-02-01

    Seismic slip zones convey important information on earthquake energy dissipation and rupture processes. However, geological records of earthquakes along exhumed faults remain scarce. They can be traced with a variety of methods that establish the frictional heating of seismic slip, although each has certain assets and disadvantages. Here we describe a mineral magnetic method to identify seismic slip along with its peak temperature through examination of magnetic mineral assemblages within a fault zone in deep-sea sediments cored from the Japan Trench—one of the seismically most active regions around Japan—during the Integrated Ocean Drilling Program Expedition 343, the Japan Trench Fast Drilling Project. Fault zone sediments and adjacent host sediments were analyzed mineral magnetically, supplemented by scanning electron microscope observations with associated energy dispersive X-ray spectroscopy analyses. The presence of the magnetic mineral pyrrhotite appears to be restricted to three fault zones occurring at 697, 720, and 801 m below sea floor in the frontal prism sediments, while it is absent in the adjacent host sediments. Elevated temperatures and coseismic hot fluids as a consequence of frictional heating during earthquake rupture induced partial reaction of preexisting pyrite to pyrrhotite. The presence of pyrrhotite in combination with pyrite-to-pyrrhotite reaction kinetics constrains the peak temperature to between 640 and 800°C. The integrated mineral-magnetic, microscopic, and kinetic approach adopted here is a useful tool to identify seismic slip along faults without frictional melt and establish the associated maximum temperature.

  7. Estimating Local and Near-Regional Velocity and Attenuation Structure from Seismic Noise

    DTIC Science & Technology

    2008-09-30

    seismic array in Costa Rica and Nicaragua from ambient seismic noise using two independent methods, noise cross correlation and beamforming. The noise...Mean-phase velocity-dispersion curves are calculated for the TUCAN seismic array in Costa Rica and Nicaragua from ambient seismic noise using two...stations of the TUCAN seismic array (Figure 4c) using a method similar to Harmon et al. (2007). Variations from Harmon et al. (2007) include removing the

  8. The Possible Decapitation of a Megathrust Indenter: Evidence from Imaging of Time-dependent Microseismic Structures before and after the 2012 Mw 7.6 Nicoya, Costa Rica

    NASA Astrophysics Data System (ADS)

    Newman, A. V.; Yao, D.; Kyriakopoulos, C.; Moore-Driskell, M. M.; Hobbs, T. E.; Peng, Z.; Schwartz, S. Y.; Protti, M.; Gonzalez, V.

    2016-12-01

    We normally view the subduction megathrust surface as a constant structure throughout the seismic cycle, with the elastic loading, microseismicity, and slip occurring along it. However, using small events recorded from a uniquely dense seismic network directly over the active megathrust below Nicoya, Costa Rica, we find two different seismogenic structures with near exclusive time-dependent behavior immediately in the region of maximum coseismic slip. Microseismicity recorded at intervals between 1999 and 2009 showed an elevated topographic indenter beneath central Nicoya, and associated with a suture marking transition between Cocos-Nazca Spreading Center and East-Pacific Rise crusts [Kyriakopoulos et al., JGR 2015]. This indenter is located as a focus of interseismic locking and coseismic rupture [Feng et al., JGR 2012; Yue et al., JGR 2013; Protti et al., Nat. Geosc. 2014; Xue et al., JGR 2015; Kyriakopoulos & Newman, JGR 2016]. However, aftershocks recorded in the months following an MW 7.6 earthquake in 2012 define an entirely different structure about 5 km deeper and differing only in the area of maximum coseismic slip. The location of seismicity switches entirely between these faults from the shallow indenter structure beforehand to the deeper and near-linear feature after. To improve our imaging of the behavior and associated slab structure, we perform a detailed joint seismic relocation and tomographic inversion using TomoDD [Zhang and Thurber, PAGEOPH 2003]. We analyze the new locations relative to the imaged slab geometry, and compare automated formulations of the interfaces using the Maximum Seismicity Method [Kyriakopoulos et al., 2015], with data existing before and after the earthquake. Lastly, we show the sensitivity of using either surface in models for fault slip from regional GPS. We hypothesize that the bifurcated fault structure signifies either active decapitation of the indenter, possibly along the crust-mantle interface of the downgoing slab, or aftershock activity represents the true plate interface, with prior seismic activity dominantly in the hanging wall along a well-defined fault. Either case has implications for understanding the relationship between interseismic and coseismic fault behavior through the seismic cycle.

  9. Mikhnevo: from seismic station no. 1 to a modern geophysical observatory

    NASA Astrophysics Data System (ADS)

    Adushkin, V. V.; Ovchinnikov, V. M.; Sanina, I. A.; Riznichenko, O. Yu.

    2016-01-01

    The Mikhnevo seismic station was founded in accordance with directive no. 1134 RS of the Council of Ministers of the Soviet Union of February 6, 1954. The station, installed south of Moscow, began its operations on monitoring nuclear tests in the United States and England in 1954. For dozens of years this station was the leading experimental base for elaborating new technical solutions and methods for monitoring nuclear explosions, equipped with modern seismological instruments. At present, the focus of activities has been moved from military applications to fundamental geophysical research. The station preserves its leading position in seismological observations due to the development of national high-performance digital instruments and creation of the small-aperture seismic array, the only one in the central part of European Russia, which is capable of recording weak seismic events with M L ≥ 1.5 within a distance of 100 km.

  10. Study on the application of ambient vibration tests to evaluate the effectiveness of seismic retrofitting

    NASA Astrophysics Data System (ADS)

    Liang, Li; Takaaki, Ohkubo; Guang-hui, Li

    2018-03-01

    In recent years, earthquakes have occurred frequently, and the seismic performance of existing school buildings has become particularly important. The main method for improving the seismic resistance of existing buildings is reinforcement. However, there are few effective methods to evaluate the effect of reinforcement. Ambient vibration measurement experiments were conducted before and after seismic retrofitting using wireless measurement system and the changes of vibration characteristics were compared. The changes of acceleration response spectrum, natural periods and vibration modes indicate that the wireless vibration measurement system can be effectively applied to evaluate the effect of seismic retrofitting. The method can evaluate the effect of seismic retrofitting qualitatively, it is difficult to evaluate the effect of seismic retrofitting quantitatively at this stage.

  11. Comparison of smoothing methods for the development of a smoothed seismicity model for Alaska and the implications for seismic hazard

    NASA Astrophysics Data System (ADS)

    Moschetti, M. P.; Mueller, C. S.; Boyd, O. S.; Petersen, M. D.

    2013-12-01

    In anticipation of the update of the Alaska seismic hazard maps (ASHMs) by the U. S. Geological Survey, we report progress on the comparison of smoothed seismicity models developed using fixed and adaptive smoothing algorithms, and investigate the sensitivity of seismic hazard to the models. While fault-based sources, such as those for great earthquakes in the Alaska-Aleutian subduction zone and for the ~10 shallow crustal faults within Alaska, dominate the seismic hazard estimates for locations near to the sources, smoothed seismicity rates make important contributions to seismic hazard away from fault-based sources and where knowledge of recurrence and magnitude is not sufficient for use in hazard studies. Recent developments in adaptive smoothing methods and statistical tests for evaluating and comparing rate models prompt us to investigate the appropriateness of adaptive smoothing for the ASHMs. We develop smoothed seismicity models for Alaska using fixed and adaptive smoothing methods and compare the resulting models by calculating and evaluating the joint likelihood test. We use the earthquake catalog, and associated completeness levels, developed for the 2007 ASHM to produce fixed-bandwidth-smoothed models with smoothing distances varying from 10 to 100 km and adaptively smoothed models. Adaptive smoothing follows the method of Helmstetter et al. and defines a unique smoothing distance for each earthquake epicenter from the distance to the nth nearest neighbor. The consequence of the adaptive smoothing methods is to reduce smoothing distances, causing locally increased seismicity rates, where seismicity rates are high and to increase smoothing distances where seismicity is sparse. We follow guidance from previous studies to optimize the neighbor number (n-value) by comparing model likelihood values, which estimate the likelihood that the observed earthquake epicenters from the recent catalog are derived from the smoothed rate models. We compare likelihood values from all rate models to rank the smoothing methods. We find that adaptively smoothed seismicity models yield better likelihood values than the fixed smoothing models. Holding all other (source and ground motion) models constant, we calculate seismic hazard curves for all points across Alaska on a 0.1 degree grid, using the adaptively smoothed and fixed smoothed seismicity models separately. Because adaptively smoothed models concentrate seismicity near the earthquake epicenters where seismicity rates are high, the corresponding hazard values are higher, locally, but reduced with distance from observed seismicity, relative to the hazard from fixed-bandwidth models. We suggest that adaptively smoothed seismicity models be considered for implementation in the update to the ASHMs because of their improved likelihood estimates relative to fixed smoothing methods; however, concomitant increases in seismic hazard will cause significant changes in regions of high seismicity, such as near the subduction zone, northeast of Kotzebue, and along the NNE trending zone of seismicity in the Alaskan interior.

  12. Comparison of smoothing methods for the development of a smoothed seismicity model for Alaska and the implications for seismic hazard

    USGS Publications Warehouse

    Moschetti, Morgan P.; Mueller, Charles S.; Boyd, Oliver S.; Petersen, Mark D.

    2014-01-01

    In anticipation of the update of the Alaska seismic hazard maps (ASHMs) by the U. S. Geological Survey, we report progress on the comparison of smoothed seismicity models developed using fixed and adaptive smoothing algorithms, and investigate the sensitivity of seismic hazard to the models. While fault-based sources, such as those for great earthquakes in the Alaska-Aleutian subduction zone and for the ~10 shallow crustal faults within Alaska, dominate the seismic hazard estimates for locations near to the sources, smoothed seismicity rates make important contributions to seismic hazard away from fault-based sources and where knowledge of recurrence and magnitude is not sufficient for use in hazard studies. Recent developments in adaptive smoothing methods and statistical tests for evaluating and comparing rate models prompt us to investigate the appropriateness of adaptive smoothing for the ASHMs. We develop smoothed seismicity models for Alaska using fixed and adaptive smoothing methods and compare the resulting models by calculating and evaluating the joint likelihood test. We use the earthquake catalog, and associated completeness levels, developed for the 2007 ASHM to produce fixed-bandwidth-smoothed models with smoothing distances varying from 10 to 100 km and adaptively smoothed models. Adaptive smoothing follows the method of Helmstetter et al. and defines a unique smoothing distance for each earthquake epicenter from the distance to the nth nearest neighbor. The consequence of the adaptive smoothing methods is to reduce smoothing distances, causing locally increased seismicity rates, where seismicity rates are high and to increase smoothing distances where seismicity is sparse. We follow guidance from previous studies to optimize the neighbor number (n-value) by comparing model likelihood values, which estimate the likelihood that the observed earthquake epicenters from the recent catalog are derived from the smoothed rate models. We compare likelihood values from all rate models to rank the smoothing methods. We find that adaptively smoothed seismicity models yield better likelihood values than the fixed smoothing models. Holding all other (source and ground motion) models constant, we calculate seismic hazard curves for all points across Alaska on a 0.1 degree grid, using the adaptively smoothed and fixed smoothed seismicity models separately. Because adaptively smoothed models concentrate seismicity near the earthquake epicenters where seismicity rates are high, the corresponding hazard values are higher, locally, but reduced with distance from observed seismicity, relative to the hazard from fixed-bandwidth models. We suggest that adaptively smoothed seismicity models be considered for implementation in the update to the ASHMs because of their improved likelihood estimates relative to fixed smoothing methods; however, concomitant increases in seismic hazard will cause significant changes in regions of high seismicity, such as near the subduction zone, northeast of Kotzebue, and along the NNE trending zone of seismicity in the Alaskan interior.

  13. Data-Intensive Discovery Methods for Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Richards, P. G.; Schaff, D. P.; Ammon, C. J.; Cleveland, M.; Young, C. J.; Slinkard, M.; Heck, S.

    2012-12-01

    Seismic events are still mostly located one-at-a-time by Geiger's method of 1909, which uses phase picks and minimizes differences between observed and modeled travel times. But methods that recognize and use seismogram archives as a major resource have been successfully demonstrated---especially for California, China, and for the mid-ocean ridge-transform system---where they enable new insights into earthquake physics and Earth structure, and have raised seismic monitoring to new levels. We report progress on a series of collaborative projects to evaluate such data-intensive methods on ever-larger scales. We use cross correlation (CC): (1) to improve estimates of the relative size of neighboring seismic events in regions of high seismicity; and (2) as a detector, to find new events in current data streams that are similar to events already in the archive, to add to the number of detections of an already known event, or to place a threshold on the size of undetected events occurring near a template event. Elsewhere at this meeting Schaff and Richards report on uses of non-normalized CC measurements to estimate relative event size---a procedure that may be as important as widely-used CC methods to improve the precision of relative location estimates. They have successfully modeled the degradation in CC value that is due to the spatial separation of similar events and can prevent this bias from seriously influencing estimates of relative event size for non-collocated events. Cleveland and Ammon report in more detail on cross-correlation used to measure Rayleigh-wave time shifts, and on improved epicentroid locations and relative origin-time shifts in remote oceanic transform regions. They seek to extend the correlation of R1 waveforms from vertical strike-slip transform-fault earthquakes with waveforms from normal faulting events at nearby ridges, to improve the locations of events offshore from the Pacific northwest and southwestern China. Finally our collaborating Sandia group has reported preliminary results using a 360-core distributed network that took about two hours to search a month-long continuous single channel (sampled at 40 sps) for the occurrence of one or more of 920 waveforms each lasting 40 s and previously recorded by the station. Speed scales with number of cores; and inversely with number of channels, sample rate, and window length. Orders-of-magnitude improvement in speed are anticipated, on these early results; and application to numerous channels. From diverse results such as these, it seems appropriate to consider the future possibility of radical improvement in monitoring virtually all seismically active areas, using archives of prior events as the major resource---though we recognize that such an approach does not directly help to characterize seismic events in inactive regions, or events in active regions which are dissimilar to previously recorded events.

  14. Geometry and slip rates of active blind thrusts in a reactivated back-arc rift using shallow seismic imaging: Toyama basin, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Kato, Naoko; Sato, Hiroshi; Koshiya, Shin; Toda, Shigeru; Kobayashi, Kenta

    2017-10-01

    Active blind thrust faults, which can be a major seismic hazard in urbanized areas, are commonly difficult to image with seismic reflection surveys. To address these challenges in coastal plains, we collected about 8 km-long onshore high-resolution two-dimensional (2D) seismic reflection data using a dense array of 800 geophones across compressionally reactivated normal faults within a failed rift system located along the southwestern extension of the Toyama trough in the Sea of Japan. The processing of the seismic reflection data illuminated their detailed subsurface structures to depths of about 3 km. The interpreted depth-converted section, correlated with nearby Neogene stratigraphy, indicated the presence of and along-strike variation of previously unrecognized complex thrust-related structures composed of active fault-bend folds coupled with pairs of flexural slip faults within the forelimb and newly identified frontal active blind thrusts beneath the alluvial plain. In addition, growth strata and fold scarps that deform lower to upper Pleistocene units record the recent history of their structural growth and fault activity. This case shows that shallow seismic reflection imaging with densely spaced seismic recorders is a useful tool in defining locations, recent fault activity, and complex geometry of otherwise inaccessible active blind thrust faults.

  15. Induced seismicity in Carbon and Emery counties, Utah

    NASA Astrophysics Data System (ADS)

    Brown, Megan R. M.

    Utah is one of the top producers of oil and natural gas in the United States. Over the past 18 years, more than 4.2 billion gallons of wastewater from the petroleum industry have been injected into the Navajo Sandstone, Kayenta Formation, and Wingate Sandstone in two areas in Carbon and Emery County, Utah, where seismicity has increased during the same period. In this study, I investigated whether or not wastewater injection is related to the increased seismicity. Previous studies have attributed all of the seismicity in central Utah to coal mining activity. I found that water injection might be a more important cause. In the coal mining area, seismicity rate increased significantly 1-5 years following the commencement of wastewater injection. The increased seismicity consists almost entirely of earthquakes with magnitudes of less than 3, and is localized in areas seismically active prior to the injection. I have established the spatiotemporal correlations between the coal mining activities, the wastewater injection, and the increased seismicity. I used simple groundwater models to estimate the change in pore pressure and evaluate the observed time gap between the start of injection and the onset of the increased seismicity in the areas surrounding the injection wells. To ascertain that the increased seismicity is not fluctuation of background seismicity, I analyzed the magnitude-frequency relation of these earthquakes and found a clear increase in the b-value following the wastewater injection. I conclude that the marked increase of seismicity rate in central Utah is induced by both mining activity and wastewater injection, which raised pore pressure along pre-existing faults.

  16. Reassessment of the Seismicity and seismic hazards of Libya

    NASA Astrophysics Data System (ADS)

    Ben Suleman, A.; Elmeladi, A.

    2009-04-01

    The tectonic evolution of Libya, located at the northern extreme of the African continent, has yielded a complex crustal structure that is composed of a series of basins and uplifts. The present day deformation of Libya is the result of the Eurasia-Africa continental collision. At the end of the year 2005, The Libyan National Seismological Network was established to monitor local, regional and teleseismic activities, as well as to provide high quality data for research projects both locally and on the regional and global scale. This study aims to discuss the seismicity of Libya by using the new data from the Libyan national seismological network and to focus on the seismic hazards. At first glance the seismic activity map shows dominant trends of seismicity with most of the seismic activity concentrated along the northern coastal areas. Four major seismic trends were quite noticeable. A first trend is a NW-SE direction coinciding with the eastern boarder of the Hun Graben. A second trend is also a NW-SE direction in the offshore area and might be a continuation of this trend. The other two trends were located in the western Gulf of Sirt and Cyrenaica platform. The rest of seismicity is diffuse either offshore or in land, with no good correlation with well-mapped faults. Detailed investigations of the Libyan seismicity indicates that the Libya has experienced earthquakes of varying magnitudes and that there is definitely a certain amount of seismic risk involved in engineering projects, particularly in the northern regions. Detailed investigation of the distribution of the Libyan earthquakes in space and time along with all other geological considerations suggested the classification of the country into four seismic zones with the Hun graben zone being the most seismically active zone.

  17. Micro-seismicity in the Gulf of Cadiz: Is there a link between micro-seismicity, high magnitude earthquakes and active faults?

    NASA Astrophysics Data System (ADS)

    Silva, Sónia; Terrinha, Pedro; Matias, Luis; Duarte, João C.; Roque, Cristina; Ranero, César R.; Geissler, Wolfram H.; Zitellini, Nevio

    2017-10-01

    The Gulf of Cadiz seismicity is characterized by persistent low to intermediate magnitude earthquakes, occasionally punctuated by high magnitude events such as the M 8.7 1755 Great Lisbon earthquake and the M = 7.9 event of February 28th, 1969. Micro-seismicity was recorded during 11 months by a temporary network of 25 ocean bottom seismometers (OBSs) in an area of high seismic activity, encompassing the potential source areas of the mentioned large magnitude earthquakes. We combined micro-seismicity analysis with processing and interpretation of deep crustal seismic reflection profiles and available refraction data to investigate the possible tectonic control of the seismicity in the Gulf of Cadiz area. Three controlling mechanisms are explored: i) active tectonic structures, ii) transitions between different lithospheric domains and inherited Mesozoic structures, and iii) fault weakening mechanisms. Our results show that micro-seismicity is mostly located in the upper mantle and is associated with tectonic inversion of extensional rift structures and to the transition between different lithospheric/rheological domains. Even though the crustal structure is well imaged in the seismic profiles and in the bathymetry, crustal faults show low to negligible seismic activity. A possible explanation for this is that the crustal thrusts are thin-skinned structures rooting in relatively shallow sub-horizontal décollements associated with (aseismic) serpentinization levels at the top of the lithospheric mantle. Therefore, co-seismic slip along crustal thrusts may only occur during large magnitude events, while for most of the inter-seismic cycle these thrusts remain locked, or slip aseismically. We further speculate that high magnitude earthquake's ruptures may only nucleate in the lithospheric mantle and then propagate into the crust across the serpentinized layers.

  18. Source signature estimation from multimode surface waves via mode-separated virtual real source method

    NASA Astrophysics Data System (ADS)

    Gao, Lingli; Pan, Yudi

    2018-05-01

    The correct estimation of the seismic source signature is crucial to exploration geophysics. Based on seismic interferometry, the virtual real source (VRS) method provides a model-independent way for source signature estimation. However, when encountering multimode surface waves, which are commonly seen in the shallow seismic survey, strong spurious events appear in seismic interferometric results. These spurious events introduce errors in the virtual-source recordings and reduce the accuracy of the source signature estimated by the VRS method. In order to estimate a correct source signature from multimode surface waves, we propose a mode-separated VRS method. In this method, multimode surface waves are mode separated before seismic interferometry. Virtual-source recordings are then obtained by applying seismic interferometry to each mode individually. Therefore, artefacts caused by cross-mode correlation are excluded in the virtual-source recordings and the estimated source signatures. A synthetic example showed that a correct source signature can be estimated with the proposed method, while strong spurious oscillation occurs in the estimated source signature if we do not apply mode separation first. We also applied the proposed method to a field example, which verified its validity and effectiveness in estimating seismic source signature from shallow seismic shot gathers containing multimode surface waves.

  19. Seismic Methods

    EPA Pesticide Factsheets

    Seismic methods are the most commonly conducted geophysical surveys for engineering investigations. Seismic refraction provides engineers and geologists with the most basic of geologic data via simple procedures with common equipment.

  20. The influence of regional geological settings on the seismic hazard level in copper mines in the Legnica-Głogów Copper Belt Area (Poland)

    NASA Astrophysics Data System (ADS)

    Burtan, Zbigniew

    2017-11-01

    The current level of rockburst hazard in copper mines of the (LGOM) Legnica- Głogów Copper Belt Area is mostly the consequence of mining-induced seismicity, whilst the majority of rockbursting events registered to date were caused by high-energy tremors. The analysis of seismic readings in recent years reveals that the highest seismic activity among the copper mines in the LGOM is registered in the mine Rudna. This study investigates the seismic activity in the rock strata in the Rudna mine fields over the years 2006-2015. Of particular interest are the key seismicity parameters: the number of registered seismic events, the total energy emissions, the energy index. It appears that varied seismic activity in the area may be the function of several variables: effective mining thickness, the thickness of burst-prone strata and tectonic intensity. The results support and corroborate the view that principal factors influencing the actual seismic hazard level are regional geological conditions in the copper mines within the Legnica-Głogów Copper Belt Area.

  1. Micro-seismic waveform matching inversion based on gravitational search algorithm and parallel computation

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Xing, H. L.

    2016-12-01

    Micro-seismic events induced by water injection, mining activity or oil/gas extraction are quite informative, the interpretation of which can be applied for the reconstruction of underground stress and monitoring of hydraulic fracturing progress in oil/gas reservoirs. The source characterises and locations are crucial parameters that required for these purposes, which can be obtained through the waveform matching inversion (WMI) method. Therefore it is imperative to develop a WMI algorithm with high accuracy and convergence speed. Heuristic algorithm, as a category of nonlinear method, possesses a very high convergence speed and good capacity to overcome local minimal values, and has been well applied for many areas (e.g. image processing, artificial intelligence). However, its effectiveness for micro-seismic WMI is still poorly investigated; very few literatures exits that addressing this subject. In this research an advanced heuristic algorithm, gravitational search algorithm (GSA) , is proposed to estimate the focal mechanism (angle of strike, dip and rake) and source locations in three dimension. Unlike traditional inversion methods, the heuristic algorithm inversion does not require the approximation of green function. The method directly interacts with a CPU parallelized finite difference forward modelling engine, and updating the model parameters under GSA criterions. The effectiveness of this method is tested with synthetic data form a multi-layered elastic model; the results indicate GSA can be well applied on WMI and has its unique advantages. Keywords: Micro-seismicity, Waveform matching inversion, gravitational search algorithm, parallel computation

  2. Magma migration at the onset of the 2012-13 Tolbachik eruption revealed by Seismic Amplitude Ratio Analyses

    NASA Astrophysics Data System (ADS)

    Taisne, B.; Caudron, C.; Kugaenko, Y.; Saltykov, V.

    2015-12-01

    In contrast of the 1975-76 Tolbachik eruption, the 2012-2013 Tolbachik eruption was not preceded by any striking change in seismic activity. By processing the Klyuchevskoy volcano group seismic data with the Seismic Amplitude Ratio Analysis (SARA) method, we gain insights into the dynamics of magma transfer prior to this important eruption. We highlighted a clear migration of the source of the microseismicity within the seismic swarm, starting 20 hours before the reported eruption onset (05:15 UTC, 26 November 2012). This migration proceeded in different phases and ended when eruptive tremor, corresponding to lava extrusion, was recorded (at ~11:00 UTC, 27 November 2012). In order to get a first order approximation of the location of the magma, we compare the calculated seismic intensity ratios with the theoretical ones. As expected, the observations suggest a migration toward the eruptive vent. However, we explain the pre-eruptive observed ratios by a vertical migration under the northern slope of Plosky Tolbachik volcano that would interact at shallower depth with an intermediate storage region and initiate the lateral migration toward the eruptive vents. Another migration is also captured by this technique and coincides with a seismic swarm that started 16-20 km to the south of Plosky Tolbachik at 20:31 UTC on November 28 and lasted for more than 2 days. This seismic swarm is very similar to the seismicity preceding the 1975-76 Tolbachik eruption and can be considered as a possible aborted eruption.

  3. Post-Seismic Crustal Deformation Following The 1999 Izmit Earthquake, Western Part Of North Anatolian Fault Zone, Turkey

    NASA Astrophysics Data System (ADS)

    Gurkan, O.; Ozener, H.

    2004-12-01

    The North Anatolian Fault is an about 1500 km long, extending from the Karliova to the North Aegean. Turkey is a natural laboratory with high tectonic activity caused by the relative motion of the Eurasian, Arabian and Anatolian plates. Western part of Turkey and its vicinity is a seismically active area. Since 1972 crustal deformation has been observed by various kinds of geodetic measurements in the area. Three GPS networks were installed in this region by Geodesy Department of Kandilli Observatory and Earthquake Research Institute( KOERI ) of Bogazici University: (1) Iznik Network, installed on the Iznik-Mekece fault zone, seismically low active part, (2) Sapanca Network, installed on the Izmit-Sapanca fault zone, seismically active part, (3) Akyazi Network, installed on their intersection area, the Mudurnu fault zone. First period observations were performed by using terrestrial methods in 1990 and these observations were repeated annually until 1993. Since 1994, GPS measurements have been carried out at the temporary and permanent points in the area and the crustal movements are being monitored. Horizontal deformations, which have not been detected by terrestrial methods, were determined from the results of GPS measurements. A M=7.4 earthquake hit Izmit, northern Turkey, on August 17, 1999. After this earthquake many investigations have been started in the region. An international project has been performed with the collaboration of Massachussets Institute of Technology, Turkish General Command of Mapping, Istanbul Technical University, TUBITAK-Marmara Research Center and Geodesy Department of KOERI. Postseismic movements have been observed by the region-wide network. A GPS network including 49 well spread points in Marmara region was observed twice a year between 1999 and 2003 years. During these surveys, another network with 6 points has been formed by using 2 points from each 3 microgeodetic networks on NAFZ with appropriate coverage and geometry. These points have been connected by GPS observations to monitor the deformations. This expanded microgeodetic network has been occupied with Istanbul-Kandilli continuous GPS station (KANT). The objective of this paper is to present the post-seismic crustal deformation obtained from the GPS observations at the Western Part of the North Anatolian Fault (NAF) in Turkey.

  4. Seismic Reflection Methods

    EPA Pesticide Factsheets

    Seismic methods are the most commonly conducted geophysical surveys for engineering investigations. Seismic refraction provides engineers and geologists with the most basic of geologic data via simple procedures with common equipment.

  5. Multiple attenuation to reflection seismic data using Radon filter and Wave Equation Multiple Rejection (WEMR) method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlangga, Mokhammad Puput

    Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the τ-p domain based on move out difference between primary reflection and multiple reflection. However, inmore » case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.« less

  6. Evaluation of seismic hazard of the Gökova bay in terms of seismotectonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erkoç, Ebru Aktepe, E-mail: ebru.aktepe@deu.edu.tr; Uluğ, Atilla, E-mail: atilla.ulug@deu.edu.tr

    While discovering the seismicity of our country, knowing the array of earthquake occurrence which reflects the characteristic tectonic features of each region makes vital contributions to the earthquakes that have occurred and to the pursuit of the processes which might occur in the future. When considering the region’s seismic activity, the presence of active faults that create earthquake within the bay is obvious. Many active fault parts in the Gulf of Gökova region continues their seismic activity with the opening effect that is generally prevailing in Western Anatolia. The region has generally been continuing its seismic activity under the controlmore » of normal faults. Considering the marine studies that are made and marine continuity of the faults which are on land in addition to the seismological and tectonic studies, the determination of seismic hazard in the Gulf of Gökova and its surroundings is also important in terms of introducing the earthquake scenarios with minimized errors.« less

  7. A Numerical and Theoretical Study of Seismic Wave Diffraction in Complex Geologic Structure

    DTIC Science & Technology

    1989-04-14

    element methods for analyzing linear and nonlinear seismic effects in the surficial geologies relevant to several Air Force missions. The second...exact solution evaluated here indicates that edge-diffracted seismic wave fields calculated by discrete numerical methods probably exhibits significant...study is to demonstrate and validate some discrete numerical methods essential for analyzing linear and nonlinear seismic effects in the surficial

  8. Structure of pseudotachylyte vein systems as a key to co-seismic rupture dynamics: the case of Gavilgarh-Tan Shear Zone, central India

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, A.; Bhattacharjee, D.; Mukherjee, S.

    2014-04-01

    The secondary fractures associated with a major pseudotachylyte-bearing fault vein in the sheared aplitic granitoid of the Proterozoic Gavilgarh-Tan Shear Zone in central India are mapped at the outcrop scale. The fracture maps help to identify at least three different types of co-seismic ruptures, e.g., X-X', T1 and T2, which characterize sinistral-sense shearing of rocks, confined between two sinistral strike-slip faults slipping at seismic rate. From the asymmetric distribution of tensile fractures around the sinistral-sense fault vein, the direction of seismic rupture propagation is predicted to have occurred from west-southwest to east-northeast, during an ancient (Ordovician?) earthquake. Calculations of approximate co-seismic displacement on the faults and seismic moment ( M 0) of the earthquake are attempted, following the methods proposed by earlier workers. These estimates broadly agree to the findings from other studied fault zones (e.g., Gole Larghe Fault zone, Italian Alps). This study supports the proposition by some researchers that important seismological information can be extracted from tectonic pseudotachylytes of all ages, provided they are not reworked by subsequent tectonic activity.

  9. SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.

    2013-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.

  10. Geomorphology and seismic risk

    NASA Astrophysics Data System (ADS)

    Panizza, Mario

    1991-07-01

    The author analyses the contributions provided by geomorphology in studies suited to the assessment of seismic risk: this is defined as function of the seismic hazard, of the seismic susceptibility, and of the vulnerability. The geomorphological studies applicable to seismic risk assessment can be divided into two sectors: (a) morpho-neotectonic investigations conducted to identify active tectonic structures; (b) geomorphological and morphometric analyses aimed at identifying the particular situations that amplify or reduce seismic susceptibility. The morpho-neotectonic studies lead to the identification, selection and classification of the lineaments that can be linked with active tectonic structures. The most important geomorphological situations that can condition seismic susceptibility are: slope angle, debris, morphology, degradational slopes, paleo-landslides and underground cavities.

  11. Seismo-volcano source localization with triaxial broad-band seismic array

    NASA Astrophysics Data System (ADS)

    Inza, L. A.; Mars, J. I.; Métaxian, J. P.; O'Brien, G. S.; Macedo, O.

    2011-10-01

    Seismo-volcano source localization is essential to improve our understanding of eruptive dynamics and of magmatic systems. The lack of clear seismic wave phases prohibits the use of classical location methods. Seismic antennas composed of one-component (1C) seismometers provide a good estimate of the backazimuth of the wavefield. The depth estimation, on the other hand, is difficult or impossible to determine. As in classical seismology, the use of three-component (3C) seismometers is now common in volcano studies. To determine the source location parameters (backazimuth and depth), we extend the 1C seismic antenna approach to 3Cs. This paper discusses a high-resolution location method using a 3C array survey (3C-MUSIC algorithm) with data from two seismic antennas installed on an andesitic volcano in Peru (Ubinas volcano). One of the main scientific questions related to the eruptive process of Ubinas volcano is the relationship between the magmatic explosions and long-period (LP) swarms. After introducing the 3C array theory, we evaluate the robustness of the location method on a full wavefield 3-D synthetic data set generated using a digital elevation model of Ubinas volcano and an homogeneous velocity model. Results show that the backazimuth determined using the 3C array has a smaller error than a 1C array. Only the 3C method allows the recovery of the source depths. Finally, we applied the 3C approach to two seismic events recorded in 2009. Crossing the estimated backazimuth and incidence angles, we find sources located 1000 ± 660 m and 3000 ± 730 m below the bottom of the active crater for the explosion and the LP event, respectively. Therefore, extending 1C arrays to 3C arrays in volcano monitoring allows a more accurate determination of the source epicentre and now an estimate for the depth.

  12. Signal-to-noise ratio application to seismic marker analysis and fracture detection

    NASA Astrophysics Data System (ADS)

    Xu, Hui-Qun; Gui, Zhi-Xian

    2014-03-01

    Seismic data with high signal-to-noise ratios (SNRs) are useful in reservoir exploration. To obtain high SNR seismic data, significant effort is required to achieve noise attenuation in seismic data processing, which is costly in materials, and human and financial resources. We introduce a method for improving the SNR of seismic data. The SNR is calculated by using the frequency domain method. Furthermore, we optimize and discuss the critical parameters and calculation procedure. We applied the proposed method on real data and found that the SNR is high in the seismic marker and low in the fracture zone. Consequently, this can be used to extract detailed information about fracture zones that are inferred by structural analysis but not observed in conventional seismic data.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, K. Michael; VanDeMark, Thomas F.; Ammon, Charles J.

    We report that double-difference methods applied to cross-correlation measured Rayleigh wave time shifts are an effective tool to improve epicentroid locations and relative origin time shifts in remote regions. We apply these methods to seismicity offshore of southwestern Canada and the U.S. Pacific Northwest, occurring along the boundaries of the Pacific and Juan de Fuca (including the Explorer Plate and Gorda Block) Plates. The Blanco, Mendocino, Revere-Dellwood, Nootka, and Sovanco fracture zones host the majority of this seismicity, largely consisting of strike-slip earthquakes. The Explorer, Juan de Fuca, and Gorda spreading ridges join these fracture zones and host normal faultingmore » earthquakes. Our results show that at least the moderate-magnitude activity clusters along fault strike, supporting suggestions of large variations in seismic coupling along oceanic transform faults. Our improved relative locations corroborate earlier interpretations of the internal deformation in the Explorer and Gorda Plates. North of the Explorer Plate, improved locations support models that propose northern extension of the Revere-Dellwood fault. Relocations also support interpretations that favor multiple parallel active faults along the Blanco Transform Fault Zone. Seismicity of the western half of the Blanco appears more scattered and less collinear than the eastern half, possibly related to fault maturity. We use azimuthal variations in the Rayleigh wave cross-correlation amplitude to detect and model rupture directivity for a moderate size earthquake along the eastern Blanco Fault. Lastly, the observations constrain the seismogenic zone geometry and suggest a relatively narrow seismogenic zone width of 2 to 4 km.« less

  14. Investigation of Volcanic Seismo-Acoustic Signals: Applying Subspace Detection to Lava Fountain Activity at Etna Volcano

    NASA Astrophysics Data System (ADS)

    Sciotto, M.; Rowe, C. A.; Cannata, A.; Arrowsmith, S.; Privitera, E.; Gresta, S.

    2011-12-01

    The current eruption of Mount Etna, which began in January, 2011, has produced numerous energetic episodes of lava fountaining, which have bee recorded by the INGV seismic and acoustic sensors located on and around the volcano. The source of these events was the pit crater on the east flank of the Southeast crater of Etna. Simultaneously, small levels of activity were noted in the Bocca Nuova as well, prior to its lava fountaining activity. We will present an analysis of seismic and acoustic signals related to the 2011 activity wherein we apply the method of subspace detection to determine whether the source exhibits a temporal evolution within or between fountaining events, or otherwise produces repeating, classifiable events occurring through the continuous explosive degassing. We will examine not only the raw waveforms, but also spectral variations in time as well as time-varying statistical functions such as signal skewness and kurtosis. These results will be compared to straightforward cross-correlation analysis. In addition to classification performance, the subspace method has promise to outperform standard STA/LTA methods for real-time event detection in cases where similar events can be expected.

  15. New OBS network deployment offshore Ireland

    NASA Astrophysics Data System (ADS)

    Le Pape, Florian; Bean, Chris; Craig, David; Jousset, Philippe; Horan, Clare; Hogg, Colin; Donne, Sarah; McCann, Hannah; Möllhoff, Martin; Kirk, Henning; Ploetz, Aline

    2016-04-01

    With the presence of the stormy NE Atlantic, Ireland is ideally located to investigate further our understanding of ocean generated microseisms and use noise correlation methods to develop seismic imaging in marine environments as well as time-lapse monitoring. In order to study the microseismic activity offshore Ireland, 10 Broad Band Ocean Bottom Seismographs (OBSs) units including hydrophones have been deployed in January 2016 across the shelf offshore Donegal and out into the Rockall Trough. This survey represents the first Broadband passive study in this part of the NE Atlantic. The instruments will be recovered in August 2016 providing 8 months worth of data to study microseisms but also the offshore seismic activity in the area. One of the main goal of the survey is to investigate the spatial and temporal distributions of dominant microseism source regions, close to the microseism sources. Additionally we will study the coupling of seismic and acoustic signals at the sea bed and its evolution in both the deep water and continental shelf areas. Furthermore, the survey also aims to investigate further the relationship between sea state conditions (e.g. wave height, period), seafloor pressure variations and seismic data recorded on both land and seafloor. Finally, the deployed OBS network is also the first ever attempt to closely monitor local offshore earthquakes in Ireland. Ireland seismicity although relatively low can reduce slope stability and poses the possibility of triggering large offshore landslides and local tsunamis.

  16. Waveform classification and statistical analysis of seismic precursors to the July 2008 Vulcanian Eruption of Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Rodgers, Mel; Smith, Patrick; Pyle, David; Mather, Tamsin

    2016-04-01

    Understanding the transition between quiescence and eruption at dome-forming volcanoes, such as Soufrière Hills Volcano (SHV), Montserrat, is important for monitoring volcanic activity during long-lived eruptions. Statistical analysis of seismic events (e.g. spectral analysis and identification of multiplets via cross-correlation) can be useful for characterising seismicity patterns and can be a powerful tool for analysing temporal changes in behaviour. Waveform classification is crucial for volcano monitoring, but consistent classification, both during real-time analysis and for retrospective analysis of previous volcanic activity, remains a challenge. Automated classification allows consistent re-classification of events. We present a machine learning (random forest) approach to rapidly classify waveforms that requires minimal training data. We analyse the seismic precursors to the July 2008 Vulcanian explosion at SHV and show systematic changes in frequency content and multiplet behaviour that had not previously been recognised. These precursory patterns of seismicity may be interpreted as changes in pressure conditions within the conduit during magma ascent and could be linked to magma flow rates. Frequency analysis of the different waveform classes supports the growing consensus that LP and Hybrid events should be considered end members of a continuum of low-frequency source processes. By using both supervised and unsupervised machine-learning methods we investigate the nature of waveform classification and assess current classification schemes.

  17. Seismic Structure of Perth Basin (Australia) and surroundings from Passive Seismic Deployments

    NASA Astrophysics Data System (ADS)

    Issa, N.; Saygin, E.; Lumley, D. E.; Hoskin, T. E.

    2016-12-01

    We image the subsurface structure of Perth Basin, Western Australia and surroundings by using ambient seismic noise data from 14 seismic stations recently deployed by University of Western Australia (UWA) and other available permanent stations from Geoscience Australia seismic network and the Australian Seismometers in Schools program. Each of these 14 UWA seismic stations comprises a broadband sensor and a high fidelity 3-component 10 Hz geophone, recording in tandem at 250 Hz and 1000 Hz. The other stations used in this study are equipped with short period and broadband sensors. In addition, one shallow borehole station is operated with eight 3 component geophones at depths of between 2 and 44 m. The network is deployed to characterize natural seismicity in the basin and to try and identify any microseismic activity across Darling Fault Zone (DFZ), bounding the basin to the east. The DFZ stretches to approximately 1000 km north-south in Western Australia, and is one of the longest fault zones on the earth with a limited number of detected earthquakes. We use seismic noise cross- and auto-correlation methods to map seismic velocity perturbations across the basin and the transition from DFZ to the basin. Retrieved Green's functions are stable and show clear dispersed waveforms. Travel times of the surface wave Green's functions from noise cross-correlations are inverted with a two-step probabilistic framework to map the absolute shear wave velocities as a function of depth. The single station auto-correlations from the seismic noise yields P wave reflectivity under each station, marking the major discontinuities. Resulting images show the shear velocity perturbations across the region. We also quantify the variation of ambient seismic noise at different depths in the near surface using the geophones in the shallow borehole array.

  18. Revised crustal architecture of the southeastern Carpathian foreland from active and passive seismic data

    NASA Astrophysics Data System (ADS)

    Enciu, Dana M.; Knapp, Camelia C.; Knapp, James H.

    2009-08-01

    Integration of active and passive source seismic data is employed in order to study the nature of the relationships between crustal seismicity and geologic structures in the southeastern (SE) Carpathian foreland of Romania and the possible connection with the Vrancea Seismogenic Zone (VSZ) of intermediate-depth seismicity, one of the most active earthquake-prone areas in Europe. Crustal epicenters and focal mechanisms are correlated with four deep industry seismic profiles, the reprocessed Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics (DACIA PLAN) profile and the Deep Reflection Acquisition Constraining Unusual Lithospheric Activity II and III (DRACULA) profiles in order to understand the link between neotectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identifies several active crustal faults in the SE Carpathian foreland and suggests a mechanical coupling between the mantle located VSZ and the overlying foreland crust. The coupled associated deformation appears to take place on the Trotus Fault, the Sinaia Fault, and the newly detected Ialomita Fault. Seismic reflection imaging reveals the absence of west dipping reflectors in the crystalline crust and a slightly east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against previously purported mechanisms to generate mantle seismicity in the VSZ including oceanic lithosphere subduction in place and oceanic slab break off, furthermore suggesting that the Vrancea seismogenic body is undetached from the overlying crust in the foreland.

  19. Patterns in Seismicity at Mt St Helens and Mt Unzen

    NASA Astrophysics Data System (ADS)

    Lamb, Oliver; De Angelis, Silvio; Lavallee, Yan

    2014-05-01

    Cyclic behaviour on a range of timescales is a well-documented feature of many dome-forming volcanoes. Previous work on Soufrière Hills volcano (Montserrat) and Volcán de Colima (Mexico) revealed broad-scale similarities in behaviour implying the potential to develop general physical models of sub-surface processes [1]. Using volcano-seismic data from Mt St Helens (USA) and Mt Unzen (Japan) this study explores parallels in long-term behaviour of seismicity at two dome-forming systems. Within the last twenty years both systems underwent extended dome-forming episodes accompanied by large Vulcanian explosions or dome collapses. This study uses a suite of quantitative and analytical techniques which can highlight differences or similarities in volcano seismic behaviour, and compare the behaviour to changes in activity during the eruptive episodes. Seismic events were automatically detected and characterized on a single short-period seismometer station located 1.5km from the 2004-2008 vent at Mt St Helens. A total of 714 826 individual events were identified from continuous recording of seismic data from 22 October 2004 to 28 February 2006 (average 60.2 events per hour) using a short-term/long-term average algorithm. An equivalent count will be produced from seismometer recordings over the later stages of the 1991-1995 eruption at MT Unzen. The event count time-series from Mt St Helens is then analysed using Multi-taper Method and the Short-Term Fourier Transform to explore temporal variations in activity. Preliminary analysis of seismicity from Mt St Helens suggests cyclic behaviour of subannual timescale, similar to that described at Volcán de Colima and Soufrière Hills volcano [1]. Frequency Index and waveform correlation tools will be implemented to analyse changes in the frequency content of the seismicity and to explore their relations to different phases of activity at the volcano. A single station approach is used to gain a fine-scale view of variations in seismic behaviour at both volcanoes with a focus on comparisons with changes in activity with the hope of gaining a greater understanding of sub-surface processes occurring within the volcanic systems. This approach and the techniques above were successfully implemented at Redoubt Volcano (USA) [2] which also concluded that these techniques may serve an important role in future real-time eruption monitoring efforts. [1] Lamb O., Varley N., Mather T. et al., in prep Similar Cyclic Behaviour at two lava domes, Volcán de Colima (Mexico) and Soufrière Hills volcano (Montserrat), with implications for monitoring. [2] Ketner, D. & Power, J., 2013. Characterization of seismic events during the 2009 eruption of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, 259, pp.45-62

  20. Seismicity During Continental Breakup in the Red Sea Rift of Northern Afar

    NASA Astrophysics Data System (ADS)

    Illsley-Kemp, Finnigan; Keir, Derek; Bull, Jonathan M.; Gernon, Thomas M.; Ebinger, Cynthia; Ayele, Atalay; Hammond, James O. S.; Kendall, J.-Michael; Goitom, Berhe; Belachew, Manahloh

    2018-03-01

    Continental rifting is a fundamental component of plate tectonics. Recent studies have highlighted the importance of magmatic activity in accommodating extension during late-stage rifting, yet the mechanisms by which crustal thinning occurs are less clear. The Red Sea rift in Northern Afar presents an opportunity to study the final stages of continental rifting as these active processes are exposed subaerially. Between February 2011 and February 2013 two seismic networks were installed in Ethiopia and Eritrea. We locate 4,951 earthquakes, classify them by frequency content, and calculate 31 focal mechanisms. Results show that seismicity is focused at the rift axis and the western marginal graben. Rift axis seismicity accounts for ˜64% of the seismic moment release and exhibits a swarm-like behavior. In contrast, seismicity at the marginal graben is characterized by high-frequency earthquakes that occur at a constant rate. Results suggest that the rift axis remains the primary locus of seismicity. Low-frequency earthquakes, indicative of magmatic activity, highlight the presence of a magma complex ˜12 km beneath Alu-Dalafilla at the rift axis. Seismicity at the marginal graben predominantly occurs on westward dipping, antithetic faults. Focal mechanisms show that this seismicity is accommodating E-W extension. We suggest that the seismic activity at the marginal graben is either caused by upper crustal faulting accommodating enhanced crustal thinning beneath Northern Afar or as a result of flexural faulting between the rift and plateau. This seismicity is occurring in conjunction with magmatic extension at the rift axis, which accommodates the majority of long-term extension.

  1. A Reappraisal of Seismicity and Eruptions of Pantelleria Island and the Sicily Channel (Italy)

    NASA Astrophysics Data System (ADS)

    Spampinato, Salvatore; Ursino, Andrea; Barbano, Maria Serafina; Pirrotta, Claudia; Rapisarda, Salvatore; Larocca, Graziano; Platania, Pier Raffaele

    2017-07-01

    Three main tectonic depressions (the Pantelleria, Linosa and Malta troughs), the expression of a continental rift, characterize the Sicily Channel, a region with recent volcanic activity attested by the Pantelleria and Linosa volcanic islands, as well as numerous seamounts. To understand the seismic and eruptive behaviour of this area, we compare historical and instrumental seismicity retrieved from catalogues with recordings from both a mobile seismic network and a permanent station deployed at Pantelleria. A review of historical eruptions affecting the Sicily Channel is also presented. Recent instrumental seismicity shows that the Sicily Channel is characterized by a low level of seismicity, with earthquakes mainly occurring as isolated events, rather than swarms as observed during the few documented eruptive periods. The results of a seismic survey in 2006-2007, as well as the signals recorded by a permanent station in 2010-2014, enable stating that also Pantelleria is characterized by a very low rate of seismicity. The available, though scant, historical information suggests a recurrence time of about a century for the volcanic activity and that eruptions are usually preceded by seismic swarms. In the only historical known eruption of Pantelleria, in addition to shocks, uplifting and increasing fumarole activity, were observed. Notwithstanding the lack of eruptions over the past century, and despite the low recent seismic rate, we believe that the geophysical monitoring of the Sicily Channel needs improving since it is an area of potentially high seismic and volcanic hazard given the presence of several active submarine eruptive centres.

  2. An alternative approach to probabilistic seismic hazard analysis in the Aegean region using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Weatherill, Graeme; Burton, Paul W.

    2010-09-01

    The Aegean is the most seismically active and tectonically complex region in Europe. Damaging earthquakes have occurred here throughout recorded history, often resulting in considerable loss of life. The Monte Carlo method of probabilistic seismic hazard analysis (PSHA) is used to determine the level of ground motion likely to be exceeded in a given time period. Multiple random simulations of seismicity are generated to calculate, directly, the ground motion for a given site. Within the seismic hazard analysis we explore the impact of different seismic source models, incorporating both uniform zones and distributed seismicity. A new, simplified, seismic source model, derived from seismotectonic interpretation, is presented for the Aegean region. This is combined into the epistemic uncertainty analysis alongside existing source models for the region, and models derived by a K-means cluster analysis approach. Seismic source models derived using the K-means approach offer a degree of objectivity and reproducibility into the otherwise subjective approach of delineating seismic sources using expert judgment. Similar review and analysis is undertaken for the selection of peak ground acceleration (PGA) attenuation models, incorporating into the epistemic analysis Greek-specific models, European models and a Next Generation Attenuation model. Hazard maps for PGA on a "rock" site with a 10% probability of being exceeded in 50 years are produced and different source and attenuation models are compared. These indicate that Greek-specific attenuation models, with their smaller aleatory variability terms, produce lower PGA hazard, whilst recent European models and Next Generation Attenuation (NGA) model produce similar results. The Monte Carlo method is extended further to assimilate epistemic uncertainty into the hazard calculation, thus integrating across several appropriate source and PGA attenuation models. Site condition and fault-type are also integrated into the hazard mapping calculations. These hazard maps are in general agreement with previous maps for the Aegean, recognising the highest hazard in the Ionian Islands, Gulf of Corinth and Hellenic Arc. Peak Ground Accelerations for some sites in these regions reach as high as 500-600 cm s -2 using European/NGA attenuation models, and 400-500 cm s -2 using Greek attenuation models.

  3. Precisely relocated seismicity using 3-D seismic velocity model by double-difference tomography method and orogenic processes in central and southern Taiwan

    NASA Astrophysics Data System (ADS)

    Nagai, S.; Wu, Y.; Suppe, J.; Hirata, N.

    2009-12-01

    The island of Taiwan is located in the site of ongoing arc-continent collision zone between the Philippine Sea Plate and the Eurasian Plate. Numerous geophysical and geological studies are done in and around Taiwan to develop various models to explain the tectonic processes in the Taiwan region. The active and young tectonics and the associated high seismicity in Taiwan provide us with unique opportunity to explore and understand the processes in the region related to the arc-continent collision. Nagai et al. [2009] imaged eastward dipping alternate high- and low-velocity bodies at depths of 5 to 25 km from the western side of the Central Mountain Range to the eastern part of Taiwan, by double-difference tomography [Zhang and Thurber, 2003] using three temporary seismic networks with the Central Weather Bureau Seismic Network(CWBSN). These three temporary networks are the aftershock observation after the 1999 Chi-Chi Taiwan earthquake and two dense linear array observations; one is across central Taiwan in 2001, another is across southern Taiwan in 2005, respectively. We proposed a new orogenic model, ’Upper Crustal Stacking Model’ inferred from our tomographic images. To understand the detailed seismic structure more, we carry on relocating earthquakes more precisely in central and southern Taiwan, using three-dimensional velocity model [Nagai et al., 2009] and P- and S-wave arrival times both from the CWBSN and three temporary networks. We use the double-difference tomography method to improve relative and absolute location accuracy simultaneously. The relocated seismicity is concentrated and limited along the parts of boundaries between low- and high-velocity bodies. Especially, earthquakes occurred beneath the Eastern Central Range, triggered by 1999 Chi-Chi earthquake, delineate subsurface structural boundaries, compared with profiles of estimated seismic velocity. The relocated catalog and 3-D seismic velocity model give us some constraints to reconstruct the orogenic model in Taiwan. We show these relocated seismicity with P- and S-wave velocity profiles, with focal mechanisms [e.g. Wu et al., 2008] and spatio-temporal variation, in central and southern Taiwan and discuss tectonic processes in Taiwan.

  4. DigiSeis—A software component for digitizing seismic signals using the PC sound card

    NASA Astrophysics Data System (ADS)

    Amin Khan, Khalid; Akhter, Gulraiz; Ahmad, Zulfiqar

    2012-06-01

    An innovative software-based approach to develop an inexpensive experimental seismic recorder is presented. This approach requires no hardware as the built-in PC sound card is used for digitization of seismic signals. DigiSeis, an ActiveX component is developed to capture the digitized seismic signals from the sound card and deliver them to applications for processing and display. A seismic recorder application software SeisWave is developed over this component, which provides real-time monitoring and display of seismic events picked by a pair of external geophones. This recorder can be used as an educational aid for conducting seismic experiments. It can also be connected with suitable seismic sensors to record earthquakes. The software application and the ActiveX component are available for download. This component can be used to develop seismic recording applications according to user specific requirements.

  5. Detection of earthquake swarms at subduction zones globally: Insights into tectonic controls on swarm activity

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Ide, S.

    2017-07-01

    Earthquake swarms are characterized by an increase in seismicity rate that lacks a distinguished main shock and does not obey Omori's law. At subduction zones, they are thought to be related to slow-slip events (SSEs) on the plate interface. Earthquake swarms in subduction zones can therefore be used as potential indicators of slow-slip events. However, the global distribution of earthquake swarms at subduction zones remains unclear. Here we present a method for detecting such earthquake sequences using the space-time epidemic-type aftershock-sequence model. We applied this method to seismicity (M ≥ 4.5) recorded in the Advanced National Seismic System catalog at subduction zones during the period of 1995-2009. We detected 453 swarms, which is about 6.7 times the number observed in a previous catalog. Foreshocks of some large earthquakes are also detected as earthquake swarms. In some subduction zones, such as at Ibaraki-Oki, Japan, swarm-like foreshocks and ordinary swarms repeatedly occur at the same location. Given that both foreshocks and swarms are related to SSEs on the plate interface, these regions may have experienced recurring SSEs. We then compare the swarm activity and tectonic properties of subduction zones, finding that swarm activity is positively correlated with curvature of the incoming plate before subduction. This result implies that swarm activity is controlled either by hydration of the incoming plate or by heterogeneity on the plate interface due to fracturing related to slab bending.

  6. Empirical Study of Horizontal and Vertical Resolution of Teleseismic Receiver Function Data for Shallow Crustal Imagery.

    NASA Astrophysics Data System (ADS)

    Subasic, S.; Piana Agostinetti, N.; Bean, C. J.

    2017-12-01

    Passive seismic methods as a tool in exploration geophysics are relatively cheap, and offer the prospect of 3D imagery at a fraction of the cost of an active survey. Outputs from passive seismic surveys can also be used as a test and guide for subsequent targeted higher resolution studies, and they offer a strategic alternative in areas where an active survey would be a difficult or impossible task. In order to test the horizontal and vertical resolution of teleseismic receiver functions, we perform a complete receiver function analysis and inversion of the teleseismic data from the La Barge array. The La Barge Passive Seismic Experiment is composed of 55 instruments deployed in western Wyoming, recording continuously between November 2008 and June 2009. The close interstation distance used during the deployment (250m, up to two orders of magnitude smaller than in typical receiver function studies) makes this open-access data set a perfect test-case for the aim of this study. Receiver functions (RF) are calculated for earthquakes with Mw ≥ 5.5, at epicentral distances ranging from 30° to 100°. We use the frequency domain deconvolution method proposed by Di Bona (1998). This method includes estimations of variances for individual receiver functions, and considers both the pre-signal noise, as well as the noise involved in the deconvolution itself. We perform harmonic decomposition of the receiver function dataset. The zero-order harmonic, representing the bulk isotropic variation of seismic velocities with depth, is used in the inversion. The RF inversion scheme follows a reversible jump Markov Chain Monte Carlo algorithm, developed by Piana Agostinetti and Malinverno (2010). The results can be compared with the measurements from nearby wells.

  7. Detecting Human Activity Using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors

    DTIC Science & Technology

    2011-09-01

    Detecting Human Activity using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors by Sarah H. Walker and Geoffrey H. Goldman...Adelphi, MD 20783-1197 ARL-TR-5729 September 2011 Detecting Human Activity using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors...DD-MM-YYYY) September 2011 2. REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Detecting Human Activity using Acoustic

  8. Efforts to monitor and characterize the recent increasing seismicity in central Oklahoma

    USGS Publications Warehouse

    McNamara, Daniel E.; Rubinstein, Justin L.; Myers, Emma; Smoczyk, Gregory M.; Benz, Harley M.; Williams, Robert; Hayes, Gavin; Wilson, David; Herrmann, Robert B.; McMahon, Nicole D; Aster, R.C.; Bergman, E.; Holland, Austin; Earle, Paul

    2015-01-01

    The sharp increase in seismicity over a broad region of central Oklahoma has raised concerns regarding the source of the activity and its potential hazard to local communities and energy-industry infrastructure. Efforts to monitor and characterize the earthquake sequences in central Oklahoma are reviewed. Since early 2010, numerous organizations have deployed temporary portable seismic stations in central Oklahoma to record the evolving seismicity. A multiple-event relocation method is applied to produce a catalog of central Oklahoma earthquakes from late 2009 into early 2015. Regional moment tensor (RMT) source parameters were determined for the largest and best-recorded earthquakes. Combining RMT results with relocated seismicity enabled determination of the length, depth, and style of faulting occurring on reactivated subsurface fault systems. It was found that the majority of earthquakes occur on near-vertical, optimally oriented (northeast-southwest and northwest-southeast) strike-slip faults in the shallow crystalline basement. In 2014, 17 earthquakes occurred with magnitudes of 4 or larger. It is suggested that these recently reactivated fault systems pose the greatest potential hazard to the region.

  9. Theoretical computation of internal co- and post-seismic deformation fields caused by great earthquakes in a spherically stratified viscoelastic earth

    NASA Astrophysics Data System (ADS)

    Takagi, Y.; Okubo, S.

    2016-12-01

    Internal co- and post-seismic deformation fields such as strain and stress changes have been modelled in order to study their effects on the subsequent earthquake and/or volcanic activity around the epicentre. When modelling strain or stress changes caused by great earthquakes (M>9.0), we should use a realistic earth model including earth's curvature and stratification; according to Toda et al.'s (2011) result, the stress changes caused by the 2011 Tohoku-oki earthquake (Mw=9.0) exceed 0.1 bar (0.01 MPa) even at the epicentral distance over 400 km. Although many works have been carried out to compute co- and post-seismic surface deformation fields using a spherically stratified viscoelastic earth (e.g. Piersanti et al. 1995; Pollitz 1996, 1997; Tanaka et al. 2006), less attention has been paid to `internal' deformation fields. Tanaka et al. (2006) succeeded in computing post-seismic surface displacements in a continuously stratified compressible viscoelastic earth by evaluating the inverse Laplace integration numerically. To our regret, however, their method cannot calculate internal deformation because they use Okubo's (1993) reciprocity theorem. We found that Okubo's (1993) reciprocity theorem can be extended to computation of internal deformation fields. In this presentation, we show a method of computing internal co- and post-seismic deformation fields and discuss the effects of earth's curvature and stratification on them.

  10. Anomalous changes of diffuse CO_{2} emission and seismic activity at Teide volcano, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    García-Hernández, Rubén; Melián, Gladys; D'Auria, Luca; Asensio-Ramos, María; Alonso, Mar; Padilla, Germán D.; Rodríguez, Fátima; Padrón, Eleazar; Barrancos, José; García-Merino, Marta; Amonte, Cecilia; Pérez, Aarón; Calvo, David; Hernández, Pedro A.; Pérez, Nemesio M.

    2017-04-01

    Tenerife (2034 km2) is the largest of the Canary Islands and hosts four main active volcanic edifices: three volcanic rifts and a central volcanic complex, Las Cañadas, which is characterized by the eruption of differentiated magmas. Laying inside Las Cañadas a twin stratovolcanoes system, Pico Viejo and Teide, has been developed. Although there are no visible gas emanations along the volcanic rifts of Tenerife, the existence of a volcanic-hydrothermal system beneath Teide volcano is suggested by the occurrence of a weak fumarolic system, steamy ground and high rates of diffuse CO2 degassing all around the summit cone of Teide. Soil CO2 efflux surveys have been performed at the summit crater of Teide volcano since 1999, to determine the diffuse CO2 emission from the summit crater and to evaluate the temporal variations of CO2 efflux and their relationships with seismic-volcanic activity. Soil CO2 efflux and soil temperature have been always measured at the same 38 observation sites homogeneously distributed within an area of about 6,972 m2 inside the summit crater. Soil CO2 diffuse effluxes were estimated according to the accumulation chamber method by means of a non-dispersive infrared (NDIR) LICOR-820 CO2 analyzer. Historical seismic activity in Tenerife has been characterized by low- to moderate-magnitude events (M <2.5), and most of the earthquake's epicenters have been clustered in an offshore area SE of Tenerife. However, very few earthquakes have occurred in other areas, including Teide volcano. At 12:18 of January 6, 2017, the Canary Seismic Network belonged to the Instituto Volcanológico de Canarias (INVOLCAN) registered an earthquake of M 2.5 located in the vertical of Teide volcano with a depth of 6.6 km. It was the strongest earthquake located inside Cañadas caldera since 2004. Between October 11 and December 13, 2016, a continuous increase on the diffuse CO2 emission was registered, from 21.3 ± 2.0 to 101.7 ± 20.7 t d-1, suggesting the occurrence of future increase in the seismic-volcanic activity. In fact, this precursory signal preceded the occurrence of the 2.5 seismic event and no significant horizontal and vertical displacements were registered by the Canary GPS network belonged to INVOLCAN. This seismic event was probably due to the increase of fluid pressure in the hydrothermal-magmatic system of Tenerife. With the aim of investigate the relationship of the observed temporal variation on diffuse CO2 emission and the seismic event occurred beneath Teide volcano in January 6, 2016, the anomalous peak of diffuse CO2 emission was tested following the Material Failure Forecast Method (FFM). To do so, a Geochemical Window Precursory Signal (GWPS) was selected between October 11 and December 13, 2016. Plotting the inverse of diffuse CO2 emission rate versus time, the interception of the linear fit of the data with the time axis indicates the theoretical moment when seismicity is most likely to occur. Surprisingly, interception of the linear fit occurred for a time window between January 6 and 9, 2017, showing an excellent correlation with the occurrence of the M 2.5 earthquake registered at Teide in January 6, 2017.

  11. Seismic facies analysis based on self-organizing map and empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Du, Hao-kun; Cao, Jun-xing; Xue, Ya-juan; Wang, Xing-jian

    2015-01-01

    Seismic facies analysis plays an important role in seismic interpretation and reservoir model building by offering an effective way to identify the changes in geofacies inter wells. The selections of input seismic attributes and their time window have an obvious effect on the validity of classification and require iterative experimentation and prior knowledge. In general, it is sensitive to noise when waveform serves as the input data to cluster analysis, especially with a narrow window. To conquer this limitation, the Empirical Mode Decomposition (EMD) method is introduced into waveform classification based on SOM. We first de-noise the seismic data using EMD and then cluster the data using 1D grid SOM. The main advantages of this method are resolution enhancement and noise reduction. 3D seismic data from the western Sichuan basin, China, are collected for validation. The application results show that seismic facies analysis can be improved and better help the interpretation. The powerful tolerance for noise makes the proposed method to be a better seismic facies analysis tool than classical 1D grid SOM method, especially for waveform cluster with a narrow window.

  12. Synthesis of instrumentally and historically recorded earthquakes and studying their spatial statistical relationship (A case study: Dasht-e-Biaz, Eastern Iran)

    NASA Astrophysics Data System (ADS)

    Jalali, Mohammad; Ramazi, Hamidreza

    2018-06-01

    Earthquake catalogues are the main source of statistical seismology for the long term studies of earthquake occurrence. Therefore, studying the spatiotemporal problems is important to reduce the related uncertainties in statistical seismology studies. A statistical tool, time normalization method, has been determined to revise time-frequency relationship in one of the most active regions of Asia, Eastern Iran and West of Afghanistan, (a and b were calculated around 8.84 and 1.99 in the exponential scale, not logarithmic scale). Geostatistical simulation method has been further utilized to reduce the uncertainties in the spatial domain. A geostatistical simulation produces a representative, synthetic catalogue with 5361 events to reduce spatial uncertainties. The synthetic database is classified using a Geographical Information System, GIS, based on simulated magnitudes to reveal the underlying seismicity patterns. Although some regions with highly seismicity correspond to known faults, significantly, as far as seismic patterns are concerned, the new method highlights possible locations of interest that have not been previously identified. It also reveals some previously unrecognized lineation and clusters in likely future strain release.

  13. Seismic monitoring of effusive-explosive activity and large lava dome collapses during 2013-2015 at Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Arámbula-Mendoza, Raúl; Reyes-Dávila, Gabriel; Vargas-Bracamontes Dulce, M.; González-Amezcua, Miguel; Navarro-Ochoa, Carlos; Martínez-Fierros, Alejandro; Ramírez-Vázquez, Ariel

    2018-02-01

    Volcán de Colima, the most active volcano in Mexico, started a new eruptive cycle in January 2013. Since this date, the volcano has presented effusive and explosive activity. The beginning of the cycle was marked by a moderate Vulcanian explosion which had hyperbolical behavior in its precursory seismicity, possibly related to a shallow rupture process. Then, during the whole eruptive stage, the effusive activity was accompanied by low to moderate explosions. The explosions had energies mainly of 106 joules and were located between 0 and 1600 m below the crater, whereas the locations of tremor sources were found to be deeper, reaching up to 3800 m beneath the crater. Very-long-period signals (VLPs) have been observed with Vulcanian explosions that produce pyroclastic flows. A few number of volcano-tectonic events (VTs) were recognized during the studied period (2013-2015), indicating that the volcano is an open system. This was particularly evidenced in July 2015, when a new batch of magma rose rapidly without large precursors, only an accelerated increase in the number of rockfalls and associated RSEM. This event generated two large lava dome collapses with several pulses of material and pyroclastic flows that travelled up to 10.3 km from the summit. The seismic monitoring of Volcán de Colima is currently the only tool in real-time employed to assess the state of the volcanic activity. It is thus necessary to integrate new seismic methods as well as other geophysical monitoring techniques able to detect precursory signals of an impending hazardous event.

  14. Earthquake Hazard for Aswan High Dam Area

    NASA Astrophysics Data System (ADS)

    Ismail, Awad

    2016-04-01

    Earthquake activity and seismic hazard analysis are important components of the seismic aspects for very essential structures such as major dams. The Aswan High Dam (AHD) created the second man-made reservoir in the world (Lake Nasser) and is constructed near urban areas pose a high-risk potential for downstream life and property. The Dam area is one of the seismically active regions in Egypt and is occupied with several cross faults, which are dominant in the east-west and north-south. Epicenters were found to cluster around active faults in the northern part of Lake and AHD location. The space-time distribution and the relation of the seismicity with the lake water level fluctuations were studied. The Aswan seismicity separates into shallow and deep seismic zones, between 0 and 14 and 14 and 30 km, respectively. These two seismic zones behave differently over time, as indicated by the seismicity rate, lateral extent, b-value, and spatial clustering. It is characterized by earthquake swarm sequences showing activation of the clustering-events over time and space. The effect of the North African drought (1982 to present) is clearly seen in the reservoir water level. As it decreased and left the most active fault segments uncovered, the shallow activity was found to be more sensitive to rapid discharging than to the filling. This study indicates that geology, topography, lineations in seismicity, offsets in the faults, changes in fault trends and focal mechanisms are closely related. No relation was found between earthquake activity and both-ground water table fluctuations and water temperatures measured in wells located around the Kalabsha area. The peak ground acceleration is estimated in the dam site based on strong ground motion simulation. This seismic hazard analyses have indicated that AHD is stable with the present seismicity. The earthquake epicenters have recently took place approximately 5 km west of the AHD structure. This suggests that AHD dam must be analyzed with high priority and redesigned to increase the safety of the embankments and their appurtenant structures, if necessary. Key word Aswan High Dam, Earthquake hazard reduction

  15. Innovative Approaches for Seismic Studies of Mars (Invited)

    NASA Astrophysics Data System (ADS)

    Banerdt, B.

    2010-12-01

    In addition to its intrinsic interest, Mars is particularly well-suited for studying the full range of processes and phenomena related to early terrestrial planet evolution, from initial differentiation to the start of plate tectonics. It is large and complex enough to have undergone most of the processes that affected early Earth but, unlike the Earth, has apparently not undergone extensive plate tectonics or other major reworking that erased the imprint of early events (as evidenced by the presence of cratered surfaces older than 4 Ga). The martian mantle should have Earth-like polymorphic phase transitions and may even support a perovskite layer near the core (depending on the actual core radius), a characteristic that would have major implications for core cooling and mantle convection. Thus even the most basic measurements of planetary structure, such as crustal thickness, core radius and state (solid/liquid), and gross mantle velocity structure would provide invaluable constraints on models of early planetary evolution. Despite this strong scientific motivation (and several failed attempts), Mars remains terra incognita from a seismic standpoint. This is due to an unfortunate convergence of circumstances, prominent among which are our uncertainty in the level of seismic activity and the relatively high cost of landing multiple long-lived spacecraft on Mars to comprise a seismic network for body-wave travel-time analysis; typically four to ten stations are considered necessary for this type of experiment. In this presentation I will address both of these issues. In order to overcome the concern about a possible lack of marsquakes with which to work, it is useful to identify alternative methods for using seismic techniques to probe the interior. Seismology without quakes can be accomplished in a number of ways. “Unconventional” sources of seismic energy include meteorites (which strike the surface of Mars at a relatively high rate), artificial projectiles (which can supply up to 1010 J of kinetic energy), seismic “hum” from meteorological forcing, and tidal deformation from Phobos (with a period around 6 hours). Another means for encouraging a seismic mission to Mars is to promote methods that can derive interior information from a single seismometer. Fortunately many such methods exist, including source location through P-S and back-azimuth, receiver functions, identification of later phases (PcP, PKP, etc.), surface wave dispersion, and normal mode analysis (from single large events, stacked events, or background noise). Such methods could enable the first successful seismic investigation of another planet since the Apollo seismometers were turned off almost 35 years ago.

  16. Evaluating the Gutenberg-Richter Relationship for Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Tymchak, M. P.; Flewelling, S. A.

    2013-12-01

    Large volumes of flowback and produced water generated from hydraulic fracturing and oil and gas production have led to increased wastewater disposal through underground injection wells. Several recent studies have linked recently felt seismic events to underground injection wells in Arkansas, Ohio, Texas and Oklahoma, among others. However, in some cases, such as in Oklahoma, there is a lack of consensus as to whether the earthquakes were the result of fluid injection (Keranan et al., 2013), natural tectonic processes (Oklahoma Geological Survey, 2013), or were related to remote events (van der Elst et al., 2013). Moreover, it is unclear why earthquakes have occurred near some injection wells but not others, with apparently similar geology, target reservoirs, and injection rates (e.g., Frohlich, 2012). In instances where injection occurred near a fault (e.g., Rangely, CO), the timing and distribution of seismic events was well correlated to fluid volumes, and the interaction between injection and induced seismicity was easily resolved. In other cases (e.g., Oklahoma, Texas), it appears more difficult to interpret whether a particular injection well was related to observed seismic events. Therefore, metrics are needed as diagnostic tools to help differentiate between natural and induced seismicity. It has been well established that the frequency-magnitude distribution of earthquakes follows the Gutenberg-Richter distribution log N(M) = a - bM, where the slope (b-value) is typically near one. However, in some instances of deep fluid injection, b-values may vary, depending on specific injection activities, such as enhanced geothermal or hydraulic fracturing (Dinske and Shapiro, 2013). In some cases, b-values may vary during successive fracture stages of a single horizontal well (e.g., Williams and Calvarez, 2013), and seismicity associated with hydraulic fracturing may deviate from the Gutenberg-Richter relationship altogether (Hurd and Zoback, 2012). We evaluate whether frequency magnitude distributions could be used as a method to distinguish between natural and induced seismicity, drawing from a number of datasets compiled from different types of injection activities.

  17. Probabilistic Seismic Hazard Assessment for Iraq Using Complete Earthquake Catalogue Files

    NASA Astrophysics Data System (ADS)

    Ameer, A. S.; Sharma, M. L.; Wason, H. R.; Alsinawi, S. A.

    2005-05-01

    Probabilistic seismic hazard analysis (PSHA) has been carried out for Iraq. The earthquake catalogue used in the present study covers an area between latitude 29° 38.5° N and longitude 39° 50° E containing more than a thousand events for the period 1905 2000. The entire Iraq region has been divided into thirteen seismogenic sources based on their seismic characteristics, geological setting and tectonic framework. The completeness of the seismicity catalogue has been checked using the method proposed by Stepp (1972). The analysis of completeness shows that the earthquake catalogue is not complete below Ms=4.8 for all of Iraq and seismic source zones S1, S4, S5, and S8, while it varies for the other seismic zones. A statistical treatment of completeness of the data file was carried out in each of the magnitude classes. The Frequency Magnitude Distributions (FMD) for the study area including all seismic source zones were established and the minimum magnitude of complete reporting (Mc) were then estimated. For the entire Iraq the Mc was estimated to be about Ms=4.0 while S11 shows the lowest Mc to be about Ms=3.5 and the highest Mc of about Ms=4.2 was observed for S4. The earthquake activity parameters (activity rate λ, b value, maximum regional magnitude mmax) as well as the mean return period (R) with a certain lower magnitude mmin ≥ m along with their probability of occurrence have been determined for all thirteen seismic source zones of Iraq. The maximum regional magnitude mmax was estimated as 7.87 ± 0.86 for entire Iraq. The return period for magnitude 6.0 is largest for source zone S3 which is estimated to be 705 years while the smallest value is estimated as 9.9 years for all of Iraq.

  18. Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr; Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr

    2016-04-18

    Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized formore » deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.« less

  19. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2005

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; McNutt, Stephen R.

    2006-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Figure 1). The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents calculated earthquake hypocenters and seismic phase arrival data, and details changes in the seismic monitoring program for the period January 1 through December 31, 2005.The AVO seismograph network was used to monitor the seismic activity at thirty-two volcanoes within Alaska in 2005 (Figure 1). The network was augmented by two new subnetworks to monitor the Semisopochnoi Island volcanoes and Little Sitkin Volcano. Seismicity at these volcanoes was still being studied at the end of 2005 and has not yet been added to the list of permanently monitored volcanoes in the AVO weekly update. Following an extended period of monitoring to determine the background seismicity at the Mount Peulik, Ukinrek Maars, and Korovin Volcano, formal monitoring of these volcanoes began in 2005. AVO located 9,012 earthquakes in 2005.Monitoring highlights in 2005 include: (1) seismicity at Mount Spurr remaining above background, starting in February 2004, through the end of the year and into 2006; (2) an increase in seismicity at Augustine Volcano starting in May 2005, and continuing through the end of the year into 2006; (3) volcanic tremor and seismicity related to low-level strombolian activity at Mount Veniaminof in January to March and September; and (4) a seismic swarm at Tanaga Volcano in October and November.This catalog includes: (1) descriptions and locations of seismic instrumentation deployed in the field in 2005; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2005; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2005.

  20. Active source monitoring at the Wenchuan fault zone: coseismic velocity change associated with aftershock event and its implication

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Ge, Hongkui; Wang, Baoshan; Hu, Jiupeng; Yuan, Songyong; Qiao, Sen

    2014-12-01

    With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M s5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~120 m rather than dynamic strong ground shaking. And a velocity decrease of ~2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.

  1. High impact mass drops from helicopter: A new active seismic source method applied in an active volcanic setting

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Chardot, L.; Neuberg, J.; Fournier, N.; Scott, B. J.; Sherburn, S.

    2012-06-01

    We obtain estimates of the seismic velocity and attenuation for White Island volcano by use of high-impact sand-bag drops from helicopter. Three drops were attempted, two at either end of a 6-station linear array within the crater floor, and the third in the volcano's crater lake. The bags were dropped from ˜310-380 m height and contained ˜700 kg of sand. The impact velocity was estimated at ˜60-70 m/s yielding a kinetic energy of about 106 Nm, giving P-wave onsets to a distance of ˜1 km. We obtained a seismic velocity estimate of Vp = 1.2 km/s for the unconsolidated crater floor and Vp = 2.2 km/s for rays traversing through consolidated rock outside the crater. Attenuation was very strong (Q < 10) for both consolidated and unconsolidated parts of the volcano. This trial shows that low cost helicopter mass drops can be successfully applied to safely determine sub-surface properties at hazardous volcanoes.

  2. Accurately determining direction of arrival by seismic array based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Hu, J.; Zhang, H.; Yu, H.

    2016-12-01

    Seismic array analysis method plays an important role in detecting weak signals and determining their locations and rupturing process. In these applications, reliably estimating direction of arrival (DOA) for the seismic wave is very important. DOA is generally determined by the conventional beamforming method (CBM) [Rost et al, 2000]. However, for a fixed seismic array generally the resolution of CBM is poor in the case of low-frequency seismic signals, and in the case of high frequency seismic signals the CBM may produce many local peaks, making it difficult to pick the one corresponding to true DOA. In this study, we develop a new seismic array method based on compressive sensing (CS) to determine the DOA with high resolution for both low- and high-frequency seismic signals. The new method takes advantage of the space sparsity of the incoming wavefronts. The CS method has been successfully used to determine spatial and temporal earthquake rupturing distributions with seismic array [Yao et al, 2011;Yao et al, 2013;Yin 2016]. In this method, we first form the problem of solving the DOA as a L1-norm minimization problem. The measurement matrix for CS is constructed by dividing the slowness-angle domain into many grid nodes, which needs to satisfy restricted isometry property (RIP) for optimized reconstruction of the image. The L1-norm minimization is solved by the interior point method. We first test the CS-based DOA array determination method on synthetic data constructed based on Shanghai seismic array. Compared to the CBM, synthetic test for data without noise shows that the new method can determine the true DOA with a super-high resolution. In the case of multiple sources, the new method can easily separate multiple DOAs. When data are contaminated by noise at various levels, the CS method is stable when the noise amplitude is lower than the signal amplitude. We also test the CS method for the Wenchuan earthquake. For different arrays with different apertures, we are able to obtain reliable DOAs with uncertainties lower than 10 degrees.

  3. Mini-Sosie high-resolution seismic method aids hazards studies

    USGS Publications Warehouse

    Stephenson, W.J.; Odum, J.; Shedlock, K.M.; Pratt, T.L.; Williams, R.A.

    1992-01-01

    The Mini-Sosie high-resolution seismic method has been effective in imaging shallow-structure and stratigraphic features that aid in seismic-hazard and neotectonic studies. The method is not an alternative to Vibroseis acquisition for large-scale studies. However, it has two major advantages over Vibroseis as it is being used by the USGS in its seismic-hazards program. First, the sources are extremely portable and can be used in both rural and urban environments. Second, the shifting-and-summation process during acquisition improves the signal-to-noise ratio and cancels out seismic noise sources such as cars and pedestrians. -from Authors

  4. Seismicity detection around the subduting seamount off Ibaraki the Japan Trench using dense OBS array data

    NASA Astrophysics Data System (ADS)

    Nakatani, Y.; Mochizuki, K.; Shinohara, M.; Yamada, T.; Hino, R.; Ito, Y.; Murai, Y.; Sato, T.

    2013-12-01

    A subducting seamount which has a height of about 3 km was revealed off Ibaraki in the Japan Trench by a seismic survey (Mochizuki et al., 2008). Mochizuki et al. (2008) also interpreted that interplate coupling was weak over the seamount because seismicity was low and the slip of the recent large earthquake did not propagate over it. To carry out further investigation, we deployed dense ocean bottom seismometers (OBSs) array around the seamount for about a year. During the observation period, seismicity off Ibaraki was activated due to the occurrence of the 2011 Tohoku earthquake. The southern edge of the mainshock rupture area was considered to be located around off Ibaraki by many source analyses. Moreover, Kubo et al. (2013) proposes the seamount played an important role in the rupture termination of the largest aftershock. Therefore, in this study, we try to understand about spatiotemporal variation of seismicity around the seamount before and after the Mw 9.0 event as a first step to elucidate relationship between the subducting seamount and seismogenic behavior. We used velocity waveforms of 1 Hz long-term OBSs which were densely deployed at station intervals of about 6 km. The sampling rate is 200 Hz and the observation period is from October 16, 2010 to September 19, 2011. Because of the ambient noise and effects of thick seafloor sediments, it is difficult to apply methods which have been used to on-land observational data for detecting seismicity to OBS data and to handle continuous waveforms automatically. We therefore apply back-projection method (e.g., Kiser and Ishii, 2012) to OBS waveform data which estimate energy-release source by stacking waveforms. Among many back-projection methods, we adopt a semblance analysis (e.g., Honda et al., 2008) which can detect feeble waves. First of all, we constructed a 3-D velocity structure model off Ibaraki by compiling the results of marine seismic surveys (e.g., Nakahigashi et al., 2012). Then, we divided a target area into small areas and calculated P-wave traveltimes between each station and all small areas by fast marching method (Rawlinson et al., 2006). After constructing theoretical travel-time tables, we applied a proper frequency filter to the observed waveforms and estimated seismic energy release by projecting semblance values. As the result of applying our method, we could successfully detect magnitude 2-3 earthquakes.

  5. Spatial relationships between crustal structures and mantle seismicity in the Vrancea Seismogenic Zone of Romania: Implications for geodynamic evolution

    NASA Astrophysics Data System (ADS)

    Enciu, Dana-Mihaela

    Integration of active and passive-source seismic data is employed to study the relationships between crustal structures and seismicity in the SE Carpathian foreland of Romania, and the connection with the Vrancea Seismogenic Zone. Relocated crustal epicenters and focal mechanisms are correlated with industry seismic profiles Comanesti, Ramnicu Sarat, Braila and Buzau, the reprocessed DACIA PLAN profile and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles in order to understand the link between neo-tectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identified active crustal faults suggesting a mechanical coupling between sedimentary, crustal and upper mantle structures on the Trotus, Sinaia and newly observed Ialomita Faults. Seismic reflection imaging revealed the absence of west dipping reflectors in the crust and an east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against both 'subduction-in-place' and 'slab break-off' as viable mechanisms for generating Vrancea mantle seismicity.

  6. Cataloging tremor at Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Thelen, W. A.; Wech, A.

    2013-12-01

    Tremor is a ubiquitous seismic feature on Kilauea volcano, which emanates from at least three distinct sources. At depth, intermittent tremor and earthquakes thought to be associated with the underlying plumbing system of Kilauea (Aki and Koyanagi, 1981) occurs approximately 40 km below and 40 km SW of the summit. At the summit of the volcano, nearly continuous tremor is recorded close to a persistently degassing lava lake, which has been present since 2008. Much of this tremor is correlated with spattering at the lake surface, but tremor also occurs in the absence of spattering, and was observed at the summit of the volcano prior to the appearance of the lava lake, predominately in association with inflation/deflation events. The third known source of tremor is in the area of Pu`u `O`o, a vent that has been active since 1983. The exact source location and depth is poorly constrained for each of these sources. Consistently tracking the occurrence and location of tremor in these areas through time will improve our understanding of the plumbing geometry beneath Kilauea volcano and help identify precursory patterns in tremor leading to changes in eruptive activity. The continuous and emergent nature of tremor precludes the use of traditional earthquake techniques for automatic detection and location of seismicity. We implement the method of Wech and Creager (2008) to both detect and localize tremor seismicity in the three regions described above. The technique uses an envelope cross-correlation method in 5-minute windows that maximizes tremor signal coherency among seismic stations. The catalog is currently being built in near-realtime, with plans to extend the analysis to the past as time and continuous data availability permits. This automated detection and localization method has relatively poor depth constraints due to the construction of the envelope function. Nevertheless, the epicenters distinguish activity among the different source regions and serve as starting points for more sophisticated location techniques using cross-correlation and/or amplitude-based locations. The resulting timelines establish a quantitative baseline of behavior for each source to better understand and forecast Kilauea activity.

  7. Performance of the 'material Failure Forecast Method' in real-time situations: A Bayesian approach applied on effusive and explosive eruptions

    NASA Astrophysics Data System (ADS)

    Boué, A.; Lesage, P.; Cortés, G.; Valette, B.; Reyes-Dávila, G.; Arámbula-Mendoza, R.; Budi-Santoso, A.

    2016-11-01

    Most attempts of deterministic eruption forecasting are based on the material Failure Forecast Method (FFM). This method assumes that a precursory observable, such as the rate of seismic activity, can be described by a simple power law which presents a singularity at a time close to the eruption onset. Until now, this method has been applied only in a small number of cases, generally for forecasts in hindsight. In this paper, a rigorous Bayesian approach of the FFM designed for real-time applications is applied. Using an automatic recognition system, seismo-volcanic events are detected and classified according to their physical mechanism and time series of probability distributions of the rates of events are calculated. At each time of observation, a Bayesian inversion provides estimations of the exponent of the power law and of the time of eruption, together with their probability density functions. Two criteria are defined in order to evaluate the quality and reliability of the forecasts. Our automated procedure has allowed the analysis of long, continuous seismic time series: 13 years from Volcán de Colima, Mexico, 10 years from Piton de la Fournaise, Reunion Island, France, and several months from Merapi volcano, Java, Indonesia. The new forecasting approach has been applied to 64 pre-eruptive sequences which present various types of dominant seismic activity (volcano-tectonic or long-period events) and patterns of seismicity with different level of complexity. This has allowed us to test the FFM assumptions, to determine in which conditions the method can be applied, and to quantify the success rate of the forecasts. 62% of the precursory sequences analysed are suitable for the application of FFM and half of the total number of eruptions are successfully forecast in hindsight. In real-time, the method allows for the successful forecast of 36% of all the eruptions considered. Nevertheless, real-time forecasts are successful for 83% of the cases that fulfil the reliability criteria. Therefore, good confidence on the method is obtained when the reliability criteria are met.

  8. Fault Specific Seismic Hazard Maps as Input to Loss Reserves Calculation for Attica Buildings

    NASA Astrophysics Data System (ADS)

    Deligiannakis, Georgios; Papanikolaou, Ioannis; Zimbidis, Alexandros; Roberts, Gerald

    2014-05-01

    Greece is prone to various natural disasters, such as wildfires, floods, landslides and earthquakes, due to the special environmental and geological conditions dominating in tectonic plate boundaries. Seismic is the predominant risk, in terms of damages and casualties in the Greek territory. The historical record of earthquakes in Greece has been published from various researchers, providing useful data in seismic hazard assessment of Greece. However, the completeness of the historical record in Greece, despite being one of the longest worldwide, reaches only 500 years for M ≥ 7.3 and less than 200 years for M ≥ 6.5. Considering that active faults in the area have recurrence intervals of a few hundred to several thousands of years, it is clear that many active faults have not been activated during the completeness period covered by the historical records. New Seismic Hazard Assessment methodologies tend to follow fault specific approaches where seismic sources are geologically constrained active faults, in order to address problems related to the historical records incompleteness, obtain higher spatial resolution and calculate realistic source locality distances, since seismic sources are very accurately located. Fault specific approaches provide quantitative assessments as they measure fault slip rates from geological data, providing a more reliable estimate of seismic hazard. We used a fault specific seismic hazard assessment approach for the region of Attica. The method of seismic hazard mapping from geological fault throw-rate data combined three major factors: Empirical data which combine fault rupture lengths, earthquake magnitudes and coseismic slip relationships. The radiuses of VI, VII, VIII and IX isoseismals on the Modified Mercalli (MM) intensity scale. Attenuation - amplification functions for seismic shaking on bedrock compared to basin filling sediments. We explicitly modeled 22 active faults that could affect the region of Attica, including Athens, using detailed data derived from published papers, neotectonic maps and fieldwork observations. Moreover, we incorporated background seismicity models from the historic record and also the subduction zone earthquakes distribution, for the integration of strong deep earthquakes that could also affect Attica region. We created 4 high spatial resolution seismic hazard maps for the region of Attica, one for each of the intensities VII - X (MM). These maps offer a locality specific shaking recurrence record, which represents the long-term shaking record in a more complete way, since they incorporate several seismic cycles of the active faults that could affect Attica. Each one of these high resolution seismic hazard maps displays both the spatial distribution and the recurrence, over a specific time period, of the relevant intensity. Time - independent probabilities were extracted based on these average recurrence intervals, using the stationary Poisson model P = 1 -e-Λt. The 'Λ' value was provided by the intensities recurrence, as displayed in the seismic hazard maps. However, the insurance contracts usually lack of detailed spatial information and they refer to Postal Codes level, akin to CRESTA zones. To this end, a time-independent probability of shaking at intensities VII - X was calculated for every Postal Code, for a given time period, using the Poisson model. The reserves calculation on buildings portfolio combines the probability of events of specific intensities within the Postal Codes, with the buildings characteristics, such as the building construction type and the insured value. We propose a standard approach for the reserves calculation K(t) for a specific time period: K (t) = x2 ·[x1 ·y1 ·P1(t) + x1 ·y2 ·P2(t) + x1 ·y3 ·P3(t) + x1 ·y4 ·P4(t)] x1 which is a function of the probabilities of occurrence for the seismic intensities VII - X (P1(t) -P4(t)) for the same period, the value of the building x1, the insured value x2 and the characteristics of the building, such as the construction type, age, height and use of property (y1 - y4). Furthermore a stochastic approach is also adopted in order to obtain the relevant reserve value K(t) for the specific time period. This calculation considers a set of simulations from the Poisson random variable and then taking the respective expectations.

  9. Crustal wavespeed structure of North Texas and Oklahoma based on ambient noise cross-correlation functions and adjoint tomography

    NASA Astrophysics Data System (ADS)

    Zhu, Hejun

    2018-04-01

    Recently, seismologists observed increasing seismicity in North Texas and Oklahoma. Based on seismic observations and other geophysical measurements, numerous studies suggested links between the increasing seismicity and wastewater injection during unconventional oil and gas exploration. To better monitor seismic events and investigate their triggering mechanisms, we need an accurate 3D crustal wavespeed model for the study region. Considering the uneven distribution of earthquakes in this area, seismic tomography with local earthquake records have difficulties achieving even illumination. To overcome this limitation, in this study, ambient noise cross-correlation functions are used to constrain subsurface variations in wavespeeds. I use adjoint tomography to iteratively fit frequency-dependent phase differences between observed and predicted band-limited Green's functions. The spectral-element method is used to numerically calculate the band-limited Green's functions and the adjoint method is used to calculate misfit gradients with respect to wavespeeds. Twenty five preconditioned conjugate gradient iterations are used to update model parameters and minimize data misfits. Features in the new crustal model TO25 correlates well with geological provinces in the study region, including the Llano uplift, the Anadarko basin and the Ouachita orogenic front, etc. In addition, there are relatively good correlations between seismic results with gravity and magnetic observations. This new crustal model can be used to better constrain earthquake source parameters in North Texas and Oklahoma, such as epicenter location as well as moment tensor solutions, which are important for investigating triggering mechanisms between these induced earthquakes and unconventional oil and gas exploration activities.

  10. Georgia-Armenia Transboarder seismicity studies

    NASA Astrophysics Data System (ADS)

    Godoladze, T.; Tvaradze, N.; Javakishvili, Z.; Elashvili, M.; Durgaryan, R.; Arakelyan, A.; Gevorgyan, M.

    2012-12-01

    In the presented study we performed Comprehensive seismic analyses for the Armenian-Georgian transboarder active seismic fault starting on Armenian territory, cutting the state boarder and having possibly northern termination on Adjara-Triealeti frontal structure in Georgia. In the scope of International projects: ISTC A-1418 "Open network of scientific Centers for mitigation risk of natural hazards in the Southern Caucasus and Central Asia" and NATO SfP- 983284 Project "Caucasus Seismic Emergency Response" in Akhalkalaki (Georgia) seismic center, Regional Summer school trainings and intensive filed investigations were conducted. Main goal was multidisciplinary study of the Javakheti fault structure and better understanding seismicity of the area. Young scientists from Turkey, Armenia, Azerbaijan and Georgia were participated in the deployment of temporal seismic network in order to monitor seisimity on the Javakheti highland and particularly delineate fault scarf and identify active seismic structures. In the scope of international collaboration the common seismic database has been created in the southern Caucasus and collected data from the field works is available now online. Javakheti highland, which is located in the central part of the Caucasus, belongs to the structure of the lesser Caucasus and represents a history of neotectonic volcanism existed in the area. Jasvakheti highland is seismicalu active region devastating from several severe earthquakes(1088, 1283, 1899…). Hypocenters located during analogue network were highly scattered and did not describe real pattern of seismicity of the highland. We relocated hypocenters of the region and improved local velocity model. The hypocenters derived from recently deployed local seismic network in the Javakheti highland, clearly identified seismically active structures. Fault plane solutions of analogue data of the Soviet times have been carefully analyzed and examined. Moment tensor inversion were preformed for the recent moderate size earthquakes and the results are in an agreement with paleo-trenching data showing normal fault mechanism on the south and strake slip on the northern edge of the fault. Local seismic tomography of Javakheti area has been performed in order to improve 3D structure of the region.

  11. Using block pulse functions for seismic vibration semi-active control of structures with MR dampers

    NASA Astrophysics Data System (ADS)

    Rahimi Gendeshmin, Saeed; Davarnia, Daniel

    2018-03-01

    This article applied the idea of block pulse functions in the semi-active control of structures. The BP functions give effective tools to approximate complex problems. The applied control algorithm has a major effect on the performance of the controlled system and the requirements of the control devices. In control problems, it is important to devise an accurate analytical technique with less computational cost. It is proved that the BP functions are fundamental tools in approximation problems which have been applied in disparate areas in last decades. This study focuses on the employment of BP functions in control algorithm concerning reduction the computational cost. Magneto-rheological (MR) dampers are one of the well-known semi-active tools that can be used to control the response of civil Structures during earthquake. For validation purposes, numerical simulations of a 5-story shear building frame with MR dampers are presented. The results of suggested method were compared with results obtained by controlling the frame by the optimal control method based on linear quadratic regulator theory. It can be seen from simulation results that the suggested method can be helpful in reducing seismic structural responses. Besides, this method has acceptable accuracy and is in agreement with optimal control method with less computational costs.

  12. Finite-Difference Modeling of Seismic Reflection Data in a Hard Rock Environment: An Example from the Mineralized Otago Schist, New Zealand

    NASA Astrophysics Data System (ADS)

    Leslie, A.; Gorman, A. R.

    2004-12-01

    The interpretation of seismic reflection data in non-sedimentary environments is problematic. In the Macraes Flat region near Dunedin (South Island, New Zealand), ongoing mining of mineralized schist has prompted the development of a seismic interpretation scheme that is capable of imaging a gold-bearing shear zone and associated mineralized structures accurately to the meter scale. The anisotropic and complex structural nature of this geological environment necessitates a cost-effective computer-based modeling technique that can provide information on the physical characteristics of the schist. Such a method has been tested on seismic data acquired in 1993 over a region that has since been excavated and logged. Correlation to measured structural data permits a direct comparison between the seismic data and the actual geology. Synthetic modeling utilizes a 2D visco-elastic finite difference routine to constrain the interpretation of observed seismic characteristics, including the velocity, anisotropy, and contrast, of the shear zone structures. Iterative refinements of the model result in a more representative synthetic model that most closely matches the seismic response. The comparison between the actual and synthetic seismic sections provides promising results that will be tested by new data acquisition over the summer of 2004/2005 to identify structures and zones of potential mineralization. As a downstream benefit, this research could also contribute to earthquake risk assessment analyses at active faults with similar characteristics.

  13. Seismic site-response characterization of high-velocity sites using advanced geophysical techniques: application to the NAGRA-Net

    NASA Astrophysics Data System (ADS)

    Poggi, V.; Burjanek, J.; Michel, C.; Fäh, D.

    2017-08-01

    The Swiss Seismological Service (SED) has recently finalised the installation of ten new seismological broadband stations in northern Switzerland. The project was led in cooperation with the National Cooperative for the Disposal of Radioactive Waste (Nagra) and Swissnuclear to monitor micro seismicity at potential locations of nuclear-waste repositories. To further improve the quality and usability of the seismic recordings, an extensive characterization of the sites surrounding the installation area was performed following a standardised investigation protocol. State-of-the-art geophysical techniques have been used, including advanced active and passive seismic methods. The results of all analyses converged to the definition of a set of best-representative 1-D velocity profiles for each site, which are the input for the computation of engineering soil proxies (traveltime averaged velocity and quarter-wavelength parameters) and numerical amplification models. Computed site response is then validated through comparison with empirical site amplification, which is currently available for any station connected to the Swiss seismic networks. With the goal of a high-sensitivity network, most of the NAGRA stations have been installed on stiff-soil sites of rather high seismic velocity. Seismic characterization of such sites has always been considered challenging, due to lack of relevant velocity contrast and the large wavelengths required to investigate the frequency range of engineering interest. We describe how ambient vibration techniques can successfully be applied in these particular conditions, providing practical recommendations for best practice in seismic site characterization of high-velocity sites.

  14. Seismic Tomography and the Development of a State Velocity Profile

    NASA Astrophysics Data System (ADS)

    Marsh, S. J.; Nakata, N.

    2017-12-01

    Earthquakes have been a growing concern in the State of Oklahoma in the last few years and as a result, accurate earthquake location is of utmost importance. This means using a high resolution velocity model with both lateral and vertical variations. Velocity data is determined using ambient noise seismic interferometry and tomography. Passive seismic data was acquired from multiple IRIS networks over the span of eight years (2009-2016) and filtered for earthquake removal to obtain the background ambient noise profile for the state. Seismic Interferometry is applied to simulate ray paths between stations, this is done with each possible station pair for highest resolution. Finally the method of seismic tomography is used to extract the velocity data and develop the state velocity map. The final velocity profile will be a compilation of different network analyses due to changing station availability from year to year. North-Central Oklahoma has a dense seismic network and has been operating for the past few years. The seismic stations are located here because this is the most seismically active region. Other parts of the state have not had consistent coverage from year to year, and as such a reliable and high resolution velocity profile cannot be determined from this network. However, the Transportable Array (TA) passed through Oklahoma in 2014 and provided a much wider and evenly spaced coverage. The goal of this study is to ultimately combine these two arrays over time, and provide a high quality velocity profile for the State of Oklahoma.

  15. Characterizing and comparing seismicity at Cascade Range (USA) volcanoes

    NASA Astrophysics Data System (ADS)

    Moran, S. C.; Thelen, W. A.

    2010-12-01

    The Cascade Range includes 13 volcanic systems across Washington, Oregon, and northern California that are considered to have the potential to erupt at any time, including two that have erupted in the last 100 years (Mount St. Helens (MSH) and Lassen Peak). We investigated how seismicity compares among these volcanoes, and whether the character of seismicity (rate, type, style of occurrence over time, etc.) is related to eruptive activity at the surface. Seismicity at Cascade volcanoes has been monitored by seismic networks of variable apertures, station densities, and lengths of operation, which makes a direct comparison of seismicity among volcanoes somewhat problematic. Here we present results of two non-network-dependent approaches to making such seismicity comparisons. In the first, we used network geometry and a grid-search method to compute the minimum magnitude required for a network to locate an earthquake (“theoretical location threshold”, defined as an event recorded on at least 4 stations with gap of <135o) for each volcano out to 7 km. We then selected earthquakes with magnitudes greater than the highest theoretical location threshold determined for any Cascade volcano. To account for improving network densities with time, we used M 2.1 (location threshold for the Three Sisters 1980s-90s network) for 1987-1999 and M 1.6 (threshold for the Crater Lake 2000s network) for 2000-2010. In order to include only background seismicity, we excluded earthquakes occurring at any volcano during the 2004-2008 MSH eruption. We found that Mount Hood, Lassen Peak, and MSH had the three highest seismicity rates over that period, with Mount Hood, Medicine Lake volcano, and MSH having the three highest cumulative seismic energy releases. The Medicine Lake energy release is dominated by a single swarm in September 1988; if that swarm is removed, then Lassen would have the third-highest cumulative seismic energy release. For the second comparison, we determined the degree of “swarminess” for seismicity at each volcano. We first determined the background rate of locatable earthquakes (no selection criteria were applied) within 7 km of each volcanic center, and then identified days during which the rate of seismicity was 2σ or more above the background rate. Above-background days were linked together into one swarm if they occurred within 5 days of each other. We found that seismicity dominantly occurs in swarms (>60% of located earthquakes) at Mount Hood, Three Sisters, Medicine Lake, and Lassen Peak, is mixed at Mount Rainier (46%), and dominantly does not occur in swarms (<40%) at MSH (non-eruptive periods only) and Mount Shasta. These comparisons show no obvious relationship with recency of eruptive activity, with the possible exception that volcanoes with the most recent eruptions have the highest background seismicity levels.

  16. The smart cluster method. Adaptive earthquake cluster identification and analysis in strong seismic regions

    NASA Astrophysics Data System (ADS)

    Schaefer, Andreas M.; Daniell, James E.; Wenzel, Friedemann

    2017-07-01

    Earthquake clustering is an essential part of almost any statistical analysis of spatial and temporal properties of seismic activity. The nature of earthquake clusters and subsequent declustering of earthquake catalogues plays a crucial role in determining the magnitude-dependent earthquake return period and its respective spatial variation for probabilistic seismic hazard assessment. This study introduces the Smart Cluster Method (SCM), a new methodology to identify earthquake clusters, which uses an adaptive point process for spatio-temporal cluster identification. It utilises the magnitude-dependent spatio-temporal earthquake density to adjust the search properties, subsequently analyses the identified clusters to determine directional variation and adjusts its search space with respect to directional properties. In the case of rapid subsequent ruptures like the 1992 Landers sequence or the 2010-2011 Darfield-Christchurch sequence, a reclassification procedure is applied to disassemble subsequent ruptures using near-field searches, nearest neighbour classification and temporal splitting. The method is capable of identifying and classifying earthquake clusters in space and time. It has been tested and validated using earthquake data from California and New Zealand. A total of more than 1500 clusters have been found in both regions since 1980 with M m i n = 2.0. Utilising the knowledge of cluster classification, the method has been adjusted to provide an earthquake declustering algorithm, which has been compared to existing methods. Its performance is comparable to established methodologies. The analysis of earthquake clustering statistics lead to various new and updated correlation functions, e.g. for ratios between mainshock and strongest aftershock and general aftershock activity metrics.

  17. Improved Simplified Methods for Effective Seismic Analysis and Design of Isolated and Damped Bridges in Western and Eastern North America

    NASA Astrophysics Data System (ADS)

    Koval, Viacheslav

    The seismic design provisions of the CSA-S6 Canadian Highway Bridge Design Code and the AASHTO LRFD Seismic Bridge Design Specifications have been developed primarily based on historical earthquake events that have occurred along the west coast of North America. For the design of seismic isolation systems, these codes include simplified analysis and design methods. The appropriateness and range of application of these methods are investigated through extensive parametric nonlinear time history analyses in this thesis. It was found that there is a need to adjust existing design guidelines to better capture the expected nonlinear response of isolated bridges. For isolated bridges located in eastern North America, new damping coefficients are proposed. The applicability limits of the code-based simplified methods have been redefined to ensure that the modified method will lead to conservative results and that a wider range of seismically isolated bridges can be covered by this method. The possibility of further improving current simplified code methods was also examined. By transforming the quantity of allocated energy into a displacement contribution, an idealized analytical solution is proposed as a new simplified design method. This method realistically reflects the effects of ground-motion and system design parameters, including the effects of a drifted oscillation center. The proposed method is therefore more appropriate than current existing simplified methods and can be applicable to isolation systems exhibiting a wider range of properties. A multi-level-hazard performance matrix has been adopted by different seismic provisions worldwide and will be incorporated into the new edition of the Canadian CSA-S6-14 Bridge Design code. However, the combined effect and optimal use of isolation and supplemental damping devices in bridges have not been fully exploited yet to achieve enhanced performance under different levels of seismic hazard. A novel Dual-Level Seismic Protection (DLSP) concept is proposed and developed in this thesis which permits to achieve optimum seismic performance with combined isolation and supplemental damping devices in bridges. This concept is shown to represent an attractive design approach for both the upgrade of existing seismically deficient bridges and the design of new isolated bridges.

  18. Integrated analysis of seismological, gravimetric and structural data for identification of active faults geometries in Abruzzo and Molise areas (Italy)

    NASA Astrophysics Data System (ADS)

    Gaudiosi, Germana; Nappi, Rosa; Alessio, Giuliana; Porfido, Sabina; Cella, Federico; Fedi, Maurizio; Florio, Giovanni

    2015-04-01

    This paper deals with an interdisciplinary research that has been carried out for more constraining the active faults and their geometry of Abruzzo - Molise areas (Central-Southern Apennines), two of the most active areas from a geodynamic point of view of the Italian Apennines, characterized by the occurrence of intense and widely spread seismic activity. An integrated analysis of structural, seismic and gravimetric (Gaudiosi et al., 2012) data of the area has been carried out through the Geographic Information System (GIS) which has provided the capability for storing and managing large amount of spatial data from different sources. In particular, the analysis has consisted of these main steps: (a) collection and acquisition of aerial photos, numeric cartography, Digital Terrain Model (DTM) data, geophysical data; (b) generation of the vector cartographic database and alpha-numerical data; c) image processing and features classification; d) cartographic restitution and multi-layers representation. In detail three thematic data sets have been generated "fault", "earthquake" and "gravimetric" data sets. The fault Dataset has been compiled by examining and merging the available structural maps, and many recent geological and geophysical papers of literature. The earthquake Dataset has been implemented collecting seismic data by the available historical and instrumental Catalogues and new precise earthquake locations for better constraining existence and activity of some outcropping and buried tectonic structures. Seismic data have been standardized in the same format into the GIS and merged in a final catalogue. For the gravimetric Dataset, the Multiscale Derivative Analysis (MDA) of the gravity field of the area has been performed, relying on the good resolution properties of the Enhanced Horizontal Derivative (EHD) (Fedi et al., 2005). MDA of gravity data has allowed localization of several trends identifying anomaly sources whose presence was not previously detected. The main results of our integrated analysis show a strong correlation among faults, hypocentral location of earthquakes and MDA lineaments from gravity data. Furthermore 2D seismic hypocentral locations together with high-resolution analysis of gravity anomalies have been correlated to estimate the fault systems parameters (strike, dip direction and dip angle) of some structures of the areas, through the application of the DEXP method (Fedi M. and M. Pilkington, 2012). References Fedi M., Cella F., Florio G., Rapolla A.; 2005: Multiscale Derivative Analysis of the gravity and magnetic fields of the Southern Apennines (Italy). In: Finetti I.R. (ed), CROP PROJECT: Deep Seismic Exploration of the Central Mediterranean and Italy, pp. 281-318. Fedi M., Pilkington M.; 2012: Understanding imaging methods for potential field data. Geophysics, 77: G13-G24. Gaudiosi G., Alessio G., Cella F., Fedi M., Florio G., Nappi, R.; 2012: Multiparametric data analysis for seismic sources identification in the Campanian area: merging of seismological, structural and gravimetric data. BGTA,. Vol. 53, n. 3, pp. 283-298.

  19. Modeling Poroelastic Wave Propagation in a Real 2-D Complex Geological Structure Obtained via Self-Organizing Maps

    NASA Astrophysics Data System (ADS)

    Itzá Balam, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2018-03-01

    Two main stages of seismic modeling are geological model building and numerical computation of seismic response for the model. The quality of the computed seismic response is partly related to the type of model that is built. Therefore, the model building approaches become as important as seismic forward numerical methods. For this purpose, three petrophysical facies (sands, shales and limestones) are extracted from reflection seismic data and some seismic attributes via the clustering method called Self-Organizing Maps (SOM), which, in this context, serves as a geological model building tool. This model with all its properties is the input to the Optimal Implicit Staggered Finite Difference (OISFD) algorithm to create synthetic seismograms for poroelastic, poroacoustic and elastic media. The results show a good agreement between observed and 2-D synthetic seismograms. This demonstrates that the SOM classification method enables us to extract facies from seismic data and allows us to integrate the lithology at the borehole scale with the 2-D seismic data.

  20. Network-Based Detection and Classification of Seismovolcanic Tremors: Example From the Klyuchevskoy Volcanic Group in Kamchatka

    NASA Astrophysics Data System (ADS)

    Soubestre, Jean; Shapiro, Nikolai M.; Seydoux, Léonard; de Rosny, Julien; Droznin, Dmitry V.; Droznina, Svetlana Ya.; Senyukov, Sergey L.; Gordeev, Evgeniy I.

    2018-01-01

    We develop a network-based method for detecting and classifying seismovolcanic tremors. The proposed approach exploits the coherence of tremor signals across the network that is estimated from the array covariance matrix. The method is applied to four and a half years of continuous seismic data recorded by 19 permanent seismic stations in the vicinity of the Klyuchevskoy volcanic group in Kamchatka (Russia), where five volcanoes were erupting during the considered time period. We compute and analyze daily covariance matrices together with their eigenvalues and eigenvectors. As a first step, most coherent signals corresponding to dominating tremor sources are detected based on the width of the covariance matrix eigenvalues distribution. Thus, volcanic tremors of the two volcanoes known as most active during the considered period, Klyuchevskoy and Tolbachik, are efficiently detected. As a next step, we consider the daily array covariance matrix's first eigenvector. Our main hypothesis is that these eigenvectors represent the principal components of the daily seismic wavefield and, for days with tremor activity, characterize dominant tremor sources. Those daily first eigenvectors, which can be used as network-based fingerprints of tremor sources, are then grouped into clusters using correlation coefficient as a measure of the vector similarity. As a result, we identify seven clusters associated with different periods of activity of four volcanoes: Tolbachik, Klyuchevskoy, Shiveluch, and Kizimen. The developed method does not require a priori knowledge and is fully automatic; and the database of the network-based tremor fingerprints can be continuously enriched with newly available data.

  1. Man-caused seismicity of Kuzbass

    NASA Astrophysics Data System (ADS)

    Emanov, Alexandr; Emanov, Alexey; Leskova, Ekaterina; Fateyev, Alexandr

    2010-05-01

    A natural seismicity of Kuznetsk Basin is confined in the main to mountain frame of Kuznetsk hollow. In this paper materials of experimental work with local station networks within sediment basin are presented. Two types of seismicity display within Kuznetsk hollow have been understood: first, man-caused seismic processes, confined to mine working and concentrated on depths up to one and a half of km; secondly, seismic activations on depths of 2-56 km, not coordinated in plan with coal mines. Every of studied seismic activations consists of large quantity of earthquakes of small powers (Ms=1-3). From one to first tens of earthquakes were recorded in a day. The earthquakes near mine working shift in space along with mine working, and seismic process become stronger at the instant a coal-plough machine is operated, and slacken at the instant the preventive works are executed. The seismic processes near three lavas in Kuznetsk Basin have been studied in detail. Uplift is the most typical focal mechanism. Activated zone near mine working reach in diameter 1-1,5 km. Seismic activations not linked with mine working testify that the subsoil of Kuznetsk hollow remain in stress state in whole. The most probable causes of man-caused action on hollow are processes, coupled with change of physical state of rocks at loss of methane from large volume or change by mine working of rock watering in large volume. In this case condensed rocks, lost gas and water, can press out upwards, realizing the reverse fault mechanism of earthquakes. A combination of stress state of hollow with man-caused action at deep mining may account for incipient activations in Kuznetsk Basin. Today earthquakes happen mainly under mine workings, though damages of workings themselves do not happen, but intensive shaking on surface calls for intent study of so dangerous phenomena. In 2009 replicates of the experiment on research of seismic activations in area of before investigated lavas have been conducted. A spatial displacement of activations along with mine working has been found. An impact of technogeneous factors on behavior of seismic process was investigated. It was demonstrated that industrial explosions in neighboring open-casts have no pronounced effect on seismic process near lavas. Stoppage of mole work in lavas leads to simultaneous changes in man-caused seismicity. The number of technogeneous earthquakes is halved. The earthquakes of small powers remain, but such slack lead to occasional though more strong technogeneous earthquakes.

  2. Acoustic⁻Seismic Mixed Feature Extraction Based on Wavelet Transform for Vehicle Classification in Wireless Sensor Networks.

    PubMed

    Zhang, Heng; Pan, Zhongming; Zhang, Wenna

    2018-06-07

    An acoustic⁻seismic mixed feature extraction method based on the wavelet coefficient energy ratio (WCER) of the target signal is proposed in this study for classifying vehicle targets in wireless sensor networks. The signal was decomposed into a set of wavelet coefficients using the à trous algorithm, which is a concise method used to implement the wavelet transform of a discrete signal sequence. After the wavelet coefficients of the target acoustic and seismic signals were obtained, the energy ratio of each layer coefficient was calculated as the feature vector of the target signals. Subsequently, the acoustic and seismic features were merged into an acoustic⁻seismic mixed feature to improve the target classification accuracy after the acoustic and seismic WCER features of the target signal were simplified using the hierarchical clustering method. We selected the support vector machine method for classification and utilized the data acquired from a real-world experiment to validate the proposed method. The calculated results show that the WCER feature extraction method can effectively extract the target features from target signals. Feature simplification can reduce the time consumption of feature extraction and classification, with no effect on the target classification accuracy. The use of acoustic⁻seismic mixed features effectively improved target classification accuracy by approximately 12% compared with either acoustic signal or seismic signal alone.

  3. Stochastic seismic inversion based on an improved local gradual deformation method

    NASA Astrophysics Data System (ADS)

    Yang, Xiuwei; Zhu, Peimin

    2017-12-01

    A new stochastic seismic inversion method based on the local gradual deformation method is proposed, which can incorporate seismic data, well data, geology and their spatial correlations into the inversion process. Geological information, such as sedimentary facies and structures, could provide significant a priori information to constrain an inversion and arrive at reasonable solutions. The local a priori conditional cumulative distributions at each node of model to be inverted are first established by indicator cokriging, which integrates well data as hard data and geological information as soft data. Probability field simulation is used to simulate different realizations consistent with the spatial correlations and local conditional cumulative distributions. The corresponding probability field is generated by the fast Fourier transform moving average method. Then, optimization is performed to match the seismic data via an improved local gradual deformation method. Two improved strategies are proposed to be suitable for seismic inversion. The first strategy is that we select and update local areas of bad fitting between synthetic seismic data and real seismic data. The second one is that we divide each seismic trace into several parts and obtain the optimal parameters for each part individually. The applications to a synthetic example and a real case study demonstrate that our approach can effectively find fine-scale acoustic impedance models and provide uncertainty estimations.

  4. Local spatiotemporal time-frequency peak filtering method for seismic random noise reduction

    NASA Astrophysics Data System (ADS)

    Liu, Yanping; Dang, Bo; Li, Yue; Lin, Hongbo

    2014-12-01

    To achieve a higher level of seismic random noise suppression, the Radon transform has been adopted to implement spatiotemporal time-frequency peak filtering (TFPF) in our previous studies. Those studies involved performing TFPF in full-aperture Radon domain, including linear Radon and parabolic Radon. Although the superiority of this method to the conventional TFPF has been tested through processing on synthetic seismic models and field seismic data, there are still some limitations in the method. Both full-aperture linear Radon and parabolic Radon are applicable and effective for some relatively simple situations (e.g., curve reflection events with regular geometry) but inapplicable for complicated situations such as reflection events with irregular shapes, or interlaced events with quite different slope or curvature parameters. Therefore, a localized approach to the application of the Radon transform must be applied. It would serve the filter method better by adapting the transform to the local character of the data variations. In this article, we propose an idea that adopts the local Radon transform referred to as piecewise full-aperture Radon to realize spatiotemporal TFPF, called local spatiotemporal TFPF. Through experiments on synthetic seismic models and field seismic data, this study demonstrates the advantage of our method in seismic random noise reduction and reflection event recovery for relatively complicated situations of seismic data.

  5. Research for Preseismic Phenomena on the Underground Water Level and Temperature in Selected Areas of Greece

    NASA Astrophysics Data System (ADS)

    Contadakis, M. E.; Asteriadis, G.

    1997-08-01

    A comprehensive study of the tectonic activity require the contribution of a variety of methods, geological, seismic, geodetic, satellite etc., being currently available in our days. On the other hand, the risk evaluation in areas of high seismicity, like this one of the South Balkan Peninsula, is of vital importance. To this purpose an interdisciplinary following up of the tectonic activity in the area may provide the best provision to the administration for an effective confrontation and intervention for the elimination of the possible disastrous effects in human life cost, financial and social cost of the communities, to which may result a strong earthquake. Among the various methods of indirect monitoring of the tectonic activity in an area, which in addition is of a low cost, is that of the following up of the underground water level and temperature changes in the area of interest. This method is based on the fact that tectonic activity is expected to result to tectonic stresses producing alterations to the local water table which in its turn is expected is expected to be observed as variation of the underground water level and temperature. The method of the following up of the underground water and temperature changes has been applied, among others by the Department of Geodesy and Surveying of the University of Thessaloniki in two areas of high seismicity in Greece: (a) The seismic zone of the lake Volvi in North Greece (40.5 deg N and 23.5 deg E) for ten years (1983-1992) and (b) the area of South Thessaly (39.2 deg N and 21 deg E) for three years (1994-1996). The statistical analysis of the observations, shows that the low frequency constituent (Sa,Ssa,Mf,Mm) of the earth tides and the barometric pressure have a small influence on the water level measurements. The shallow underground water network of South Thessaly is more sensitive to the non tectonic factors than the network of Volvi. Tentative correlation of the underground wat! er and temperature variations with the earthquake indicate that the shocks with magnitude higher than 2.0 can be tentatively connected with water and level or temperature variations in at least one well of the network with a probability higher than 75% in both areas.

  6. Global Earthquake Activity Rate models based on version 2 of the Global Strain Rate Map

    NASA Astrophysics Data System (ADS)

    Bird, P.; Kreemer, C.; Kagan, Y. Y.; Jackson, D. D.

    2013-12-01

    Global Earthquake Activity Rate (GEAR) models have usually been based on either relative tectonic motion (fault slip rates and/or distributed strain rates), or on smoothing of seismic catalogs. However, a hybrid approach appears to perform better than either parent, at least in some retrospective tests. First, we construct a Tectonic ('T') forecast of shallow (≤ 70 km) seismicity based on global plate-boundary strain rates from version 2 of the Global Strain Rate Map. Our approach is the SHIFT (Seismic Hazard Inferred From Tectonics) method described by Bird et al. [2010, SRL], in which the character of the strain rate tensor (thrusting and/or strike-slip and/or normal) is used to select the most comparable type of plate boundary for calibration of the coupled seismogenic lithosphere thickness and corner magnitude. One difference is that activity of offshore plate boundaries is spatially smoothed using empirical half-widths [Bird & Kagan, 2004, BSSA] before conversion to seismicity. Another is that the velocity-dependence of coupling in subduction and continental-convergent boundaries [Bird et al., 2009, BSSA] is incorporated. Another forecast component is the smoothed-seismicity ('S') forecast model of [Kagan & Jackson, 1994, JGR; Kagan & Jackson, 2010, GJI], which was based on optimized smoothing of the shallow part of the GCMT catalog, years 1977-2004. Both forecasts were prepared for threshold magnitude 5.767. Then, we create hybrid forecasts by one of 3 methods: (a) taking the greater of S or T; (b) simple weighted-average of S and T; or (c) log of the forecast rate is a weighted average of the logs of S and T. In methods (b) and (c) there is one free parameter, which is the fractional contribution from S. All hybrid forecasts are normalized to the same global rate. Pseudo-prospective tests for 2005-2012 (using versions of S and T calibrated on years 1977-2004) show that many hybrid models outperform both parents (S and T), and that the optimal weight on S is in the neighborhood of 5/8. This is true whether forecast performance is scored by Kagan's [2009, GJI] I1 information score, or by the S-test of Zechar & Jordan [2010, BSSA]. These hybrids also score well (0.97) in the ASS-test of Zechar & Jordan [2008, GJI] with respect to prior relative intensity.

  7. DSOD Procedures for Seismic Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Howard, J. K.; Fraser, W. A.

    2005-12-01

    DSOD, which has jurisdiction over more than 1200 dams in California, routinely evaluates their dynamic stability using seismic shaking input ranging from simple pseudostatic coefficients to spectrally matched earthquake time histories. Our seismic hazard assessments assume maximum earthquake scenarios of nearest active and conditionally active seismic sources. Multiple earthquake scenarios may be evaluated depending on sensitivity of the design analysis (e.g., to certain spectral amplitudes, duration of shaking). Active sources are defined as those with evidence of movement within the last 35,000 years. Conditionally active sources are those with reasonable expectation of activity, which are treated as active until demonstrated otherwise. The Division's Geology Branch develops seismic hazard estimates using spectral attenuation formulas applicable to California. The formulas were selected, in part, to achieve a site response model similar to the 2000 IBC's for rock, soft rock, and stiff soil sites. The level of dynamic loading used in the stability analysis (50th, 67th, or 84th percentile ground shaking estimates) is determined using a matrix that considers consequence of dam failure and fault slip rate. We account for near-source directivity amplification along such faults by adjusting target response spectra and developing appropriate design earthquakes for analysis of structures sensitive to long-period motion. Based on in-house studies, the orientation of the dam analysis section relative to the fault-normal direction is considered for strike-slip earthquakes, but directivity amplification is assumed in any orientation for dip-slip earthquakes. We do not have probabilistic standards, but we evaluate the probability of our ground shaking estimates using hazard curves constructed from the USGS Interactive De-Aggregation website. Typically, return periods for our design loads exceed 1000 years. Excessive return periods may warrant a lower design load. Minimum shaking levels are provided for sites far from active faulting. Our procedures and standards are presented at the DSOD website http://damsafety.water.ca.gov/. We review our methods and tools periodically under the guidance of our Consulting Board for Earthquake Analysis (and expect to make changes pending NGA completion), mindful that frequent procedural changes can interrupt design evaluations.

  8. Constraints on Long-Term Seismic Hazard From Vulnerable Stalagmites from Vacska cave, Pilis Mountains of Hungary

    NASA Astrophysics Data System (ADS)

    Gribovszki, Katalin; Bokelmann, Götz; Kovács, Károly; Mónus, Péter; Konecny, Pavel; Lednicka, Marketa; Novák, Attila

    2017-04-01

    Damaging earthquakes in central Europe are infrequent, but do occur. This raises the important issue for society of how to react to this hazard: potential damages are enormous, and infrastructure costs for addressing these hazards are huge as well. Obtaining an unbiased expert knowledge of the seismic hazard (and risk) is therefore very important. Seismic activity in the Pannonian Basin is moderate. In territories with low or moderate seismic activity the recurrence time of large earthquakes can be as long as 10,000 years. Therefore, we cannot draw well-grounded inferences in the field of seismic hazard assessment exclusively from the seismic data of 1,000- to 2,000-years observational period, that we have in our earthquake catalogues. Long-term information can be gained from intact and vulnerable stalagmites (IVSTM) in natural karstic caves. These fragile formations survived all earthquakes that have occurred, over thousands of years - depending on the age of them. Their "survival" requires that the horizontal ground acceleration has never exceeded a certain critical value within that time period. Here we present such a stalagmite-based case study from the Pilis Mountains of Hungary. Evidence of historic events and of differential uplifting (incision of Danube at the River Bend and in Buda and Gerecse Hills) exists in the vicinity of investigated cave site. These observations imply that a better understanding of possible co-seismic ground motions in the nearby densely populated areas of Budapest is needed. A specially shaped (high, slim and more or less cylindrical form), intact and vulnerable stalagmites in the Vacska cave, Pilis Mountains were examined. The method of our investigation includes in-situ examination of the IVSTM and mechanical laboratory measurements of broken stalagmite samples. The used approach can yield significant new constraints on the seismic hazard of the investigated area, since tectonic structures close to Vacska cave could not have generated strong paleoearthquakes in the last few thousand years, which would have produced a horizontal ground acceleration larger than the upper acceleration threshold that we can determined from the intact and vulnerable stalagmites. A particular importance of this study results from the seismic hazard of the capital of Hungary.

  9. The Pollino Seismic Sequence: Activated Graben Structures in a Seismic Gap

    NASA Astrophysics Data System (ADS)

    Rößler, Dirk; Passarelli, Luigi; Govoni, Aladino; Bindi, Dino; Cesca, Simone; Hainzl, Sebatian; Maccaferri, Francesco; Rivalta, Eleonora; Woith, Heiko; Dahm, Torsten

    2015-04-01

    The Mercure Basin (MB) and the Castrovillari Fault (CF) in the Pollino range (Southern Apennines, Italy) represent one of the most prominent seismic gaps in the Italian seismic catalogue, with no M>5.5 earthquakes during the last centuries. In historical times several swarm-like seismic sequences occurred in the area including two intense swarms within the past two decades. The most energetic one started in 2010 and has been still active in 2014. The seismicity culminated in autumn 2012 with a M=5 event on 25 October. The range hosts a number of opposing normal faults forming a graben-like structure. Their rheology and their interactions are unclear. Current debates include the potential of the MB and the CF to host large earthquakes and the style of deformation. Understanding the seismicity and the behaviour of the faults is necessary to assess the tectonics and the seismic hazard. The GFZ German Research Centre for Geosciences and INGV, Italy, have jointly monitored the ongoing seismicity using a small-aperture seismic array, integrated in a temporary seismic network. Based on this installation, we located more than 16,000 local earthquakes that occurred between November 2012 and September 2014. Here we investigate quantitatively all the phases of the seismic sequence starting from January 2010. Event locations along with moment tensor inversion constrain spatially the structures activated by the swarm and the migration pattern of the seismicity. The seismicity forms clusters concentrated within the southern part of the MB and along the Pollino Fault linking MB and CF. Most earthquakes are confined to the upper 10 km of the crust in an area of ~15x15 km2. However, sparse seismicity at depths between 15 and 20 km and moderate seismicity further north with deepening hypocenters also exist. In contrast, the CF appears aseismic; only the northern part has experienced micro-seismicity. The spatial distribution is however more complex than the major tectonic structures mapped for the area. Consistent with mapped faults, the seismicity interested both eastwards and westwards dipping normal faults that define the geometry of seismically active graben-like structures. At least one cluster shows an additional spatio-temporal migration with spreading hypocentres similar to other swarm areas with fluid-triggering mechanisms. The static Coulomb stress change transferred by the largest shock onto the swarm area and on the CF cannot explain the observed high seismicity rate. We study the evolution of the frequency-size distribution of the events and the seismicity rate changes. We find that the majority of the earthquakes cannot be justified as aftershocks (directly related to the tectonics or to earthquake-earthquake interaction) and are best explained by an additional forcing active over the entire sequence. Our findings are consistent with the action of fluids (e.g. pore-pressure diffusion) triggering seismicity on pre-loaded faults. Additional aseismic release of tectonic strain by transient, slow slip is also consistent with our analysis. Analysis of deformation time series may clarify this point in future studies.

  10. Method can improve efficiency of heli-portable seismic operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kingsbury, O.J.

    1995-11-13

    There are regions of the world where the only viable means of conducting a seismic survey on land must involve helicopters as a primary means of transport. The high operating cost of helicopters means that such heliportable work is expensive compared with the more common land and marine surveys. This article is addressed to exploration companies contemplating heliportable seismic surveys. Its aim is to show how these operations work and to enable a dramatic reduction in the cost and timescale of future operations compared with numerous operations this writer has witnessed and been involved with in recent years. The coremore » of this article concerns distinct designs of drilling machinery used in these activities and the most efficient ways of configuring this machinery in the field.« less

  11. Evidence of magma intrusion at Fourpeaked volcano, Alaska in 2006-2007 from a rapid-response seismic network and volcanic gases

    USGS Publications Warehouse

    Gardine, M.; West, M.; Werner, C.; Doukas, M.

    2011-01-01

    On September 17th, 2006, Fourpeaked volcano had a widely-observed phreatic eruption. At the time, Fourpeaked was an unmonitored volcano with no known Holocene activity, based on limited field work. Airborne gas sampling began within days of the eruption and a modest seismic network was installed in stages. Vigorous steaming continued for months; however, there were no further eruptions similar in scale to the September 17 event. This eruption was followed by several months of sustained seismicity punctuated by vigorous swarms, and SO2 emissions exceeding a thousand tons/day. Based on observations during and after the phreatic eruption, and assuming no recent pre-historical eruptive activity at Fourpeaked, we propose that the activity was caused by a minor injection of new magma at or near 5km depth beneath Fourpeaked, which remained active over several months as this magma equilibrated into the crust. By early 2007 declining seismicity and SO2 emission signaled the end of unrest. Because the Fourpeaked seismic network was installed in stages and the seismicity was punctuated by discrete swarms, we use Fourpeaked to illustrate quantitatively the efficacy and shortcomings of rapid response seismic networks for tracking volcanic earthquakes.

  12. Seismic Tomography of Siyazan - Shabran Oil and Gas Region Of Azerbaijan by Data of The Seismic Stations

    NASA Astrophysics Data System (ADS)

    Yetirmishli, Gurban; Guliyev, Ibrahim; Mammadov, Nazim; Kazimova, Sabina; Ismailova, Saida

    2016-04-01

    The main purpose of the research was to build a reliable 3D model of the structure of seismic velocities in the earth crust on the territory of Siyazan-Shabran region of Azerbaijan, using the data of seismic telemetry stations spanning Siyazan-Shabran region (Siyazan, Altiagaj, Pirgulu, Guba, Khinalig, Gusar), including 7 mobile telemetry seismic stations. Interest to the problem of research seismic tomography caused by applied environmental objectives, such as the assessment of geological risks, engineering evaluation (stability and safety of wells), the task of exploration and mining operations. In the study region are being actively developed oil fields, and therefore, there is a risk of technogenic earthquakes. It was performed the calculation of first arrival travel times of P and S waves and the corresponding ray paths. Calculate 1D velocity model which is the initial model as a set of horizontal layers (velocity may be constant or changed linearly with depth on each layer, gaps are possible only at the boundaries between the layers). Have been constructed and analyzed the horizontal sections of the three-dimensional velocity model at different depths of the investigated region. By the empirical method was proposed density model of the sedimentary rocks at depths of 0-8 km.

  13. Re-evaluation and updating of the seismic hazard of Lebanon

    NASA Astrophysics Data System (ADS)

    Huijer, Carla; Harajli, Mohamed; Sadek, Salah

    2016-01-01

    This paper presents the results of a study undertaken to evaluate the implications of the newly mapped offshore Mount Lebanon Thrust (MLT) fault system on the seismic hazard of Lebanon and the current seismic zoning and design parameters used by the local engineering community. This re-evaluation is critical, given that the MLT is located at close proximity to the major cities and economic centers of the country. The updated seismic hazard was assessed using probabilistic methods of analysis. The potential sources of seismic activities that affect Lebanon were integrated along with any/all newly established characteristics within an updated database which includes the newly mapped fault system. The earthquake recurrence relationships of these sources were developed from instrumental seismology data, historical records, and earlier studies undertaken to evaluate the seismic hazard of neighboring countries. Maps of peak ground acceleration contours, based on 10 % probability of exceedance in 50 years (as per Uniform Building Code (UBC) 1997), as well as 0.2 and 1 s peak spectral acceleration contours, based on 2 % probability of exceedance in 50 years (as per International Building Code (IBC) 2012), were also developed. Finally, spectral charts for the main coastal cities of Beirut, Tripoli, Jounieh, Byblos, Saida, and Tyre are provided for use by designers.

  14. Application of seismic interferometric migration for shallow seismic high precision data processing: A case study in the Shenhu area

    NASA Astrophysics Data System (ADS)

    Wei, Jia; Liu, Huaishan; Xing, Lei; Du, Dong

    2018-02-01

    The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.

  15. Precision Seismic Monitoring of Volcanic Eruptions at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Wilcock, W. S. D.; Tolstoy, M.; Baillard, C.; Tan, Y. J.; Schaff, D. P.

    2017-12-01

    Seven permanent ocean bottom seismometers of the Ocean Observatories Initiative's real time cabled observatory at Axial Seamount off the coast of the western United States record seismic activity since 2014. The array captured the April 2015 eruption, shedding light on the detailed structure and dynamics of the volcano and the Juan de Fuca midocean ridge system (Wilcock et al., 2016). After a period of continuously increasing seismic activity primarily associated with the reactivation of caldera ring faults, and the subsequent seismic crisis on April 24, 2015 with 7000 recorded events that day, seismicity rates steadily declined and the array currently records an average of 5 events per day. Here we present results from ongoing efforts to automatically detect and precisely locate seismic events at Axial in real-time, providing the computational framework and fundamental data that will allow rapid characterization and analysis of spatio-temporal changes in seismogenic properties. We combine a kurtosis-based P- and S-phase onset picker and time domain cross-correlation detection and phase delay timing algorithms together with single-event and double-difference location methods to rapidly and precisely (tens of meters) compute the location and magnitudes of new events with respect to a 2-year long, high-resolution background catalog that includes nearly 100,000 events within a 5×5 km region. We extend the real-time double-difference location software DD-RT to efficiently handle the anticipated high-rate and high-density earthquake activity during future eruptions. The modular monitoring framework will allow real-time tracking of other seismic events such as tremors and sea-floor lava explosions that enable the timing and location of lava flows and thus guide response research cruises to the most interesting sites. Finally, rapid detection of eruption precursors and initiation will allow for adaptive sampling by the OOI instruments for optimal recording of future eruptions. With a higher eruption recurrence rate than land-based volcanoes the Axial OOI observatory offers the opportunity to monitor and study volcanic eruptions throughout multiple cycles.

  16. Influence of High Energy Electromagnetic Pulses on the Dynamics of the Seismic Process Around the Bishkek Test Area (Central Asia)

    NASA Astrophysics Data System (ADS)

    Matcharashvili, Teimuraz N.; Chelidze, Tamaz L.; Zhukova, Natalia N.

    2015-07-01

    Investigation of dynamical features of the seismic process as well as the possible influence of different natural and man-made impacts on it remains one of the main interdisciplinary research challenges. The question of external influences (forcings) acquires new importance in the light of known facts on possible essential changes, which occur in the behavior of complex systems due to different relatively weak external impacts. Seismic processes in the complicated tectonic system are not an exclusion from this general rule. In the present research we continued the investigation of dynamical features of seismic activity in Central Asia around the Bishkek (Kyrgyzstan) test area, where strong electromagnetic (EM) soundings were performed in the 1980s. The unexpected result of these experiments was that they revealed the impact of strong electromagnetic discharges on the microseismic activity of investigated area. We used an earthquake catalogue of this area to investigate dynamical features of seismic activity in periods before, during, and after the mentioned man-made EM forcings. Different methods of modern time series analysis have been used, such as wavelet transformation, Hilbert Huang transformation, detrended fluctuation analysis, and recurrence quantification analysis. Namely, inter-event (waiting) time intervals, inter-earthquake distances and magnitude sequences, as well as time series of the number of daily occurring earthquakes have been analyzed. We concluded that man-made high-energy EM irradiation essentially affects dynamics of the seismic process in the investigated area in its temporal and spatial domains; namely, the extent of order in earthquake time and space distribution increase. At the same time, EM influence on the energetic distribution is not clear from the present analysis. It was also shown that the influence of EM impulses on dynamical features of seismicity differs in different areas of the examined territory around the test site. Clear changes have been indicated only in areas which, according to previous researches, have been characterized by anomalous increase of average rates of strain release and thus can be regarded as close to the critical state.

  17. Impacts of potential seismic landslides on lifeline corridors.

    DOT National Transportation Integrated Search

    2015-02-01

    This report presents a fully probabilistic method for regional seismically induced landslide hazard analysis and : mapping. The method considers the most current predictions for strong ground motions and seismic sources : through use of the U.S.G.S. ...

  18. Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions

    NASA Astrophysics Data System (ADS)

    White, Randall; McCausland, Wendy

    2016-01-01

    We present data on 136 high-frequency earthquakes and swarms, termed volcano-tectonic (VT) seismicity, which preceded 111 eruptions at 83 volcanoes, plus data on VT swarms that preceded intrusions at 21 other volcanoes. We find that VT seismicity is usually the earliest reported seismic precursor for eruptions at volcanoes that have been dormant for decades or more, and precedes eruptions of all magma types from basaltic to rhyolitic and all explosivities from VEI 0 to ultraplinian VEI 6 at such previously long-dormant volcanoes. Because large eruptions occur most commonly during resumption of activity at long-dormant volcanoes, VT seismicity is an important precursor for the Earth's most dangerous eruptions. VT seismicity precedes all explosive eruptions of VEI ≥ 5 and most if not all VEI 4 eruptions in our data set. Surprisingly we find that the VT seismicity originates at distal locations on tectonic fault structures at distances of one or two to tens of kilometers laterally from the site of the eventual eruption, and rarely if ever starts beneath the eruption site itself. The distal VT swarms generally occur at depths almost equal to the horizontal distance of the swarm from the summit out to about 15 km distance, beyond which hypocenter depths level out. We summarize several important characteristics of this distal VT seismicity including: swarm-like nature, onset days to years prior to the beginning of magmatic eruptions, peaking of activity at the time of the initial eruption whether phreatic or magmatic, and large non-double couple component to focal mechanisms. Most importantly we show that the intruded magma volume can be simply estimated from the cumulative seismic moment of the VT seismicity from: Log10 V = 0.77 Log ΣMoment - 5.32, with volume, V, in cubic meters and seismic moment in Newton meters. Because the cumulative seismic moment can be approximated from the size of just the few largest events, and is quite insensitive to precise locations, the intruded magma volume can be quickly and easily estimated with few short-period seismic stations. Notable cases in which distal VT events preceded eruptions at long-dormant volcanoes include: Nevado del Ruiz (1984-1985), Pinatubo (1991), Unzen (1989-1995), Soufriere Hills (1995), Shishaldin (1989-1999), Tacana' (1985-1986), Pacaya (1980-1984), Rabaul (1994), and Cotopaxi (2001). Additional cases are recognized at frequently active volcanoes including Popocateptl (2001-2003) and Mauna Loa (1984). We present four case studies (Pinatubo, Soufriere Hills, Unzen, and Tacana') in which we demonstrate the above mentioned VT characteristics prior to eruptions. Using regional data recorded by NEIC, we recognized in near-real time that a huge distal VT swarm was occurring, deduced that a proportionately huge magmatic intrusion was taking place beneath the long dormant Sulu Range, New Britain Island, Papua New Guinea, that it was likely to lead to eruptive activity, and warned Rabaul Volcano Observatory days before a phreatic eruption occurred. This confirms the value of this technique for eruption forecasting. We also present a counter-example where we deduced that a VT swarm at Volcan Cosiguina, Nicaragua, indicated a small intrusion, insufficient to reach the surface and erupt. Finally, we discuss limitations of the method and propose a mechanism by which this distal VT seismicity is triggered by magmatic intrusion.

  19. Earthquake hypocenters and focal mechanisms in central Oklahoma reveal a complex system of reactivated subsurface strike-slip faulting

    USGS Publications Warehouse

    McNamara, Daniel E.; Benz, Harley M.; Herrmann, Robert B.; Bergman, Eric A.; Earle, Paul S.; Holland, Austin F.; Baldwin, Randy W.; Gassner, A.

    2015-01-01

    The sharp increase in seismicity over a broad region of central Oklahoma has raised concern regarding the source of the activity and its potential hazard to local communities and energy industry infrastructure. Since early 2010, numerous organizations have deployed temporary portable seismic stations in central Oklahoma in order to record the evolving seismicity. In this study, we apply a multiple-event relocation method to produce a catalog of 3,639 central Oklahoma earthquakes from late 2009 through 2014. RMT source parameters were determined for 195 of the largest and best-recorded earthquakes. Combining RMT results with relocated seismicity enabled us to determine the length, depth and style-of-faulting occurring on reactivated subsurface fault systems. Results show that the majority of earthquakes occur on near vertical, optimally oriented (NE-SW and NW-SE), strike-slip faults in the shallow crystalline basement. These are necessary first order observations required to assess the potential hazards of individual faults in Oklahoma.

  20. Shallow Vs Structure Accross Hayward Fault Zone Inferred from Multichannel Analysis of Surface Waves (MASW)

    NASA Astrophysics Data System (ADS)

    Chan, J. H.; Richardson, I. S.; Strayer, L. M.; Catchings, R.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.

    2017-12-01

    The Hayward Fault Zone (HFZ) includes the Hayward fault (HF), as well as several named and unnamed subparallel, subsidiary faults to the east, among them the Quaternary-active Chabot Fault (CF), the Miller Creek Fault (MCF), and a heretofore unnamed fault, the Redwood Thrust Fault (RTF). With an ≥M6.0 recurrence interval of 130 y for the HF and the last major earthquake in 1868, the HFZ is a major seismic hazard in the San Francisco Bay Area, exacerbated by the many unknown and potentially active secondary faults of the HFZ. In 2016, researchers from California State University, East Bay, working in concert with the United States Geological Survey conducted the East Bay Seismic Investigation (EBSI). We deployed 296 RefTek RT125 (Texan) seismographs along a 15-km-long linear seismic profile across the HF, extending from the bay in San Leandro to the hills in Castro Valley. Two-channel seismographs were deployed at 100 m intervals to record P- and S-waves, and additional single-channel seismographs were deployed at 20 m intervals where the seismic line crossed mapped faults. The active-source survey consisted of 16 buried explosive shots located at approximately 1-km intervals along the seismic line. We used the Multichannel Analysis of Surfaces Waves (MASW) method to develop 2-D shear-wave velocity models across the CF, MCF, and RTF. Preliminary MASW analysis show areas of anomalously low S-wave velocities , indicating zones of reduced shear modulus, coincident with these three mapped faults; additional velocity anomalies coincide with unmapped faults within the HFZ. Such compliant zones likely correspond to heavily fractured rock surrounding the faults, where the shear modulus is expected to be low compared to the undeformed host rock.

  1. Fast 3D elastic micro-seismic source location using new GPU features

    NASA Astrophysics Data System (ADS)

    Xue, Qingfeng; Wang, Yibo; Chang, Xu

    2016-12-01

    In this paper, we describe new GPU features and their applications in passive seismic - micro-seismic location. Locating micro-seismic events is quite important in seismic exploration, especially when searching for unconventional oil and gas resources. Different from the traditional ray-based methods, the wave equation method, such as the method we use in our paper, has a remarkable advantage in adapting to low signal-to-noise ratio conditions and does not need a person to select the data. However, because it has a conspicuous deficiency due to its computation cost, these methods are not widely used in industrial fields. To make the method useful, we implement imaging-like wave equation micro-seismic location in a 3D elastic media and use GPU to accelerate our algorithm. We also introduce some new GPU features into the implementation to solve the data transfer and GPU utilization problems. Numerical and field data experiments show that our method can achieve a more than 30% performance improvement in GPU implementation just by using these new features.

  2. Remote Triggering of Microseismicity in Antarctica

    NASA Astrophysics Data System (ADS)

    Ji, M.; Li, C.; Peng, Z.; Walter, J. I.

    2017-12-01

    It is well known that large distant earthquakes can trigger microearthquakes/tectonic tremors during or immediately following their surface waves. Globally, triggered seismicity is mostly found in active plate boundary regions. Recent studies have shown that icequakes in Antartica can also be triggered by teleseismic events. However, it is still not clear how widespread this phenomenon is and whether there are any connections between large earthquakes and subsequent glacial movements. In this study, we conduct a systematic search for remotely triggered activity in Antarctica following recent large earthquakes, including the 2004 Mw9.1 Sumatra, 2011 Mw9.1 Tohoku, 2012 Mw8.6 Indian Ocean and 2014-2015 Chile earthquakes. We download seismic data recorded at the POLENET (YT) and the Argentina Antarctica Network (AI) from the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC). We apply a 2-8 Hz band-pass-filter to the continuous waveforms and visually identify local events during and immediately after the large amplitude surface waves. Spectrograms are computed as additional tools to identify triggered seismicity and are further confirmed by comparing the signals before and after the distant mainshocks. So far we have identified possible triggered seismicity in both networks' area following the 2010 Chile and 2011 Tohoku earthquakes. Our next step is to apply a waveform matching method to automatically detect possible triggered seismicity and check through all the available networks in Antarctica for the last decades, which should help to better understand the potential interaction between large earthquakes and icequakes in this region.

  3. Precise relative locations for earthquakes in the northeast Pacific region

    DOE PAGES

    Cleveland, K. Michael; VanDeMark, Thomas F.; Ammon, Charles J.

    2015-10-09

    We report that double-difference methods applied to cross-correlation measured Rayleigh wave time shifts are an effective tool to improve epicentroid locations and relative origin time shifts in remote regions. We apply these methods to seismicity offshore of southwestern Canada and the U.S. Pacific Northwest, occurring along the boundaries of the Pacific and Juan de Fuca (including the Explorer Plate and Gorda Block) Plates. The Blanco, Mendocino, Revere-Dellwood, Nootka, and Sovanco fracture zones host the majority of this seismicity, largely consisting of strike-slip earthquakes. The Explorer, Juan de Fuca, and Gorda spreading ridges join these fracture zones and host normal faultingmore » earthquakes. Our results show that at least the moderate-magnitude activity clusters along fault strike, supporting suggestions of large variations in seismic coupling along oceanic transform faults. Our improved relative locations corroborate earlier interpretations of the internal deformation in the Explorer and Gorda Plates. North of the Explorer Plate, improved locations support models that propose northern extension of the Revere-Dellwood fault. Relocations also support interpretations that favor multiple parallel active faults along the Blanco Transform Fault Zone. Seismicity of the western half of the Blanco appears more scattered and less collinear than the eastern half, possibly related to fault maturity. We use azimuthal variations in the Rayleigh wave cross-correlation amplitude to detect and model rupture directivity for a moderate size earthquake along the eastern Blanco Fault. Lastly, the observations constrain the seismogenic zone geometry and suggest a relatively narrow seismogenic zone width of 2 to 4 km.« less

  4. Probabilistic seismic hazard assessments of Sabah, east Malaysia: accounting for local earthquake activity near Ranau

    NASA Astrophysics Data System (ADS)

    Khalil, Amin E.; Abir, Ismail A.; Ginsos, Hanteh; Abdel Hafiez, Hesham E.; Khan, Sohail

    2018-02-01

    Sabah state in eastern Malaysia, unlike most of the other Malaysian states, is characterized by common seismological activity; generally an earthquake of moderate magnitude is experienced at an interval of roughly every 20 years, originating mainly from two major sources, either a local source (e.g. Ranau and Lahad Dato) or a regional source (e.g. Kalimantan and South Philippines subductions). The seismicity map of Sabah shows the presence of two zones of distinctive seismicity, these zones are near Ranau (near Kota Kinabalu) and Lahad Datu in the southeast of Sabah. The seismicity record of Ranau begins in 1991, according to the international seismicity bulletins (e.g. United States Geological Survey and the International Seismological Center), and this short record is not sufficient for seismic source characterization. Fortunately, active Quaternary fault systems are delineated in the area. Henceforth, the seismicity of the area is thus determined as line sources referring to these faults. Two main fault systems are believed to be the source of such activities; namely, the Mensaban fault zone and the Crocker fault zone in addition to some other faults in their vicinity. Seismic hazard assessments became a very important and needed study for the extensive developing projects in Sabah especially with the presence of earthquake activities. Probabilistic seismic hazard assessments are adopted for the present work since it can provide the probability of various ground motion levels during expected from future large earthquakes. The output results are presented in terms of spectral acceleration curves and uniform hazard curves for periods of 500, 1000 and 2500 years. Since this is the first time that a complete hazard study has been done for the area, the output will be a base and standard for any future strategic plans in the area.

  5. Seismic processes and migration of magma during the Great Tolbachik Fissure Eruption of 1975-1976 and Tolbachik Fissure Eruption of 2012-2013, Kamchatka Peninsula

    NASA Astrophysics Data System (ADS)

    Fedotov, S. A.; Slavina, L. B.; Senyukov, S. L.; Kuchay, M. S.

    2015-12-01

    Seismic and volcanic processes in the area of the northern group of volcanoes (NGV) in Kamchatka Peninsula that accompanied the Great Tolbachik Fissure Eruption (GTFE) of 1975-1976 and the Tolbachik Fissure Eruption (TFE, or "50 let IViS" due to anniversary of the Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences) of 2012-2013 and the seismic activity between these events are considered. The features of evolution of seismic processes of the major NGV volcanoes (Ploskii Tolbachik, Klyuchevskoy, Bezymannyi, and Shiveluch) are revealed. The distribution of earthquakes along depth, their spatial and temporal migration, and the relation of seismic and volcanic activity are discussed. The major features of seismic activity during the GTFE preparation and evolution and a development of earthquake series preceding the origin of the northern and southern breaks are described. The character of seismic activity between the GTFE and TFE is shown. The major peculiarities of evolution of seismic activity preceding and accompanying the TFE are described. The major magma sources and conduits of the NGV volcanoes are identified, as is the existence of a main conduit in the mantle and a common intermediate source for the entire NGV, the depth of which is 25-35 km according to seismic data. The depth of a neutral buoyancy layer below the NGV is 15-20 km and the source of areal volcanism of magnesian basalts northeast of the Klyuchevskoy volcano is located at depth of ~20 km. These data support the major properties of a 2010 geophysical model of magmatic feeding system of the Klyuchevskoy group of volcanoes. The present paper covers a wider NGV area and is based on the real experimental observations.

  6. A seismic fault recognition method based on ant colony optimization

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Xiao, Chuangbai; Li, Xueliang; Wang, Zhenli; Huo, Shoudong

    2018-05-01

    Fault recognition is an important section in seismic interpretation and there are many methods for this technology, but no one can recognize fault exactly enough. For this problem, we proposed a new fault recognition method based on ant colony optimization which can locate fault precisely and extract fault from the seismic section. Firstly, seismic horizons are extracted by the connected component labeling algorithm; secondly, the fault location are decided according to the horizontal endpoints of each horizon; thirdly, the whole seismic section is divided into several rectangular blocks and the top and bottom endpoints of each rectangular block are considered as the nest and food respectively for the ant colony optimization algorithm. Besides that, the positive section is taken as an actual three dimensional terrain by using the seismic amplitude as a height. After that, the optimal route from nest to food calculated by the ant colony in each block is judged as a fault. Finally, extensive comparative tests were performed on the real seismic data. Availability and advancement of the proposed method were validated by the experimental results.

  7. 78 FR 6303 - Notice of Intent To Prepare a Supplemental Draft Environmental Impact Statement on the Effects of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... activities (e.g., seismic surveys and exploratory drilling) in Federal and state waters of the U.S. Chukchi...), and if the permissible methods of taking and requirements pertaining to the mitigation, monitoring...., NMFS' issuance of MMPA ITAs for take of marine mammals incidental to G&G surveys, ancillary activities...

  8. High precision relocation of earthquakes at Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Statz-Boyer, P.; Thurber, C.; Pesicek, J.; Prejean, S.

    2009-01-01

    In August 1996, a period of elevated seismicity commenced beneath Iliamna Volcano, Alaska. This activity lasted until early 1997, consisted of over 3000 earthquakes, and was accompanied by elevated emissions of volcanic gases. No eruption occurred and seismicity returned to background levels where it has remained since. We use waveform alignment with bispectrum-verified cross-correlation and double-difference methods to relocate over 2000 earthquakes from 1996 to 2005 with high precision (~ 100??m). The results of this analysis greatly clarify the distribution of seismic activity, revealing distinct features previously hidden by location scatter. A set of linear earthquake clusters diverges upward and southward from the main group of earthquakes. The events in these linear clusters show a clear southward migration with time. We suggest that these earthquakes represent either a response to degassing of the magma body, circulation of fluids due to exsolution from magma or heating of ground water, or possibly the intrusion of new dikes beneath Iliamna's southern flank. In addition, we speculate that the deeper, somewhat diffuse cluster of seismicity near and south of Iliamna's summit indicates the presence of an underlying magma body between about 2 and 4??km depth below sea level, based on similar features found previously at several other Alaskan volcanoes. ?? 2009 Elsevier B.V.

  9. Geophysical remote sensing of water reservoirs suitable for desalinization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldridge, David Franklin; Bartel, Lewis Clark; Bonal, Nedra

    2009-12-01

    In many parts of the United States, as well as other regions of the world, competing demands for fresh water or water suitable for desalination are outstripping sustainable supplies. In these areas, new water supplies are necessary to sustain economic development and agricultural uses, as well as support expanding populations, particularly in the Southwestern United States. Increasing the supply of water will more than likely come through desalinization of water reservoirs that are not suitable for present use. Surface-deployed seismic and electromagnetic (EM) methods have the potential for addressing these critical issues within large volumes of an aquifer at amore » lower cost than drilling and sampling. However, for detailed analysis of the water quality, some sampling utilizing boreholes would be required with geophysical methods being employed to extrapolate these sampled results to non-sampled regions of the aquifer. The research in this report addresses using seismic and EM methods in two complimentary ways to aid in the identification of water reservoirs that are suitable for desalinization. The first method uses the seismic data to constrain the earth structure so that detailed EM modeling can estimate the pore water conductivity, and hence the salinity. The second method utilizes the coupling of seismic and EM waves through the seismo-electric (conversion of seismic energy to electrical energy) and the electro-seismic (conversion of electrical energy to seismic energy) to estimate the salinity of the target aquifer. Analytic 1D solutions to coupled pressure and electric wave propagation demonstrate the types of waves one expects when using a seismic or electric source. A 2D seismo-electric/electro-seismic is developed to demonstrate the coupled seismic and EM system. For finite-difference modeling, the seismic and EM wave propagation algorithms are on different spatial and temporal scales. We present a method to solve multiple, finite-difference physics problems that has application beyond the present use. A limited field experiment was conducted to assess the seismo-electric effect. Due to a variety of problems, the observation of the electric field due to a seismic source is not definitive.« less

  10. Study of Thermal Anomalies at Cotopaxi Volcano, 2002 to 2005

    NASA Astrophysics Data System (ADS)

    Rivero, D. R.; Beate, B.; Troncoso, L.; Ramón, P.

    2007-05-01

    The Instituto Geofisico of the Escuela Politecnica Nacional (IG-EPN) has maintained continuous monitoring since 1977, allowing a better understanding of the volcano's baseline activity. Preliminary signs observed since 2001 of a possible reactivation of this volcano after more than a century of repose, prompted a comprehensive seismological study and implementation of new methods of monitoring, based mainly upon a general increase in seismic activity (VT and LP); appearance of new types of seismic signals never observed before (hybrids, "tornillos", big LP, and tremor); an increase in the fumaroles' number and discharge, as well as a marked thermal anomaly in the summit region. Seismic activity reached its peak in late 2001 / early 2002 and was correlated with enhanced degassing from the crater, with vapor columns reaching some meters above the crater level with abundant SO2 perceived. In this abstract we show evidence of the existence of a magmatic intrusion (Troncoso, 2005), that has disturbed the hydrothermal system present in the cone and it is melting the glacier. This has generated local population and civil defense concern. Since this stage of activity, Cotopaxi has not yet returned to its baseline level, therefore the newly implemented technology includes periodic over flights with a FLIR camera, which permits localization and identification of thermal anomalies. Additionally, a telemetric video camera has been deployed in the northwest rim of the crater to identify degassing changes and its relationship with seismic events. Finally, the IG-EPN staff perform continuous visits to the crater to observe changes IN the ice-cap, measure temperatures and verify the presence of magmatic gases.

  11. Seismic time-frequency analysis of the recent 2015 eruptive activity of Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Vargas-Bracamontes, D. M.; Nava Pichardo, F. A.; Reyes Dávila, G. A.; Arámbula-Mendoza, R.; Martínez Fierros, A.; Ramírez Vázquez, A.; González Amezcua, M.

    2015-12-01

    Volcán de Colima is an andesitic stratovolcano located in western Mexico. It is considered the most active volcano in Mexico, with activity characterized mainly by intermittent effusive and explosive episodes. On July 10th-12th 2015, Volcán de Colima underwent its most intense eruptive phase since its Plinian eruption in 1913. A partial collapse of the dome and of the crater wall generated several pyroclastic flows, the largest of which reached almost 10 km to the south of the volcano. Lava flows along with incandescent rockfalls descended through various flanks of the volcanic edifice. Ashfall affected people up to 40 km from the volcano's summit. Inhabitants from the small villages closest to the volcano were evacuated and authorities sealed off a 12 km area. We present an overview of the seismic activity that preceded and accompanied this eruptive phase, with data from the closest broadband and short period seismic stations of the Volcán de Colima monitoring network. We focus on the search of temporal information within the spectral content of the seismic signals. We first employ common time-frequency representations such as Fourier and wavelet transforms, but we also apply more recent techniques proposed for the analysis of non-stationary signals, such as empirical mode decomposition and the synchrosqueezing transform. We present and discuss the performances of these various methods characterizing and quantifying spectral changes which could be used to forecast future eruptive events and to evaluate the course of volcanic processes during ongoing eruptions.

  12. Submarine landslide and tsunami hazards offshore southern Alaska: Seismic strengthening versus rapid sedimentation

    NASA Astrophysics Data System (ADS)

    Sawyer, Derek E.; Reece, Robert S.; Gulick, Sean P. S.; Lenz, Brandi L.

    2017-08-01

    The southern Alaskan offshore margin is prone to submarine landslides and tsunami hazards due to seismically active plate boundaries and extreme sedimentation rates from glacially enhanced mountain erosion. We examine the submarine landslide potential with new shear strength measurements acquired by Integrated Ocean Drilling Program Expedition 341 on the continental slope and Surveyor Fan. These data reveal lower than expected sediment strength. Contrary to other active margins where seismic strengthening enhances slope stability, the high-sedimentation margin offshore southern Alaska behaves like a passive margin from a shear strength perspective. We interpret that seismic strengthening occurs but is offset by high sedimentation rates and overpressure. This conclusion is supported by shear strength outside of the fan that follow an active margin trend. More broadly, seismically active margins with wet-based glaciers are susceptible to submarine landslide hazards because of the combination of high sedimentation rates and earthquake shaking.

  13. Seismic Hazard Assessment of the Sheki-Ismayilli Region, Azerbaijan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyubova, Leyla J.

    2006-03-23

    Seismic hazard assessment is an important factor in disaster management of Azerbaijan Republic. The Shaki-Ismayilli region is one of the earthquake-prone areas in Azerbaijan. According to the seismic zoning map, the region is located in intensity IX zone. Large earthquakes in the region take place along the active faults. The seismic activity of the Shaki-Ismayilli region is studied using macroseismic and instrumental data, which cover the period between 1250 and 2003. Several principal parameters of earthquakes are analyzed: maximal magnitude, energetic class, intensity, depth of earthquake hypocenter, and occurrence. The geological structures prone to large earthquakes are determined, and themore » dependence of magnitude on the fault length is shown. The large earthquakes take place mainly along the active faults. A map of earthquake intensity has been developed for the region, and the potential seismic activity of the Shaki-Ismayilli region has been estimated.« less

  14. An automated multi-scale network-based scheme for detection and location of seismic sources

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.

    2017-12-01

    We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.

  15. Efficient realization of 3D joint inversion of seismic and magnetotelluric data with cross gradient structure constraint

    NASA Astrophysics Data System (ADS)

    Luo, H.; Zhang, H.; Gao, J.

    2016-12-01

    Seismic and magnetotelluric (MT) imaging methods are generally used to characterize subsurface structures at various scales. The two methods are complementary to each other and the integration of them is helpful for more reliably determining the resistivity and velocity models of the target region. Because of the difficulty in finding empirical relationship between resistivity and velocity parameters, Gallardo and Meju [2003] proposed a joint inversion method enforcing resistivity and velocity models consistent in structure, which is realized by minimizing cross gradients between two models. However, it is extremely challenging to combine two different inversion systems together along with the cross gradient constraints. For this reason, Gallardo [2007] proposed a joint inversion scheme that decouples the seismic and MT inversion systems by iteratively performing seismic and MT inversions as well as cross gradient minimization separately. This scheme avoids the complexity of combining two different systems together but it suffers the issue of balancing between data fitting and structure constraint. In this study, we have developed a new joint inversion scheme that avoids the problem encountered by the scheme of Gallardo [2007]. In the new scheme, seismic and MT inversions are still separately performed but the cross gradient minimization is also constrained by model perturbations from separate inversions. In this way, the new scheme still avoids the complexity of combining two different systems together and at the same time the balance between data fitting and structure consistency constraint can be enforced. We have tested our joint inversion algorithm for both 2D and 3D cases. Synthetic tests show that joint inversion better reconstructed the velocity and resistivity models than separate inversions. Compared to separate inversions, joint inversion can remove artifacts in the resistivity model and can improve the resolution for deeper resistivity structures. We will also show results applying the new joint seismic and MT inversion scheme to southwest China, where several MT profiles are available and earthquakes are very active.

  16. Pattern recognition applied to seismic signals of Llaima volcano (Chile): An evaluation of station-dependent classifiers

    NASA Astrophysics Data System (ADS)

    Curilem, Millaray; Huenupan, Fernando; Beltrán, Daniel; San Martin, Cesar; Fuentealba, Gustavo; Franco, Luis; Cardona, Carlos; Acuña, Gonzalo; Chacón, Max; Khan, M. Salman; Becerra Yoma, Nestor

    2016-04-01

    Automatic pattern recognition applied to seismic signals from volcanoes may assist seismic monitoring by reducing the workload of analysts, allowing them to focus on more challenging activities, such as producing reports, implementing models, and understanding volcanic behaviour. In a previous work, we proposed a structure for automatic classification of seismic events in Llaima volcano, one of the most active volcanoes in the Southern Andes, located in the Araucanía Region of Chile. A database of events taken from three monitoring stations on the volcano was used to create a classification structure, independent of which station provided the signal. The database included three types of volcanic events: tremor, long period, and volcano-tectonic and a contrast group which contains other types of seismic signals. In the present work, we maintain the same classification scheme, but we consider separately the stations information in order to assess whether the complementary information provided by different stations improves the performance of the classifier in recognising seismic patterns. This paper proposes two strategies for combining the information from the stations: i) combining the features extracted from the signals from each station and ii) combining the classifiers of each station. In the first case, the features extracted from the signals from each station are combined forming the input for a single classification structure. In the second, a decision stage combines the results of the classifiers for each station to give a unique output. The results confirm that the station-dependent strategies that combine the features and the classifiers from several stations improves the classification performance, and that the combination of the features provides the best performance. The results show an average improvement of 9% in the classification accuracy when compared with the station-independent method.

  17. Study of Seismic Clusters at Bahía de Banderas Region, Mexico

    NASA Astrophysics Data System (ADS)

    Nunez-Cornu, F. J.; Rutz-Lopez, M.; Suarez-Plascencia, C.; Trejo-Gomez, E.

    2010-12-01

    Given that the coast in the states of Jalisco and south of the state of Nayarit is located within a region of high seismic potential and also because population is increasing, perhaps motivated by the development of tourism, the Civil Defense authorities of Jalisco and the Centro de Sismología y Volcanología de Occidente-SisVOc of Universidad de Guadalajara started in the year 2000 a joint project to study the seismic risk of the region, including the seismic monitoring of Colima volcano (located between the states of Jalisco and Colima). This work focuses on the study of seismicity in the area of Bahía de Banderas and northern coast of Jalisco. To this end, we perform an analysis of available seismograms to characterize active structures, their relationship to surface morphology, and possible reach of these structures into the shallow parts of the bay. The data used in this work are waveforms recorded during the year 2003 during which the seismograph network spanned the region of study. Our method is based on the identification of seismic clusters or families using cross-correlation of waveforms, earthquake relocation and modeling of fault planes. From an initial data set of 404 earthquakes located during 2003, 96 earthquakes could be related to 17 potentially active continental structures. A modeling of fault planes was possible for 11 of these structures. Subgroups of 7 structures are aligned parallel to the Middle America Trench, a possible consequence of oblique subduction. The magnitudes of earthquakes grouped into families is less than 3.6 (Ml), corresponding to fault dimensions of hundreds of meters.

  18. Geophysical techniques in the historical center of Venice (Italy): preliminary results from HVSR and multichannel analysis of surface waves

    NASA Astrophysics Data System (ADS)

    Trevisani, Sebastiano; Rocca, Michele; Boaga, Jacopo

    2014-05-01

    This presentation aims to outline the preliminary findings related to an extensive seismic survey conducted in the historical center of Venice, Italy. The survey was conducted via noninvasive and low-cost seismic techniques based on surface waves analysis and microtremor methods, mainly using single station horizontal to vertical spectral ratio techninques (HVSR) and multichannel analysis of surface waves in passive (ReMI) and active (MASW) configurations. The importance and the fragility of the cultural heritage of Venice, coupled with its peculiar geological and geotechnical characteristics, stress the importance of a good knowledge of its geological architecture and seismic characteristics as an opportunity to improve restoration and conservation planning. Even if Venice is located in a relatively low seismic hazard zone, a local characterization of soil resonance frequencies and surficial shear waves velocities could improve the planning of engineering interventions, furnishing important information on possible local effects related to seismic amplification and possible coupling within buildings and soil resonance frequencies. In the specific we collected more than 50 HVSR single station noise measurements and several passive and active multichannel analysis of surface waves located in the historical center. In this work we report the characteristics of the conducted seismic surveys (instrumentation, sampling geometry, etc.) and the preliminary findings of our analysis. Moreover, we discuss briefly the practical issues, mainly of logistic nature, of conducting this kind of surveys in a peculiar and crowed historical center as represented by Venice urban contest. Acknowledgments Instrumentation acquired in relation to the project co-financed by Regione Veneto, POR-CRO, FESR, 2007-2013, action 1.1.1. "Supporto ad attività di ricerca, processi e reti di innovazione e alla creazione di imprese in settori a elevato contenuto tecnologico"

  19. Crustal Fracturing Field and Presence of Fluid as Revealed by Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Pastori, M.; Piccinini, D.; de Gori, P.; Margheriti, L.; Barchi, M. R.; di Bucci, D.

    2010-12-01

    In the last three years, we developed, tested and improved an automatic analysis code (Anisomat+) to calculate the shear wave splitting parameters, fast polarization direction (φ) and delay time (∂t). The code is a set of MatLab scripts able to retrieve crustal anisotropy parameters from three-component seismic recording of local earthquakes using horizontal component cross-correlation method. The analysis procedure consists in choosing an appropriate frequency range, that better highlights the signal containing the shear waves, and a length of time window on the seismogram centered on the S arrival (the temporal window contains at least one cycle of S wave). The code was compared to other two automatic analysis code (SPY and SHEBA) and tested on three Italian areas (Val d’Agri, Tiber Valley and L’Aquila surrounding) along the Apennine mountains. For each region we used the anisotropic parameters resulting from the automatic computation as a tool to determine the fracture field geometries connected with the active stress field. We compare the temporal variations of anisotropic parameters to the evolution of vp/vs ratio for the same seismicity. The anisotropic fast directions are used to define the active stress field (EDA model), finding a general consistence between fast direction and main stress indicators (focal mechanism and borehole break-out). The magnitude of delay time is used to define the fracture field intensity finding higher value in the volume where micro-seismicity occurs. Furthermore we studied temporal variations of anisotropic parameters and vp/vs ratio in order to explain if fluids play an important role in the earthquake generation process. The close association of anisotropic and vp/vs parameters variations and seismicity rate changes supports the hypothesis that the background seismicity is influenced by the fluctuation of pore fluid pressure in the rocks.

  20. Understanding the seismic wave propagation inside and around an underground cavity from a 3D numerical survey

    NASA Astrophysics Data System (ADS)

    Esterhazy, Sofi; Schneider, Felix; Perugia, Ilaria; Bokelmann, Götz

    2017-04-01

    Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as "resonance seismometry" - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and so far, there are only very few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in numerical modeling of wave propagation problems. Our numerical study includes the full elastic wave field in three dimensions. We consider the effects from an incoming plane wave as well as point source located in the surrounding of the cavity at the surface. While the former can be considered as passive source like a tele-seismic earthquake, the latter represents a man-made explosion or a viborseis as used for/in active seismic techniques. Further we want to demonstrate the specific characteristics of the scattered wave field from a P-waves and S-wave separately. For our simulations in 3D we use the discontinuous Galerkin Spectral Element Code SPEED developed by MOX (The Laboratory for Modeling and Scientific Computing, Department of Mathematics) and DICA (Department of Civil and Environmental Engineering) at the Politecnico di Milano. The computations are carried out on the Vienna Scientific Cluster (VSC). The accurate numerical modeling can facilitate the development of proper analysis techniques to detect the remnants of an underground nuclear test, help to set a rigorous scientific base of OSI and contribute to bringing the Treaty into force.

  1. Machine Learning Method for Pattern Recognition in Volcano Seismic Spectra

    NASA Astrophysics Data System (ADS)

    Radic, V.; Unglert, K.; Jellinek, M.

    2016-12-01

    Variations in the spectral content of volcano seismicity related to changes in volcanic activity are commonly identified manually in spectrograms. However, long time series of monitoring data at volcano observatories require tools to facilitate automated and rapid processing. Techniques such as Self-Organizing Maps (SOM), Principal Component Analysis (PCA) and clustering methods can help to quickly and automatically identify important patterns related to impending eruptions. In this study we develop and evaluate an algorithm applied on a set of synthetic volcano seismic spectra as well as observed spectra from Kılauea Volcano, Hawai`i. Our goal is to retrieve a set of known spectral patterns that are associated with dominant phases of volcanic tremor before, during, and after periods of volcanic unrest. The algorithm is based on training a SOM on the spectra and then identifying local maxima and minima on the SOM 'topography'. The topography is derived from the first two PCA modes so that the maxima represent the SOM patterns that carry most of the variance in the spectra. Patterns identified in this way reproduce the known set of spectra. Our results show that, regardless of the level of white noise in the spectra, the algorithm can accurately reproduce the characteristic spectral patterns and their occurrence in time. The ability to rapidly classify spectra of volcano seismic data without prior knowledge of the character of the seismicity at a given volcanic system holds great potential for real time or near-real time applications, and thus ultimately for eruption forecasting.

  2. Seismic instrumentation plan for the Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Thelen, Weston A.

    2014-01-01

    The installation of new seismic stations is only the first part of building a volcanic early warning capability for seismicity in the State of Hawaii. Additional personnel will likely be required to study the volcanic processes at work under each volcano, analyze the current seismic activity at a level sufficient for early warning, build new tools for monitoring, maintain seismic computing resources, and maintain the new seismic stations.

  3. Data Mining for Tectonic Tremor in a Large Global Seismogram Database using Preprocessed Data Quality Measurements

    NASA Astrophysics Data System (ADS)

    Rasor, B. A.; Brudzinski, M. R.

    2013-12-01

    The collision of plates at subduction zones yields the potential for disastrous earthquakes, yet the processes that lead up to these events are still largely unclear and make them difficult to forecast. Recent advancements in seismic monitoring has revealed subtle ground vibrations termed tectonic tremor that occur as long-lived swarms of narrow bandwidth activity, different from local earthquakes of comparable amplitude that create brief signals of broader, higher frequency. The close proximity of detected tremor events to the lower edge of the seismogenic zone along the subduction interface suggests a potential triggering relationship between tremor and megathrust earthquakes. Most tremor catalogs are constructed with detection methods that involve an exhausting download of years of high sample rate seismic data, as well as large computation power to process the large data volume and identify temporal patterns of tremor activity. We have developed a tremor detection method that employs the underutilized Quality Analysis Control Kit (QuACK), originally built to analyze station performance and identify instrument problems across the many seismic networks that contribute data to one of the largest seismogram databases in the world (IRIS DMC). The QuACK dataset stores seismogram amplitudes at a wide range of frequencies calculated every hour since 2005 for most stations achieved in the IRIS DMC. Such a preprocessed dataset is advantageous considering several tremor detection techniques use hourly seismic amplitudes in the frequency band where tremor is most active (2-5 Hz) to characterize the time history of tremor. Yet these previous detection techniques have relied on downloading years of 40-100 sample-per-second data to make the calculations, which typically takes several days on a 36-node high-performance cluster to calculate the amplitude variations for a single station. Processing times are even longer for a recently developed detection algorithm that utilize the ratio of amplitudes between tremor frequencies and those of local earthquakes (10-15 Hz) and surface waves (0.02-0.1 Hz). Using the QuACK dataset, we can make the more advanced calculations in a fraction of the time. This method works well to quickly detect tremor in the Cascadia region by finding similar times of increased tremor activity when comparing across a variety of stations within a 100km radius of a reference station. We confirm the legitimacy of this method by demonstrating comparable results to several previously developed tremor detection techniques despite a much shorter processing time. The rapid processing time has allowed us to refine the detection algorithm by seeking more optimal frequency bands by comparing results from our technique and others, using several stations across the Cascadia subduction zone. As we move forward, we will apply the method to other subduction zones, and ultimately to the vast set of seismic data stored at the IRIS DMC for which tremor has not been previously investigated.

  4. Variational Bayesian Inversion of Quasi-Localized Seismic Attributes for the Spatial Distribution of Geological Facies

    NASA Astrophysics Data System (ADS)

    Nawaz, Muhammad Atif; Curtis, Andrew

    2018-04-01

    We introduce a new Bayesian inversion method that estimates the spatial distribution of geological facies from attributes of seismic data, by showing how the usual probabilistic inverse problem can be solved using an optimization framework still providing full probabilistic results. Our mathematical model consists of seismic attributes as observed data, which are assumed to have been generated by the geological facies. The method infers the post-inversion (posterior) probability density of the facies plus some other unknown model parameters, from the seismic attributes and geological prior information. Most previous research in this domain is based on the localized likelihoods assumption, whereby the seismic attributes at a location are assumed to depend on the facies only at that location. Such an assumption is unrealistic because of imperfect seismic data acquisition and processing, and fundamental limitations of seismic imaging methods. In this paper, we relax this assumption: we allow probabilistic dependence between seismic attributes at a location and the facies in any neighbourhood of that location through a spatial filter. We term such likelihoods quasi-localized.

  5. A global database of seismically and non-seismically triggered landslides for 2D/3D numerical modeling

    NASA Astrophysics Data System (ADS)

    Domej, Gisela; Bourdeau, Céline; Lenti, Luca; Pluta, Kacper

    2017-04-01

    Landsliding is a worldwide common phenomenon. Every year, and ranging in size from very small to enormous, landslides cause all too often loss of life and disastrous damage to infrastructure, property and the environment. One main reason for more frequent catastrophes is the growth of population on the Earth which entails extending urbanization to areas at risk. Landslides are triggered by a variety and combination of causes, among which the role of water and seismic activity appear to have the most serious consequences. In this regard, seismic shaking is of particular interest since topographic elevation as well as the landslide mass itself can trap waves and hence amplify incoming surface waves - a phenomenon known as "site effects". Research on the topic of landsliding due to seismic and non-seismic activity is extensive and a broad spectrum of methods for modeling slope deformation is available. Those methods range from pseudo-static and rigid-block based models to numerical models. The majority is limited to 2D modeling since more sophisticated approaches in 3D are still under development or calibration. However, the effect of lateral confinement as well as the mechanical properties of the adjacent bedrock might be of great importance because they may enhance the focusing of trapped waves in the landslide mass. A database was created to study 3D landslide geometries. It currently contains 277 distinct seismically and non-seismically triggered landslides spread all around the globe whose rupture bodies were measured in all available details. Therefore a specific methodology was developed to maintain predefined standards, to keep the bias as low as possible and to set up a query tool to explore the database. Besides geometry, additional information such as location, date, triggering factors, material, sliding mechanisms, event chronology, consequences, related literature, among other things are stored for every case. The aim of the database is to enable statistical analysis on a vast and newly updated set of data and to create numerical models in the future. It is possible to define groups of landslides sharing the same characteristics, or cases belonging to different groups can be used to compare their responses to external loads. Thus, different options exist to create input data for numerical models. This is very promising especially considering the possibility of comparing 2D and 3D models having the same framework conditions (i.e. geometry, material, etc.). Comparison of 2D and 3D approaches might contribute to a better understanding of landsliding phenomena to improve the hazard prevention.

  6. Geophysical surveying in the Sacramento Delta for earthquake hazard assessment and measurement of peat thickness

    NASA Astrophysics Data System (ADS)

    Craig, M. S.; Kundariya, N.; Hayashi, K.; Srinivas, A.; Burnham, M.; Oikawa, P.

    2017-12-01

    Near surface geophysical surveys were conducted in the Sacramento-San Joaquin Delta for earthquake hazard assessment and to provide estimates of peat thickness for use in carbon models. Delta islands have experienced 3-8 meters of subsidence during the past century due to oxidation and compaction of peat. Projected sea level rise over the next century will contribute to an ongoing landward shift of the freshwater-saltwater interface, and increase the risk of flooding due to levee failure or overtopping. Seismic shear wave velocity (VS) was measured in the upper 30 meters to determine Uniform Building Code (UBC)/ National Earthquake Hazard Reduction Program (NEHRP) site class. Both seismic and ground penetrating radar (GPR) methods were employed to estimate peat thickness. Seismic surface wave surveys were conducted at eight sites on three islands and GPR surveys were conducted at two of the sites. Combined with sites surveyed in 2015, the new work brings the total number of sites surveyed in the Delta to twenty.Soil boreholes were made at several locations using a hand auger, and peat thickness ranged from 2.1 to 5.5 meters. Seismic surveys were conducted using the multichannel analysis of surface wave (MASW) method and the microtremor array method (MAM). On Bouldin Island, VS of the surficial peat layer was 32 m/s at a site with pure peat and 63 m/s at a site peat with higher clay and silt content. Velocities at these sites reached a similar value, about 125 m/s, at a depth of 10 m. GPR surveys were performed at two sites on Sherman Island using 100 MHz antennas, and indicated the base of the peat layer at a depth of about 4 meters, consistent with nearby auger holes.The results of this work include VS depth profiles and UBC/NEHRP site classifications. Seismic and GPR methods may be used in a complementary fashion to estimate peat thickness. The seismic surface wave method is a relatively robust method and more effective than GPR in many areas with high clay content or where surface sediments have been disturbed by human activities. GPR does however provide significantly higher resolution and better depth control in areas with suitable recording conditions.

  7. A Statistical Reappraisal in the Relationship between Global and Greek Seismic Activity

    NASA Astrophysics Data System (ADS)

    Liritzis, I.; Diagourtas, D.; Makropoulos, C.

    1995-01-01

    For the period 1917 1987, Greek seismic activity exhibits a very significant positive correlation to the preceding global activity with a time-lag of 15 years. It seems that all Greece and the two characteristic areas in which we have separated it (Greece without Arc, and the area of the Greek seismic Arc), follow the global seismic activity but with a time-shift of 15 years. Moreover, it seems to exist an intrinsic interaction mechanism between the Greek seismic arc and the rest of Greece, which may be deduced by their different behavior exhibited when they are correlated with the global activity, as well as from the correlation between themselves, where a very significant positive correlation has been found with a time-lag of 3 years, for Greece without arc preceding. A quasi-periodic term of 30-yrs is also observed in these detailed four seismic time-series. The cross-correlation analysis of seismic time-series, as shown, is served as a powerful tool to clarify the complicated space-time pattern of the world wide mosaic of tectonic plate motions. The implications of spring-block model of tectonic plates interaction is invoked, considering the earth's rotation rate changes as their triggering agent. Particular emphasis is given to the potential of such studies in earthquake prediction efforts from local or regional scales to a global scale and vice-versa.

  8. Estimation of the seismic hazards of the possible rupture of the Pastores and Venta de Bravo faults in the Acambay grabens, state of Mexico, Mexico, using the Empirical Green's Function Method

    NASA Astrophysics Data System (ADS)

    Ishizawa, O. A.; Lermo, J.; Aguirre, J.

    2003-04-01

    Even though the majority of earthquakes in Mexico and in the world are in direct relation with the movement of tectonic plates, there are less frequent tremors which take place in the continents, within the plates. This is the case with the earthquakes which occur in Mexico along the Neovolcanic Axis. Despite the fact that these quakes in the Neovolcanic Axis are, in general, of small magnitude, there are occassional events of greater magnitude. For instance, in 1912, an earthquake with an approximate magnitude of M=6.9 took place in Acambay, state of Mexico, 80 km. from Mexico City. The reported damage areas for these earthquakes suggest that they were originated in surface faults probably associated with tensional geological structures which exist in the area (grabens). This region stretches along 400 km. between the cities of Mexico and Guadalajara. The faults are normal, extending tens of kilometers, with a dip of up to 80o and vertical differences of several hundred meters. The faults in this part of the country can be classified as "active" or "potentially active", with an important seismic expression. The faulting, volcanism and seismicity manifested in the region studied constitute geological effects of the more recent tectonic activity of the central part of Mexico. The present activity of these faults represent the major part of the natural hazards (geological hazards) for this region, taking account of its high demographic density make it a zone of great vulnerability. We will be primarily interested in two of the faults which constitute the fault system of the Acambay graben, eastern sector of the Mexican Neovolcanic Axis, at approximately 80 km. northwest of Mexico City: the Pastores fault and the Venta de Bravo fault system. We will estimate the resultant seismic movement at the University campus (CU) station, in Mexico DF, utilizing the record of the main earthquake (M=4.0) of Tlaxcoapan, Hgo., of March 18 1998 and formulating the scenario of the possible rupture of the faults being studied. For that purpose a realistic model on the basis of the source parameters of the above mentioned earthquake will be proposed. The Empirical Green's Function Method allows us to simulate strong seismic movements starting from the records of small earthquakes which have occurred near the site where the simulation is intended. This method takes advantage of the information, of trajectory and site, contained in the record of an earthquake of small magnitude. Through the utilization of the method of superposition proposed by Irikura (1986) and using the spectral scaling law stated by Aki (1967) the larger magnitude earthquake is modeled according to the proposed geometrical model. The reason for choosing the station of University Campus is the richness of seismic information of subduction and normal earthquakes during the past century. Besides, from the University Campus station, the results obtained can be extrapolated to the rest of Mexico City.

  9. Estimation of the seismic hazards of the possible rupture of the Pastores and Venta de Bravo faults in the Acambay grabens, state of Mexico, Mexico, using the Empirical Green's Function Method

    NASA Astrophysics Data System (ADS)

    Ishizawa, O. A.; Lermo, J.; Aguirre, J.

    2003-04-01

    Even though the majority of earthquakes in Mexico and in the world are in direct relation with the movement of tectonic plates, there are less frequent tremors which take place in the continents, within the plates. This is the case with the earthquakes which occur in Mexico along Neovolcanic Axis. Despite the fact that these earthquakes in the Neovolcanic Axis are, in general, of small magnitude, there are occassional events of greater magnitude. For instance, in 1912, an earthquake with an approximate magnitude of M = 6.9 took place in Acambay, state of Mexico, 80 km. from Mexico City. The reported damage areas for these earthquakes suggest that they were originated in surface faults probably associated with tensional geological structures which exist in the area (grabens). This region stretches along 400 km. between the cities of Mexico and Guadalajara. The faults are normal, extending tens of kilometers, with a dip of up to 80o and vertical differences of several hundred meters. The faults in this part of the country can be classified as "active" or "potentially active", with an important seismic expression. The faulting, volcanism and seismicity manifested in the region studied constitute geological effects of the more recent tectonic activity of the central part of Mexico. The present activity of these faults represent the major part of the natural risks (geological risks) for this region and , taking account of its high demographic density make it a zone of great vulnerability. We will be primarily interested in two of the faults which constitute the fault system of the Acambay graben, eastern sector of the Mexican Neovolcanic Axis, at approximately 80 km. northwest of Mexico City: the Pastores fault and the Venta de Bravo fault system. We will estimate the resultant seismic movement at the University Campus (CU) station, in Mexico DF, using the record of the main earthquake (M =4.0) of Tlaxcoapan, Hgo., of March 18, 1998 and formulating the scenario of the possible rupture of the faults being studied. For that purpose a realistic model on the basis of the source parameters of the above mentioned earthquake will be proposed. The Empirical Green's Function method allows us to simulate strong seismic movements starting from the records of small earthquakes which have occurred near the site where the simulation is intended. This method takes advantage of the information, of trajectory and site, contained in the record of an earthquake of small magnitude. Through the utilization of the method of linear superposition proposed by Irikura (1986) and using the spectral scaling law stated by Aki (1967) the larger magnitude earthquake is modeled according to the proposed geometrical model. The reason for choosing the University Campus station is the richness of seismic information of subduction and normal tremors during the past century. Besides, from the University Campus station, the results obtained will be extrapolated to the rest of Mexico City.

  10. Comparison of Earthquake Damage Patterns and Shallow-Depth Vs Structure Across the Napa Valley, Inferred From Multichannel Analysis of Surface Waves (MASW) and Multichannel Analysis of Love Waves (MALW) Modeling of Basin-Wide Seismic Profiles

    NASA Astrophysics Data System (ADS)

    Chan, J. H.; Catchings, R.; Strayer, L. M.; Goldman, M.; Criley, C.; Sickler, R. R.; Boatwright, J.

    2017-12-01

    We conducted an active-source seismic investigation across the Napa Valley (Napa Valley Seismic Investigation-16) in September of 2016 consisting of two basin-wide seismic profiles; one profile was 20 km long and N-S-trending (338°), and the other 15 km long and E-W-trending (80°) (see Catchings et al., 2017). Data from the NVSI-16 seismic investigation were recorded using a total of 666 vertical- and horizontal-component seismographs, spaced 100 m apart on both seismic profiles. Seismic sources were generated by a total of 36 buried explosions spaced 1 km apart. The two seismic profiles intersected in downtown Napa, where a large number of buildings were red-tagged by the City following the 24 August 2014 Mw 6.0 South Napa earthquake. From the recorded Rayleigh and Love waves, we developed 2-Dimensional S-wave velocity models to depths of about 0.5 km using the multichannel analysis of surface waves (MASW) method. Our MASW (Rayleigh) and MALW (Love) models show two prominent low-velocity (Vs = 350 to 1300 m/s) sub-basins that were also previously identified from gravity studies (Langenheim et al., 2010). These basins trend N-W and also coincide with the locations of more than 1500 red- and yellow-tagged buildings within the City of Napa that were tagged after the 2014 South Napa earthquake. The observed correlation between low-Vs, deep basins, and the red-and yellow-tagged buildings in Napa suggests similar large-scale seismic investigations can be performed. These correlations provide insights into the likely locations of significant structural damage resulting from future earthquakes that occur adjacent to or within sedimentary basins.

  11. Receiver deghosting in the t-x domain based on super-Gaussianity

    NASA Astrophysics Data System (ADS)

    Lu, Wenkai; Xu, Ziqiang; Fang, Zhongyu; Wang, Ruiliang; Yan, Chengzhi

    2017-01-01

    Deghosting methods in the time-space (t-x) domain have attracted a lot of attention because of their flexibility for various source/receiver configurations. Based on the well-known knowledge that the seismic signal has a super-Gaussian distribution, we present a Super-Gaussianity based Receiver Deghosting (SRD) method in the t-x domain. In our method, we denote the upgoing wave and its ghost (downgoing wave) as a single seismic signal, and express the relationship between the upgoing wave and its ghost using two ghost parameters: the sea surface reflection coefficient and the time-shift between the upgoing wave and its ghost. For a single seismic signal, we estimate these two parameters by maximizing the super-Gaussianity of the deghosted output, which is achieved by a 2D grid search method using an adaptively predefined discrete solution space. Since usually a large number of seismic signals are mixed together in a seismic trace, in the proposed method we divide the seismic trace into overlapping frames using a sliding time window with a step of one time sample, and consider each frame as a replacement for a single seismic signal. For a 2D seismic gather, we obtain two 2D maps of the ghost parameters. By assuming that these two parameters vary slowly in the t-x domain, we apply a 2D average filter to these maps, to improve their reliability further. Finally, these deghosted outputs are merged to form the final deghosted result. To demonstrate the flexibility of the proposed method for arbitrary variable depths of the receivers, we apply it to several synthetic and field seismic datasets acquired by variable depth streamer.

  12. Anomalous Induced Seismicity due to Hydraulic Fracturing. Case of study in the Montney Formation, Northeast British Columbia.

    NASA Astrophysics Data System (ADS)

    Longobardi, M.; Bustin, A. M. M.; Johansen, K.; Bustin, R. M.

    2017-12-01

    One of our goals is to investigate the variables and processes controlling the anomalous induced seismicity and its associated ground motions, to better understand the anomalous induced seismicity (AIS) due to hydraulic fracturing in Northeast British Columbia. Our other main objective is to optimize-completions and well design. Although the vast majority of earthquakes that occur in the world each year have natural causes, some of these earthquakes and a number of lesser magnitude seismic events are induced by human activities. The recorded induced seismicity resulting from the fluid injection during hydraulic fracturing is generally small in magnitude (< M 1). Shale gas operations in Northeast British Columbia (BC) have induced the largest recorded occurrence and magnitude of AIS because of hydraulic fracturing. Anomalous induced seismicity have been recorded in seven clusters within the Montney area, with magnitudes up to ML 4.6. Five of these clusters have been linked to hydraulic fracturing. To analyse our AIS data, we first have calculated the earthquakes hypocenters. The data was recorded on an array of real-time accelerometers. We built the array based on our modified design from the early earthquake detectors installed in BC schools for the Earthquake Early Warning System for British Columbia. We have developed a new technique for locating hypocenters and applied it to our dataset. The technique will enable near real-time event location, aiding in both mitigating induced events and adjusting completions to optimize the stimulation. Our hypocenter program assumes to consider a S wave speed, fitting the arrival times to the hypocenter, and using an "amoebae method" multivariate. We have used this method because it is well suited to minimizing of the chi-squared function of the arrival time deviation. We show some preliminary results on the Montney dataset.

  13. Pre-seismic anomalies from optical satellite observations: a review

    NASA Astrophysics Data System (ADS)

    Jiao, Zhong-Hu; Zhao, Jing; Shan, Xinjian

    2018-04-01

    Detecting various anomalies using optical satellite data prior to strong earthquakes is key to understanding and forecasting earthquake activities because of its recognition of thermal-radiation-related phenomena in seismic preparation phases. Data from satellite observations serve as a powerful tool in monitoring earthquake preparation areas at a global scale and in a nearly real-time manner. Over the past several decades, many new different data sources have been utilized in this field, and progressive anomaly detection approaches have been developed. This paper reviews the progress and development of pre-seismic anomaly detection technology in this decade. First, precursor parameters, including parameters from the top of the atmosphere, in the atmosphere, and on the Earth's surface, are stated and discussed. Second, different anomaly detection methods, which are used to extract anomalous signals that probably indicate future seismic events, are presented. Finally, certain critical problems with the current research are highlighted, and new developing trends and perspectives for future work are discussed. The development of Earth observation satellites and anomaly detection algorithms can enrich available information sources, provide advanced tools for multilevel earthquake monitoring, and improve short- and medium-term forecasting, which play a large and growing role in pre-seismic anomaly detection research.

  14. A preliminary census of engineering activities located in Sicily (Southern Italy) which may "potentially" induce seismicity

    NASA Astrophysics Data System (ADS)

    Aloisi, Marco; Briffa, Emanuela; Cannata, Andrea; Cannavò, Flavio; Gambino, Salvatore; Maiolino, Vincenza; Maugeri, Roberto; Palano, Mimmo; Privitera, Eugenio; Scaltrito, Antonio; Spampinato, Salvatore; Ursino, Andrea; Velardita, Rosanna

    2015-04-01

    The seismic events caused by human engineering activities are commonly termed as "triggered" and "induced". This class of earthquakes, though characterized by low-to-moderate magnitude, have significant social and economical implications since they occur close to the engineering activity responsible for triggering/inducing them and can be felt by the inhabitants living nearby, and may even produce damage. One of the first well-documented examples of induced seismicity was observed in 1932 in Algeria, when a shallow magnitude 3.0 earthquake occurred close to the Oued Fodda Dam. By the continuous global improvement of seismic monitoring networks, numerous other examples of human-induced earthquakes have been identified. Induced earthquakes occur at shallow depths and are related to a number of human activities, such as fluid injection under high pressure (e.g. waste-water disposal in deep wells, hydrofracturing activities in enhanced geothermal systems and oil recovery, shale-gas fracking, natural and CO2 gas storage), hydrocarbon exploitation, groundwater extraction, deep underground mining, large water impoundments and underground nuclear tests. In Italy, induced/triggered seismicity is suspected to have contributed to the disaster of the Vajont dam in 1963. Despite this suspected case and the presence in the Italian territory of a large amount of engineering activities "capable" of inducing seismicity, no extensive researches on this topic have been conducted to date. Hence, in order to improve knowledge and correctly assess the potential hazard at a specific location in the future, here we started a preliminary study on the entire range of engineering activities currently located in Sicily (Southern Italy) which may "potentially" induce seismicity. To this end, we performed: • a preliminary census of all engineering activities located in the study area by collecting all the useful information coming from available on-line catalogues; • a detailed compilation of instrumental and historical seismicity, focal mechanisms solutions, multidisciplinary stress indicators, GPS-based ground deformation field, mapped faults, etc by merging data from on-line catalogues with those reported in literature. Finally, for each individual site, we analysed: i) long-term statistic behaviour of instrumental seismicity (magnitude of completeness, seismic release above a threshold magnitude, depth distribution, focal plane solutions); ii) long-term statistic behaviour of historical seismicity (maximum magnitude estimation, recurrence time interval, etc); iii) properties and orientation of faults (length, estimated geological slip, kinematics, etc); iv) regional stress (from borehole, seismological and geological observations) and strain (from GPS-based observations) fields.

  15. Submarine seismic monitoring of El Hierro volcanic eruption with a 3C-geophone string: applying new acquisition and data processing techniques to volcano monitoring

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Ripepe, Maurizio; Lopez, Carmen; Blanco, Maria Jose; Crespo, Jose

    2015-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2011 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. Right after the eruption onset, in October 2011 a geophone string was deployed by the CSIC-IGN to monitor seismic activity. Monitoring with the seismic array continued till May 2012. The array was installed less than 2 km away from the new vol¬cano, next to La Restinga village shore in the harbor from 6 to 12m deep into the water. Our purpose was to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. Each geophone consists on a 3-component module based on 3 orthogonal independent sensors that measures ground velocity. Some of the geophones were placed directly on the seabed, some were buried. Due to different factors, as the irregular characteristics of the seafloor. The data was recorded on the surface with a seismometer and stored on a laptop computer. We show how acoustic data collected underwater show a great correlation with the seismic data recorded on land. Finally we compare our data analysis results with the observed sea surface activity (ash and lava emission and degassing). This evidence is disclosing new and innovative tecniques on monitoring submarine volcanic activity. Reference Instituto Geográfico Nacional (IGN), "Serie El Hierro." Internet: http://www.ign.es/ign/resources /volcanologia/HIERRO.html [May, 17. 2013

  16. Seismic sample areas defined from incomplete catalogues: an application to the Italian territory

    NASA Astrophysics Data System (ADS)

    Mulargia, F.; Tinti, S.

    1985-11-01

    The comprehensive understanding of earthquake source-physics under real conditions requires the study not of single faults as separate entities but rather of a seismically active region as a whole, accounting for the interaction among different structures. We define "seismic sample area" the most convenient region to be used as a natural laboratory for the study of seismic source physics. This coincides with the region where the average large magnitude seismicity is the highest. To this end, time and space future distributions of large earthquakes are to be estimated. Using catalog seismicity as an input, the rate of occurrence is not constant but appears generally biased by incompleteness in some parts of the catalog and possible nonstationarities in seismic activity. We present a statistical procedure which is capable, under a few mild assumptions, of both detecting nonstationarities in seismicity and finding the incomplete parts of a seismic catalog. The procedure is based on Kolmogorov-Smirnov nonparametric statistics, and can be applied without a priori assuming the parent distribution of the events. The efficiency of this procedure allows the analysis of small data sets. An application to the Italian territory is presented, using the most recent version of the ENEL seismic catalog. Seismic activity takes place in six well defined areas but only five of them have a number of events sufficient for analysis. Barring a few exceptions, seismicity is found stationary throughout the whole catalog span 1000-1980. The eastern Alps region stands out as the best "sample area", with the highest average probability of event occurrence per time and area unit. Final objective of this characterization is to stimulate a program of intensified research.

  17. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    NASA Astrophysics Data System (ADS)

    Fedorov, V.

    2009-04-01

    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial body, as well as to forecast of changes in its relief. As the volcanic and seismic processes are of cosmic nature and occurrence, it seems logical to investigate their chronological structure in terms of astronomical time reference system or in parameters of the Earth orbital movement. Gravitational interaction of the Earth with the moon, the Sun and planets of the Solar system forms the physical basis of this multidimensional system; it manifests itself in tidal deformations of the Earth's lithosphere and in periodical changes in the planet rotation and orbital speed. A search for chronological correlation between the Earth's volcanism and seismicity on one hand and the orbital parameters dynamic on the other shows a certain promise in relation to prognostic decisions. It should be kept in mind that the calculation of astronomical characteristics (Ephemerides), which is one of the main lines in theoretical astronomy, spans many years both in the past and in future. It seems appropriate therefore to apply the astronomical time reference system to investigations of chronological structure of volcanic and seismic processes from the methodical viewpoint, as well as for retrospective and prognostic analyses. To investigate temporal pattern of the volcanic and seismic processes and to find a degree of their dependence on tidal forces, we used the astronomical time reference system as related to the Earth's orbital movement. The system is based on substitution of calendar dates of eruption and earthquakes for corresponding values of known astronomical characteristics, such as the Earth to Sun and Earth to Moon distances, ecliptic latitude of the Moon, etc. In coordinates of astronomical parameters (JPL Planetary and Lunar Efemerides, 1997, as compiled by the Jet Propulsion Laboratory, California Institute of Technology, on the basis of DE 406 block developed by NASA), we analyzed massifs of information, both volcanological (Catalogue of the World volcanic eruptions by I.I. Gushchenko, 1979) and seismological (database of USGS/NEIC Significant Worldwide Earthquakes, 2150 B.C.- 1994 A.D.) information which displays dynamics of endogenic relief-forming processes over a period of 1900 to 1994. In the course of the analysis, a substitution of calendar variable by a corresponding astronomical one has been performed and the epoch superposition method was applied. In essence, the method consists in that the massifs of information on volcanic eruptions (over a period of 1900 to 1977) and seismic events (1900-1994) are differentiated with respect to value of astronomical parameters which correspond to the calendar dates of the known eruptions and earthquakes, regardless of the calendar year. The obtained spectra of volcanic eruptions and violent earthquake distribution in the fields of the Earth orbital movement parameters were used as a basis for calculation of frequency spectra and diurnal probability of volcanic and seismic activity. The objective of the proposed investigations is a probabilistic model development of the volcanic and seismic events, as well as GIS designing for monitoring and forecast of volcanic and seismic activities. In accordance with the stated objective, three probability parameters have been found in the course of preliminary studies; they form the basis for GIS-monitoring and forecast development. 1. A multidimensional analysis of volcanic eruption and earthquakes (of magnitude 7) have been performed in terms of the Earth orbital movement. Probability characteristics of volcanism and seismicity have been defined for the Earth as a whole. Time intervals have been identified with a diurnal probability twice as great as the mean value. Diurnal probability of volcanic and seismic events has been calculated up to 2020. 2. A regularity is found in duration of dormant (repose) periods has been established. A relationship has been found between the distribution of the repose period probability density and duration of the period. 3. Features of spatial distribution of volcanic eruptions and earthquakes of magnitude 7 were analyzed, and those related to the Earth rotation identified. Frequencies of their spatial distribution are calculated. Using those parameters as the base, a scheme (algorithm) of probabilistic monitoring (long-range forecast) has been developed for volcanic and seismic events. Refereces (in Russian): 1. Fedorov V.M. Gravitational factors and astronomy-based chronology of processes in geospheres. Moscow University Publishing House, 2000. 368 p. 2. Fedorov V.M. Comparison between chronology of the Earth volcanic activity and characteristics of its orbital motion // Vulkanologiya i seismologiya, № 5, 2001, p. 65-67. 3. Fedorov V.M. Specific features of latitudinal distribution of volcanic eruptions// Vulkanologiya i seismologiya, № 4, 2002, p.39-43. 4. Fedorov V.M. Specific features of latitudinal distribution of endogenic relief-forming processes and the rotation of the Earth // Geomorphologiya, № 1, 2003, p.3-9. 5. Fedorov V.M. Comparison between chronology of the Earth volcanic and seismic activity and characteristics of its orbital motion // Izvestiya RAS. Ser. Geogr. № 5, 2003, p.16-20. 6. Fedorov V.M. Chronological structure and probability of volcanic events as related to tidal deformation of lithosphere // Vulkanologiya i seismologiya, № 1, 2005, p.44-50. 7. Fedorov V.M. Multidimensional analysis and a probabilistic model of the activity of endogenic relief-forming processes // Geomorphology, № 2, 2007, p. 37 - 48. 8. Fedorov V.M. Multidimensional analysis - is a spatiotemporal structure of the geodynamic activity of Earth// Vestnik Moskovskogo Universiteta; Ser. 4. Geology, № 4, 2007, p. 24-31.

  18. New Observations of Seismic Group Velocities in the Western Solomon Islands from Cross-Correlation of Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Ku, C. S.; You, S. H.; Kuo, Y. T.; Huang, B. S.; Wu, Y. M.; Chen, Y. G.; Taylor, F. W.

    2015-12-01

    A MW 8.1 earthquake occurred on 1 April 2007 in the western Solomon Islands. Following this event, a damaging tsunami was induced and hit the Island Gizo where the capital city of Western Province of Solomon Islands located. Several buildings of this city were destroyed and several peoples lost their lives during this earthquake. However, during this earthquake, no near source seismic instrument has been installed in this region. The seismic evaluations for the aftershock sequence, the possible earthquake early warning and tsunami warning were unavailable. For the purpose of knowing more detailed information about seismic activity in this region, we have installed 9 seismic stations (with Trillium 120PA broadband seismometer and Q330S 24bit digitizer) around the rupture zone of the 2007 earthquake since September of 2009. Within a decade, it has been demonstrated both theoretically and experimentally that the Green's function or impulse response between two seismic stations can be retrieved from the cross-correlation of ambient noise. In this study, 6 stations' observations which are more complete during 2011/10 ~ 2012/12 period, were selected for the purpose of the cross-correlation analysis of ambient seismic noise. The group velocities at period 2-20 seconds of 15 station-pairs were extracted by using multiple filter technique (MFT) method. The analyzed results of this study presented significant results of group velocities with higher frequency contents than other studies (20-60 seconds in usually cases) and opened new opportunities to study the shallow crustal structure of the western Solomon Islands.

  19. Seismic Monitoring of Bedload Transport in a Steep Mountain Catchment

    NASA Astrophysics Data System (ADS)

    Roth, D. L.; Finnegan, N. J.; Brodsky, E. E.; Turowski, J. M.; Wyss, C. R.; Badoux, A.

    2014-12-01

    Predicting river channel evolution relies on an understanding of when and at what rate coarse sediment moves in a channel. Unfortunately, our predictive abilities are limited by the logistical challenges and potential dangers inherent in current techniques for monitoring sediment transport during flood events, especially in steep, highly active landscapes. However, the use of seismic signals near rivers shows promise as a safe, low-cost method for studying sediment transport in these settings. Seismic signals near rivers are partially generated by both water turbulence and bedload sediment particles impacting the river bed during transport. Here, we attempt to isolate the seismic signatures of discharge and bedload transport in a steep mountain channel by examining high-frequency broadband seismic data from the well-studied Erlenbach stream (local slope of ~10%) in the Swiss Prealps. The extensive monitoring infrastructure and long history of sediment transport data at this field site allow us to independently constrain discharge, precipitation, and bedload transport during flood events over a two month field campaign. We perform a general linear least squares inversion of the seismic data, exploiting times with isolated rain or discharge events, to identify the spectral signals of water turbulence, rain, and bedload sediment transport. We find that the signal generated by rain exhibits a roughly broadband spectrum, while discharge and sediment transport exhibit power primarily in lower frequency bands. Our preliminary results indicate that with only precipitation and discharge data, it is possible to isolate the seismic signal of bedload transport in steep fluvial environments. Seismic studies may therefore have the potential to revolutionize our ability to monitor and understand these environments.

  20. Seismicity and Seismotectonic Properties of The Sultandağı Fault Zone (Afyonkarahisar-Konya): Western Anatolia,Turkey

    NASA Astrophysics Data System (ADS)

    Kalafat, D.; Gunes, Y.; Kekovali, K.; Kara, M.; Gorgun, E.

    2017-12-01

    n this study we investigated seismicity and source characteristics of the Sultandağı Fault Zone (SFZ). As known Western Anatolia is one of the most important seismically active region in Turkey. The relative movement of the African-Arabian plates, it causes the Anatolian Plate to movement to the west-Southwest direction 2.5 cm per year and this result provides N-S direction with extensional regime in the recent tectonic. In this study, especially with the assessment of seismic activity occurring in Afyon and around between 200-2002 years, we have been evaluated to date with seismic activity as well as fault mechanism solution. We analyzed recent seismicity and distribution of earthquakes in this region. In the last century, 3 important earthquakes occurred in the Sultandağı Fault zone (Afyon-Akşehir Graben), this result shown it was seismic active and broken fault segments caused stress balance in the region and it caused to occur with short intervals of earthquakes in 2000 and 2002, triggering each other. The scope of this tudy, we installed new BB stations in the region and we have been done of the fault plane solutions for important earthquakes. The focal mechanisms clearly exhibit the activation of a NE-SW trending normal faulting system along the SFZ region. The results of stress analysis showed that the effective current tectonic evolution of normal faulting in this region. This study is supported by Bogazici University Research Projects Commission under SRP/BAP project No. 12280. Key Words: Sultandağı fault zone, normal faulting, seismicity, fault mechanism

  1. Using strain rates to forecast seismic hazards

    USGS Publications Warehouse

    Evans, Eileen

    2017-01-01

    One essential component in forecasting seismic hazards is observing the gradual accumulation of tectonic strain accumulation along faults before this strain is suddenly released as earthquakes. Typically, seismic hazard models are based on geologic estimates of slip rates along faults and historical records of seismic activity, neither of which records actively accumulating strain. But this strain can be estimated by geodesy: the precise measurement of tiny position changes of Earth’s surface, obtained from GPS, interferometric synthetic aperture radar (InSAR), or a variety of other instruments.

  2. Lithospheric Models of the Middle East to Improve Seismic Source Parameter Determination/Event Location Accuracy

    DTIC Science & Technology

    2012-09-01

    State Award Nos. DE-AC52-07NA27344/24.2.3.2 and DOS_SIAA-11-AVC/NMA-1 ABSTRACT The Middle East is a tectonically complex and seismically...active region. The ability to accurately locate earthquakes and other seismic events in this region is complicated by tectonics , the uneven...and seismic source parameters show that this activity comes from tectonic events. This work is informed by continuous or event-based regional

  3. Seismic velocity structure and spatial distribution of reflection intensity off the Boso Peninsula, Central Japan, revealed by an ocean bottom seismographic experiment

    NASA Astrophysics Data System (ADS)

    Kono, Akihiro; Sato, Toshinori; Shinohara, Masanao; Mochizuki, Kimihiro; Yamada, Tomoaki; Uehira, Kenji; Shinbo, Takashi; Machida, Yuuya; Hino, Ryota; Azuma, Ryosuke

    2016-04-01

    Off the Boso Peninsula, central Japan, where the Sagami Trough is in the south and the Japan Trench is in the east, there is a triple junction where the Pacific plate (PAC), the Philippine Sea plate (PHS) and the Honshu island arc (HIA) meet each other. In this region, the PAC subducts beneath the PHS and the HIA, and the PHS subducts beneath the HIA. Due to the subduction of 2 oceanic plates, numerous seismic events took place in the past. In order to understand these events, it is important to image structure of these plates. Hence, many researchers attempted to reveal the substructure from natural earthquakes and seismic experiments. Because most of the seismometers are placed inland area and the regular seismicity off Boso is inactive, it is difficult to reveal the precise substructure off Boso area using only natural earthquakes. Although several marine seismic experiments using active sources were conducted, vast area remains unclear off Boso Peninsula. In order to improve the situation, a marine seismic experiment, using airgun as an active source, was conducted from 30th July to 4th of August, 2009. The survey line has 216 km length and 20 Ocean Bottom Seismometers (OBSs) were placed on it. We estimated 2-D P-wave velocity structure from the airgun data using the PMDM (Progressive Model Development Method; Sato and Kenett, 2000) and the FAST (First Arrival Seismic Tomography ; Zelt and Barton, 1998). Furthermore, we identified the probable reflection phases from the data and estimated the location of reflectors using Travel time mapping method (Fujie et al. 2006). We found some reflection phases from the data, and the reflectors are located near the region where P-wave velocity is 5.0 km/s. We interpret that the reflectors indicate the plate boundary between the PHS and the HIA. The variation of the intensity of reflection along the upper surface of PHS seems to be consistent with the result from previous reflection seismic experiment conducted by Kimura et al. (2009). Acknowledgement The marine seismic experiment was conducted by R/V Hakuhou-maru of Japan Agency for Marine-Earth Science and Technology, and the OBSs were retrieved by Shincho-maru of Shin-Nihon-Kaiji co. Ltd. (Present, Fukada salvage co. Ltd.). We would like to thank captains and the crew of Hakuho-maru and Shincho-maru. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, under its Observation and Research Program for Prediction of Earthquakes and Volcanic Eruptions, and from the Grants in Aid for Scientific Research (25287109).

  4. Eagle Pass Jr. High Seismology Team: Strategies for Engaging Middle School "At-Risk" Students in Authentic Research

    NASA Astrophysics Data System (ADS)

    Brunt, M. R.; Ellins, K. K.; Frohlich, C. A.

    2011-12-01

    In 2008, during my participation in the NSF-sponsored Texas Earth & Space Science (TXESS) Revolution professional development program, I was awarded an AS-1 seismograph through IRIS's Seismographs in Schools Program. This program serves to create an international educational seismic network that allows teachers across the country and around the world to share seismic data in real-time using online tools, classroom activities, and technical support documents for seismic instruments. Soon after receiving my AS-1, I founded and began sponsoring the Eagle Pass Jr. High Seismology Team which consists of selected 7th and 8th grade students. Eagle Pass Jr. High is a Title 1 school that serves a predominantly "at-risk" Hispanic population. We meet after school once a week to learn about earthquakes, seismic waves, analyze recorded seismic event data using computer software programming, and correspond with other students from schools around the country. This team approach has been well received by fellow TXESS Revolution teachers with AS-1 seismographs and will be implemented by David Boyd, STEM coordinator for Williams Preparatory Academy in Dallas, Texas this fall 2011. All earthquakes recorded by our seismograph station (EPTX), which has remained online and actively recording seismic data since 2008, are catalogued and then plotted on a large world map displayed on my classroom wall. A real-time seismogram image updates every five minutes and along with all earthquakes recorded since installation can be viewed on our webpage http://www.iris.edu/hq/ssn/schools/view/eptx. During the 2010-2011 school year, my seismology team and I participated in an earthquake research study led by Dr. Cliff Frohlich at the Institute for Geophysics. The study examined seismograms and felt reports for the 25 April 2010 Alice, Texas, earthquake, in order to investigate its possible connection to oil and gas production in the Stratton oil and gas field. A research paper detailing our findings has been submitted for publication in the Bulletin of the Seismological Society of America. Most recently, I was one of 15 teachers selected for a summer seismic methods workshop at UT-Austin offered by Dr. Clark Wilson. We conducted field seismic imaging, field shear wave velocity measurements for geotechnical earthquake engineering design, data reduction, and science curriculum design. I plan to incorporate these seismic methods concepts into my school seismology team program. Since my participation in the TXESS Revolution I have been blessed with opportunities that I never could have imagined. As a teacher, these experiences increased my knowledge and skills, provided tools and resources, and enabled me to create authentic research experiences for my students that promote teamwork and teach the nature of science.

  5. The Ms4.4 2016 Yuncheng, Shanxi, China, Seismic Sequence: Source Characterizations and Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Xie, Z.; Riaz, M. S.; Zheng, Y.; Xiong, X.

    2017-12-01

    On 12 March 2016 at 11:14 (Beijing time) , a moderate earthquake with magnitude Ms4.4 struck Yuncheng County, Shanxi Province, Central China. Seismic activity continued with numerous aftershocks, and another event with little smaller magnitude of Ms4.0 occurred on 27 March 2016 at 3:58 as well as a lot of aftershocks followed. Seismic waves from the earthquakes were recorded by a dense local broadband seismic network in Shanxi and its surrounding provinces, enabling detailed the source characterizations of this earthquake sequence. The hypocenters of the Yuncheng earthquake sequence determined by the TomoDD method displayed that the events occurred in the middle of Yuncheng Basin which locates between Weihe Basin and Fenhe Basin, one of renowned active seismic belts in mainland China. The relocation of the aftershocks presented a NNW-SSE orientated distribution, and the earlier aftershocks tended to fault at shallow depths, concentrating at 5 km. After the Ms4.0 event, the aftershocks extended to the SSE direction with deeper focal depths. The focal mechanisms of the mainshock and the biggest aftershock obtained by the CAP (Cut And Paste) method indicated consistent right-lateral strike-slip faults. Since the magnitude was relatively small, no surface rupture associated with this shock sequence had been observed, and no known faults exited around the epicenter, indicating that the causative fault was ambiguous just based on the focal mechanism. According to the aftershocks distribution and the recent GPS results, the ruptured fault was apt to the nodal plane striking at 194°, dipping 79° and rake 151° for Ms4.4 mainshock and 199°/73°/141°, representing strike/dip/rake, for Ms4.0 aftershock. This earthquake sequence was regarded as an adjustment of stress accumulation in the pull-apart Yuncheng Basin, implying that the energy around the boundary faults of the basin has accumulated continuously.

  6. Crustal velocity structure and earthquake processes of Garhwal-Kumaun Himalaya: Constraints from regional waveform inversion and array beam modeling

    NASA Astrophysics Data System (ADS)

    Negi, Sanjay S.; Paul, Ajay; Cesca, Simone; Kamal; Kriegerowski, Marius; Mahesh, P.; Gupta, Sandeep

    2017-08-01

    In order to understand present day earthquake kinematics at the Indian plate boundary, we analyse seismic broadband data recorded between 2007 and 2015 by the regional network in the Garhwal-Kumaun region, northwest Himalaya. We first estimate a local 1-D velocity model for the computation of reliable Green's functions, based on 2837 P-wave and 2680 S-wave arrivals from 251 well located earthquakes. The resulting 1-D crustal structure yields a 4-layer velocity model down to the depths of 20 km. A fifth homogeneous layer extends down to 46 km, constraining the Moho using travel-time distance curve method. We then employ a multistep moment tensor (MT) inversion algorithm to infer seismic moment tensors of 11 moderate earthquakes with Mw magnitude in the range 4.0-5.0. The method provides a fast MT inversion for future monitoring of local seismicity, since Green's functions database has been prepared. To further support the moment tensor solutions, we additionally model P phase beams at seismic arrays at teleseismic distances. The MT inversion result reveals the presence of dominant thrust fault kinematics persisting along the Himalayan belt. Shallow low and high angle thrust faulting is the dominating mechanism in the Garhwal-Kumaun Himalaya. The centroid depths for these moderate earthquakes are shallow between 1 and 12 km. The beam modeling result confirm hypocentral depth estimates between 1 and 7 km. The updated seismicity, constrained source mechanism and depth results indicate typical setting of duplexes above the mid crustal ramp where slip is confirmed along out-of-sequence thrusting. The involvement of Tons thrust sheet in out-of-sequence thrusting indicate Tons thrust to be the principal active thrust at shallow depth in the Himalayan region. Our results thus support the critical taper wedge theory, where we infer the microseismicity cluster as a result of intense activity within the Lesser Himalayan Duplex (LHD) system.

  7. Angola Seismicity MAP

    NASA Astrophysics Data System (ADS)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic zone Porto Amboim in the coastal portion of Kwanza basin sedimentary.

  8. Identification and characterization of earthquake clusters: a comparative analysis for selected sequences in Italy

    NASA Astrophysics Data System (ADS)

    Peresan, Antonella; Gentili, Stefania

    2017-04-01

    Identification and statistical characterization of seismic clusters may provide useful insights about the features of seismic energy release and their relation to physical properties of the crust within a given region. Moreover, a number of studies based on spatio-temporal analysis of main-shocks occurrence require preliminary declustering of the earthquake catalogs. Since various methods, relying on different physical/statistical assumptions, may lead to diverse classifications of earthquakes into main events and related events, we aim to investigate the classification differences among different declustering techniques. Accordingly, a formal selection and comparative analysis of earthquake clusters is carried out for the most relevant earthquakes in North-Eastern Italy, as reported in the local OGS-CRS bulletins, compiled at the National Institute of Oceanography and Experimental Geophysics since 1977. The comparison is then extended to selected earthquake sequences associated with a different seismotectonic setting, namely to events that occurred in the region struck by the recent Central Italy destructive earthquakes, making use of INGV data. Various techniques, ranging from classical space-time windows methods to ad hoc manual identification of aftershocks, are applied for detection of earthquake clusters. In particular, a statistical method based on nearest-neighbor distances of events in space-time-energy domain, is considered. Results from clusters identification by the nearest-neighbor method turn out quite robust with respect to the time span of the input catalogue, as well as to minimum magnitude cutoff. The identified clusters for the largest events reported in North-Eastern Italy since 1977 are well consistent with those reported in earlier studies, which were aimed at detailed manual aftershocks identification. The study shows that the data-driven approach, based on the nearest-neighbor distances, can be satisfactorily applied to decompose the seismic catalog into background seismicity and individual sequences of earthquake clusters, also in areas characterized by moderate seismic activity, where the standard declustering techniques may turn out rather gross approximations. With these results acquired, the main statistical features of seismic clusters are explored, including complex interdependence of related events, with the aim to characterize the space-time patterns of earthquakes occurrence in North-Eastern Italy and capture their basic differences with Central Italy sequences.

  9. Phase-Shifted Based Numerical Method for Modeling Frequency-Dependent Effects on Seismic Reflections

    NASA Astrophysics Data System (ADS)

    Chen, Xuehua; Qi, Yingkai; He, Xilei; He, Zhenhua; Chen, Hui

    2016-08-01

    The significant velocity dispersion and attenuation has often been observed when seismic waves propagate in fluid-saturated porous rocks. Both the magnitude and variation features of the velocity dispersion and attenuation are frequency-dependent and related closely to the physical properties of the fluid-saturated porous rocks. To explore the effects of frequency-dependent dispersion and attenuation on the seismic responses, in this work, we present a numerical method for seismic data modeling based on the diffusive and viscous wave equation (DVWE), which introduces the poroelastic theory and takes into account diffusive and viscous attenuation in diffusive-viscous-theory. We derive a phase-shift wave extrapolation algorithm in frequencywavenumber domain for implementing the DVWE-based simulation method that can handle the simultaneous lateral variations in velocity, diffusive coefficient and viscosity. Then, we design a distributary channels model in which a hydrocarbon-saturated sand reservoir is embedded in one of the channels. Next, we calculated the synthetic seismic data to analytically and comparatively illustrate the seismic frequency-dependent behaviors related to the hydrocarbon-saturated reservoir, by employing DVWE-based and conventional acoustic wave equation (AWE) based method, respectively. The results of the synthetic seismic data delineate the intrinsic energy loss, phase delay, lower instantaneous dominant frequency and narrower bandwidth due to the frequency-dependent dispersion and attenuation when seismic wave travels through the hydrocarbon-saturated reservoir. The numerical modeling method is expected to contribute to improve the understanding of the features and mechanism of the seismic frequency-dependent effects resulted from the hydrocarbon-saturated porous rocks.

  10. Recent Earthquakes Mark the Onset of Induced Seismicity in Northeastern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Martone, P.; Nikulin, A.; Pietras, J.

    2017-12-01

    The link between induced seismicity and injection of hydraulic fracturing wastewater has largely been accepted and corroborated through case studies in Colorado, Arkansas, Texas, and Oklahoma. To date, induced seismicity has largely impacted hydrocarbon-producing regions in the Central United States, while the seismic response in Eastern states, like Pennsylvania, has been relatively muted. In recent years, Pennsylvania exponentially increased hydrocarbon production from the Marcellus and Utica Shales and our results indicate that this activity has triggered an onset of induced seismicity in areas of the state where no previous seismic activity was reported. Three recent earthquakes in Northeastern Pennsylvania directly correlate to hydraulic fracturing activity, though USGS NEIC earthquake catalog locations have vertical errors up to 31km. We present signal analysis results of recorded waveforms of the three identified events and results of a high-precision relocation effort and improvements to the regional velocity model aimed at constraining the horizontal and vertical error in hypocenter position. We show that at least one event is positioned directly along the wellbore track of an active well and correlate its timing to the hydraulic fracturing schedule. Results show that in the absence of wastewater disposal in this area, it is possible to confidently make the connection between the hydraulic fracturing process and induced seismicity.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonneville, Alain H.; Kouzes, Richard T.

    Imaging subsurface geological formations, oil and gas reservoirs, mineral deposits, cavities or magma chambers under active volcanoes has been for many years a major quest of geophysicists and geologists. Since these objects cannot be observed directly, different indirect geophysical methods have been developed. They are all based on variations of certain physical properties of the subsurface that can be detected from the ground surface or from boreholes. Electrical resistivity, seismic wave’s velocities and density are certainly the most used properties. If we look at density, indirect estimates of density distributions are performed currently by seismic reflection methods - since themore » velocity of seismic waves depend also on density - but they are expensive and discontinuous in time. Direct estimates of density are performed using gravimetric data looking at variations of the gravity field induced by the density variations at depth but this is not sufficiently accurate. A new imaging technique using cosmic-ray muon detectors has emerged during the last decade and muon tomography - or muography - promises to provide, for the first time, a complete and precise image of the density distribution in the subsurface. Further, this novel approach has the potential to become a direct, real-time, and low-cost method for monitoring fluid displacement in subsurface reservoirs.« less

  12. The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk

    NASA Astrophysics Data System (ADS)

    Bourne, S. J.; Oates, S. J.; van Elk, J.

    2018-06-01

    Induced seismicity typically arises from the progressive activation of recently inactive geological faults by anthropogenic activity. Faults are mechanically and geometrically heterogeneous, so their extremes of stress and strength govern the initial evolution of induced seismicity. We derive a statistical model of Coulomb stress failures and associated aftershocks within the tail of the distribution of fault stress and strength variations to show initial induced seismicity rates will increase as an exponential function of induced stress. Our model provides operational forecasts consistent with the observed space-time-magnitude distribution of earthquakes induced by gas production from the Groningen field in the Netherlands. These probabilistic forecasts also match the observed changes in seismicity following a significant and sustained decrease in gas production rates designed to reduce seismic hazard and risk. This forecast capability allows reliable assessment of alternative control options to better inform future induced seismic risk management decisions.

  13. Evaluating the Use of Declustering for Induced Seismicity Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Llenos, A. L.; Michael, A. J.

    2016-12-01

    The recent dramatic seismicity rate increase in the central and eastern US (CEUS) has motivated the development of seismic hazard assessments for induced seismicity (e.g., Petersen et al., 2016). Standard probabilistic seismic hazard assessment (PSHA) relies fundamentally on the assumption that seismicity is Poissonian (Cornell, BSSA, 1968); therefore, the earthquake catalogs used in PSHA are typically declustered (e.g., Petersen et al., 2014) even though this may remove earthquakes that may cause damage or concern (Petersen et al., 2015; 2016). In some induced earthquake sequences in the CEUS, the standard declustering can remove up to 90% of the sequence, reducing the estimated seismicity rate by a factor of 10 compared to estimates from the complete catalog. In tectonic regions the reduction is often only about a factor of 2. We investigate how three declustering methods treat induced seismicity: the window-based Gardner-Knopoff (GK) algorithm, often used for PSHA (Gardner and Knopoff, BSSA, 1974); the link-based Reasenberg algorithm (Reasenberg, JGR,1985); and a stochastic declustering method based on a space-time Epidemic-Type Aftershock Sequence model (Ogata, JASA, 1988; Zhuang et al., JASA, 2002). We apply these methods to three catalogs that likely contain some induced seismicity. For the Guy-Greenbrier, AR earthquake swarm from 2010-2013, declustering reduces the seismicity rate by factors of 6-14, depending on the algorithm. In northern Oklahoma and southern Kansas from 2010-2015, the reduction varies from factors of 1.5-20. In the Salton Trough of southern California from 1975-2013, the rate is reduced by factors of 3-20. Stochastic declustering tends to remove the most events, followed by the GK method, while the Reasenberg method removes the fewest. Given that declustering and choice of algorithm have such a large impact on the resulting seismicity rate estimates, we suggest that more accurate hazard assessments may be found using the complete catalog.

  14. Structure of the active rift zone and margins of the northern Imperial Valley from Salton Seismic Imaging Project (SSIP) data

    NASA Astrophysics Data System (ADS)

    Livers, A.; Han, L.; Delph, J. R.; White-Gaynor, A. L.; Petit, R.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2012-12-01

    First-arrival refraction data were used to create a seismic velocity model of the upper crust across the actively rifting northern Imperial Valley and its margins. The densely sampled seismic refraction data were acquired by the Salton Seismic Imaging Project (SSIP) , which is investigating rift processes in the northern-most rift segment of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. A 95-km long seismic line was acquired across the northern Imperial Valley, through the Salton Sea geothermal field, parallel to the five Salton Butte volcanoes and perpendicular to the Brawley Seismic Zone and major strike-slip faults. Nineteen explosive shots were recorded with 100 m seismometer spacing across the valley and with 300-500 m spacing into the adjacent ranges. First-arrival travel times were picked from shot gathers along this line and a seismic velocity model was produced using tomographic inversion. Sedimentary basement and seismic basement in the valley are interpreted to be sediment metamorphosed by the very high heat flow. The velocity model shows that this basement to the west of the Brawley Seismic Zone is at ~4-km depth. The basement shallows to ~2-km depth in the active geothermal field and Salton Buttes volcanic field which locally coincide with the Brawley Seismic Zone. At the eastern edge of the geothermal field, the basement drops off again to ~3.5-km depth. The eastern edge of the valley appears to be fault bounded by the along-strike extension of the Sand Hills Fault, an inactive strike-slip fault. The seismic velocities to the east of the fault correspond to metamorphic rock of the Chocolate Mountains, different from the metamorphosed basement in the valley. The western edge of the valley appears to be fault bounded by the active Superstition Hills Fault. To the west of the valley, >4-km deep valley basement extends to the active Superstition Hills Fault. Basement then shallows westward towards exposures of granitic basement in the Superstition Mountains. The basin between the Superstition Mountains and Coyote Mountains is ~2 km deep.

  15. Seismic Response Control Of Structures Using Semi-Active and Passive Variable Stiffness Devices

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed M. A.

    Controllable devices such as Magneto-Rheological Fluid Dampers, Electro-Rheological Dampers, and controllable friction devices have been studied extensively with limited implementation in real structures. Such devices have shown great potential in reducing seismic demands, either as smart base isolation systems, or as smart devices for multistory structures. Although variable stiffness devices can be used for seismic control of structures, the vast majority of research effort has been given to the control of damping. The primary focus of this dissertation is to evaluate the seismic control of structures using semi-active and passive variable stiffness characteristics. Smart base isolation systems employing variable stiffness devices have been studied, and two semi-active control strategies are proposed. The control algorithms were designed to reduce the superstructure and base accelerations of seismically isolated structures subject to near-fault and far-field ground motions. Computational simulations of the proposed control algorithms on the benchmark structure have shown that excessive base displacements associated with the near-fault ground motions may be better mitigated with the use of variable stiffness devices. However, the device properties must be controllable to produce a wide range of stiffness changes for an effective control of the base displacements. The potential of controllable stiffness devices in limiting the base displacement due to near-fault excitation without compromising the performance of conventionally isolated structures, is illustrated. The application of passive variable stiffness devices for seismic response mitigation of multistory structures is also investigated. A stiffening bracing system (SBS) is proposed to replace the conventional bracing systems of braced frames. An optimization process for the SBS parameters has been developed. The main objective of the design process is to maintain a uniform inter-story drift angle over the building's height, which in turn would evenly distribute the seismic demand over the building. This behavior is particularly essential so that any possible damage is not concentrated in a single story. Furthermore, the proposed design ensures that additional damping devices distributed over the building's height work efficiently with their maximum design capacity, leading to a cost efficient design. An integrated and comprehensive design procedure that can be readily adopted by the current seismic design codes is proposed. An equivalent lateral force distribution is developed that shows a good agreement with the response history analyses in terms of seismic performance and demand prediction. This lateral force pattern explicitly accounts for the higher mode effect, the dynamic characteristics of the structure, the supplemental damping, and the site specific seismic hazard. Therefore, the proposed design procedure is considered as a standalone method for the design of SBS equipped buildings.

  16. Investigation of cortical structures at Etna Volcano through the analysis of array and borehole data.

    NASA Astrophysics Data System (ADS)

    Zuccarello, Luciano; Paratore, Mario; La Rocca, Mario; Ferrari, Ferruccio; Messina, Alfio Alex; Galluzzo, Danilo; Contrafatto, Danilo; Rapisarda, Salvatore

    2015-04-01

    A continuous monitoring of seismic activity is a fundamental task to detect the most common signals possibly related with volcanic activity, such as volcano-tectonic earthquakes, long-period events, and volcanic tremor. A reliable prediction of the ray-path propagated back from the recording site to the source is strongly limited by the poor knowledge of the local shallow velocity structure. Usually in volcanic environments the shallowest few hundreds meters of rock are characterized by strongly variable mechanical properties. Therefore the propagation of seismic signals through these shallow layers is strongly affected by lateral heterogeneity, attenuation, scattering, and interaction with the free surface. Driven by these motivations, between May and October 2014 we deployed a seismic array in the area called "Pozzo Pitarrone", where two seismic stations of the local monitoring network are installed, one at surface and one borehole at a depth of about 130 meters. The Pitarrone borehole is located in the middle northeastern flank along one of the main intrusion zones of Etna volcano, the so called NE-rift. With the 3D array we recorded seismic signals coming from the summit craters, and also from the seismogenetic fault called Pernicana Fault, which is located nearby. We used array data to analyse the dispersion characteristics of ambient noise vibrations and we derived one-dimensional (1D) shallow shear-velocity profiles through the inversion of dispersion curves measured by autocorrelation methods (SPAC). We observed a one-dimensional variation of shear-velocity between 430 m/s and 700 m/s to a depth of investigation of about 130 m. An abrupt velocity variation was recorded at a depth of about 60 m, probably corresponding to the transition between two different layers. Our preliminary results suggest a good correlation between the velocity model deducted with the stratigraphic section on Etna. The analysis of the entire data set will improve our knowledge about the (i) structure of the top layer and its relationship with geology, (ii) analysis of the signal to noise ratio (SNR) of volcanic signals as a function of frequency, (iii) study of seismic ray-path deformation caused by the interaction of the seismic waves with the free surface, (iv) evaluation of the attenuation of the seismic signals correlated with the volcanic activity. Moreover the knowledge of a shallow velocity model could improve the study of the source mechanism of low frequency events (VLP, LP and volcanic tremor), and give a new contribution to the seismic monitoring of Etna volcano through the detection and location of seismic sources by using 3D array techniques.

  17. New seismic study begins in Puerto Rico

    USGS Publications Warehouse

    Tarr, A.C.

    1974-01-01

    A new seismological project is now underway in Puerto Rico to provide information needed for accurate assessment of the island's seismic hazard. The project should also help to increase understanding of the tectonics and geologic evolution of the Caribbean region. The Puerto Rico Seismic Program is being conducted by the Geological Survey with support provided by the Puerto Rico Water Resources Authority, an agency responsible for generation and distribution of electric power throughout the Commonwealth. The Program will include the installation of a network of high quality seismograph stations to monitor seismic activity on and around Puerto Rico. These stations will be distributed across the island to record the seismicity as uniformly as possible. The detection and accurate location of small earthquakes, as well as moderate magnitude shocks, will aid in mapping active seismic zones and in compiling frequency of occurrence statistics which ultimately wil be useful in seismic risk-zoning of hte island. 

  18. Travel-time source-specific station correction improves location accuracy

    NASA Astrophysics Data System (ADS)

    Giuntini, Alessandra; Materni, Valerio; Chiappini, Stefano; Carluccio, Roberto; Console, Rodolfo; Chiappini, Massimo

    2013-04-01

    Accurate earthquake locations are crucial for investigating seismogenic processes, as well as for applications like verifying compliance to the Comprehensive Test Ban Treaty (CTBT). Earthquake location accuracy is related to the degree of knowledge about the 3-D structure of seismic wave velocity in the Earth. It is well known that modeling errors of calculated travel times may have the effect of shifting the computed epicenters far from the real locations by a distance even larger than the size of the statistical error ellipses, regardless of the accuracy in picking seismic phase arrivals. The consequences of large mislocations of seismic events in the context of the CTBT verification is particularly critical in order to trigger a possible On Site Inspection (OSI). In fact, the Treaty establishes that an OSI area cannot be larger than 1000 km2, and its larger linear dimension cannot be larger than 50 km. Moreover, depth accuracy is crucial for the application of the depth event screening criterion. In the present study, we develop a method of source-specific travel times corrections based on a set of well located events recorded by dense national seismic networks in seismically active regions. The applications concern seismic sequences recorded in Japan, Iran and Italy. We show that mislocations of the order of 10-20 km affecting the epicenters, as well as larger mislocations in hypocentral depths, calculated from a global seismic network and using the standard IASPEI91 travel times can be effectively removed by applying source-specific station corrections.

  19. Tempo-spatial analysis of Fennoscandian intraplate seismicity

    NASA Astrophysics Data System (ADS)

    Roberts, Roland; Lund, Björn

    2017-04-01

    Coupled spatial-temporal patterns of the occurrence of earthquakes in Fennoscandia are analysed using non-parametric methods. The occurrence of larger events is unambiguously and very strongly temporally clustered, with major implications for the assessment of seismic hazard in areas such as Fennoscandia. In addition, there is a clear pattern of geographical migration of activity. Data from the Swedish National Seismic Network and a collated international catalogue are analysed. Results show consistent patterns on different spatial and temporal scales. We are currently investigating these patterns in order to assess the statistical significance of the tempo-spatial patterns, and to what extent these may be consistent with stress transfer mechanism such as coulomb stress and pore fluid migration. Indications are that some further mechanism is necessary in order to explain the data, perhaps related to post-glacial uplift, which is up to 1cm/year.

  20. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    NASA Astrophysics Data System (ADS)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  1. An active seismic experiment at Tenerife Island (Canary Island, Spain): Imaging an active volcano edifice

    NASA Astrophysics Data System (ADS)

    Garcia-Yeguas, A.; Ibañez, J. M.; Rietbrock, A.; Tom-Teidevs, G.

    2008-12-01

    An active seismic experiment to study the internal structure of Teide Volcano was carried out on Tenerife, a volcanic island in Spain's Canary Islands. The main objective of the TOM-TEIDEVS experiment is to obtain a 3-dimensional structural image of Teide Volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models mainly based on sparse geophysical and geological data. This multinational experiment which involves institutes from Spain, Italy, the United Kingdom, Ireland, and Mexico will generate a unique high resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.

  2. Global regionalized seismicity in view of Non-Extensive Statistical Physics

    NASA Astrophysics Data System (ADS)

    Chochlaki, Kalliopi; Vallianatos, Filippos; Michas, Georgios

    2018-03-01

    In the present work we study the distribution of Earth's shallow seismicity on different seismic zones, as occurred from 1981 to 2011 and extracted from the Centroid Moment Tensor (CMT) catalog. Our analysis is based on the subdivision of the Earth's surface into seismic zones that are homogeneous with regards to seismic activity and orientation of the predominant stress field. For this, we use the Flinn-Engdahl regionalization (FE) (Flinn and Engdahl, 1965), which consists of fifty seismic zones as modified by Lombardi and Marzocchi (2007). The latter authors grouped the 50 FE zones into larger tectonically homogeneous ones, utilizing the cumulative moment tensor method, resulting into thirty-nine seismic zones. In each one of these seismic zones we study the distribution of seismicity in terms of the frequency-magnitude distribution and the inter-event time distribution between successive earthquakes, a task that is essential for hazard assessments and to better understand the global and regional geodynamics. In our analysis we use non-extensive statistical physics (NESP), which seems to be one of the most adequate and promising methodological tools for analyzing complex systems, such as the Earth's seismicity, introducing the q-exponential formulation as the expression of probability distribution function that maximizes the Sq entropy as defined by Tsallis, (1988). The qE parameter is significantly greater than one for all the seismic regions analyzed with value range from 1.294 to 1.504, indicating that magnitude correlations are particularly strong. Furthermore, the qT parameter shows some temporal correlations but variations with cut-off magnitude show greater temporal correlations when the smaller magnitude earthquakes are included. The qT for earthquakes with magnitude greater than 5 takes values from 1.043 to 1.353 and as we increase the cut-off magnitude to 5.5 and 6 the qT value ranges from 1.001 to 1.242 and from 1.001 to 1.181 respectively, presenting a significant decrease. Our findings support the ideas of universality within the Tsallis approach to describe Earth's seismicity and present strong evidence ontemporal clustering and long-range correlations of seismicity in each of the tectonic zonesanalyzed.

  3. Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Youzuo; Huang, Lianjie

    2015-01-28

    Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversionmore » method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity models produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.« less

  4. Lunar seismic profiling experiment natural activity study

    NASA Technical Reports Server (NTRS)

    Duennebier, F. K.

    1976-01-01

    The Lunar Seismic Experiment Natural Activity Study has provided a unique opportunity to study the high frequency (4-20 Hz) portion to the seismic spectrum on the moon. The data obtained from the LSPE was studied to evaluate the origin and importance of the process that generates thermal moonquakes and the characteristics of the seismic scattering zone at the lunar surface. The detection of thermal moonquakes by the LSPE array made it possible to locate the sources of many events and determine that they are definitely not generated by astronaut activities but are the result of a natural process on the moon. The propagation of seismic waves in the near-surface layers was studied in a qualitative manner. In the absence of an adequate theoretical model for the propagation of seismic waves in the moon, it is not possible to assign a depth for the scattering layer. The LSPE data does define several parameters which must be satisfied by any model developed in the future.

  5. Development of direct multi-hazard susceptibility assessment method for post-earthquake reconstruction planning in Nepal

    NASA Astrophysics Data System (ADS)

    Mavrouli, Olga; Rana, Sohel; van Westen, Cees; Zhang, Jianqiang

    2017-04-01

    After the devastating 2015 Gorkha earthquake in Nepal, reconstruction activities have been delayed considerably, due to many reasons, of a political, organizational and technical nature. Due to the widespread occurrence of co-seismic landslides, and the expectation that these may be aggravated or re-activated in future years during the intense monsoon periods, there is a need to evaluate for thousands of sites whether these are suited for reconstruction. In this evaluation multi-hazards, such as rockfall, landslides, debris flow, and flashfloods should be taken into account. The application of indirect knowledge-based, data-driven or physically-based approaches is not suitable due to several reasons. Physically-based models generally require a large number of parameters, for which data is not available. Data-driven, statistical methods, depend on historical information, which is less useful after the occurrence of a major event, such as an earthquake. Besides, they would lead to unacceptable levels of generalization, as the analysis is done based on rather general causal factor maps. The same holds for indirect knowledge-driven methods. However, location-specific hazards analysis is required using a simple method that can be used by many people at the local level. In this research, a direct scientific method was developed where local level technical people can easily and quickly assess the post-earthquake multi hazards following a decision tree approach, using an app on a smartphone or tablet. The methods assumes that a central organization, such as the Department of Soil Conservation and Watershed Management, generates spatial information beforehand that is used in the direct assessment at a certain location. Pre-earthquake, co-seismic and post-seismic landslide inventories are generated through the interpretation of Google Earth multi-temporal images, using anaglyph methods. Spatial data, such as Digital Elevation Models, land cover maps, and geological maps are used in a GIS to generate Terrain Units in a semi-automated manner, which are further edited using stereo-image interpretation. Source areas for rockfall and debris flows are outlined from the factor maps, and historical inventory, and regional scale empirical runout models are used to define areas that might be affected. This data is then used in the field in an application that guides the user through the decision tree by asking a number of questions, which can be answered by using the existing data, and by direct field observations. The method was applied in a part of Rasuwa district, which was seriously affected by co-seismic and post-seismic mass movements, leading to the evacuation of a number of village, and temporary closure of a number of hydropower construction projects.

  6. New Geophysical Techniques for Offshore Exploration.

    ERIC Educational Resources Information Center

    Talwani, Manik

    1983-01-01

    New seismic techniques have been developed recently that borrow theory from academic institutions and technology from industry, allowing scientists to explore deeper into the earth with much greater precision than possible with older seismic methods. Several of these methods are discussed, including the seismic reflection common-depth-point…

  7. Attenuation and velocity dispersion in the exploration seismic frequency band

    NASA Astrophysics Data System (ADS)

    Sun, Langqiu

    In an anelastic medium, seismic waves are distorted by attenuation and velocity dispersion, which depend on petrophysical properties of reservoir rocks. The effective attenuation and velocity dispersion is a combination of intrinsic attenuation and apparent attenuation due to scattering, transmission response, and data acquisition system. Velocity dispersion is usually neglected in seismic data processing partly because of insufficient observations in the exploration seismic frequency band. This thesis investigates the methods of measuring velocity dispersion in the exploration seismic frequency band and interprets the velocity dispersion data in terms of petrophysical properties. Broadband, uncorrelated vibrator data are suitable for measuring velocity dispersion in the exploration seismic frequency band, and a broad bandwidth optimizes the observability of velocity dispersion. Four methods of measuring velocity dispersion in uncorrelated vibrator VSP data are investigated, which are the sliding window crosscorrelation (SWCC) method, the instantaneous phase method, the spectral decomposition method, and the cross spectrum method. Among them, the SWCC method is a new method and has satisfactory robustness, accuracy, and efficiency. Using the SWCC method, velocity dispersion is measured in the uncorrelated vibrator VSP data from three areas with different geological settings, i.e., Mallik gas hydrate zone, McArthur River uranium mines, and Outokumpu crystalline rocks. The observed velocity dispersion is fitted to a straight line with respect to log frequency for a constant (frequency-independent) Q value. This provides an alternative method for calculating Q. A constant Q value does not directly link to petrophysical properties. A modeling study is implemented for the Mallik and McArthur River data to interpret the velocity dispersion observations in terms of petrophysical properties. The detailed multi-parameter petrophysical reservoir models are built according to the well logs; the models' parameters are adjusted by fitting the synthetic data to the observed data. In this way, seismic attenuation and velocity dispersion provide new insight into petrophysics properties at the Mallik and McArthur River sites. Potentially, observations of attenuation and velocity dispersion in the exploration seismic frequency band can improve the deconvolution process for vibrator data, Q-compensation, near-surface analysis, and first break picking for seismic data.

  8. Improved earthquake monitoring in the central and eastern United States in support of seismic assessments for critical facilities

    USGS Publications Warehouse

    Leith, William S.; Benz, Harley M.; Herrmann, Robert B.

    2011-01-01

    Evaluation of seismic monitoring capabilities in the central and eastern United States for critical facilities - including nuclear powerplants - focused on specific improvements to understand better the seismic hazards in the region. The report is not an assessment of seismic safety at nuclear plants. To accomplish the evaluation and to provide suggestions for improvements using funding from the American Recovery and Reinvestment Act of 2009, the U.S. Geological Survey examined addition of new strong-motion seismic stations in areas of seismic activity and addition of new seismic stations near nuclear power-plant locations, along with integration of data from the Transportable Array of some 400 mobile seismic stations. Some 38 and 68 stations, respectively, were suggested for addition in active seismic zones and near-power-plant locations. Expansion of databases for strong-motion and other earthquake source-characterization data also was evaluated. Recognizing pragmatic limitations of station deployment, augmentation of existing deployments provides improvements in source characterization by quantification of near-source attenuation in regions where larger earthquakes are expected. That augmentation also supports systematic data collection from existing networks. The report further utilizes the application of modeling procedures and processing algorithms, with the additional stations and the improved seismic databases, to leverage the capabilities of existing and expanded seismic arrays.

  9. First seismic shear wave velocity profile of the lunar crust as extracted from the Apollo 17 active seismic data by wavefield gradient analysis

    NASA Astrophysics Data System (ADS)

    Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir

    2016-04-01

    We present a new seismic velocity model of the shallow lunar crust, including, for the first time, shear wave velocity information. So far, the shear wave velocity structure of the lunar near-surface was effectively unconstrained due to the complexity of lunar seismograms. Intense scattering and low attenuation in the lunar crust lead to characteristic long-duration reverberations on the seismograms. The reverberations obscure later arriving shear waves and mode conversions, rendering them impossible to identify and analyze. Additionally, only vertical component data were recorded during the Apollo active seismic experiments, which further compromises the identification of shear waves. We applied a novel processing and analysis technique to the data of the Apollo 17 lunar seismic profiling experiment (LSPE), which involved recording seismic energy generated by several explosive packages on a small areal array of four vertical component geophones. Our approach is based on the analysis of the spatial gradients of the seismic wavefield and yields key parameters such as apparent phase velocity and rotational ground motion as a function of time (depth), which cannot be obtained through conventional seismic data analysis. These new observables significantly enhance the data for interpretation of the recorded seismic wavefield and allow, for example, for the identification of S wave arrivals based on their lower apparent phase velocities and distinct higher amount of generated rotational motion relative to compressional (P-) waves. Using our methodology, we successfully identified pure-mode and mode-converted refracted shear wave arrivals in the complex LSPE data and derived a P- and S-wave velocity model of the shallow lunar crust at the Apollo 17 landing site. The extracted elastic-parameter model supports the current understanding of the lunar near-surface structure, suggesting a thin layer of low-velocity lunar regolith overlying a heavily fractured crust of basaltic material showing high (>0.4 down to 60 m) Poisson's ratios. Our new model can be used in future studies to better constrain the deep interior of the Moon. Given the rich information derived from the minimalistic recording configuration, our results demonstrate that wavefield gradient analysis should be critically considered for future space missions that aim to explore the interior structure of extraterrestrial objects by seismic methods. Additionally, we anticipate that the proposed shear wave identification methodology can also be applied to the routinely recorded vertical component data from land seismic exploration on Earth.

  10. Temporal variation of mass-wasting activity in Mount St. Helens crater, Washington, U. S. A. indicated by seismic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, H.H.

    1991-11-01

    In the crater of Mount St. Helens, formed during the eruption of 18 May 1980, thousands of rockfalls may occur in a single day, and some rock and dirty-snow avalanches have traveled more than 1 km from their source. Because most seismic activity in the crater is produced by mass wasting, the former can be used to monitor the latter. The number and amplitude of seismic events per unit time provide a generalized measure of mass-wasting activity. In this study 1-min averages of seismic amplitudes were used as an index of rockfall activity during summer and early fall. Plots ofmore » this index show the diurnal cycle of rockfall activity and establish that the peak in activity occurs in mid to late afternoon. A correlation coefficient of 0.61 was found between daily maximum temperature and average seismic amplitude, although this value increases to 0.72 if a composite temperature variable that includes the maximum temperature of 1 to 3 preceding days as well as the present day is used. Correlation with precipitation is much weaker.« less

  11. New insights into the 2012 Emilia (Italy) seismic sequence through advanced numerical modeling of ground deformation InSAR measurements

    NASA Astrophysics Data System (ADS)

    Tizzani, P.; Castaldo, R.; Solaro, G.; Pepe, S.; Bonano, M.; Casu, F.; Manunta, M.; Manzo, M.; Pepe, A.; Samsonov, S.; Lanari, R.; Sansosti, E.

    2013-05-01

    We provide new insights into the two main seismic events that occurred in 2012 in the Emilia region, Italy. We extend the results from previous studies based on analytical inversion modeling of GPS and RADARSAT-1 InSAR measurements by exploiting RADARSAT-2 data. Moreover, we benefit from the available large amount of geological and geophysical information through finite element method (FEM) modeling implemented in a structural-mechanical context to investigate the impact of known buried structures on the modulation of the ground deformation field. We find that the displacement pattern associated with the 20 May event is consistent with the activation of a single fault segment of the inner Ferrara thrust, in good agreement with the analytical solution. In contrast, the interpretation of the 29 May episode requires the activation of three different fault segments and a block roto-translation of the Mirandola anticline. The proposed FEM-based methodology is applicable to other seismic areas where the complexity of buried structures is known and plays a fundamental role in the modulation of the associated surface deformation pattern.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurhandoko, Bagus Endar B.; Wely, Woen; Setiadi, Herlan

    It is already known that tomography has a great impact for analyzing and mapping unknown objects based on inversion, travel time as well as waveform inversion. Therefore, tomography has used in wide area, not only in medical but also in petroleum as well as mining. Recently, tomography method is being applied in several mining industries. A case study of tomography imaging has been carried out in DOZ ( Deep Ore Zone ) block caving mine, Tembagapura, Papua. Many researchers are undergoing to investigate the properties of DOZ cave not only outside but also inside which is unknown. Tomography takes amore » part for determining this objective.The sources are natural from the seismic events that caused by mining induced seismicity and rocks deformation activity, therefore it is called as passive seismic. These microseismic travel time data are processed by Simultaneous Iterative Reconstruction Technique (SIRT). The result of the inversion can be used for DOZ cave monitoring. These information must be used for identifying weak zone inside the cave. In addition, these results of tomography can be used to determine DOZ and cave information to support mine activity in PT. Freeport Indonesia.« less

  13. Temblor, an App to Transform Seismic Science into Personal Risk Reduction

    NASA Astrophysics Data System (ADS)

    Sevilgen, V.; Jacobson, D. S.; Stein, R. S.; Lotto, G. C.; Sevilgen, S.; Kim, A.

    2016-12-01

    Government agencies and academic researchers provide a rich stream of seismic and engineering data. In addition to rapid earthquake notifications and damage assessments, these form the basis of probabilistic seismic hazard assessments and loss evaluations used by emergency management agencies, practicing engineers and geologists, and the insurance industry. But the data and the assessments that grow out of them are notoriously difficult for the public to comprehend. For example, who but the cognoscenti understands what "2% exceedance probability in 50 years," "0.5 g peak ground acceleration," or "moment-magnitude" mean? Nowhere is this divide more stark than in earthquake insurance. Using proprietary models, insurers calculate the probability of a payout above the deductible for your home policy, but sell the policy as "peace of mind" or "the strength to rebuild." How can a homeowner act in her best financial interests under these circumstances? Temblor (temblor.net) is our attempt to make seismic risk lucid, personal, and actionable. Free and ad-free, Temblor uses the best available public data and methods. Temblor gives you the seismic hazard rank of your location anywhere in the U.S. In its maps, you can see the active faults and recent quakes, and the landslide, liquefaction, tsunami inundation, and flood zones around you. Temblor also displays the Global Earthquake Activity Rate (GEAR) model of Bird et al. (2015). By entering the construction year and square footage for homes within the U.S., you learn the likely cost for seismic damage, and how that cost could be reduced by retrofit or covered by insurance. To give context to this decision, the app compares your seismic risk to other risks homeowners protect themselves against or insure for. Temblor estimates the cost and the most probable financial and safety benefits of a retrofit based on your location, home age and size, so you can decide if the expenditure makes sense. Seeking to make quakes more fascinating than frightening, the Temblor blog provides insights about the latest quakes, and editorials about seismic safety and scientific discoveries. Ultimately, Temblor's mission is not to scare, soothe, or snow people, but to be scientifically credible and personally useful.

  14. Active Tectonics Around Pisagua, Northern Chile Gap: Seismological and Neotectonic Approaches

    NASA Astrophysics Data System (ADS)

    Comte, D.; Carrizo, D.; Peyrat, S.

    2013-12-01

    Northern Chile is a recognized mature seismic gap that is reaching the end of its megathrust cycle. Deformation associated with the convergence between the Nazca and the South American Plates is mainly absorbed along the interplate contact, but also partially accommodated along the upper plate. Even though distribution of the active deformation along this plate has been documented mainly in the backarc region, Late Cenozoic structures have been recognized along the forearc suggesting that some part of this deformation is also accommodated along the coastal region. Recent paleoseismological studies suggest that some of these structures are tectonically active and some could be potentially active, capable to generate shallow intraplate earthquakes (Mw˜7). However, seismological and geodetical evidences of the fault activation mechanisms are poorly documented, and the activation process remain not elucidate. Currently, Northern Chile seismic gap is monitored by regional seismic networks and partially studied by temporary local seismological experiments. Results of these studies suggest the presence of shallow seismicity along the forearc, but the relationships between upper plate faults and the seismicity has not been yet explored. We perform a detailed seismotectonic analysis of the subduction-forearc system in the central part of the Northern Chile seismic gap to establish relationships between the plate contact deformation and the upper plate faults. We present preliminary results of data recorded by a dense seismic network (three components continuous recording) deployed around Pisagua, between the coastline and the Central Depression, during several months. Pisagua region was chosen because the forearc faults exhibit an extraordinary well-preserved morphotectonic expression, and the upper part of the seismogenic interplate contact shows abundant continental intraplate seismicity that could be associated with the faults systems. The data recorded in this area allow us to better constrain the 3D geometry of faults related to plate contact using morphotectonis fault signature, well-located shallow seismicity and passive tomography. By this way, the architecture of the major forearc faults in the study area is determined for the first time using geological and geophysical approaches. Through this work, we contribute to better understand the physical relations between dynamics of the plate contact and the coastal fault activation.

  15. Comparison between deterministic and statistical wavelet estimation methods through predictive deconvolution: Seismic to well tie example from the North Sea

    NASA Astrophysics Data System (ADS)

    de Macedo, Isadora A. S.; da Silva, Carolina B.; de Figueiredo, J. J. S.; Omoboya, Bode

    2017-01-01

    Wavelet estimation as well as seismic-to-well tie procedures are at the core of every seismic interpretation workflow. In this paper we perform a comparative study of wavelet estimation methods for seismic-to-well tie. Two approaches to wavelet estimation are discussed: a deterministic estimation, based on both seismic and well log data, and a statistical estimation, based on predictive deconvolution and the classical assumptions of the convolutional model, which provides a minimum-phase wavelet. Our algorithms, for both wavelet estimation methods introduce a semi-automatic approach to determine the optimum parameters of deterministic wavelet estimation and statistical wavelet estimation and, further, to estimate the optimum seismic wavelets by searching for the highest correlation coefficient between the recorded trace and the synthetic trace, when the time-depth relationship is accurate. Tests with numerical data show some qualitative conclusions, which are probably useful for seismic inversion and interpretation of field data, by comparing deterministic wavelet estimation and statistical wavelet estimation in detail, especially for field data example. The feasibility of this approach is verified on real seismic and well data from Viking Graben field, North Sea, Norway. Our results also show the influence of the washout zones on well log data on the quality of the well to seismic tie.

  16. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOEpatents

    He, W.; Anderson, R.N.

    1998-08-25

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

  17. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOEpatents

    He, Wei; Anderson, Roger N.

    1998-01-01

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.

  18. Seismic analysis for translational failure of landfills with retaining walls.

    PubMed

    Feng, Shi-Jin; Gao, Li-Ya

    2010-11-01

    In the seismic impact zone, seismic force can be a major triggering mechanism for translational failures of landfills. The scope of this paper is to develop a three-part wedge method for seismic analysis of translational failures of landfills with retaining walls. The approximate solution of the factor of safety can be calculated. Unlike previous conventional limit equilibrium methods, the new method is capable of revealing the effects of both the solid waste shear strength and the retaining wall on the translational failures of landfills during earthquake. Parameter studies of the developed method show that the factor of safety decreases with the increase of the seismic coefficient, while it increases quickly with the increase of the minimum friction angle beneath waste mass for various horizontal seismic coefficients. Increasing the minimum friction angle beneath the waste mass appears to be more effective than any other parameters for increasing the factor of safety under the considered condition. Thus, selecting liner materials with higher friction angle will considerably reduce the potential for translational failures of landfills during earthquake. The factor of safety gradually increases with the increase of the height of retaining wall for various horizontal seismic coefficients. A higher retaining wall is beneficial to the seismic stability of the landfill. Simply ignoring the retaining wall will lead to serious underestimation of the factor of safety. Besides, the approximate solution of the yield acceleration coefficient of the landfill is also presented based on the calculated method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Real-time Seismicity Evaluation as a Tool for the Earthquake and Tsunami Short-Term Hazard Assessment (Invited)

    NASA Astrophysics Data System (ADS)

    Papadopoulos, G. A.

    2010-12-01

    Seismic activity is a 3-D process varying in the space-time-magnitude domains. When in a target area the short-term activity deviates significantly from the usual (background) seismicity, then the modes of activity may include swarms, temporary quiescence, foreshock-mainshock-aftershock sequences, doublets and multiplets. This implies that making decision for civil protection purposes requires short-term seismic hazard assessment and evaluation. When a sizable earthquake takes place the critical question is about the nature of the event: mainshock or a foreshock which foreshadows the occurrence of a biger one? Also, the seismicity increase or decrease in a target area may signify either precursory changes or just transient seismicity variations (e.g. swarms) which do not conclude with a strong earthquake. Therefore, the real-time seismicity evaluation is the backbone of the short-term hazard assessment. The algorithm FORMA (Foreshock-Mainshock-Aftershock) is presented which detects and updates automatically and in near real-time significant variations of the seismicity according to the earthquake data flow from the monitoring center. The detection of seismicity variations is based on an expert system which for a given target area indicates the mode of seismicity from the variation of two parameters: the seismicity rate, r, and the b-value of the magnitude-frequency relation. Alert levels are produced according to the significance levels of the changes of r and b. The good performance of FORMA was verified retrospectively in several earthquake cases, e.g. for the L’ Aquila, Italy, 2009 earthquake sequence (Mmax 6.3) (Papadopoulos et al., 2010). Real-time testing was executed during January 2010 with the strong earthquake activity (Mmax 5.6) in the Corinth Rift, Central Greece. Evaluation outputs were publicly documented on a nearly daily basis with successful results. Evaluation of coastal and submarine earthquake activity is also of crucial importance for the short-term hazard assessment for near-field tsunamis, given that the time constraints for early warning is on the order of few minutes up to less than 1 hour. It is proposed that warning procedures for near-field tsunamis in a target area may benefit by combining a tsunami decision matrix with short-term seismic hazard evaluation. Simulated procedures incorporating retrospective tests in the Mediterranean Sea proved encouraging.

  20. Application of Adjoint Method and Spectral-Element Method to Tomographic Inversion of Regional Seismological Structure Beneath Japanese Islands

    NASA Astrophysics Data System (ADS)

    Tsuboi, S.; Miyoshi, T.; Obayashi, M.; Tono, Y.; Ando, K.

    2014-12-01

    Recent progress in large scale computing by using waveform modeling technique and high performance computing facility has demonstrated possibilities to perform full-waveform inversion of three dimensional (3D) seismological structure inside the Earth. We apply the adjoint method (Liu and Tromp, 2006) to obtain 3D structure beneath Japanese Islands. First we implemented Spectral-Element Method to K-computer in Kobe, Japan. We have optimized SPECFEM3D_GLOBE (Komatitsch and Tromp, 2002) by using OpenMP so that the code fits hybrid architecture of K-computer. Now we could use 82,134 nodes of K-computer (657,072 cores) to compute synthetic waveform with about 1 sec accuracy for realistic 3D Earth model and its performance was 1.2 PFLOPS. We use this optimized SPECFEM3D_GLOBE code and take one chunk around Japanese Islands from global mesh and compute synthetic seismograms with accuracy of about 10 second. We use GAP-P2 mantle tomography model (Obayashi et al., 2009) as an initial 3D model and use as many broadband seismic stations available in this region as possible to perform inversion. We then use the time windows for body waves and surface waves to compute adjoint sources and calculate adjoint kernels for seismic structure. We have performed several iteration and obtained improved 3D structure beneath Japanese Islands. The result demonstrates that waveform misfits between observed and theoretical seismograms improves as the iteration proceeds. We now prepare to use much shorter period in our synthetic waveform computation and try to obtain seismic structure for basin scale model, such as Kanto basin, where there are dense seismic network and high seismic activity. Acknowledgements: This research was partly supported by MEXT Strategic Program for Innovative Research. We used F-net seismograms of the National Research Institute for Earth Science and Disaster Prevention.

  1. The sequentially discounting autoregressive (SDAR) method for on-line automatic seismic event detecting on long term observation

    NASA Astrophysics Data System (ADS)

    Wang, L.; Toshioka, T.; Nakajima, T.; Narita, A.; Xue, Z.

    2017-12-01

    In recent years, more and more Carbon Capture and Storage (CCS) studies focus on seismicity monitoring. For the safety management of geological CO2 storage at Tomakomai, Hokkaido, Japan, an Advanced Traffic Light System (ATLS) combined different seismic messages (magnitudes, phases, distributions et al.) is proposed for injection controlling. The primary task for ATLS is the seismic events detection in a long-term sustained time series record. Considering the time-varying characteristics of Signal to Noise Ratio (SNR) of a long-term record and the uneven energy distributions of seismic event waveforms will increase the difficulty in automatic seismic detecting, in this work, an improved probability autoregressive (AR) method for automatic seismic event detecting is applied. This algorithm, called sequentially discounting AR learning (SDAR), can identify the effective seismic event in the time series through the Change Point detection (CPD) of the seismic record. In this method, an anomaly signal (seismic event) can be designed as a change point on the time series (seismic record). The statistical model of the signal in the neighborhood of event point will change, because of the seismic event occurrence. This means the SDAR aims to find the statistical irregularities of the record thought CPD. There are 3 advantages of SDAR. 1. Anti-noise ability. The SDAR does not use waveform messages (such as amplitude, energy, polarization) for signal detecting. Therefore, it is an appropriate technique for low SNR data. 2. Real-time estimation. When new data appears in the record, the probability distribution models can be automatic updated by SDAR for on-line processing. 3. Discounting property. the SDAR introduces a discounting parameter to decrease the influence of present statistic value on future data. It makes SDAR as a robust algorithm for non-stationary signal processing. Within these 3 advantages, the SDAR method can handle the non-stationary time-varying long-term series and achieve real-time monitoring. Finally, we employ the SDAR on a synthetic model and Tomakomai Ocean Bottom Cable (OBC) baseline data to prove the feasibility and advantage of our method.

  2. Induced seismicity and the potential for liability under U.S. law

    NASA Astrophysics Data System (ADS)

    Cypser, Darlene A.; Davis, Scott D.

    1998-04-01

    Research by seismologists over the past 30+ years has firmly established that some human activities induce seismicity. Sometimes induced seismicity causes injuries to people or property. The activities which induce seismicity generally involve extraction of energy, or natural resources, or the disposal of wastes. As the human population increases these extraction and disposal activities will increase in number of sites and intensity of effort as the demands become greater and the resources scarcer. With these increases the number and severity of damaging induced earthquakes is likely to increase. Induced seismicity may cause injuries by vibrations or by seismically induced ground failure. In either case compensation for injuries caused by induced seismicity should be paid for by the inducer. In the United States the inducer of damaging seismicity can be made to pay for the harm caused. Liability for damage caused by vibrations can be based on several legal theories: trespass, strict liability, negligence and nuisance. Our research revealed no cases in which an appellate court has upheld or rejected the application of tort liability to an induced earthquake situation. However, there are numerous analogous cases that support the application of these legal theories to induced seismicity. Vibrations or concussions due to blasting or heavy machinery are sometimes viewed as a `trespass' analogous to a physical invasion. In some states activities which induce earthquakes might be considered `abnormally dangerous' activities that require companies engaged in them to pay for injuries the quakes cause regardless of how careful the inducers were. In some circumstances, a court may find that an inducer was negligent in its site selection or in maintenance of the project. If induced seismicity interferes with the use or enjoyment of another's land, then the inducing activity may be a legal nuisance, even if the seismicity causes little physical damage. In most states of the United States owners of land owe a duty of lateral support to adjacent landowners, and, in some states, mineral estate owners and lessees owe a duty of subjacent support to the surface owners. Failure to meet those duties of support can result in liability. Seismicity induced by one source might accelerate failure of support originating from another source, leaving both of the parties at fault proportionally liable to the injured parties. Geoscientists can use their roles as investigators, educators and advisors to help companies in the petroleum, mining and geothermal fields avoid liability.

  3. An improved peak frequency shift method for Q estimation based on generalized seismic wavelet function

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Gao, Jinghuai

    2018-02-01

    As a powerful tool for hydrocarbon detection and reservoir characterization, the quality factor, Q, provides useful information in seismic data processing and interpretation. In this paper, we propose a novel method for Q estimation. The generalized seismic wavelet (GSW) function was introduced to fit the amplitude spectrum of seismic waveforms with two parameters: fractional value and reference frequency. Then we derive an analytical relation between the GSW function and the Q factor of the medium. When a seismic wave propagates through a viscoelastic medium, the GSW function can be employed to fit the amplitude spectrum of the source and attenuated wavelets, then the fractional values and reference frequencies can be evaluated numerically from the discrete Fourier spectrum. After calculating the peak frequency based on the obtained fractional value and reference frequency, the relationship between the GSW function and the Q factor can be built by the conventional peak frequency shift method. Synthetic tests indicate that our method can achieve higher accuracy and be more robust to random noise compared with existing methods. Furthermore, the proposed method is applicable to different types of source wavelet. Field data application also demonstrates the effectiveness of our method in seismic attenuation and the potential in the reservoir characteristic.

  4. Poor boy 3D seismic effort yields South Central Kentucky discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanratty, M.

    1996-11-04

    Clinton County, Ky., is on the eastern flank of the Cincinnati arch and the western edge of the Appalachian basin and the Pine Mountain overthrust. Clinton County has long been known for high volume fractured carbonate wells. The discovery of these fractured reservoir, unfortunately, has historically been serendipitous. The author currently uses 2D seismic and satellite imagery to design 3D high resolution seismic shoots. This method has proven to be the most efficient and is the core of his program. The paper describes exploration methods, seismic acquisition, well data base, and seismic interpretation.

  5. A Reassessment of the Seismicity Related to the 1998-1999 Eruption of Colima Volcano, Western Mexico.

    NASA Astrophysics Data System (ADS)

    Zamora-Camacho, A.; Nuñez-Cornu, F. J.; Espindola, J. M.

    2014-12-01

    The 1998-1999 activity of Colima volcano (19.514°N, 103.62°W, 3850 m a.s.l.) consisted of a climactic episode on 20 November, 1998. On this date, a dome formed on the small summit crater during the previous few days, collapsed generating block-and-ash flows. The event was preceded by almost twelve months of seismic activity, which continued afterwards for several more months. In a previous work (Zamora-Camacho et al., 2007; Pure Appl. Geophys. 164, 39-52) we analyzed the seismic activity occurred from 20 March, 1998 to 31 March, 1999. However the seismicity related to the activity did not dwindled down to pre-eruptive levels until January 2000. In this work we present the results of our analysis of the period March-December 1999, which completes the sequence of events related to the eruption. This analysis is of importance because constitutes the most complete study of the seismicity of an eruptive period of Colima volcano, in the sense that we determined most of the events recorded by the seismic net (RESCO) and located all of those that were amenable to location. The whole period of seismic activity consisted of more than 11,000 events of which 1156 belonging to the period March-December 1999 were located. Of this group 1082 have magnitude (Mc) between 1 and 3.5 and depths mostly in the 0-10 km range.

  6. Source Inversion of Seismic Events Associated with the Sinkhole at Napoleonville Salt Dome, Louisiana using a 3D Velocity Model

    NASA Astrophysics Data System (ADS)

    Nayak, Avinash; Dreger, Douglas S.

    2018-05-01

    The formation of a large sinkhole at the Napoleonville salt dome (NSD), Assumption Parish, Louisiana, caused by the collapse of a brine cavern, was accompanied by an intense and complex sequence of seismic events. We implement a grid-search approach to compute centroid locations and point-source moment tensor (MT) solutions of these seismic events using ˜0.1-0.3 Hz displacement waveforms and synthetic Green's functions computed using a 3D velocity model of the western edge of the NSD. The 3D model incorporates the currently known approximate geometry of the salt dome and the overlying anhydrite-gypsum cap rock, and features a large velocity contrast between the high velocity salt dome and low velocity sediments overlying and surrounding it. For each possible location on the source grid, Green's functions (GFs) to each station were computed using source-receiver reciprocity and the finite-difference seismic wave propagation software SW4. We also establish an empirical method to rigorously assess uncertainties in the centroid location, MW and source type of these events under evolving network geometry, using the results of synthetic tests with hypothetical events and real seismic noise. We apply the methods on the entire duration of data (˜6 months) recorded by the temporary US Geological Survey network. During an energetic phase of the sequence from 24-31 July 2012 when 4 stations were operational, the events with the best waveform fits are primarily located at the western edge of the salt dome at most probable depths of ˜0.3-0.85 km, close to the horizontal positions of the cavern and the future sinkhole. The data are fit nearly equally well by opening crack MTs in the high velocity salt medium or by isotropic volume-increase MTs in the low velocity sediment layers. We find that data recorded by 6 stations during 1-2 August 2012, right before the appearance of the sinkhole, indicate that some events are likely located in the lower velocity media just outside the salt dome at slightly shallower depth ˜0.35-0.65 km, with preferred isotropic volume-increase MT solutions. We find that GFs computed using the 3D velocity model generally result in better fits to the data than GFs computed using 1D velocity models, especially for the smaller amplitude tangential and vertical components, and result in better resolution of event locations. The dominant seismicity during 24-30 July 2012 is characterized by steady occurrence of seismic events with similar locations and MT solutions at a near-characteristic inter-event time. The steady activity is sometimes interrupted by tremor-like sequences of multiple events in rapid succession, followed by quiet periods of little of no seismic activity, in turn followed by the resumption of seismicity with a reduced seismic moment-release rate. The dominant volume-increase MT solutions and the steady features of the seismicity indicate a crack-valve-type source mechanism possibly driven by pressurized natural gas.

  7. Utility of aeromagnetic studies for mapping of potentially active faults in two forearc basins: Puget Sound, Washington, and Cook Inlet, Alaska

    USGS Publications Warehouse

    Saltus, R.W.; Blakely, R.J.; Haeussler, Peter J.; Wells, R.E.

    2005-01-01

    High-resolution aeromagnetic surveys over forearc basins can detect faults and folds in weakly magnetized sediments, thus providing geologic constraints on tectonic evolution and improved understanding of seismic hazards in convergent-margin settings. Puget Sound, Washington, and Cook Inlet, Alaska, provide two case histories. In each lowland region, shallow-source magnetic anomalies are related to active folds and/or faults. Mapping these structures is critical for understanding seismic hazards that face the urban regions of Seattle, Washington, and Anchorage, Alaska. Similarities in aeromagnetic anomaly patterns and magnetic stratigraphy between the two regions suggest that we can expect the aeromagnetic method to yield useful structural information that may contribute to earth-hazard and energy resource investigations in other forearc basins.

  8. Contemporary Tectonics of China

    DTIC Science & Technology

    1978-02-01

    that it would be of value to the United States to understand seismicity in China because their methods used in predicting large intraplate seismic...ability to discriminate between natural events and nuclear explosions. General Method In order to circumvent the limitations placed on studies of...accurate relative locations. Fault planes maybe determined with this method , thereby removing the ambiguity of the choice of fault plane from a fault plane

  9. Submarine Landslide Hazards Offshore Southern Alaska: Seismic Strengthening Versus Rapid Sedimentation

    NASA Astrophysics Data System (ADS)

    Sawyer, D.; Reece, R.; Gulick, S. P. S.; Lenz, B. L.

    2017-12-01

    The southern Alaskan offshore margin is prone to submarine landslides and tsunami hazards due to seismically active plate boundaries and extreme sedimentation rates from glacially enhanced mountain erosion. We examine the submarine landslide potential with new shear strength measurements acquired by Integrated Ocean Drilling Program Expedition 341 on the continental slope and Surveyor Fan. These data reveal lower than expected sediment strength. Contrary to other active margins where seismic strengthening enhances slope stability, the high-sedimentation margin offshore southern Alaska behaves like a passive margin from a shear strength perspective. We interpret that seismic strengthening occurs but is offset by high sedimentation rates and overpressure within the slope and Surveyor Fan. This conclusion is supported because shear strength follows an expected active margin profile outside of the fan, where background sedimentation rates occur. More broadly, seismically active margins with wet-based glaciers are susceptible to submarine landslide hazards because of the combination of high sedimentation rates and earthquake shaking

  10. Earthquake chemical precursors in groundwater: a review

    NASA Astrophysics Data System (ADS)

    Paudel, Shukra Raj; Banjara, Sushant Prasad; Wagle, Amrita; Freund, Friedemann T.

    2018-03-01

    We review changes in groundwater chemistry as precursory signs for earthquakes. In particular, we discuss pH, total dissolved solids (TDS), electrical conductivity, and dissolved gases in relation to their significance for earthquake prediction or forecasting. These parameters are widely believed to vary in response to seismic and pre-seismic activity. However, the same parameters also vary in response to non-seismic processes. The inability to reliably distinguish between changes caused by seismic or pre-seismic activities from changes caused by non-seismic activities has impeded progress in earthquake science. Short-term earthquake prediction is unlikely to be achieved, however, by pH, TDS, electrical conductivity, and dissolved gas measurements alone. On the other hand, the production of free hydroxyl radicals (•OH), subsequent reactions such as formation of H2O2 and oxidation of As(III) to As(V) in groundwater, have distinctive precursory characteristics. This study deviates from the prevailing mechanical mantra. It addresses earthquake-related non-seismic mechanisms, but focused on the stress-induced electrification of rocks, the generation of positive hole charge carriers and their long-distance propagation through the rock column, plus on electrochemical processes at the rock-water interface.

  11. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    USGS Publications Warehouse

    Bennington, Ninfa; Haney, Matt; De Angelis, Silvio; Thurber, Clifford; Freymueller, Jeff

    2015-01-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok’s caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. Themagnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/ormagmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation sourcemay be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  12. A preliminary probabilistic analysis of tsunami sources of seismic and non-seismic origin applied to the city of Naples, Italy

    NASA Astrophysics Data System (ADS)

    Tonini, R.; Anita, G.

    2011-12-01

    In both worldwide and regional historical catalogues, most of the tsunamis are caused by earthquakes and a minor percentage is represented by all the other non-seismic sources. On the other hand, tsunami hazard and risk studies are often applied to very specific areas, where this global trend can be different or even inverted, depending on the kind of potential tsunamigenic sources which characterize the case study. So far, few probabilistic approaches consider the contribution of landslides and/or phenomena derived by volcanic activity, i.e. pyroclastic flows and flank collapses, as predominant in the PTHA, also because of the difficulties to estimate the correspondent recurrence time. These considerations are valid, for example, for the city of Naples, Italy, which is surrounded by a complex active volcanic system (Vesuvio, Campi Flegrei, Ischia) that presents a significant number of potential tsunami sources of non-seismic origin compared to the seismic ones. In this work we present the preliminary results of a probabilistic multi-source tsunami hazard assessment applied to Naples. The method to estimate the uncertainties will be based on Bayesian inference. This is the first step towards a more comprehensive task which will provide a tsunami risk quantification for this town in the frame of the Italian national project ByMuR (http://bymur.bo.ingv.it). This three years long ongoing project has the final objective of developing a Bayesian multi-risk methodology to quantify the risk related to different natural hazards (volcanoes, earthquakes and tsunamis) applied to the city of Naples.

  13. Automated seismic waveform location using Multichannel Coherency Migration (MCM)-I. Theory

    NASA Astrophysics Data System (ADS)

    Shi, Peidong; Angus, Doug; Rost, Sebastian; Nowacki, Andy; Yuan, Sanyi

    2018-03-01

    With the proliferation of dense seismic networks sampling the full seismic wavefield, recorded seismic data volumes are getting bigger and automated analysis tools to locate seismic events are essential. Here, we propose a novel Multichannel Coherency Migration (MCM) method to locate earthquakes in continuous seismic data and reveal the location and origin time of seismic events directly from recorded waveforms. By continuously calculating the coherency between waveforms from different receiver pairs, MCM greatly expands the available information which can be used for event location. MCM does not require phase picking or phase identification, which allows fully automated waveform analysis. By migrating the coherency between waveforms, MCM leads to improved source energy focusing. We have tested and compared MCM to other migration-based methods in noise-free and noisy synthetic data. The tests and analysis show that MCM is noise resistant and can achieve more accurate results compared with other migration-based methods. MCM is able to suppress strong interference from other seismic sources occurring at a similar time and location. It can be used with arbitrary 3D velocity models and is able to obtain reasonable location results with smooth but inaccurate velocity models. MCM exhibits excellent location performance and can be easily parallelized giving it large potential to be developed as a real-time location method for very large datasets.

  14. Seismic instantaneous frequency extraction based on the SST-MAW

    NASA Astrophysics Data System (ADS)

    Liu, Naihao; Gao, Jinghuai; Jiang, Xiudi; Zhang, Zhuosheng; Wang, Ping

    2018-06-01

    The instantaneous frequency (IF) extraction of seismic data has been widely applied to seismic exploration for decades, such as detecting seismic absorption and characterizing depositional thicknesses. Based on the complex-trace analysis, the Hilbert transform (HT) can extract the IF directly, which is a traditional method and susceptible to noise. In this paper, a robust approach based on the synchrosqueezing transform (SST) is proposed to extract the IF from seismic data. In this process, a novel analytical wavelet is developed and chosen as the basic wavelet, which is called the modified analytical wavelet (MAW) and comes from the three parameter wavelet. After transforming the seismic signal into a sparse time-frequency domain via the SST taking the MAW (SST-MAW), an adaptive threshold is introduced to improve the noise immunity and accuracy of the IF extraction in a noisy environment. Note that the SST-MAW reconstructs a complex trace to extract seismic IF. To demonstrate the effectiveness of the proposed method, we apply the SST-MAW to synthetic data and field seismic data. Numerical experiments suggest that the proposed procedure yields the higher resolution and the better anti-noise performance compared to the conventional IF extraction methods based on the HT method and continuous wavelet transform. Moreover, geological features (such as the channels) are well characterized, which is insightful for further oil/gas reservoir identification.

  15. Annotated bibliography, seismicity of and near the island of Hawaii and seismic hazard analysis of the East Rift of Kilauea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, F.W.

    1994-03-28

    This bibliography is divided into the following four sections: Seismicity of Hawaii and Kilauea Volcano; Occurrence, locations and accelerations from large historical Hawaiian earthquakes; Seismic hazards of Hawaii; and Methods of seismic hazard analysis. It contains 62 references, most of which are accompanied by short abstracts.

  16. Slow Earthquakes in the Alaska-Aleutian Subduction Zone Detected by Multiple Mini Seismic Arrays

    NASA Astrophysics Data System (ADS)

    LI, B.; Ghosh, A.; Thurber, C. H.; Lanza, F.

    2017-12-01

    The Alaska-Aleutian subduction zone is one of the most seismically and volcanically active plate boundaries on earth. Compared to other subduction zones, the slow earthquakes, such as tectonic tremors (TTs) and low frequency earthquakes (LFEs), are relatively poorly studied due to the limited data availability and difficult logistics. The analysis of two-months of continuous data from a mini array deployed in 2012 shows abundant tremor and LFE activities under Unalaska Island that is heterogeneously distributed [Li & Ghosh, 2017]. To better study slow earthquakes and understand their physical characteristics in the study region, we deployed a hybrid array of arrays, consisting of three well-designed mini seismic arrays and five stand alone stations, in the Unalaska Island in 2014. They were operational for between one and two years. Using the beam back-projection method [Ghosh et al., 2009, 2012], we detect continuous tremor activities for over a year when all three arrays are running. The sources of tremors are located south of the Unalaska and Akutan Islands, at the eastern and down-dip edge of the rupture zone of the 1957 Mw 8.6 earthquake, and they are clustered in several patches, with a gap between the two major clusters. Tremors show multiple migration patterns with propagation in both along-strike and dip directions and a wide range of velocities. We also identify tens of LFE families and use them as templates to search for repeating LFE events with the matched-filter method. Hundreds to thousands of LFEs for each family are detected and their activities are spatiotemporally consistent with tremor activities. The array techniques are revealing a near-continuous tremor activity in this area with remarkable spatiotemporal details. It helps us to better recognize the physical properties of the transition zone, provides new insights into the slow earthquake activities in this area, and explores their relation with the local earthquakes and the potential slow slip events.

  17. Seismic response of soft deposits due to landslide: The Mission Peak, California, landslide

    USGS Publications Warehouse

    Hartzell, Stephen; Leeds, Alena L.; Jibson, Randall W.

    2017-01-01

    The seismic response of active and intermittently active landslides is an important issue to resolve to determine if such landslides present an elevated hazard in future earthquakes. To study the response of landslide deposits, seismographs were placed on the Mission Peak landslide in the eastern San Francisco Bay region for a period of one year. Numerous local and near‐regional earthquakes were recorded that reveal a complexity of seismic response phenomena using the horizontal‐to‐vertical spectral ratio method. At lower frequencies, a clear spectral peak is observed at 0.5 Hz common to all four stations in the array and is attributed to a surface topographic effect. At higher frequencies, other spectral peaks occur that are interpreted in terms of local deposits and structures. Site amplification from the standard reference site method shows the minimum amplification with a factor of 2, comparing a site on and off the landslide. A site located on relatively homogeneous deposits of loose soils shows a clear spectral peak associated with the thickness of the deposit. Another site on a talus‐filled graben near the headscarp shows possible 2D or 3D effects from subsurface topography or scattering within and between buried sandstone blocks. A third site on a massive partially detached block below the crown of the headscarp shows indications of resonance caused by the reverberation of shear waves within the block. The varied seismic response of different parts of this complex landslide is consistent with other studies which found that, although landslide response is commonly enhanced in the downslope direction of landslide movement, such a response does not occur uniformly or consistently. When it does occur, enhanced site response parallel to the direction of landslide movement would contribute to landslide reactivation during significant earthquakes.

  18. Automatic detection of snow avalanches in continuous seismic data using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Heck, Matthias; Hammer, Conny; van Herwijnen, Alec; Schweizer, Jürg; Fäh, Donat

    2018-01-01

    Snow avalanches generate seismic signals as many other mass movements. Detection of avalanches by seismic monitoring is highly relevant to assess avalanche danger. In contrast to other seismic events, signals generated by avalanches do not have a characteristic first arrival nor is it possible to detect different wave phases. In addition, the moving source character of avalanches increases the intricacy of the signals. Although it is possible to visually detect seismic signals produced by avalanches, reliable automatic detection methods for all types of avalanches do not exist yet. We therefore evaluate whether hidden Markov models (HMMs) are suitable for the automatic detection of avalanches in continuous seismic data. We analyzed data recorded during the winter season 2010 by a seismic array deployed in an avalanche starting zone above Davos, Switzerland. We re-evaluated a reference catalogue containing 385 events by grouping the events in seven probability classes. Since most of the data consist of noise, we first applied a simple amplitude threshold to reduce the amount of data. As first classification results were unsatisfying, we analyzed the temporal behavior of the seismic signals for the whole data set and found that there is a high variability in the seismic signals. We therefore applied further post-processing steps to reduce the number of false alarms by defining a minimal duration for the detected event, implementing a voting-based approach and analyzing the coherence of the detected events. We obtained the best classification results for events detected by at least five sensors and with a minimal duration of 12 s. These processing steps allowed identifying two periods of high avalanche activity, suggesting that HMMs are suitable for the automatic detection of avalanches in seismic data. However, our results also showed that more sensitive sensors and more appropriate sensor locations are needed to improve the signal-to-noise ratio of the signals and therefore the classification.

  19. Earthquake Rate Models for Evolving Induced Seismicity Hazard in the Central and Eastern US

    NASA Astrophysics Data System (ADS)

    Llenos, A. L.; Ellsworth, W. L.; Michael, A. J.

    2015-12-01

    Injection-induced earthquake rates can vary rapidly in space and time, which presents significant challenges to traditional probabilistic seismic hazard assessment methodologies that are based on a time-independent model of mainshock occurrence. To help society cope with rapidly evolving seismicity, the USGS is developing one-year hazard models for areas of induced seismicity in the central and eastern US to forecast the shaking due to all earthquakes, including aftershocks which are generally omitted from hazards assessments (Petersen et al., 2015). However, the spatial and temporal variability of the earthquake rates make them difficult to forecast even on time-scales as short as one year. An initial approach is to use the previous year's seismicity rate to forecast the next year's seismicity rate. However, in places such as northern Oklahoma the rates vary so rapidly over time that a simple linear extrapolation does not accurately forecast the future, even when the variability in the rates is modeled with simulations based on an Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, JASA, 1988) to account for earthquake clustering. Instead of relying on a fixed time period for rate estimation, we explore another way to determine when the earthquake rate should be updated. This approach could also objectively identify new areas where the induced seismicity hazard model should be applied. We will estimate the background seismicity rate by optimizing a single set of ETAS aftershock triggering parameters across the most active induced seismicity zones -- Oklahoma, Guy-Greenbrier, the Raton Basin, and the Azle-Dallas-Fort Worth area -- with individual background rate parameters in each zone. The full seismicity rate, with uncertainties, can then be estimated using ETAS simulations and changes in rate can be detected by applying change point analysis in ETAS transformed time with methods already developed for Poisson processes.

  20. Contrasts in Lower Crustal Structure and Evolution Between the Northern and Southern Rocky Mountains From Xenoliths and Seismic Data

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, V.; Mahan, K. H.; Shen, W.; Stachnik, J. C.

    2016-12-01

    We compare and contrast crustal structure and composition along a transect from the Southern to Northern Rocky Mountains, with a focus on the lower crust. Evolution of the crust can include processes of emplacement, differentiation, and thermal changes that may generate lower crust with high seismic wavespeeds. The high seismic velocities can be due to mafic composition, the presence of garnet, or both. We seek to find seismic signatures preserved from such processes and compare xenolith samples and present-day seismic appearance between regions with varying tectonic histories. We review recent seismic results from the EarthScope Transportable Array from receiver functions and surface waves, compilations of active source studies, and xenolith studies to compare lower crustal structure along transects through the Northern and Southern Rocky Mountains traversing Montana, Wyoming, Colorado, Utah, and New Mexico. Xenoliths from an unusually thick lower crustal layer with high seismic velocities in Montana record magmatic emplacement processes dating back to the Archean. The lower crustal layer possesses internal velocity contrasts that lead to conflicting interpretations of Moho depth depending on the method used, with xenoliths and a refraction study placing the Moho at 55 km depth, while studies using surface waves and receiver functions identify the largest contrast at 40-45 km depth as the Moho. An additional confounding factor is the presence of metasomatized uppermost mantle with low seismic velocities, which may further diminish the seismic signature of the petrological Moho. To the south, the high-velocity layer diminishes, and seismic velocities in the deep crust under southern Wyoming, Colorado, and New Mexico are lower. In the literature, north-south gradients in lower crustal velocity in this area and observed differences in garnet content have variously been ascribed to thermal dehydration of Archean-age hydrous crust or Laramide-age hydration of previously garnet-rich crust.

  1. Slab1.0: A three-dimensional model of global subduction zone geometries

    NASA Astrophysics Data System (ADS)

    Hayes, Gavin P.; Wald, David J.; Johnson, Rebecca L.

    2012-01-01

    We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of `average' active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.

  2. Application of seismic-refraction techniques to hydrologic studies

    USGS Publications Warehouse

    Haeni, F.P.

    1986-01-01

    During the past 30 years, seismic-refraction methods have been used extensively in petroleum, mineral, and engineering investigations, and to some extent for hydrologic applications. Recent advances in equipment, sound sources, and computer interpretation techniques make seismic refraction a highly effective and economical means of obtaining subsurface data in hydrologic studies. Aquifers that can be defined by one or more high seismic-velocity surfaces, such as (1) alluvial or glacial deposits in consolidated rock valleys, (2) limestone or sandstone underlain by metamorphic or igneous rock, or (3) saturated unconsolidated deposits overlain by unsaturated unconsolidated deposits,are ideally suited for applying seismic-refraction methods. These methods allow the economical collection of subsurface data, provide the basis for more efficient collection of data by test drilling or aquifer tests, and result in improved hydrologic studies.This manual briefly reviews the basics of seismic-refraction theory and principles. It emphasizes the use of this technique in hydrologic investigations and describes the planning, equipment, field procedures, and intrepretation techniques needed for this type of study.Examples of the use of seismic-refraction techniques in a wide variety of hydrologic studies are presented.

  3. Application of seismic-refraction techniques to hydrologic studies

    USGS Publications Warehouse

    Haeni, F.P.

    1988-01-01

    During the past 30 years, seismic-refraction methods have been used extensively in petroleum, mineral, and engineering investigations and to some extent for hydrologic applications. Recent advances in equipment, sound sources, and computer interpretation techniques make seismic refraction a highly effective and economical means of obtaining subsurface data in hydrologic studies. Aquifers that can be defined by one or more high-seismic-velocity surface, such as (1) alluvial or glacial deposits in consolidated rock valleys, (2) limestone or sandstone underlain by metamorphic or igneous rock, or (3) saturated unconsolidated deposits overlain by unsaturated unconsolidated deposits, are ideally suited for seismic-refraction methods. These methods allow economical collection of subsurface data, provide the basis for more efficient collection of data by test drilling or aquifer tests, and result in improved hydrologic studies. This manual briefly reviews the basics of seismic-refraction theory and principles. It emphasizes the use of these techniques in hydrologic investigations and describes the planning, equipment, field procedures, and interpretation techniques needed for this type of study. Further-more, examples of the use of seismic-refraction techniques in a wide variety of hydrologic studies are presented.

  4. The use of earthquake rate changes as a stress meter at Kilauea volcano.

    PubMed

    Dieterich, J; Cayol, V; Okubo, P

    2000-11-23

    Stress changes in the Earth's crust are generally estimated from model calculations that use near-surface deformation as an observational constraint. But the widespread correlation of changes of earthquake activity with stress has led to suggestions that stress changes might be calculated from earthquake occurrence rates obtained from seismicity catalogues. Although this possibility has considerable appeal, because seismicity data are routinely collected and have good spatial and temporal resolution, the method has not yet proven successful, owing to the non-linearity of earthquake rate changes with respect to both stress and time. Here, however, we present two methods for inverting earthquake rate data to infer stress changes, using a formulation for the stress- and time-dependence of earthquake rates. Application of these methods at Kilauea volcano, in Hawaii, yields good agreement with independent estimates, indicating that earthquake rates can provide a practical remote-sensing stress meter.

  5. Initialising reservoir models for history matching using pre-production 3D seismic data: constraining methods and uncertainties

    NASA Astrophysics Data System (ADS)

    Niri, Mohammad Emami; Lumley, David E.

    2017-10-01

    Integration of 3D and time-lapse 4D seismic data into reservoir modelling and history matching processes poses a significant challenge due to the frequent mismatch between the initial reservoir model, the true reservoir geology, and the pre-production (baseline) seismic data. A fundamental step of a reservoir characterisation and performance study is the preconditioning of the initial reservoir model to equally honour both the geological knowledge and seismic data. In this paper we analyse the issues that have a significant impact on the (mis)match of the initial reservoir model with well logs and inverted 3D seismic data. These issues include the constraining methods for reservoir lithofacies modelling, the sensitivity of the results to the presence of realistic resolution and noise in the seismic data, the geostatistical modelling parameters, and the uncertainties associated with quantitative incorporation of inverted seismic data in reservoir lithofacies modelling. We demonstrate that in a geostatistical lithofacies simulation process, seismic constraining methods based on seismic litho-probability curves and seismic litho-probability cubes yield the best match to the reference model, even when realistic resolution and noise is included in the dataset. In addition, our analyses show that quantitative incorporation of inverted 3D seismic data in static reservoir modelling carries a range of uncertainties and should be cautiously applied in order to minimise the risk of misinterpretation. These uncertainties are due to the limited vertical resolution of the seismic data compared to the scale of the geological heterogeneities, the fundamental instability of the inverse problem, and the non-unique elastic properties of different lithofacies types.

  6. Quantitative Estimation of Seismic Velocity Changes Using Time-Lapse Seismic Data and Elastic-Wave Sensitivity Approach

    NASA Astrophysics Data System (ADS)

    Denli, H.; Huang, L.

    2008-12-01

    Quantitative monitoring of reservoir property changes is essential for safe geologic carbon sequestration. Time-lapse seismic surveys have the potential to effectively monitor fluid migration in the reservoir that causes geophysical property changes such as density, and P- and S-wave velocities. We introduce a novel method for quantitative estimation of seismic velocity changes using time-lapse seismic data. The method employs elastic sensitivity wavefields, which are the derivatives of elastic wavefield with respect to density, P- and S-wave velocities of a target region. We derive the elastic sensitivity equations from analytical differentiations of the elastic-wave equations with respect to seismic-wave velocities. The sensitivity equations are coupled with the wave equations in a way that elastic waves arriving in a target reservoir behave as a secondary source to sensitivity fields. We use a staggered-grid finite-difference scheme with perfectly-matched layers absorbing boundary conditions to simultaneously solve the elastic-wave equations and the elastic sensitivity equations. By elastic-wave sensitivities, a linear relationship between relative seismic velocity changes in the reservoir and time-lapse seismic data at receiver locations can be derived, which leads to an over-determined system of equations. We solve this system of equations using a least- square method for each receiver to obtain P- and S-wave velocity changes. We validate the method using both surface and VSP synthetic time-lapse seismic data for a multi-layered model and the elastic Marmousi model. Then we apply it to the time-lapse field VSP data acquired at the Aneth oil field in Utah. A total of 10.5K tons of CO2 was injected into the oil reservoir between the two VSP surveys for enhanced oil recovery. The synthetic and field data studies show that our new method can quantitatively estimate changes in seismic velocities within a reservoir due to CO2 injection/migration.

  7. New approach to detect seismic surface waves in 1Hz-sampled GPS time series

    PubMed Central

    Houlié, N.; Occhipinti, G.; Blanchard, T.; Shapiro, N.; Lognonné, P.; Murakami, M.

    2011-01-01

    Recently, co-seismic seismic source characterization based on GPS measurements has been completed in near- and far-field with remarkable results. However, the accuracy of the ground displacement measurement inferred from GPS phase residuals is still depending of the distribution of satellites in the sky. We test here a method, based on the double difference (DD) computations of Line of Sight (LOS), that allows detecting 3D co-seismic ground shaking. The DD method is a quasi-analytically free of most of intrinsic errors affecting GPS measurements. The seismic waves presented in this study produced DD amplitudes 4 and 7 times stronger than the background noise. The method is benchmarked using the GEONET GPS stations recording the Hokkaido Earthquake (2003 September 25th, Mw = 8.3). PMID:22355563

  8. Method for enhancing low frequency output of impulsive type seismic energy sources and its application to a seismic energy source for use while drilling

    DOEpatents

    Radtke, Robert P; Stokes, Robert H; Glowka, David A

    2014-12-02

    A method for operating an impulsive type seismic energy source in a firing sequence having at least two actuations for each seismic impulse to be generated by the source. The actuations have a time delay between them related to a selected energy frequency peak of the source output. One example of the method is used for generating seismic signals in a wellbore and includes discharging electric current through a spark gap disposed in the wellbore in at least one firing sequence. The sequence includes at least two actuations of the spark gap separated by an amount of time selected to cause acoustic energy resulting from the actuations to have peak amplitude at a selected frequency.

  9. Waveform Retrieval and Phase Identification for Seismic Data from the CASS Experiment

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; You, Qingyu; Ni, Sidao; Hao, Tianyao; Wang, Hongti; Zhuang, Cantao

    2013-05-01

    The little destruction to the deployment site and high repeatability of the Controlled Accurate Seismic Source (CASS) shows its potential for investigating seismic wave velocities in the Earth's crust. However, the difficulty in retrieving impulsive seismic waveforms from the CASS data and identifying the seismic phases substantially prevents its wide applications. For example, identification of the seismic phases and accurate measurement of travel times are essential for resolving the spatial distribution of seismic velocities in the crust. Until now, it still remains a challenging task to estimate the accurate travel times of different seismic phases from the CASS data which features extended wave trains, unlike processing of the waveforms from impulsive events such as earthquakes or explosive sources. In this study, we introduce a time-frequency analysis method to process the CASS data, and try to retrieve the seismic waveforms and identify the major seismic phases traveling through the crust. We adopt the Wigner-Ville Distribution (WVD) approach which has been used in signal detection and parameter estimation for linear frequency modulation (LFM) signals, and proves to feature the best time-frequency convergence capability. The Wigner-Hough transform (WHT) is applied to retrieve the impulsive waveforms from multi-component LFM signals, which comprise seismic phases with different arrival times. We processed the seismic data of the 40-ton CASS in the field experiment around the Xinfengjiang reservoir with the WVD and WHT methods. The results demonstrate that these methods are effective in waveform retrieval and phase identification, especially for high frequency seismic phases such as PmP and SmS with strong amplitudes in large epicenter distance of 80-120 km. Further studies are still needed to improve the accuracy on travel time estimation, so as to further promote applicability of the CASS for and imaging the seismic velocity structure.

  10. The theory and method of variable frequency directional seismic wave under the complex geologic conditions

    NASA Astrophysics Data System (ADS)

    Jiang, T.; Yue, Y.

    2017-12-01

    It is well known that the mono-frequency directional seismic wave technology can concentrate seismic waves into a beam. However, little work on the method and effect of variable frequency directional seismic wave under complex geological conditions have been done .We studied the variable frequency directional wave theory in several aspects. Firstly, we studied the relation between directional parameters and the direction of the main beam. Secondly, we analyzed the parameters that affect the beam width of main beam significantly, such as spacing of vibrator, wavelet dominant frequency, and number of vibrator. In addition, we will study different characteristics of variable frequency directional seismic wave in typical velocity models. In order to examine the propagation characteristics of directional seismic wave, we designed appropriate parameters according to the character of direction parameters, which is capable to enhance the energy of the main beam direction. Further study on directional seismic wave was discussed in the viewpoint of power spectral. The results indicate that the energy intensity of main beam direction increased 2 to 6 times for a multi-ore body velocity model. It showed us that the variable frequency directional seismic technology provided an effective way to strengthen the target signals under complex geological conditions. For concave interface model, we introduced complicated directional seismic technology which supports multiple main beams to obtain high quality data. Finally, we applied the 9-element variable frequency directional seismic wave technology to process the raw data acquired in a oil-shale exploration area. The results show that the depth of exploration increased 4 times with directional seismic wave method. Based on the above analysis, we draw the conclusion that the variable frequency directional seismic wave technology can improve the target signals of different geologic conditions and increase exploration depth with little cost. Due to inconvenience of hydraulic vibrators in complicated surface area, we suggest that the combination of high frequency portable vibrator and variable frequency directional seismic wave method is an alternative technology to increase depth of exploration or prospecting.

  11. Fractual interrelationships in field and seismic data. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-01-07

    Fractals provide a description of physical patterns over a range of scales in both time and space. Studies presented herein examine the fractal characteristics of various geological variables such as deformed bed-lengths, fold relief, seismic reflection arrival time variations, drainage and topographic patterns, and fracture systems. The studies are also extended to consider the possibility that the fractal characteristics of these variables are interrelated. Fractal interrelationships observed in these studies provide a method for relating variations in the fractal characteristics of seismic reflection events from reservoir intervals to the fractal characteristics of reservoir fracture systems, faults, and fold distributions. Themore » work is motivated by current exploration and development interests to detect fractured reservoirs and to accurately predict flow rates and flow patterns within the fractured reservoir. Accurate prediction requires an understanding of several reservoir properties including the fractal geometry of the reservoir fracture network. Results of these studies provide a method to remotely assess the fractal characteristics of a fractured reservoir, and help guide field development activities. The most significant outgrowth of this research is that the fractal properties of structural relief inferred from seismic data and structural cross sections provide a quantitative means to characterize and compare complex structural patterns. Production from fractured reservoirs is the result of complex structural and stratigraphic controls; hence, the import of fractal characterization to the assessment of fractured reservoirs lies in its potential to quantitatively define interrelationships between subtle structural variation and production. The potential uses are illustrated using seismic data from the Granny Creek oil field in the Appalachian Plateau.« less

  12. Estimation of seismic attenuation in carbonate rocks using three different methods: Application on VSP data from Abu Dhabi oilfield

    NASA Astrophysics Data System (ADS)

    Bouchaala, F.; Ali, M. Y.; Matsushima, J.

    2016-06-01

    In this study a relationship between the seismic wavelength and the scale of heterogeneity in the propagating medium has been examined. The relationship estimates the size of heterogeneity that significantly affects the wave propagation at a specific frequency, and enables a decrease in the calculation time of wave scattering estimation. The relationship was applied in analyzing synthetic and Vertical Seismic Profiling (VSP) data obtained from an onshore oilfield in the Emirate of Abu Dhabi, United Arab Emirates. Prior to estimation of the attenuation, a robust processing workflow was applied to both synthetic and recorded data to increase the Signal-to-Noise Ratio (SNR). Two conventional methods of spectral ratio and centroid frequency shift methods were applied to estimate the attenuation from the extracted seismic waveforms in addition to a new method based on seismic interferometry. The attenuation profiles derived from the three approaches demonstrated similar variation, however the interferometry method resulted in greater depth resolution, differences in attenuation magnitude. Furthermore, the attenuation profiles revealed significant contribution of scattering on seismic wave attenuation. The results obtained from the seismic interferometry method revealed estimated scattering attenuation ranges from 0 to 0.1 and estimated intrinsic attenuation can reach 0.2. The subsurface of the studied zones is known to be highly porous and permeable, which suggest that the mechanism of the intrinsic attenuation is probably the interactions between pore fluids and solids.

  13. Modelling framework developed for managing and forecasting the El Hierro 2011-2014 unrest processes based on the analysis of the seismicity and deformation data rate.

    NASA Astrophysics Data System (ADS)

    Garcia, Alicia; Fernandez-Ros, Alberto; Berrocoso, Manuel; Marrero, Jose Manuel; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramon

    2014-05-01

    In July 2011 at El Hierro (Canary Islands, Spain), a volcanic unrest was detected, with significant deformations followed by increased seismicity. A submarine eruption started on 10 October 2011 and ceased on 5 March 2012, after the volcanic tremor signals persistently weakened through February 2012. However, the seismic activity did not end when the eruption, as several other seismic crises followed since. The seismic episodes presented a characteristic pattern: over a few days the number and magnitude of seismic event increased persistently, culminating in seismic events severe enough to be felt all over the island. In all cases the seismic activity was preceded by significant deformations measured on the island's surface that continued during the whole episode. Analysis of the available GNSS-GPS and seismic data suggests that several magma injection processes occurred at depth from the beginning of the unrest. A model combining the geometry of the magma injection process and the variations in seismic energy released has allowed successful forecasting of the new-vent opening. The model presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself.

  14. Analysis of the Seismicity Associated to the Subduction of the Rivera Plate using OBS and Onland Stations.

    NASA Astrophysics Data System (ADS)

    Nuñez-Cornu, F. J.; Barba, D. C., Sr.; Danobeitia, J.; Bandy, W. L.; Zamora-Camacho, A.; Marquez-Ramirez, V. H.; Ambros, M.; Gomez, A.; Sandoval, J. M.; Mortera-Gutierrez, C. A.

    2016-12-01

    The second stage of TsuJal Project includes the study of passive seismic activity in the region of the plate Rivera and Jalisco block by anchoring OBS and densifying the network of seismic stations on land for at least four months. This stage began in April 2016 with the deployment of 25 Obsidian stations with sensor Le-3D MkIII from the northern part of Nayarit state to the south of Colima state, including the Marias Islands. This temporal seismic network complements the Jalisco Seismic Network (RESAJ) for a total of 50 stations. Offshore, ten OBS type LCHEAPO 2000 with 4 channel (3 seismic short period and 1 pressure) were deployed, in the period from 19 to 30 April 2016 using the BO El Puma from UNAM. The OBS were deployed in an array from the Marias Islands to offcoast of the border of Colima and Michoacan states. On May 4, an earthquake with Ml = 4.2 took place in the contact area of the Rivera Plate, Cocos Plate and the Middle America Trench, subsequently occurred a seismic swarm with over 200 earthquakes until May 16, including an earthquake with Ml = 5.0 on May 7. A second swarm took place between May 28 and Jun 4 including an earthquake with Ml = 4.8 on Jun 1. An analysis of the quality of different location methods is presented: automatic preliminary RESAJ location using Antelope; location with revised RESAJ phases in Antelope; relocation of RESAJ data with hypo and a regional velocity model; relocation of RESAJ data with hypo adding data from the temporal seismic network stations; and finally the relocation adding the data from the OBS network. Moreover, the tectonic implications of these earthquakes are discussed.

  15. Viscoelasticity of multiphase fluids: future directions

    NASA Astrophysics Data System (ADS)

    Tisato, Nicola; Spikes, Kyle; Javadpour, Farzam

    2016-04-01

    Recently, it has been demonstrated that rocks saturated with bubbly fluids attenuate seismic waves as the propagating elastic wave causes a thermodynamic disequilibrium between the liquid and the gas phases. The new attenuation mechanism, which is called wave-induced-gas-exsolution-dissolution (WIGED) and previously, was only postulated, opens up new perspectives for exploration geophysics as it could potentially improve the imaging of the subsurface. In particular, accounting for WIGED during seismic inversion could allow to better decipher seismic waves to disclose information about saturating phases. This will improve, for instance, the mapping of subsurface gas-plumes that might form during anthropogenic activities or natural phenomena such as those prior to volcanic eruptions. In the present contribution we will report the theory and the numerical method utilized to calculate the seismic-wave-attenuation related to WIGED and we will underline the assumptions and the limitations related to the theory. Then, we will present the experimental and the numerical strategy that we will employ to improve WIGED theory in order to incorporate additional effects, such as the role of interfacial tensions, or to extend it to fluid-fluid interaction

  16. Preliminary results of local earthquake tomography around Bali, Lombok, and Sumbawa regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id; Puspito, Nanang T; Yudistira, Tedi

    Bali, Sumbawa, and Lombok regions are located in active tectonic influence by Indo-Australia plate subducts beneath Sunda plate in southern part and local back-arc thrust in northern part the region. Some active volcanoes also lie from eastern part of Java, Bali, Lombok and Sumbawa regions. Previous studies have conducted subsurface seismic velocity imaging using regional and global earthquake data around the region. In this study, we used P-arrival time from local earthquake networks compiled by MCGA, Indonesia within time periods of 2009 up to 2013 to determine seismic velocity structure and simultaneously hypocenter adjustment by applying seismic tomography inversion method.more » For the tomographic inversion procedure, we started from 1-D initial velocity structure. We evaluated the resolution of tomography inversion results through checkerboard test and calculating derivative weigh sum. The preliminary results of tomography inversion show fairly clearly high seismic velocity subducting Indo-Australian and low velocity anomaly around volcano regions. The relocated hypocenters seem to cluster around the local fault system such as back-arc thrust fault in northern part of the region and around local fault in Sumbawa regions. Our local earthquake tomography results demonstrated consistent with previous studies and improved the resolution. For future works, we will determine S-wave velocity structure using S-wave arrival time to enhance our understanding of geological processes and for much better interpretation.« less

  17. Preliminary results of local earthquake tomography around Bali, Lombok, and Sumbawa regions

    NASA Astrophysics Data System (ADS)

    Nugraha, Andri Dian; Kusnandar, Ridwan; Puspito, Nanang T.; Sakti, Artadi Pria; Yudistira, Tedi

    2015-04-01

    Bali, Sumbawa, and Lombok regions are located in active tectonic influence by Indo-Australia plate subducts beneath Sunda plate in southern part and local back-arc thrust in northern part the region. Some active volcanoes also lie from eastern part of Java, Bali, Lombok and Sumbawa regions. Previous studies have conducted subsurface seismic velocity imaging using regional and global earthquake data around the region. In this study, we used P-arrival time from local earthquake networks compiled by MCGA, Indonesia within time periods of 2009 up to 2013 to determine seismic velocity structure and simultaneously hypocenter adjustment by applying seismic tomography inversion method. For the tomographic inversion procedure, we started from 1-D initial velocity structure. We evaluated the resolution of tomography inversion results through checkerboard test and calculating derivative weigh sum. The preliminary results of tomography inversion show fairly clearly high seismic velocity subducting Indo-Australian and low velocity anomaly around volcano regions. The relocated hypocenters seem to cluster around the local fault system such as back-arc thrust fault in northern part of the region and around local fault in Sumbawa regions. Our local earthquake tomography results demonstrated consistent with previous studies and improved the resolution. For future works, we will determine S-wave velocity structure using S-wave arrival time to enhance our understanding of geological processes and for much better interpretation.

  18. The availability of hydrogeologic data associated with areas identified by the US Geological Survey as experiencing potentially induced seismicity resulting from subsurface injection

    NASA Astrophysics Data System (ADS)

    Barnes, Caitlin; Halihan, Todd

    2018-05-01

    A critical need exists for site-specific hydrogeologic data in order to determine potential hazards of induced seismicity and to manage risk. By 2015, the United States Geological Survey (USGS) had identified 17 locations in the USA that are experiencing an increase in seismicity, which may be potentially induced through industrial subsurface injection. These locations span across seven states, which vary in geological setting, industrial exposure and seismic history. Comparing the research across the 17 locations revealed patterns for addressing induced seismicity concerns, despite the differences between geographical locations. Most induced seismicity studies evaluate geologic structure and seismic data from areas experiencing changes in seismic activity levels, but the inherent triggering mechanism is the transmission of hydraulic pressure pulses. This research conducted a systematic review of whether data are available in these locations to generate accurate hydrogeologic predictions, which could aid in managing seismicity. After analyzing peer-reviewed research within the 17 locations, this research confirms a lack of site-specific hydrogeologic data availability for at-risk areas. Commonly, formation geology data are available for these sites, but hydraulic parameters for the seismically active injection and basement zones are not available to researchers conducting peer-reviewed research. Obtaining hydrogeologic data would lead to better risk management for injection areas and provide additional scientific evidential support for determining a potentially induced seismic area.

  19. Geophysic data interperetation of Passo della Morte landslide: Eastern Italian Alps

    NASA Astrophysics Data System (ADS)

    Zoppe', G.; Costa, G.; Marcato, G.; Forte, E.

    2012-04-01

    The Passo della Morte block-slide covers a relative large area in the Carnic Alps, along the left side of the Tagliamento River, between Forni di Sotto and Ampezzo (N-E of Italy). The high seismicity and the presence of the landslide increase the risk associated to the interest area. Moreover the large volume of material involved in the landslide (a few million of cubic meters), the presence of important infrastructure such as the road and two tunnels which cross the landslide, as well as the presence of the Tagliamento River that flow at the foot of the landslide, make the area very vulnerable. This study concerns with the western part of the Deep Seated Gravitational Slope Deformation (DSGSD). It focuses on the potential instability of a rock slope (crossed by road tunnels) and its connection with the DSGSD activity. The main objectives of this study are: monitoring the rock mass movement, studying the seismic site effect and defining the stratigraphic and geological characteristics of involved materials. Two vibration sensors have been installed inside the potential landslide: a short-period seismometer and a piezoelectric transducer. The microseismic activity recorded by the sensors has been analyzed, with particular regard to periods characterized by rapid changes in recorded seismic signals, and then correlated with the precipitation trend to evaluate the existence of a possible correlation between these phenomena. The microseismic activity study has highlighted the existence of a close link between microseisms and acoustic emissions recorded respectively by the seismometer and by the piezoelectric transducer. In addition, the comparison with the rainfall pattern has shown a direct relationship between different rainfall events and the sharp increase of microseismic activity detected by the two instruments. The correlation is good, even if acoustic emissions appear to be more sensitive than microseisms to short duration and low intensity rainfall events. The seismic site effects and the directivity in seismic site response of the rock mass have been investigated through the use of Nakamura (1989) method. In particular have been estimated the resonance frequencies and the polarization directions of seismic energy in three selected sites. All sites have shown a clear evidence of polarization in the direction of N/NW-S/SE and E/NE-W/SW, compatible with the maximum slope inclination and with the limestone stratification direction outcropping in this area. In order to define the stratigraphic and geological characteristics of the materials involved, have been performed a GPR investigation and an active seismic survey. The first has been useful to identify vertical and horizontal variations of the lithotypes present, most associated with different degrees of rock fracturing and fluid content. The seismic investigation has permitted to identify a reflective layer and to determine the propagation velocity of compression and shear waves of the two layers found.

  20. Volcano seismology

    USGS Publications Warehouse

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic regimes and determining their physical and chemical properties; and (3) quantitatively understanding multiphase fluid flow behavior under dynamic volcanic conditions. To realize these goals, not only must we learn how to translate seismic observations into quantitative information about fluid dynamics, but we also must determine the underlying physics that governs vesiculation, fragmentation, and the collapse of bubble-rich suspensions to form separate melt and vapor. Refined understanding of such processes-essential for quantitative short-term eruption forecasts-will require multidisciplinary research involving detailed field measurements, laboratory experiments, and numerical modeling.

  1. Earthquake disaster mitigation of Lembang Fault West Java with electromagnetic method

    NASA Astrophysics Data System (ADS)

    Widodo

    2015-04-01

    The Lembang fault is located around eight kilometers from Bandung City, West Java, Indonesia. The existence of this fault runs through densely populated settlement and tourism area. It is an active fault structure with increasing seismic activity where the 28 August 2011 earthquake occurred. The seismic response at the site is strongly influenced by local geological conditions. The ambient noise measurements from the western part of this fault give strong implication for a complex 3-D tectonic setting. Hence, near surface Electromagnetic (EM) measurements are carried out to understand the location of the local active fault of the research area. Hence, near surface EM measurements are carried out to understand the location of the local active fault and the top of the basement structure of the research area. The Transientelectromagnetic (TEM) measurements are carried out along three profiles, which include 35 TEM soundings. The results indicate that TEM data give detailed conductivity distribution of fault structure in the study area.

  2. Earthquake disaster mitigation of Lembang Fault West Java with electromagnetic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widodo, E-mail: widodo@gf.itb.ac.id

    The Lembang fault is located around eight kilometers from Bandung City, West Java, Indonesia. The existence of this fault runs through densely populated settlement and tourism area. It is an active fault structure with increasing seismic activity where the 28 August 2011 earthquake occurred. The seismic response at the site is strongly influenced by local geological conditions. The ambient noise measurements from the western part of this fault give strong implication for a complex 3-D tectonic setting. Hence, near surface Electromagnetic (EM) measurements are carried out to understand the location of the local active fault of the research area. Hence,more » near surface EM measurements are carried out to understand the location of the local active fault and the top of the basement structure of the research area. The Transientelectromagnetic (TEM) measurements are carried out along three profiles, which include 35 TEM soundings. The results indicate that TEM data give detailed conductivity distribution of fault structure in the study area.« less

  3. Seismogenic faulting in the Meruoca granite, NE Brazil, consistent with a local weak fracture zone.

    PubMed

    Moura, Ana Catarina A; De Oliveira, Paulo H S; Ferreira, Joaquim M; Bezerra, Francisco H R; Fuck, Reinhardt A; Do Nascimento, Aderson F

    2014-12-01

    A sequence of earthquakes occurred in 2008 in the Meruoca granitic pluton, located in the northwestern part of the Borborema Province, NE Brazil. A seismological study defined the seismic activity occurring along the seismically-defined Riacho Fundo fault, a 081° striking, 8 km deep structure. The objective of this study was to analyze the correlation between this seismic activity and geological structures in the Meruoca granite. We carried out geological mapping in the epicentral area, analyzed the mineralogy of fault rocks, and compared the seismically-defined Riacho Fundo fault with geological data. We concluded that the seismically-defined fault coincides with ∼E-W-striking faults observed at outcrop scale and a swarm of Mesozoic basalt dikes. We propose that seismicity reactivated brittle structures in the Meruoca granite. Our study highlights the importance of geological mapping and mineralogical analysis in order to establish the relationships between geological structures and seismicity at a given area.

  4. Seismogenic faulting in the Meruoca granite, NE Brazil, consistent with a local weak fracture zone.

    PubMed

    Moura, Ana Catarina A; Oliveira, Paulo H S DE; Ferreira, Joaquim M; Bezerra, Francisco H R; Fuck, Reinhardt A; Nascimento, Aderson F DO

    2014-10-24

    A sequence of earthquakes occurred in 2008 in the Meruoca granitic pluton, located in the northwestern part of the Borborema Province, NE Brazil. A seismological study defined the seismic activity occurring along the seismically-defined Riacho Fundo fault, a 081° striking, 8 km deep structure. The objective of this study was to analyze the correlation between this seismic activity and geological structures in the Meruoca granite. We carried out geological mapping in the epicentral area, analyzed the mineralogy of fault rocks, and compared the seismically-defined Riacho Fundo fault with geological data. We concluded that the seismically-defined fault coincides with ∼E-W-striking faults observed at outcrop scale and a swarm of Mesozoic basalt dikes. We propose that seismicity reactivated brittle structures in the Meruoca granite. Our study highlights the importance of geological mapping and mineralogical analysis in order to establish the relationships between geological structures and seismicity at a given area.

  5. Seismic Hazard Assessment at Esfaraen‒Bojnurd Railway, North‒East of Iran

    NASA Astrophysics Data System (ADS)

    Haerifard, S.; Jarahi, H.; Pourkermani, M.; Almasian, M.

    2018-01-01

    The objective of this study is to evaluate the seismic hazard at the Esfarayen-Bojnurd railway using the probabilistic seismic hazard assessment (PSHA) method. This method was carried out based on a recent data set to take into account the historic seismicity and updated instrumental seismicity. A homogenous earthquake catalogue was compiled and a proposed seismic sources model was presented. Attenuation equations that recently recommended by experts and developed based upon earthquake data obtained from tectonic environments similar to those in and around the studied area were weighted and used for assessment of seismic hazard in the frame of logic tree approach. Considering a grid of 1.2 × 1.2 km covering the study area, ground acceleration for every node was calculated. Hazard maps at bedrock conditions were produced for peak ground acceleration, in addition to return periods of 74, 475 and 2475 years.

  6. Dominant seismic sources for the cities in South Sumatra

    NASA Astrophysics Data System (ADS)

    Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya

    2017-07-01

    Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.

  7. Multi-2D seismic imaging of the Solfatara crater (Campi Flegrei Caldera, southern Italy) from active seismic data

    NASA Astrophysics Data System (ADS)

    Gammaldi, S.; Amoroso, O.; D'Auria, L.; Zollo, A.

    2017-12-01

    Campi Flegrei is an active caldera characterized by secular, periodic episodes of spatially extended, low-rate ground deformation (bradyseism) accompanied by an intense seismic and geothermal activity. Its inner crater Solfatara is characterized by diffuse surface degassing and continuous fumarole activity. This points out the relevance of fluid and heat transport from depth and prompts for further research to improve the understanding of the hydrothermal system feeding processes and fluid migration to the surface. The experiment Repeated Induced Earthquake and Noise (RICEN) (EU Project MEDSUV), was carried out between September 2013 and November 2014 to investigate the space and time varying properties of the subsoil beneath the crater. The processed dataset consists of records from two 1D orthogonal seismic arrays deployed along WNW-ESE and NNE-SSW directions crossing the 400 m crater surface. To highlight the first P-wave arrivals a bandpass filter and an AGC were applied which allowed the detection of 17894 manually picked arrival times. Starting from a 1D velocity model, we performed a 2D non-linear Bayesian estimation. The method consists in retrieving the velocity model searching for the maximum of the "a posteriori" probability density function. The optimization is performed by the sequential use of the Genetic Algorithm and the Simplex methods. The retrieved images provide evidence for a very low P-velocity layer (Vp<500 m/s) associated with quaternary deposits, a low velocity (Vp=500-1500 m/s) water saturated deep layer at West, contrasted by a high velocity (Vp=2000-3200 m/s) layer correlated with a consolidated tephra deposit. The transition velocity range (from 1500 to 2000 m/s) suggests the possible presence of a gas-rich, accumulation volume. Based on the surface evidence of the gas released by the Bocca Grande and Bocca Nuova fumaroles at the Eastern border of Solfatara and the presence of the central deeper plume, we infer a detailed image for the gas migration via. The multi-2D tomographic images provide the evidence for a fault zone situated in the central part of the crater which seems to represent the main buried conduit for the degassing.

  8. State-coupled low-temperature geothermal-resource-assessment program, Fiscal Year 1980. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Icerman, L.; Starkey, A.; Trentman, N.

    1981-08-01

    Magnetic, gravity, seismic-refraction, and seismic-reflection profiles across the Las Alturas Geothermal Anomaly, New Mexico, are presented. Studies in the Socorro area include the following: seismic measurements of the tertiary fill in the Rio Grande Depression west of Socorro, geothermal data availability for computer simulation in the Socorro Peak KGRA, and ground water circulation in the Socorro Geothermal Area. Regional geothermal exploration in the Truth or Consequences Area includes: geological mapping of the Mud Springs Mountains, hydrogeology of the thermal aquifer, and electrical-resistivity investigation of the geothermal potential. Other studies included are: geothermal exploration with electrical methods near Vado, Chamberino, andmore » Mesquite; a heat-flow study of Dona Ana County; preliminary heat-flow assessment of Southeast Luna County; active fault analysis and radiometric dating of young basalts in southern New Mexico; and evaluation of the geothermal potential of the San Juan Basin in northwestern New Mexico.« less

  9. Spatiotemporal evolution of the completeness magnitude of the Icelandic earthquake catalogue from 1991 to 2013

    NASA Astrophysics Data System (ADS)

    Panzera, Francesco; Mignan, Arnaud; Vogfjörð, Kristin S.

    2017-07-01

    In 1991, a digital seismic monitoring network was installed in Iceland with a digital seismic system and automatic operation. After 20 years of operation, we explore for the first time its nationwide performance by analysing the spatiotemporal variations of the completeness magnitude. We use the Bayesian magnitude of completeness (BMC) method that combines local completeness magnitude observations with prior information based on the density of seismic stations. Additionally, we test the impact of earthquake location uncertainties on the BMC results, by filtering the catalogue using a multivariate analysis that identifies outliers in the hypocentre error distribution. We find that the entire North-to-South active rift zone shows a relatively low magnitude of completeness Mc in the range 0.5-1.0, highlighting the ability of the Icelandic network to detect small earthquakes. This work also demonstrates the influence of earthquake location uncertainties on the spatiotemporal magnitude of completeness analysis.

  10. Site Amplification Characteristics of the Several Seismic Stations at Jeju Island, in Korea, using S-wave Energy, Background Noise, and Coda waves from the East Japan earthquake (Mar. 11th, 2011) Series.

    NASA Astrophysics Data System (ADS)

    Seong-hwa, Y.; Wee, S.; Kim, J.

    2016-12-01

    Observed ground motions are composed of 3 main factors such as seismic source, seismic wave attenuation and site amplification. Among them, site amplification is also important factor and should be considered to estimate soil-structure dynamic interaction with more reliability. Though various estimation methods are suggested, this study used the method by Castro et. al.(1997) for estimating site amplification. This method has been extended to background noise, coda waves and S waves recently for estimating site amplification. This study applied the Castro et. al.(1997)'s method to 3 different seismic waves, that is, S-wave Energy, Background Noise, and Coda waves. This study analysed much more than about 200 ground motions (acceleration type) from the East Japan earthquake (March 11th, 2011) Series of seismic stations at Jeju Island (JJU, SGP, HALB, SSP and GOS; Fig. 1), in Korea. The results showed that most of the seismic stations gave similar results among three types of seismic energies. Each station showed its own characteristics of site amplification property in low, high and specific resonance frequency ranges. Comparison of this study to other studies can give us much information about dynamic amplification of domestic sites characteristics and site classification.

  11. Results of seismological monitoring in the Cascade Range 1962-1989: earthquakes, eruptions, avalanches and other curiosities

    USGS Publications Warehouse

    Weaver, C.S.; Norris, R.D.; Jonientz-Trisler, C.

    1990-01-01

    Modern monitoring of seismic activity at Cascade Range volcanoes began at Longmire on Mount Rainier in 1958. Since then, there has been an expansion of the regional seismic networks in Washington, northern Oregon and northern California. Now, the Cascade Range from Lassen Peak to Mount Shasta in the south and Newberry Volcano to Mount Baker in the north is being monitored for earthquakes as small as magnitude 2.0, and many of the stratovolcanoes are monitored for non-earthquake seismic activity. This monitoring has yielded three major observations. First, tectonic earthquakes are concentrated in two segments of the Cascade Range between Mount Rainier and Mount Hood and between Mount Shasta and Lassen Peak, whereas little seismicity occurs between Mount Hood and Mount Shasta. Second, the volcanic activity and associated phenomena at Mount St. Helens have produced intense and widely varied seismicity. And third, at the northern stratovolcanoes, signals generated by surficial events such as debris flows, icequakes, steam emissions, rockfalls and icefalls are seismically recorded. Such records have been used to alert authorities of dangerous events in progress. -Authors

  12. Retrospective application of the "guidelines for monitoring mining subsurface activities for hydrocarbons exploitation, re-injection and storage activities (ILG)": insights from the analysis of 2012-2013 Emilia seismic sequence at the Cavone oilfield pilot site (Italy)

    NASA Astrophysics Data System (ADS)

    Buttinelli, M.; Chiarabba, C.; Anselmi, M.; Pezzo, G.; Improta, L.; Antoncecchi, I.

    2017-12-01

    In recent years, the debate on the interactions between wastewater disposal and induced seismicity is increasingly drawing the attention of the scientific community, since injections by high-rate wells have been directly associated to occurrence of even large seismic events. In February 2014, the Italian Ministry of Economic Development (MiSE), within the Commission on Hydrocarbon and Mining Resources (CIRM), issued the "guidelines for monitoring mining subsurface activities for hydrocarbons exploitation, re-injection and storage activities (ILG)". The ILG represent the first action in italy aimed at keeping the safety standards mostly in areas where the underground resources exploitation can induce seismicity, ground deformations and pore pressure changes of the reservoirs. Such guidelines also launched a "traffic light" operating system, for the first time defining threshold values and activation levels for such monitored parameters. To test the ILG implications (in particular of the traffic light system) we select the Cavone oilfield (Northern Italy) as test case, since this area was interested during the 2012-2013 by the Emilia Seismic sequence. Moreover, the potential influence of the Cavone oilfield activities in the 2012 earthquake trigger was debated for a long time within the scientific and not contexts, highlighting the importance of seismic monitoring in hydrocarbons exploitation, re-injection and storage areas. In this work we apply the ILG retrospectively to the Cavone oilfield and surrounding areas, just for the seismicity parameter (pore pressure and ground deformation were not taken into account because out of the traffic light system). Since each seismicity catalogue available for the 2012 sequence represents a different setting of monitoring system, we carefully analyzed how the use of such catalogues impact on the overcoming of the threshold imposed by the ILG. In particular, we focus on the use of 1D and 3D velocity models developed ad hoc or not for the investigated area. Results show that different approaches strongly affect the location of seismic event, therefore generating proper or un-proper warnings applying the traffic light system. Our analysis also highlighted the importance of accounting for local geological complexity in the seismicity location strategy.

  13. Temporal evolution of fault systems in the Upper Jurassic of the Central German Molasse Basin: case study Unterhaching

    NASA Astrophysics Data System (ADS)

    Budach, Ingmar; Moeck, Inga; Lüschen, Ewald; Wolfgramm, Markus

    2018-03-01

    The structural evolution of faults in foreland basins is linked to a complex basin history ranging from extension to contraction and inversion tectonics. Faults in the Upper Jurassic of the German Molasse Basin, a Cenozoic Alpine foreland basin, play a significant role for geothermal exploration and are therefore imaged, interpreted and studied by 3D seismic reflection data. Beyond this applied aspect, the analysis of these seismic data help to better understand the temporal evolution of faults and respective stress fields. In 2009, a 27 km2 3D seismic reflection survey was conducted around the Unterhaching Gt 2 well, south of Munich. The main focus of this study is an in-depth analysis of a prominent v-shaped fault block structure located at the center of the 3D seismic survey. Two methods were used to study the periodic fault activity and its relative age of the detected faults: (1) horizon flattening and (2) analysis of incremental fault throws. Slip and dilation tendency analyses were conducted afterwards to determine the stresses resolved on the faults in the current stress field. Two possible kinematic models explain the structural evolution: One model assumes a left-lateral strike slip fault in a transpressional regime resulting in a positive flower structure. The other model incorporates crossing conjugate normal faults within a transtensional regime. The interpreted successive fault formation prefers the latter model. The episodic fault activity may enhance fault zone permeability hence reservoir productivity implying that the analysis of periodically active faults represents an important part in successfully targeting geothermal wells.

  14. Aspects of Non-Newtonian Viscoelastic Deformation Produced by Slip on a Major Strike- slip Fault

    NASA Astrophysics Data System (ADS)

    Postek, E. W.; Houseman, G. A.; Jimack, P. K.

    2008-12-01

    Non-Newtonian flow occurs in crustal deformation processes on the long timescales associated with large- scale continental deformation, and also on the short time-scales associated with post-seismic deformation. The co-seismic displacement is determined by the instantaneous elastic response of the rocks on either side of the fault surface to the distribution of slip on the surface of the fault. The post-seismic deformation is determined by some combination of visco-elastic relaxation of the medium and post-seismic creep on the fault. The response of the crust may depend on elastic moduli, Poisson's ratio, temperature, pressure and creep function parameters including stress exponent, activation energy, activation volume and viscosity coefficient. We use the von Mises function in describing the non-linear Maxwell visco-elastic creep models. In this study we examine a model of a strike-slip fault crossing a 3D block. The fault slips at time zero, and we solve for the viscoelastic deformation field throughout the 3D volume using a 3D finite element method. We perform parametric studies on the constitutive equation by varying these parameters and the depth of the fault event. Our findings are focused on the fact that the system is very sensitive to the above mentioned parameters. In particular, the most important seems to be the temperature profiles and stress exponent. The activation energy and the pressure are of lower importance, however, they have their meaning. We investigated the relaxation times and the deformation patterns. We took the material properties as typical to dry quartzite and diabase. Depending on the parameters the surface can be deformed permanently or the deformation can decrease. We attempt to compare qualitatively the calculated post-seismic response in terms of the post-seismic displacement history of the earth's surface with InSAR patterns determined from recent major strike-slip earthquakes. Quantitative comparison of the observations with these numerical model results can in principle provide a better understanding of the physical properties of the sub-surface and further insight into the diagnostic properties of the earthquake cycles of major fault systems.

  15. Seismic Characterization of the Blue Mountain Geothermal Site

    NASA Astrophysics Data System (ADS)

    Templeton, D. C.; Matzel, E.; Cladouhos, T. T.

    2017-12-01

    All fluid injection activities have the potential to induce earthquakes by modifying the state of stress in the subsurface. In geothermal areas, small microearthquakes can be a beneficial outcome of these stress perturbations by providing direct subsurface information that can be used to better understand and manage the underground reservoir. These events can delineate the active portions of the subsurface that have slipped in response to pore fluid pressure changes or temperature changes during and after fluid injection. Here we investigate the seismic activity within the Blue Mountain Geothermal Power Plant located in Humboldt County, Nevada between December 2015 to May 2016. We compare the effectiveness of direct spatial-temporal cross-correlation templates with Matched Field Processing (MFP) derived templates and compare these results with earthquake detection results from a traditional STA/LTA algorithm. Preliminary results show significant clustering of microearthquakes, most probably influenced by plant operations. The significant increase in data availability that advanced earthquake detection methods can provide improves the statistical analyses of induced seismicity sequences, reveal critical information about the ongoing evolution of the subsurface reservoir, and better informs the construction of models for hazard assessments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Setting the baseline before geothermal exploration begins: the search of microseismic activity in the Geneva Basin, Western Switzerland

    NASA Astrophysics Data System (ADS)

    Antunes, Verónica; Lupi, Matteo; Carrier, Aurore; Planès, Thomas; Martin, François

    2017-04-01

    Switzerland is moving towards the development of renewable energies. Following this trend, SIG (Services Industriels de Genève) and the Canton of Geneva is investing in the exploration of geothermal energy. Before the exploration takes place it is crucial to understand the rate of seismic activity in the region and its relationship with the existing faults. Historical and instrumental times suggest the presence of active faults in the region but to date little is known about the seismic activity in the Geneva Basin. Tectonic maps show the presence of major faults crossing the basin and recent seismic events indicate that such systems are still active on a regional scale. However, available data indicate infrequent and dispersed activity. This can be partially due to the small number of permanent stations in the area. To understand where micro-seismic activity may be located around and within the Geneva Basin we have deployed a temporary network composed of 20 broadband stations. With the densification of the network it could be possible to capture and localise small magnitude seismic events (i.e. M less than 1). Here we present the preliminary results obtained during the first months of the temporary network deployment.

  17. A comparison of methods to estimate seismic phase delays--Numerical examples for coda wave interferometry

    USGS Publications Warehouse

    Mikesell, T. Dylan; Malcolm, Alison E.; Yang, Di; Haney, Matthew M.

    2015-01-01

    Time-shift estimation between arrivals in two seismic traces before and after a velocity perturbation is a crucial step in many seismic methods. The accuracy of the estimated velocity perturbation location and amplitude depend on this time shift. Windowed cross correlation and trace stretching are two techniques commonly used to estimate local time shifts in seismic signals. In the work presented here, we implement Dynamic Time Warping (DTW) to estimate the warping function – a vector of local time shifts that globally minimizes the misfit between two seismic traces. We illustrate the differences of all three methods compared to one another using acoustic numerical experiments. We show that DTW is comparable to or better than the other two methods when the velocity perturbation is homogeneous and the signal-to-noise ratio is high. When the signal-to-noise ratio is low, we find that DTW and windowed cross correlation are more accurate than the stretching method. Finally, we show that the DTW algorithm has better time resolution when identifying small differences in the seismic traces for a model with an isolated velocity perturbation. These results impact current methods that utilize not only time shifts between (multiply) scattered waves, but also amplitude and decoherence measurements. DTW is a new tool that may find new applications in seismology and other geophysical methods (e.g., as a waveform inversion misfit function).

  18. [Earthquakes--a historical review, environmental and health effects, and health care measures].

    PubMed

    Nola, Iskra Alexandra; Doko Jelinić, Jagoda; Žuškin, Eugenija; Kratohvil, Mladen

    2013-06-01

    Earthquakes are natural disasters that can occur at any time, regardless of the location. Their frequency is higher in the Circum-Pacific and Mediterranean/Trans-Asian seismic belt. A number of sophisticated methods define their magnitude using the Richter scale and intensity using the Mercani-Cancani-Sieberg scale. Recorded data show a number of devastating earthquakes that have killed many people and changed the environment dramatically. Croatia is located in a seismically active area, which has endured a series of historical earthquakes, among which several occurred in the Zagreb area. The consequences of an earthquake depend mostly on the population density and seismic resistance of buildings in the affected area. Environmental consequences often include air, water, and soil pollution. The effects of this kind of pollution can have long-term health effects. The most dramatic health consequences result from the demolition of buildings. Therefore, quick and efficient aid depends on well-organized health professionals as well as on the readiness of the civil defence, fire department, and Mountain Rescue Service members. Good coordination among these services can save many lives Public health interventions must include effective control measures in the environment as secondary prevention methods for health problems caused by unfavourable environmental factors. The identification and control of long-term hazards can reduce chronic health effects. The reduction of earthquake-induced damages includes setting priorities in building seismically safe buildings.

  19. Intensity Based Seismic Hazard Map of Republic of Macedonia

    NASA Astrophysics Data System (ADS)

    Dojcinovski, Dragi; Dimiskovska, Biserka; Stojmanovska, Marta

    2016-04-01

    The territory of the Republic of Macedonia and the border terrains are among the most seismically active parts of the Balkan Peninsula belonging to the Mediterranean-Trans-Asian seismic belt. The seismological data on the R. Macedonia from the past 16 centuries point to occurrence of very strong catastrophic earthquakes. The hypocenters of the occurred earthquakes are located above the Mohorovicic discontinuity, most frequently, at a depth of 10-20 km. Accurate short -term prognosis of earthquake occurrence, i.e., simultaneous prognosis of time, place and intensity of their occurrence is still not possible. The present methods of seismic zoning have advanced to such an extent that it is with a great probability that they enable efficient protection against earthquake effects. The seismic hazard maps of the Republic of Macedonia are the result of analysis and synthesis of data from seismological, seismotectonic and other corresponding investigations necessary for definition of the expected level of seismic hazard for certain time periods. These should be amended, from time to time, with new data and scientific knowledge. The elaboration of this map does not completely solve all issues related to earthquakes, but it provides basic empirical data necessary for updating the existing regulations for construction of engineering structures in seismically active areas regulated by legal regulations and technical norms whose constituent part is the seismic hazard map. The map has been elaborated based on complex seismological and geophysical investigations of the considered area and synthesis of the results from these investigations. There were two phases of elaboration of the map. In the first phase, the map of focal zones characterized by maximum magnitudes of possible earthquakes has been elaborated. In the second phase, the intensities of expected earthquakes have been computed according to the MCS scale. The map is prognostic, i.e., it provides assessment of the probability for occurrence of future earthquakes with a defined area distribution of their seismic intensity, depending on the natural characteristics of the terrain. The period of 10.000 years represents the greatest expected seismic threat for the considered area. From the aspect of low-cost construction, it is also necessary to know the seismicity in shorter time periods, as well. Therefore, maps for return time periods of 50, 100, 200, 500 and 1000 years have also been elaborated. The maps show a probability of 63% for occurrence of expected earthquakes with maximum intensities expressed on the MCS scale. The map has been elaborated to the scale of 1: 1.000.000, while the obtained isolines of seismic intensity are drawn with an error of  5 km. The seismic hazard map of R. Macedonia is used for: • The needs of the Rulebook on Technical Norms on Construction of Structures in Seismic Areas and for the needs of physical and urban planning and design. • While defining the seismic design parameters for construction of structures in zones with intensity of I  VII degrees MSK, investigations should be done for detailed seismic zoning and microzoning of the terrain of these zones in compliance with the technical regulations for construction in seismically prone areas. • The areas on the map indicated by intensity X MCS are not regulated by the valid regulations. Therefore, in practice, these should be treated as such in which it is not possible to construct any structures without previous surveys. • Revision of this map is done at a five year period, i.e., after each occurred earthquake whose parameters are such that require modifications and amendments of the map.

  20. Seismic Amplitude Ratio Analysis of the 2014-2015 Bár∂arbunga-Holuhraun Dike Propagation and Eruption

    NASA Astrophysics Data System (ADS)

    Caudron, Corentin; White, Robert S.; Green, Robert G.; Woods, Jennifer; Ágústsdóttir, Thorbjörg; Donaldson, Clare; Greenfield, Tim; Rivalta, Eleonora; Brandsdóttir, Bryndís.

    2018-01-01

    Magma is transported in brittle rock through dikes and sills. This movement may be accompanied by the release of seismic energy that can be tracked from the Earth's surface. Locating dikes and deciphering their dynamics is therefore of prime importance in understanding and potentially forecasting volcanic eruptions. The Seismic Amplitude Ratio Analysis (SARA) method aims to track melt propagation using the amplitudes recorded across a seismic network without picking the arrival times of individual earthquake phases. This study validates this methodology by comparing SARA locations (filtered between 2 and 16 Hz) with the earthquake locations (same frequency band) recorded during the 2014-2015 Bár∂arbunga-Holuhraun dike intrusion and eruption in Iceland. Integrating both approaches also provides the opportunity to investigate the spatiotemporal characteristics of magma migration during the dike intrusion and ensuing eruption. During the intrusion SARA locations correspond remarkably well to the locations of earthquakes. Several exceptions are, however, observed. (1) A low-frequency signal was possibly associated with a subglacial eruption on 23 August. (2) A systematic retreat of the seismicity was also observed to the back of each active segment during stalled phases and was associated with a larger spatial extent of the seismic energy source. This behavior may be controlled by the dike's shape and/or by dike inflation. (3) During the eruption SARA locations consistently focused at the eruptive site. (4) Tremor-rich signal close to ice cauldrons occurred on 3 September. This study demonstrates the power of the SARA methodology, provided robust site amplification; Quality Factors and seismic velocities are available.

  1. A seismic hazard overview of the Mitidja Basin (Northern Algeria)

    NASA Astrophysics Data System (ADS)

    Fontiela, J. F.; Borges, J.; Ouyed, M.; Bezzeghoud, M.; Idres, M.; Caldeira, B.; Boughacha, M. S.; Carvalho, J.; Samai, S.; Aissa, S.; Benfadda, A.; Chimouni, R.; Yalaoui, R.; Dias, R.

    2017-12-01

    The Mitidja Basin (MB) is located in N Algeria and it is filled by quaternary sediments with a length of 100 km on the EW direction and around 20 km width. The S and N limites comprise the Boumerdes-Larbaa-Blida, and the Thenia-Sahel active fault system, respectively. Both fault systems are of the reverse type with opposed dips and accommodate a general slip rate of ˜4 mm/year. In the basin occurred earthquakes that caused severe damage and losses such as the ones of Algiers (1365, Io=X; 1716, Io=X) and the Bourmedes earthquake (Mw 6.9; May 2003) that affected the area of Zemmouri and caused 2.271 deaths. The event was caused by the reactivation of the MB boundary faults. The earthquake generated a max uplift of 0.8m along the coast and a horizontal max. slip of 0.24m.Recent studies show that the Boumerdes earthquake overloaded the adjacent faults system with a stress increase between 0.4 and 1.5 bar. The stress change recommends a detailed study of mentioned faults system due to the increase of the seismic hazard. The high seismogenic potential of the fault system bordering the MB, increases the vulnerability of densely populated areas of Algiers and the amplification effect caused by the basin are the motivation of this project that will focus on the evaluation of the seismic hazard of the region. To achieve seismic hazard assessment on the MB, through realistic predictions of strong ground motion, caused by moderate and large earthquakes, it is important 1) develop a detailed 3D velocity/structure model of the MB that includes geological constraints, seismic reflection data acquired on wells, refraction velocities and seismic noise data, and determination of the attenuation laws based on instrumental records; 2) evaluate the seismic potential and parameters of the main active faults of the MB; 3) develop numerical methods (deterministic and stochastic) to simulate strong ground motions produced by extended seismic sources. To acquire seismic noise were used broadband stations on a regular basis of 2.5km by 5.0 km (in lat and long, respectively), recording at least 60 minutes in each node. We acquired seismic noise on 150 points inside and at the edges of the basin. Through the Horizontal/Vertical Spectral Ratio we identify frequencies lower than 1Hz which are related with the transition of the quaternary sediments to the underlying rock.

  2. Attenuation relation for strong motion in Eastern Java based on appropriate database and method

    NASA Astrophysics Data System (ADS)

    Mahendra, Rian; Rohadi, Supriyanto; Rudyanto, Ariska

    2017-07-01

    The selection and determination of attenuation relation has become important for seismic hazard assessment in active seismic region. This research initially constructs the appropriate strong motion database, including site condition and type of the earthquake. The data set consisted of large number earthquakes of 5 ≤ Mw ≤ 9 and distance less than 500 km that occurred around Java from 2009 until 2016. The location and depth of earthquake are being relocated using double difference method to improve the quality of database. Strong motion data from twelve BMKG's accelerographs which are located in east Java is used. The site condition is known by using dominant period and Vs30. The type of earthquake is classified into crustal earthquake, interface, and intraslab based on slab geometry analysis. A total of 10 Ground Motion Prediction Equations (GMPEs) are tested using Likelihood (Scherbaum et al., 2004) and Euclidean Distance Ranking method (Kale and Akkar, 2012) with the associated database. The evaluation of these methods lead to a set of GMPEs that can be applied for seismic hazard in East Java where the strong motion data is collected. The result of these methods found that there is still high deviation of GMPEs, so the writer modified some GMPEs using inversion method. Validation was performed by analysing the attenuation curve of the selected GMPE and observation data in period 2015 up to 2016. The results show that the selected GMPE is suitable for estimated PGA value in East Java.

  3. Seismic data restoration with a fast L1 norm trust region method

    NASA Astrophysics Data System (ADS)

    Cao, Jingjie; Wang, Yanfei

    2014-08-01

    Seismic data restoration is a major strategy to provide reliable wavefield when field data dissatisfy the Shannon sampling theorem. Recovery by sparsity-promoting inversion often get sparse solutions of seismic data in a transformed domains, however, most methods for sparsity-promoting inversion are line-searching methods which are efficient but are inclined to obtain local solutions. Using trust region method which can provide globally convergent solutions is a good choice to overcome this shortcoming. A trust region method for sparse inversion has been proposed, however, the efficiency should be improved to suitable for large-scale computation. In this paper, a new L1 norm trust region model is proposed for seismic data restoration and a robust gradient projection method for solving the sub-problem is utilized. Numerical results of synthetic and field data demonstrate that the proposed trust region method can get excellent computation speed and is a viable alternative for large-scale computation.

  4. Pattern recognition in volcano seismology - Reducing spectral dimensionality

    NASA Astrophysics Data System (ADS)

    Unglert, K.; Radic, V.; Jellinek, M.

    2015-12-01

    Variations in the spectral content of volcano seismicity can relate to changes in volcanic activity. Low-frequency seismic signals often precede or accompany volcanic eruptions. However, they are commonly manually identified in spectra or spectrograms, and their definition in spectral space differs from one volcanic setting to the next. Increasingly long time series of monitoring data at volcano observatories require automated tools to facilitate rapid processing and aid with pattern identification related to impending eruptions. Furthermore, knowledge transfer between volcanic settings is difficult if the methods to identify and analyze the characteristics of seismic signals differ. To address these challenges we evaluate whether a machine learning technique called Self-Organizing Maps (SOMs) can be used to characterize the dominant spectral components of volcano seismicity without the need for any a priori knowledge of different signal classes. This could reduce the dimensions of the spectral space typically analyzed by orders of magnitude, and enable rapid processing and visualization. Preliminary results suggest that the temporal evolution of volcano seismicity at Kilauea Volcano, Hawai`i, can be reduced to as few as 2 spectral components by using a combination of SOMs and cluster analysis. We will further refine our methodology with several datasets from Hawai`i and Alaska, among others, and compare it to other techniques.

  5. Geophysical investigations in Jordan

    NASA Astrophysics Data System (ADS)

    Kovach, Robert L.; Andreasen, Gordon E.; Gettings, Mark E.; El-Kaysi, Kays

    1990-08-01

    A number of geophysical investigations have been undertaken in the Hashemite Kingdom of Jordan to provide data for understanding the tectonic framework, the pattern of seismicity, earthquake hazards and geothermal resources of the country. Both the historical seismic record and the observed recent seismicity point to the dominance of the Dead Sea Rift as the main locus of seismic activity but significant branching trends and gaps in the seismicity pattern are also seen. A wide variety of focal plane solutions are observed emphasizing the complex pattern of fault activity in the vicinity of the rift zone. Geophysical investigations directed towards the geothermal assessment of the prominent thermal springs of Zerga Ma'in and Zara are not supportive of the presence of a crustal magmatic source.

  6. Geophysical investigations in Jordan

    USGS Publications Warehouse

    Kovach, R.L.; Andreasen, G.E.; Gettings, M.E.; El-Kaysi, K.

    1990-01-01

    A number of geophysical investigations have been undertaken in the Hashemite Kingdom of Jordan to provide data for understanding the tectonic framework, the pattern of seismicity, earthquake hazards and geothermal resources of the country. Both the historical seismic record and the observed recent seismicity point to the dominance of the Dead Sea Rift as the main locus of seismic activity but significant branching trends and gaps in the seismicity pattern are also seen. A wide variety of focal plane solutions are observed emphasizing the complex pattern of fault activity in the vicinity of the rift zone. Geophysical investigations directed towards the geothermal assessment of the prominent thermal springs of Zerga Ma'in and Zara are not supportive of the presence of a crustal magmatic source. ?? 1990.

  7. Convolutional neural network for earthquake detection and location

    PubMed Central

    Perol, Thibaut; Gharbi, Michaël; Denolle, Marine

    2018-01-01

    The recent evolution of induced seismicity in Central United States calls for exhaustive catalogs to improve seismic hazard assessment. Over the last decades, the volume of seismic data has increased exponentially, creating a need for efficient algorithms to reliably detect and locate earthquakes. Today’s most elaborate methods scan through the plethora of continuous seismic records, searching for repeating seismic signals. We leverage the recent advances in artificial intelligence and present ConvNetQuake, a highly scalable convolutional neural network for earthquake detection and location from a single waveform. We apply our technique to study the induced seismicity in Oklahoma, USA. We detect more than 17 times more earthquakes than previously cataloged by the Oklahoma Geological Survey. Our algorithm is orders of magnitude faster than established methods. PMID:29487899

  8. Subduction zone seismicity and the thermo-mechanical evolution of downgoing lithosphere

    NASA Astrophysics Data System (ADS)

    Wortel, M. J. R.; Vlaar, N. J.

    1988-09-01

    In this paper we discuss characteristic features of subduction zone seismicity at depths between about 100 km and 700 km, with emphasis on the role of temperature and rheology in controlling the deformation of, and the seismic energy release in downgoing lithosphere. This is done in two steps. After a brief review of earlier developments, we first show that the depth distribution of hypocentres at depths between 100 km and 700 km in subducted lithosphere can be explained by a model in which seismic activity is confined to those parts of the slab which have temperatures below a depth-dependent critical value T cr. Second, the variation of seismic energy release (frequency of events, magnitude) with depth is addressed by inferring a rheological evolution from the slab's thermal evolution and by combining this with models for the system of forces acting on the subducting lithosphere. It is found that considerable stress concentration occurs in a reheating slab in the depth range of 400 to 650 700 km: the slab weakens, but the stress level strongly increases. On the basis of this stress concentration a model is formulated for earthquake generation within subducting slabs. The model predicts a maximum depth of seismic activity in the depth range of 635 to 760 km and, for deep earthquake zones, a relative maximum in seismic energy release near the maximum depth of earthquakes. From our modelling it follows that, whereas such a maximum is indeed likely to develop in deep earthquake zones, zones with a maximum depth around 300 km (such as the Aleutians) are expected to exhibit a smooth decay in seismic energy release with depth. This is in excellent agreement with observational data. In conclusion, the incoroporation of both depth-dependent forces and depth-dependent rheology provides new insight into the generation of intermediate and deep earthquakes and into the variation of seismic activity with depth. Our results imply that no barrier to slab penetration at a depth of 650 700 km is required to explain the maximum depth of seismic activity and the pattern of seismic energy release in deep earthquake zones.

  9. Glacier quakes mimicking volcanic earthquakes: The challenge of monitoring ice-clad volcanoes and some solutions

    NASA Astrophysics Data System (ADS)

    Allstadt, K.; Carmichael, J. D.; Malone, S. D.; Bodin, P.; Vidale, J. E.; Moran, S. C.

    2012-12-01

    Swarms of repeating earthquakes at volcanoes are often a sign of volcanic unrest. However, glaciers also can generate repeating seismic signals, so detecting unrest at glacier-covered volcanoes can be a challenge. We have found that multi-day swarms of shallow, low-frequency, repeating earthquakes occur regularly at Mount Rainier, a heavily glaciated stratovolcano in Washington, but that most swarms had escaped recognition until recently. Typically such earthquakes were too small to be routinely detected by the seismic network and were often buried in the noise on visual records, making the few swarms that had been detected seem more unusual and significant at the time they were identified. Our comprehensive search for repeating earthquakes through the past 10 years of continuous seismic data uncovered more than 30 distinct swarms of low-frequency earthquakes at Rainier, each consisting of hundreds to thousands of events. We found that these swarms locate high on the glacier-covered edifice, occur almost exclusively between late fall and early spring, and that their onset coincides with heavy snowfalls. We interpret the correlation with snowfall to indicate a seismically observable glacial response to snow loading. Efforts are underway to confirm this by monitoring glacier motion before and after a major snowfall event using ground based radar interferometry. Clearly, if the earthquakes in these swarms reflect a glacial source, then they are not directly related to volcanic activity. However, from an operational perspective they make volcano monitoring difficult because they closely resemble earthquakes that often precede and accompany volcanic eruptions. Because we now have a better sense of the background level of such swarms and know that their occurrence is seasonal and correlated with snowfall, it will now be easier to recognize if future swarms at Rainier are unusual and possibly related to volcanic activity. To methodically monitor for such unusual activity, we are implementing an automatic detection algorithm to continuously search for repeating earthquakes at Mount Rainier, an algorithm that we eventually intend to apply to other Cascade volcanoes. We propose that a comprehensive routine that characterizes background levels of repeating earthquakes and the degree of correlation with weather and seasonal forcing, combined with real-time monitoring for repeating earthquakes, will provide a means to more rapidly discriminate between glacier seismicity and seismicity related to volcanic activity on monitored glacier-clad volcanoes.

  10. The Seismicity activity toward east of Bogotá D. C., Colombia

    NASA Astrophysics Data System (ADS)

    Chicangana, G.; Vargas, C. A.; Gomez-Capera, A.; Pedraza, P.; Mora-Paez, H.; Salcedo, E.; Caneva, A.

    2013-12-01

    In the eastern flank of Eastern Cordillera very close to Bogotá D.C metropolitan area at least in last 450 years five magnitude 5.0 or higher earthquakes has occur. These were confirmed by both historical and instrumental seismicity information. Among these earthquakes, the first one in Colombian historical times was occur at March 16th, 1644 and was sense toward south of Santa Fé de Bogotá. Then on October 18th, 1743 occurred with a current probabilistic magnitude greater than 6.5 an earthquake that transcended in this region due to the economic slump and loss of lives that it caused. Recently the Quetame Earthquake with M = 5.9 occur on May 24th, 2008, that destroyed the Quetame town. This last earthquake was registered locally by Colombian Seismological Network (RSNC). In this study we realized an analysis over this seismicity activity both by historical chronicles with macroseismic estimation data, the seismicity record obtained mainly by the Colombian National Seismological Network (RSNC) data for the 1993-2012 lapse, for searching the seismogenics sources that produced this seismicity activity. So, with these results we show the tectonic panorama of this region indicating of this manner the faults that possibility can be potentially seismic actives. For this we have considered mainly geomorphologic features associated to the faults activity additionally corroborated with GPS velocities data of GEORED project of Colombian Geological Survey.

  11. The effect of reservoir geometry, injection and production parameters and permeability structure on induced seismicity

    NASA Astrophysics Data System (ADS)

    Hosseini, S. M.; Goebel, T.; Aminzadeh, F.

    2015-12-01

    The recent increase in injection induced seismicity (IIS) in previously less seismically active regions highlighted a need for better mitigation strategies and physics-based models of induced seismicity. Previous models of pressure diffusion and fluid flow investigated the change in Coulomb stress as a result of induced pore-pressure perturbations (e.g. Zhang et al., 2013; Keranen et al., 2014; Hornbach et al., 2015; Segall and Lu, 2015). Here, we consider the additional effects of permeability structure, operational parameters and reservoir geometry. We numerically investigate the influence of net fluid injection volumes; linear, radial, and spherical reservoir geometry; as well as reservoir size. The latter can have a substantial effect on changes in Coulomb stress and subsequent induced seismicity. We report on results from two series of model runs, which explored pressure changes caused by wastewater disposal and water flooding. We observed that a typical water flooding operation that includes production wells and injectors has a lower probability of inducing seismicity. Our observations are in agreement with assessment by National Research Council report on induced seismicity (2012). We developed a third suite of models that investigate the effect of permeability structure on injection-induced seismicity. We examine two cases of wastewater disposal in proximity to active faults: 1) in Central Illinois Basin and 2) in central California. In both cases, we observed that the size of the reservoir, presence of faults, and permeability contrast relative to the host rock, strongly influences the pressure changes with distance and time. These pressure changes vary widely but can easily lead to fault instability and seismic activity at up to 10 km distance from the injection well. The results of this study may help to select safe injection sites and operational conditions in order to minimize injection induced seismicity hazard.

  12. Seismic hydraulic fracture migration originated by successive deep magma pulses: The 2011-2013 seismic series associated to the volcanic activity of El Hierro Island

    NASA Astrophysics Data System (ADS)

    Díaz-Moreno, A.; Ibáñez, J. M.; De Angelis, S.; García-Yeguas, A.; Prudencio, J.; Morales, J.; Tuvè, T.; García, L.

    2015-11-01

    In this manuscript we present a new interpretation of the seismic series that accompanied eruptive activity off the coast of El Hierro, Canary Islands, during 2011-2013. We estimated temporal variations of the Gutenberg-Richter b value throughout the period of analysis, and performed high-precision relocations of the preeruptive and syneruptive seismicity using a realistic 3-D velocity model. Our results suggest that eruptive activity and the accompanying seismicity were caused by repeated injections of magma from the mantle into the lower crust. These magma pulses occurred within a small and well-defined volume resulting in the emplacement of fresh magma along the crust-mantle boundary underneath El Hierro. We analyzed the distribution of earthquake hypocenters in time and space in order to assess seismic diffusivity in the lower crust. Our results suggest that very high earthquake rates underneath El Hierro represent the response of a stable lower crust to stress perturbations with pulsatory character, linked to the injection of magma from the mantle. Magma input from depth caused large stress perturbations to propagate into the lower crust generating energetic seismic swarms. The absence of any preferential alignment in the spatial pattern of seismicity reinforces our hypothesis that stress perturbation and related seismicity, had diffusive character. We conclude that the temporal and spatial evolution of seismicity was neither tracking the path of magma migration nor it defines the boundaries of magma storage volumes such as a midcrustal sill. Our conceptual model considers pulsatory magma injection from the upper mantle and its propagation along the Moho. We suggest, within this framework, that the spatial and temporal distributions of earthquake hypocenters reflect hydraulic fracturing processes associated with stress propagation due to magma movement.

  13. Seismic dynamics in advance and after the recent strong earthquakes in Italy and New Zealand

    NASA Astrophysics Data System (ADS)

    Nekrasova, A.; Kossobokov, V. G.

    2017-12-01

    We consider seismic events as a sequence of avalanches in self-organized system of blocks-and-faults of the Earth lithosphere and characterize earthquake series with the distribution of the control parameter, η = τ × 10B × (5-M) × L C of the Unified Scaling Law for Earthquakes, USLE (where τ is inter-event time, B is analogous to the Gutenberg-Richter b-value, and C is fractal dimension of seismic locus). A systematic analysis of earthquake series in Central Italy and New Zealand, 1993-2017, suggests the existence, in a long-term, of different rather steady levels of seismic activity characterized with near constant values of η, which, in mid-term, intermittently switch at times of transitions associated with the strong catastrophic events. On such a transition, seismic activity, in short-term, may follow different scenarios with inter-event time scaling of different kind, including constant, logarithmic, power law, exponential rise/decay or a mixture of those. The results do not support the presence of universality in seismic energy release. The observed variability of seismic activity in advance and after strong (M6.0+) earthquakes in Italy and significant (M7.0+) earthquakes in New Zealand provides important constraints on modelling realistic earthquake sequences by geophysicists and can be used to improve local seismic hazard assessments including earthquake forecast/prediction methodologies. The transitions of seismic regime in Central Italy and New Zealand started in 2016 are still in progress and require special attention and geotechnical monitoring. It would be premature to make any kind of definitive conclusions on the level of seismic hazard which is evidently high at this particular moment of time in both regions. The study supported by the Russian Science Foundation Grant No.16-17-00093.

  14. Hydraulically Induced Seismicity in South-Eastern Brazil Linked to Water Wells

    NASA Astrophysics Data System (ADS)

    Convers, J.; Assumpcao, M.; Barbosa, J. R.

    2017-12-01

    While hydraulic stimulus on seismic activity is most commonly associated with hydraulic fracturing processes, we find in SE Brazil a rare case of seismicity influenced by hydraulic stimulation linked to seasonal rain and water wells in a farming area. These are thought to be the main factors influencing the seasonal seismicity activity in Jurupema, a farming town located in the interior of the state of Sao Paulo, southern Brazil. With temporary seismic station deployments during 2016 and 2017, we analyze the seismicity in this area, its temporal and spatial distribution, and its association with the drilling of ground water wells in this particular area. In a region where water wells are often drilled to provide irrigation for farming, these are often perforated down to about 100 m depth, penetrating below the uppermost sandstone rock layer ( 50 m) into a fractured basaltic rock layer, reaching the confined aquifer within it. While the wells are constantly pumped during the dry season, during the course of the rainy season (when these are not being used), a possible infiltration into the confined basaltic aquifer, from both the rainwater and the upper sandstone aquifer, adds changes to the pore pressure of the fractured rock, and modifies the tectonic pre-stress conditions, to facilitate stress release mechanisms in pre-existing faults and cracks. With our temporary seismic station deployments, we not only examine the seismicity in this region during both 2016 and 2017, but we additionally compare its characteristics to the nearby Bebedouro case in an apparent induced seismic case of analogous source, and seismic activity with magnitudes up to 2.9 occurring between 2005 and 2010.

  15. Spatio-temporal variation of seismicity before the 1971 San Fernando earthquake, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, M.; Kanamori, H.

    1977-08-01

    The spatio-temporal variation of seismicity prior to the 1971 San Fernando, California, earthquake is studied for the area within 35 km of the epicenter. During the period from 1932 to 1961, the seismicity in this area was relatively low and random. A remarkable NE-SW trending alignment of activity occurred during the period from 1961 to 1964, the period corresponding to the inferred onset of the Palmdale uplift. During the period from 1965 to 1968, the seismicity around the epicentral area became extremely low; no event was located within 13 km from the epicenter. During the period from 1969 to themore » occurrence of the San Fernando earthquake, activity around the epicentral area increased. This activity may be considered to be foreshock activity in a broad sense.« less

  16. The shallow elastic structure of the lunar crust: New insights from seismic wavefield gradient analysis

    NASA Astrophysics Data System (ADS)

    Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir

    2016-10-01

    Enigmatic lunar seismograms recorded during the Apollo 17 mission in 1972 have so far precluded the identification of shear-wave arrivals and hence the construction of a comprehensive elastic model of the shallow lunar subsurface. Here, for the first time, we extract shear-wave information from the Apollo active seismic data using a novel waveform analysis technique based on spatial seismic wavefield gradients. The star-like recording geometry of the active seismic experiment lends itself surprisingly well to compute spatial wavefield gradients and rotational ground motion as a function of time. These observables, which are new to seismic exploration in general, allowed us to identify shear waves in the complex lunar seismograms, and to derive a new model of seismic compressional and shear-wave velocities in the shallow lunar crust, critical to understand its lithology and constitution, and its impact on other geophysical investigations of the Moon's deep interior.

  17. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective

    NASA Astrophysics Data System (ADS)

    Grigoli, Francesco; Cesca, Simone; Priolo, Enrico; Rinaldi, Antonio Pio; Clinton, John F.; Stabile, Tony A.; Dost, Bernard; Fernandez, Mariano Garcia; Wiemer, Stefan; Dahm, Torsten

    2017-06-01

    Due to the deep socioeconomic implications, induced seismicity is a timely and increasingly relevant topic of interest for the general public. Cases of induced seismicity have a global distribution and involve a large number of industrial operations, with many documented cases from as far back to the beginning of the twentieth century. However, the sparse and fragmented documentation available makes it difficult to have a clear picture on our understanding of the physical phenomenon and consequently in our ability to mitigate the risk associated with induced seismicity. This review presents a unified and concise summary of the still open questions related to monitoring, discrimination, and management of induced seismicity in the European context and, when possible, provides potential answers. We further discuss selected critical European cases of induced seismicity, which led to the suspension or reduction of the related industrial activities.

  18. Advances in Predicting Magnetic Fields on the Far Side of the Sun

    NASA Astrophysics Data System (ADS)

    Lindsey, C. A.

    2016-12-01

    Techniques in local solar seismology applied to observations of seismic oscillations in the Sun's near hemisphere allow us to map large magnetic regions in the Sun's far hemisphere. Seismic signatures are not nearly as sensitive to magnetic flux as observations in electromagnetic radiation. However, they clearly identify and locate the 400 or so largest active regions in a typical solar cycle, i.e., those of most concern for space-weather forecasting. By themselves, seismic observations are insensitive to magnetic polarity. However, the Hale polarity law offers tantalizing avenues for guessing polarity distributions from seismic signatures as they evolve. I will review what we presently know about the relationship between seismic signatures of active regions and their magnetic and radiative properties, and offer a preliminary assessment of the potential of far-side seismic maps for space-weather forecasting in the coming decade.

  19. Interpretation of Data from Uphole Refraction Surveys

    DTIC Science & Technology

    1980-06-01

    Seismic refraction Seismic refraction method Seismic surveys Subsurface exploration ""-. 20, AI0SrRACT -(CmtuamU 00MvaO eL If naaaaamr and Identlfyby...by the presence of subsurface cavities and large cavities are identifiable, the sensitivity of the method is marginal for practical use in cavity...detection. Some cavities large enough to be of engineering signifi- cance (e.g., a tunnel of h-m diameter) may be practically undetectable by this method

  20. Seismicity of the Adriatic microplate

    USGS Publications Warehouse

    Console, R.; Di, Giovambattista R.; Favali, P.; Presgrave, B.W.; Smriglio, G.

    1993-01-01

    The Adriatic microplate was previously considered to be a unique block, tectonically active only along its margins. The seismic sequences that took place in the basin from 1986 to 1990 give new information about the geodynamics of this area. Three subsets of well recorded events were relocated by the joint hypocentre determination technique. On the whole, this seismic activity was concentrated in a belt crossing the southern Adriatic sea around latitude 42??, in connection with regional E-W fault systems. Some features of this seismicity, similar to those observed in other well known active margins of the Adriatic plate, support a model of a southern Adriatic lithospheric block, detached from the Northern one. Other geophysical information provides evidence of a transitional zone at the same latitude. ?? 1993.

  1. 76 FR 26255 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ..., the R/V Marcus G. Langseth (Langseth) and a seismic airgun array to collect seismic reflection and... possible, depending on logistics and weather. The proposed seismic survey will collect seismic reflection... Shillington, Spahr Webb, and Mladen Nedimovic, all of L-DEO. The vessel will be self-contained, and the crew...

  2. The LUSI Seismic Experiment: Deployment of a Seismic Network around LUSI, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Karyono, Karyono; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Haryanto, Iyan; Masturyono, Masturyono; Hadi, Soffian; Rohadi, Suprianto; Suardi, Iman; Rudiyanto, Ariska; Pranata, Bayu

    2015-04-01

    The spectacular Lusi eruption started in northeast Java, Indonesia the 29 of May 2006 following a M6.3 earthquake striking the island. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. Lusi is located few kilometres to the NE of the Arjuno-Welirang volcanic complex. Lusi sits upon the Watukosek fault system. From this volcanic complex originates the Watukosek fault system that was reactivated by the M6.3 earthquake in 2006 and is still periodically reactivated by the frequent seismicity. To date Lusi is still active and erupting gas, water, mud and clasts. Gas and water data show that the Lusi plumbing system is connected with the neighbouring Arjuno-Welirang volcanic complex. This makes the Lusi eruption a "sedimentary hosted geothermal system". To verify and characterise the occurrence of seismic activity and how this perturbs the connected Watukosek fault, the Arjuno-Welirang volcanic system and the ongoing Lusi eruption, we deployed 30 seismic stations (short-period and broadband) in this region of the East Java basin. The seismic stations are more densely distributed around LUSI and the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. Fewer stations are positioned around the volcanic arc. Our study sheds light on the seismic activity along the Watukosek fault system and describes the waveforms associated to the geysering activity of Lusi. The initial network aims to locate small event that may not be captured by the Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG) seismic network and it will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-Arjuno Welirang region and temporal variations of vp/vs ratios. Such variations will then be ideally related to large-magnitude seismic events. This project is an unprecedented monitoring of a multi component system including an Lusi active eruption, an unlocked strike slip fault, a neighbouring volcanic arc all affected by frequent seismicity. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. The seismic experiment suggested in this study enforces our knowledge about Lusi and will represent a step further towards the reconstruction of a society devastated by Lusi disaster.

  3. Monitoring and Characterizing the Geysering and Seismic Activity at the Lusi Mud Eruption Site, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian

    2016-04-01

    The Lusi eruption began on May 29, 2006 in the northeast of Java Island, Indonesia, and to date is still active. Lusi is a newborn sedimentary-hosted hydrothermal system characterized by continuous expulsion of liquefied mud and breccias and geysering activity. Lusi is located upon the Watukosek fault system, a left lateral wrench system connecting the volcanic arc and the bakarc basin. This fault system is still periodically reactivated as shown by field data. In the framework of the Lusi Lab project (ERC grant n° 308126) we conducted several types of monitoring. Based on camera observations, we characterized the Lusi erupting activity by four main behaviors occurring cyclically: (1) Regular activity, which consists in the constant emission of water and mud breccias (i.e. viscous mud containing clay, silt, sand and clasts) associated with the constant expulsion of gas (mainly aqueous vapor with minor amounts of CO2 and CH4) (2) Geysering phase with intense bubbling, consisting in reduced vapor emission and more powerful bursting events that do not seem to have a regular pattern. (3) Geysering phase with intense vapor and degassing discharge and a typically dense plume that propagates up to 100 m height. (4) Quiescent phase marking the end of the geysering activity (and the observed cycle) with no gas emissions or bursts observed. To investigate the possible seismic activity beneath Lusi and the mechanisms controlling the Lusi pulsating behaviour, we deployed a network of 5 seismic stations and a HD camera around the Lusi crater. We characterize the observed types of seismic activity as tremor and volcano-tectonic events. Lusi tremor events occur in 5-10 Hz frequency band, while volcano tectonic events are abundant in the high frequencies range from 5 Hz until 25 Hz. We coupled the seismic monitoring with the images collected with the HD camera to study the correlation between the seismic tremor and the different phases of the geysering activity. Key words: Lusi mud eruption, geysering activity, seismic activity

  4. 78 FR 4380 - Information Collection Activity; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    .... Abstract: The Earthquake Hazards Reduction Act of 1977 (42 U.S.C. 7701 et seq.) was enacted to reduce risks to life and property through the National Earthquake Hazards Reduction Program (NEHRP). The Federal... construction methods to make structures earthquake resistant. Executive Order 12699 of January 5, 1990, Seismic...

  5. Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 08LCA01 in 10 Central Florida Lakes, March 2008

    USGS Publications Warehouse

    Harrison, Arnell S.; Dadisman, Shawn V.; Davis, Jeffrey B.; Flocks, James G.; Wiese, Dana S.

    2009-01-01

    In March of 2008, the U.S. Geological Survey and St. Johns River Water Management District (SJRWMD) conducted geophysical surveys in Lakes Avalon, Big, Colby, Helen, Johns, Prevatt, Searcy, Saunders, Three Island, and Trout, located in central Florida, as part of the USGS Lakes and Coastal Aquifers (LCA) study. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, Field Activity Collection System (FACS) logs, Geographic Information System (GIS) files, and formal Federal Geographic Data Committee (FGDC) metadata. Filtered and gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansions of acronyms and abbreviations used in this report. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU) (Cohen and Stockwell, 2005). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. The USGS Florida Integrated Science Center (FISC) - St. Petersburg assigns a unique identifier to each cruise or field activity. For example, 08LCA01 tells us the data were collected in 2008 for the Lakes and Coastal Aquifers (LCA) study and the data were collected during the first field activity for that study in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. The naming convention used for each seismic line is as follows: yye##a, where yy is the last two digits of the year in which the data were collected, e is a 1-letter abbreviation for the equipment type (for example, b for boomer), ## is a 2-digit number representing a specific track, and a is a letter representing the section of a line if recording was prematurely terminated or rerun for quality or acquisition problems. The boomer plate is an acoustic energy source that consists of capacitors charged to a high voltage and discharged through a transducer in the water. The transducer is towed on a sled floating on the water surface and when discharged emits a short acoustic pulse, or shot, which propagates through the water, sediment column, or rock beneath. The acoustic energy is reflected at density boundaries (such as the lake bottom, sediment, or rock layers beneath the lake bottom), detected by the receiver, and recorded by a PC-based seismic acquisition system. This process is repeated at timed intervals (for example, 0.5 s) and recorded for specific intervals of time (for example, 100 ms). In this way, a two-dimensional (2-D) vertical profile of the shallow geologic structure beneath the ship track is produced. Figure 1 displays the three boomer acquisition geometries used during this survey. The second method was used because windy weather conditions hindered steerage, and driving the boat in reverse actually helped maintain course and prevented the possibility of the streamer cables becoming entangled in the boat propellers. The third method was used to help attenuate propeller and generator noise. Refer to table 1 for a summary of acquisition parameters. Table 2 lists trackline statistics. The unprocessed seismic data are stored in SEG-Y format (Barry and others, 1975). For a detailed description of the data format, refer to the SEG-Y Format page. See the How To Download SEG-Y Data page for download instructions. The printable profiles provided here are GIF images that were filtered and gained using Seismic Unix software. Refer to the Software page for details about the processing and examples of the processing scripts. The processed SEG-Y data were exported to Chesapeake Technology, Inc. (CTI) SonarWeb software to produce a geospatially interactive Web page of the profile,

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harben, P E; Harris, D; Myers, S

    Seismic imaging and tracking methods have intelligence and monitoring applications. Current systems, however, do not adequately calibrate or model the unknown geological heterogeneity. Current systems are also not designed for rapid data acquisition and analysis in the field. This project seeks to build the core technological capabilities coupled with innovative deployment, processing, and analysis methodologies to allow seismic methods to be effectively utilized in the applications of seismic imaging and vehicle tracking where rapid (minutes to hours) and real-time analysis is required. The goal of this project is to build capabilities in acquisition system design, utilization and in full 3Dmore » finite difference modeling as well as statistical characterization of geological heterogeneity. Such capabilities coupled with a rapid field analysis methodology based on matched field processing are applied to problems associated with surveillance, battlefield management, finding hard and deeply buried targets, and portal monitoring. This project benefits the U.S. military and intelligence community in support of LLNL's national-security mission. FY03 was the final year of this project. In the 2.5 years this project has been active, numerous and varied developments and milestones have been accomplished. A wireless communication module for seismic data was developed to facilitate rapid seismic data acquisition and analysis. The E3D code was enhanced to include topographic effects. Codes were developed to implement the Karhunen-Loeve (K-L) statistical methodology for generating geological heterogeneity that can be utilized in E3D modeling. The matched field processing methodology applied to vehicle tracking and based on a field calibration to characterize geological heterogeneity was tested and successfully demonstrated in a tank tracking experiment at the Nevada Test Site. A 3-seismic-array vehicle tracking testbed was installed on-site at LLNL for testing real-time seismic tracking methods. A field experiment was conducted over a tunnel at the Nevada Site that quantified the tunnel reflection signal and, coupled with modeling, identified key needs and requirements in experimental layout of sensors. A large field experiment was conducted at the Lake Lynn Laboratory, a mine safety research facility in Pennsylvania, over a tunnel complex in realistic, difficult conditions. This experiment gathered the necessary data for a full 3D attempt to apply the methodology. The experiment also collected data to analyze the capabilities to detect and locate in-tunnel explosions for mine safety and other applications.« less

  7. Elements of the tsunami precursors' detection physics

    NASA Astrophysics Data System (ADS)

    Novik, Oleg; Ruzhin, Yuri; Ershov, Sergey; Volgin, Max; Smirnov, Fedor

    In accordance with the main physical principles and geophysical data, we formulated a nonlinear mathematical model of seismo-hydro-electromagnetic (EM) geophysical field interaction and calculated generation and propagation of elastic, EM, temperature and hydrodynamic seismically generated disturbances (i.e. signals) in the basin of a marginal sea. We show transferring of seismic and electromagnetic (EM) energy from the upper mantle beneath the sea into its depths and EM emission from the sea surface into the atmosphere. Basing on the calculated characteristics of the signals of different physical nature (computations correspond to measurements of other authors) we develop the project of a Lithosphere-Ocean-Atmosphere Monitoring System (LOAMS) including: a bottom complex, a moored ocean surface buoy complex, an observational balloon complex, and satellite complex. The underwater stations of the bottom complex of the LOAMS will record the earlier signals of seismic activation beneath a seafloor (the ULF EM signals outrun seismic ones, according to the above calculations) and localize the seafloor epicenter of an expected seaquake. These stations will be equipped, in particular, with: magnetometers, the lines for the electric field measurements, and magneto-telluric blocks to discover dynamics of physical parameters beneath a sea floor as signs of a seaquake and/or tsunami preparation process. The buoy and balloon complexes of the LOAMS will record the meteorological and oceanographic parameters' variations including changes of reflection from a sea surface (tsunami ‘shadows’) caused by a tsunami wave propagation. Cables of the balloon and moored buoy will be used as receiving antennas and for multidisciplinary measurements including gradients of the fields (we show the cases are possible when the first seismic EM signal will be registered by an antenna above a sea). Also, the project includes radio-tomography with satellite instrumentation and sounding of the ionosphere from the buoy, balloon and satellite complexes. The balloon and buoy complexes will transmit data to a shore station over satellite link. The frequency ranges and sensitivity thresholds of all of the sensors of the LOAMS will be adapted to the characteristics of expected seismic signals according to the numerical research above. Computational methods and statistical analysis (e.g. seismic changes of coherence of spatially distributed sensors of different nature) of the recorded multidimensional time series will be used for prognostic interpretation. The multilevel recordings will provide a stable noise (e.g. ionosphere Pc pulsations, hard sea, industry) and seismic event detection. An intensive heat flow typical for tectonically active lithosphere zones may be considered as an energy source for advanced modifications of the LOAMS. The latter may be used as a warning system for continental and marine technologies, e.g. a sea bottom geothermal energy production. Indeed, seismic distraction of the nuclear power station Fukushima I demonstrates that similar technology hardly is able to solve the energy problems in seismically active regions. On the other hand, the LOAMS may be considered as a scientific observatory for development of the seaquake/tsunami precursor physics, i.e. seismo-hydro-electromagnetics.

  8. Estimating the location of baleen whale calls using dual streamers to support mitigation procedures in seismic reflection surveys.

    PubMed

    Abadi, Shima H; Tolstoy, Maya; Wilcock, William S D

    2017-01-01

    In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations.

  9. Estimating the location of baleen whale calls using dual streamers to support mitigation procedures in seismic reflection surveys

    PubMed Central

    Abadi, Shima H.; Tolstoy, Maya; Wilcock, William S. D.

    2017-01-01

    In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations. PMID:28199400

  10. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    NASA Astrophysics Data System (ADS)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  11. Relationships between Induced Seismicity and Fluid Injection: Development of Strategies to Manage Injection

    NASA Astrophysics Data System (ADS)

    Eichhubl, Peter; Frohlich, Cliff; Gale, Julia; Olson, Jon; Fan, Zhiqiang; Gono, Valerie

    2014-05-01

    Induced seismicity during or following the subsurface injection of waste fluids such as well stimulation flow back and production fluids has recently received heightened public and industry attention. It is understood that induced seismicity occurs by reactivation of existing faults that are generally present in the injection intervals. We seek to address the question why fluid injection triggers earthquakes in some areas and not in others, with the aim toward improved injection methods that optimize injection volume and cost while avoiding induced seismicity. A GIS database has been built of natural and induced earthquakes in four hydrocarbon-producing basins: the Fort Worth Basin, South Texas, East Texas/Louisiana, and the Williston Basin. These areas are associated with disposal from the Barnett, Eagle Ford, Bakken, and Haynesville Shales respectively. In each region we analyzed data that were been collected using temporary seismographs of the National Science Foundation's USArray Transportable Array. Injection well locations, formations, histories, and volumes are also mapped using public and licensed datasets. Faults are mapped at a range of scales for selected areas that show different levels of seismic activity, and scaling relationships used to extrapolate between the seismic and wellbore scale. Reactivation potential of these faults is assessed using fault occurrence, and in-situ stress conditions, identifying areas of high and low fault reactivation potential. A correlation analysis between fault reactivation potential, induced seismicity, and fluid injection will use spatial statistics to quantify the probability of seismic fault reactivation for a given injection pressure in the studied reservoirs. The limiting conditions inducing fault reactivation will be compared to actual injection parameters (volume, rate, injection duration and frequency) where available. The objective of this project is a statistical reservoir- to basin-scale assessment of fault reactivation and seismicity induced by fluid injection. By assessing the occurrence of earthquakes (M>2) evenly across large geographic regions, this project differs from previous studies of injection-induced seismicity that focused on earthquakes large enough to cause public concern in well-populated areas. The understanding of triggered seismicity gained through this project is expected to allow for improved design strategies for waste fluid injection to industry and public decision makers.

  12. Toward seismic source imaging using seismo-ionospheric data

    NASA Astrophysics Data System (ADS)

    Rolland, L.; Larmat, C. S.; Mikesell, D.; Sladen, A.; Khelfi, K.; Astafyeva, E.; Lognonne, P. H.

    2014-12-01

    The worldwide coverage offered by global navigation space systems (GNSS) such as GPS, GLONASS or Galileo allows seismological measurements of a new kind. GNSS-derived total electron content (TEC) measurements can be especially useful to image seismically active zones that are not covered by conventional instruments. For instance, it has been shown that the Japanese dense GPS network GEONET was able to record images of the ionosphere response to the initial coseismic sea-surface motion induced by the great Mw 9.0 2011 Tohoku-Oki earthquake less than 10 minutes after the rupture initiation (Astafyeva et al., 2013). But earthquakes of lower magnitude, down to about 6.5 would also induce measurable ionospheric perturbations, when GNSS stations are located less than 250 km away from the epicenter. In order to make use of these new data, ionospheric seismology needs to develop accurate forward models so that we can invert for quantitative seismic sources parameters. We will present our current understanding of the coupling mechanisms between the solid Earth, the ocean, the atmosphere and the ionosphere. We will also present the state-of-the-art in the modeling of coseismic ionospheric disturbances using acoustic ray theory and a new 3D modeling method based on the Spectral Element Method (SEM). This latter numerical tool will allow us to incorporate lateral variations in the solid Earth properties, the bathymetry and the atmosphere as well as realistic seismic source parameters. Furthermore, seismo-acoustic waves propagate in the atmosphere at a much slower speed (from 0.3 to ~1 km/s) than seismic waves propagate in the solid Earth. We are exploring the application of back-projection and time-reversal methods to TEC observations in order to retrieve the time and space characteristics of the acoustic emission in the seismic source area. We will first show modeling and inversion results with synthetic data. Finally, we will illustrate the imaging capability of our approach with, among other possible examples, the 2011 Mw 9.0 Tohoku-Oki earthquake, Japan, the 2012 Mw 7.8 Haida Gwaii earthquake, Canada and the 2011 Mw 7.1 Van earthquake, Eastern Turkey.

  13. Lunar seismicity and tectonics

    NASA Technical Reports Server (NTRS)

    Lammlein, D. R.

    1977-01-01

    Results are presented for an analysis of all moonquake data obtained by the Apollo seismic stations during the period from November 1969 to May 1974 and a preliminary analysis of critical data obtained in the interval from May 1974 to May 1975. More accurate locations are found for previously located moonquakes, and additional sources are located. Consideration is given to the sources of natural seismic signals, lunar seismic activity, moonquake periodicities, tidal periodicities in moonquake activity, hypocentral locations and occurrence characteristics of deep and shallow moonquakes, lunar tidal control over moonquakes, lunar tectonism, the locations of moonquake belts, and the dynamics of the lunar interior. It is concluded that: (1) moonquakes are distributed in several major belts of global extent that coincide with regions of the youngest and most intense volcanic and tectonic activity; (2) lunar tides control both the small quakes occurring at great depth and the larger quakes occurring near the surface; (3) the moon has a much thicker lithosphere than earth; (4) a single tectonic mechanism may account for all lunar seismic activity; and (5) lunar tidal stresses are an efficient triggering mechanism for moonquakes.

  14. Seismic isolation device having charging function by a transducer

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Takashi; Miura, Nanako; Takahashi, Masaki

    2016-04-01

    In late years, many base isolated structures are planned as the seismic design, because they suppress vibration response significantly against large earthquake. To achieve greater safety, semi-active or active vibration control system is installed in the structures as earthquake countermeasures. Semi-active and active vibration control systems are more effective than passive vibration control system to large earthquake in terms of vibration reduction. However semi-active and active vibration control system cannot operate as required when external power supply is cut off. To solve the problem of energy consumption, we propose a self-powered active seismic isolation floor which achieve active control system using regenerated vibration energy. This device doesn't require external energy to produce control force. The purpose of this study is to propose the seismic isolation device having charging function and to optimize the control system and passive elements such as spring coefficients and damping coefficients using genetic algorithm. As a result, optimized model shows better performance in terms of vibration reduction and electric power regeneration than the previous model. At the end of this paper, the experimental specimen of the proposed isolation device is shown.

  15. Seismic Regionalization of Michoacan, Mexico and Recurrence Periods for Earthquakes

    NASA Astrophysics Data System (ADS)

    Magaña García, N.; Figueroa-Soto, Á.; Garduño-Monroy, V. H.; Zúñiga, R.

    2017-12-01

    Michoacán is one of the states with the highest occurrence of earthquakes in Mexico and it is a limit of convergence triggered by the subduction of Cocos plate over the North American plate, located in the zone of the Pacific Ocean of our country, in addition to the existence of active faults inside of the state like the Morelia-Acambay Fault System (MAFS).It is important to make a combination of seismic, paleosismological and geological studies to have good planning and development of urban complexes to mitigate disasters if destructive earthquakes appear. With statistical seismology it is possible to characterize the degree of seismic activity as well as to estimate the recurrence periods for earthquakes. For this work, seismicity catalog of Michoacán was compiled and homogenized in time and magnitude. This information was obtained from world and national agencies (SSN, CMT, etc), some data published by Mendoza and Martínez-López (2016) and starting from the seismic catalog homogenized by F. R. Zúñiga (Personal communication). From the analysis of the different focal mechanisms reported in the literature and geological studies, the seismic regionalization of the state of Michoacán complemented the one presented by Vázquez-Rosas (2012) and the recurrence periods for earthquakes within the four different seismotectonic regions. In addition, stable periods were determined for the b value of the Gutenberg-Richter (1944) using the Maximum Curvature and EMR (Entire Magnitude Range Method, 2005) techniques, which allowed us to determine recurrence periods: years for earthquakes upper to 7.5 for the subduction zone (A zone) with EMR technique and years with MAXC technique for the same years for earthquakes upper to 5 for B1 zone with EMR technique and years with MAXC technique; years for earthquakes upper to 7.0 for B2 zone with EMR technique and years with MAXC technique; and the last one, the Morelia-Acambay Fault Sistem zone (C zone) years for earthquakes upper to 5 with EMR technique and years with MAXC technique. This recurrence periods are very similar to periods calculated by Garduño-Monroy (2009) and Sunye-Puchol (2015) using paleoseismological methods. If we consider that the MAFS cross Zacapu, Pátzcuaro, Morelia, Cuitzeo, Maravatío and Acambay, the affected population would be around 1132807 habitants.

  16. Hiding earthquakes from scrupulous monitoring eyes of dense local seismic networks

    NASA Astrophysics Data System (ADS)

    Bogiatzis, P.; Ishii, M.; Kiser, E.

    2012-12-01

    Accurate and complete cataloguing of aftershocks is essential for a variety of purposes, including the estimation of the mainshock rupture area, the identification of seismic gaps, and seismic hazard assessment. However, immediately following large earthquakes, the seismograms recorded by local networks are noisy, with energy arriving from hundreds of aftershocks, in addition to different seismic phases interfering with one another. This causes deterioration in the performance of detection and location of earthquakes using conventional methods such as the S-P approach. This is demonstrated by results of back-projection analysis of teleseismic data showing that a significant number of events are undetected by the Japan Meteorological Agency, within the first twenty-four hours after the Mw9.0 Tohoku-oki, Japan earthquake. The spatial distribution of the hidden events is not arbitrary. Most of these earthquakes are located close to the trench, while some are located at the outer rise. Furthermore, there is a relatively sharp trench-parallel boundary separating the detected and undetected events. We investigate the cause of these hidden earthquakes using forward modeling. The calculation of raypaths for various source locations and takeoff angles with the "shooting" method suggests that this phenomenon is a consequence of the complexities associated with subducting slab. Laterally varying velocity structure defocuses the seismic energy from shallow earthquakes located near the trench and makes the observation of P and S arrivals difficult at stations situated on mainland Japan. Full waveform simulations confirm these results. Our forward calculations also show that the probability of detection is sensitive to the depth of the event. Shallower events near the trench are more difficult to detect than deeper earthquakes that are located inside the subducting plate for which the shadow-zone effect diminishes. The modeling effort is expanded to include three-dimensional structure in velocity and intrinsic attenuation to evaluate possible laterally varying patterns. Our study suggests that the phenomenon of hidden earthquakes could be present at other regions around the world with active subductions. Considering that many of these subduction zones are not as well monitored as Japan, the number of missed events, especially after large earthquakes, could be significant. The results of this work can help to identify "blind spots" of present seismic networks, and can contribute to improving monitoring activities.

  17. A decade of passive seismic monitoring experiments with local networks in four Italian regions

    NASA Astrophysics Data System (ADS)

    Chiaraluce, L.; Valoroso, L.; Anselmi, M.; Bagh, S.; Chiarabba, C.

    2009-10-01

    We report on four seismic monitoring experiments that in the past ten years we carried out with dense local networks in seismically active Italian areas where for at least a year, tens of three component seismic stations were set up to record microseismicity. The areas observed are Alpago-Cansiglio, located in the Venetian Alps, Città di Castello in the Northern Apennines, Marsica in the Central Apennines and Val d'Agri located in the Southern Apennines. We produced homogeneous catalogues regarding earthquake locations and local magnitudes to investigate seismicity patterns during an inter-seismic period. The four regions are characterised by different kinematics, strain rates and historical/recent seismicity. We investigate earthquake distribution in space, time and size obtaining reference seismic rates and parameters of the Gutenberg and Richter law. We declustered the catalogues to look for coherent signs in the background seismic activity. Despite a difference in the catalogues magnitudes of completeness due both to the diverse detection threshold of the local networks and different seismic release, we detect and observe two common main behaviours: a) The Alpago-Cansiglio and Marsica regions are characterised by a relatively lower rate of seismic release associated to the episodic occurrence of seismic sequences with the largest event being 3 < ML < 4. In these areas the seismicity is not localised around the main faults. b) The Città di Castello and Val d'Agri regions have a relatively high rate of seismicity release almost continuously with time, and the increase in earthquake production is not clearly related to seismic sequences. In these areas the seismicity nucleates around defined fault systems and is usually lower than ML < 3. We suggest that the presence of over-pressured fluids in the Città di Castello and Val d'Agri uppermost crustal volume may favour and mould the higher rate of microseismic release.

  18. Seismic hazard and risk assessment in the intraplate environment: The New Madrid seismic zone of the central United States

    USGS Publications Warehouse

    Wang, Z.

    2007-01-01

    Although the causes of large intraplate earthquakes are still not fully understood, they pose certain hazard and risk to societies. Estimating hazard and risk in these regions is difficult because of lack of earthquake records. The New Madrid seismic zone is one such region where large and rare intraplate earthquakes (M = 7.0 or greater) pose significant hazard and risk. Many different definitions of hazard and risk have been used, and the resulting estimates differ dramatically. In this paper, seismic hazard is defined as the natural phenomenon generated by earthquakes, such as ground motion, and is quantified by two parameters: a level of hazard and its occurrence frequency or mean recurrence interval; seismic risk is defined as the probability of occurrence of a specific level of seismic hazard over a certain time and is quantified by three parameters: probability, a level of hazard, and exposure time. Probabilistic seismic hazard analysis (PSHA), a commonly used method for estimating seismic hazard and risk, derives a relationship between a ground motion parameter and its return period (hazard curve). The return period is not an independent temporal parameter but a mathematical extrapolation of the recurrence interval of earthquakes and the uncertainty of ground motion. Therefore, it is difficult to understand and use PSHA. A new method is proposed and applied here for estimating seismic hazard in the New Madrid seismic zone. This method provides hazard estimates that are consistent with the state of our knowledge and can be easily applied to other intraplate regions. ?? 2007 The Geological Society of America.

  19. Design and development of digital seismic amplifier recorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samsidar, Siti Alaa; Afuar, Waldy; Handayani, Gunawan, E-mail: gunawanhandayani@gmail.com

    2015-04-16

    A digital seismic recording is a recording technique of seismic data in digital systems. This method is more convenient because it is more accurate than other methods of seismic recorders. To improve the quality of the results of seismic measurements, the signal needs to be amplified to obtain better subsurface images. The purpose of this study is to improve the accuracy of measurement by amplifying the input signal. We use seismic sensors/geophones with a frequency of 4.5 Hz. The signal is amplified by means of 12 units of non-inverting amplifier. The non-inverting amplifier using IC 741 with the resistor values 1KΩmore » and 1MΩ. The amplification results were 1,000 times. The results of signal amplification converted into digital by using the Analog Digital Converter (ADC). Quantitative analysis in this study was performed using the software Lab VIEW 8.6. The Lab VIEW 8.6 program was used to control the ADC. The results of qualitative analysis showed that the seismic conditioning can produce a large output, so that the data obtained is better than conventional data. This application can be used for geophysical methods that have low input voltage such as microtremor application.« less

  20. Calibration method helps in seismic velocity interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzman, C.E.; Davenport, H.A.; Wilhelm, R.

    1997-11-03

    Acoustic velocities derived from seismic reflection data, when properly calibrated to subsurface measurements, help interpreters make pure velocity predictions. A method of calibrating seismic to measured velocities has improved interpretation of subsurface features in the Gulf of Mexico. In this method, the interpreter in essence creates a kind of gauge. Properly calibrated, the gauge enables the interpreter to match predicted velocities to velocities measured at wells. Slow-velocity zones are of special interest because they sometimes appear near hydrocarbon accumulations. Changes in velocity vary in strength with location; the structural picture is hidden unless the variations are accounted for by mappingmore » in depth instead of time. Preliminary observations suggest that the presence of hydrocarbons alters the lithology in the neighborhood of the trap; this hydrocarbon effect may be reflected in the rock velocity. The effect indicates a direct use of seismic velocity in exploration. This article uses the terms seismic velocity and seismic stacking velocity interchangeably. It uses ground velocity, checkshot average velocity, and well velocity interchangeably. Interval velocities are derived from seismic stacking velocities or well average velocities; they refer to velocities of subsurface intervals or zones. Interval travel time (ITT) is the reciprocal of interval velocity in microseconds per foot.« less

  1. Lower crustal earthquakes in the North China Basin and implications for crustal rheology

    NASA Astrophysics Data System (ADS)

    Yuen, D. A.; Dong, Y.; Ni, S.; LI, Z.

    2017-12-01

    The North China Basin is a Mesozoic-Cenozoic continental rift basin on the eastern North China Craton. It is the central region of craton destruction, also a very seismically active area suffering severely from devastating earthquakes, such as the 1966 Xingtai M7.2 earthquake, the 1967 Hejian M6.3 earthquake, and the 1976 Tangshan M7.8 earthquake. We found remarkable discrepancies of depth distribution among the three earthquakes, for instance, the Xingtai and Tangshan earthquakes are both upper-crustal earthquakes occurring between 9 and 15 km on depth, but the depth of the Hejian earthquake was reported of about 30 72 km, ranging from lowermost crust to upper mantle. In order to investigate the focal depth of earthquakes near Hejian area, we developed a method to resolve focal depth for local earthquakes occurring beneath sedimentary regions by P and S converted waves. With this method, we obtained well-resolved depths of 44 local events with magnitudes between M1.0 and M3.0 during 2008 to 2016 at the Hejian seismic zone, with a mean depth uncertainty of about 2 km. The depth distribution shows abundant earthquakes at depth of 20 km, with some events in the lower crust, but absence of seismicity deeper than 25 km. In particular, we aimed at deducing some constraints on the local crustal rheology from depth-frequency distribution. Therefore, we performed a comparison between the depth-frequency distribution and the crustal strength envelop, and found a good fit between the depth profile in the Hejian seismic zone and the yield strength envelop in the Baikal Rift Systems. As a conclusion, we infer that the seismogenic thickness is 25 km and the main deformation mechanism is brittle fracture in the North China Basin . And we made two hypotheses: (1) the rheological layering of dominant rheology in the North China Basin is similar to that of the Baikal Rift Systems, which can be explained with a quartz rheology at 0 10 km depth and a diabase rheology at 10 35 km depth; (2) the temperature is moderate in the seismogenic zone of crust and relative high below 25 km. We also suggest that, many accurately resolved earthquake locations can shed light on the nature of the crustal rheology locally, and that our method can be employed in other sedimentary regions which are seismically active.

  2. Test to Extract Soil Properties Using the Seismic HammerTM Active Seismic Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Rebekah F.; Abbott, Robert E.

    Geologic material properties are necessary parameters for ground motion modeling and are difficult and expensive to obtain via traditional methods. Alternative methods to estimate soil properties require a measurement of the ground's response to a force. A possible method of obtaining these measurements is active-source seismic surveys, but measurements of the ground response at the source must also be available. The potential of seismic sources to obtain soil properties is limited, however, by the repeatability of the source. Explosives, and hammer surveys are not repeatable because of variable ground coupling or swing strength. On the other hand, the Seismic Hammermore » TM (SH) is consistent in the amount of energy it inputs into the ground. In addition, it leaves large physical depressions as a result of ground compaction. The volume of ground compaction varies by location. Here, we hypothesize that physical depressions left in the earth by the SH correlate to energy recorded by nearby geophones, and therefore are a measurement of soil physical properties. Using measurements of the volume of shot holes, we compare the spatial distribution of the volume of ground compacted between the different shot locations. We then examine energy recorded by the nearest 50 geophones and compare the change in amplitude across hits at the same location. Finally, we use the percent difference between the energy recorded by the first and later hits at a location to test for a correlation to the volume of the shot depressions. We find that: * Ground compaction at the shot-depression does cluster geographically, but does not correlate to known surface features. * Energy recorded by nearby geophones reflects ground refusal after several hits. * There is no correlation to shot volume and changes in energy at particular shot locations. Deeper material properties (i.e. below the depth of surface compaction) may be contributing to the changes in energy propagation. * Without further processing of the data, shot-depression volumes are insufficient to understanding ground response to the SH. Without an accurate understanding of the ground response, we cannot extract material properties in conjunction with the SH survey. Additional processing including picking direct arrivals and static corrections may yield positive results.« less

  3. A 3D Numerical Survey of Seismic Waves Inside and Around an Underground Cavity

    NASA Astrophysics Data System (ADS)

    Esterhazy, S.; Schneider, F. M.; Perugia, I.; Bokelmann, G.

    2016-12-01

    Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explo- sion/weapon testing, we present our findings of a numerical study on the elastic wave propagation inside and around such an underground cavity.The aim of the CTBTO is to ban all nuclear explosions of any size anywhere, by anyone. Therefore, it is essential to build a powerful strategy to efficiently investigate and detect critical signatures such as gas filled cavities, rubble zones and fracture networks below the surface. One method to investigate the geophysical properties of an under- ground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as "resonance seismometry" - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and there are also only few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in the mathematical understanding of the underlying physical phenomena.Our numerical study includes the full elastic wave field in three dimensions. We consider the effects from an in- coming plane wave as well as point source located in the surrounding of the cavity at the surface. While the former can be considered as passive source like a tele-seismic earthquake, the latter represents a man-made explosion or a viborseis as used for/in active seismic techniques. For our simulations in 3D we use the discontinuous Galerkin Spectral Element Code SPEED developed by MOX (The Laboratory for Modeling and Scientific Computing, Department of Mathematics) and DICA (Department of Civil and Environmental Engineering) at the Politecnico di Milano. The computations are carried out on the Vienna Scientific Cluster (VSC).The accurate numerical modeling can facilitate the development of proper analysis techniques to detect the remnants of an underground nuclear test, help to set a rigorous scientific base of OSI and contribute to bringing the Treaty into force.

  4. Time-frequency domain SNR estimation and its application in seismic data processing

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Liu, Yang; Li, Xuxuan; Jiang, Nansen

    2014-08-01

    Based on an approach estimating frequency domain signal-to-noise ratio (FSNR), we propose a method to evaluate time-frequency domain signal-to-noise ratio (TFSNR). This method adopts short-time Fourier transform (STFT) to estimate instantaneous power spectrum of signal and noise, and thus uses their ratio to compute TFSNR. Unlike FSNR describing the variation of SNR with frequency only, TFSNR depicts the variation of SNR with time and frequency, and thus better handles non-stationary seismic data. By considering TFSNR, we develop methods to improve the effects of inverse Q filtering and high frequency noise attenuation in seismic data processing. Inverse Q filtering considering TFSNR can better solve the problem of amplitude amplification of noise. The high frequency noise attenuation method considering TFSNR, different from other de-noising methods, distinguishes and suppresses noise using an explicit criterion. Examples of synthetic and real seismic data illustrate the correctness and effectiveness of the proposed methods.

  5. Romanian Educational Seismic Network Project

    NASA Astrophysics Data System (ADS)

    Tataru, Dragos; Ionescu, Constantin; Zaharia, Bogdan; Grecu, Bogdan; Tibu, Speranta; Popa, Mihaela; Borleanu, Felix; Toma, Dragos; Brisan, Nicoleta; Georgescu, Emil-Sever; Dobre, Daniela; Dragomir, Claudiu-Sorin

    2013-04-01

    Romania is one of the most active seismic countries in Europe, with more than 500 earthquakes occurring every year. The seismic hazard of Romania is relatively high and thus understanding the earthquake phenomena and their effects at the earth surface represents an important step toward the education of population in earthquake affected regions of the country and aims to raise the awareness about the earthquake risk and possible mitigation actions. In this direction, the first national educational project in the field of seismology has recently started in Romania: the ROmanian EDUcational SEISmic NETwork (ROEDUSEIS-NET) project. It involves four partners: the National Institute for Earth Physics as coordinator, the National Institute for Research and Development in Construction, Urban Planning and Sustainable Spatial Development " URBAN - INCERC" Bucharest, the Babeş-Bolyai University (Faculty of Environmental Sciences and Engineering) and the software firm "BETA Software". The project has many educational, scientific and social goals. The main educational objectives are: training students and teachers in the analysis and interpretation of seismological data, preparing of several comprehensive educational materials, designing and testing didactic activities using informatics and web-oriented tools. The scientific objective is to introduce into schools the use of advanced instruments and experimental methods that are usually restricted to research laboratories, with the main product being the creation of an earthquake waveform archive. Thus a large amount of such data will be used by students and teachers for educational purposes. For the social objectives, the project represents an effective instrument for informing and creating an awareness of the seismic risk, for experimentation into the efficacy of scientific communication, and for an increase in the direct involvement of schools and the general public. A network of nine seismic stations with SEP seismometers will be installed in several schools in the most important seismic areas (Vrancea, Dobrogea), vulnerable cities (Bucharest, Ploiesti, Iasi) or high populated places (Cluj, Sibiu, Timisoara, Zalău). All the elements of the seismic station are especially designed for educational purposes and can be operated independently by the students and teachers themselves. The first stage of ROEDUSEIS project was centered on the work of achievement of educational materials for all levels of pre-university education (kindergarten, primary, secondary and high school). A study of necessity preceded the achievement of educational materials. This was done through a set of questionnaires for teachers and students sent to participating schools. Their responses formed a feedback instrument for properly materials editing. The topics covered within educational materials include: seismicity (general principles, characteristics of Romanian seismicity, historical local events), structure of the Earth, measuring of earthquakes, seismic hazard and risk.

  6. Seismic hazard of the Kivu rift (western branch, East African Rift system): new neotectonic map and seismotectonic zonation model

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Mulumba, Jean-Luc; Sebagenzi Mwene Ntabwoba, Stanislas; Fiama Bondo, Silvanos; Kervyn, François; Havenith, Hans-Balder

    2017-04-01

    The first detailed probabilistic seismic hazard assessment has been performed for the Kivu and northern Tanganyika rift region in Central Africa. This region, which forms the central part of the Western Rift Branch, is one of the most seismically active part of the East African rift system. It was already integrated in large scale seismic hazard assessments, but here we defined a finer zonation model with 7 different zones representing the lateral variation of the geological and geophysical setting across the region. In order to build the new zonation model, we compiled homogeneous cross-border geological, neotectonic and sismotectonic maps over the central part of East D.R. Congo, SW Uganda, Rwanda, Burundi and NW Tanzania and defined a new neotectonic sheme. The seismic risk assessment is based on a new earthquake catalogue, compiled on the basis of various local and global earthquake catalogues. The use of macroseismic epicenters determined from felt earthquakes allowed to extend the time-range back to the beginning of the 20th century, spanning 126 years, with 1068 events. The magnitudes have been homogenized to Mw and aftershocks removed. From this initial catalogue, a catalogue of 359 events from 1956 to 2015 and with M > 4.4 has been extracted for the seismic hazard assessment. The seismotectonic zonation includes 7 seismic source areas that have been defined on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of thermal springs and earthquake epicenters. The Gutenberg-Richter seismic hazard parameters were determined using both the least square linear fit and the maximum likelihood method (Kijko & Smit aue program). Seismic hazard maps have been computed with the Crisis 2012 software using 3 different attenuation laws. We obtained higher PGA values (475 years return period) for the Kivu rift region than the previous estimates (Delvaux et al., 2016). They vary laterally in function of the tectonic setting, with the lowest value in the volcanically active Virunga - Rutshuru zone, highest in the currently non-volcanic parts of Lake Kivu, Rusizi valley and North Tanganyika rift zone, and intermediate in the regions flanking the axial rift zone. Those are to be considered as preliminary values, as there are a number of important uncertainties such as the heterogeneity and relatively short duration of the instrumental seismic catalogue used (60 years), the absence of locally derived attenuation laws and thus the choice of the attenuation laws used, and the seismic zonation scheme. Delvaux, D. et al., 2016. Journal of African Earth Sciences, doi: 10.1016/j.jafrearsci.2016.10.004.

  7. Pattern Informatics Approach to Earthquake Forecasting in 3D

    NASA Astrophysics Data System (ADS)

    Toya, Y.; Tiampo, K. F.; Rundle, J. B.; Chen, C.; Li, H.; Klein, W.

    2009-05-01

    Natural seismicity is correlated across multiple spatial and temporal scales, but correlations in seismicity prior to a large earthquake are locally subtle (e.g. seismic quiescence) and often prominent in broad scale (e.g., seismic activation), resulting in local and regional seismicity patterns, e.g. a Mogi's donut. Recognizing that patterns in seismicity rate are reflecting the regional dynamics of the directly unobservable crustal stresses, the Pattern Informatics (PI) approach was introduced by Tiampo et al. in 2002 [Europhys. Lett., 60 (3), 481-487,] Rundle et al., 2002 [PNAS 99, suppl. 1, 2514-2521.] In this study, we expand the PI approach to forecasting earthquakes into the third, or vertical dimension, and illustrate its further improvement in the forecasting performance through case studies of both natural and synthetic data. The PI characterizes rapidly evolving spatio-temporal seismicity patterns as angular drifts of a unit state vector in a high dimensional correlation space, and systematically identifies anomalous shifts in seismic activity with respect to the regional background. 3D PI analysis is particularly advantageous over 2D analysis in resolving vertically overlapped seismicity anomalies in a highly complex tectonic environment. Case studies will help to illustrate some important properties of the PI forecasting tool. [Submitted to: Concurrency and Computation: Practice and Experience, Wiley, Special Issue: ACES2008.

  8. Seismic structures beneath Popocatepetl (Mexico) and Gorely (Kamchatka) volcanoes derived from passive tomography studies

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel; Koulakov, Ivan

    2014-05-01

    A number of active volcanoes are observed in different parts of the world, and they attract great interest of scientists. Comparing their characteristics helps in understanding the origin and mechanisms of their activity. One of the most effective methods for studying the deep structure beneath volcanoes is passive source seismic tomography. In this study we present results of tomographic inversions for two active volcanoes located in different parts of the world: Popocatepetl (Mexico) and Gorely (Kamchatka, Russia). In the past century both volcanoes were actively erupted that explains great interest to their detailed investigations. In both cases we made the full data analysis starting from picking the arrival times from local events. In the case of the Popocatepetl study, a temporary seismological network was deployed by GFZ for the period from December 1999 to July 2000. Note that during this period there were a very few events recorded inside the volcano. Most of recorded earthquakes occurred in surrounding areas and they probably have the tectonic nature. We performed a special analysis to ground the efficiency of using these data for studying seismic structure beneath the network installed on the volcano. The tomographic inversion was performed using the LOTOS code by Koulakov (2009). Beneath the Popocatepetl volcano we have found a zone of strong anti-correlation between P- and S-velocities that leaded to high values of Vp/Vs ratio. Similar features were found for some other volcanoes in previous studies. We interpret these anomalies as zones of high content of fluids and melts that are related to active magma sources. For the case of Gorely volcano we used the data of a temporary network just deployed in summer 2013 by our team from IPGG, Novosibirsk. Luckily, during the field works, the volcano started to manifest strong seismic activity. In this period, 100 - 200 volcanic events occurred daily. We collected the continuous seismic records from 20 stations for 5-7 days that gives us the possibility to locate several hundreds of events and to build a preliminary seismic model beneath the Gorely volcano. We found a zone of low S-velocity located beneath the SE flank of the volcano, just between the Gorely and Mutnovsky volcanoes. This may serve as an argument for feeding these volcanoes from a single source. Although Popocatepetl and Gorely volcanoes are considerably different in their size and eruption characteristics, we found some similar features in the seismic structures, such as anti-correlation of P- and S- anomalies and high Vp/Vs ratio patterns below summits. This provides common patterns that give us the keys for understanding the general mechanism of working the volcanic systems. This study was partly supported by the projects #7.3 of BES RAS, IP SB RAS #20 and IP SB-FEB RAS #42

  9. Surface wave tomography of Europe from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Stehly, Laurent; Paul, Anne

    2017-04-01

    We present a European scale high-resolution 3-D shear wave velocity model derived from ambient seismic noise tomography. In this study, we collect 4 years of continuous seismic recordings from 1293 stations across much of the European region (10˚W-35˚E, 30˚N-75˚N), which yields more than 0.8 million virtual station pairs. This data set compiles records from 67 seismic networks, both permanent and temporary from the EIDA (European Integrated Data Archive). Rayleigh wave group velocity are measured at each station pair using the multiple-filter analysis technique. Group velocity maps are estimated through a linearized tomographic inversion algorithm at period from 5s to 100s. Adaptive parameterization is used to accommodate heterogeneity in data coverage. We then apply a two-step data-driven inversion method to obtain the shear wave velocity model. The two steps refer to a Monte Carlo inversion to build the starting model, followed by a linearized inversion for further improvement. Finally, Moho depth (and its uncertainty) are determined over most of our study region by identifying and analysing sharp velocity discontinuities (and sharpness). The resulting velocity model shows good agreement with main geological features and previous geophyical studies. Moho depth coincides well with that obtained from active seismic experiments. A focus on the Greater Alpine region (covered by the AlpArray seismic network) displays a clear crustal thinning that follows the arcuate shape of the Alps from the southern French Massif Central to southern Germany.

  10. Seismicity and Crustal Anisotropy Beneath the Western Segment of the North Anatolian Fault: Results from a Dense Seismic Array

    NASA Astrophysics Data System (ADS)

    Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Cambaz, D.; Mutlu, A. K.; Kahraman, M.; Houseman, G. A.; Rost, S.; Thompson, D. A.; Cornwell, D. G.; Utkucu, M.; Gülen, L.

    2013-12-01

    The North Anatolian Fault (NAF) is one of the major strike slip fault systems on Earth comparable to San Andreas Fault in some ways. Devastating earthquakes have occurred along this system causing major damage and casualties. In order to comprehensively investigate the shallow and deep crustal structure beneath the western segment of NAF, a temporary dense seismic network for North Anatolia (DANA) consisting of 73 broadband sensors was deployed in early May 2012 surrounding a rectangular grid of by 70 km and a nominal station spacing of 7 km with the aim of further enhancing the detection capability of this dense seismic array. This joint project involves researchers from University of Leeds, UK, Bogazici University Kandilli Observatory and Earthquake Research Institute (KOERI), and University of Sakarya and primarily focuses on upper crustal studies such as earthquake locations (especially micro-seismic activity), receiver functions, moment tensor inversions, shear wave splitting, and ambient noise correlations. To begin with, we obtained the hypocenter locations of local earthquakes that occured within the DANA network. The dense 2-D grid geometry considerably enhanced the earthquake detection capability which allowed us to precisely locate events with local magnitudes (Ml) less than 1.0. Accurate earthquake locations will eventually lead to high resolution images of the upper crustal structure beneath the northern and southern branches of NAF in Sakarya region. In order to put additional constraints on the active tectonics of the western part of NAF, we also determined fault plane solutions using Regional Moment Tensor Inversion (RMT) and P wave first motion methods. For the analysis of high quality fault plane solutions, data from KOERI and the DANA project were merged. Furthermore, with the aim of providing insights on crustal anisotropy, shear wave splitting parameters such as lag time and fast polarization direction were obtained for local events recorded within the seismic network with magnitudes larger than 2.5.

  11. Numerical Modeling of 3D Seismic Wave Propagation around Yogyakarta, the Southern Part of Central Java, Indonesia, Using Spectral-Element Method on MPI-GPU Cluster

    NASA Astrophysics Data System (ADS)

    Sudarmaji; Rudianto, Indra; Eka Nurcahya, Budi

    2018-04-01

    A strong tectonic earthquake with a magnitude of 5.9 Richter scale has been occurred in Yogyakarta and Central Java on May 26, 2006. The earthquake has caused severe damage in Yogyakarta and the southern part of Central Java, Indonesia. The understanding of seismic response of earthquake among ground shaking and the level of building damage is important. We present numerical modeling of 3D seismic wave propagation around Yogyakarta and the southern part of Central Java using spectral-element method on MPI-GPU (Graphics Processing Unit) computer cluster to observe its seismic response due to the earthquake. The homogeneous 3D realistic model is generated with detailed topography surface. The influences of free surface topography and layer discontinuity of the 3D model among the seismic response are observed. The seismic wave field is discretized using spectral-element method. The spectral-element method is solved on a mesh of hexahedral elements that is adapted to the free surface topography and the internal discontinuity of the model. To increase the data processing capabilities, the simulation is performed on a GPU cluster with implementation of MPI (Message Passing Interface).

  12. Seismic passive earth resistance using modified pseudo-dynamic method

    NASA Astrophysics Data System (ADS)

    Pain, Anindya; Choudhury, Deepankar; Bhattacharyya, S. K.

    2017-04-01

    In earthquake prone areas, understanding of the seismic passive earth resistance is very important for the design of different geotechnical earth retaining structures. In this study, the limit equilibrium method is used for estimation of critical seismic passive earth resistance for an inclined wall supporting horizontal cohesionless backfill. A composite failure surface is considered in the present analysis. Seismic forces are computed assuming the backfill soil as a viscoelastic material overlying a rigid stratum and the rigid stratum is subjected to a harmonic shaking. The present method satisfies the boundary conditions. The amplification of acceleration depends on the properties of the backfill soil and on the characteristics of the input motion. The acceleration distribution along the depth of the backfill is found to be nonlinear in nature. The present study shows that the horizontal and vertical acceleration distribution in the backfill soil is not always in-phase for the critical value of the seismic passive earth pressure coefficient. The effect of different parameters on the seismic passive earth pressure is studied in detail. A comparison of the present method with other theories is also presented, which shows the merits of the present study.

  13. Seismic gradiometry using ambient seismic noise in an anisotropic Earth

    NASA Astrophysics Data System (ADS)

    de Ridder, S. A. L.; Curtis, A.

    2017-05-01

    We introduce a wavefield gradiometry technique to estimate both isotropic and anisotropic local medium characteristics from short recordings of seismic signals by inverting a wave equation. The method exploits the information in the spatial gradients of a seismic wavefield that are calculated using dense deployments of seismic arrays. The application of the method uses the surface wave energy in the ambient seismic field. To estimate isotropic and anisotropic medium properties we invert an elliptically anisotropic wave equation. The spatial derivatives of the recorded wavefield are evaluated by calculating finite differences over nearby recordings, which introduces a systematic anisotropic error. A two-step approach corrects this error: finite difference stencils are first calibrated, then the output of the wave-equation inversion is corrected using the linearized impulse response to the inverted velocity anomaly. We test the procedure on ambient seismic noise recorded in a large and dense ocean bottom cable array installed over Ekofisk field. The estimated azimuthal anisotropy forms a circular geometry around the production-induced subsidence bowl. This conforms with results from studies employing controlled sources, and with interferometry correlating long records of seismic noise. Yet in this example, the results were obtained using only a few minutes of ambient seismic noise.

  14. Vertical deformation of the Ubaye valley (South East part of the French Alps) monitored by precise leveling

    NASA Astrophysics Data System (ADS)

    Gilbert, Ferhat; Gilles, Ménard; Malet, Jean-Philippe

    2017-04-01

    The Ubaye valley (South East French Alps) is one of the most seismically active region of the massif (Saint-Paul-sur-Ubaye Ml=5.5 earthquake of 1959). Since at least 1977, several seismic crisis occurred. In 1989, 250 seismic events are reported. In 2003-2004, a seismic swarm generated 16000 micro-earthquakes East of the town of Barcelonnette. The observed migration of events suggested that overpressure of fluids was responsible for the activity (Jenatton et al., 2007; Daniel et al., 2011). A few kilometers to the North, in February 2012, a Ml=4.5 earthquake affected the region. This earthquake was followed by thousands of aftershocks which rate decreased very slowly in time. On April 7th 2014, an Ml=5.2 earthquake occurred (Thouvenot et al., 2016). Again it was followed by thousands of aftershocks; the present-day activity is still very high, much higher than a classic mainshock-aftershock sequence. Since, the seismic activity has never really decreased, being still very active in October 2016. As a matter of fact, the 2012-2016 seismic sequence shows a dual seismogenic behavior, including both sustained migrating seismic swarms (Ml<3) and short-term mainshock-aftershocks sequences (Ml>4). To understand the seismic activity and its effects on surface deformation, we used precise leveling along a 30 km long-profile from the municipality of Barcelonnette (to the West) to the municipality of Meyronnes and Saint-Paul-sur-Ubaye (to the East). Several historical leveling sections were observed in 1909, 1949 and 1969 by the French Mapping Agency (IGN), and by research institutes in 2005, 2006 and 2014. We present the results of the comparison of the leveling over one century. We discuss its possible links to the regional seismic activity or to the local presence of unstable slopes. We observe a change of tilting of the N-S section of Jausiers / Saint-Paul-sur-Ubaye (subsidence of 1 mm.yr-1 before 2005, and uplift of 3.5 mm.yr-1 after 2005), which may be linked to a change of stress regime in the valley as suggested by fluid pressures changes and its response in terms of seismic swarm activity. Moreover in the Meyronnes sector, we observe changes in displacement rates over the period 1909 - 1949 - 1969 - 2005 - 2014. These variations may be linked to unstable slopes in the village. The acceleration between 1949 and 1969 may be related to the Ml-5.5 earthquake of 1959. The deceleration after 2005 might be related to the mitigation works (surface drainage) installed in 2002.

  15. Sismos a l'Ecole : a Seismic Educational Network (FRANCE) linked with Research

    NASA Astrophysics Data System (ADS)

    Berenguer, J.; Le Puth, J.; Courboulex, F.; Zodmi, B.; Boneff, M.

    2007-12-01

    Ahead of the quick evolution of our society, in which scientific information has to be accurately understood by a great majority, the promotion of a responsible behaviour coming from educated and trained citizens has become a priority. One of the roles of school is to enable children to understand sciences, these same sciences that were long ago the prerogative of scientific laboratories. The educational network SISMOS à l\\'"Ecole is an example of a project structured on the knowledge of seismic risks through a scientific and technological approach. It develops a teaching method leading to an approach towards the knowledge of natural disasters. The original and innovating feature of this educational network is to enable students to set up a seismograph in their school. The recorded signals - coming from a regional or a worldwide seismic activity - feed an on- line database, which is in fact a real research centre for seismic resources as well as a starting point for educational and scientific activities. The network, that numbers about thirty stations set up in France, in its overseas departments and territories, and in a couple of French schools abroad, is based upon an experience initiated in the French Riviera ten years ago or so. The achievement of the program has from then on gone beyond the simple purpose of conveying seismic data that research and monitoring centres could have recorded. Thanks to the use of scientific measures, students become involved and get into complex notions revolving around geophysics and geosciences. Developing simple tools, setting up concrete experiments combined with an investigate reasoning makes it easier to build up a quality scientific culture as well as an education of citizens to risks.

  16. Precise relocation of earthquakes following the 15 June 1991 eruption of Mount Pinatubo (Philippines)

    USGS Publications Warehouse

    Battaglia, J.; Thurber, C.H.; Got, J.-L.; Rowe, C.A.; White, R.A.

    2004-01-01

    The 15 June 1991 climactic eruption of Mount Pinatubo (Philippines) was followed by intense seismicity that remained at a high level for several months. We located 10,839 events recorded between 1 July and mid-December 1991. In contrast to the preeruptive seismicity which was focused in two groups below the summit area, posteruptive events were widely distributed below and around the volcano. The classification of the events indicates the presence of several large multiplets, and the application of relative relocation techniques to the similar events by calculating high-precision delays between traces outlines a number of clear seismogenic structures. We used different methods to confirm the validity of our results; these tests indicate that reliable features can be detected with a small monitoring network. While the main cluster of activity can be attributed to an intrusive process starting from below the 15 June crater, the volcanic origin of the seismic activity in the other areas is more difficult to establish. Away from the summit, relocations define streaks or planes which are oriented predominantly southwest-northeast, with in several cases the presence of northwest-southeast conjugate structures. Most of the composite focal mechanisms that we could determine indicate predominantly strike-slip, right-lateral faulting. Our results indicate that most of the seismicity that occurred after the 15 June eruption is related to the east-west regional compressional stress field related to the subduction. We suggest that the regional stress field induces seismicity along new or preexisting faults in the medium surrounding the volcano where the stress field was locally disturbed by the volcanic eruption. Copyright 2004 by the American Geophysical Union.

  17. Effects of volcanic tremor on noise-based measurements of temporal velocity changes at Hawaiian volcanoes

    NASA Astrophysics Data System (ADS)

    Ballmer, S.; Wolfe, C. J.; Okubo, P.; Haney, M. M.; Thurber, C. H.

    2011-12-01

    Green's functions calculated with ambient seismic noise may aid in volcano research and monitoring. The continuous character of ambient seismic noise and hence of the reconstructed Green's functions has enabled measurements of short-term (~days) temporal perturbations in seismic velocities. Very small but clear velocity decreases prior to some volcanic eruptions have been documented and motivate our present study. We apply this method to Hawaiian volcanoes using data from the USGS Hawaiian Volcano Observatory (HVO) seismic network. In order to obtain geologically relevant and reliable results, stable Green's functions need to be recovered from the ambient noise. Station timing problems, changes in noise source directivity, as well as changes in the source's spectral content are known biases that critically affect the Green's functions' stability and hence need to be considered. Here we show that volcanic tremor is a potential additional bias. During the time period of our study (2007-present), we find that volcanic tremor is a common feature in the HVO seismic data. Pu'u O'o tremor is continuously present before a dike intrusion into Kilauea's east rift zone in June 2007 and Halema'uma'u tremor occurs before and during resumed Kilauea summit activity from early 2008 and onward. For the frequency band considered (0.1-0.9 Hz), we find that these active tremor sources can drastically modify the recovered Green's functions for station pairs on the entire island at higher (> 0.5 Hz) frequencies, although the effect of tremor appears diminished at lower frequencies. In this presentation, we perform measurements of temporal velocity changes using ambient noise Green's functions and explore how volcanic tremor affects the results. Careful quality assessment of reconstructed Green's functions appears to be essential for the desired high precision measurements.

  18. Strong Paleoearthquakes along the Aksuu Border Fault according to the Results of Dating the Offset Terrace Complex of the Chon-Aksuu River, Northern Tien Shan

    NASA Astrophysics Data System (ADS)

    Korzhenkov, A. M.; Arrowsmith, J. R.; Crosby, C. J.; Guralnik, B.; Rogozhin, E. A.; Sorokin, A. A.; Abdieva, S. V.; Fortuna, A. B.; Yudakhin, A. S.; Agatova, A. R.; Deev, E. V.; Mazeika, J. V.; Rodkin, M. V.; Shen, J.

    2018-03-01

    The study and radiocarbon dating of the low alluvial terraces of the Chon-Aksuu River, in the Northern Issyk-Kul region, which were broken by the Kebin (Kemin) earthquake of 1911 (Ms = 8.2, Io = 10 to 11), are carried out. The obtained radiocarbon dated ages refer to the second half of the Holocene. Since that time, at least eight strong earthquakes took place along this (Chon-Aksuu) segment of the Aksuu border fault. Three seismic events, including the earthquake of 1911 occurred in the second millennium A.D. This outburst of seismic energy was preceded by two millennia of seismic quiescence, which set in after another pulse of seismic activation. The latter lasted for 1.5 millennia and included five strong earthquakes. The recurrence period of seismic events during the activations is 300-600 years. Hence, the seismic regime along the Chon-Aksuu segment of the Aksuu border fault in the second half of the Holocene was a succession of two seismic activations, each with a duration of 1.0-1.5 ka, which were separated by a 2-ka interval of seismic quiescence. Therefore, the absolute datings of the river terraces of different ages which have been broken by a seismogenic rupture can serve as a reliable source of information about the age of the strong earthquakes that occurred along the seismogenic fault.

  19. Mount Etna: 3-D and 4-D structure using seismic tomography

    NASA Astrophysics Data System (ADS)

    Nunn, C.; Julian, B. R.; Foulger, G. R.; Patanè, D.; Ibáñez, J. M.; Briole, P.; Mhanna, N.

    2015-12-01

    We investigate the time-varying structure of Etna, an active stratovolcano in eastern Sicily, using seismic tomography. In volcanic systems, it is thought that the presence of fluids, cracks and pressurized gases can rapidly and drastically change the elastic properties of the host rocks. Recent work suggests that changes beneath Etna are detectable with seismic methods, and that these changes can be linked to volcanic activity. Temporal changes to Earth structure are commonly investigated by carrying out separate tomographic inversions for different epochs. However, repeated inversions of the same area are expected to vary, even if the structure itself does not change. This is due to variations in the seismic ray distribution and to observational errors. Potentially, changes between epochs which are due to experimental limitations can be misinterpreted as changes to the structure of the volcano. Consequently, we use a new tomographic program, TOMO4D, that inverts multiple data sets simultaneously [Julian & Foulger, Time-dependent seismic tomography, GJI, 2010]. This code imposes constraints which minimise the differences calculated between two epochs. The remaining structural variations are thus truly required to fit the data, and reflect changes which almost certainly exist between the two epochs. We have selected and relocated ~400 local earthquakes with at least 5 P and 5 S observations. They cover a period which includes several eruptions, from 1st November 2000 to 31st December 2006. We divide our data into different epochs and invert two epochs simultaneously. The models show a seismically fast central region, surrounded by a slower outer region. This suggests a central system of dykes or sills surrounded by volcanic sediments and country rock. At depths of 0-4 km below sea level the seismically fast region is not below the summit crater but is offset to the southwest. By monitoring the changes to the elastic parameters of the host rocks we observe temporal changes within the volcano. The technique has potential for long-term volcano monitoring and hazard assessment since it could be applied to monitoring changes from month to month.

  20. Demonstration of improved seismic source inversion method of tele-seismic body wave

    NASA Astrophysics Data System (ADS)

    Yagi, Y.; Okuwaki, R.

    2017-12-01

    Seismic rupture inversion of tele-seismic body wave has been widely applied to studies of large earthquakes. In general, tele-seismic body wave contains information of overall rupture process of large earthquake, while the tele-seismic body wave is inappropriate for analyzing a detailed rupture process of M6 7 class earthquake. Recently, the quality and quantity of tele-seismic data and the inversion method has been greatly improved. Improved data and method enable us to study a detailed rupture process of M6 7 class earthquake even if we use only tele-seismic body wave. In this study, we demonstrate the ability of the improved data and method through analyses of the 2016 Rieti, Italy earthquake (Mw 6.2) and the 2016 Kumamoto, Japan earthquake (Mw 7.0) that have been well investigated by using the InSAR data set and the field observations. We assumed the rupture occurring on a single fault plane model inferred from the moment tensor solutions and the aftershock distribution. We constructed spatiotemporal discretized slip-rate functions with patches arranged as closely as possible. We performed inversions using several fault models and found that the spatiotemporal location of large slip-rate area was robust. In the 2016 Kumamoto, Japan earthquake, the slip-rate distribution shows that the rupture propagated to southwest during the first 5 s. At 5 s after the origin time, the main rupture started to propagate toward northeast. First episode and second episode correspond to rupture propagation along the Hinagu fault and the Futagawa fault, respectively. In the 2016 Rieti, Italy earthquake, the slip-rate distribution shows that the rupture propagated to up-dip direction during the first 2 s, and then rupture propagated toward northwest. From both analyses, we propose that the spatiotemporal slip-rate distribution estimated by improved inversion method of tele-seismic body wave has enough information to study a detailed rupture process of M6 7 class earthquake.

  1. Estimation of the displacements among distant events based on parallel tracking of events in seismic traces under uncertainty

    NASA Astrophysics Data System (ADS)

    Huamán Bustamante, Samuel G.; Cavalcanti Pacheco, Marco A.; Lazo Lazo, Juan G.

    2018-07-01

    The method we propose in this paper seeks to estimate interface displacements among strata related with reflection seismic events, in comparison to the interfaces at other reference points. To do so, we search for reflection events in the reference point of a second seismic trace taken from the same 3D survey and close to a well. However, the nature of the seismic data introduces uncertainty in the results. Therefore, we perform an uncertainty analysis using the standard deviation results from several experiments with cross-correlation of signals. To estimate the displacements of events in depth between two seismic traces, we create a synthetic seismic trace with an empirical wavelet and the sonic log of the well, close to the second seismic trace. Then, we relate the events of the seismic traces to the depth of the sonic log. Finally, we test the method with data from the Namorado Field in Brazil. The results show that the accuracy of the event estimated depth depends on the results of parallel cross-correlation, primarily those from the procedures used in the integration of seismic data with data from the well. The proposed approach can correctly identify several similar events in two seismic traces without requiring all seismic traces between two distant points of interest to correlate strata in the subsurface.

  2. Frozen soil lateral resistance for the seismic design of highway bridge foundations : [summary].

    DOT National Transportation Integrated Search

    2012-12-01

    With recent seismic activity and earthquakes in Alaska and throughout the Pacific Rim, seismic design is becoming an increasingly important public safety concern for : highway bridge designers. Hoping to generate knowledge that can improve the seismi...

  3. Study of time dynamics of seismicity for the Mexican subduction zone by means of the visibility graph method.

    NASA Astrophysics Data System (ADS)

    Ramírez-Rojas, Alejandro; Telesca, Luciano; Lovallo, Michele; Flores, Leticia

    2015-04-01

    By using the method of the visibility graph (VG), five magnitude time series extracted from the seismic catalog of the Mexican subduction zone were investigated. The five seismic sequences represent the seismicity which occurred between 2005 and 2012 in five seismic areas: Guerrero, Chiapas, Oaxaca, Jalisco and Michoacan. Among the five seismic sequences, the Jalisco sequence shows VG properties significantly different from those shown by the other four. Such a difference could be inherent in the different tectonic settings of Jalisco with respect to those characterizing the other four areas. The VG properties of the seismic sequences have been put in relationship with the more typical seismological characteristics (b-value and a-value of the Gutenberg-Richter law). The present study was supported by the Bilateral Project Italy-Mexico "Experimental Stick-slip models of tectonic faults: innovative statistical approaches applied to synthetic seismic sequences", jointly funded by MAECI (Italy) and AMEXCID (Mexico) in the framework of the Bilateral Agreement for Scientific and Technological Cooperation PE 2014-2016

  4. Integrating long-offset transient electromagnetics (LOTEM) with seismics in an exploration environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strack, K.M.; Vozoff, K.

    The applications of electromagnetics have increased in the past two decades because of an improved understanding of the methods, improves service availability, and the increased focus of exploration in the more complex reservoir characterization issues. For electromagnetic methods surface applications for hydrocarbon Exploration and Production are still a special case, while applications in borehole and airborne research and for engineering and environmental objectives are routine. In the past, electromagnetic techniques, in particular deep transient electromagnetics, made up a completely different discipline in geophysics, although many of the principles are similar to the seismic one. With an understanding of the specificmore » problems related to data processing initially and then acquisition, the inclusion of principles learned from seismics happened almost naturally. Initially, the data processing was very similar to seismic full-waveform processing. The hardware was also changed to include multichannel acquisition systems, and the field procedures became very similar to seismic surveying. As a consequence, the integration and synergism of the interpretation process is becoming almost automatic. The long-offset transient electromagnetic (LOTEM) technique will be summarized from the viewpoint of its similarity to seismics. The complete concept of the method will also be reviewed. An interpretation case history that integrates seismic and LOTEM from a hydrocarbon area in China clearly demonstrates the limitations and benefits of the method.« less

  5. Seismic activity in the Sunnyside mining district, Utah, during 1967

    USGS Publications Warehouse

    Barnes, Barton K.; Dunrud, C. Richard; Hernandez, Jerome

    1969-01-01

    A seismic monitoring network near Sunnyside, Utah, consisting of a triangular array of seismometer stations that encompasses most of the mine workings in the district, recorded over 50,000 local earth tremors during 1967. About 540 of the tremors were of sufficient magnitude to be accurately located. Most of these were located within 2-3 miles of mine workings and were also near known or suspected faults. The district-wide seismic activity generally consisted of two different patterns--a periodic increase in the daily number of tremors at weekly intervals, and also a less regular and longer term increase and decrease of seismic activity that occurred over a period of weeks or even months. The shorter and more regular pattern can be correlated with the mine work week and seems to result from mining. The longer term activity, however, does not correlate with known mining causes sad therefore seems to be .caused by natural stresses.

  6. Assessing Multiple Methods for Determining Active Source Travel Times in a Dense Array

    NASA Astrophysics Data System (ADS)

    Parker, L.; Zeng, X.; Thurber, C. H.; Team, P.

    2016-12-01

    238 three-component nodal seismometers were deployed at the Brady Hot Springs geothermal field in Nevada to characterize changes in the subsurface as a result of changes in pumping conditions. The array consisted of a 500 meter by 1600 meter irregular grid with 50 meter spacing centered in an approximately rectangular 1200 meter by 1600 meter grid with 200 meter spacing. A large vibroseis truck (T-Rex) was deployed as an active seismic source at 216 locations. Over the course of 15 days, the truck occupied each location up to four times. At each location a swept-frequency source between 5 and 80 Hz over 20 seconds was produced using three vibration modes: longitudinal S-wave, transverse S-wave, and P-wave. Seismic wave arrivals were identified using three methods: cross-correlation, deconvolution, and Wigner-Ville distribution (WVD) plus the Hough Transform (HT). Surface wave arrivals were clear for all three modes of vibration using all three methods. Preliminary tomographic models will be presented, using the arrivals of the identified phases. This analysis is part of the PoroTomo project: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology; http://geoscience.wisc.edu/feigl/porotomo.

  7. Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance

    NASA Astrophysics Data System (ADS)

    Matichard, F.; Lantz, B.; Mittleman, R.; Mason, K.; Kissel, J.; Abbott, B.; Biscans, S.; McIver, J.; Abbott, R.; Abbott, S.; Allwine, E.; Barnum, S.; Birch, J.; Celerier, C.; Clark, D.; Coyne, D.; DeBra, D.; DeRosa, R.; Evans, M.; Foley, S.; Fritschel, P.; Giaime, J. A.; Gray, C.; Grabeel, G.; Hanson, J.; Hardham, C.; Hillard, M.; Hua, W.; Kucharczyk, C.; Landry, M.; Le Roux, A.; Lhuillier, V.; Macleod, D.; Macinnis, M.; Mitchell, R.; O'Reilly, B.; Ottaway, D.; Paris, H.; Pele, A.; Puma, M.; Radkins, H.; Ramet, C.; Robinson, M.; Ruet, L.; Sarin, P.; Shoemaker, D.; Stein, A.; Thomas, J.; Vargas, M.; Venkateswara, K.; Warner, J.; Wen, S.

    2015-09-01

    The new generation of gravitational waves detectors require unprecedented levels of isolation from seismic noise. This article reviews the seismic isolation strategy and instrumentation developed for the Advanced LIGO observatories. It summarizes over a decade of research on active inertial isolation and shows the performance recently achieved at the Advanced LIGO observatories. The paper emphasizes the scientific and technical challenges of this endeavor and how they have been addressed. An overview of the isolation strategy is given. It combines multiple layers of passive and active inertial isolation to provide suitable rejection of seismic noise at all frequencies. A detailed presentation of the three active platforms that have been developed is given. They are the hydraulic pre-isolator, the single-stage internal isolator and the two-stage internal isolator. The architecture, instrumentation, control scheme and isolation results are presented for each of the three systems. Results show that the seismic isolation sub-system meets Advanced LIGO’s stringent requirements and robustly supports the operation of the two detectors.

  8. Stress and Strain Rates from Faults Reconstructed by Earthquakes Relocalization

    NASA Astrophysics Data System (ADS)

    Morra, G.; Chiaraluce, L.; Di Stefano, R.; Michele, M.; Cambiotti, G.; Yuen, D. A.; Brunsvik, B.

    2017-12-01

    Recurrence of main earthquakes on the same fault depends on kinematic setting, hosting lithologies and fault geometry and population. Northern and central Italy transitioned from convergence to post-orogenic extension. This has produced a unique and very complex tectonic setting characterized by superimposed normal faults, crossing different geologic domains, that allows to investigate a variety of seismic manifestations. In the past twenty years three seismic sequences (1997 Colfiorito, 2009 L'Aquila and 2016-17 Amatrice-Norcia-Visso) activated a 150km long normal fault system located between the central and northern apennines and allowing the recordings of thousands of seismic events. Both the 1997 and the 2009 main shocks were preceded by a series of small pre-shocks occurring in proximity to the future largest events. It has been proposed and modelled that the seismicity pattern of the two foreshocks sequences was caused by active dilatancy phenomenon, due to fluid flow in the source area. Seismic activity has continued intensively until three events with 6.0

  9. Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity

    NASA Astrophysics Data System (ADS)

    Uyeda, S.; Nagao, T.; Hattori, K.; Hayakawa, M.; Miyaki, K.; Molchanov, O.; Gladychev, V.; Baransky, L.; Chtchekotov, A.; Fedorov, E.; Pokhotelov, O.; Andreevsky, S.; Rozhnoi, A.; Khabazin, Y.; Gorbatikov, A.; Gordeev, E.; Chebrov, V.; Sinitzin, V.; Lutikov, A.; Yunga, S.; Kosarev, G.; Surkov, V.; Belyaev, G.

    Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity). The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range ∆F = 0.5 - 40 Hz) and meteorological recordings, together with seismo-acoustic (∆F = 30 - 1000 Hz) and electromagnetic observations: three-component magnetic ULF variations ( ∆F = 0.003 - 30 Hz), three-component electric potential variations ( ∆F < 1.0 Hz), and VLF transmitter's signal perturbations ( ∆F ~ 10 - 40 kHz).

  10. Teamwork tools and activities within the hazard component of the Global Earthquake Model

    NASA Astrophysics Data System (ADS)

    Pagani, M.; Weatherill, G.; Monelli, D.; Danciu, L.

    2013-05-01

    The Global Earthquake Model (GEM) is a public-private partnership aimed at supporting and fostering a global community of scientists and engineers working in the fields of seismic hazard and risk assessment. In the hazard sector, in particular, GEM recognizes the importance of local ownership and leadership in the creation of seismic hazard models. For this reason, over the last few years, GEM has been promoting different activities in the context of seismic hazard analysis ranging, for example, from regional projects targeted at the creation of updated seismic hazard studies to the development of a new open-source seismic hazard and risk calculation software called OpenQuake-engine (http://globalquakemodel.org). In this communication we'll provide a tour of the various activities completed, such as the new ISC-GEM Global Instrumental Catalogue, and of currently on-going initiatives like the creation of a suite of tools for the creation of PSHA input models. Discussion, comments and criticism by the colleagues in the audience will be highly appreciated.

  11. Measuring the effects of pore-pressure changes on seismic amplitude using crosswell continuous active-source seismic monitoring (CASSM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchesini, Pierpaolo; Daley, Thomas; Ajo-Franklin, Jonathan

    Monitoring of time-varying reservoir properties, such as the state of stress, is a primary goal of geophysical investigations, including for geological sequestration of CO 2, enhanced hydrocarbon recovery (EOR), and other subsurface engineering activities. In this work, we used Continuous Active-Source Seismic Monitoring (CASSM), with cross-well geometry, to measure variation in seismic coda amplitude, as a consequence of effective stress change (in the form of changes in pore fluid pressure). To our knowledge, the presented results are the first in-situ example of such crosswell measurement at reservoir scale and in field conditions. Data compliment the findings of our previous workmore » which investigated the relationship between pore fluid pressure and seismic velocity (velocity-stress sensitivity) using the CASSM system at the same field site (Marchesini et al., 2017, in review). We find that P-wave coda amplitude decreases with decreasing pore pressure (increasing effective stress).« less

  12. Configuration of the Moho discontinuity beneath the Japanese Islands derived from three-dimensional seismic tomography

    NASA Astrophysics Data System (ADS)

    Matsubara, Makoto; Sato, Hiroshi; Ishiyama, Tatsuya; Van Horne, Anne

    2017-07-01

    The Mohorovičić discontinuity (Moho) is defined on the basis of an abrupt increase in seismic velocity in the lithosphere which has been observed using seismic refraction and receiver function analysis methods worldwide. Moho depth varies regionally and remains a fundamental parameter of crustal structure. We present a new method of mapping the Moho using a 3D seismic tomography model. Since the tomographic method cannot locate discontinuities, we treat the Moho as a zone of high velocity gradient. Maximum lower crust/minimum upper mantle P-wave velocities in Japan are known to be 7.0 km/s and 7.5 km/s, respectively. We map the residual between isovelocity surfaces of 7.0 km/s and 7.5 km/s to find areas where the residual is small, the separation between the surfaces is narrow, and the velocity gradient is high. The Moho is best constrained where the isovelocity surfaces are close together, and under much of Japan, they are < 6 km and rarely > 10 km apart. We chose an isovelocity surface of 7.2 km/s as a representative Moho 'proxy' in these areas. Our resulting 'Moho' map under Japan compares favorably with existing regional Moho models that were obtained from controlled-source seismic investigations. The 'Moho' varies from shallow (25-30 km) to deep (> 30 km), and this variability relates to the structural evolution of the Japanese islands: the opening of the Sea of Japan back-arc, ongoing arc-arc collisions at the Hidaka and Izu collision zones, ongoing back-arc extension in Kyushu, and a possible failed back-arc extensional event of Mesozoic age. It is apparent that the Moho is less well-constrained in areas where the crustal structure has been modified by magmatic activity or thickened due to arc-arc collision.

  13. High-resolution lithospheric imaging with seismic interferometry

    NASA Astrophysics Data System (ADS)

    Ruigrok, Elmer; Campman, Xander; Draganov, Deyan; Wapenaar, Kees

    2010-10-01

    In recent years, there has been an increase in the deployment of relatively dense arrays of seismic stations. The availability of spatially densely sampled global and regional seismic data has stimulated the adoption of industry-style imaging algorithms applied to converted- and scattered-wave energy from distant earthquakes, leading to relatively high-resolution images of the lower crust and upper mantle. We use seismic interferometry to extract reflection responses from the coda of transmitted energy from distant earthquakes. In theory, higher-resolution images can be obtained when migrating reflections obtained with seismic interferometry rather than with conversions, traditionally used in lithospheric imaging methods. Moreover, reflection data allow the straightforward application of algorithms previously developed in exploration seismology. In particular, the availability of reflection data allows us to extract from it a velocity model using standard multichannel data-processing methods. However, the success of our approach relies mainly on a favourable distribution of earthquakes. In this paper, we investigate how the quality of the reflection response obtained with interferometry is influenced by the distribution of earthquakes and the complexity of the transmitted wavefields. Our analysis shows that a reasonable reflection response could be extracted if (1) the array is approximately aligned with an active zone of earthquakes, (2) different phase responses are used to gather adequate angular illumination of the array and (3) the illumination directions are properly accounted for during processing. We illustrate our analysis using a synthetic data set with similar illumination and source-side reverberation characteristics as field data recorded during the 2000-2001 Laramie broad-band experiment. Finally, we apply our method to the Laramie data, retrieving reflection data. We extract a 2-D velocity model from the reflections and use this model to migrate the data. On the final reflectivity image, we observe a discontinuity in the reflections. We interpret this discontinuity as the Cheyenne Belt, a suture zone between Archean and Proterozoic terranes.

  14. Limitation and applicability of microtremor records for site-response estimation

    NASA Astrophysics Data System (ADS)

    Song, G.; Kang, T.; Park, S.

    2010-12-01

    Site effects are the modifications of seismic motions which are traveling through near-surface materials. The impedance contrast between the topmost layer and bedrock may significantly amplify ground motions and augment their durations. Inelastic behavior of the geological media such as highly fractured/weathered rocks and unconsolidated sediments may absorb seismic energy, and thus damp the resulting ground motions. It is inherently most desirable to evaluate the site effects using seismic records from large earthquakes. If there are only small events that will be recorded by several seismograph stations, it becomes difficult to evaluate site effects using earthquake data. Recently a number of studies pay attention to microtremor records to assess site effects. The main reason of such efforts is that measurements are relatively easy regardless of site condition and cost-effective without necessity of waiting for earthquakes or of using active sources. Especially microtremor measurements are exclusively a useful option to assess site effects, and thus seismic microzonation, in the urban area and/or region of low to moderate seismicity. Spectral ratios of horizontal components to vertical component (HVSR) of microtremor records have been popular for estimation of site resonant frequency. Although some studies have shown that the amplitude of spectral ratios is an indicator of site amplification relative to bedrock motion, there are still debates on it. This discrepancy may originate from the deficiency of our understanding on the nature of microtremor. Therefore, it is important to understand the limitation and applicability of microtremor records for site-effect assessments. The focus on this problem is how microtremor responses on the subsurface structures and their physical properties, and how parameters deduced from microtremor analyses are related to site responses during earthquake ground motions. In order to investigate how these issues have a practical meaning in real cases, results obtained using the microtremor method were compared with results from a field test, a spectral inversion method, and the reference station method for sites of strong motion stations in the southern Korean Peninsula.

  15. Application of a time probabilistic approach to seismic landslide hazard estimates in Iran

    NASA Astrophysics Data System (ADS)

    Rajabi, A. M.; Del Gaudio, V.; Capolongo, D.; Khamehchiyan, M.; Mahdavifar, M. R.

    2009-04-01

    Iran is a country located in a tectonic active belt and is prone to earthquake and related phenomena. In the recent years, several earthquakes caused many fatalities and damages to facilities, e.g. the Manjil (1990), Avaj (2002), Bam (2003) and Firuzabad-e-Kojur (2004) earthquakes. These earthquakes generated many landslides. For instance, catastrophic landslides triggered by the Manjil Earthquake (Ms = 7.7) in 1990 buried the village of Fatalak, killed more than 130 peoples and cut many important road and other lifelines, resulting in major economic disruption. In general, earthquakes in Iran have been concentrated in two major zones with different seismicity characteristics: one is the region of Alborz and Central Iran and the other is the Zagros Orogenic Belt. Understanding where seismically induced landslides are most likely to occur is crucial in reducing property damage and loss of life in future earthquakes. For this purpose a time probabilistic approach for earthquake-induced landslide hazard at regional scale, proposed by Del Gaudio et al. (2003), has been applied to the whole Iranian territory to provide the basis of hazard estimates. This method consists in evaluating the recurrence of seismically induced slope failure conditions inferred from the Newmark's model. First, by adopting Arias Intensity to quantify seismic shaking and using different Arias attenuation relations for Alborz - Central Iran and Zagros regions, well-established methods of seismic hazard assessment, based on the Cornell (1968) method, were employed to obtain the occurrence probabilities for different levels of seismic shaking in a time interval of interest (50 year). Then, following Jibson (1998), empirical formulae specifically developed for Alborz - Central Iran and Zagros, were used to represent, according to the Newmark's model, the relation linking Newmark's displacement Dn to Arias intensity Ia and to slope critical acceleration ac. These formulae were employed to evaluate the slope critical acceleration (Ac)x for which a prefixed probability exists that seismic shaking would result in a Dn value equal to a threshold x whose exceedence would cause landslide triggering. The obtained ac values represent the minimum slope resistance required to keep the probability of seismic-landslide triggering within the prefixed value. In particular we calculated the spatial distribution of (Ac)x for x thresholds of 10 and 2 cm in order to represent triggering conditions for coherent slides (e.g., slumps, block slides, slow earth flows) and disrupted slides (e.g., rock falls, rock slides, rock avalanches), respectively. Then we produced a probabilistic national map that shows the spatial distribution of (Ac)10 and (Ac)2, for a 10% probability of exceedence in 50 year, which is a significant level of hazard equal to that commonly used for building codes. The spatial distribution of the calculated (Ac)xvalues can be compared with the in situ actual ac values of specific slopes to estimate whether these slopes have a significant probability of failing under seismic action in the future. As example of possible application of this kind of time probabilistic map to hazard estimates, we compared the values obtained for the Manjil region with a GIS map providing spatial distribution of estimated ac values in the same region. The spatial distribution of slopes characterized by ac < (Ac)10 was then compared with the spatial distribution of the major landslides of coherent type triggered by the Manjil earthquake. This comparison provides indications on potential, problems and limits of the experimented approach for the study area. References Cornell, C.A., 1968: Engineering seismic risk analysis, Bull. Seism. Soc. Am., 58, 1583-1606. Del Gaudio V., Wasowski J., & Pierri P., 2003: An approach to time probabilistic evaluation of seismically-induced landslide hazard. Bull Seism. Soc. Am., 93, 557-569. Jibson, R.W., E.L. Harp and J.A. Michael, 1998: A method for producing digital probabilistic seismic landslide hazard maps: an example from the Los Angeles, California, area, U.S. Geological Survey Open-File Report 98-113, Golden, Colorado, 17 pp.

  16. Can repeating glacial seismic events be used to monitor stress changes within the underlying volcano? -Case study from the glacier overlain Katla volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Jonsdottir, K.; Vogfjord, K. S.; Bean, C. J.; Martini, F.

    2013-12-01

    The glacier overlain Katla volcano in South Iceland, is one of the most active and hazardous volcano in Europe. Katla eruptions result in hazardous glacial floods and intense tephra fall. On average there are eruptions every 50 years but the volcano is long overdue and we are now witnessing the longest quiescence period in 1000 years or since the settlement. Because of the hazard the volcano poses, it is under constant surveillance and gets a good share of the seismic stations from the national seismic network. Every year the seismic network records thousands of seismic events at Katla with magnitudes seldom exceeding M3. The bulk of the seismicity is however not due to volcano tectonics but seems to be caused mainly by shallow processes involving glacial deformation. Katla's ice filled caldera forms a glacier plateau of several hundred meters thick ice. The 9x14 km oval caldera is surrounded by higher rims where the glacier in some places gently and in others abruptly falls off tens and up to hundred meters to the surrounding lowland. The glacier surface is marked with dozen depressions or cauldrons which manifest geothermal activity below, probably coinciding with circular faults around the caldera. Our current understanding is that there are several glacial processes which cause seismicity; these include dry calving, where steep valley glaciers fall off cliffs and movements of glacier ice as the cauldrons deform due to hydraulic changes and geothermal activity at the glacier/bedrock boundary. These glacial events share a common feature of containing low frequency (2-4 hz) and long coda. Because of their shallow origin, surface waves are prominent. In our analysis we use waveforms from all of Katla's seismic events between years 2003-2013, with the criteria M>1 and minimum 4 p-wave picks. We correlate the waveforms of these events with each other and group them into families of highly similar events. Looking at the occurrence of these families we find that individual families are usually clustered in time over several months, and sometimes families may reappear even up to several years later. Using families including many events and covering long periods (10-20 months) we compare the coda (the tail) of individual events within a family. This is repeated for all the surrounding stations. The analysis, coda wave interferometry (cwi) is a correlation method that builds on the fact that changes in stress in the edifice lead to changes in seismic velocities. The coda waves are highly sensitive to small stress changes. By using a repeating source, implying we have the same source mechanism and the same path, we can track temporal stress changes in the medium between the source and the receiver. Preliminary results from Katla suggest that by using the repeating glacial events and the coda wave interferometry technique we observe annual seismic velocity changes around the volcano of ca. 0.7%. We find that seismic velocities increase from January through July and decrease in August to December. These changes can be explained by pore-water pressure changes and/or loading and de-loading of the overlain glacier. We do not find immediate precursors for an impending eruption at Katla; however we now have a better understanding of its background seismicity.

  17. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 3: Kinematics of Great Basin intraplate extension from earthquake, geodetic and geologic information. Final Technical Report, 15 Apr. 1981 - 31 Jan. 1986 M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Eddington, P. K.

    1986-01-01

    Strain rates assessed from brittle fracture, associated with earthquakes, and total brittle-ductile deformation measured from geodetic data were compared to paleostrain from Quaternary geology for the intraplate Great Basin of the western United States. These data provide an assessment of the kinematics and mode of lithospheric extension that the western U.S. Cordillera has experienced in the last 5 to 10 million years. Strain and deformation rates were determined by the seismic moment tensor method using historic seismicity and fault plane solutions. Contemporary deformation of the Great Basin occurs principally along the active seismic zones. The earthquake related strain shows that the Great Basin is characterized by regional E-W extension at 8.4 mm/a in the north that diminishes to NW-SE extension of 3.5 mm/a in the south. Zones of maximum extension correspond to belts of shallow crust, high heat flow, and Quaternary basaltic volcanism, suggesting that these parameters are related through an effect such as a stress relaxation allowing bouyant uplift and ascension of magmas.

  18. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 1: Kinematics of Basin-Range intraplate extension

    NASA Technical Reports Server (NTRS)

    Eddington, P. K.; Smith, R. B.; Renggli, C.

    1986-01-01

    Strain rates assessed from brittle fracture and total brittle-ductile deformation measured from geodetic data were compared to estimates of paleo-strain from Quaternary geology for the intraplate Great Basin part of the Basin-Range, western United States. These data provide an assessment of the kinematics and mode of lithospheric extension that the western U.S. Cordillera has experienced from the past few million years to the present. Strain and deformation rates were determined by the seismic moment tensor method using historic seismicity and fault plane solutions for sub-regions of homogeneous strain. Contemporary deformation in the Great Basin occurs principally along the active seismic zones. The integrated opening rate across the entire Great Basin is accommodated by E-E extension at 8 to 10 mm/a in the north that diminishes to NW-SE extension of 3.5 mm/a in the south. Zones of maximum lithospheric extension correspond to belts of thin crust, high heat flow, and Quaternary basaltic volcanism, suggesting that these parameters are related through mechanism of extension such as a stress relaxation, allowing bouyant uplift and ascension of magmas.

  19. Exploration of buried carbonate aquifers by the inverse and forward modelling of the Controlled Source Audio-Magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Šumanovac, Franjo; Orešković, Jasna

    2018-06-01

    On the selected cases, Gotalovec in the area of Pannonian basin and Baška in the Dinaridic karst area, that are representing a common hydrogeological model in both regions of Croatia, CSAMT data together with data of other geophysical methods (electrical resistivity tomography, electrical sounding and seismic reflection) enabled the definition of a reliable prognostic geological model. The model consists of carbonate aquifer which underlies an impermeable thick package of clastic deposits. There are great variations of the dolomitic aquifer depths in the Gotalovec area due to strong tectonic activity, while in the Baška area depth changes are caused by the layer folding. The CSAMT method provides the most complete data on lithological and structural relationships in cases of hydrogeological targets deeper than 100 m. Based on the presented models we can conclude that the CSAMT method can provide greater exploration depth than electrical resistivity tomography (ERT) and can be considered as a fundamental geophysical method for exploration of buried carbonate aquifers, deeper than 100 m. But, the CSAMT research may demonstrate its advantages only in the case of very dense layout of CSAMT stations (25-50 m), due to the greater sensitivity to noise in relation to resistivity methods. Interpretation of CSAMT data is more complex in relation to resistivity methods, and a forward modelling method sometimes gives better results than an inversion due to possibility of the use of additional data acquired by other geophysical methods (ERT, electrical sounding and seismic reflection). At greater depths, the resolution of all electrical methods including the CSAMT method is significantly reduced, and seismic reflection can be very useful to resolve deeper lithological interfaces.

  20. Nowcasting Earthquakes: A Comparison of Induced Earthquakes in Oklahoma and at the Geysers, California

    NASA Astrophysics Data System (ADS)

    Luginbuhl, Molly; Rundle, John B.; Hawkins, Angela; Turcotte, Donald L.

    2018-01-01

    Nowcasting is a new method of statistically classifying seismicity and seismic risk (Rundle et al. 2016). In this paper, the method is applied to the induced seismicity at the Geysers geothermal region in California and the induced seismicity due to fluid injection in Oklahoma. Nowcasting utilizes the catalogs of seismicity in these regions. Two earthquake magnitudes are selected, one large say M_{λ } ≥ 4, and one small say M_{σ } ≥ 2. The method utilizes the number of small earthquakes that occurs between pairs of large earthquakes. The cumulative probability distribution of these values is obtained. The earthquake potential score (EPS) is defined by the number of small earthquakes that has occurred since the last large earthquake, the point where this number falls on the cumulative probability distribution of interevent counts defines the EPS. A major advantage of nowcasting is that it utilizes "natural time", earthquake counts, between events rather than clock time. Thus, it is not necessary to decluster aftershocks and the results are applicable if the level of induced seismicity varies in time. The application of natural time to the accumulation of the seismic hazard depends on the applicability of Gutenberg-Richter (GR) scaling. The increasing number of small earthquakes that occur after a large earthquake can be scaled to give the risk of a large earthquake occurring. To illustrate our approach, we utilize the number of M_{σ } ≥ 2.75 earthquakes in Oklahoma to nowcast the number of M_{λ } ≥ 4.0 earthquakes in Oklahoma. The applicability of the scaling is illustrated during the rapid build-up of injection-induced seismicity between 2012 and 2016, and the subsequent reduction in seismicity associated with a reduction in fluid injections. The same method is applied to the geothermal-induced seismicity at the Geysers, California, for comparison.

Top