Science.gov

Sample records for active seismic surveys

  1. Seismic Surveys Negatively Affect Humpback Whale Singing Activity off Northern Angola

    PubMed Central

    Cerchio, Salvatore; Strindberg, Samantha; Collins, Tim; Bennett, Chanda; Rosenbaum, Howard

    2014-01-01

    Passive acoustic monitoring was used to document the presence of singing humpback whales off the coast of Northern Angola, and opportunistically test for the effect of seismic survey activity in the vicinity on the number of singing whales. Two Marine Autonomous Recording Units (MARUs) were deployed between March and December 2008 in the offshore environment. Song was first heard in mid June and continued through the remaining duration of the study. Seismic survey activity was heard regularly during two separate periods, consistently throughout July and intermittently in mid-October/November. Numbers of singers were counted during the first ten minutes of every hour for the period from 24 May to 1 December, and Generalized Additive Mixed Models (GAMMs) were used to assess the effect of survey day (seasonality), hour (diel variation), moon phase and received levels of seismic survey pulses (measured from a single pulse during each ten-minute sampled period) on singer number. Application of GAMMs indicated significant seasonal variation, which was the most pronounced effect when assessing the full dataset across the entire season (p<0.001); however seasonality almost entirely dropped out of top-ranked models when applied to a reduced dataset during the July period of seismic survey activity. Diel variation was significant in both the full and reduced datasets (from p<0.01 to p<0.05) and often included in the top-ranked models. The number of singers significantly decreased with increasing received level of seismic survey pulses (from p<0.01 to p<0.05); this explanatory variable was included among the top ranked models for one MARU in the full dataset and both MARUs in the reduced dataset. This suggests that the breeding display of humpback whales is disrupted by seismic survey activity, and thus merits further attention and study, and potentially conservation action in the case of sensitive breeding populations. PMID:24618836

  2. Seismic surveys negatively affect humpback whale singing activity off northern Angola.

    PubMed

    Cerchio, Salvatore; Strindberg, Samantha; Collins, Tim; Bennett, Chanda; Rosenbaum, Howard

    2014-01-01

    Passive acoustic monitoring was used to document the presence of singing humpback whales off the coast of Northern Angola, and opportunistically test for the effect of seismic survey activity in the vicinity on the number of singing whales. Two Marine Autonomous Recording Units (MARUs) were deployed between March and December 2008 in the offshore environment. Song was first heard in mid June and continued through the remaining duration of the study. Seismic survey activity was heard regularly during two separate periods, consistently throughout July and intermittently in mid-October/November. Numbers of singers were counted during the first ten minutes of every hour for the period from 24 May to 1 December, and Generalized Additive Mixed Models (GAMMs) were used to assess the effect of survey day (seasonality), hour (diel variation), moon phase and received levels of seismic survey pulses (measured from a single pulse during each ten-minute sampled period) on singer number. Application of GAMMs indicated significant seasonal variation, which was the most pronounced effect when assessing the full dataset across the entire season (p<0.001); however seasonality almost entirely dropped out of top-ranked models when applied to a reduced dataset during the July period of seismic survey activity. Diel variation was significant in both the full and reduced datasets (from p<0.01 to p<0.05) and often included in the top-ranked models. The number of singers significantly decreased with increasing received level of seismic survey pulses (from p<0.01 to p<0.05); this explanatory variable was included among the top ranked models for one MARU in the full dataset and both MARUs in the reduced dataset. This suggests that the breeding display of humpback whales is disrupted by seismic survey activity, and thus merits further attention and study, and potentially conservation action in the case of sensitive breeding populations. PMID:24618836

  3. Radar imaging of winter seismic survey activity in the National Petroleum Reserve-Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Rykhus, Russ; Lu, Zhiming; Arp, C.D.; Selkowitz, D.J.

    2008-01-01

    During the spring of 2006, Radarsat-1 synthetic aperture radar (SAR) imagery was acquired on a continual basis for the Teshekpuk Lake Special Area (TLSA), in the northeast portion of the National Petroleum Reserve, Alaska (NPR-A) in order to monitor lake ice melting processes. During data processing, it was discovered that the Radarsat-1 imagery detected features associated with winter seismic survey activity. Focused analysis of the image time series revealed various aspects of the exploration process such as the grid profile associated with the seismic line surveys as well as trails and campsites associated with the mobile survey crews. Due to the high temporal resolution of the dataset it was possible to track the progress of activities over a one month period. Spaceborne SAR imagery can provide information on the location of winter seismic activity and could be used as a monitoring tool for land and resource managers as increased petroleum-based activity occurs in the TLSA and NPR-A. ?? 2008 Cambridge University Press.

  4. Variation in harbour porpoise activity in response to seismic survey noise.

    PubMed

    Pirotta, Enrico; Brookes, Kate L; Graham, Isla M; Thompson, Paul M

    2014-05-01

    Animals exposed to anthropogenic disturbance make trade-offs between perceived risk and the cost of leaving disturbed areas. Impact assessments tend to focus on overt behavioural responses leading to displacement, but trade-offs may also impact individual energy budgets through reduced foraging performance. Previous studies found no evidence for broad-scale displacement of harbour porpoises exposed to impulse noise from a 10 day two-dimensional seismic survey. Here, we used an array of passive acoustic loggers coupled with calibrated noise measurements to test whether the seismic survey influenced the activity patterns of porpoises remaining in the area. We showed that the probability of recording a buzz declined by 15% in the ensonified area and was positively related to distance from the source vessel. We also estimated received levels at the hydrophones and characterized the noise response curve. Our results demonstrate how environmental impact assessments can be developed to assess more subtle effects of noise disturbance on activity patterns and foraging efficiency. PMID:24850891

  5. Variation in harbour porpoise activity in response to seismic survey noise

    PubMed Central

    Pirotta, Enrico; Brookes, Kate L.; Graham, Isla M.; Thompson, Paul M.

    2014-01-01

    Animals exposed to anthropogenic disturbance make trade-offs between perceived risk and the cost of leaving disturbed areas. Impact assessments tend to focus on overt behavioural responses leading to displacement, but trade-offs may also impact individual energy budgets through reduced foraging performance. Previous studies found no evidence for broad-scale displacement of harbour porpoises exposed to impulse noise from a 10 day two-dimensional seismic survey. Here, we used an array of passive acoustic loggers coupled with calibrated noise measurements to test whether the seismic survey influenced the activity patterns of porpoises remaining in the area. We showed that the probability of recording a buzz declined by 15% in the ensonified area and was positively related to distance from the source vessel. We also estimated received levels at the hydrophones and characterized the noise response curve. Our results demonstrate how environmental impact assessments can be developed to assess more subtle effects of noise disturbance on activity patterns and foraging efficiency. PMID:24850891

  6. Assessing Acoustic Sound Levels Associated with Active Source Seismic Surveys in Shallow Marine Environments

    NASA Astrophysics Data System (ADS)

    Bohnenstiehl, D. R.; Tolstoy, M.; Thode, A.; Diebold, J. B.; Webb, S. C.

    2004-12-01

    The potential effect of active source seismic research on marine mammal populations is a topic of increasing concern, and controversy surrounding such operations has begun to impact the planning and permitting of academic surveys [e.g., Malakoff, 2002 Science]. Although no causal relationship between marine mammal strandings and seismic exploration has been proven, any circumstantial evidence must be thoroughly investigated. A 2002 stranding of two beaked whales in the Gulf of California within 50 km of a R/V Ewing seismic survey has been a subject of concern for both marine seismologists and environmentalists. In order to better understand possible received levels for whales in the vicinity of these operations, modeling is combined with ground-truth calibration measurements. A wide-angle parabolic equation model, which is capable of including shear within the sediment and basement layers, is used to generate predictive models of low-frequency transmission loss within the Gulf of California. This work incorporates range-dependent bathymetry, sediment thickness, sound velocity structure and sub-bottom properties. Oceanic sounds speed profiles are derived from the U.S. Navy's seasonal GDEM model and sediment thicknesses are taken from NOAA's worldwide database. The spectral content of the Ewing's 20-airgun seismic array is constrained by field calibration in the spring of 2003 [Tolstoy et al., 2004 GRL], indicating peak energies at frequencies below a few hundred Hz, with energy spectral density showing an approximate power-law decrease at higher frequencies (being ~40 dB below peak at 1 kHz). Transmission loss is estimated along a series of radials extending from multiple positions along the ship's track, with the directivity of the array accounted for by phase-shifting point sources that are scaled by the cube root of the individual airgun volumes. This allows the time-space history of low-frequency received levels to be reconstructed within the Gulf of California

  7. 75 FR 39335 - Incidental Takes of Marine Mammals During Specified Activities; Marine Seismic Survey in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ...NMFS has received an application from the U.S. Geological Survey (USGS) for an Incidental Harassment Authorization (IHA) to take small numbers of marine mammals, by harassment, incidental to conducting a marine seismic survey in the Arctic Ocean during August to September, 2010. Pursuant to the Marine Mammal Protection Act (MMPA), NMFS requests comments on its proposal to authorize USGS to......

  8. Active Seismic Imaging Experiment

    NASA Astrophysics Data System (ADS)

    Berge, Patricia A.; Dawson, Phillip B.; Evans, John R.

    In September 1985 the U.S. Geological Survey (USGS) and Lawrence Livermore National Laboratory (LLNL) will conduct an active seismic experiment in the Medicine Lake area of northern California. The work is supported by the Geothermal Research Program of USGS and by the Geothermal and Hydropower Technologies Division of the U.S. Department of Energy. We invite interested organizations or individuals to record our explosions from Medicine Lake volcano and surrounding areas not covered by the USGS-LLNL array.

  9. Active seismic experiment

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.; Talwani, P.

    1972-01-01

    The Apollo 16 active seismic experiment (ASE) was designed to generate and monitor seismic waves for the study of the lunar near-surface structure. Several seismic energy sources are used: an astronaut-activated thumper device, a mortar package that contains rocket-launched grenades, and the impulse produced by the lunar module ascent. Analysis of some seismic signals recorded by the ASE has provided data concerning the near-surface structure at the Descartes landing site. Two compressional seismic velocities have so far been recognized in the seismic data. The deployment of the ASE is described, and the significant results obtained are discussed.

  10. Active and passive seismic methods for characterization and monitoring of unstable rock masses: field surveys, laboratory tests and modeling.

    NASA Astrophysics Data System (ADS)

    Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio

    2016-04-01

    Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous

  11. A university-developed seismic source for shallow seismic surveys

    NASA Astrophysics Data System (ADS)

    Yordkayhun, Sawasdee; Na Suwan, Jumras

    2012-07-01

    The main objectives of this study were to (1) design and develop a low cost seismic source for shallow seismic surveys and (2) test the performance of the developed source at a test site. The surface seismic source, referred to here as a university-developed seismic source is based upon the principle of an accelerated weight drop. A 30 kg activated mass is lifted by a mechanical rack and pinion gear and is accelerated by a mounted spring. When the mass is released from 0.5 m above the surface, it hits a 30 kg base plate and energy is transferred to the ground, generating a seismic wave. The developed source is portable, environmentally friendly, easy to operate and maintain, and is a highly repeatable impact source. To compare the developed source with a sledgehammer source, a source test was performed at a test site, a study site for mapping a major fault zone in southern Thailand. The sledgehammer and the developed sources were shot along a 300 m long seismic reflection profile with the same parameters. Data were recorded using 12 channels off-end geometry with source and receiver spacing of 5 m, resulting in CDP stacked sections with 2.5 m between traces. Source performances were evaluated based on analyses of signal penetration, frequency content and repeatability, as well as the comparison of stacked sections. The results show that both surface sources are suitable for seismic studies down to a depth of about 200 m at the site. The hammer data are characterized by relatively higher frequency signals than the developed source data, whereas the developed source generates signals with overall higher signal energy transmission and greater signal penetration. In addition, the repeatability of the developed source is considerably higher than the hammer source.

  12. Seismic Vulnerability Evaluations Within The Structural And Functional Survey Activities Of The COM Bases In Italy

    SciTech Connect

    Zuccaro, G.; Cacace, F.; Albanese, V.; Mercuri, C.; Papa, F.; Pizza, A. G.; Sergio, S.; Severino, M.

    2008-07-08

    The paper describes technical and functional surveys on COM buildings (Mixed Operative Centre). This activity started since 2005, with the contribution of both Italian Civil Protection Department and the Regions involved. The project aims to evaluate the efficiency of COM buildings, checking not only structural, architectonic and functional characteristics but also paying attention to surrounding real estate vulnerability, road network, railways, harbours, airports, area morphological and hydro-geological characteristics, hazardous activities, etc. The first survey was performed in eastern Sicily, before the European Civil Protection Exercise 'EUROSOT 2005'. Then, since 2006, a new survey campaign started in Abruzzo, Molise, Calabria and Puglia Regions. The more important issue of the activity was the vulnerability assessment. So this paper deals with a more refined vulnerability evaluation technique by means of the SAVE methodology, developed in the 1st task of SAVE project within the GNDT-DPC programme 2000-2002 (Zuccaro, 2005); the SAVE methodology has been already successfully employed in previous studies (i.e. school buildings intervention programme at national scale; list of strategic public buildings in Campania, Sicilia and Basilicata). In this paper, data elaborated by SAVE methodology are compared with expert evaluations derived from the direct inspections on COM buildings. This represents a useful exercise for the improvement either of the survey forms or of the methodology for the quick assessment of the vulnerability.

  13. Seismic Vulnerability Evaluations Within The Structural And Functional Survey Activities Of The COM Bases In Italy

    NASA Astrophysics Data System (ADS)

    Zuccaro, G.; Albanese, V.; Cacace, F.; Mercuri, C.; Papa, F.; Pizza, A. G.; Sergio, S.; Severino, M.

    2008-07-01

    The paper describes technical and functional surveys on COM buildings (Mixed Operative Centre). This activity started since 2005, with the contribution of both Italian Civil Protection Department and the Regions involved. The project aims to evaluate the efficiency of COM buildings, checking not only structural, architectonic and functional characteristics but also paying attention to surrounding real estate vulnerability, road network, railways, harbours, airports, area morphological and hydro-geological characteristics, hazardous activities, etc. The first survey was performed in eastern Sicily, before the European Civil Protection Exercise "EUROSOT 2005". Then, since 2006, a new survey campaign started in Abruzzo, Molise, Calabria and Puglia Regions. The more important issue of the activity was the vulnerability assessment. So this paper deals with a more refined vulnerability evaluation technique by means of the SAVE methodology, developed in the 1st task of SAVE project within the GNDT-DPC programme 2000-2002 (Zuccaro, 2005); the SAVE methodology has been already successfully employed in previous studies (i.e. school buildings intervention programme at national scale; list of strategic public buildings in Campania, Sicilia and Basilicata). In this paper, data elaborated by SAVE methodology are compared with expert evaluations derived from the direct inspections on COM buildings. This represents a useful exercise for the improvement either of the survey forms or of the methodology for the quick assessment of the vulnerability.

  14. Astor Pass Seismic Surveys Preliminary Report

    SciTech Connect

    Louie, John; Pullammanappallil, Satish; Faulds, James; Eisses, Amy; Kell, Annie; Frary, Roxanna; Kent, Graham

    2011-08-05

    In collaboration with the Pyramid Lake Paiute Tribe (PLPT), the University of Nevada, Reno (UNR) and Optim re-processed, or collected and processed, over 24 miles of 2d seismic-reflection data near the northwest corner of Pyramid Lake, Nevada. The network of 2d land surveys achieved a near-3d density at the Astor Pass geothermal prospect that the PLPT drilled during Nov. 2010 to Feb. 2011. The Bureau of Indian Affairs funded additional seismic work around the Lake, and an extensive, detailed single-channel marine survey producing more than 300 miles of section, imaging more than 120 ft below the Lake bottom. Optim’s land data collection utilized multiple heavy vibrators and recorded over 200 channels live, providing a state-of-the-art reflection-refraction data set. After advanced seismic analysis including first-arrival velocity optimization and prestack depth migration, the 2d sections show clear fault-plane reflections, in some areas as deep as 4000 ft, tying to distinct terminations of the mostly volcanic stratigraphy. Some lines achieved velocity control to 3000 ft depth; all lines show reflections and terminations to 5000 ft depth. Three separate sets of normal faults appear in an initial interpretation of fault reflections and stratigraphic terminations, after loading the data into the OpendTect 3d seismic visualization system. Each preliminary fault set includes a continuous trace more than 3000 ft long, and a swarm of short fault strands. The three preliminary normal-fault sets strike northerly with westward dip, northwesterly with northeast dip, and easterly with north dip. An intersection of all three fault systems documented in the seismic sections at the end of Phase I helped to locate the APS-2 and APS-3 slimholes. The seismic sections do not show the faults connected to the Astor Pass tufa spire, suggesting that we have imaged mostly Tertiary-aged faults. We hypothesize that the Recent, active faults that produced the tufa through hotspring

  15. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013.

    PubMed

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto

    2016-01-01

    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania-Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries. PMID:27479914

  16. Oceanic crust deep seismic survey

    NASA Astrophysics Data System (ADS)

    McBride, J. H.; White, R. S.

    In September 1991, the British Institutions Reflection Profiling Syndicate (BIRPS) collected 578 km of deep seismic reflection profiles over the oceanic crust beneath the Cape Verde abssyal plain in approximately 4900 m of water (Fig. 1). The survey, under the direction of J. H. McBride, was undertaken in response to a proposal made by R. S. White at the 1990 BIRPS open syndicate meeting in Birmingham, England, and was acquired using GECO-PRAKLA'S M/V Bin Hai 511. The survey consisted of two strike lines parallel to magnetic sea-floor lineations and nine orthogonal crossing lines oriented parallel to the spreading direction (Fig. 2). Adjacent lines are spaced at 4 km. For the first time, this provides the ability to map oceanic crust in “3D,” since the line spacing is less than or equal to the Fresnel-zone diameter for the lower crust.

  17. Vertical Cable Seismic Survey for Hydrothermal Deposit

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2012-04-01

    The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have, however, also confirmed that the uncertainty in the locations of the source and of the hydrophones could lower the quality of subsurface image. It is, therefore, strongly necessary to develop a total survey system that assures a accurate positioning and a deployment techniques

  18. 75 FR 54095 - Takes of Marine Mammals Incidental to Specified Activities; Low-Energy Marine Seismic Survey in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ...NMFS has received an application from the Scripps Institution of Oceanography (SIO) of the University of California for an Incidental Harassment Authorization (IHA) to take marine mammals, by harassment, incidental to conducting a low-energy marine seismic survey. Pursuant to the Marine Mammal Protection Act (MMPA), NMFS is requesting comments on its proposal to issue an IHA to SIO to take, by......

  19. Forearc oceanic crust in the Izu-Bonin arc - new insights from active-source seismic survey -

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Noguchi, N.; Takahashi, N.; Ishizuka, O.; Kaneda, Y.

    2009-12-01

    Petrological studies have suggested that oceanic crust is formed in forearc areas during the initial stage of subduction. However, there is little geophysical evidence for the formation of oceanic crust in those regions. In order to examine crustal formation process associated with a subduction initiation process, we conducted an active-source seismic survey at a forearc region in the Izu-Bonin intra-oceanic arc. The resultant seismic image shows a remarkably thin crust (less than 10 km) at the northern half of the Bonin ridge (at the north of the Chichi-jima) and abrupt thickening the crust (~ 20 km thick) toward the south (at the Haha-jima). Comparison of velocity-depth profiles of the thin forearc crust of the Bonin ridge with those of typical oceanic crusts showed them to be seismologically identical. The observed structural variation also well corresponds to magmatic activities along the forearc. Boninitic magmatism is evident in the area of thin crust and tholeiitic-calcalkaline andesitic volcanism in the area of thick crust. Based on high precision dating studies of those volcanic rocks, we interpreted that the oceanic-type thin crust associated with boninitic volcanism has been created soon after the initiation of subduction (45-48 Ma) and and that the nonoceanic thick crust was created by tholeiitic-calcalkaline andesitic magmatism after the boninitic magmatism was ceased. The above seismological evidences strongly support the idea of forearc oceanic crust (or phiolite) created by forearc spreading in the initial stage of subduction along the intra-oceanic arc.

  20. TOMO-ETNA MED-SUV.ISES an active seismic and passive seismic experiment at Mt. Etna volcano. An integrated marine and onland geophysical survey.

    NASA Astrophysics Data System (ADS)

    Ibáñez, Jesus. M.; Patane, Domenico; Puglisi, Guisseppe; Zuccarello, Lucciano; Bianco, Francesca; Luehr, Birger; Diaz-Moreno, Alejandro; Prudencio, Janire; Koulakov, Ivan; Del Pezzo, Edoardo; Cocina, Ornella; Coltelli, Mauro; Scarfi, Lucciano; De Gori, Pascuale; Carrion, Francisco

    2014-05-01

    An active seismic experiment to study the internal structure of Etna Volcano is going to carried out on Sicily and Aeolian islands. The main objective of the TOMO-ETNA MED-SUV.ISES experiment, beginning in summer 2014, is to perform a high resolution seismic tomography, in velocity and attenuation, in Southern Italy, by using active and passive seismic data, in an area encompassing outstanding volcanoes as Mt. Etna, and Aeolian volcanoes. The achievement of this objective is based on the integration and sharing of the in-situ marine and land experiments and observations and on the implementation of new instruments and monitoring systems. For the purpose, onshore and offshore seismic stations and passive and active seismic data generated both in marine and terrestrial environment will be used. Additionally, other geophysical data, mainly magnetic and gravimetric data will be considered to obtain a joint Upper Mantle-Crust structure that could permit to make progress in the understanding of the dynamic of the region. This multinational experiment which involves institutions from Spain, Italy, Germany, United Kingdom, Ireland, France, Malta, Portugal, Russia, USA and Mexico. During the experiment more than 6.600 air gun shots performed by the Spanish Oceanographic vessel "Sarmiento de Gamboa" will be recorder on a dense local seismic network consisting of 100 on land non-permanent stations, 70 on land permanent stations and 20-25 OBSs. Contemporaneously other marine geophysical measures will be performed using a marine Gravimeter LaCoste&Romberg Air-Sea Gravity System II and a Marine Magnetometer SeaSPY. The experiments will provide a unique data set in terms of data quantity and quality, and it will provide a detailed velocity and attenuation structural image of volcano edifice. The results will be essential in the development and interpretation of future volcanic models. It is noteworthy that this project is fully transversal, multidisciplinary and crosses several

  1. Seismic Survey Challenges and Solutions in Industrial And Urban Environments

    NASA Astrophysics Data System (ADS)

    Coueslan, M. L.; El-Kaseeh, G.; Totten, S.

    2011-12-01

    Carbon storage projects are often located in close proximity to anthropogenic sources of CO2. This means that the storage site location may be near industrial power plants, mining activity, or urban centers. Proximity to these environments can present unique challenges for the seismic survey design, acquisition, and processing teams in terms of acquiring surface seismic data that meets the site characterization objectives for a CO2 storage site. Seismic surveys in urban and industrial environments may have acquisition footprints that are severely constrained by surrounding infrastructure. The acquisition crew and survey design team must work closely together in real-time to add in-fill source and receiver locations to surveys in order to ensure that high fold coverage is maintained over the survey. High levels of seismic noise may be generated by the industrial plants themselves. Local and industrial traffic, as well as electrical noise may also be a cause for concern. Near surface conditions, such as water saturated soils, unconsolidated mine tailings, and mining cavities, may accelerate attenuation of the seismic signal and become sources of noise in the survey and further impact data quality. When dealing with such conditions, the acquisition and survey design teams must stay in constant communication to optimize survey parameters to account for noise issues. In some cases, the raw data can be so contaminated with noise that no coherent signal can be seen in the data. However, the use of high density-single sensors is one of the most effective options to deal with noisy acquisition environments as this method allows the recorded noise to be sampled without aliasing so that that it can be removed from the data without impacting the seismic signal. Removing noise and optimizing the final images obtained from the data is the job of the survey design and data processing teams. A final consideration when acquiring seismic surveys in urban areas is the visibility of

  2. 16ch high-resolution seismic reflection surveys on the active fault of upper fore-arc slope off Okinawa Island, central Ryukyu Island Arc, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Arai, K.; Inoue, T.; Sato, T.; Tuzino, T.

    2010-12-01

    The Ryukyu Island Arc extends from Kyushu to Taiwan, a distance of 1,200 km, along the Ryukyu Trench where the Philippine Sea Plate is subducting beneath the Eurasian Plate. The Okinawa Trough, a back arc basin has formed behind the Ryukyu Island Arc in late Pliocene to early Pleistocene. The research cruises of GH08 (from 28th July to 29th August 2008) and GH09 (from 16th July to 17th August 2009) were carried out around Okinawa Island, which is located on the central Ryukyu Island Arc. More than 4,500 miles multi channel high-resolution seismic profiles were acquired during these two cruises by the GI-gun (355cu. inch) or the Cluster-gun (30+30 cu. inch) systems with 16ch digital streamer cable. Survey area in the southeast off Okinawa Island is located on the upper fore-arc slope. Seismic reflections of the upper fore-arc slope show a distinct reflector which may represent erosional unconformable surface. The distinct reflector had tilted southeastward and was overlain by the stratified sediments. No obvious deformation such as the fold and faults parallel to the Ryukyu Trench axis was found under the upper slope. In contrast, some active faults which were perpendicular to the Ryukyu Trench axis (NW-SE direction) were observed. The most conspicuous normal fault was found on north off Okinawa Island. The fault with 70-80°dipping toward northeast has been active since the early Pleistocene inferred from seismic stratigraphy and calcareous nannofossil biochronology. The maximum displacement reaches to 0.7 s two way travel time in depth. An average of maximum vertical displace component of the normal fault may reach up to ten cm/1000 years. Seismic profiles indicate that the tilting of Ryukyu Island Arc forward to the Ryukyu Trench plays the important role of formation of the fault in a NW-SE direction.

  3. Seismic Holography of Solar Activity

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles

    2000-01-01

    The basic goal of the project was to extend holographic seismic imaging techniques developed under a previous NASA contract, and to incorporate phase diagnostics. Phase-sensitive imaging gives us a powerful probe of local thermal and Doppler perturbations in active region subphotospheres, allowing us to map thermal structure and flows associated with "acoustic moats" and "acoustic glories". These remarkable features were discovered during our work, by applying simple acoustic power holography to active regions. Included in the original project statement was an effort to obtain the first seismic images of active regions on the Sun's far surface.

  4. Vertical Cable Seismic Survey for SMS exploration

    NASA Astrophysics Data System (ADS)

    Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hotoshi; Mizohata, Shigeharu

    2014-05-01

    The Vertical Cable Seismic (VCS) survey is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by sea-surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because the VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed it for the SMS survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We have been developing the VCS survey system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of these surveys are from 100m up to 2100 m. Through these experiments, our VCS data acquisition system has been also completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system is available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed a new approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In 2013, we have carried out the second VCS survey using the surface-towed high-voltage sparker and ocean bottom source in the Izena Cauldron, which is one of the most promising SMS areas around Japan. The positions of ocean bottom source estimated by this method are consistent with the VCS field records. The VCS data with the sparker have been processed with 3D PSTM. It gives the very high resolution 3D volume deeper than two

  5. Near-Surface Site Characterization Using a Combination of Active and Passive Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Lane, J. W.; Liu, L.; Chen, Y.; White, E. A.

    2007-12-01

    Seismic surveys with an active source are commonly used to characterize the subsurface. Increasingly, passive seismic surveys utilizing ambient seismic frequencies (microtremors) are being used to support geotechnical and hazards engineering studies. In this study, we use a combination of active and passive seismic methods to characterize a watershed site at Haddam Meadows State Park, Haddam, Connecticut. At Haddam Meadows, we employed a number of seismic arrays using both active and passive approaches to estimate the depth to rock and the seismic velocity structure of the unconsolidated sediments. The active seismic surveys included seismic refraction and multi-channel analysis of surface waves (MASW) using an accelerated weight-drop seismic source. The passive seismic surveys consisted of MASW techniques using both linear and circular geophone arrays, and a survey using a 3-component seismometer. The active seismic data were processed using conventional algorithms; the passive seismic data were processed using both the spatial autocorrelation method (SPAC) and the horizontal to vertical spectral ratio (H/V) method. The interpretations of subsurface structure from the active and passive surveys are generally in good agreement and compare favorably with ground truth information provided by adjacent boreholes. Our results suggest that a combination of active and passive seismic methods can be used to rapidly characterize the subsurface at the watershed scale.

  6. Vertical cable surveys deliver additional seismic data

    SciTech Connect

    1995-12-01

    Texaco and a Norwegian seismic firm have patented a new system for deploying hydrophones on vertical cables for offshore surveys. The system was used in Texaco North Sea UK Ltd.`s Strathspey field during the summer. The new technique was introduced in the article, ``Peaceful use for war technology,`` published in Texaco UK`s Agenda monthly news magazine, October 1995. That article is summarized here. Using technology developed by the US Navy for antisubmarine warfare, the vertical-cable survey relies on hydrophones attached at regular intervals vertically along cables secured to the ocean floor and held taut by a buoy. The shooting vessel fires the airguns in a pattern over a large area on the surface, over and around the cables. The cables are then moved to a new location and the process is repeated, up to six times in the Strathspey application described here.

  7. Vector Acoustic Sensors for Marine Seismic Surveys

    NASA Astrophysics Data System (ADS)

    Lindwall, D.

    2005-12-01

    Using vector acoustic sensors for marine seismic and geo-acoustic surveys instead of the usual scalar hydrophones allows for acquiring a 3-D survey with the instrumentation and logistics similar to current 2-D surveys. Vector acoustic sensors measure the wave direction directly without the large and cumbersome arrays that hydrophones require. This concept was tested by a scaled experiment in an acoustic water tank that has a well controlled environment with a few targets. The experiment was scaled to the size of the available water tank and the frequency limits of the sensor. The sensor consists of a three-axis accelerometer as well as a hydrophone. The sound source was a standard hydrophone driven by a short 8 kHz pulse. The sensor was suspended in a fixed location and the hydrophone was moved about the tank by a robotic arm to insonify the tank from many locations. During part of the experiment, several floats (acoustic targets) were placed in the tank at diagonal ranges of approximately one meter. The accelerometer data show the direct source wave as well as the target scattered waves and reflections from the nearby water surface, tank bottom and sides. Vector data from single shots show that the wave motion direction can be readily determined for both direct waves and scattered waves. Without resorting to the usual methods of seismic imaging, which in this case would have only been two dimensional and relied entirely on the use of a synthetic source aperture, the three-dimensional volume of the tank environment was imaged. This work was supported by the Office of Naval Research, program element 61153N.

  8. Quantifying seismic survey reverberation off the Alaskan North Slope.

    PubMed

    Guerra, Melania; Thode, Aaron M; Blackwell, Susanna B; Michael Macrander, A

    2011-11-01

    Shallow-water airgun survey activities off the North Slope of Alaska generate impulsive sounds that are the focus of much regulatory attention. Reverberation from repetitive airgun shots, however, can also increase background noise levels, which can decrease the detection range of nearby passive acoustic monitoring (PAM) systems. Typical acoustic metrics for impulsive signals provide no quantitative information about reverberation or its relative effect on the ambient acoustic environment. Here, two conservative metrics are defined for quantifying reverberation: a minimum level metric measures reverberation levels that exist between airgun pulse arrivals, while a reverberation metric estimates the relative magnitude of reverberation vs expected ambient levels in the hypothetical absence of airgun activity, using satellite-measured wind data. The metrics are applied to acoustic data measured by autonomous recorders in the Alaskan Beaufort Sea in 2008 and demonstrate how seismic surveys can increase the background noise over natural ambient levels by 30-45 dB within 1 km of the activity, by 10-25 dB within 15 km of the activity, and by a few dB at 128 km range. These results suggest that shallow-water reverberation would reduce the performance of nearby PAM systems when monitoring for marine mammals within a few kilometers of shallow-water seismic surveys. PMID:22087932

  9. Exposure to seismic survey alters blue whale acoustic communication.

    PubMed

    Di Iorio, Lucia; Clark, Christopher W

    2010-02-23

    The ability to perceive biologically important sounds is critical to marine mammals, and acoustic disturbance through human-generated noise can interfere with their natural functions. Sounds from seismic surveys are intense and have peak frequency bands overlapping those used by baleen whales, but evidence of interference with baleen whale acoustic communication is sparse. Here we investigated whether blue whales (Balaenoptera musculus) changed their vocal behaviour during a seismic survey that deployed a low-medium power technology (sparker). We found that blue whales called consistently more on seismic exploration days than on non-exploration days as well as during periods within a seismic survey day when the sparker was operating. This increase was observed for the discrete, audible calls that are emitted during social encounters and feeding. This response presumably represents a compensatory behaviour to the elevated ambient noise from seismic survey operations. PMID:19776059

  10. Exposure to seismic survey alters blue whale acoustic communication

    PubMed Central

    Di Iorio, Lucia; Clark, Christopher W.

    2010-01-01

    The ability to perceive biologically important sounds is critical to marine mammals, and acoustic disturbance through human-generated noise can interfere with their natural functions. Sounds from seismic surveys are intense and have peak frequency bands overlapping those used by baleen whales, but evidence of interference with baleen whale acoustic communication is sparse. Here we investigated whether blue whales (Balaenoptera musculus) changed their vocal behaviour during a seismic survey that deployed a low-medium power technology (sparker). We found that blue whales called consistently more on seismic exploration days than on non-exploration days as well as during periods within a seismic survey day when the sparker was operating. This increase was observed for the discrete, audible calls that are emitted during social encounters and feeding. This response presumably represents a compensatory behaviour to the elevated ambient noise from seismic survey operations. PMID:19776059

  11. Bayesian spatial modeling of cetacean sightings during a seismic acquisition survey.

    PubMed

    Vilela, Raul; Pena, Ursula; Esteban, Ruth; Koemans, Robin

    2016-08-15

    A visual monitoring of marine mammals was carried out during a seismic acquisition survey performed in waters south of Portugal with the aim of assessing the likelihood of encountering Mysticeti species in this region as well as to determine the impact of the seismic activity upon encounter. Sightings and effort data were assembled with a range of environmental variables at different lags, and a Bayesian site-occupancy modeling approach was used to develop prediction maps and evaluate how species-specific habitat conditions evolved throughout the presence or not of seismic activity. No statistical evidence of a decrease in the sighting rates of Mysticeti by comparison to source activity was found. Indeed, it was found how Mysticeti distribution during the survey period was driven solely by environmental variables. Although further research is needed, possible explanations may include anthropogenic noise habituation and zone of seismic activity coincident with a naturally low density area. PMID:27210556

  12. Geyser's Eruptive Activity in Broadband Seismic Records

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yulia; Saltykov, Vadim

    2010-05-01

    A geyser is a spring characterized by intermittent discharge of water ejected turbulently and accompanied by a vapor phase (steam). The formation of geysers is due to particular hydrogeological conditions, which exist in only a few places on Earth, so they are a fairly rare phenomenon. The reasons of geyser periodicity and specifics of the activity for every particular geyser are not completely clear yet. So almost for all known geysers it is necessary to develop the personal model. In given study we first use seismic method for detection of possible hidden feature of geyser's eruptive activity in Kamchatkan Valley of the Geysers. Broadband seismic records of geyser generated signals were obtained in hydrothermal field. The Valley of the Geysers belongs to Kronotskiy State Natural Biosphere Reserve and the UNESCO World Natural Heritage Site "Volcanoes of Kamchatka". Neither seismological nor geophysical investigations were carried out here earlier. In September, 2009 seismic observation was organized in geyser's field by 24-bit digital output broadband seismometers (GURALP CMG-6TD flat velocity response 0.033-50 Hz). Four geysers were surveyed: the fountain type Big and Giant geysers; the cone type Pearl geyser and the short-period Gap geyser. Seismometers were set as possible close to the geyser's surface vent (usually at the distance near 3-5 m). Main parameters of the eruptions for the investigated geysers: - The Giant geyser is the most powerful among the regular active geysers in Kamchatkan Valley of the Geysers. The height of the fountain reaches 30 meters, the mass of water erupted is about 40-60 tons. The main cycle of activity varies significantly: in 1945 the intervals between eruptions was near 3 hours, nowadays it is 5-6 hours. As a geyser of fountain type, the Giant geyser erupts from the 2*3 m2 pool of water. - The Big geyser was flooded by the lake after the natural catastrophe (giant mud-stone avalanche, formed by landslide, bed into Geiyzernaya

  13. A versatile shotgun source for engineering and groundwater seismic surveys

    SciTech Connect

    Parker, J.C. Jr.; Pelton, J.R.; Dougherty, M.E. . Center for Geophysical Investigation of the Shallow Subsurface)

    1993-10-01

    The authors describe an electrical seismic gun that is capable of firing 8-gauge blank black powder shells in a water-filled borehole under relatively high hydrostatic pressures. The new seismic gun is a modified version of the electrical shotgun source for engineering seismic surveys introduced by Pullan and MacAulay (1987). The modifications seal the firing circuit and 8-gauge shell against water entry so underwater detonation will occur reliably at depths to at least 80 m (0.9 MPa atmospheric pressure). Source energy is controlled by varying the size of the black powder load in the shell from 50 grains to 500 grains (10 kJ to 100 kJ). Although their seismic gun may be used in any seismic application suitable for modest explosive charges, it was initially developed as a versatile source for use in seismic investigations of the shallow subsurface (primarily engineering and groundwater studies). As of this writing, the gun has been used for optimum offset and CMP high-resolution seismic reflection profiling, engineering refraction surveys, fixed-source and variable-source noise tests, and vertical travel time measurements in water wells. Other potential uses include VSP and borehole-to-surface or borehole-to-borehole seismic tomography.

  14. Seismic wave propagation through surface basalts - implications for coal seismic surveys

    NASA Astrophysics Data System (ADS)

    Sun, Weijia; Zhou, Binzhong; Hatherly, Peter; Fu, Li-Yun

    2010-02-01

    Seismic reflection surveying is one of the most widely used and effective techniques for coal seam structure delineation and risk mitigation for underground longwall mining. However, the ability of the method can be compromised by the presence of volcanic cover. This problem arises within parts of the Bowen and Sydney Basins of Australia and seismic surveying can be unsuccessful. As a consequence, such areas are less attractive for coal mining. Techniques to improve the success of seismic surveying over basalt flows are needed. In this paper, we use elastic wave-equation-based forward modelling techniques to investigate the effects and characteristics of seismic wave propagation under different settings involving changes in basalt properties, its thickness, lateral extent, relative position to the shot position and various forms of inhomogeneity. The modelling results suggests that: 1) basalts with high impedance contrasts and multiple flows generate strong multiples and weak reflectors; 2) thin basalts have less effect than thick basalts; 3) partial basalt cover has less effect than full basalt cover; 4) low frequency seismic waves (especially at large offsets) have better penetration through the basalt than high frequency waves; and 5) the deeper the coal seams are below basalts of limited extent, the less influence the basalts will have on the wave propagation. In addition to providing insights into the issues that arise when seismic surveying under basalts, these observations suggest that careful management of seismic noise and the acquisition of long-offset seismic data with low-frequency geophones have the potential to improve the seismic results.

  15. Barren Acidic Soil Assessment using Seismic Refraction Survey

    NASA Astrophysics Data System (ADS)

    Tajudin, S. A. A.; Abidin, M. H. Z.; Madun, A.; Zawawi, M. H.

    2016-07-01

    Seismic refraction method is one of the geophysics subsurface exploration techniques used to determine subsurface profile characteristics. From past experience, seismic refraction method is commonly used to detect soil layers, overburden, bedrock, etc. However, the application of this method on barren geomaterials remains limited due to several reasons. Hence, this study was performed to evaluate the subsurface profile characteristics of barren acidic soil located in Ayer Hitam, Batu Pahat, Johor using seismic refraction survey. The seismic refraction survey was conducted using ABEM Terraloc MK 8 (seismograph), a sledge hammer weighing 7 kg (source) and 24 units of 10 Hz geophones (receiver). Seismic data processing was performed using OPTIM software which consists of SeisOpt@picker (picking the first arrival and seismic configureuration data input) and SeisOpt@2D (generating 2D image of barren acidic soil based on seismic velocity (primary velocity, Vp) distribution). It was found that the barren acidic soil profile consists of three layers representing residual soil (Vp= 200-400 m/s) at 0-2 m, highly to completely weathered soil (Vp= 500-1800 m/s) at 3-8 m and shale (Vp= 2100-6200 m/s) at 9-20 m depth. Furthermore, result verification was successfully done through the correlation of seismic refraction data based on physical mapping and the geological map of the study area. Finally, it was found that the seismic refraction survey was applicable for subsurface profiling of barren acidic soil as it was very efficient in terms of time, cost, large data coverage and sustainable.

  16. Seismic surveys test on Innerhytta Pingo, Adventdalen, Svalbard Islands

    NASA Astrophysics Data System (ADS)

    Boaga, Jacopo; Rossi, Giuliana; Petronio, Lorenzo; Accaino, Flavio; Romeo, Roberto; Wheeler, Walter

    2015-04-01

    We present the preliminary results of an experimental full-wave seismic survey test conducted on the Innnerhytta a Pingo, located in the Adventdalen, Svalbard Islands, Norway. Several seismic surveys were adopted in order to study a Pingo inner structure, from classical reflection/refraction arrays to seismic tomography and surface waves analysis. The aim of the project IMPERVIA, funded by Italian PNRA, was the evaluation of the permafrost characteristics beneath this open-system Pingo by the use of seismic investigation, evaluating the best practice in terms of logistic deployment. The survey was done in April-May 2014: we collected 3 seismic lines with different spacing between receivers (from 2.5m to 5m), for a total length of more than 1 km. We collected data with different vertical geophones (with natural frequency of 4.5 Hz and 14 Hz) as well as with a seismic snow-streamer. We tested different seismic sources (hammer, seismic gun, fire crackers and heavy weight drop), and we verified accurately geophone coupling in order to evaluate the different responses. In such peculiar conditions we noted as fire-crackers allow the best signal to noise ratio for refraction/reflection surveys. To ensure the best geophones coupling with the frozen soil, we dug snow pits, to remove the snow-cover effect. On the other hand, for the surface wave methods, the very high velocity of the permafrost strongly limits the generation of long wavelengths both with these explosive sources as with the common sledgehammer. The only source capable of generating low frequencies was a heavy drop weight system, which allows to analyze surface wave dispersion below 10 Hz. Preliminary data analysis results evidence marked velocity inversions and strong velocity contrasts in depth. The combined use of surface and body waves highlights the presence of a heterogeneous soil deposit level beneath a thick layer of permafrost. This is the level that hosts the water circulation from depth controlling

  17. Seismic refraction survey of the ANS preferred site

    SciTech Connect

    Davis, R.K. ); Hopkins, R.A. ); Doll, W.E. )

    1992-02-01

    Between September 19, 1991 and October 8, 1991 personnel from Martin Marietta Energy Systems, Inc. (Energy Systems), Automated Sciences Group, Inc., and Marrich, Inc. performed a seismic refraction survey at the Advanced Neutron Source (ANS) preferred site. The purpose of this survey was to provide estimates of top-of-rock topography, based on seismic velocities, and to delineate variations in rock and soil velocities. Forty-four seismic refraction spreads were shot to determine top-of-rock depths at 42 locations. Nine of the seismic spreads were shot with long offsets to provide 216 top-of-rock depths for 4 seismic refraction profiles. The refraction spread locations were based on the grid for the ANS Phase I drilling program. Interpretation of the seismic refraction data supports the assumption that the top-of-rock surface generally follows the local topography. The shallow top-of-rock interface interpreted from the seismic refraction data is also supported by limited drill information at the site. Some zones of anomalous data are present that could be the result of locally variable weathering, a localized variation in shale content, or depth to top-of-rock greater than the site norm.

  18. Advances in Over-Sea-Ice Seismic Reflection Surveys

    NASA Astrophysics Data System (ADS)

    Speece, M. A.; Pekar, S. F.; Williams, B. P.; Sunwall, D. A.; Alesandrini, S. M.; Hein, R. H.

    2009-12-01

    During the austral spring-summers of 2005, 2007, and 2008 a series of over-sea-ice seismic reflection data sets were recorded over McMurdo Sound, Antarctica, in support of the ANtarctic geological DRILLing program (ANDRILL). These surveys incorporated techniques that improved the quality of over-sea-ice seismic data. Prior to this work, over-sea-ice seismic experiments had limited success because of poor source coupling caused by thin sea ice, source bubble-pulse effects caused by explosive seismic sources placed in the water column, and ice flexural-mode noise caused by surface sources. To mitigate these problems, a Generator-Injector (GI) air gun was used as the seismic source. The GI gun was lowered into the water column through holes drilled through the sea ice. The GI gun provided good source coupling and minimized the source bubble effects and flexural mode problems that had plagued previous over-sea-ice experiments. In addition, the GI gun allows for source repetition which is a significant advantage in minimizing wind noise though source summing. A 60-channel seismic snowstreamer consisting of vertically oriented gimbaled geophones with 25-m takeout spacing was employed during these surveys to aid rapid data collection during the normal-incident seismic surveying portions of these projects. A new recording platform and compressor that were added in 2008 have significantly increased production. As experience has been gained, improvements in the recognition of and correction for timing and statics problems, inherent in over-sea-ice seismic data collection, have resulted in better resolution and overall data quality. For instance, thin, soft, low-amplitude pelagic sediment at the ocean bottom have been imaged with high-resolution at a water depth of 900 m. In addition to the surface profiling, a three-component Vertical Seismic Profile (VSP) seismic survey was conducted in 2007 at the newly-drilled ANDRILL Southern McMurdo Sound (SMS) Project borehole. The VSP

  19. Widespread 3D seismic survey covers mature field in Gabon

    SciTech Connect

    Riley, D.; Fleming, M. ); Delvaux, J. )

    1993-12-06

    The exploration potential of the Port Gentil region, characterized by some of the earliest petroleum discoveries in Gabon, continues to be of important interest today. Available seismic data are of an older vintage (1974--82), recorded with low common mid-point (CMP) fold. They are critically void of coverage through the transition zone. The geology is highly complex, characterized by salt structures and strong tectonic activity. An intensive joint exploration and reservoir definition campaign is crucial to full evaluation of this area. This article describes the 3D survey conducted during 1992 and early 1993 over a mature oil field in an around Port Gentil and incorporating elements of land, transition zone, and shallow marine data acquisition -- the 3D Mandji program.

  20. Seismic survey probes urban earthquake hazards in Pacific Northwest

    USGS Publications Warehouse

    Fisher, M.A.; Brocher, T.M.; Hyndman, R.D.; Trehu, A.M.; Weaver, C.S.; Creager, K.C.; Crosson, R.S.; Parsons, T.; Cooper, A. K.; Mosher, D.; Spence, G.; Zelt, B.C.; Hammer, P.T.; Childs, J. R.; Cochrane, G.R.; Chopra, S.; Walia, R.

    1999-01-01

    A multidisciplinary seismic survey earlier this year in the Pacific Northwest is expected to reveal much new information about the earthquake threat to U.S. and Canadian urban areas there. A disastrous earthquake is a very real possibility in the region. The survey, known as the Seismic Hazards Investigation in Puget Sound (SHIPS), engendered close cooperation among geologists, biologists, environmental groups, and government agencies. It also succeeded in striking a fine balance between the need to prepare for a great earthquake and the requirement to protect a coveted marine environment while operating a large airgun array.

  1. Seismic survey probes urban earthquake hazards in Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Fisher, M. A.; Brocher, T. M.; Hyndman, R. D.; Trehu, A. M.; Weaver, C. S.; Creager, K. C.; Crosson, R. S.; Parsons, T.; Cooper, A. K.; Mosher, D.; Spence, G.; Zelt, B. C.; Hammer, P. T.; ten Brink, U.; Pratt, T. L.; Miller, K. C.; Childs, J. R.; Cochrane, G. R.; Chopra, S.; Walia, R.

    A multidisciplinary seismic survey earlier this year in the Pacific Northwest is expected to reveal much new information about the earthquake threat to U.S. and Canadian urban areas there. A disastrous earthquake is a very real possibility in the region.The survey, known as the Seismic Hazards Investigation in Puget Sound (SHIPS), engendered close cooperation among geologists, biologists, environmental groups, and government agencies. It also succeeded in striking a fine balance between the need to prepare for a great earthquake and the requirement to protect a coveted marine environment while operating a large airgun array.

  2. Multiple long-streamer technology speeds seismic survey off Brazil

    SciTech Connect

    Seeley, C.R.

    1995-09-18

    Now that 3D seismic is the survey of choice for most developing areas, the latest trend in conventional marine seismic acquisition has been pulling more streamers (sensor cables) behind each vessel. The goal behind the multi-streamer movement is obtaining the best data set as inexpensively as possible. PGS Exploration Inc. used its R/V Atlantic Explorer, pulling four seismic streamers measuring 4,000 m each with 160 recording channels/streamer, to complete a survey in 77 days--13 to 18 days earlier than planned--for Petroleo Brasileiro SA (Petrobras) in the Cabo Frio area of the Campos basin in Brazilian territorial waters. The survey was conducted from Jan. 19 to Apr. 4 in an area southeast of the existing Campos development, site of at least nine world records for deepwater production. It was performed in water depths ranging from 130 m to 2,000 m. Petrobras desired the 3D survey, the first int hat part of the Campos basin and the first turnkey 3D seismic contract signed by Petrobras, after its discovery of Guarajuba field last year in that region. The paper describes data acquisition and processing.

  3. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    NASA Astrophysics Data System (ADS)

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis

  4. Geyser's Eruptive Activity in Broadband Seismic Records

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yulia; Saltykov, Vadim

    2010-05-01

    A geyser is a spring characterized by intermittent discharge of water ejected turbulently and accompanied by a vapor phase (steam). The formation of geysers is due to particular hydrogeological conditions, which exist in only a few places on Earth, so they are a fairly rare phenomenon. The reasons of geyser periodicity and specifics of the activity for every particular geyser are not completely clear yet. So almost for all known geysers it is necessary to develop the personal model. In given study we first use seismic method for detection of possible hidden feature of geyser's eruptive activity in Kamchatkan Valley of the Geysers. Broadband seismic records of geyser generated signals were obtained in hydrothermal field. The Valley of the Geysers belongs to Kronotskiy State Natural Biosphere Reserve and the UNESCO World Natural Heritage Site "Volcanoes of Kamchatka". Neither seismological nor geophysical investigations were carried out here earlier. In September, 2009 seismic observation was organized in geyser's field by 24-bit digital output broadband seismometers (GURALP CMG-6TD flat velocity response 0.033-50 Hz). Four geysers were surveyed: the fountain type Big and Giant geysers; the cone type Pearl geyser and the short-period Gap geyser. Seismometers were set as possible close to the geyser's surface vent (usually at the distance near 3-5 m). Main parameters of the eruptions for the investigated geysers: - The Giant geyser is the most powerful among the regular active geysers in Kamchatkan Valley of the Geysers. The height of the fountain reaches 30 meters, the mass of water erupted is about 40-60 tons. The main cycle of activity varies significantly: in 1945 the intervals between eruptions was near 3 hours, nowadays it is 5-6 hours. As a geyser of fountain type, the Giant geyser erupts from the 2*3 m2 pool of water. - The Big geyser was flooded by the lake after the natural catastrophe (giant mud-stone avalanche, formed by landslide, bed into Geiyzernaya

  5. Patterns of seismic activity preceding large earthquakes

    NASA Technical Reports Server (NTRS)

    Shaw, Bruce E.; Carlson, J. M.; Langer, J. S.

    1992-01-01

    A mechanical model of seismic faults is employed to investigate the seismic activities that occur prior to major events. The block-and-spring model dynamically generates a statistical distribution of smaller slipping events that precede large events, and the results satisfy the Gutenberg-Richter law. The scaling behavior during a loading cycle suggests small but systematic variations in space and time with maximum activity acceleration near the future epicenter. Activity patterns inferred from data on seismicity in California demonstrate a regional aspect; increased activity in certain areas are found to precede major earthquake events. One example is given regarding the Loma Prieta earthquake of 1989 which is located near a fault section associated with increased activity levels.

  6. Seismic reflection survey conducted in Benton County, Washinton

    SciTech Connect

    Beggs, H.G.; Heineck, R.L. )

    1980-01-01

    The massive Columbia River Basalt group that underlies the Hanford Site is being considered as a potential geologic repository for spent nuclear fuel. As part of the effort to ascertain and better understand the physical and geological properties of these basalt flows, a multiphased seismic reflection program has been undertaken. This phase was designed to more thoroughly define geologic features and structural attitudes in an areas in the central part of the Hanford Site. The specific feature of interest is known as the Cold Creek Syncline. This seismic survey, utilized the VIBROSEIS'' energy source and multifold common depth point recording. 2 figs.

  7. Active Seismic Monitoring for Earthquake Forecasting

    NASA Astrophysics Data System (ADS)

    Artamonova, M.; Korneev, V.

    2005-12-01

    Earthquake prediction remains high priority issue for disaster prevention. Study of the M6.0 2004 Parkfield and M7.0 1989 Loma Prieta strike-slip earthquakes on the San Andreas Fault (SAF) reveal seismicity peaks in the surrounding crust several months prior to the main events. Earthquakes directly within the SAF zone were intentionally excluded from the analysis because they manifest stress-release processes rather than stress accumulation. The observed increase in seismicity is interpreted as a signature of the increasing stress level in the surrounding crust, while the peak that occurs several months prior to the main event and the subsequent decrease in seismicity are attributed to damage-induced softening processes. Furthermore, in both cases there is a distinctive zone of low seismic activity that surrounds the epicentral region in the pre-event period. The increase of seismicity in the crust surrounding a potential future event and the development of a low-seismicity epicentral zone can be regarded as promising precursory information that could help signal the arrival of large earthquakes. We modeled the seismicity precursor phenomena using finite-element 2D model capable to replicate non-linear breaking of elastic rock. The distinctive seismicity peak was observed for a model simulating SAF properties at Park field. Such peaks are likely to be a good mid-term precursors allowing to declare alerts several months before earthquakes and pointing on their epicenter regions. The short tern alerts require use of active sources and their proper placement in order to monitor the developments of rock softening processes.

  8. A comparative study between a rectilinear 3-D seismic survey and a concentric-circle 3-D seismic survey

    SciTech Connect

    Maldonado, B.; Hussein, H.S.

    1994-12-31

    Due to the rectilinear nature of the previous 3D seismic survey, the details necessary for proper interpretation were absent. Theoretically, concentric 3D seismic technology may provide an avenue for gaining more and higher quality data coverage. Problems associated with recording a rectilinear 3D seismic grid over the salt dome in this area have created the need to investigate the use of such procedures as the concentric-circle 3D seismic acquisition technique. The difficulty of imaging salt dome flanks with conventional rectilinear 3D seismic may be a result of the inability to precisely predict the lateral velocity-field variation adjacent to both salt and sediments. The dramatic difference in the interval velocities of salt and sediments causes the returning ray to severely deviate from being a hyperbolic path. This hampers the ability to predict imaging points near the salt/sediment interface. Perhaps the most difficult areas to image with rectilinear seismic surveys are underneath salt overhangs. Modeling suggests that a significant increase in the number of rays captured from beneath a salt overhang can be achieved with the concentric-circle method. This paper demonstrates the use of the ``circle shoot`` on a survey conducted over a salt dome in the Gulf of Mexico. A total of 80 concentric circles cover an area which is equivalent to 31,000 acres. The final post-stack data were sorted into bins with dimensions of 25 meters by 25 meters. A comparison of 3D rectilinear shooting vs. 3D concentric circle shooting over the same area will show an improvement in data quality and signal-to-noise characteristics.

  9. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    SciTech Connect

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie; Lee, Rebekah; Cole, Chris

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  10. Multiharmonic model of seismic activity in Kamchatka

    NASA Astrophysics Data System (ADS)

    Sobolev, G. A.; Valeev, S. G.; Faskhutdinova, V. A.

    2010-12-01

    Based on the uniform catalogue of earthquakes of the minimum energy class 8.5 for 1962-2008, multiharmonic models of seismic activity in Kamchatka are developed. The main harmonic components with periods from a few days to 12 years are identified. Both the entire catalogue and its modified versions obtained by the elimination of aftershocks and clusters, as well as nonoverlapping time series were used to study the stability of the models. The forward-prediction testing showed that in the models with weekly averaged initial data, periods of increased and reduced seismic activity lasting for several weeks are predicted with high confidence on an interval of up to 1.8% of the education period. This testifies for the presence of deterministic components in the seismic activity.

  11. Apollo 14 active seismic experiment.

    PubMed

    Watkins, J S; Kovach, R L

    1972-03-17

    Explosion seismic refraction data indicate that the lunar near-surface rocks at the Apollo 14 site consist of a regolith 8.5 meters thick and characterized by a compressional wave velocity of 104 meters per second. The regolith is underlain by a layer with a compressional wave velocity of 299 meters per second. The thickness of this layer, which we interpret to be the Fra Mauro Formation, is between 16 and 76 meters. The layer immediately beneath this has a velocity greater than 370 meters per second. We found no evidence of permafrost. PMID:17794200

  12. Apollo 14 active seismic experiment.

    NASA Technical Reports Server (NTRS)

    Watkins, J. S.; Kovach, R. L.

    1972-01-01

    Explosion seismic refraction data indicate that the lunar near-surface rocks at the Apollo 14 site consist of a regolith 8.5 meters thick and characterized by a compressional wave velocity of 104 meters per second. The regolith is underlain by a layer with a compressional wave velocity of 299 meters per second. The thickness of this layer, which we interpret to be the Fra Mauro Formation, is between 16 and 76 meters. The layer immediately beneath this has a velocity greater than 370 meters per second. We found no evidence of permafrost.

  13. Research on seismic survey design for doubly complex areas

    NASA Astrophysics Data System (ADS)

    Zhao, Hu; Yin, Cheng; Wu, Ming-Sheng; Wu, Xiao-Hua; Pan, Shu-Lin

    2012-06-01

    The complex geological conditions in doubly complex areas tend to result in difficult surface survey operations and poor target layer imaging in the subsurface which has a great impact on seismic data quality. In this paper, we propose an optimal crooked line survey method for decreasing the surface survey operational difficulties and improving the sub-layer event continuity. The method concentrates on the surface shooting conditions, first, selecting the proper shot positions based on the specific surface topographic features to reduce the shot difficulties and then optimizing the receiver positioning to meet the prerequisite that the subsurface reflection points remain in a straight line. Using this method cannot only lower the shooting difficulty of rough surface condition areas but also overcome the subsurface reflection point bending problem appearing in the traditional crooked line survey method. On the other hand, we use local infill shooting rather than conventional overall infill shooting to improve sublayer event continuity and uniformity with lower survey operation cost. A model has been calculated and processed with the proposed optimal crooked line survey and local infill shooting design method workflow and the results show that this new method can work for seismic surveys in double complex areas.

  14. Regional Observation of Seismic Activity in Baekdu Mountain

    NASA Astrophysics Data System (ADS)

    Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol

    2015-04-01

    Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.

  15. Observations of seismic activity in Southern Lebanon

    NASA Astrophysics Data System (ADS)

    Meirova, T.; Hofstetter, R.

    2013-04-01

    Recent seismic activity in southern Lebanon is of particular interest since the tectonic framework of this region is poorly understood. In addition, seismicity in this region is very infrequent compared with the Roum fault to the east, which is seismically active. Between early 2008 and the end of 2010, intense seismic activity occurred in the area. This was manifested by several swarm-like sequences and continuous trickling seismicity over many days, amounting in total to more than 900 earthquakes in the magnitude range of 0.5 ≤ M d ≤ 5.2. The region of activity extended in a 40-km long zone mainly in a N-S direction and was located about 10 km west of the Roum fault. The largest earthquake, with a duration magnitude of M d = 5.2, occurred on February 15, 2008, and was located at 33.327° N, 35.406° E at a depth of 3 km. The mean-horizontal peak ground acceleration observed at two nearby accelerometers exceeded 0.05 g, where the strongest peak horizontal acceleration was 55 cm/s2 at about 20 km SE of the epicenter. Application of the HypoDD algorithm yielded a pronounced N-S zone, parallel to the Roum fault, which was not known to be seismically active. Focal mechanism, based on full waveform inversion and the directivity effect of the strongest earthquake, suggests left-lateral strike-slip NNW-SSE faulting that crosses the NE-SW traverse faults in southern Lebanon.

  16. Effects of Large and Small-Source Seismic Surveys on Marine Mammals and Sea Turtles

    NASA Astrophysics Data System (ADS)

    Holst, M.; Richardson, W. J.; Koski, W. R.; Smultea, M. A.; Haley, B.; Fitzgerald, M. W.; Rawson, M.

    2006-05-01

    L-DEO implements a marine mammal and sea turtle monitoring and mitigation program during its seismic surveys. The program consists of visual observations, mitigation, and/or passive acoustic monitoring (PAM). Mitigation includes ramp ups, powerdowns, and shutdowns of the seismic source if marine mammals or turtles are detected in or about to enter designated safety radii. Visual observations for marine mammals and turtles have taken place during all 11 L-DEO surveys since 2003, and PAM was done during five of those. Large sources were used during six cruises (10 to 20 airguns; 3050 to 8760 in3; PAM during four cruises). For two interpretable large-source surveys, densities of marine mammals were lower during seismic than non- seismic periods. During a shallow-water survey off Yucatán, delphinid densities during non-seismic periods were 19x higher than during seismic; however, this number is based on only 3 sightings during seismic and 11 sightings during non-seismic. During a Caribbean survey, densities were 1.4x higher during non-seismic. The mean closest point of approach (CPA) for delphinids for both cruises was significantly farther during seismic (1043 m) than during non-seismic (151 m) periods (Mann-Whitney U test, P < 0.001). Large whales were only seen during the Caribbean survey; mean CPA during seismic was 1722 m compared to 1539 m during non-seismic, but sample sizes were small. Acoustic detection rates with and without seismic were variable for three large-source surveys with PAM, with rates during seismic ranging from 1/3 to 6x those without seismic (n = 0 for fourth survey). The mean CPA for turtles was closer during non-seismic (139 m) than seismic (228 m) periods (P < 0.01). Small-source surveys used up to 6 airguns or 3 GI guns (75 to 1350 in3). During a Northwest Atlantic survey, delphinid densities during seismic and non-seismic were similar. However, in the Eastern Tropical Pacific, delphinid densities during non-seismic were 2x those during

  17. Lunar seismic profiling experiment natural activity study

    NASA Technical Reports Server (NTRS)

    Duennebier, F. K.

    1976-01-01

    The Lunar Seismic Experiment Natural Activity Study has provided a unique opportunity to study the high frequency (4-20 Hz) portion to the seismic spectrum on the moon. The data obtained from the LSPE was studied to evaluate the origin and importance of the process that generates thermal moonquakes and the characteristics of the seismic scattering zone at the lunar surface. The detection of thermal moonquakes by the LSPE array made it possible to locate the sources of many events and determine that they are definitely not generated by astronaut activities but are the result of a natural process on the moon. The propagation of seismic waves in the near-surface layers was studied in a qualitative manner. In the absence of an adequate theoretical model for the propagation of seismic waves in the moon, it is not possible to assign a depth for the scattering layer. The LSPE data does define several parameters which must be satisfied by any model developed in the future.

  18. Ross Ice Shelf Seismic Survey and Future Drilling Recommendation

    NASA Astrophysics Data System (ADS)

    van Haastrecht, Laurine; Ohneiser, Christian; Gorman, Andrew; Hulbe, Christina

    2016-04-01

    The Ross Ice Shelf (RIS) is one of three gateways through which change in the ocean can be propagated into the interior of West Antarctica. Both the geologic record and ice sheet models indicate that it has experienced widespread retreat under past warm climates. But inland of the continental shelf, there are limited data available to validate the models. Understanding what controls the rate at which the ice shelf will respond to future climate change is central to making useful climate projections. Determining the retreat rate at the end of the last glacial maximum is one part of this challenge. In November 2015, four lines of multi-channel seismic data, totalling over 45 km, were collected on the Ross Ice Shelf, approximately 300 km south of Ross Island using a thumper seismic source and a 96 channel snow streamer. The seismic survey was undertaken under the New Zealand Antarctic Research Institute (NZARI) funded Aotearoa New Zealand Ross Ice Shelf Programme to resolve bathymetric details and to image sea floor sediments under a proposed drilling site on the ice shelf, at about 80.7 S and 174 E. The thumper, a purpose-built, trailer mounted, weight-drop seismic source was towed behind a Hägglund tracked vehicle to image the bathymetry and sediments underneath the RIS. Seismic data collection on an ice shelf has unique challenges, in particular strong attenuation of the seismic energy by snow and firn, and complex multiple ray paths. The thumper, which consists of a heavy weight (250kg) that is dropped on a large, ski mounted steel plate, produced a consistent, repeatable higher energy signal when compared to sledge hammer source and allowed for a greater geographic coverage and lower environmental impact than an explosive source survey. Our survey revealed that the seafloor is smooth and that there may be up to 100 m of layered sediments beneath the seafloor and possibly deeper, more complex structures. A multiple generated by internally reflected seismic energy

  19. Repeatability observations from a time-lapse seismic survey

    USGS Publications Warehouse

    Walters, S.L.; Miller, R.D.; Raef, A.E.

    2006-01-01

    Time-lapse seismic surveys have proven extremely valuable in recent years, having numerous economical and environmental applications. To fully utilize this monitoring technique, problems associated with recording repeatability must be minimized. Much work has been done to equalize data from one survey to the next via processing techniques (Huang et al., 1998). The purpose of this study is to investigate the potential for minimized processing, allowing study of extremely small changes in subsurface characteristics. The goal is to evaluate source and receiver terrain combination to optimize signal repeatability, and to improve deconvolution with the ground force to suppress different types of noise and increase repeatability. ?? 2005 Society of Exploration Geophysicists.

  20. Seismic monitoring at Deception Island volcano (Antarctica): the 2010-2011 survey

    NASA Astrophysics Data System (ADS)

    Martín, R.; Carmona, E.; Almendros, J.; Serrano, I.; Villaseñor, A.; Galeano, J.

    2012-04-01

    As an example of the recent advances introduced in seismic monitoring of Deception Island volcano (Antarctica) during recent years, we describe the instrumental network deployed during the 2010-2011 survey by the Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR). The period of operation extended from December 19, 2010 to March 5, 2011. We deployed a wireless seismic network composed by four three-component seismic stations. These stations are based on 24-bit SL04 SARA dataloggers sampling at 100 sps. They use a PC with embedded linux and SEISLOG data acquisition software. We use two types of three-component seismometers: short-period Mark L4C with natural frequency of 1 Hz and medium-period Lennartz3D/5s with natural frequency of 0.2 Hz. The network was designed for an optimum spatial coverage of the northern half of Deception, where a magma chamber has been reported. Station locations include the vicinity of the Spanish base "Gabriel de Castilla" (GdC), Obsidianas Beach, a zone near the craters from the 1970 eruptions, and the Chilean Shelter located south of Pendulum Cove. Continuous data from the local seismic network are received in real-time in the base by wifi transmission. We used Ubiquiti Networks Nanostation2 antennas with 2.4 GHz, dual-polarity, 10 dBi gain, and 54 Mbps transmission rate. They have shown a great robustness and speed for real-time applications. To prioritize data acquisition when the battery level is low, we have designed a circuit that allows independent power management for the seismic station and wireless transmission system. The reception antenna located at GdC is connected to a computer running SEISCOMP. This software supports several transmission protocols and manages the visualization and recording of seismic data, including the generation of summary plots to show the seismic activity. These twelve data channels are stored in miniseed format and displayed in real time, which allows for a rapid evaluation of

  1. Seismic activity of Erebus volcano, antarctica

    NASA Astrophysics Data System (ADS)

    Kaminuma, Katsutada

    1987-11-01

    Mount Erebus is presently the only Antarctic volcano with sustained eruptive activity in the past few years. It is located on Ross Island and a convecting anorthoclase phonolite lava lake has occupied the summit crater of Mount Erebus from January 1973 to September 1984. A program to monitor the seismic activity of Mount Erebus named IMESS was started in December 1980 as an international cooperative program among Japan, the United States and New Zealand. A new volcanic episode began on 13 September, 1984 and continued until December. Our main observations from the seismic activity from 1982 1985 are as follows: (1) The average numbers of earthquakes which occurred around Mount Erebus in 1982, 1983 and January August 1984 were 64, 134 and 146 events per day, respectively. Several earthquake swarms occurred each year. (2) The averag number of earthquakes in 1985 is 23 events per day, with only one earthquake swarm. (3) A remarkable decrease of the background seismicity is recognized before and after the September 1984 activity. (4) Only a few earthquakes were located in the area surrounding Erebus mountain after the September 1984 activity. A magma reservoir is estimated to be located in the southwest area beneath the Erebus summit, based on the hypocenter distributions of earthquakes.

  2. Seismogenic Processes In The Nankai Trough: Results Form Wide-angle Seismic Surveys

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Nakanishi, A.; Park, J.-O.; Kaneda, Y.

    Active seismic studies to reveal the seismogenic zone structure have been widely car- ried out in the Nankai trough since the last five years. A subducted seamount colliding to the Japanese island arc crust was successfully imaged off the cape Muroto by an extensive active seismic survey. This subducted seamount is proposed as a barrier preventing a lateral propagation of the co-seismic rupture during the 1946 Nankaido Earthquake. In terms of the rupture process of the 1944 Nankaido Earthquake, both seismic and tsunami data (Kikuchi and Yamanaka, 2001; Tanioka and Satake, 1999) show the co-seismic ruptures were concentrated at the east of the Kii peninsula and did not extend to the Tokai district. Historic earthquake data also show that a recur- rence interval of the mega-thrust earthquakes off the Tokai district is not as regular as at other areas in the Nankai Trough. A key question is, therefore, if there is signifi- cant structural factor to prevent the rupture in this area. Even though it is proposed the Paleo-Zenisu ridge might be subducted in the eastern Nankai trough, no clear seismic image has been obtained. In July to August of 2001, an active seismic study using a super densely deployed OBS array was performed, as a part of an onshore-offshore wide-angle seismic survey, off the Tokai district. Results of first arrival tomography of the wide-angle seismic data show following structures: i) root of the Zenisu ridge ex- tends down to 15-20 km depth consisting of thicker lower crustal body (Vp = 6.6 - 7.4 km/s), ii) slightly thickening of subducted oceanic crust is recognized at immediately landward the Nankai trough suggesting the possible Paleo-Zenisu ridge. But, crustal volume of the Paleo-Zenisu might be significantly smaller than the present day Zenisu ridge, iii) abrupt thickening of middle (Vp =6.0 - 6.4 km/s) and lower (Vp=6.6-7.4 km/s) crust toward the Izu island arc is observed at the southern end of the profile. The structure representing the

  3. High-resolution seismic reflection surveying with a land streamer

    NASA Astrophysics Data System (ADS)

    Cengiz Tapırdamaz, Mustafa; Cankurtaranlar, Ali; Ergintav, Semih; Kurt, Levent

    2013-04-01

    In this study, newly designed seismic reflection data acquisition array (land streamer) is utilized to image the shallow subsurface. Our acquisition system consist of 24 geophones screwed on iron plates with 2 m spacing, moving on the surface of the earth which are connected with fire hose. Completely original, 4.5 Kg weight iron plates provides satisfactory coupling. This land-streamer system enables rapid and cost effective acquisition of seismic reflection data due to its operational facilities. First test studies were performed using various seismic sources such as a mini-vibro truck, buffalo-gun and hammer. The final fieldwork was performed on a landslide area which was studied before. Data acquisition was carried out on the line that was previously measured by the seismic survey using 5 m geophone and shot spacing. This line was chosen in order to re-image known reflection patterns obtained from the previous field study. Taking penetration depth into consideration, a six-cartridge buffalo-gun was selected as a seismic source to achieve high vertical resolution. Each shot-point drilled 50 cm for gunshots to obtain high resolution source signature. In order to avoid surface waves, the offset distance between the source and the first channel was chosen to be 50 m and the shot spacing was 2 m. These acquisition parameters provided 12 folds at each CDP points. Spatial sampling interval was 1 m at the surface. The processing steps included standard stages such as gain recovery, editing, frequency filtering, CDP sorting, NMO correction, static correction and stacking. Furthermore, surface consistent residual static corrections were applied recursively to improve image quality. 2D F-K filter application was performed to suppress air and surface waves at relatively deep part of the seismic section. Results show that, this newly designed, high-resolution land seismic data acquisition equipment (land-streamer) can be successfully used to image subsurface. Likewise

  4. Understanding the Long-Term Deformation in the Mississippi Embayment: the Mississippi River Seismic Survey

    NASA Astrophysics Data System (ADS)

    Magnani, M.; McIntosh, K.; Waldron, B.; Mitchell, L.; Saustrup, S.; Towle, M.

    2008-12-01

    The Central US hosts one of the most active intraplate seismic areas in the world, the New Madrid seismic zone (NMSZ). Here the high level of historic and instrumental seismicity clashes with the subdued topography of the Mississippi embayment, minimal geodetic vectors and a puzzling lack of substantial deformation in the post Late-Cretaceous sediments. To explain this apparent paradox it has been proposed that the seismicity in the NMSZ is either 1) very young (at least in its present form), 2) episodic, or 3) migrates throughout a broad region. In order to test these hypotheses and to understand how the deformation is partitioned within the Mississippi embayment, we collected a 300 km-long high-resolution seismic reflection profile along the Mississippi river, from Helena, Arkansas to Caruthersville, Missouri. The profile images a portion of the embayment outside the area of influence of the NMSZ in a region where evidence has been mounting of a seismic source, predating the NMSZ, for which no corresponding structure has yet been identified. The seismic survey exploited the advantages of marine acqui9sition (time effective, low cost) using a 245/245 cm3 (15/15 in3) mini-GI airgun fired at 13.790MPa (2000 psi), a 24-channel 75 m-long active streamer, with 3.125 m group and 12 m nominal shot interval. The high quality data image the Cretaceous and younger sedimentary section, from the top of the Paleozoic unconformity to the Quaternary deposits. Preliminary interpretation of the dataset confirms the general deepening of the Paleozoic basement from ~800 ms at Caruthersville, to ~1 s at the southern end of Crowley's Ridge. In addition, the data reveal prominent recent deformation coincident with the Blytheville arch, the Eastern Reelfoot Rift margin and the White river Fault zone, accommodated by folding and faulting that extend from the top of the Paleozoic through the sedimentary section, and that involves the Quaternary deposits.

  5. A seismic refraction survey of the Imperial Valley Region, California

    NASA Astrophysics Data System (ADS)

    Fuis, G. S.; Mooney, W. D.; Healy, J. H.; McMechan, G. A.; Lutter, W. J.

    1984-02-01

    The U.S. Geological Survey conducted an extensive seismic refraction survey in the Imperial Valley region of California in 1979. The Imperial Valley is located in the Salton Trough, an active rift between the Pacific and North American plates. Forty shots fired at seven shot points were recorded by 100 portable seismic instruments at typical spacing of 0.5-1 km. More than 1300 recording locations were occupied, and more than 3000 usable seismograms were obtained. We analyzed five profiles using a standard ray-tracing program, constructed a contour map of reduced travel times from our most widely recorded shot point, and modeled an existing gravity profile across the Salton Trough. Results are itemized: (1) All models have in common a sedimentary layer (Vp = 1.8-5.0 km/s), a "transition zone" (Vp = 5.0-5.65 km/s), a basement (Vp = 5.65 km/s in the Imperial Valley, 5.9 km/s on the bordering mesas), and subbasement (Vp = 7.2 km/s). (2) The sedimentary layer ranges in thickness along the axis of the Salton Trough from 3.7 km (Salton Sea) to 4.8 km (U.S.-Mexican border). On the bordering mesas it is quite variable in thickness. (3) The "transition" zone is about 1 km thick in most places. In the Imperial Valley there are no marked velocity discontinuities in this zone between the sedimentary layer and basement. On the bordering mesas, however, there is a discontinuity at the top of this zone. (4) There are apparently two types of basement. On the bordering mesas, basement is crystalline igneous and metamorphic rocks. In the Imperial Valley, basement is mostly lower-greenshist-facies sedimentary rocks, based primarily on the smooth transition in character from sediment to basement arrivals, the low value of basement velocity, and the fact that deep (4 km) wells in the valley penetrate only the upper part of the known Cenozoic stratigraphic column for the Salton Trough. (5) The subbasement, or intermediate crustal layer, ranges in depth along the axis of the Salton Trough

  6. Seismic Evidence for an Active Southern Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Thompson, L. E.; Velasco, A. A.

    2010-12-01

    Competing models exist to explain what caused the Earth’s crust to spread apart 29 million years ago to create a region known today as the Rio Grande Rift (RGR). The RGR extends from central Colorado through New Mexico to northern Mexico, near El Paso. A growing body of evidence shows that geologic activity still occurs in the RGR, with a continuation of faulting, seismicity and a small widening rate. We map of the seismic velocity structure and crustal thickness using data from the Rio Grande Rift Seismic TRAnsect (RISTRA) experiment and the EarthScope Transportable Array (USArray) dataset. In addition to the data we collected from the RISTRA experiment and USArray dataset, we also acquired receiver functions from the EarthScope Automatic Receiver Survey (EARS) website (http://www.earthscope.org/data) and waveform data from the Incorporated Research Institutes for Seismology (IRIS) Data Management Center (DMC). In particular, we requested seismograms from the IRIS DMC database where we acquired teleseismic events from Jan 2000 to Dec 2009. This includes 7,259 seismic events with a minimum magnitude of 5.5 and 106,389 continuous waveforms. This data was preprocessed (merged, rotated) using a program called Standing Order of Data (SOD). We computed receiver functions and receiver function stacks for all data in the Southern Rio Grande Rift (SRGR). We map the crustal thickness, seismic velocity, and mantle structure to better determine the nature of tectonic activity that is presently taking place and further investigate the regional extension of the Southern Rio Grande Rift (SRGR). Here we present results of the crustal and velocity structure using the kriging interpolation scheme and interpret our results in relation to southern RGR deformation and extension.

  7. Ionospheric Response Due to Seismic Activity

    NASA Astrophysics Data System (ADS)

    Sharma, Dinesh Kumar

    2016-07-01

    Signatures of the seismic activity in the ionospheric F2 region have been studied by analyzing the measurement of electron and ion temperatures during the occurrence of earthquake. The ionospheric electron and ion temperatures data recorded by the RPA payload aboard the Indian SROSS-C2 satellite during the period from January 1995 to December 2000 were used for the altitude range 430-630 km over Indian region. The normal day's electron and ion temperatures have been compared to the temperatures recorded during the seismic activity. The details of seismic events were obtained from USGS earthquake data information website. It has been found that the average electron temperature is enhanced during the occurrence of earthquakes by 1.2 to 1.5 times and this enhancement was for ion temperature ranging from 1.1to 1.3 times over the normal day's average temperatures. The above careful quantitative analysis of ionospheric electron and ion temperatures data shows the consistent enhancement in the ionospheric electron and ion temperatures. It is expected that the seismogenic vertical electrical field propagates up to the ionospheric heights and induces Joule heating that may cause the enhancement in ionospheric temperatures.

  8. Seismic active control by neural networks.

    SciTech Connect

    Tang, Y.

    1998-01-01

    A study on the application of artificial neural networks (ANNs) to activate structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feed-forward neural network architecture and an adaptive back-propagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the back-propagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator's capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  9. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  10. The seismicity of Ethiopia; active plate tectonics

    USGS Publications Warehouse

    Mohr, P.

    1981-01-01

    Ethiopia, descended from the semimythical Kingdom of Punt, lies at the strategic intersection of Schmidt's jigsaw puzzle where the Red Sea, Gulf of Aden, and the African Rift System meet. Because of geologically recent uplift combined with rapid downcutting erosion by rivers, notably the Blue Nile (Abbay), Ethiopia is the most mountainous country in Africa. It is also the most volcanically active, while its historical seismicity matches that of the midocean ridges. And, in a sense, Ethiopia is host to an evoloving ocean ridge system. 

  11. Seismically Articulating Kilauea Volcano's Active Conduits, Rift Zones, and Faults through HVO's Second Fifty Years

    NASA Astrophysics Data System (ADS)

    Okubo, P.; Nakata, J.; Klein, F.; Koyanagi, R.; Thelen, W.

    2011-12-01

    While seismic monitoring of active Hawaiian volcanoes began 100 years ago, the build-up of the U. S. Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO) seismographic network to its current configuration began in 1955, when Jerry Eaton established remote stations that telemetered data via landline to recorders at HVO. With network expansion through the 1960's, earthquake location and cataloging capabilities have evolved to afford a computer processed seismic catalog now spanning fifty years. Location accuracy and catalog completeness to smaller magnitudes have increased. Research and insights developed using HVO's seismic record have exploited the ability to seismically monitor volcanic activity at depth, to identify active regions within the volcanoes on the basis of computed hypocentral locations, to infer regions of magma storage by recognizing different families of volcanic earthquakes, and to forecast volcanic activity in both short and longer term from seismicity patterns. HVO's seismicity catalog was central to calculations of probabilistic seismic hazards. The ability to develop and implement additional analytical and interpretive capabilities has kept pace with improvements in both field and laboratory hardware and software. While the basic capabilities continue as part of HVO's core monitoring, additional interpretive capabilities now include adding details of volcanic and earthquake source regions, and viewing seismic data in juxtaposition with other observatory data streams. As HVO looks to its next century of volcano studies, research and development continue to shape the future. Broadband seismic recording at HVO has enabled extensive study by Chouet, Dawson, and co-workers of the relationship of very-long-period seismic sources beneath Kilauea's summit caldera to magma supply and transport. Recent upgrades have improved the ability to use these data in seismic cataloging and research. Data processing upgrades have bolstered the ability to

  12. Three-axis accelerometer package for slimhole and microhole seismic monitoring and surveys

    SciTech Connect

    Hunter, S.L.; Harben, P.E.

    1997-01-07

    The development of microdrilling technology, nominally defined as drilling technology for 1-in.-diameter boreholes, shows potential for reducing the cost of drilling monitoring wells. A major question that arises in drilling microholes is if downhole logging and monitoring in general--and downhole seismic surveying in particular--can be conducted in such small holes since the inner working diameter of such a seismic tool could be as small as 0.31 in. A downhole three-component accelerometer package that fits within a 031-in. inner diameter tube has been designed, built, and tested. The package consists of three orthogonally mounted Entran EGA-125-5g piezoresistive silicon micromachined accelerometers with temperature compensation circuitry, downhole amplification, and line drivers mounted in a thin-walled aluminum tube. Accelerometers are commercially available in much smaller package sizes than conventional geophones, but the noise floor is significantly higher than that for the geophones. Cross-well tests using small explosives showed good signal-to-noise ratio in the recorded waveform at various receiver depths with a 1,50-ft source-receiver well separation. For some active downhole surveys, the accelerometer unit would clearly be adequate. It can be reasonably assumed, however, that for less energetic sources and for greater well separations, the high accelerometer noise floor is not acceptable. By expanding the inner working diameter of a microhole seismic tool to 0.5 in., other commercial accelerometers can be used with substantially lower noise floors.

  13. Seismic activity noted at Medicine Lake Highlands

    SciTech Connect

    Blum, D.

    1988-12-01

    The sudden rumble of earthquakes beneath Medicine Lake Highlands this fall gave geologists an early warning that one of Northern California's volcanoes may be stirring back to life. Researchers stressed that an eruption of the volcano is not expected soon. But the flurry of underground shocks in late September, combined with new evidence of a pool of molten rock beneath the big volcano, has led them to monitor Medicine Lake with new wariness. The volcano has been dormant since 1910, when it ejected a brief flurry of ash - worrying no one. A federal team plans to take measurements of Medicine Lake, testing for changes in its shape caused by underground pressures. The work is scheduled for spring because snows have made the volcano inaccessible. But the new seismic network is an effective lookout, sensitive to very small increases in activity.

  14. Erosion influences the seismicity of active thrust faults.

    PubMed

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J Bruce H

    2014-01-01

    Assessing seismic hazards remains one of the most challenging scientific issues in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show via a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1-20 mm yr(-1), as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1-10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to trigger shallow seismicity or promote the rupture of deep continental earthquakes up to the surface. PMID:25412707

  15. Review of the Effects of Offshore Seismic Surveys in Cetaceans: Are Mass Strandings a Possibility?

    PubMed

    Castellote, Manuel; Llorens, Carlos

    2016-01-01

    Displacement of cetaceans is commonly reported during offshore seismic surveys. Speculation concerning possible links between seismic survey noise and cetacean strandings is available for a dozen events but without convincing causal evidence. This lack of evidence should not be considered conclusive but rather as reflecting the absence of a comprehensive analysis of the circumstances. Current mitigation guidelines are inadequate for long-range effects such as displacements and the potential for strandings. This review presents the available information for ten documented strandings that were possibly linked to seismic surveys and recommends initial measures and actions to further evaluate this potential link. PMID:26610953

  16. The Pollino Seismic Sequence: Activated Graben Structures in a Seismic Gap

    NASA Astrophysics Data System (ADS)

    Rößler, Dirk; Passarelli, Luigi; Govoni, Aladino; Bindi, Dino; Cesca, Simone; Hainzl, Sebatian; Maccaferri, Francesco; Rivalta, Eleonora; Woith, Heiko; Dahm, Torsten

    2015-04-01

    The Mercure Basin (MB) and the Castrovillari Fault (CF) in the Pollino range (Southern Apennines, Italy) represent one of the most prominent seismic gaps in the Italian seismic catalogue, with no M>5.5 earthquakes during the last centuries. In historical times several swarm-like seismic sequences occurred in the area including two intense swarms within the past two decades. The most energetic one started in 2010 and has been still active in 2014. The seismicity culminated in autumn 2012 with a M=5 event on 25 October. The range hosts a number of opposing normal faults forming a graben-like structure. Their rheology and their interactions are unclear. Current debates include the potential of the MB and the CF to host large earthquakes and the style of deformation. Understanding the seismicity and the behaviour of the faults is necessary to assess the tectonics and the seismic hazard. The GFZ German Research Centre for Geosciences and INGV, Italy, have jointly monitored the ongoing seismicity using a small-aperture seismic array, integrated in a temporary seismic network. Based on this installation, we located more than 16,000 local earthquakes that occurred between November 2012 and September 2014. Here we investigate quantitatively all the phases of the seismic sequence starting from January 2010. Event locations along with moment tensor inversion constrain spatially the structures activated by the swarm and the migration pattern of the seismicity. The seismicity forms clusters concentrated within the southern part of the MB and along the Pollino Fault linking MB and CF. Most earthquakes are confined to the upper 10 km of the crust in an area of ~15x15 km2. However, sparse seismicity at depths between 15 and 20 km and moderate seismicity further north with deepening hypocenters also exist. In contrast, the CF appears aseismic; only the northern part has experienced micro-seismicity. The spatial distribution is however more complex than the major tectonic structures

  17. Temporary seismic networks on active volcanoes of Kamchatka (Russia)

    NASA Astrophysics Data System (ADS)

    Jakovlev, Andrey; Koulakov, Ivan; Abkadyrov, Ilyas; Shapiro, Nikolay; Kuznetsov, Pavel; Deev, Evgeny; Gordeev, Evgeny; Chebrov, Viktor

    2016-04-01

    We present details of four field campaigns carried out on different volcanoes of Kamchatka in 2012-2015. Each campaign was performed in three main steps: (i) installation of the temporary network of seismic stations; (ii) autonomous continuous registration of three component seismic signal; (III) taking off the network and downloading the registered data. During the first campaign started in September 2012, 11 temporary stations were installed over the Avacha group of volcanoes located 30 km north to Petropavlovsk-Kamchatsky in addition to the seven permanent stations operated by the Kamchatkan Branch of the Geophysical Survey (KBGS). Unfortunately, with this temporary network we faced with two obstacles. The first problem was the small amount of local earthquakes, which were detected during operation time. The second problem was an unexpected stop of several stations only 40 days after deployment. Nevertheless, after taking off the network in August 2013, the collected data appeared to be suitable for analysis using ambient noise. The second campaign was conducted in period from August 2013 to August 2014. In framework of the campaign, 21 temporary stations were installed over Gorely volcano, located 70 km south to Petropavlovsk-Kamchatsky. Just in time of the network deployment, Gorely Volcano became very seismically active - every day occurred more than 100 events. Therefore, we obtain very good dataset with information about thousands of local events, which could be used for any type of seismological analysis. The third campaign started in August 2014. Within this campaign, we have installed 19 temporary seismic stations over Tolbachik volcano, located on the south side of the Klyuchevskoy volcano group. In the same time on Tolbachik volcano were installed four temporary stations and several permanent stations operated by the KBGS. All stations were taking off in July 2015. As result, we have collected a large dataset, which is now under preliminary analysis

  18. High resolution seismic reflection survey in the Gulf of Pozzuoli, Naples, Italy. An example of preliminary interpretation of seismic profiles.

    NASA Astrophysics Data System (ADS)

    D'Aniello, Elena; di Fiore, Vincenzo; Sacchi, Marco; Rapolla, Antonio

    2010-05-01

    During the cruise CAFE_07 - Leg 3 conducted in the Gulf of Naples and Pozzuoli in January 2008, on board of the R/V URANIA of the CNR it was carried out the acquisition of a grid of ca. 800 km of high-resolution multichannel reflection seismic profiles (Sacchi et al., 2009; Di Fiore et al., 2009). The aim of the cruise was the understanding of the stratigraphic-structural setting of the Pozzuoli Bay area, with specific reference to the major offshore volcanic features, such as Nisida Bank, Pentapalummo Bank, M.Dolce-Pampano Bank and Miseno Bank and others. The Gulf of Pozzuoli is placed in the Volcanic district of Campi Flegrei, an area of active volcanism located at North West of Naples city, along the Tyrrhenian margin, in an extensional collapsed area called Campanian Plain, filled by siliciclastic, epiclastic and volcaniclastic sediments, deposited during Late Pliocene and Quaternary. Several studies present in literature suggest a relation between volcanic system of Campi Flegrei and faults system; in particular, at the Gulf of Pozzuoli we can observe some volcanic banks and submarine volcanic edifices, as Pentapalummo, Nisida and Miseno Banks, are aligned along the NE-SW trending Magnaghi-Sebeto fault line, that separates the Bay of Naples into two sectors: the first, at NW of the Bay, characterized by volcanism activity and magnetic anomalies and the second, at SE of the bay, involved only by sedimentary activity, with the exceptions of the circular anomalies in the offshore of Torre del Greco city (Bruno et al., 2003; Secomandi et al., 2003); other volcanic hights are instead positioned along NW-SE structural discontinuities (Bruno, 2004). The magnetic and gravimetric analysis of the Bay of Naples confirms the tectonic control of the Campanian volcanism: we can observe a good correspondence of high magnetic anomalies with the main volcanic structures at the North-Western side of the bay, just the Gulf of Pozzuoli, where both NE-SW and NW-SE normal faults

  19. Evidences for higher nocturnal seismic activity at the Mt. Vesuvius

    NASA Astrophysics Data System (ADS)

    Mazzarella, Adriano; Scafetta, Nicola

    2016-07-01

    We analyze hourly seismic data measured at the Osservatorio Vesuviano Ovest (OVO, 1972-2014) and at the Bunker Est (BKE, 1999-2014) stations on the Mt. Vesuvius. The OVO record is complete for seismic events with magnitude M ≥ 1.9. We demonstrate that before 1996 this record presents a daily oscillation that nearly vanishes afterwards. To determine whether a daily oscillation exists in the seismic activity of the Mt. Vesuvius, we use the higher quality BKE record that is complete for seismic events with magnitude M ≥ 0.2. We demonstrate that BKE confirms that the seismic activity at the Mt. Vesuvius is higher during nighttime than during daytime. The amplitude of the daily oscillation is enhanced during summer and damped during winter. We speculate possible links with the cooling/warming diurnal cycle of the volcanic edifice, with external geomagnetic field and with magnetostriction, which stress the rocks. We find that the amplitude of the seismic daily cycle changes in time and has been increasing since 2008. Finally, we propose a seismic activity index to monitor the 24-hour oscillation that could be used to complement other methodologies currently adopted to determine the seismic status of the volcano to prevent the relative hazard.

  20. Seismically induced landslides: current research by the US Geological Survey.

    USGS Publications Warehouse

    Harp, E.L.; Wilson, R.C.; Keefer, D.K.; Wieczorek, G.F.

    1986-01-01

    We have produced a regional seismic slope-stability map and a probabilistic prediction of landslide distribution from a postulated earthquake. For liquefaction-induced landslides, in situ measurements of seismically induced pore-water pressures have been used to establish an elastic model of pore pressure generation. -from Authors

  1. Vertical Cable Seismic Survey for SMS Exploration in Izena Cauldron, Okinawa-Trough

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Mizohata, S.; Tara, K.

    2014-12-01

    The VCS survey is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by seismic sources. Because the VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed it for the SMS survey tool development program started by Japanese government. In 2010, we manufactured the autonomous VCS data acquisition systems. Through several experimental surveys, our VCS is successfully completed. In 2011 and 2013, we carried out the two VCS surveys using GI gun and high-voltage sparker respectively in the Izena Cauldron, Okinawa Trough, which is one of the most promising SMS areas around Japan. Because seismic survey is not proven to be effective for SMS exploration, no seismic surveys have been conducted there so far. Our strategy for SMS exploration consists of two stages. In the first stage, we carried out VCS survey with the lower frequency GI gun (but higher compared to the convebtional oil/gas exploration) and explored deeper (up to 1,500m) structure to obtain the fault system of hydrothermal flow. Next, using a high frequency (about 1 kHz higher) and high-voltage sparker, we explored very shallow (up to 200m) part to delineate the very thin SMS deposits. These two VCS dataset have been processed with 3D Prestack Depth Migration. These results are consistent with geological information from the borehole drilled nearby and give useful information to SMS exploration.

  2. Near-surface velocity structure from borehole and refraction seismic surveys

    SciTech Connect

    Parry, D.; Lawton, D.C.

    1994-12-31

    Seismic refraction and borehole reflection data have been used in conjunction with other geophysical tools to characterize the near-surface geology in the vicinity of a shallow well near Calgary, Alberta. The investigated section is comprised primarily of glacial tills and gravels. Seismic waves generated in the lower gravel units travel as compressional waves up to the till/gravel interface, where they are converted to shear waves upon transmission. Velocity structure from a reverse vertical seismic profile (RVSP) survey agrees closely with that from refraction surveying.

  3. A Large-N Mixed Sensor Active + Passive Seismic Array near Sweetwater, TX

    NASA Astrophysics Data System (ADS)

    Barklage, M.; Hollis, D.; Gridley, J. M.; Woodward, R.; Spriggs, N.

    2014-12-01

    A collaborative high-density seismic survey using broadband and short period seismic sensors was conducted March 7 - April 30, 2014 near Sweetwater, TX. The objective of the survey was to use a combination of controlled source shot slices and passive seismic recordings recorded by multiple types of sensors with different bandwidths and sensitivities to image the subsurface. The broadband component of the survey consisted of 25 continuously recording seismic stations comprised of 20 Trillium Compact Posthole sensors from Nanometrics and 5 Polar Trillium 120PHQs from the IRIS/PASSCAL Instrument Center (PIC). The broadband stations also utilized 25 Centaur digitizers from Nanometrics as well as 25 polar quick deploy enclosures from the PIC. The broadband array was designed to maximize horizontal traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. The short period component of the survey consisted of 2639 receiver locations using Zland nodes from NodalSeismic. The nodes are further divided into 3 sub-arrays: 1) outlier array 2) active source array 3) backbone array. The outlier array consisted of 25 continuously recording nodes distributed around the edge of the survey at a distance of ~5 km from the survey boundary, and provided valuable constraints to passive data analysis techniques at the edge of the survey boundary. The active source patch consisted of densely spaced nodes that were designed to record signals from a Vibroseis source truck for active source reflection processing and imaging. The backbone array consisted of 292 nodes that covered the entirety of the survey area to maximize the value of the passive data analysis. By utilizing continuous recording and smartly designed arrays for measuring local and regional earthquakes we can incorporate velocity information derived from passive data analysis into the active source processing workflow to produce a superior subsurface

  4. Chicxulub Peak Ring Characteristics from 2D Reflection Seismic Survey

    NASA Astrophysics Data System (ADS)

    Mendoza-Cervantes, K.; Fucugauchi, J. U.; Gulick, S.

    2007-05-01

    Since 1980's research interest over Chicxulub crater located SE Gulf of Mexico, has grown not only because its relationship with the K-P(Cretaseous -Paleogene) extinction but because of its size (diameter ~ 200 km) and grade of preservation. Based on results from several surveys using different geophysical methods, Chicxulub has been classified as a multiring crater. A topographic high rising from crater floor was first recognized as the Chicxulub peak ring on four 1996 reflection seismic profiles but the low density of this data set made impossible to describe on detail this structure. Recently, during 2005 we carried out a marine survey acquiring 29 profiles. A grid located over the central marine portion of the crater was conformed by eleven profiles 80 km long oriented WSW-ENE and ten 25 km long NW-SE. Data was recorded on 480 channels spaced 12.5 cm on a 6 km streamer and air guns were shot every 50 m allowing us to image the earth up to 14 s TWTT. This new data set along with the 1996 profiles allow us to build up the first 3D image of Chicxulub peak ring as well as to analyze some important features of this ring. Results show that the peak ring lays down closer to the surface and the crater rim on its NW portion where it rises more abruptly from the crater floor reaching up to 430 m. Based on the information of the radial lines this characteristics change in clockwise direction being opposite on the NE. The relationship between the peak ring and other Chicxulub structures,such as the slump blocks and the dipping reflector, change as well in the same direction indicating that the peak ring is displaced to the NW. These asymmetries could be related to the process of formation of the peak ring as a result of: a)an asymmetric collapse of the central uplift which has been proved not to be related to impact direction, b) displacement of the central uplift towards the transient cavity rim or c)heterogeneities on impact surface predating the impact.

  5. Seismic hazard assessment of Syria using seismicity, DEM, slope, active tectonic and GIS

    NASA Astrophysics Data System (ADS)

    Ahmad, Raed; Adris, Ahmad; Singh, Ramesh

    2016-07-01

    In the present work, we discuss the use of an integrated remote sensing and Geographical Information System (GIS) techniques for evaluation of seismic hazard areas in Syria. The present study is the first time effort to create seismic hazard map with the help of GIS. In the proposed approach, we have used Aster satellite data, digital elevation data (30 m resolution), earthquake data, and active tectonic maps. Many important factors for evaluation of seismic hazard were identified and corresponding thematic data layers (past earthquake epicenters, active faults, digital elevation model, and slope) were generated. A numerical rating scheme has been developed for spatial data analysis using GIS to identify ranking of parameters to be included in the evaluation of seismic hazard. The resulting earthquake potential map delineates the area into different relative susceptibility classes: high, moderate, low and very low. The potential earthquake map was validated by correlating the obtained different classes with the local probability that produced using conventional analysis of observed earthquakes. Using earthquake data of Syria and the peak ground acceleration (PGA) data is introduced to the model to develop final seismic hazard map based on Gutenberg-Richter (a and b values) parameters and using the concepts of local probability and recurrence time. The application of the proposed technique in Syrian region indicates that this method provides good estimate of seismic hazard map compared to those developed from traditional techniques (Deterministic (DSHA) and probabilistic seismic hazard (PSHA). For the first time we have used numerous parameters using remote sensing and GIS in preparation of seismic hazard map which is found to be very realistic.

  6. High Resolution Seismic Reflection Survey for Coal Mine: fault detection

    NASA Astrophysics Data System (ADS)

    Khukhuudei, M.; Khukhuudei, U.

    2014-12-01

    High Resolution Seismic Reflection (HRSR) methods will become a more important tool to help unravel structures hosting mineral deposits at great depth for mine planning and exploration. Modern coal mining requires certainly about geological faults and structural features. This paper focuses on 2D Seismic section mapping results from an "Zeegt" lignite coal mine in the "Mongol Altai" coal basin, which required the establishment of major structure for faults and basement. HRSR method was able to detect subsurface faults associated with the major fault system. We have used numerical modeling in an ideal, noise free environment with homogenous layering to detect of faults. In a coal mining setting where the seismic velocity of the high ranges from 3000m/s to 3600m/s and the dominant seismic frequency is 100Hz, available to locate faults with a throw of 4-5m. Faults with displacements as seam thickness detected down to several hundred meter beneath the surface.

  7. Pen Branch fault program: Interim report on the High Resolution, Shallow Seismic Reflection surveys

    SciTech Connect

    Stieve, A.L.

    1991-01-31

    The Pen Branch fault was identified in the subsurface at the Savannah River Site in 1989 based upon the interpretation of earlier seismic reflection surveys and other geologic investigations. A program was initiated at that time to further define the fault in terms of its capability to release seismic energy. The High-Resolution, Shallow Seismic Reflection survey recently completed at SRS was initiated to determine the shallowest extent of the fault and to demonstrate the presence of flat-lying sediments in the top 300 feet of sediments. Conclusions at this time are based upon this shallow seismic survey and the Conoco deep seismic survey (1988--1989). Deformation related to the Pen Branch fault is at least 200 milliseconds beneath the surface in the Conoco data and at least 150 milliseconds in the shallow seismic reflection data. This corresponds to approximately 300 feet below the surface. Sediments at that depth are lower Tertiary (Danian stage) or over 60 million years old. This indicates that the fault is not capable.

  8. First results of a high resolution reflection seismic survey of the Central Northern Venezuelan Shelf

    NASA Astrophysics Data System (ADS)

    Avila, J.; van Welden, A.; Audemard, F.; de Batist, M.; Beck, C.; Scientific Party, G.

    2008-05-01

    In September - November 2007 the first high resolution marine seismic campaign on the North-Central coast of Venezuela was carried out between Cabo Codera and Golfo Triste. The principal aim of this work was to characterize the active San Sebastian Fault (SSF) and to analyze Cenozoic sedimentation on the Venezuela shelf focusing on: i) effects of active tectonics and ii) coastal landslides/flashflood deposits related to 1999 Vargas catastrophic event or to similar phenomena. Data were acquired onboard R/V GUAIQUERI II from the Oceanographic Institute of the Oriente University. The seismic source was a "CENTIPEDE" sparker (RCGM) operated between 300 and 600 J, 1.3 kHz main frequency. We used a single-channel streamer with 10 hydrophones. In total, 49 seismic profiles were collected, with a cumulative length of 1000 km approximately. In these seismic profiles we identified and separated the deposits into three main units. Unit (U1) comprises low energy reflectors mainly dipping in southward direction (i.e. toward the coast bounded by the San Sebastian Fault). This unit also includes a number of isolated acoustic anomalies, which we tentatively interpret as coral reefs. Its top is defined as Basal Erosional Discontinuity (BED) onto which Unit 2 (U2) deposits are onlapping. U2 is acoustically well-stratified, with strong reflectors. Gradual variations in thickness and a wavy configuration allow us to interpret U2 as probably Quaternary current-related deposits. Last Unit (U3) was defined on the Venezuela shelf and corresponds to prograding sequences probably related to the terrigenous input of the Tuy River. Impact of eustatic fluctuations on these deposits are discussed. The data were also used to construct a simplified bathymetry of the studied area. The lateral transition from the western Cariaco-Tuy pull-apart basin to the (single) SSF was clearly imaged (mostly folds and gravity faults). The survey also displayed prograding sediments bodies in La Tortuga Shelf

  9. Erosion influence the seismicity of active thrust faults

    NASA Astrophysics Data System (ADS)

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J. Bruce H.

    2015-04-01

    Assessing seismic hazards remains one of the most challenging scientific issue in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show with a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1 to 20 mm/yr, as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1 to ~10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to promote the rupture of deep continental earthquakes up to the surface or to trigger shallow seismicity. We illustrate this last point by identifying seismic events in Taiwan, by the mean of a coupled statistical and mechanical approach, that were induced by intense erosional events.

  10. Erosion influence the seismicity of active thrust faults

    NASA Astrophysics Data System (ADS)

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J. Bruce H.

    2016-04-01

    Assessing seismic hazards remains one of the most challenging scientific issue in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show with a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ˜0.1 to 20 mm/yr, as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ˜0.1 to ˜10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to promote the rupture of deep continental earthquakes up to the surface or to trigger shallow seismicity. We illustrate this last point by identifying seismic events in Taiwan, by the mean of a coupled statistical and mechanical approach, that were induced by intense erosional events.

  11. Comparison Study of Reflection Seismic Surveys on Paved Site According to Sources and Receivers

    NASA Astrophysics Data System (ADS)

    Kim, H.; Keehm, Y.; Jin, J.

    2010-12-01

    To compare resolution of seismic section and to find cost effective method, high resolution near surface seismic reflection surveys were conducted on concrete paved site with several kinds combination of sources and receivers. Small 1.3kg handy hammer and 4.0kg sledge hammer were adopted to compare the results according to seismic sources. The seismic section from the small handy hammer source had clearly higher resolution than that of sledge hammer. We also used two different kind geophones with resonant frequencies 14Hz and 100Hz respectively. Specially designed weighted plates were prepared to increase the coupling between geophones and paved surface. The seismic section obtained with handy hammer and 100Hz resonant frequency geophones showed the best result in the aspects of resolution and cost in the study site.

  12. A combined surface and borehole seismic survey at the COSC-1 borehole

    NASA Astrophysics Data System (ADS)

    Simon, Helge; Krauß, Felix; Hedin, Peter; Buske, Stefan; Giese, Rüdiger; Juhlin, Christopher

    2015-04-01

    The ICDP project COSC (Collisional Orogeny in the Scandinavian Caledonides) focuses on the mid Paleozoic Caledonide Orogen in Scandinavia in order to better understand orogenic processes, from the past and in recent active mountain belts. The Scandinavian Caledonides provide a well preserved example of a Paleozoic continent-continent collision. Surface geology in combination with geophysical data provide control of the geometry of the Caledonian structure, including the allochthon and the underlying autochthon, as well as the shallow W-dipping décollement surface that separates the two and consist of a thin skin of Cambrian black shales. During spring/summer 2014 the COSC-1 borehole was drilled to approx. 2.5 km depth near the town of Åre (western Jämtland/Sweden) with nearly 100 % of core recovery and cores in best quality. After the drilling was finished, a major seismic survey was conducted in and around the COSC-1 borehole which comprised both seismic reflection and transmission experiments. Besides a high resolution zero-offset VSP (Vertical Seismic Profiling) experiment also a multi-azimuthal walkaway VSP survey took place. For the latter the source points were distributed along three profile lines centered radially around the borehole. For the central part up to 2.5 km away from the borehole, a hydraulic hammer source was used, which hits the ground for about 20 s with an linear increasing hit rate. For the far offset shots up to 5 km, explosive sources were used. The wavefield of both source types was recorded in the borehole using an array of 15 three-component receivers with a geophone spacing of 10 m. This array was deployed at 7 different depth levels during the survey. At the same time the wavefield was also recorded at the surface by 180 standalone three-component receivers placed along each of the three up to 10 km long lines, as well as with a 3D array of single-component receivers in the central part of the survey area around the borehole. Here

  13. A seismic survey of the Manson disturbed area

    NASA Technical Reports Server (NTRS)

    Sendlein, L. V. A.; Smith, T. A.

    1971-01-01

    The region in north-central Iowa referred to as the Manson disturbed area was investigated with the seismic refraction method and the bedrock configuration mapped. The area is approximately 30 km in diameter and is not detectable from the surface topography; however, water wells that penetrate the bedrock indicate that the bedrock is composed of disturbed Cretaceous sediments with a central region approximately 6 km in diameter composed of Precambrian crystalline rock. Seismic velocity differences between the overlying glacial till and the Cretaceous sediments were so small that a statistical program was developed to analyze the data. The program developed utilizes existing 2 segment regression analyses and extends the method to fit 3 or more regression lines to seismic data.

  14. Precursory seismic activity before the 1944 Tonankai (Japan) earthquake: focusing on the downward migration of seismic activity

    NASA Astrophysics Data System (ADS)

    Mogi, Kiyoo

    1987-08-01

    Based on the latest JMA earthquake catalog, the author investigated seismic activity around the time of the 1944 Tonankai earthquake ( M 7.9, M w 8.1 ) and the 1946 Nankaido earthquake ( M 8.1, M w 8.1 ), which were both great thrust-type earthquakes along the Nankai Trough. For about 20 years before these earthquakes their focal regions had been quiescent (appearance of a seismic gap of the second kind) and the surrounding areas had become increasingly active, forming a doughnut pattern). Several years before these earthquakes occurred seismic activity increased at shallow depths of the area to the north. This activity gradually migrated downwards, and the Tonankai earthquake occurred when it reached its limit (a depth of approximately 70 km). The author has previously reported on several cases of increased activity in the deep seismic plane at a depth of 300-500 km prior to large shallow earthquakes along the Japan Trench (Mogi, 1973). This paper will demonstrate that a similar phenomenon occurs when the depth of the deep seismic plane is only about 70 km. For several years before the Tonankai earthquake there had been a slight increase in seismicity in the area along the trough, which is where the plate subducts. Two or three days before tne earthquake marked ground tilt also proceeded at the northeastern tip of the focal region. It is evident that the Tonankai earthquake was preceded by various long-term and short-term precursory phenomena.

  15. Detecting seismic activity with a covariance matrix analysis of data recorded on seismic arrays

    NASA Astrophysics Data System (ADS)

    Seydoux, L.; Shapiro, N. M.; de Rosny, J.; Brenguier, F.; Landès, M.

    2016-03-01

    Modern seismic networks are recording the ground motion continuously at the Earth's surface, providing dense spatial samples of the seismic wavefield. The aim of our study is to analyse these records with statistical array-based approaches to identify coherent time-series as a function of time and frequency. Using ideas mainly brought from the random matrix theory, we analyse the spatial coherence of the seismic wavefield from the width of the covariance matrix eigenvalue distribution. We propose a robust detection method that could be used for the analysis of weak and emergent signals embedded in background noise, such as the volcanic or tectonic tremors and local microseismicity, without any prior knowledge about the studied wavefields. We apply our algorithm to the records of the seismic monitoring network of the Piton de la Fournaise volcano located at La Réunion Island and composed of 21 receivers with an aperture of ˜15 km. This array recorded many teleseismic earthquakes as well as seismovolcanic events during the year 2010. We show that the analysis of the wavefield at frequencies smaller than ˜0.1 Hz results in detection of the majority of teleseismic events from the Global Centroid Moment Tensor database. The seismic activity related to the Piton de la Fournaise volcano is well detected at frequencies above 1 Hz.

  16. Development of Vertical Cable Seismic System for Hydrothermal Deposit Survey (2) - Feasibility Study

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Mikada, H.; Takekawa, J.; Shimura, T.

    2010-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. . (1) VCS is an effective high-resolution 3D seismic survey within limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Various types of marine source are applicable with VCS such as sea-surface source (air gun, water gun etc.) , deep-towed or ocean bottom sources. (5) Autonomous recording system. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN. in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. The result gives clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Uncertainty of the source/receiver poisons in water causes the serious problem of the imaging. We used several transducer/transponder to estimate these positions. The VCS seismic records themselves can also provide sensor position using the first break of each trace and we calibrate the positions. We are currently developing the autonomous recording VCS system and planning the trial experiment in actual ocean to establish the way of deployment/recovery and the examine the position through the current flow in November, 2010. The second VCS survey will planned over the actual hydrothermal deposit with deep-towed source in February, 2011.

  17. Recent high-resolution seismic reflection studies of active faults in the Puget Lowland

    NASA Astrophysics Data System (ADS)

    Liberty, L. M.; Pratt, T. L.

    2005-12-01

    In the past four years, new high-resolution seismic surveys have filled in key gaps in our understanding of active structures beneath the Puget Lowland, western Washington State. Although extensive regional and high-resolution marine seismic surveys have been fundamental to understanding the tectonic framework of the area, these marine profiles lack coverage on land and in shallow or restricted waterways. The recent high-resolution seismic surveys have targeted key structures beneath water bodies that large ships cannot navigate, and beneath city streets underlain by late Pleistocene glacial deposits that are missing from the waterways. The surveys can therefore bridge the gap between paleoseismic and marine geophysical studies, and test key elements of models proposed by regional-scale geophysical studies. Results from these surveys have: 1) documented several meters of vertical displacement on at least two separate faults in the Olympia area; 2) clarified the relationship between the Catfish Lake scarp and the underlying kink band in the Tacoma fault zone; 3) provided a first look at the structures beneath the north portion of the western Tacoma fault zone, north of previous marine profiles; 4) documented that deformation along the Seattle fault extends well east of Lake Sammamish; 5) imaged the Seattle fault beneath the Vasa Park trench; and 6) documented multiple fault strands in and south of the Seattle fault zone south of Bellevue. The results better constrain interpretations of paleoseismic investigations of past earthquakes on these faults, and provide targets for future paleoseismic studies.

  18. Seismic activity in the Sunnyside mining district, Utah, during 1967

    USGS Publications Warehouse

    Barnes, Barton K.; Dunrud, C. Richard; Hernandez, Jerome

    1969-01-01

    A seismic monitoring network near Sunnyside, Utah, consisting of a triangular array of seismometer stations that encompasses most of the mine workings in the district, recorded over 50,000 local earth tremors during 1967. About 540 of the tremors were of sufficient magnitude to be accurately located. Most of these were located within 2-3 miles of mine workings and were also near known or suspected faults. The district-wide seismic activity generally consisted of two different patterns--a periodic increase in the daily number of tremors at weekly intervals, and also a less regular and longer term increase and decrease of seismic activity that occurred over a period of weeks or even months. The shorter and more regular pattern can be correlated with the mine work week and seems to result from mining. The longer term activity, however, does not correlate with known mining causes sad therefore seems to be .caused by natural stresses.

  19. The performance of the stations of the Romanian seismic network in monitoring the local seismic activity

    NASA Astrophysics Data System (ADS)

    Ardeleanu, Luminita Angela; Neagoe, Cristian

    2014-05-01

    The seismic survey of the territory of Romania is mainly performed by the national seismic network operated by the National Institute for Earth Physics of Bucharest. After successive developments and upgrades, the network consists at present of 123 permanent stations equipped with high quality digital instruments (Kinemetrics K2, Quantera Q330, Quantera Q330HR, PS6-24 and Basalt digitizers) - 102 real time and 20 off-line stations - which cover the whole territory of the country. All permanent stations are supplied with 3 component accelerometers (episenzor type), while the real time stations are in addition provided with broadband (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T, STS2) or short period (SH-1, S13, Mark l4c, Ranger, GS21, L22_VEL) velocity sensors. Several communication systems are currently used for the real time data transmission: an analog line in UHF band, a line through GPRS (General Packet Radio Service), a dedicated line through satellite, and a dedicated line provided by the Romanian Special Telecommunication Service. During the period January 1, 2006 - June 30, 2013, 5936 shallow depth seismic events - earthquakes and quarry blasts - with local magnitude ML ≥ 1.2 were localized on the Romanian territory, or in its immediate vicinity, using the records of the national seismic network; 1467 subcrustal earthquakes (depth ≥ 60 km) with magnitude ML ≥ 1.9 were also localized in the Vrancea region, at the bend of the Eastern Carpathians. The goal of the present study is to evaluate the individual contribution of the real time seismic stations to the monitoring of the local seismicity. The performance of each station is estimated by taking into consideration the fraction of events that are localised using the station records, compared to the total number of events of the catalogue, occurred during the time of station operation. Taking into account the nonuniform space distribution of earthquakes, the location of the site and the recovery

  20. Fault and dyke detectability in high resolution seismic surveys for coal: a view from numerical modelling*

    NASA Astrophysics Data System (ADS)

    Zhou, Binzhong 13Hatherly, Peter

    2014-10-01

    Modern underground coal mining requires certainty about geological faults, dykes and other structural features. Faults with throws of even just a few metres can create safety issues and lead to costly delays in mine production. In this paper, we use numerical modelling in an ideal, noise-free environment with homogeneous layering to investigate the detectability of small faults by seismic reflection surveying. If the layering is horizontal, faults with throws of 1/8 of the wavelength should be detectable in a 2D survey. In a coal mining setting where the seismic velocity of the overburden ranges from 3000 m/s to 4000 m/s and the dominant seismic frequency is ~100 Hz, this corresponds to a fault with a throw of 4-5 m. However, if the layers are dipping or folded, the faults may be more difficult to detect, especially when their throws oppose the trend of the background structure. In the case of 3D seismic surveying we suggest that faults with throws as small as 1/16 of wavelength (2-2.5 m) can be detectable because of the benefits offered by computer-aided horizon identification and the improved spatial coherence in 3D seismic surveys. With dykes, we find that Berkhout's definition of the Fresnel zone is more consistent with actual experience. At a depth of 500 m, which is typically encountered in coal mining, and a 100 Hz dominant seismic frequency, dykes less than 8 m in width are undetectable, even after migration.

  1. Geothermal Potential of the Siǧacik Gulf (Seferihisar) and Preliminary investigations with Seismic and Magnetic Surveys

    NASA Astrophysics Data System (ADS)

    Bakak, Özde; Özel, Erdeniz; Ergün, Mustafa

    2015-04-01

    . Penetration depth is maximum 90 meter from the seafloor. The seismic sections reveal both the lens structures represented as current accumulation areas, and deformation areas located in upper unit. At the same time, the marine magnetic survey was applied using SDM 4000 magnetometer of Shark Marine Technologies Company. The magnetic measurements were collected along the same seismic lines, and magnetic anomaly map shows the low magnetic anomaly value which is between -50nT and -90 nT, in east of Sığacık Gulf. In the light of shallow seismic and magnetic surveys, it is thought that the east of gulf may have geothermal activity on seafloor.

  2. Daily Physical Activity Survey Report

    ERIC Educational Resources Information Center

    Alberta Education, 2008

    2008-01-01

    The intent of the Daily Physical Activity (DPA) Survey was to gather school-level information from teachers and principals regarding their perceptions of DPA, thus providing a greater understanding of DPA implementation in grades 1 to 9. This study aimed to help identify the many variables that influence the attainment of the DPA outcomes and…

  3. Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys

    NASA Astrophysics Data System (ADS)

    Bombosch, Annette; Zitterbart, Daniel P.; Van Opzeeland, Ilse; Frickenhaus, Stephan; Burkhardt, Elke; Wisz, Mary S.; Boebel, Olaf

    2014-09-01

    Seismic surveys are frequently a matter of concern regarding their potentially negative impacts on marine mammals. In the Southern Ocean, which provides a critical habitat for several endangered cetacean species, seismic research activities are undertaken at a circumpolar scale. In order to minimize impacts of these surveys, pre-cruise planning requires detailed, spatio-temporally resolved knowledge on the likelihood of encountering these species in the survey area. In this publication we present predictive habitat modelling as a potential tool to support decisions for survey planning. We associated opportunistic sightings (2005-2011) of humpback (Megaptera novaeangliae, N=93) and Antarctic minke whales (Balaenoptera bonaerensis, N=139) with a range of static and dynamic environmental variables. A maximum entropy algorithm (Maxent) was used to develop habitat models and to calculate daily basinwide/circumpolar prediction maps to evaluate how species-specific habitat conditions evolved throughout the spring and summer months. For both species, prediction maps revealed considerable changes in habitat suitability throughout the season. Suitable humpback whale habitat occurred predominantly in ice-free areas, expanding southwards with the retreating sea ice edge, whereas suitable Antarctic minke whale habitat was consistently predicted within sea ice covered areas. Daily, large-scale prediction maps provide a valuable tool to design layout and timing of seismic surveys as they allow the identification and consideration of potential spatio-temporal hotspots to minimize potential impacts of seismic surveys on Antarctic cetacean species.

  4. Study of Seismic Activity at Ceboruco Volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Nunez-Cornu, F. J.; Escudero, C. R.; Rodríguez Ayala, N. A.; Suarez-Plascencia, C.

    2013-12-01

    Many societies and their economies endure the disastrous consequences of destructive volcanic eruptions. The Ceboruco stratovolcano (2,280 m.a.s.l.) is located in Nayarit, Mexico, at the west of the Mexican volcanic belt and towards the Sierra de San Pedro southeast, which is a key communication point for coast of Jalisco and Nayarit and the northwest of Mexico. It last eruptive activity was in 1875, and during the following five years it presents superficial activity such as vapor emissions, ash falls and riodacitic composition lava flows along the southeast side. Although surface activity has been restricted to fumaroles near the summit, Ceboruco exhibits regular seismic unrest characterized by both low frequency seismic events and volcano-tectonic earthquakes. From March 2003 until July 2008 a three-component short-period seismograph Marslite station with a Lennartz 3D (1Hz) was deployed in the south flank (CEBN) and within 2 km from the summit to monitoring the seismic activity at the volcano. The LF seismicity recorded was classified using waveform characteristics and digital analysis. We obtained four groups: impulsive arrivals, extended coda, bobbin form, and wave package amplitude modulation earthquakes. The extended coda is the group with more earthquakes and present durations of 50 seconds. Using the moving particle technique, we read the P and S wave arrival times and estimate azimuth arrivals. A P-wave velocity of 3.0 km/s was used to locate the earthquakes, most of the hypocenters are below the volcanic edifice within a circular perimeter of 5 km of radius and its depths are calculated relative to the CEBN elevation as follows. The impulsive arrivals earthquakes present hypocenters between 0 and 1 km while the other groups between 0 and 4 km. Results suggest fluid activity inside the volcanic building that could be related to fumes on the volcano. We conclude that the Ceboruco volcano is active. Therefore, it should be continuously monitored due to the

  5. Elevated shear strength of sediments on active margins: Evidence for seismic strengthening

    NASA Astrophysics Data System (ADS)

    Sawyer, Derek E.; DeVore, Joshua R.

    2015-12-01

    Earthquakes are a primary trigger of submarine landslides, yet some of the most seismically active areas on Earth show a surprisingly low frequency of submarine landslides. Here we show that within the uppermost 100 m below seafloor (mbsf) in previously unfailed sediment, active margins have elevated shear strength by a factor of 2-3 relative to the same interval on passive margins. The elevated shear strength is seen in a global survey of undrained shear strength with depth as well as a normalized analysis that accounts for lithology and stress state. The enhanced shear strength is highest within the uppermost 10 mbsf. These results indicate that large areas of modern day slopes on active margins have enhanced slope stability, which may explain the relative paucity of landslides. These findings lend support to the seismic strengthening hypothesis that the repeated exposure to earthquake energy gradually increases shear strength by shear-induced compaction.

  6. Comparison of Active and Passive Seismic Methods for Calculating Shear-wave Velocity Profiles: An Example from Hartford County, Connecticut

    NASA Astrophysics Data System (ADS)

    Morton, S.; Lane, J. W.; Liu, L.; Thomas, M. A.

    2013-12-01

    Seismic hazard classifications have been developed for Hartford County, Connecticut based primarily on mapping of surficial materials and depositional environment using criteria specified by the National Earthquake Hazard Reduction Program (NEHRP). A study using near-surface seismic techniques to measure shear-wave velocities in Connecticut was initiated in support of broader seismic hazard mapping efforts undertaken by New England State Geologists. Thirty field sites in Hartford County representative of the range of mapped seismic hazard classes were chosen based on the availability of boring logs and adequate open space for the geophysical surveys. Because it can be difficult to acquire multi-channel seismic data in urban areas due to unwanted noise and open space restrictions, we also investigated the use of passive single-station seismometer measurements as a compact supplement and potential alternative to long-offset multi-channel measurements. Here we compare the results of active-source multi-channel analysis of surface waves (MASW) and passive horizontal-to-vertical spectral ratio (HVSR) seismic methods to determine shear-wave velocity profiles and seismic hazard classification based on Vs30 in glacial sediments throughout Hartford County, Connecticut. HVSR-derived seismic resonances were used as a constraint during inversion of the MASW dispersion curve to reduce model misfit and improve model comparison to site lithology.

  7. Crustal Deformation around Zhangjiakou-Bohai Seismically Active Belt

    NASA Astrophysics Data System (ADS)

    Jin, H.; Fu, G.; Kato, T.

    2011-12-01

    Zhangjiakou-Bohai belt is a seismically active belt located in Northern China around Beijing, the capital of China. Near such a belt many great earthquakes occurred in the past centuries (e.g. the 1976 Tanshan Ms7.8 earthquake, the 1998 Zhangbei Ms6.2 earthquake, etc). Chinese Government established dense permanent and regional Global Positioning System (GPS) stations in and near the area. We collected and analyzed all the GPS observation data between 1999 and 2009 around Zhangjiakou-Bohai seismic belt, and obtained velocities at 143 stations. At the same time we investigated Zhangjiakou-Bohai belt slip rate for three profiles from northwest to southeast, and constructed a regional strain field on the Zhangjiakou-Bohai seismic belt region by least-square collocation. Based on the study we found that: 1) Nowadays the Zhangjiakou-Bohai seismic belt is creeping with left-lateral slip rate of 2.0mm~2.4mm/a, with coupling depth of 35~50km; 2) In total, the slip and coupling depth of the northwestern seismic belt is less than the one of southeast side; 3) The maximum shear strain is about 3×10-8 at Beijing-Tianjin-Tangshan area.

  8. An active seismic experiment proposal onboard the NASA 2009 MSL

    NASA Astrophysics Data System (ADS)

    Lognonné, P.; Experiment Team

    NASA will launch in 2009 a 900 kg class rover to Mars. This rover will land with a new descent system, called the ``sky-crane''. After releasing the rover on the ground, the sky-crane will have a final flight until a hard landing about 2 km away from the rover. The science objectives of the 2009 MSL mission, among others, are to characterize the geology of the landing region at all appropriate spatial scales, to interpret the processes that have formed and modified rocks and regolith and to determine present state, distribution, and cycling of water. We propose to perform with the sky-crane an active seismic experiment for subsurface characterization. This experiment will be conducted after the rover deployment. The proposed idea is to deploy a seismic receiver line by ejecting about 10 seismic nodes from the sky-crane and then to record then the reflected signals from the impact of the sky-crane. Preliminary modeling and tests indicate that a penetration depth of several hundred meters will be reached. The experiment will be used to determine a 2D geological profile of the landing site subsurface, to determine the depth and shape of the dry regolith/icy regolith discontinuity and to identify possible layering structures in the subsurface. In addition, information on the structure of the regolith (mean size of building blocs) and on the presence of liquid water will be obtained by an analysis of the seismic coda and attenuation. The seismic high frequency noise will also be monitored, especially during windy periods, and will be used to get additional information on the subsurface. The proposed experiment is based on a consortium between academics laboratories and seismic industry and will be a first example of a resource oriented experiment on another planet than Earth. The complete mass of the experiment will be 2.5 kg. Seismic nodes will have their own acquisition/power and telemetry system and will be based on high sensitive geophones developed for seismic

  9. High-resolution seismic reflection survey near SPR surface collapse feature at Weeks Island, Louisiana

    SciTech Connect

    Miller, R.D.; Xia, J.; Harding, R.S. Jr.; Steeples, D.W.

    1994-12-31

    Shallow high resolution 2-D and 3-D seismic reflection techniques are assisting in the subsurface delineation of a surface collapse feature (sinkhole) at Weeks Island, Louisiana. Seismic reflection surveys were conducted in March 1994. Data from walkaway noise tests were used to assist selection of field recording parameters. The top of the salt dome is about 180 ft below ground surface at the sinkhole. The water table is an estimated 90 ft below the ground surface. A single coherent reflection was consistently recorded across the entire area of the survey, although stacking velocity and spectral content of the event varied. On the basis of observed travel times and stacking velocities, the coherent reflection event appears to originate above the top of the salt, possibly at or near the water table. Identification of this reflector will be made form borehole investigations currently planned for the sinkhole site. A depression or time sag in this reflection event is clearly evident in both the 2-D and 3-D seismic data in the immediate vicinity of the sinkhole. The time sag appears to be related to the subsurface structure of the reflector and not to near surface topography or velocity effects. Elsewhere in the survey area, observed changes in reflection travel times and wavelet character appear to be related to subsurface geologic structure. These seismic observations may assist in predicting where future sinkholes will develop after they have been tied to borehole data collected at the site.

  10. U. S. Geological Survey begins seismic ground response experiments in Washington State

    USGS Publications Warehouse

    Tarr, A.C.; King, K.W.

    1987-01-01

    The men were Denver-based U.S Geological Survey (USGS) geophysicists working on the Urban Hazards Field Investigations project. On the previous day they had recorded two events on their seismographs-a distant nuclear explosion in Nevada and a blast at amine near Centralia, Washington. On another day, they used seismic refraction equipment to locate the depth of bedrock and seismic velocity to it at several locations in West Seattle and in the Seward Park-Brighton district of southeast Seattle. 

  11. Seismic reflection survey in the geothermal field of the Rotorua Caldera, New Zealand

    SciTech Connect

    Lamarche, G. )

    1992-04-01

    This paper discusses a seismic reflection survey conducted in the southern part of the Rotorua geothermal field (New Zealand). Geological structures were interpreted along the two profiles to a depth of about 300 m. A seismic image of the Mamaku Ignimbrite is obtained and appears to show normal faulting. Depth of the top of the Mamaku Ignimbrite corroborates data from boreholes. Thickness of the Ignimbrite sheet may reach 280 m near Rotorua City. It is suggested that the Rotorua caldera boundary is not a single fault but a fault zone consisting of at least 4 faults. The displacement on any one fault is no greater than 30 m. The near surface cold-warm thermal boundary, at the northern boundary of the Whakarewarewa thermal area, is also shown in the seismic section.

  12. Seismic reflection imaging in the ruptured area of The Tohoku-Oki Earthquake - Results from rapid response seismic reflection surveys -

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; No, T.; Fujie, G.; Kaiho, Y.; Sato, T.; Barnes, J.; Boston, B.; Yamashita, M.; Park, J.; Miura, S.; Takahashi, N.; Kodaira, S.; Kaneda, Y.; Moore, G. F.

    2011-12-01

    The 2011 off the Pacific coast of Tohoku Earthquake is one of the largest earthquakes ever observed and generated devastating Tsunamis. Seismological analysis revealed that the large slip occurred beneath the lower trench slope area, close to the Japan trench axis, (e.g. Ide et al. 2011), which seems to be related with the Tsunami generation. We conducted rapid response reflection seismic surveys using R/V Kairei after the main shock to delineate the structure of the ruptured area off Miyagi. Ten E-W lines with at least 120 km of length were surveyed using a 6 km-long, 444 channel streamer cable and a 7800 inch^3 tuned air gun array. The line spacing was 10-20 km. Preliminary processed data and their interpretation demonstrate that the structure considerably varies from south to north in the survey area. Normal faults dominate in the deep sea terrace. Those faults cut sedimentary sequence in this area, and sometimes offset the reflector at the top of cretaceous sequence. Beneath the trench slope, there are few reflectors especially in the shallower depth below the seafloor. Low angle landward dipping reflectors are observed in most of the survey area, some of them coincides with the backstop interface pointed out by Tsuru et al. (2000), but apparent shape and location of these reflectors are not consistent through the survey area. These reflectors may represent faults, but it is difficult to determine the sense of faulting. In the northern part of the survey area, prominent seaward dipping normal faults are observed in the upper to middle slope. Similar normal faults in small scale can be also recognized in some other lines, and should be one of key features offshore Tohoku region.

  13. Seismicity surveys with ocean bottom seismographs off Western Canada

    SciTech Connect

    Hyndman, R.D.; Rogers, G.C.

    1981-05-10

    Three arrays of ocean bottom seismographs have been deployed to study the seismicity at the northern end of the Juan de Fuca ridge system off western Canada. Nearly 100 events were located with estimated accuracies generally better than +- 10 km, all lying on or near the en echelon ridge-transform fault plate boundaries as defined in this area by the magnetic anomalies, the seafloor morphology and by other geophysical data. The depths of 12 events were determined to lie between 2 and 6 km below the top of the crust. The seismograms exhibit clear P and S wave arrivals along with phases that involve P to S and sometimes S to P conversion probably at the base of the sediments beneath the instruments. The event magnitudes have been estimated from signal duration using four calibration events that were well recorded by a land station. The magnitude estimates permit the determination of rough magnitude-frequency of occurrence relations over the magnitude range of 1 to 3 that are in surprisingly good agreement with the recurrence relations for the area at larger magnitudes from 75 years of land station data. The mean P wave velocity in the uppermost mantle from the earthquake data recorded by the sea floor arrays is 7.6 km s/sup -1/ and the mean V/sub p//V/sub s/ ratio is 1.71 or a Poisson's ratio of 0.24.

  14. Rapid geo-acoustic characterization from a seismic survey

    NASA Astrophysics Data System (ADS)

    Heaney, Kevin D.; Sternlicht, Daniel; Teranishi, Arthur; Castille, Brett; Hamilton, Michael

    2002-05-01

    A recent transmission loss experiment was conducted in Long Beach Harbor for the THUMS Long Beach Company. The objective of the experiment was to measure the range at which the received level was 160 dB for compliance with Marine Mammal regulations. This short experiment provided the opportunity to test the rapid geo-acoustic characterization (RGC) algorithm and perform real-time geo-acoustic inversions from a seismic source. The airgun source transmitted pulses every 20 s corresponding to every 45 m. The water depth was 10-15 m and the water was assumed to be iso-velocity. The data quality was excellent, providing clear striation patterns in the broadband frequency display. The RGC algorithm matches the observed time-spread, striation slope, and TL slope to precomputed values using a normal mode algorithm and parametric geo-acoustic profiles based on Hamilton and Bachman's model. Precomputation of the acoustic observables, combined with real-time signal processing permits real time geo-acoustic characterization.

  15. Improving the Detectability of the Catalan Seismic Network for Local Seismic Activity Monitoring

    NASA Astrophysics Data System (ADS)

    Jara, Jose Antonio; Frontera, Tànit; Batlló, Josep; Goula, Xavier

    2016-04-01

    The seismic survey of the territory of Catalonia is mainly performed by the regional seismic network operated by the Cartographic and Geologic Institute of Catalonia (ICGC). After successive deployments and upgrades, the current network consists of 16 permanent stations equipped with 3 component broadband seismometers (STS2, STS2.5, CMG3ESP and CMG3T), 24 bits digitizers (Nanometrics Trident) and VSAT telemetry. Data are continuously sent in real-time via Hispasat 1D satellite to the ICGC datacenter in Barcelona. Additionally, data from other 10 stations of neighboring areas (Spain, France and Andorra) are continuously received since 2011 via Internet or VSAT, contributing both to detect and to locate events affecting the region. More than 300 local events with Ml ≥ 0.7 have been yearly detected and located in the region. Nevertheless, small magnitude earthquakes, especially those located in the south and south-west of Catalonia may still go undetected by the automatic detection system (DAS), based on Earthworm (USGS). Thus, in order to improve the detection and characterization of these missed events, one or two new stations should be installed. Before making the decision about where to install these new stations, the performance of each existing station is evaluated taking into account the fraction of detected events using the station records, compared to the total number of events in the catalogue, occurred during the station operation time from January 1, 2011 to December 31, 2014. These evaluations allow us to build an Event Detection Probability Map (EDPM), a required tool to simulate EDPMs resulting from different network topology scenarios depending on where these new stations are sited, and becoming essential for the decision-making process to increase and optimize the event detection probability of the seismic network.

  16. High-Resolution Seismic Reflection Studies of Active Faults: a Case Study from Washington State

    NASA Astrophysics Data System (ADS)

    Liberty, L. M.; Pratt, T. L.

    2007-12-01

    In the past five years, new high-resolution seismic surveys have filled in gaps in our understanding of active structures beneath the Puget Lowland region of Washington State. The extensive forests have made recognition of active faults difficult, but new Light Distance and Ranging (LIDAR) detailed topographic data have made a major breakthrough in mapping active faults. Extensive regional and high-resolution marine seismic surveys have been fundamental to understanding the tectonic framework of the area. These marine profiles, however, lack coverage beneath water bodies that large ships cannot navigate and beneath city streets underlain by late Pleistocene glacial deposits that are missing from the waterways. Recent land surveys and profiles in restricted waterways can therefore bridge the gap between paleoseismic and marine geophysical studies, and test elements of models proposed by regional-scale geophysical studies. We have also been venturing into more congested areas to seismically image faults in key urban locations. Results from recent surveys have: 1) documented new faults that had long been suspected in the Olympia area; 2) clarified the relationship between the LIDAR scarps and observed structures across the Tacoma fault zone; 3) provided a window into structures beneath the north and eastern portions of the western Tacoma fault zone; 4) documented deformation along the Seattle fault near a paleoseismic trench; 5) mapped the eastern part the Seattle fault zone beyond its previously mapped limits; and 6) documented multiple fault strands in the Seattle fault zone in the cities of Bellevue and Seattle. The results better constrain interpretations of paleoseismic data collected on these faults, and provide targets for future paleoseismic studies.

  17. Combined microbial, seismic surveys predict oil and gas occurrences in Bolivia

    SciTech Connect

    Lopez, J.P. ); Hitzman, D.; Tucker, J. )

    1994-10-24

    Microbial and geophysical surveys in the jungles of Bolivia's extensive Sub-Andean region have combined for three successful predictions of deep oil and gas reserves in as many tries. Hydrocarbon microseepage measured by microbial soil samples predicted the Carrasco, Katari, and Surubi structures of Bolivia's Chapare region in 1991--92, detecting traps with reserves at depths exceeding 4,500 m. Approximately 800 km of seismic lines covering 3,500 sq km was completed by Yacimientos Petroliferos Fiscales Bolivianos (YPFB) for evaluation of the YPFB reserve block. For 1 month each year at the end of the field season, seismic lines were quickly traversed by several microbial sampling teams. Using hand augers or shovels, the teams collected more than 3,200 samples approximately 20 cm (8 in.) deep at intervals of 250 m next to staked seismic locations. Microbial results were directly compared with seismic profiles for identification and ranking of traps and structures. The paper discusses the survey predictions and the microbial approach.

  18. Downhole seismic logging for high-resolution reflection surveying in unconsolidated overburden

    SciTech Connect

    Hunter, J.A.; Pullan, S.E.; Burns, R.A.; Good, R.L.; Harris, J.B.; Pugin, A.; Skvortsov, A.; Goriainov, N.N.

    1998-07-01

    Downhole seismic velocity logging techniques have been developed and applied in support of high-resolution reflection seismic surveys. Data obtained from downhole seismic logging can provide accurate velocity-depth functions and directly correlate seismic reflections to depth. The methodologies described in this paper are designed for slimhole applications in plastic-cased boreholes (minimum ID of 50 mm) and with source and detector arrays that yield similar frequency ranges and vertical depth resolutions as the surface reflection surveys. Compressional- (P-) wave logging uses a multichannel hydrophone array with 0.5-m detector spacings in a fluid-filled borehole and a high-frequency, in-hole shotgun source at the surface. Overlapping array positions downhole results in redundant first-arrival data which can be processed to provide accurate interval velocities. The data also can be displayed as a record suite, showing reflections and directly correlating reflection events with depths. Example applications include identification of gas zones, lithological boundaries within unconsolidated sediments, and the overburden-bedrock interface. Shear- (S-) wave logging uses a slimhole, well-locked, three-component (3-C) geophone pod and a horizontally polarized, hammer-and-loaded-plate source at ground surface. In unconsolidated sediments, shear-wave velocity contrasts can be associated with changes in material density or dynamic shear modulus, which in turn can be related to consolidation. Example applications include identification of a lithological boundary for earthquake hazard applications and mapping massive ice within permafrost materials.

  19. Pen Branch fault program: Consolidated report on the seismic reflection surveys and the shallow drilling

    SciTech Connect

    Stieve, A.L.; Stephenson, D.E.; Aadland, R.K.

    1991-03-23

    The Pen Branch fault was identified in the subsurface at the Savannah River Site (SRS) in 1989 based upon interpretation of earlier seismic reflection surveys and other geologic investigations (Seismorgraph Services Incorp., 1973; Chapman and DiStefano, 1989; Snipes, Fallaw and Price, 1989). A program was initiated at that time to determine the capability of the fault to release seismic energy (Price and others, 1989) as defined in the Nuclear Regulatory Commission regulatory guidelines, 10 CFR 100 Appendix A. This report presents the results of the Pen Branch fault investigation based on data acquired from seismic reflection surveys and shallow drilling across the fault completed at this time. The Earth Science Advisory Committee (ESAC) has reviewed the results of these investigations and unanimously agrees with the conclusion of Westinghouse Savannah River Company (WSRC) that the Pen Branch fault is a non-capable fault. ESAC is a committee of 12 earth science professionals from academia and industry with the charter of providing outside peer review of SRS geotechnical, seismic, and ground water modeling programs.

  20. Structure and seismic activity of the Lesser Antilles subduction zone

    NASA Astrophysics Data System (ADS)

    Evain, M.; Galve, A.; Charvis, P.; Laigle, M.; Ruiz Fernandez, M.; Kopp, H.; Hirn, A.; Flueh, E. R.; Thales Scientific Party

    2011-12-01

    Several active and passive seismic experiments conducted in 2007 in the framework of the European program "Thales Was Right" and of the French ANR program "Subsismanti" provided a unique set of geophysical data highlighting the deep structure of the central part of the Lesser Antilles subduction zone, offshore Dominica and Martinique, and its seismic activity during a period of 8 months. The region is characterized by a relatively low rate of seismicity that is often attributed to the slow (2 cm/yr) subduction of the old, 90 My, Atlantic lithosphere beneath the Caribbean Plate. Based on tomographic inversion of wide-angle seismic data, the forearc can clearly be divided into an inner forearc, characterised by a high vertical velocity gradient in the igneous crust, and an outer forearc with lower crustal velocity gradient. The thick, high velocity, inner forearc is possibly the extension at depth of the Mesozoic Caribbean crust outcropping in La Désirade Island. The outer forearc, up to 70 km wide in the northern part of the study area, is getting narrower to the south and disappears offshore Martinique. Based on its seismic velocity structure with velocities higher than 6 km/s the backstop consists, at least partly, of magmatic rocks. The outer forearc is also highly deformed and faulted within the subducting trend of the Tiburon Ridge. With respect to the inner forearc velocity structure the outer forearc basement could either correspond to an accreted oceanic terrane or made of highly fractured rocks. The inner forearc is a dense, poorly deformable crustal block, tilted southward as a whole. It acts as a rigid buttress increasing the strain within both the overriding and subducting plates. This appears clearly in the current local seismicity affecting the subducting and the overriding plates that is located beneath the inner forearc. We detected earthquakes beneath the Caribbean forearc and in the Atlantic oceanic plate as well. The main seismic activity is

  1. Global thunderstorm activity research survey

    NASA Technical Reports Server (NTRS)

    Coroniti, S. C.

    1982-01-01

    The published literature on the subject of the monitoring of global thunderstorm activity by instrumented satellites was reviewed. A survey of the properties of selected physical parameters of the thunderstorm is presented. The concepts used by satellites to identify and to measure terrestrial lightning pulses are described. The experimental data acquired by satellites are discussed. The scientific achievements of the satellites are evaluated against the needs of scientists and the potential requirements of user agencies. The performances of the satellites are rated according to their scientific and operational achievements.

  2. Near-surface seismic surveys at Rifle, Colorado for shallow groundwater contamination risk assessment

    NASA Astrophysics Data System (ADS)

    Chen, J.; Zelt, C. A.; Levander, A.

    2013-12-01

    In August 2012, we carried out a series of seismic surveys at a site located approximately 0.3 mile east of the city of Rifle in Garfield County, Colorado. The ground water beneath this site was contaminated by former vanadium and uranium ore-processing operations from 1924 through 1958. The site is on an alluvial terrace created by a flood-plain meander of the Colorado River. On the south side, the terrace is bounded by a steep descending slope to the Colorado River; on the other sides, it is bounded by ascending slopes of the more resistant sedimentary rocks of the Wasatch Formation. Although remedial actions have been taken to remove the contaminated surface materials, there are still potential risks from residual materials and redistribution of the contaminated water harming human health. This seismic project, funded by The U.S. Department of Energy, was designed to provide hydrogeologic information through sub-surface velocity model building and imaging of the water aquifer. A 3D compressional wave seismic survey covers an area that is 96 m in the N-S direction by 60 m in the E-W direction. An orthogonal, symmetric receiver and source template was used with 24 receiver lines, 96 channels per receiver line, and 2.5 m between lines. The inline shot and receiver spacing is 2 m and 1 m, respectively. The source was an accelerated weight drop striking a metal plate. The source has a dominant frequency at ~60 Hz, and is down by 20 db at 20 Hz and 150 Hz, providing data suitable for seismic tomography and seismic migration methods. Besides this 3D survey, three other seismic experiments were performed: (1) a 2D multi-component source and receiver survey, (2) a 3D surface wave experiment using 4.5 Hz geophones, and (3) an ambient noise experiment using 4.5 Hz geophones to record passing vehicles and trains. Preliminary results of the data analysis will be presented.

  3. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    NASA Astrophysics Data System (ADS)

    Fedorov, V.

    2009-04-01

    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial

  4. PRESS40: a project for involving students in active seismic risk mitigation

    NASA Astrophysics Data System (ADS)

    Barnaba, Carla; Contessi, Elisa; Rosa Girardi, Maria

    2016-04-01

    To memorialize the anniversary of the 1976 Friuli earthquake, the Istituto Statale di Istruzione Superiore "Magrini Marchetti" in Gemona del Friuli (NE Italy), with the collaboration of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), has promoted the PRESS40 Project (Prevenzione Sismica nella Scuola a 40 anni dal terremoto del Friuli, that in English sounds like "Seismic Prevention at School 40 years later the Friuli earthquake"). The project has developed in the 2015-2016 school year, starting from the 40th anniversary of the Friuli earthquake, and it aims to disseminate historical memory, seismic culture and awareness of seismic safety in the young generations, too often unconscious of past experiences, as recent seismic hazard perception tests have demonstrated. The basic idea of the PRESS40 Project is to involve the students in experimental activities to be active part of the seismic mitigation process. The Project is divided into two main parts, the first one in which students learn-receive knowledge from researchers, and the second one in which they teach-bring knowledge to younger students. In the first part of the project, 75 students of the "Magrini Marchetti" school acquired new geophysical data, covering the 23 municipalities from which they come from. These municipalities represent a wide area affected by the 1976 Friuli earthquake. In each locality a significant site was examined, represented by a school area. At least, 127 measurements of ambient noise have been acquired. Data processing and interpretation of all the results are still going on, under the supervision of OGS researchers.The second part of the project is planned for the early spring, when the students will present the results of geophysical survey to the younger ones of the monitored schools and to the citizens in occasion of events to commemorate the 40th anniversary of the Friuli earthquake.

  5. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    NASA Astrophysics Data System (ADS)

    Fedorov, V.

    2009-04-01

    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial

  6. High resolution seismic survey of the Hanna, Wyoming underground coal gasification area

    SciTech Connect

    Youngberg, A.D.; Berkman, E.; Orange, A.

    1982-01-01

    In November 1980 a high resolution seismic survey was conducted at the Department of Energy, Laramie Energy Technology Center's underground coal gasification test site near Hanna, Wyoming. The objectives of the survey were to determine the feasibility of utilizing high resolution seismic technology to locate and characterize underground coal burn zones and to identify shallow geologic faults at the test site. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow, 61 to 91 meter (200 to 300 foot) depths of interest. A three-dimensional grid of data was obtained over the Hanna II, Phases 2 and 3 burn zone. Processing included time varying filters, deconvolution, trace composition, and two-dimensional, areal stacking of the data in order to identify burn zone anomalies. An anomaly was clearly discernable resulting from the rubble-collapse void above the burn zone which was studied in detail and compared to synthetic models. It is felt, based on these results, that the seismic method can be used to define similar burns if great care is taken in both acquisition and processing phases of an investigation. The fault studies disclosed faults at the test site of hitherto unsuspected complexity. The fault system was found to be a graben complex with numerous antithetic faults. The antithetic faults also contain folded beds. One of the faults discovered may be responsible for the unexpected problems experienced in some of the early in-situ gasification tests at the site. A series of anomalies were discovered on the northeast end of one of the seismic lines, and these reflections have been identified as adits from the old Hanna No. 1 Coal Mine.

  7. Seismic Activity in the Gulf of Mexico: a Preliminary Analysis

    NASA Astrophysics Data System (ADS)

    Franco, S. I.; Canet, C.; Iglesias, A.; Valdes-Gonzales, C. M.

    2013-05-01

    The southwestern corner of Gulf of Mexico (around the northern Isthmus of Tehuantepec) is exposed to an intense deep (> 100 km) seismic activity caused by the subduction of the Cocos plate. Aside from this, the gulf has been considered as a zone of low or no-seismicity. However, a sparse shallow seismic activity is observed across the Gulf of Mexico; some of these earthquakes have been strongly felt (e.g. 23/05/2007 and 10/09/2006), and the Jaltipan, 1959 earthquake caused fatalities and severe destruction in central and southern Veracruz. In this work we analyze 5 relevant earthquakes that occurred since 2001. At the central Gulf of Mexico focal mechanisms show inverse faults oriented approximately NW-SE with dip near 45 degrees, suggesting a link to sediment loading and/or to salt tectonics. On the other hand, in the southwestern corner of the gulf we analyzed some clear examples of strike-slip faults and activity probably related to the Veracruz Fault. One anomalous earthquake, recorded in 2007 in the western margin of the gulf, shows a strike-slip mechanism indicating a transform regime probably related with the East Mexican Fault. The recent improvement of the Mexican Seismological broadband network have allowed to record small earthquakes distributed in and around the Gulf of Mexico. Although the intermediate and large earthquakes in the region are infrequent, the historic evidence indicates that the magnitudes could reach Mw~6.4. This fact could be taken in consideration to reassess the seismic hazard for oil and industrial infrastructure in the region.

  8. Toward long-term all-sky time domain surveys-SINDICS: a prospective concept for a Seismic INDICes Survey of half a million red giants

    NASA Astrophysics Data System (ADS)

    Michel, Eric; Haywood, Misha; Mosser, Benoit; García, Rafael A.; Babusiaux, Carine; Ballot, Jérôme; Samadi, Reza; Katz, David; Belkacem, Kevin; Bernardi, Pernelle; Buey, Tristan

    2015-09-01

    CoRoT and Kepler have brought a new and deep experience in long-term photometric surveys and how to use them. This is true for exoplanets characterizing, stellar seismology and beyond for studying several other phenomena, like granulation or activity. Based on this experience, it has been possible to propose new generation projects, like TESS and PLATO, with more specific scientific objectives and more ambitious observational programs in terms of sky coverage and/or duration of the observations. In this context and as a prospective exercise, we explore here the possibility to set up an all-sky survey optimized for seismic indices measurement, providing masses, radii and evolution stages for half a million solar-type pulsators (subgiants and red giants), in our galactic neighborhood and allowing unprecedented stellar population studies.

  9. An overview of results from the CO2SINK 3D baseline seismic survey at Ketzin, Germany

    NASA Astrophysics Data System (ADS)

    Juhlin, C.; Giese, R.; Cosma, C.; Kazemeini, H.; Juhojuntti, N.; Lüth, S.; Norden, B.; Förster, A.; Yordkayhun, S.

    2009-04-01

    A 3D seismic survey was acquired at the CO2SINK project site over the Ketzin anticline in the fall of 2005. Main objectives of the survey were (1) to verify earlier geological interpretations of the structure based on vintage 2D seismic and borehole data, (2) to provide, if possible, an understanding of the structural geometry for flow pathways within the reservoir, (3) a baseline for later evaluation of the time evolution of rock properties as CO2 is injected into the reservoir, and (4) detailed sub-surface images near the injection borehole for planning of the drilling operations. Overlapping templates with 5 receiver lines containing 48 active channels in each template were used for the acquisition. In each template, 200 nominal source points were activated using an accelerated weight drop, giving a nominal fold of 25. Due to logistics, the number of actual source points in each template varied. In spite of the relatively low fold and the simple source used, data quality is generally good with the uppermost 1000 m being well imaged. Data processing results clearly show a fault system across the top of the Ketzin anticline that is termed the Central Graben Fault Zone (CGFZ). The fault zone consists of west-southwest-east-northeast- to east-west-trending normal faults bounding a 600-800 m wide graben. Within the Jurassic section, discrete faults are well developed, and the main graben-bounding faults have throws of up to 30 m. At shallower levels, the fault system appears to disappear in the Tertiary Rupelian clay. The main bounding faults of the CGFZ can be traced downwards to the top of the Weser Formation and possibly to the Stuttgart level, the target formation for CO2 injection. No faults were imaged near the injection site on the southern limb of the anticline. Remnant gas, cushion and residual gas from a previous natural gas storage facility at the site, is present near the top of the anticline in the depth interval of about 250-400 m and has a clear

  10. Seismic image of a CO2 reservoir beneath a seismically active volcano

    USGS Publications Warehouse

    Julian, B.R.; Pitt, A.M.; Foulger, G.R.

    1998-01-01

    Mammoth Mountain is a seismically active volcano 200 000 to 50 000 years old, situated on the southwestern rim of Long Valley caldera, California. Since 1989 it has shown evidence of unrest in the form of earthquake swarms (Hill et al. 1990), volcanic 'long-period' earthquakes (Pitt and Hill 1994), increased output of magmatic 3He (Sorey et al. 1993) and the emission of about 500 tonnes day-1 of CO2 (Farrar et al. 1995; Hill 1996; M. Sorey, personal communication, 1997) which has killed trees and poses a threat to human safety. Local-earthquake tomography shows that in mid-1989 areas of subsequent tree-kill were underlain by extensive regions where the ratio of the compressional and shear elastic-wave speeds Vp/VS was about 9% lower than in the surrounding rocks. Theory (Mavko and Mukerji 1995), experiment (Ito, DeVilbiss and Nur 1979) and experience at other geothermal/volcanic areas (Julian et al. 1996) and at petroleum reservoirs (Harris et al. 1996) indicate that Vp/VS is sensitive to pore-fluid compressibility, through its effect on Vp. The observed Vp/VS anomaly is probably caused directly by CO2, and seismic Vp/VS tomography is thus a promising tool for monitoring gas concentration and movement in volcanoes, which may in turn be related to volcanic activity.

  11. Seismic image of a CO2 reservoir beneath a seismically active volcano

    NASA Astrophysics Data System (ADS)

    Julian, Bruce R; Pitt, A. M.; Foulger, G. R.

    1998-04-01

    Mammoth Mountain is a seismically active volcano 200000 to 50000 years old, situated on the southwestern rim of Long Valley caldera, California. Since 1989 it has shown evidence of unrest in the form of earthquake swarms (Hill et al. 1990), volcanic `long-period' earthquakes (Pitt & Hill 1994), increased output of magmatic 3He (Sorey et al. 1993) and the emission of about 500 tonnes day -1 of CO2 (Farrar et al. 1995; Hill 1996; M. Sorey, personal communication, 1997), which has killed trees and poses a threat to human safety. Local-earthquake tomography shows that in mid-1989 areas of subsequent tree-kill were underlain by extensive regions where the ratio of the compressional and shear elastic-wave speeds VP/VS was about 9 per cent lower than in the surrounding rocks. Theory (Mavko & Mukerji 1995), experiment (Ito, DeVilbiss & Nur 1979), and experience at other geothermal/volcanic areas (Julian et al. 1996) and at petroleum reservoirs (Harris et al. 1996) indicate that VP/VS is sensitive to pore-fluid compressibility, through its effect on VP . The observed VP/VS anomaly is probably caused directly by CO2, and seismic VP/VS tomography is thus a promising tool for monitoring gas concentration and movement in volcanoes, which may in turn be related to volcanic activity.

  12. Shallow water seismic surveys for site investigation in the Haifa Port Extension area, Israel

    NASA Astrophysics Data System (ADS)

    Shtivelman, Vladimir

    2001-02-01

    A shallow water seismic study was recently carried out as a part of a site investigation project in the Haifa Port Extension area near the Mediterranean coast of Israel. The objectives of the study were estimating P- and S-wave velocity distribution below the seabed and detecting recent faulting at the site. An additional target was testing the presence of a hard rock with P-wave velocity of more than 3000 m/s within the depth range down to 700 m. To achieve the objectives, specially designed refraction and high resolution reflection surveys were carried out at the site. The data acquisition was performed using bay cables and hydrophones placed at the seabed. The source of seismic energy was a single air gun for the reflection survey and explosives for the refraction survey. The P-wave velocities estimated from the shallow refraction data vary in a narrow range of 1800-2200 m/s, hampering the depth interpretation of the data. No indication of the presence of a high-velocity (hard rock) layer within the depth range of 700 m was found. The S-wave velocities were estimated on the basis of the dispersion analysis of Scholte waves contained in the refraction records. The resulting S-wave velocity distribution correlates well with the result of the land refraction survey carried out in the vicinity of the investigated site. The reflection time sections display a sequence of reflections from various stratigraphic units down to the depths of about 800 m. Although some evidence of deformation may be found in the deep part of the sections, there is no indication of the existence of faults in the shallow part of the sections (upper 250-300 m). The results of the surveys show that acquiring shallow water seismic data at the sea bottom may be a relatively simple and effective way to derive information regarding the structure and properties of the shallow subsurface below the seabed.

  13. Identifying induced seismicity in active tectonic regions: A case study of the San Joaquin Basin, California

    NASA Astrophysics Data System (ADS)

    Aminzadeh, F.; Göbel, T.

    2013-12-01

    Understanding the connection between petroleum-industry activities, and seismic event occurrences is essential to monitor, quantify, and mitigate seismic risk. While many studies identified anthropogenically-induced seismicity in intraplate regions where background seismicity rates are generally low, little is known about how to distinguish naturally occurring from induced seismicity in active tectonic regions. Further, it is not clear how different oil and gas operational parameters impact the frequency and magnitude of the induced seismic events. Here, we examine variations in frequency-size and spatial distributions of seismicity within the Southern Joaquin basin, an area of both active petroleum production and active fault systems. We analyze a newly available, high-quality, relocated earthquake catalog (Hauksson et al. 2012). This catalog includes many seismic events with magnitudes up to M = 4.5 within the study area. We start by analyzing the overall quality and consistence of the seismic catalog, focusing on temporal variations in seismicity rates and catalog completeness which could indicate variations in network sensitivity. This catalog provides relatively homogeneous earthquake recordings after 1981, enabling us to compare seismicity rates before and after the beginning of more pervasive petroleum-industry activities, for example, hydraulic-fracturing and waste-water disposals. We conduct a limited study of waste-water disposal wells to establish a correlation between seismicity statistics (i.e. rate changes, fractal dimension, b-value) within specific regions and anthropogenic influences. We then perform a regional study, to investigate spatial variations in seismicity statistics which are then correlated to oil field locations and well densities. In order to distinguish, predominantly natural seismicity from induced seismicity, we perform a spatial mapping of b-values and fractal dimensions of earthquake hypocenters. Seismic events in the proximity to

  14. Can We Estimate Injected Carbon Dioxide Prior to the Repeat Survey in 4D Seismic Monitoring Scheme?

    NASA Astrophysics Data System (ADS)

    Sakai, A.

    2005-12-01

    To mitigate global climate change, the geologic sequestration by injecting carbon dioxide in the aquifer and others is one of the most promising scenarios. Monitoring is required to verify the long-term safe storage of carbon dioxide in the subsurface. As evidenced in the oil industry, monitoring by time-lapse 3D seismic survey is the most effective to spatially detect fluid movements and change of pore pressure. We have conducted 3D seismic survey onshore Japan surrounding RITE/METI Iwanohara carbon dioxide injection test site. Target aquifer zone is at 1100m deep in the Pleistocene layer with 60m thick and most permeable zone is approx. 12m thick. Baseline 3D seismic survey was conducted in July-August 2003 and a monitor 3D seismic survey was in July-August 2005 by vibrating source with 10-120Hz sweep frequency band. Prior to the monitor survey, we evaluated seismic data with integrating wireline logging data. As target carbon dioxide injection layer is thin, high-resolution seismic data is required to estimate potential spreading of injected carbon dioxide. To increase seismic resolution, spectrally enhancing method was in use. The procedure is smoothing number of seismic spectral amplitude, computing well log spectrum, and constructing matching filter between seismic and well spectrum. Then it was applied to the whole seismic traces after evaluating test traces. Synthetic seismograms from logging data were computed with extracting optimal wavelets. Fitting between spectrally enhanced seismic traces and synthetic seismograms was excellent even for deviated monitor wells. Acoustic impedance was estimated by inversion of these 3D seismic traces. In analyzing logging data of sonic, density, CMR, and others, the elastic wave velocity was reconstructed by rock physics approach after estimating compositions. Based on models, velocity changes by carbon dioxide injection was evaluated. The correlation of acoustic impedance with porosity and logarithmic permeability was

  15. A successful 3D seismic survey in the ``no-data zone,`` offshore Mississippi delta: Survey design and refraction static correction processing

    SciTech Connect

    Carvill, C.; Faris, N.; Chambers, R.

    1996-12-31

    This is a success story of survey design and refraction static correction processing of a large 3D seismic survey in the South Pass area of the Mississippi delta. In this transition zone, subaqueous mudflow gullies and lobes of the delta, in various states of consolidation and gas saturation, are strong absorbers of seismic energy. Seismic waves penetrating the mud are severely restricted in bandwidth and variously delayed by changes in mud velocity and thickness. Using a delay-time refraction static correction method, the authors find compensation for the various delays, i.e., static corrections, commonly vary 150 ms over a short distance. Application of the static corrections markedly improves the seismic stack volume. This paper shows that intelligent survey design and delay-time refraction static correction processing economically eliminate the historic no data status of this area.

  16. Vertical Cable Seismic (VCS) Survey for SMS exploration in Izena Cauldron, Okinawa-Trough

    NASA Astrophysics Data System (ADS)

    Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hitoshi; Mizohata, Shigeharu; Tara, Kenji

    2015-04-01

    In 2014, the Japanese government started the Cross-ministerial Strategic Innovation Promotion Program (SIP), which includes 'New-generation Offshore Exploration Techniques' as an area of interest. We proposed the Vertical Cable Seismic (VCS) survey technique for this program, especially for the exploration of Seafloor Massive Sulfides (SMS). VCS is a reflection seismic method that uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by various acoustic sources. This method is useful to delineate detailed structures in a spatially-limited area below the seabed in the deep sea where conventional surface seismic is not effective. We have been developing an autonomous VCS system with the financial support of the Japanese government since 2009. We have carried out several VCS surveys and completed our VCS system. Izena Cauldron, Okinawa Trough is one of the most promising SMS areas around Japan. There are two high potential areas, the north and south mound. We carried out the first VCS survey around the north mound in 2011 and the second survey around the south mound in 2013 respectively. The first VCS survey in Izena Cauldron was carried out using a GI gun in September, 2011, with the objective of surveying the large-scale and deeper structure of the hydrothermal system. The water depth was 1,500-1,600m. Four VCS systems were deployed. The shooting lines covered an area of 9 km x 9 km with a shooting interval of about 25m and line spacing of 200m to 400m. In the second survey, we used a high-voltage sparker. The objective is to explore very shallow parts to delineate very thin SMS deposits. The survey area was about 4 km x 4km with a 12.5 m shooting interval and 100m to 200m line spacing. Three VCS systems were deployed in this survey. The result of the first GI gun VCS survey was a 3D PSDM volume of the subsurface structure. It extends 2,000m horizontally and down to 1,500m in depth. Further, by re-processing the data with a

  17. High-resolution shallow marine seismic surveys off Busan and Pohang, Korea, using a small-scale multichannel system

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Young; Park, Keun-Pil; Koo, Nam-Hyung; Yoo, Dong-Geun; Kang, Dong-Hyo; Kim, Young-Gun; Hwang, Kyu-Duk; Kim, Jong-Chon

    2004-05-01

    A small-scale multichannel high-resolution shallow marine seismic survey was designed to improve the quality of high-resolution seismic data using a multichannel array while preserving cost effectiveness and expedience of the conventional shallow single-channel seismic survey. To evaluate the potential of these modified methods, test surveys were carried out off Busan and Pohang, Korea. A 10- or 30-in 3 small air gun, 30- or 40-m-long streamer cable and PC-based recording system with A/D converter were used to acquire digital high-resolution seismic data. In the data processing, deconvolution and static corrections were very effective in improving the resolution. Resolution and signal to noise (S/N) ratio were increased by acquiring multichannel data in comparison to conducting the same survey with a single-channel array. In the data of Busan survey, thin internal reflectors with 1-2 m resolution were clearly discernable after processing and compared with 3.5-kHz subbottom profiler data. Faults with ˜0.8 m throw were detected in the data of Pohang survey. The results of this study show that small-scale multichannel seismic surveys may be an effective way to image shallow subsurface structures and can be used in various engineering and environmental applications, sedimentary research and marine resources exploration.

  18. Application of uphole data from petroleum seismic surveys to groundwater investigations, Abu Dhabi (United Arab Emirates)

    USGS Publications Warehouse

    Woodward, D.; Menges, C.M.

    1991-01-01

    Velocity data from uphole surveys were used to map the water table and the contact at the base dune sand/top alluvium as part of a joint National Drilling Company-United States Geological Survey Ground Water Research Project in the Emirate of Abu Dhabi. During 1981-1983, a reconnaissance seismic survey was conducted for petroleum exploration in the eastern region of Abu Dhabi. Approximately 2800 kilometers of seismic data, consisting of 92 lines, were acquired in the 2500 km2 concession area near Al Ain. Uphole surveys were conducted about 2 km apart along each seismic line, and were used to calculate weathering corrections required to further process in the seismic data. Approximately 1300 uphole surveys were completed in the concession area between March 1981 and June 1983. Reinterpretation of the velocity profiles derived from the uphole surveys provided data for determining the following subsurface layers, listed in descending order: (1) a surficial, unconsolidated weathering layer with a velocity from 300 to 450 m/s; (2) surficial dune sand, from 750 to 900 m/s; (3) unsaturated, unconsolidated alluvium, from 1000 to 1300 m/s; and (4) saturated, unconsolidated alluvium, from 1900 to 2200 m/s. Two interfaces-the water table and the base dune sand/top alluvium - were identified and mapped from boundaries between these velocity layers. Although the regional water table can fluctuate naturally as much as 3 m per year in this area and the water-table determinations from the uphole data span a 27-month period, an extremely consistent and interpretable water-table map was derived from the uphole data throughout the entire concession area. In the northern part of the area, unconfined groundwater moves northward and northwestward toward the Arabian Gulf; and in the central and southern parts of the area, groundwater moves westward away from the Oman Mountains. In the extreme southern area east of Jabal Hafit, groundwater moves southward into Oman. The map of the base

  19. Combined Active and Passive Seismic Methods To Characterize Strongmotion Sites in Washington and Oregon, United States

    NASA Astrophysics Data System (ADS)

    Pileggi, D.; Cakir, R.; Lunedei, E.; Albarello, D.; Walsh, T. J.

    2011-12-01

    Knowledge of the shear-wave velocity profile at strongmotion station sites is important for calibrating accelerograms in terms of local site effects. Surface-wave seismic prospecting methods (both in active and passive configurations) provide an effective tool for an inexpensive and deep penetrating seismic characterization of subsoil. We used a combination of active (Multi-channel Analysis of Surface Waves, MASW) and passive (Extended Spectral AutoCorrelation, ESAC) array techniques along with the single-station ambient vibration measurements (Horizontal-to-Vertical Spectral Ratios - HVSR) to characterize strong-motion sites in Washington and Oregon. The MASW analysis was used to better constrain the shallowest part of the Vs profile, while effective dispersion curve provided by ESAC and HVSR data allow us to extend the survey downwards (up to hundred meters of depth). The combined use of these data in the frame of global-search inversion algorithms (Genetic Algorithms) allows us to manage the extreme non-linearity of the inverse problem and mitigate problems associated with the non-uniqueness of the solution. A strict synergy between geologic surveys, boreholes (when the latter was available) and seismic surveys allows a further reduction of relevant uncertainties. Preliminary results show that; i) this combined methodology is a practical, inexpensive, and fast way to characterize multiple strong motion sites; ii) local geology and/or borehole information was combined to better constrain the inversion and to reduce the uncertainty in velocity profiles; and, iii) this combined methodology gives additional information of shear-wave velocities at greater depths.

  20. Searching for Seismically Active Faults in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Antunes, V.; Arroucau, P.

    2015-12-01

    The repeated occurrence of large magnitude earthquakes in southwest Iberia in historical and instrumental times suggests the presence of active fault segments in the region. However, due to an apparently diffuse seismicity pattern defining a broad region of distributed deformation west of Gibraltar Strait, the question of the location, dimension and geometry of such structures is still open to debate. We recently developed a new algorithm for earthquake location in 3D complex media with laterally varying interface depths, which allowed us to relocate 2363 events having occurred from 2007 to 2013, using P- and S-wave catalog arrival times obtained from the Portuguese Meteorological Institute (IPMA, Instituto Portugues do Mar e da Atmosfera), for a study area lying between 8.5˚W and 5˚W in longitude and 36˚ and 37.5˚ in latitude. The most remarkable change in the seismicity pattern after relocation is an apparent concentration of events, in the North of the Gulf of Cadiz, along a low angle northward-dipping plane rooted at the base of the crust, which could indicate the presence of a major fault. If confirmed, this would be the first structure clearly illuminated by seismicity in a region that has unleashed large magnitude earthquakes. Here, we present results from the joint analysis of focal mechanism solutions and waveform similarity between neighboring events from waveform cross-correlation in order to assess whether those earthquakes occur on the same fault plane.

  1. Ion density variation during seismic activity as measured by SROSS-C2 satellite

    NASA Astrophysics Data System (ADS)

    Bardhan, Ananna; Sharma, Dinesh Kumar; Kumar, Sarvesh

    ABSTRACT Ion density (O+ and H+) as a precursory parameter to seismic activity has been analysed from year 1995-1998, using RPA payload aboard SROSS-C2 satellite at an average altitude range of ~ 500 km over the Indian region. The details of seismic events during this period are downloaded from United State Geological Survey (USGS) website. Total of six events from the period of 1995-1998 are analyzed which are free from other perturbing phenomena like solar flares and thunderstorms/ lighting. It has been observed that there is considerable enhancement in average values of heavier ion - O+ density and decrease in lighter ion - H+ ion density during seismic affected time over the normal days. The increase in O+ ion density varies from 1.4 to 8.1 times and decrease in H+ ion density varies from 1.4 to 19.9 times compared to normal day's ion densities respectively. VLF emissions generated due to anomalous electric field during seimogenic activity could plausible candidature of change in ion concentration values during these events.

  2. Variation of the Earth tide-seismicity compliance parameter during the recent seismic activity in Fthiotida, central Greece

    NASA Astrophysics Data System (ADS)

    Arabelos, Dimitrios N.; Contadakis, Michael E.; Vergos, Georgios; Spatalas, Spyrous

    2016-01-01

    Based on the results of our previous studies concerning the tidal triggering effect on the seismicity in Greece, we consider the confidence level of earthquake occurrence - tidal period accordance as an index of tectonic stress criticality, associated with earthquake occurrence. Then, we investigate whether the recent increase in the seismic activity at Fthiotida in Greek mainland indicates faulting maturity and the possible production a stronger earthquake. In this paper we present the results of this investigation

  3. Three-dimensional seismic survey applied to field development in Williston basin

    SciTech Connect

    Robinson, G.C.; Baixas, F.; Hooyman, P.J.

    1983-08-01

    The Medicine Lake field of Sheridan County, Montana, was discovered in March 1979 by the drilling of a seismic anomaly. Production is obtained from Paleozoic carbonate reservoirs ranging in age from Ordovician to Mississippian. Cumulative production from the field, as of March 1982, is 1.2 million bbl. A mini-3D seismic survey was acquired in October 1981 to facilitate development drilling. The survey covered 2.4 mi/sup 2/ (6.2 km/sup 2/), encompassing the field's seven producing wells and two dry holes. The purpose of this survey was to provide an accurate image of the subsurface structure and delineate the extent of the producing formations. The areal coverage and improved subsurface imaging of the 3D survey provided a detailed view of the Medicine Lake anomaly. The seismic data reveals that the structure results from a local basement (Precambrian) high. Mapping of the Ordovician Winnipeg Formation revealed a domal structure covering approximately 0.6 mi/sup 2/ (1.5 km/sup 2/) with closure in excess of 180 ft (55 m). Although all producing wells are located on the Medicine Lake structure, stratigraphic variations within the reservoirs may localized production within structural closure. Porosity in several producing formations is diagenetic; prediction of reservoir trends from well data alone is difficult. Inversion and interactive modeling were used to study these stratigraphic variations. A correlation between relative acoustic impedance and porosity was established for several formations. Vertical and horizontal relative acoustic impedance sections were then employed to locate zones of possible porosity. This information, combined with the improved structural data, should aid in further development of the Medicine lake field.

  4. A comparison of active seismic source data to seismic excitations from the 2012 Tongariro volcanic eruptions, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, Arthur; Kennedy, Ben; Keys, Harry; Lokmer, Ivan; Proctor, Jon; Lyons, John; Jolly, Gillian

    2014-05-01

    The 6 August 2012 eruption from Tongariro volcano's Te Maari vent comprised a complex sequence of events including at least 4 eruption jets, a large chasm collapse, and a debris avalanche (volume of ~7x105 m3) that propagated ~2 km beyond the eruptive vent. The eruption was poorly observed, being obscured by night time darkness, and the eruption chronology must be unravelled instead from a complex seismic record that includes discrete volcanic earthquakes, a sequence of low to moderate level spasmodic tremor and an intense burst of seismic and infrasound activity starting at 11:52:18 UTC that marked the eruption onset. We have discriminated the timing of the complex surface activity by comparing active seismic source data to the eruptive sequence. We dropped 11 high impact masses from helicopter to generate a range of active seismic sources in the vicinity of the eruption vent, chasm, and debris avalanche areas. We obtained 8 successful drops having an impact energy ranging from 3 to 9x106 joules producing seismic signals to a distance of 5 to 10 km and having good signal to noise characteristics in the 3-12 Hz range. For the 8 drops, we picked first-P arrival times and calculated amplitude spectra for a uniform set of four 3-component stations. From these, we obtained a distribution of amplitudes across the network for each drop position which varied systematically from the eruption vent and avalanche scar to the debris avalanche toe. We then compared these proxy source excitations to the natural eruption and pre-eruption data using a moving window cross-correlation approach. From the correlation processing, we found evidence for the debris avalanche a few minutes prior to the eruption in both the broad spectrum and narrow frequency (5-10 Hz) analysis. The total seismic energy release calculated from the new method is ~8x1011 joules, similar to an independently estimated calculation based on the radiated seismic energy. The inferred seismic energy release for the

  5. Evidence for activity of the Calabrian arc system and implications for historical seismicity in Eastern Sicily

    NASA Astrophysics Data System (ADS)

    Gallais, F.; Gutscher, M.-A.; Graindorge, D.; Polonia, A.

    2009-04-01

    Calabrian prism, the Ionian Abyssal Plain and the Mediterranean Ridge. A more recent Italian seismic cruise "Calamare" investigated the lateral boundaries of the Calabrian prism. The joint interpretation of these datasets will allow us to seek evidence of continuous tectonic activity of the system, in particular of the Malta-Hyblean escarpment which is also proposed as a candidate source for great earthquakes offshore Sicily (Bianca et al., 99). Additional work is in progress, including a CIRCEE cruise proposal (an OBS + MCS seismic survey, with sediment coring and heat-flow measurements). The objectives are : 1/ to image the deep structure of this subduction zone, 2/ to characterize its thermal state, 3) to determine a geometry of the seismogenic part of the plate interface and 4) to address the recurrence interval for large earthquakes.

  6. Modeling acoustic wave propagation in the Southern Ocean to estimate the acoustic impact of seismic surveys on marine mammals

    NASA Astrophysics Data System (ADS)

    Breitzke, M.; Bohlen, T.

    2007-12-01

    According to the Protocol on Environmental Protection to the Antarctic Treaty, adopted 1991, seismic surveys in the Southern Ocean south of 60°S are exclusively dedicated to academic research. The seismic surveys conducted by the Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany during the last 20 years focussed on two areas: The Wedell Sea (60°W - 0°W) and the Amundsen/Bellinghausen Sea (120°W - 60°W). Histograms of the Julian days and water depths covered by these surveys indicate that maximum activities occurred in January and February, and most lines were collected either in shallow waters of 400 - 500 m depth or in deep waters of 2500 - 4500 m depth. To assess the potential risk of future seismic research on marine mammal populations an acoustic wave propagation modeling study is conducted for the Wedell and the Amundsen/ Bellinghausen Sea. A 2.5D finite-difference code is used. It allows to simulate the spherical amplitude decay of point sources correctly, considers P- and S-wave velocities at the sea floor and provides snapshots of the wavefield at any spatial and temporal resolution. As source signals notional signatures of GI-, G- and Bolt guns, computed by the NUCLEUS software (PGS) are used. Based on CTD measurements, sediment core samplings and sediment echosounder recordings two horizontally-layered, range-independent generic models are established for the Wedell and the Amundsen/Bellinghausen Sea, one for shallow (500 m) and one for deep water (3000 m). They indicate that the vertical structure of the water masses is characterized by a 100 m thick, cold, low sound velocity layer (~1440 - 1450 m/s), centered in 100 m depth. In the austral summer it is overlain by a warmer, 50 m thick surface layer with slightly higher sound velocities (~1447 - 1453 m/s). Beneath the low-velocity layer sound velocities increase rapidly to ~1450 - 1460 m/s in 200 m depth, and smoothly to ~1530 m/s in 4700 m depth. The sea floor is mainly

  7. 3-D Autojuggie: Automating Deployment of Two-Dimensional Geophone Arrays for Efficient Ultra-Shallow Seismic-Reflection Surveys

    NASA Astrophysics Data System (ADS)

    Tsoflias, G. P.; Steeples, D. W.; Czarnecki, G.; Sloan, S. D.; Eslick, R.

    2005-12-01

    Near-surface seismic reflection methods require dense spatial sampling of the wavefield. Seismic surveys imaging the top ten meters of the subsurface employ geophone spacing on the order of decimeters. Two-dimensional (2-D), ultra-shallow seismic reflection methods have increased in popularity. However, placement of geophones remains a labor-intensive deterrent to the acquisition of near-surface, 3-D seismic data. Although 3-D seismic imaging is a mature hydrocarbon-exploration technique, only a handful of 3-D shallow seismic surveys have been acquired over the last decade. We present the development and field-testing of instrumentation for automatic deployment of a 2-D array of 72 geophones for acquisition of ultra-shallow 3-D reflection seismic data, referred to as the 3-D Autojuggie. The main components of the instrumentation include: a) two vertically stacked rigid steel frames used for positioning, planting, and transporting an array of geophones; b) an hydraulically controlled mechanism for decoupling the geophones from the steel frames during seismic data recording; and c) a 2-D array of seventy-two 100 Hz Mark Products geophones with 20.32 cm long spikes, spaced 20 cm apart in the inline (12 geophones) and crossline (6 rows) orientation. Seismic noise testing (walkaways) conducted at The University of Kansas employing automatically planted 2-D geophone arrays next to conventional hand-planted geophones resulted in equivalent seismic imaging of the subsurface. The geophone planting instrumentation did not degrade the quality of the recorded wavefield. The efficiency of automatically placing a dense 2-D array of geophones on the ground and the ease of moving the array quickly to adjacent positions, along with the ability to acquire comparable quality data to conventional hand-planted geophones, indicate that the 3-D Autojuggie is a viable approach to ultra-shallow 3-D seismic acquisition. Conceptually, the design could accommodate an array of hundreds of

  8. On the use of seismic reflection surveys from oil exploration in deep crustal studies

    NASA Astrophysics Data System (ADS)

    Rotstein, Y.; Trachtman, P.

    1986-09-01

    A very large number of seismic reflection surveys is carried out by the oil industry throughout the world. Some of these surveys are designed to study deep oil traps and may use field parameters which, for the most part, are not significantly different from those used in deep crustal reflection studies. The one parameter which always varies is the record length (listening time). In the case of a vibratory source, the record length can be increased at the processing stage by the equivalent reduction of vibration time through partial correlation. We have used an oil exploration survey from a deep sedimentary basin in the coastal plain of Israel and extended its record length using this technique. We show that if a survey with appropriated field parameters, i.e., a survey for a deep target is chosen, deep crustal reflectors can be traced. Since a COCORP type deep crustal reflection study was also carried out in the same region, we can compare the two sets of results. We note that in this case the extended oil exploration record is at least equivalent to, and probably of better quality than, the COCORP type survey. This result is due mostly to a better S/N ratio in the oil exploration survey where input power was significantly larger than in special purpose study. This result indicates the as yet untapped potential of oil exploration data in deep continental crustal studies.

  9. Deep Seismic Researches Of Seismic-Active Zones With Use Of High-Power Vibrators - Technique, Outcomes, Outlooks

    NASA Astrophysics Data System (ADS)

    Soloviev, V.; Seleznev, V.; Emanov, A.; Sal`Nikov, A.; Kashun, V.; Glinsky, B.; Kovalevsky, V.; Zhemchugova, I.; Danilov, I.; Liseikin, A.

    2004-12-01

    There are presented the materials of deep vibroseism researches, carried out in seismic active regions of Siberia with use of stationary (100-tos power) and moveable vibration sources (40-60tons power) and mobile digital recording equipment. There are given some examples of unique, have no world analogues, correlograms from high-power vibrators on distances to 400km and more. Using new vibroseismic technology of deep seismic researches, there were got detail deep sections of the Earth's crust and upper mantle, including time-sections of CDP-DSS up to depth of 80km. Materials of vibroseismic investigations on 2500km of seismic profiles in hard-to-reach regions of the Altay-Sayan region, the Baikal rift zone and Okhotsko-Chukotski regions are evidence of high cost efficiency, ecological safety, possibility to be realized in hard-to-reach region and finally of availability of deep seismic investigations with use of high-power vibration sources.

  10. Active seismic sources as a proxy for seismic surface processes: An example from the 2012 Tongariro volcanic eruptions, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Lokmer, I.; Kennedy, B.; Keys, H. J. R.; Proctor, J.; Lyons, J. J.; Jolly, G. E.

    2014-10-01

    The 6 August 2012 eruption from Tongariro volcano's Te Maari vent comprised a complex sequence of events including at least 4 eruption pulses, a large chasm collapse, and a debris avalanche (volume of ~ 7 × 105 m3) that propagated ~ 2 km beyond the eruptive vent. The eruption was poorly observed, being obscured by night time darkness, and the eruption timing must be unravelled instead from a complex seismic record that includes discrete volcanic earthquakes, a sequence of low to moderate level spasmodic tremor and an intense burst of seismic and infrasound activity that marked the eruption onset. We have discriminated the evolution of the complex surface activity by comparing active seismic source data to the seismic sequence in a new cross correlation source location approach. We dropped 11 high impact masses from helicopter to generate a range of active seismic sources in the vicinity of the eruption vent, chasm, and debris avalanche areas. We obtained 8 successful drops having an impact energy ranging from 3 to 9 × 106 Nm producing observable seismic signals to a distance of 5 to 10 km and having good signal to noise characteristics in the 3-12 Hz range. For the 8 drops, we picked first-P arrival times and calculated amplitude spectra for a uniform set of four stations. We then compared these proxy source excitations to the natural eruption and pre-eruption data using a moving window cross correlation approach. From the correlation processing, we obtain a best matched source position in the near vent region for the eruption period and significant down channel excitations during both the pre and post eruption periods. The total seismic energy release calculated from the new method is ~ 8 × 1011 Nm, similar to an independently estimated calculation based on the radiated seismic energy. The new energy estimate may be more robust than those calculated from standard seismic radiation equations, which may include uncertainties about the path and site effects. The

  11. Seismic Survey Report for Central Nevada Test Area, Subsurface, Correction Action Unit 443, Revision 1

    SciTech Connect

    2008-12-19

    The seismic survey was successful in imaging the water table and underlying structures at the site. The configuration of the water table reflector confirms the general southeast horizontal flow direction in the alluvial aquifer. Offsets in the water table reflector, both at known faults that reach the surface and at subsurface faults not previously recognized, indicate that both extension and blast-related faults are barriers to lateral groundwater flow. The results from this study have been used to optimally locate two new wells designed to monitor head levels and possible contaminant migration in the alluvial aquifer at CTNA.

  12. Fault Activity, Seismicity and GPS Deformation of the Seismic Gap along the Red River Fault Zone (RRFZ) in Yunnan, China

    NASA Astrophysics Data System (ADS)

    Xue-Ze, Wen; Shengli, Ma; Fang, Du; Feng, Long

    2016-04-01

    Along the middle segment of the NW-trending and dextral-slip Red River fault zone (RRFZ), also the Honghe fault zone, Yunnan, China, there has been little of modern seismicity since the 1970's. Some Chinese researchers believed that this fault segment is inactive in the late Quaternary. However, more and more evidence shows that the middle segment of RRFZ is geologically-active in the late Quaternary, even is a Holocene-active one with evidence of paleo-earthquakes occurring. Our study suggests that along the fault segment there has been no any major earthquake occurring for over 500 years at least, and a large-scale seismic gap, the Honghe seismic gap, have formed there. On the modern seismicity, the middle segment of RRFZ has presented as a fault portion without or with very few small earthquakes occurring since the 1980's, but surrounded by several areas with low b-values, suggesting relatively high stress having built-up there. Also, GPS deformation analysis suggests that this fault segment has tightly locked already. Such tight locking would be associated with the fault geometry: A large-scale restraining bend of about 30°over a distance of ~100 km exists along the main fault trace along RRFZ between Yuanjiang and Yuanyang. However, how such a restraining bend makes the middle segment of RRFZ have tightly locked? How much strain has built up there? Moreover, how about the long-term seismic potential of major earthquake on the middle segment of RRFZ, and on some secondary active faults of the two sides of the segment, especially on the parallel faults Chuxiong, Qujiang and Shiping. All these are issues we want to study further. Keywords: Red River Fault Zone, Seismic Gap, Fault Activity, Seismicity, GPS Deformation

  13. Active damping performance of the KAGRA seismic attenuation system prototype

    NASA Astrophysics Data System (ADS)

    Fujii, Yoshinori; Sekiguchi, Takanori; Takahashi, Ryutaro; Aso, Yoichi; Barton, Mark; Erasmo Peña Arellano, Fabián; Shoda, Ayaka; Akutsu, Tomotada; Miyakawa, Osamu; Kamiizumi, Masahiro; Ishizaki, Hideharu; Tatsumi, Daisuke; Hirata, Naoatsu; Hayama, Kazuhiro; Okutomi, Koki; Miyamoto, Takahiro; Ishizuka, Hideki; DeSalvo, Riccardo; Flaminio, Raffaele

    2016-05-01

    The Large-scale Cryogenic Gravitational wave Telescope (formerly LCGT now KAGRA) is presently under construction in Japan. This May we assembled a prototype of the seismic attenuation system (SAS) for the beam splitter and the signal recycling mirrors of KAGRA, which we call Type-B SAS, and evaluated its performance at NAOJ (Mitaka, Toyko). We investigated its frequency response, active damping performance, vibration isolation performance and long-term stability both in and out of vacuum. From the frequency response test and the active damping performance test, we confirmed that the SAS worked as we designed and that all mechanical resonances which could disturb lock acquisition and observation are damped within 1 minute, which is required for KAGRA, by the active controls.

  14. Fractures in the Critical Zone: Insights from GPR and seismic refraction surveys

    NASA Astrophysics Data System (ADS)

    St. Clair, J. T.; Holbrook, W.; Riebe, C. S.

    2012-12-01

    Near-surface weathering profiles integrate tectonic history, past and present climatic conditions, and interactions with the biosphere. The amount of weathering that a rock has undergone controls both the availability of material for transport at the surface and physical pathways for water to interact with material at depth; thus rock damage provides first order controls on landscape evolution. In this study we use seismic refraction and ground-penetrating-radar (GPR) surveys to estimate depths to unweathered bedrock and to investigate the spatial variability of fractures within the saprolite in the Sherman Batholith, SE Wyoming. We use a 48-channel geophone array with a hammer source and perform tomographic inversions of observed travel-times. Our results show that depths to seismic velocities > 4.0 km/s, characteristic of unweathered Sherman granite, are ~10-40 meters. We collect vertically incident GPR data with several antennae with peak frequencies up to 400 Mhz. Depth-migrated images reveal highly damaged saprolite, with fractures penetrating up to 10 meters. We find that fracture density is higher where seismic velocities are lower. We also observe horizontal fractures terminating down dip of weaker reflections, which we interpret as relatively coherent dikes in an otherwise friable saprolite. We hypothesize that these dikes may play an important role in routing water through the subsurface.

  15. High resolution seismic survey, Pen Branch Fault, Savannah River Site, South Carolina

    SciTech Connect

    Berkman, E. )

    1991-04-01

    An investigation of the Pen Branch Fault at the Savannah River Site by a series of short, high resolution seismic reflection lines was conducted. The purpose was to acquire, process, and interpret 19.9 miles of data, optimized for the upper 300 ft of geologic strata, in sufficient density such that processing performed in the conventional stepwise approach, followed by detailed interpretation, would define small scale spatial variability and structural features in the vicinity of the fault leading to definition of the location of the fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. The depth of optimization for the last two lines was modified to the 300 ft of geologic strata immediately above basement. Three older seismic surveys, other geophysical data, and associated borehole and geologic data were reviewed. The equipment and the acquisition, processing, and interpretation procedures are discussed in the report. The report includes a detailed line by line description and discussion of the interpretation. Figures include reference maps, contour displays of the stacking and interval velocities, diagrammatic references sketches of the interpreted layering and sedimentary features, index sketches, and specific color prints made on the workstation during the course of the interpretation. A volume of manuals on seismic devices and related equipment is included.

  16. High resolution seismic survey, Pen Branch Fault, Savannah River Site, South Carolina. Final report

    SciTech Connect

    Berkman, E.

    1991-04-01

    An investigation of the Pen Branch Fault at the Savannah River Site by a series of short, high resolution seismic reflection lines was conducted. The purpose was to acquire, process, and interpret 19.9 miles of data, optimized for the upper 300 ft of geologic strata, in sufficient density such that processing performed in the conventional stepwise approach, followed by detailed interpretation, would define small scale spatial variability and structural features in the vicinity of the fault leading to definition of the location of the fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. The depth of optimization for the last two lines was modified to the 300 ft of geologic strata immediately above basement. Three older seismic surveys, other geophysical data, and associated borehole and geologic data were reviewed. The equipment and the acquisition, processing, and interpretation procedures are discussed in the report. The report includes a detailed line by line description and discussion of the interpretation. Figures include reference maps, contour displays of the stacking and interval velocities, diagrammatic references sketches of the interpreted layering and sedimentary features, index sketches, and specific color prints made on the workstation during the course of the interpretation. A volume of manuals on seismic devices and related equipment is included.

  17. Application of neural networks to seismic active control

    SciTech Connect

    Tang, Yu

    1995-07-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads.

  18. Multi-level continuous active source seismic monitoring (ML-CASSM): Application to shallow hydrofracture monitoring

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Daley, T. M.; Butler-Veytia, B.; Peterson, J.; Gasperikova, E.; Hubbard, S. S.

    2010-12-01

    Induced subsurface processes occur over a wide variety of time scales ranging from seconds (e.g. fracture initiation) to days (e.g. unsteady multiphase flow) and weeks (e.g. induced mineral precipitation). Active source seismic monitoring has the potential to dynamically characterize such alterations and allow estimation of spatially localized rates. However, even optimal timelapse seismic surveys have limited temporal resolution due to both the time required to acquire a survey and the cost of continuous field deployment of instruments and personnel. Traditional timelapse surveys are also limited by experimental repeatability due to a variety of factors including geometry replication and near-surface conditions. Recent research has demonstrated the value of semi-permanently deployed seismic systems with fixed sources and receivers for use in monitoring a variety of processes including near-surface stress changes (Silver et.al. 2007), subsurface movement of supercritical CO2 (Daley et.al. 2007), and preseismic velocity changes in fault regions (Niu et. al. 2008). This strategy, referred to as continuous active source seismic monitoring (CASSM), allows both precise quantification of traveltime changes on the order of 1.1 x 10-7 s and temporal sampling on the order of minutes. However, as previously deployed, CASSM often sacrifices spatial resolution for temporal resolution with previous experiments including only a single source level. We present results from the first deployment of CASSM with a large number of source levels under automated control. Our system is capable of autonomously acquiring full tomographic datasets (10 sources, 72 receivers) in 3 minutes without human intervention, thus allowing active source seismic imaging (rather than monitoring) of processes with short durations. Because no sources or receivers are moved in the acquisition process, signal repeatability is excellent and subtle waveform changes can be interpreted with increased confidence

  19. 78 FR 34069 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... notice of the proposed IHA (78 FR 17359, March 21, 2013). The seismic survey will not result in any... published a notice in the Federal Register (78 FR 17359) making preliminary determinations and proposing to... program in a previous notice for the proposed IHA (78 FR 17359, March 21, 2013). The activities to...

  20. Results from a new seismic survey around the JFAST drill site

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Kodaira, S.; Yamamoto, Y.; Fujie, G.; Obana, K.; Miura, S.; Takahashi, N.; Cook, B.; Conin, M.; Chester, F. M.; Mori, J. J.; Eguchi, N.; Toczko, S.

    2013-12-01

    After the 2011 Tohoku earthquake, we have carried out several seismic surveys in the Japan Trench region. A high-resolution seismic survey collected in 2011 using a 1300-m-long streamer cable and a gun array with volume of 320 inch3 played an important role for choosing the site location and its results showed detailed structure in the Japan Trench axis area. Due to the short offset of the streamer cable, however, the seismic velocity could not be accurately determined.. Furthermore, the regional structural profiles were not obtained because of the small volume of the sounding source from the high resolution seismic survey. In January 2013, we conducted a seismic survey around the IODP Site C0019 drilled during the IODP Expedition 343 (JFAST) with air gun arrays with volume of 7800 inch3 by R/V Kairei. We used a 6000-m-long streamer cable and 4 OBSs as receivers. The shot interval was 50 m along the survey lines. The primary survey line JFD1 runs across the Japan Trench in WNW-ESE direction and the length of the line is ~ 100 km centered at the Site C0019. The data obtained by the streamer cable were processed through the Pre-stack time migration (PrSTM) technique. On the PrSTM section of the line JFD1, a relatively strong reflection is observed at ~ 1 s two-way travel time (TWT) below the seafloor in the landward part of the section through ~20 km landward from the trench axis, which corresponds to the 'Cretaceous unconformity'. Landward-dipping reflections observed 15-30 km landward of the trench axis could be a 'backstop interface'. Several landward dipping reflections are imaged within the frontal prism. In the vicinity of the trench axis, imbricated structure of incoming sediments is imaged on the PrSTM profile as previously observed on the high resolution profiles. A seaward dipping reflection, which was interpreted as a part of decollement at the landward part of the trench graben, is also observed in the PrSTM section. The top of the subducting oceanic

  1. Angola Seismicity MAP

    NASA Astrophysics Data System (ADS)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic

  2. Codeless GPS systems for positioning of offshore platforms and 3D seismic surveys

    NASA Astrophysics Data System (ADS)

    MacDoran, P. F.; Miller, R. B.; Buennagel, L. A.; Fliegel, H. F.; Tanida, L.

    The Satellite Emission Range Inferred Earth Surveying (SERIES) method was originally intended for subdecimeter accuracy measurements of the crust of the earth in search of tell-tale patterns which could be exploited for research into earthquake prediction. The present paper is concerned with a specific application of the SERIES technology, taking into account high accuracy positioning related to exploration for oil and gas reserves in the offshore environment. One of the most advanced methods of exploration for hydrocarbon resources is known as 3D seismic surveying. Morgan (1983) has discussed this method, giving attention to the possible benefits of using the Global Positioning System (GPS). The present paper presents the SERIES-GPS method. It is shown that wide civil use of the Navstar is possible to levels of accuracy well beyond the Precise Positioning Service (PPS). Such a use is feasible without the DOD for Navstar codes and orbits.

  3. Simulation of complete seismic surveys for evaluation of experiment design and processing

    SciTech Connect

    Oezdenvar, T.; McMechan, G.A.; Chaney, P.

    1996-03-01

    Synthesis of complete seismic survey data sets allows analysis and optimization of all stages in an acquisition/processing sequence. The characteristics of available survey designs, parameter choices, and processing algorithms may be evaluated prior to field acquisition to produce a composite system in which all stages have compatible performance; this maximizes the cost effectiveness for a given level of accuracy, or for targets with specific characteristics. Data sets synthesized for three salt structures provide representative comparisons of time and depth migration, post-stack and prestack processing, and illustrate effects of varying recording aperture and shot spacing, iterative focusing analysis, and the interaction of migration algorithms with recording aperture. A final example demonstrates successful simulation of both 2-D acquisition and processing of a real data line over a salt pod in the Gulf of Mexico.

  4. Active Tectonics of off-Hokuriku, Central Japan, by two ships seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Kato, Naoko; Sato, Hiroshi; Ishiyama, Tatsuya; Abe, Susumu; Shiraishi, Kazuya

    2015-04-01

    Along the southern to eastern margin of the Sea of Japan, active faults are densely distributed. These submarine active faults produced tsunami disasters, such as 1983 Nihonkai-chubu earthquake (M7.7) and 1993 Hokkaido Nansei-oki earthquake (M7.8). To estimate tsunami hazards, we performed deep seismic reflection profiling to obtain the information of tsunami source faults, off-Hokuriku area in the central part of Honshu, Japan. The survey is carried out as a part of research project named "the integrated research project on seismic and tsunami hazards around the Sea of Japan" funded by MEXT. To obtain long offset data in busy marine activity area, we used two vessels; a gun-ship with 3020 cu. inch air-gun and a cable-ship with a 2-km-long, streamer cable with 156 channels and 480 cu. inch air-gun. Common-midpoint reflection data were acquired using two ships at 4 km offset. The survey area consists of stretched continental crust associated with rifting and opening of the Sea of Japan in early Miocene and is marked by densely distributed syn-rift normal faults. Fault reactivation of normal faults as reverse faults is common. Two phases of fault reactivation are identified from the seismic sections after termination of opening of the Sea of Japan. One is the late Miocene NS trending shortening deformation. This is produced by NS-trending convergence of the Shikoku basin (15 Ma), which belongs to the Philippine Sea plate (PHS) to SW Japan at Nankai trough (Kimura et al., 2005). After the initiation of the subduction of PHS at Nankai trough, the strong shortening deformation is terminated and the fold-and-thrust belt was unconformably covered by sub-horizontal Pliocene sediments. Some horizons of unconformities represent multiple events of shortening driven from the subduction interface. Some normal faults reactivated as active strike-slip and reverse faults in Quaternary. Well observed example is the 2007 Noto peninsula earthquake (M6.8). The 2007 Noto peninsula

  5. Improved results by combining reflection seismic profiling with diving wave tomography; three case histories on hi-res hybrid seismic surveying

    NASA Astrophysics Data System (ADS)

    Bachmann, D.; Frei, W.

    2003-04-01

    The performance of high resolution reflection seismic surveys is questionable in areas with poorly defined acoustic impedance contrasts at shallow depths, but is unparalleled for delineating complex structures at greater depths. The salient feature of the diving wave tomography technique is the detailed mapping capability of the velocity field in the near surface depth range, whereas, its resolving power degrades rapidly with increasing depth. We have, for both methods, combined the efforts for the data acquisition and processing with the main objective to compensate the disadvantages of either technique by the benefits of the other. An equally important objective was to render the method routinely applicable in the cost sensitive environment of geotechnical / environmental engineering. The appropriate choice of acquisition parameters is crucial to achieve the spatial data density and recording geometry requirements by either evaluation method. Three case histories illustrate the practical use of the hybrid seismic surveying technique to characterize the shallow subsurface in the depth range of a few tenths of meters. The first example deals with the mapping of subsurface structures in close proximity to a ground failure in an urban environment. Here, both methods produce pieces of information of equivalent importance for the final outcome of the survey. They are truly complementary, since each one alone provides only an incomplete image of the subsurface. The second case study focuses on the determination of the ground water barrier beneath fluviatile sediments contaminated by toxic waste fluids. In the presence of poorly defined acoustic impedance contrasts within the sediments and at the boundary to the intensely weathered Tertiary bedrock, the information provided by the diving wave tomography technique reveals the surface topography of the bedrock with considerably greater precision than the combination of bore holes with solely reflection seismic profiling

  6. High-resolution seismic structure analysis of an active submarine mud volcano area off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Hsiao-Shan; Hsu, Shu-Kun; Tsai, Wan-Lin; Tsai, Ching-Hui; Lin, Shin-Yi; Chen, Song-Chuen

    2015-04-01

    In order to better understand the subsurface structure related to an active mud volcano MV1 and to understand their relationship with gas hydrate/cold seep formation, we conducted deep-towed side-scan sonar (SSS), sub-bottom profiler (SBP), multibeam echo sounding (MBES), and multi-channel reflection seismic (MCS) surveys off SW Taiwan from 2009 to 2011. As shown in the high-resolution sub-bottom profiler and EK500 sonar data, the detailed structures reveal more gas seeps and gas flares in the study area. In addition, the survey profiles show several submarine landslides occurred near the thrust faults. Based on the MCS results, we can find that the MV1 is located on top of a mud diapiric structure. It indicates that the MV1 has the same source as the associated mud diapir. The blanking of the seismic signal may indicate the conduit for the upward migration of the gas (methane or CO2). Therefore, we suggest that the submarine mud volcano could be due to a deep source of mud compressed by the tectonic convergence. Fluids and argillaceous materials have thus migrated upward along structural faults and reach the seafloor. The gas-charged sediments or gas seeps in sediments thus make the seafloor instable and may trigger submarine landslides.

  7. Active faults in the deformation zone off Noto Peninsula, Japan, revealed by high- resolution seismic profiles

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Okamura, Y.; Murakami, F.; Kimura, H.; Ikehara, K.

    2008-12-01

    Recently, a lot of earthquakes occur in Japan. The deformation zone which many faults and folds have concentrated exists on the Japan Sea side of Japan. The 2007 Noto Hanto Earthquake (MJMA 6.9) and 2007 Chuetsu-oki Earthquake (MJMA 6.8) were caused by activity of parts of faults in this deformation zone. The Noto Hanto Earthquake occurred on 25 March, 2007 under the northwestern coast of Noto Peninsula, Ishikawa Prefecture, Japan. This earthquake is located in Quaternary deformation zone that is continued from northern margin of Noto Peninsula to southeast direction (Okamura, 2007a). National Institute of Advanced Industrial Science and Technology (AIST) carried out high-resolution seismic survey using Boomer and 12 channels short streamer cable in the northern part off Noto Peninsula, in order to clarify distribution and activities of active faults in the deformation zone. A twelve channels short streamer cable with 2.5 meter channel spacing developed by AIST and private corporation is designed to get high resolution seismic profiles in shallow sea area. The multi-channel system is possible to equip on a small fishing boat, because the data acquisition system is based on PC and the length of the cable is short and easy to handle. Moreover, because the channel spacing is short, this cable is very effective for a high- resolution seismic profiling survey in the shallow sea, and seismic data obtained by multi-channel cable can be improved by velocity analysis and CDP stack. In the northern part off Noto Peninsula, seismic profiles depicting geologic structure up to 100 meters deep under sea floor were obtained. The most remarkable reflection surface recognized in the seismic profiles is erosion surface at the Last Glacial Maximum (LGM). In the western part, sediments about 30 meters (40 msec) thick cover the erosional surface that is distributed under the shelf shallower than 100m in depth and the sediments thin toward offshore and east. Flexures like deformation in

  8. 78 FR 28411 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to Marine Seismic... Marine Seismic Survey in the Chukchi Sea, Alaska AGENCY: National Marine Fisheries Service (NMFS... occur in the seismic survey area include nine cetacean species, beluga whale (Delphinapterus...

  9. Boundary separating the seismically active reelfoot rift from the sparsely seismic Rough Creek graben, Kentucky and Illinois

    USGS Publications Warehouse

    Wheeler, R.L.

    1997-01-01

    The Reelfoot rift is the most active of six Iapetan rifts and grabens in central and eastern North America. In contrast, the Rough Creek graben is one of the least active, being seismically indistinguishable from the central craton of North America. Yet the rift and graben adjoin. Hazard assessment in the rift and graben would be aided by identification of a boundary between them. Changes in the strikes of single large faults, the location of a Cambrian transfer zone, and the geographic extent of alkaline igneous rocks provide three independent estimates of the location of a structural boundary between the rift and the graben. The boundary trends north-northwest through the northeastern part of the Fluorspar Area Fault Complex of Kentucky and Illinois, and has no obvious surface expression. The boundary involves the largest faults, which are the most likely to penetrate to hypocentral depths, and the boundary coincides with the geographic change from abundant seismicity in the rift to sparse seismicity in the graben. Because the structural boundary was defined by geologic variables that are expected to be causally associated with seismicity, it may continue to bound the Reelfoot rift seismicity in the future.

  10. Present activity and seismogenic potential of a low-angle normal fault system (Città di Castello, Italy): Constraints from surface geology, seismic reflection data and seismicity

    NASA Astrophysics Data System (ADS)

    Brozzetti, Francesco; Boncio, Paolo; Lavecchia, Giusy; Pace, Bruno

    2009-01-01

    We present new constraints on an active low-angle normal fault system in the Città di Castello-Sansepolcro basin (CSB) of the northern Apennines of Italy. New field data from the geological survey of the Carta Geologica d' Italia (CARG project) define the surface geometry of the normal fault system and lead to an interpretation of the CROP 03 deep-crust seismic reflection profile (Castiglion Fiorentino-Urbania segment), with particular attention paid to the geometry of the Plio-Quaternary extensional structures. Surface and sub-surface geological data are integrated with instrumental and historical seismicity in order to define the seismotectonics of the area. Low-angle east-dipping reflectors are the seismic expression of the well-known Altotiberina Fault (AF), a regional extensional detachment on which both east- and west-dipping high-angle faults, bounding the CSB, sole out. The AF breakaway zone is located ˜ 10 km west of the CSB. Within the extensional allochthon, synthetic east-dipping planes prevail. Displacement along the AF is ˜ 4.5 km, which agrees with the cumulative offset due to its synthetic splays. The evolution of the CSB has mainly been controlled by the east-dipping fault system, at least since Early Pleistocene time; this system is still active and responsible for the seismicity of the area. A low level of seismic activity was recorded instrumentally within the CSB, but several damaging earthquakes have occurred in historical times. The instrumental seismicity and the intensity data points of the largest historical earthquakes (5 events with maximum MCS intensity of IX to IX-X) allow us to propose two main seismogenic structures: the Monte Santa Maria Tiberina (Mmax = 5.9) and Città di Castello (Mmax up to 6.5) normal faults. Both are synthetic splays of the AF detachment, dipping to the NE at moderate (45-50°) to low (25-30°) angles and cutting the upper crust up to the surface. This study suggests that low-angle normal faults (at least

  11. The mechanics of intermittent methane venting at South Hydrate Ridge inferred from 4D seismic surveying

    NASA Astrophysics Data System (ADS)

    Bangs, Nathan L. B.; Hornbach, Matthew J.; Berndt, Christian

    2011-10-01

    Sea floor methane vents and seeps direct methane generated by microbial and thermal decompositions of organic matter in sediment into the oceans and atmosphere. Methane vents contribute to ocean acidification, global warming, and providing a long-term (e.g. 500-4000 years; Powell et al., 1998) life-sustaining role for unique chemosynthetic biological communities. However, the role methane vents play in both climate change and chemosynthetic life remains controversial primarily because we do not understand long-term methane flux and the mechanisms that control it ( Milkov et al., 2004; Shakhova et al., 2010; Van Dover, 2000). Vents are inherently dynamic and flux varies greatly in magnitude and even flow direction over short time periods (hours-to-days), often tidally-driven ( Boles et al., 2001; Tryon et al., 1999). But, it remains unclear if flux changes at vents occur on the order of the life-cycle of various species within chemosynthetic communities (months, years, to decades Leifer et al., 2004; Torres et al., 2001) and thus impacts their sustainability. Here, using repeat high-resolution 3D seismic surveys acquired in 2000 and 2008, we demonstrate in 4D that Hydrate Ridge, a vent off the Oregon coast has undergone significant reduction of methane flow and complete interruption in just the past few years. In the subsurface, below a frozen methane hydrate layer, free gas appears to be migrating toward the vent, but currently there is accumulating gas that is unable to reach the seafloor through the gas hydrate layer. At the same time, abundant authigenic carbonates show that the system has been active for several thousands of years. Thus, it is likely that activity has been intermittent because gas hydrates clog the vertical flow pathways feeding the seafloor vent. Back pressure building in the subsurface will ultimately trigger hydrofracturing that will revive fluid-flow to the seafloor. The nature of this mechanism implies regular recurring flow interruptions

  12. An active seismic experiment at Tenerife Island (Canary Island, Spain): Imaging an active volcano edifice

    NASA Astrophysics Data System (ADS)

    Garcia-Yeguas, A.; Ibañez, J. M.; Rietbrock, A.; Tom-Teidevs, G.

    2008-12-01

    An active seismic experiment to study the internal structure of Teide Volcano was carried out on Tenerife, a volcanic island in Spain's Canary Islands. The main objective of the TOM-TEIDEVS experiment is to obtain a 3-dimensional structural image of Teide Volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models mainly based on sparse geophysical and geological data. This multinational experiment which involves institutes from Spain, Italy, the United Kingdom, Ireland, and Mexico will generate a unique high resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.

  13. A High-Resolution Seismic Survey Across the State Line fault, NV

    NASA Astrophysics Data System (ADS)

    Beachly, M.; Cox, C. M.; Saldana, S. C.; Snelson, C. M.; Taylor, W. J.; Robins, C.; Davis, R.; Stropky, M.; Phillips, R.; Cothrun, C.

    2007-12-01

    During the summer of 2007, an investigation of the faulting in Stewart Valley was under taken, located within the central Basin and Range province ~90 km west of Las Vegas, Nevada. The goal of this study was to resolve the seismic hazard potential of the State Line fault, a right-lateral strike-slip fault that runs the length of Stewart Valley. Four seismic reflection lines were acquired, two perpendicular and two parallel to the State Line fault. What is presented is an analysis of the western and eastern seismic lines parallel to the State Line fault. The western line was acquired utilizing a 144-channel geode system with each of the 4.5 Hz vertical geophones set out at 5 m intervals to form a 715 m long profile. The eastern line employed 120 of these geophones in a 595 m long profile. A mini-vibroseis served as the seismic source every ten meters, between geophones. The vibroseis was programmed to produce an 8 s linear sweep from 20-160 Hz. Three sweeps were recorded at each shot location without acquisition filters at a sampling rate of 0.5 ms. The three shot gathers were then stacked at each location to reduce noise. The data collected had minimal noise, although; during the processing of the eastern line a notch filtered was used to remove the 60 Hz noise created by adjacent power line. These lines, acquired parallel to the State Line fault, contain matching features that serve to determine how much lateral displacement the fault has undergone. The amount of the displacement can indicate how active the fault is, and thus, what magnitude of earthquake can be expected in the future. This will in turn contribute to determining the seismic hazard potential for southern Nevada. A preliminary interpretation of the seismic reflection sections indicates an average displacement of about 20 - 38 m with greater displacement in the deeper sections of the image. The shallow depth displacement calculations are consistent with previous work in the area. The State Line fault

  14. Assessment and surveillance of active seismic regions through time series satellite data

    NASA Astrophysics Data System (ADS)

    Zoran, M. A.; Savastru, R. S.; Savastru, D. M.

    2013-08-01

    Satellite time-series data, coupled with ground based observations where available, can enable scientists to survey pre-earthquake signals in the areas of strong tectonic activity. Cumulative stress energy in seismic active regions under operating tectonic force manifests various earthquakes' precursors. Space-time anomalies of Earth's emitted radiation (radon in underground water and soil, thermal infrared in spectral range measured from satellite months to weeks before the occurrence of earthquakes etc.), and electromagnetic anomalies are considered as pre-seismic signals. This energy transformation may result in enhanced transient thermal infrared (TIR) emission, which can be detected through satellites equipped with thermal sensors like AVHRR (NOAA), MODIS (Terra/Aqua). This paper presents observations made using time series NOAA-AVHRR and MODIS satellite data-derived land surface temperature (LST) and outgoing longwave radiation (OLR) values in case of 27th 2004 earthquake recorded in seismic Vrancea region, Romania, using anomalous TIR signals as reflected in LST rise and high OLR values which followed similar growth pattern spatially and temporally. In all analyzed cases, starting with almost one week prior to a moderate or strong earthquake a transient thermal infrared rise in LST of several Celsius degrees (°C) and the increased OLR values higher than the normal have been recorded around epicentral areas, function of the magnitude and focal depth, which disappeared after the main shock. As Vrancea area has a significant regional tectonic activity in Romania and Europe, the joint analysis of geospatial and in-situ geophysical information is revealing new insights in the field of hazard assessment.

  15. Continuous, Large-Scale Processing of Seismic Archives for High-Resolution Monitoring of Seismic Activity and Seismogenic Properties

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.

    2012-12-01

    Archives of digital seismic data recorded by seismometer networks around the world have grown tremendously over the last several decades helped by the deployment of seismic stations and their continued operation within the framework of monitoring earthquake activity and verification of the Nuclear Test-Ban Treaty. We show results from our continuing effort in developing efficient waveform cross-correlation and double-difference analysis methods for the large-scale processing of regional and global seismic archives to improve existing earthquake parameter estimates, detect seismic events with magnitudes below current detection thresholds, and improve real-time monitoring procedures. We demonstrate the performance of these algorithms as applied to the 28-year long seismic archive of the Northern California Seismic Network. The tools enable the computation of periodic updates of a high-resolution earthquake catalog of currently over 500,000 earthquakes using simultaneous double-difference inversions, achieving up to three orders of magnitude resolution improvement over existing hypocenter locations. This catalog, together with associated metadata, form the underlying relational database for a real-time double-difference scheme, DDRT, which rapidly computes high-precision correlation times and hypocenter locations of new events with respect to the background archive (http://ddrt.ldeo.columbia.edu). The DDRT system facilitates near-real-time seismicity analysis, including the ability to search at an unprecedented resolution for spatio-temporal changes in seismogenic properties. In areas with continuously recording stations, we show that a detector built around a scaled cross-correlation function can lower the detection threshold by one magnitude unit compared to the STA/LTA based detector employed at the network. This leads to increased event density, which in turn pushes the resolution capability of our location algorithms. On a global scale, we are currently building

  16. A High-resolution Seismic Reflection Survey at the Hanford Nuclear Site Using a Land Streamer

    NASA Astrophysics Data System (ADS)

    Hyde, E. R.; Speece, M. A.; Link, C. A.; Repasky, T.; Thompson, M.; Miller, S.; Cummins, G.

    2009-12-01

    From the 1940s through the mid 1990s, radioactively and chemically contaminated effluent waste was released into the ground at the Hanford Nuclear Site. Currently, Hanford is the site of a large-scale and ongoing environmental cleanup effort which includes the remediation of contaminated ground water. Identifying preferential pathways of groundwater contaminant flow is critical for the groundwater cleanup effort. During the summer of 2009, Montana Tech, in collaboration with the Confederated Tribes of the Umatilla Indian Reservation, collected a high resolution shallow seismic survey on the Hanford Central Plateau near the Gable Gap area of the Hanford Nuclear site. The goal of the survey was to demonstrate the feasibility of using a land streamer/gimbaled geophone acquisition approach to image the basalt bedrock topography. The survey objective is to improve the understanding of the subsurface water flow by identifying the topography of the basement basalt and possible erosional channels created during the Missoula flood events. Data was collected for a total of eight 2D lines with a combined length of about 11 km with a coverage area of approximately 6 sq.km. The profiles were aligned in north-south and east-west intersecting lines with a total of 5 profile intersections. The survey used a 227 kg accelerated weight drop and a 96-channel land streamer. The land streamer used gimbaled geophones with 2 m spacing. Source spacing was also 2 m for a nominal fold of 48. The rapid deployment land streamer, compared to conventional spiked geophones, significantly increased production in this off-road application. Typically, between 45 and 55 stations could be shot per hour in a pull and shoot approach. Deployment of the land streamer required about 45 minutes and about 30 minutes was required to shut down the survey. The survey successfully imaged the top of the basalt and demonstrated that a land streamer can produce quality seismic data in this area. The basalt bedrock

  17. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    NASA Astrophysics Data System (ADS)

    Karyono, Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Masturyono, Rudiyanto, Ariska; Pranata, Bayu; Muzli, Widodo, Handi Sulistyo; Sudrajat, Ajat; Sugiharto, Anton

    2015-04-01

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green's functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  18. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    SciTech Connect

    Karyono; Mazzini, Adriano; Sugiharto, Anton; Lupi, Matteo; Syafri, Ildrem; Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat

    2015-04-24

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  19. Electrical Resistivity and Seismic Surveys at the Nevada Test Site, Nevada, April 2007

    USGS Publications Warehouse

    Haines, Seth S.; Burton, Bethany L.; Sweetkind, Donald S.; Asch, Theodore H.

    2008-01-01

    In April 2007, the USGS collected direct-current (DC) electrical resistivity data and shear- (S) and compressional- (P) wave seismic data to provide new detail of previously mapped, overlapping fault splays at two administrative areas in the Nevada Test Site (NTS). In NTS Area 7, we collected two-dimensional DC resistivity data along a transect crossing the Yucca Fault parallel to, and between, two transects along which resistivity data were collected in a previous study in 2006. In addition, we collected three-dimensional DC resistivity data in a grid that overlies part of the 2007 transect. The DC resistivity data show that the fault has a footwall that is more conductive than the hanging wall and an along-strike progression of the fault in a location where overlapping splays are present. Co-located with the northernmost of the two 2006 DC resistivity transects, we acquired S- and P-wave seismic data for both reflection and refraction processing. The S-wave data are corrupted by large amounts of converted (P-wave) energy likely due to the abundance of fractured caliche in the shallow subsurface. The P-wave data show minimal reflected energy, but they show clear refracted first arrivals. We have inverted these first arrival times to determine P-wave seismic velocity models. The seismic model for the transect in Area 7 shows low velocities extending to the base of the model at the location of the Yucca Fault, as well as low velocities at the eastern end of the transect, in the vicinity of the adjacent crater. These new surveys provide further detail about the geometry of the Yucca Fault in this location where it shows two overlapping splays. We collected P- and S-wave seismic data along a transect in the southern part of NTS Area 2, corresponding with the location of a 2006 DC resistivity transect that targeted a set of small faults identified with field mapping. Again, the S-wave data are difficult to interpret. The P-wave data show clear first arrivals that we

  20. Electrical Resistivity and Seismic Surveys at the Nevada Test Site, Nevada, April 2007

    SciTech Connect

    Seth S. Haines; Bethany L. Burton; Donald S. Sweetkind; Theodore H. Asch

    2009-03-30

    In April 2007, the USGS collected direct-current (DC) electrical resistivity data and shear- (S) and compressional- (P) wave seismic data to provide new detail of previously mapped, overlapping fault splays at two administrative areas in the Nevada Test Site (NTS). In NTS Area 7, we collected two-dimensional DC resistivity data along a transect crossing the Yucca Fault parallel to, and between, two transects along which resistivity data were collected in a previous study in 2006. In addition, we collected three-dimensional DC resistivity data in a grid that overlies part of the 2007 transect. The DC resistivity data show that the fault has a footwall that is more conductive than the hanging wall and an along-strike progression of the fault in a location where overlapping splays are present. Co-located with the northernmost of the two 2006 DC resistivity transects, we acquired S- and P-wave seismic data for both reflection and refraction processing. The S-wave data are corrupted by large amounts of converted (P-wave) energy likely due to the abundance of fractured caliche in the shallow subsurface. The P-wave data show minimal reflected energy, but they show clear refracted first arrivals. We have inverted these first arrival times to determine P-wave seismic velocity models. The seismic model for the transect in Area 7 shows low velocities extending to the base of the model at the location of the Yucca Fault, as well as low velocities at the eastern end of the transect, in the vicinity of the adjacent crater. These new surveys provide further detail about the geometry of the Yucca Fault in this location where it shows two overlapping splays. We collected P- and S-wave seismic data along a transect in the southern part of NTS Area 2, corresponding with the location of a 2006 DC resistivity transect that targeted a set of small faults identified with field mapping. Again, the S-wave data are difficult to interpret. The P-wave data show clear first arrivals that we

  1. ActiveSeismoPick3D - automatic first arrival determination for large active seismic arrays

    NASA Astrophysics Data System (ADS)

    Paffrath, Marcel; Küperkoch, Ludger; Wehling-Benatelli, Sebastian; Friederich, Wolfgang

    2016-04-01

    We developed a tool for automatic determination of first arrivals in active seismic data based on an approach, that utilises higher order statistics (HOS) and the Akaike information criterion (AIC), commonly used in seismology, but not in active seismics. Automatic picking is highly desirable in active seismics as the number of data provided by large seismic arrays rapidly exceeds of what an analyst can evaluate in a reasonable amount of time. To bring the functionality of automatic phase picking into the context of active data, the software package ActiveSeismoPick3D was developed in Python. It uses a modified algorithm for the determination of first arrivals which searches for the HOS maximum in unfiltered data. Additionally, it offers tools for manual quality control and postprocessing, e.g. various visualisation and repicking functionalities. For flexibility, the tool also includes methods for the preparation of geometry information of large seismic arrays and improved interfaces to the Fast Marching Tomography Package (FMTOMO), which can be used for the prediction of travel times and inversion for subsurface properties. Output files are generated in the VTK format, allowing the 3D visualization of e.g. the inversion results. As a test case, a data set consisting of 9216 traces from 64 shots was gathered, recorded at 144 receivers deployed in a regular 2D array of a size of 100 x 100 m. ActiveSeismoPick3D automatically checks the determined first arrivals by a dynamic signal to noise ratio threshold. From the data a 3D model of the subsurface was generated using the export functionality of the package and FMTOMO.

  2. Wide-angle seismic survey in the trench-outer rise region of the central Japan Trench

    NASA Astrophysics Data System (ADS)

    Fujie, G.; Kodaira, S.; Iwamaru, H.; Shirai, T.; Dannowski, A.; Thorwart, M.; Grevemeyer, I.; Morgan, J. P.

    2015-12-01

    Dehydration process within the subducting oceanic plate and expelled water from there affect various subduction-zone processes, including arc volcanism and generation of earthquakes. This implies that the degree of hydration within the incoming oceanic plate just prior to subduction might be a key control factor on the regional variations in subduction zone processes like interplate earthquakes and arc volcanism. Recent advances in seismic structure studies in the trench-outer rise region of the Japan Trench have revealed that seismic velocities within the incoming oceanic plate become lower owing to the plate bending-related faulting, suggesting the hydration of the oceanic plate. If the degree of the oceanic plate hydration is one of key factors controlling the regional variations of the interplate earthquakes, the degree of the oceanic plate hydration just prior to subduction is expected to show the along-trench variation because the interplate seismicity in the forearc region of the Japan Trench show along-trench variations. However, we cannot discuss the along-trench variation of the incoming plate structure because seismic structure studies have been confined only to the northern Japan Trench so far.In 2014 and 2015, JAMSTEC and GEOMAR conducted wide-angle seismic surveys in the trench-outer rise region of the central Japan Trench to reveal the detailed seismic structure of the incoming oceanic plate. The western extension of our survey line corresponds to the epicenter of the 2011 M9 Tohoku earthquakes. We deployed 88 Ocean Bottom Seismometers (OBSs) at intervals of 6 km and shot a tuned air-gun array of R/V Kairei at 200 m spacing. In this presentation, we will show the overview of our seismic survey and present seismic structure models obtained by the data of mainly 2014 seismic survey together with the several OBS data from 2015 survey. The preliminary results show P-wave velocity (Vp) within the oceanic crust and mantle decreases toward the trench axis

  3. Offshore active faults of the Mikata fault zone in Fukui, Japan, revealed by high-resolution seismic profiles

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Sugiyama, Y.; Sakamoto, I.; Takino, Y.; Murakami, F.; Hosoya, T.; Usami, T.

    2014-12-01

    The Mikata fault zone are located in coastal and shallow sea area off Fukui Prefecture, West Japan. National Institute of Advanced Industrial Science and Technology (AIST) and Tokai University conducted, as part of MEXT 2013 nearshore active fault survey project, a high-resolution multi-channel seismic survey using Boomer and a 12-channel streamer cable, acoustic profiling survey using parametric sub-bottom profiler and shallow-sea offshore drilling, in order to clarify distribution and activity of the Mikata fault zone. The seismic reflection surveys identified four reflection surfaces as vertical displacement markers in the post-glacial deposits at a depth ranging from ca. 4.5m to ca. 17m below the sea bottom on the downthrown side. We estimated the age of each marker reflection surface by using the C14 age and others from 4m-long core obtained on the downthrown side of fault and the sea level change in the latest Pleistocene and early Holocene around Japan. The results of these surveys have revealed that the fault system was reactivated three times since the latest Pleistocene. The vertical slip rate and average recurrence interval of the fault system are estimated at ca. 0.8-1.0 m/ky and 2,000-3,800 years, respectively.

  4. Amplitude analysis of active source seismic data from the grounding zone of Whillans Ice Stream

    NASA Astrophysics Data System (ADS)

    Horgan, Huw; Anandakrishnan, Sridhar; Alley, Richard; Christianson, Knut

    2015-04-01

    Amplitude analysis of active source seismic data is often used to estimate acoustic properties and thereby infer the lithology of the substrate beneath glaciers and ice streams. The substrate beneath the ice streams of West Antarctica is of particular interest as here subglacial sediment deformation results in the rapid flow of the overriding ice. At the grounding zone, where the grounded ice sheet transitions to the floating ice shelf, this substrate is thought to stiffen due to tidal compaction resulting in a zone of higher basal shear stress which is manifest in the buckling of the internal layering in the overriding ice. Here we investigate these processes by estimating subglacial properties using active source seismic data acquired across the grounding zone of Whillans Ice Stream. Perhaps uniquely, we are able to test our methodology due to the survey crossing from an ice overlying sediment interface into a known ice overlying water interface. Our analysis indicates that lithological variations within the grounding zone are below the resolution of our methodology with the exception of a body of water trapped by a hydropotential reversal upstream of the grounding zone.

  5. Seismic site survey investigations in urban environments: The case of the underground metro project in Copenhagen, Denmark.

    NASA Astrophysics Data System (ADS)

    Martínez, K.; Mendoza, J. A.; Colberg-Larsen, J.; Ploug, C.

    2009-05-01

    Near surface geophysics applications are gaining more widespread use in geotechnical and engineering projects. The development of data acquisition, processing tools and interpretation methods have optimized survey time, reduced logistics costs and increase results reliability of seismic surveys during the last decades. However, the use of wide-scale geophysical methods under urban environments continues to face great challenges due to multiple noise sources and obstacles inherent to cities. A seismic pre-investigation was conducted to investigate the feasibility of using seismic methods to obtain information about the subsurface layer locations and media properties in Copenhagen. Such information is needed for hydrological, geotechnical and groundwater modeling related to the Cityringen underground metro project. The pre-investigation objectives were to validate methods in an urban environment and optimize field survey procedures, processing and interpretation methods in urban settings in the event of further seismic investigations. The geological setting at the survey site is characterized by several interlaced layers of clay, till and sand. These layers are found unevenly distributed throughout the city and present varying thickness, overlaying several different unit types of limestone at shallow depths. Specific results objectives were to map the bedrock surface, ascertain a structural geological framework and investigate bedrock media properties relevant to the construction design. The seismic test consisted of a combined seismic reflection and refraction analyses of a profile line conducted along an approximately 1400 m section in the northern part of Copenhagen, along the projected metro city line. The data acquisition was carried out using a 192 channels array, receiver groups with 5 m spacing and a Vibroseis as a source at 10 m spacing. Complementarily, six vertical seismic profiles (VSP) were performed at boreholes located along the line. The reflection

  6. Annual Hanford seismic report -- fiscal year 1996

    SciTech Connect

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site.

  7. Ground penetrating radar and active seismic investigation of stratigraphically verified pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Gase, A.; Bradford, J. H.; Brand, B. D.

    2015-12-01

    We conducted ground-penetrating radar (GPR) and active seismic surveys in July and August, 2015 parallel to outcrops of the pyroclastic density current deposits of the May 18th, 1980 eruption of Mount St. Helens (MSH), Washington. The primary objective of this study is to compare geophysical properties that influence electromagnetic and elastic wave velocities with stratigraphic parameters in the un-saturated zone. The deposits of interest are composed of pumice, volcanic ash, and lava blocks comprising a wide range of intrinsic porosities and grain sizes from sand to boulders. Single-offset GPR surveys for reflection data were performed with a Sensors and Software pulseEKKO Pro 100 GPR using 50 MHz, 100 MHz, and 200 MHz antennae. GPR data processing includes time-zero correction, dewow filter, migration, elevation correction. Multi-offset acquisition with 100 MHz antennae and offsets ranging from 1 m to 16 m are used for reflection tomography to create 2 D electromagnetic wave velocity models. Seismic surveys are performed with 72 geophones spaced at two meters using a sledge hammer source with shot points at each receiver point. We couple p- wave refraction tomography with Rayleigh wave inversion to compute Vp/Vs ratios. The two geophysical datasets are then compared with stratigraphic information to illustrate the influence of lithological parameters (e.g. stratification, grain-size distribution, porosity, and sorting) on geophysical properties of unsaturated pyroclastic deposits. Future work will include joint petrophysical inversion of the multiple datasets to estimate porosity and water content in the unsaturated zone.

  8. High resolution, shallow seismic reflection survey of the Pen Branch fault

    SciTech Connect

    Stieve, A.

    1991-05-15

    The purpose of this project, at the Savannah River River Site (SRS) was to acquire, process, and interpret 28 km (17.4 miles) of high resolution seismic reflection data taken across the trace of the Pen Branch fault and other suspected, intersecting north-south trending faults. The survey was optimized for the upper 300 ft of geologic strata in order to demonstrate the existence of very shallow, flat lying horizons, and to determine the depth of the fault or to sediments deformed by the fault. Field acquisition and processing parameters were selected to define small scale spatial variability and structural features in the vicinity of the Pen Branch fault leading to the definition and the location of the Pen Branch fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. Associated geophysical, borehole, and geologic data were incorporated into the investigation to assist in the determination of optimal parameters and aid in the interpretation.

  9. Information system evolution at the French National Network of Seismic Survey (BCSF-RENASS)

    NASA Astrophysics Data System (ADS)

    Engels, F.; Grunberg, M.

    2013-12-01

    The aging information system of the French National Network of Seismic Survey (BCSF-RENASS), located in Strasbourg (EOST), needed to be updated to satisfy new practices from Computer science world. The latter means to evolve our system at different levels : development method, datamining solutions, system administration. The new system had to provide more agility for incoming projects. The main difficulty was to maintain old system and the new one in parallel the time to validate new solutions with a restricted team. Solutions adopted here are coming from standards used by the seismological community and inspired by the state of the art of devops community. The new system is easier to maintain and take advantage of large community to find support. This poster introduces the new system and choosen solutions like Puppet, Fabric, MongoDB and FDSN Webservices.

  10. DC resistivity and seismic refraction survey across the SE margin of Lake Ngami, NW Botswana

    NASA Astrophysics Data System (ADS)

    Shemang, Elisha; Molwalefhe, Loago

    2009-09-01

    Seismic refraction survey and DC resistivity measurements were made across the margin of the Lake Ngami. The structure and stratigraphy at the lake were determined. High resolution aeromagnetic data showed a prominent anomaly coinciding with the Kunyere Fault. Estimated depths to magnetic sources are increasing towards the lake. Two velocity layers were mapped. The top layer (500 m/s) is thin outside the lake and thicker inside the lake. The underlying layer (3125 m/s) has undeterminable thickness. Resistivity sounding results inside the lake showed that the low velocity layer has four sub-units: dry hard clays; diatomaceous earth; soft clays interlayered with silts; and wet whitish clays interlayered with silts. Normal faults were mapped along the profile with a total displacement up to 50 m. The results of the study indicate that the formation of the Lake Ngami basin was structurally controlled and probably initiated by the tectonics of the Okavango Rift Zone.

  11. Apollo 14 and 16 Active Seismic Experiments, and Apollo 17 Lunar Seismic Profiling

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Seismic refraction experiments were conducted on the moon by Apollo astronauts during missions 14, 16, and 17. Seismic velocities of 104, 108, 92, 114 and 100 m/sec were inferred for the lunar regolith at the Apollo 12, 14, 15, 16, and 17 landing sites, respectively. These data indicate that fragmentation and comminution caused by meteoroid impacts has produced a layer of remarkably uniform seismic properties moonwide. Brecciation and high porosity are the probable causes of the very low velocities observed in the lunar regolith. Apollo 17 seismic data revealed that the seismic velocity increases very rapidly with depth to 4.7 km/sec at a depth of 1.4 km. Such a large velocity change is suggestive of compositional and textural changes and is compatible with a model of fractured basaltic flows overlying anorthositic breccias. 'Thermal' moonquakes were also detected at the Apollo 17 site, becoming increasingly frequent after sunrise and reaching a maximum at sunset. The source of these quakes could possibly be landsliding.

  12. Evaluation of feasibility of mapping seismically active faults in Alaska

    NASA Technical Reports Server (NTRS)

    Gedney, L. D. (Principal Investigator); Vanwormer, J. D.

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery is proving to be exceptionally useful in delineating structural features in Alaska which have never been recognized on the ground. Previously unmapped features such as seismically active faults and major structural lineaments are especially evident. Among the more significant results of this investigation is the discovery of an active strand of the Denali fault. The new fault has a history of scattered activity and was the scene of a magnitude 4.8 earthquake on October 1, 1972. Of greater significance is the disclosure of a large scale conjugate fracture system north of the Alaska Range. This fracture system appears to result from compressive stress radiating outward from around Mt. McKinley. One member of the system was the scene of a magnitude 6.5 earthquake in 1968. The potential value of ERTS-1 imagery to land use planning is reflected in the fact that this earthquake occurred within 10 km of the site which was proposed for the Rampart Dam, and the fault on which it occurred passes very near the proposed site for the bridge and oil pipeline crossing of the Yukon River.

  13. Impacts of seismic activity on long-term repository performance at Yucca Mountain

    SciTech Connect

    Gauthier, J.H.; Wilson, M.L.; Borns, D.J.; Arnold, B.W.

    1995-12-31

    Several effects of seismic activity on the release of radionuclides from a potential repository at Yucca Mountain are quantified. Future seismic events are predicted using data from the seismic hazard analysis conducted for the Exploratory Studies Facility (ESF). Phenomenological models are developed, including rockfall (thermal-mechanical and seismic) in unbackfilled emplacement drifts, container damage caused by fault displacement within the repository, and flow-path chance caused by changes in strain. Using the composite-porosity flow model (relatively large-scale, regular percolation), seismic events show little effect on total-system releases; using the weeps flow model (episodic pulses of flow in locally saturated fractures), container damage and flow-path changes cause over an order of magnitude increase in releases. In separate calculations using, more realistic representations of faulting, water-table rise caused by seismically induced changes in strain are seen to be higher than previously estimated by others, but not sufficient to reach a potential repository.

  14. Updated Optimal Designs of Time-Lapse Seismic Surveys for Monitoring CO2 Leakage through Fault Zones

    NASA Astrophysics Data System (ADS)

    Liu, J.; Shang, X.; Sun, Y.; Chen, P.

    2012-12-01

    Cost-effective time-lapse seismic surveys are crucial for long-term monitoring of geologic carbon sequestration. Similar to Shang and Huang (2012), in this study we have numerically modeled time-lapse seismic surveys for monitoring CO2 leakage through fault zones, and designed updated optimal surveys for time-lapse seismic data acquisition using elastic-wave sensitivity analysis. When CO2 was confined in a relatively deep region, our results show that the most desired location for receivers at the surface is at the hanging-wall side of the two fault zones, of high-angle normal faults and reverse faults. The most sensitive places at the surface to the change of different P- and S-wave velocities and density are similar to each other, but are often not sensitive to the source location. When CO2 migrates close to the surface, our modeling suggests that the best region at the surface for time-lapse seismic surveys is very sensitive to the source location and the elastic parameter to be monitored.

  15. Inversion approaches for EM and seismic surveys, based on the exact analytical solutions (Invited)

    NASA Astrophysics Data System (ADS)

    Zuev, M. A.; Magomedov, M.

    2013-12-01

    A modern underground structure's detection and imaging are based on a large amount of iterations, required by an inversion and extensive use of forward problem solutions. Such solutions are mainly obtained from the available numerical schemes or various approximate analytical methods. A poor performance, inaccuracy and instability are common problems here, which bring many limitations to the inversion. If obtained, the exact analytical solutions are capable to eliminate these problems, also containing near-zone wave-field effects, where the wavelengths are comparable with the offsets and depths. The analytical solutions use Tx-source signature, as well as Rx-data and allow accurate mapping not just the layers' depths, but the whole set of stratified Earth's properties: layer's conductivities for EM; P- and S-velocities, and density for seismic. The high forward modeling speed allows a real-time inversion regime, capable to redirect a survey crew while in the field if needed. The developed inversion approaches combine advantages of the spectrum and time domain processing. The exact solutions reveal inversion limitations, caused by an 'uncertainty principle', similar to quantum physics concept. Validations of these solutions for both EM and seismic are achieved by comparison with the known limit transfers, with quasi-analytics and finite-difference traces. Case studies and comparisons with log data reveal accurate fits of data and theory within measured error corridors. A near-surface 3D locality effect reveals additional opportunities for detection and mapping of shallow caves and tunnels' recognition, non-destructive evaluations, archeological surveys, etc.

  16. Seismic activity monitoring in the Izvorul Muntelui dam region

    NASA Astrophysics Data System (ADS)

    Borleanu, Felix; Otilia Placinta, Anca; Popa, Mihaela; Adelin Moldovan, Iren; Popescu, Emilia

    2016-04-01

    Earthquakes occurrences near the artificial water reservoirs are caused by stress variation due to the weight of water, weakness of fractures or faults and increasing of pore pressure in crustal rocks. In the present study we aim to investigate how Izvorul Muntelui dam, located in the Eastern Carpathians influences local seismicity. For this purpose we selected from the seismic bulletins computed within National Data Center of National Institute for Earth Physics, Romania, crustal events occurred between 984 and 2015 in a range of 0.3 deg around the artificial lake. Subsequently to improve the seismic monitoring of the region we applied a cross-correlation detector on the continuous recordings of Bicaz (BIZ) seismic stations. Besides the tectonic events we detected sources within this region that periodically generate artificial evens. We couldn't emphasize the existence of a direct correlation between the water level variations and natural seismicity of the investigated area.

  17. Constraining Subsurface Structure and Composition Using Seismic Refraction Surveys of Proglacial Valleys in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Glas, R. L.; Lautz, L.; McKenzie, J. M.; Mark, B. G.; Baker, E. A.; Aubry-Wake, C.; Somers, L. D.; Wigmore, O.

    2015-12-01

    As tropical glaciers rapidly recede in response to climate change, the storage and discharge of groundwater will play an increasing role in regulating river baseflow, particularly during the dry season, when stream flow is currently sustained predominantly by glacial melt. Little is understood regarding the hydrogeologic processes controlling base flow characteristics of low-gradient proglacial valleys of the Cordillera Blanca in Northwestern Peru, which has the world's highest density of tropical glaciers. To better understand the processes of groundwater storage and discharge in proglacial meadows, we completed seismic refraction surveys in three representative valleys of the Cordillera Blanca range: the Quilcayhuanca, Yanamarey, and Pachacoto valleys. The locations of survey transects were chosen based on locations of previous sediment core sampling, GPR lines, and quantification of groundwater-surface water interaction derived from dye and temperature tracing experiments. The seismic surveys consisted of 48 vertical component geophones with 2.5 m spacing. Across the three representative valleys a total of 15 surveys were conducted, covering a distance of 1800 m in cross, down, and oblique-valley directions. Preliminary interpretation of the seismic refraction data indicates a maximum imaging depth of 16 m below land surface, and a transition from glacio-lacustrine sediments to buried saturated talus at a depth of 6 m in the Quilcayhuanca valley. The organic-rich glacio-lacustrine sediments in the Yanamarey valley have seismic velocities ranging from 300 to 800 m/s and are >16 m in thickness at mid- valley. Weathered metasedimentary bedrock in the Pachacoto valley was imaged at ~5 m below the valley surface, exhibiting a p-wave velocity of 3400 m/s. The knowledge of hydrogeologic structure derived from seismic refraction surveys will provide crucial boundary conditions for future groundwater models of the valleys of the Cordillera Blanca.

  18. Coherence between geodetic and seismic deformation in a context of slow tectonic activity (SW Alps, France)

    NASA Astrophysics Data System (ADS)

    Walpersdorf, A.; Sue, C.; Baize, S.; Cotte, N.; Bascou, P.; Beauval, C.; Collard, P.; Daniel, G.; Dyer, H.; Grasso, J.-R.; Hautecoeur, O.; Helmstetter, A.; Hok, S.; Langlais, M.; Menard, G.; Mousavi, Z.; Ponton, F.; Rizza, M.; Rolland, L.; Souami, D.; Thirard, L.; Vaudey, P.; Voisin, C.; Martinod, J.

    2015-04-01

    A dense, local network of 30 geodetic markers covering a 50 × 60 km2 area in the southwestern European Alps (Briançon region) has been temporarily surveyed in 1996, 2006 and 2011 by GPS. The aim is to measure the current deformation in this seismically active area. The study zone is characterized by a majority of extensional and dextral focal mechanisms, along north-south to N160 oriented faults. The combined analysis of the three measurement campaigns over 15 years and up to 16 years of permanent GPS data from the French RENAG network now enables to assess horizontal velocities below 1 mm/year within the local network. The long observation interval and the redundancy of the dense campaign network measurement help to constrain a significant local deformation pattern in the Briançon region, yielding an average E-W extension of 16 ± 11 nanostrain/year. We compare the geodetic deformation field to the seismic deformation rate cumulated over 37 years, and obtain good coherencies both in amplitude and direction. Moreover, the horizontal deformation localized in the Briançon region represents a major part of the Adriatic-European relative plate motion. However, the average uplift of the network in an extensional setting needs the presence of buoyancy forces in addition to plate tectonics.

  19. Detecting Seismic Activity with a Covariance Matrix Analysis of Data Recorded on Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Seydoux, L.; Shapiro, N.; de Rosny, J.; Brenguier, F.

    2014-12-01

    Modern seismic networks are recording the ground motion continuously all around the word, with very broadband and high-sensitivity sensors. The aim of our study is to apply statistical array-based approaches to processing of these records. We use the methods mainly brought from the random matrix theory in order to give a statistical description of seismic wavefields recorded at the Earth's surface. We estimate the array covariance matrix and explore the distribution of its eigenvalues that contains information about the coherency of the sources that generated the studied wavefields. With this approach, we can make distinctions between the signals generated by isolated deterministic sources and the "random" ambient noise. We design an algorithm that uses the distribution of the array covariance matrix eigenvalues to detect signals corresponding to coherent seismic events. We investigate the detection capacity of our methods at different scales and in different frequency ranges by applying it to the records of two networks: (1) the seismic monitoring network operating on the Piton de la Fournaise volcano at La Réunion island composed of 21 receivers and with an aperture of ~15 km, and (2) the transportable component of the USArray composed of ~400 receivers with ~70 km inter-station spacing.

  20. Sourcebook of locations of geophysical surveys in tunnels and horizontal holes, including results of seismic refraction surveys, Rainier Mesa, Aqueduct Mesa, and Area 16, Nevada Test Site

    USGS Publications Warehouse

    Carroll, R.D.; Kibler, J.E.

    1983-01-01

    Seismic refraction surveys have been obtained sporadically in tunnels in zeolitized tuff at the Nevada Test Site since the late 1950's. Commencing in 1967 and continuing to date (1982), .extensive measurements of shear- and compressional-wave velocities have been made in five tunnel complexes in Rainier and Aqueduct Mesas and in one tunnel complex in Shoshone Mountain. The results of these surveys to 1980 are compiled in this report. In addition, extensive horizontal drilling was initiated in 1967 in connection with geologic exploration in these tunnel complexes for sites for nuclear weapons tests. Seismic and electrical surveys were conducted in the majority of these holes. The type and location of these tunnel and borehole surveys are indexed in this report. Synthesis of the seismic refraction data indicates a mean compressional-wave velocity near the nuclear device point (WP) of 23 tunnel events of 2,430 m/s (7,970 f/s) with a range of 1,846-2,753 m/s (6,060-9,030 f/s). The mean shear-wave velocity of 17 tunnel events is 1,276 m/s (4,190 f/s) with a range of 1,140-1,392 m/s (3,740-4,570 f/s). Experience indicates that these velocity variations are due chiefly to the extent of fracturing and (or) the presence of partially saturated rock in the region of the survey.

  1. Results of a shallow seismic-refraction survey in the Little Valley Area near hemet, Riverside County, California. Water resources investigation

    SciTech Connect

    Duell, L.F.W.

    1995-12-31

    This report presents the results of seismic-refraction surveys that were conducted by the U.S. Geological Survey to obtain subsurface data in and adjacent to Little Valley near Hemet, California. All data were collected in August 1993 and June and July 1994. Presented in this report are a description of the seismic-refraction methods used, selected records of the data that were collected, and a discussion of the results of the survey.

  2. Seismic reflection survey of the crustal structure beneath Unzen volcano, Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Shimizu, Hiroshi; Onishi, Masazumi; Uehira, Kenji

    2012-05-01

    Unzen volcano is located in the western part of Kyushu, Japan. We carried out a seismic reflection survey at Unzen volcano in order to elucidate the structure of the volcano. Although the survey was conducted in a volcanic area under difficult conditions, such as artificial noises and a complex structure, we were able to resolve the structure beneath the profile using vibrator sources and a large number of stacking signals. The processed depth sections confirmed that Unzen volcano developed in a graben structure, as has been suggested in other geological studies. We imaged many subsurface normal faults shallower than 1 km. These faults, mostly covered with volcanic lava and deposits, were identified at the surface. Strong reflectors were found at a depth of approximately 3 km. They were located just above the pressure source of the latest eruption, as inferred from geodetic data. The geometric relationship between the reflection image, the pressure source location, and the lava dome suggests that the conduit from the lava dome could connect to the magma chamber located 4 km away from the lava dome.

  3. Three-dimensional seismic survey applied to field development in Williston basin

    SciTech Connect

    Robinson, G.C.; Baixas, F.; Hooyman, P.J.

    1983-03-01

    The Medicine Lake field of Sheridan County, Montana, was discovered in March 1979. In October 1981, a mini-3-D seismic survey covering 2.5 mi/sup 2/ (6.2 km/sup 2/) was acquired over this field in order to facilitate development drilling by delineating the field's reservoirs and obtaining a more accurate image of the subsurface structure. A multiline system, consisting of 240 geophone groups distributed on 8 lines, was used. The energy source was shothole dynamite using 5 lbs (2.3 kg) charges at 250 ft (46 m). The shotpoints were arranged in a cross pattern with extra shotpoints included to provide necessary control on the weathered zone. The average subsurface coverage was 600%, with CDP bins 165 ft (50 m) square. Prior to the actual shooting, a computer simulation of the resulting fold was performed to verify the field geometry. The entire survey was recorded in one day with no movement of the geophones, thus minimizing costs. The objective of the stratigraphic interpretation was to outline zones of possible porosity, particularly in the Madison and Red River intervals. The horizontal and vertical inverted sections were particularly useful for ascertaining the location and lateral extent of those anomalous zones. The results correlate well with known production, and should aid in the location of future development wells.

  4. Laboratory survey of fluoroquinolone activity.

    PubMed

    Bellido, F; Pechère, J C

    1989-01-01

    Fluoroquinolones are active against a wide variety of bacteria. The antibacterial spectra of fluoroquinolones encompass staphylococci, Bacillus species, and Corynebacterium species implicated in infections of the immunocompromised host; Enterobacteriaceae; most intestinal pathogens; and many gram-negative organisms commonly causing nosocomial infections. Haemophilus influenzae, Haemophilus ducreyi, Neisseria gonorrhoeae, Neisseria meningitidis, and Branhamella catarrhalis are highly susceptible to this class of drugs. Because of their ability to penetrate into phagocytes, fluoroquinolones have been tested against intracellular pathogens: Legionella species, Rickettsia conorii, Rickettsia rickettsii, and Brucella melitensis are very sensitive; Chlamydia trachomatis and the mycoplasmas are borderline; and some antimycobacterial activities deserve further investigation. Species that are generally resistant include Pseudomonas maltophilia, Pseudomonas cepacia, Pseudomonas pseudomallei, Alcaligenes species, Nocardia species, Bordetella bronchiseptica, and most anaerobes. PMID:2672262

  5. Archive of digital boomer seismic reflection data collected during USGS field activity 04SGI01 in the Withlacoochee River of West-Central Florida, March 2004

    USGS Publications Warehouse

    Calderon, Karynna; Dadisman, Shawn V.; Yobbi, Dann K.; McBride, W. Scott; Flocks, James G.; Wiese, Dana S.

    2006-01-01

    In March of 2004, the U.S. Geological Survey conducted a geophysical survey in the Withlacoochee River of west-central Florida. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansion of all acronyms and abbreviations used in this report. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided.

  6. Experience with a Shallow Water Seismic Pre-Site Survey for combined IODP and ICDP Drilling Campaigns in the Gulf of Naples and Pozzuoli Bay, Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Spiess, V.; Metzen, J.; Fekete, N.; Palamenghi, L.; Sacchi, M.

    2009-04-01

    The Gulf of Naples receives particular attention due to its proximity to major volcanic features, as the Somma-Vesuvius stratovolcano and the Campi Flegrei Volcanic Fields, both being viewed to bear extreme hazard potential in the highly populated area. Accordingly, a better understanding of the geologic history of the region and its volcanic activity is of high value for predictive approaches. In January 2008, a dedicated shallow water multichannel seismic survey on R/V URANIA was carried out by the Institute for Coastal Marine Environment in cooperation with the University of Bremen in Pozzuoli Bay as well as in its surroundings to image subseafloor volcanic features as well as the neotectonic framework, as it is documented in Holocene sediments. Furthermore, volcanoclastic events, volcanic edifices, pyroclastic flows and lava flows were identified complicating the stratigraphic interpretation. Major units as the Campanian Ignimbrite and the Neapoltian Yellow Tuff could be traced on regional scales. Particular focus was put on the nearshore surveys, to connect the onland future ICDP drilling results with the marine deposits and planned IODP drill sites in the vicinity of the survey area. It turned out particularly difficult to collect seismic data in the coastal zone due to intense usage and protected areas. The equipment used was optimized to collect multichannel seismic data in shallow and very shallow environments. A 50 m long streamer with 48 single hydrophone channels allowed to record undistorted seismic response in waters shallower than 10 meters, and high shot rates - 2 to 4 seconds - provide high coverage and a lateral resolution as good as 1 meter. A modified mini-GI Gun with a reduced volume of only 0.1 L, called micro-GI Gun, generated a frequency spectrum up to 1000 Hz, optimizing also the vertical resolution to less than 1 meter. Examples will be shown to demonstrate the capability of the equipment for use in amphibic projects, where ICDP and IODP

  7. Structural design of active seismic isolation floor with a charging function

    NASA Astrophysics Data System (ADS)

    Nakakoji, Hayato; Miura, Nanako

    2016-04-01

    This study shows an optimum structure of a seismic isolation floor against horizontal ground motions. Although a seismic isolation floor is effective with vibration reduction, the response of the floor becomes larger when excited by long-period ground motions. It is shown that caster equipment move and suffer damage in a seismic isolation structure by an experiment. Moreover, the permissible displacement of the floor is limited. Therefore, the focus is on an active seismic isolation. About active control, the system cannot operate without power supply. To solve these problems an energy regeneration is considered in our previous study. These studies only analyze simple model and did not choose the suitable structure for active control and energy regeneration. This research propose a new structure which has regenerated energy exceeds the energy required for the active control by numerical simulation.

  8. Down-hole seismic survey system with fiber-optic accelerometer sensor array for 3-dimensions vertical seismic profile (3D-VSP)

    NASA Astrophysics Data System (ADS)

    Zou, Qilin; Wang, Liwei; Pang, Meng; Tu, Dongsheng; Zhang, Min; Liao, Yanbiao

    2006-08-01

    We demonstrated a down-hole seismic survey system that can be applied in three dimensions vertical seismic profile (VSP) detection in petroleum exploration. The results of experiments show that the system has a dynamic measurement range of 80db (ratio of maximum to minimum value) and the total delay for signal collection, process and communication is less than 200ms @ 2k bit sample rates. An array consisting of six fiber-optic accelerometers (receivers) is applied in this system. Each receiver is comprised of three fiber-optic Michelson interferometers. In order to meet the requirements of high precision and real-time measurement, the high-speed DSP chips are employed to realize the algorithms of signal filters and Phase Generated Carrier (PGC) demodulation to obtain the seismic information. Multi-ARM CPUs are introduced into the system to design the fiber-optic accelerometer array controller and the receiver array local bus that are used for real-time data communication between the multi-level receivers and controller. The system interface for traditional ELIS Down-hole Instrument Bus (EDIB) is designed by the use of FPGA so that our system can attach to EDIB and cooperate with other instruments. The design and experiments of the system are given in this paper in detail.

  9. Deep crustal structure of the North-West African margin from combined wide-angle and reflection seismic data (MIRROR seismic survey)

    NASA Astrophysics Data System (ADS)

    Biari, Y.; Klingelhoefer, F.; Sahabi, M.; Aslanian, D.; Schnurle, P.; Berglar, K.; Moulin, M.; Mehdi, K.; Graindorge, D.; Evain, M.; Benabdellouahed, M.; Reichert, C.

    2015-08-01

    The structure of the Moroccan and Nova Scotia conjugate rifted margins is of key importance for understanding the Mesozoic break-up and evolution of the northern central Atlantic Ocean basin. Seven combined multichannel reflection (MCS) and wide-angle seismic (OBS) data profiles were acquired along the Atlantic Moroccan margin between the latitudes of 31.5° and 33° N during the MIRROR seismic survey in 2011, in order to image the transition from continental to oceanic crust, to study the variation in crustal structure, and to characterize the crust under the West African Coast Magnetic Anomaly (WACMA). The data were modeled using a forward modeling approach. The final models image crustal thinning from 36 km thickness below the continent to approximately 8 km in the oceanic domain. A 100 km wide zone characterized by rough basement topography and high seismic velocities up to 7.4 km/s in the lower crust is observed westward of the West African Coast Magnetic Anomaly. No basin underlain by continental crust has been imaged in this region, as has been identified north of our study area. Comparison to the conjugate Nova Scotian margin shows a similar continental crustal thickness and layer geometry, and the existence of exhumed and serpentinized upper mantle material on the Canadian side only. The oceanic crustal thickness is lower on the Canadian margin.

  10. Shallow Seismic Reflection Study of Recently Active Fault Scarps, Mina Deflection, Western Nevada

    NASA Astrophysics Data System (ADS)

    Black, R. A.; Christie, M.; Tsoflias, G. P.; Stockli, D. F.

    2006-12-01

    During the spring and summer of 2006 University of Kansas geophysics students and faculty acquired shallow, high resolution seismic reflection data over actively deforming alluvial fans developing across the Emmigrant Peak (in Fish Lake Valley) and Queen Valley Faults in western Nevada. These normal faults represent a portion of the transition from the right-lateral deformation associated with the Walker Lane/Eastern California Shear Zone to the normal and left-lateral faulting of the Mina Deflection. Data were gathered over areas of recent high resolution geological mapping and limited trenching by KU students. An extensive GPR data grid was also acquired. The GPR results are reported in Christie, et al., 2006. The seismic data gathered in the spring included both walkaway tests and a short CMP test line. These data indicated that a very near-surface P-wave to S-wave conversion was taking place and that very high quality S-wave reflections were probably dominating shot records to over one second in time. CMP lines acquired during the summer utilized a 144 channel networked Geode system, single 28 hz geophones, and a 30.06 downhole rifle source. Receiver spacing was 0.5 m, source spacing 1.0m and CMP bin spacings were 0.25m for all lines. Surveying was performed using an RTK system which was also used to develop a concurrent high resolution DEM. A dip line of over 400m and a strike line over 100m in length were shot across the active fan scarp in Fish Lake Valley. Data processing is still underway. However, preliminary interpretation of common-offset gathers and brute stacks indicates very complex faulting and detailed stratigraphic information to depths of over 125m. Depth of information was actually limited by the 1024ms recording time. Several west-dipping normal faults downstep towards the basin. East-dipping antithetic normal faulting is extensive. Several distinctive stratigraphic packages are bound by the faults and apparent unconformitites. A CMP dip line

  11. 77 FR 19242 - Takes of Marine Mammals Incidental to Specified Activities; Low-Energy Marine Geophysical Survey...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... be attracted to the seismic vessel and floats, and some ride the bow wave of the seismic vessel even... marine seismic survey in the central Pacific Ocean. Upon receipt of additional information, NMFS... seismic airgun array and a single hydrophone streamer to conduct the low-energy geophysical survey...

  12. Issues Related to Seismic Activity Induced by the Injection of CO2 in Deep Saline Aquifers

    SciTech Connect

    Sminchak, Joel; Gupta, Neeraj; Byrer, Charles; Bergman, Perry

    2001-05-31

    Case studies, theory, regulation, and special considerations regarding the disposal of carbon dioxide (CO2) into deep saline aquifers were investigated to assess the potential for induced seismic activity. Formations capable of accepting large volumes of CO2 make deep well injection of CO2 an attractive option. While seismic implications must be considered for injection facilities, induced seismic activity may be prevented through proper siting, installation, operation, and monitoring. Instances of induced seismic activity have been documented at hazardous waste disposal wells, oil fields, and other sites. Induced seismic activity usually occurs along previously faulted rocks and may be investigated by analyzing the stress conditions at depth. Seismic events are unlikely to occur due to injection in porous rocks unless very high injection pressures cause hydraulic fracturing. Injection wells in the United States are regulated through the Underground Injection Control (UIC) program. UIC guidance requires an injection facility to perform extensive characterization, testing, and monitoring. Special considerations related to the properties of CO2 may have seismic ramifications to a deep well injection facility. Supercritical CO2 liquid is less dense than water and may cause density-driven stress conditions at depth or interact with formation water and rocks, causing a reduction in permeability and pressure buildup leading to seismic activity. Structural compatibility, historical seismic activity, cases of seismic activity triggered by deep well injection, and formation capacity were considered in evaluating the regional seismic suitability in the United States. Regions in the central, midwestern, and southeastern United States appear best suited for deep well injection. In Ohio, substantial deep well injection at a waste disposal facility has not caused seismic events in a seismically active area. Current

  13. Seismic Activity at Vailulu'u, Samoa's Youngest Volcano

    NASA Astrophysics Data System (ADS)

    Konter, J.; Staudigel, H.; Hart, S.

    2002-12-01

    Submarine volcanic systems, as a product of the Earth's mantle, play an essential role in the Earth's heat budget and in the interaction between the solid Earth and the hydrosphere and biosphere. Their eruptive and intrusive activity exerts an important control on these hydrothermal systems. In March 2000, we deployed an array of five ocean bottom hydrophones (OBH) on the summit region (625-995 m water depth) of Vailulu'u Volcano (14°12.9'S;169°03.5'W); this volcano represents the active end of the Samoan hotspot chain and is one of only a few well-studied intra-plate submarine volcanoes. We monitored seismic activity for up to 12 months at low sample rate (25 Hz), and for shorter times at a higher sample rate (125 Hz). We have begun to catalogue and locate a variety of acoustic events from this network. Ambient ocean noise was filtered out by a 4th-order Butterworth bandpass filter (2.3 - 10 Hz). We distinguish small local earthquakes from teleseismic activity, mostly identified by T- (acoustic) waves, by comparison with a nearby GSN station (AFI). Most of the detected events are T-phases from teleseismic earthquakes, characterized by their emergent coda and high frequency content (up to 30 Hz); the latter distinguishes them from low frequency emergent signals associated with the volcano (e.g. tremor). A second type of event is characterized by impulsive arrivals, with coda lasting a few seconds. The differences in arrival times between stations on the volcano are too small for these events to be T-waves; they are very likely to be local events, since the GSN station in Western Samoa (AFI) shows no arrivals close in time to these events. Preliminary locations show that these small events occur approximately once per day and are located within the volcano (the 95% confidence ellipse is similar to the size of the volcano, due to the small size of the OBH network). Several events are located relatively close to each other (within a km radius) just NW of the crater.

  14. High-resolution gravity and seismic-refraction surveys of the Smoke Tree Wash area, Joshua Tree National Park, California

    USGS Publications Warehouse

    Langenheim, Victoria E.; Rymer, Michael J.; Catchings, Rufus D.; Goldman, Mark R.; Watt, Janet T.; Powell, Robert E.; Matti, Jonathan C.

    2016-01-01

    We describe high-resolution gravity and seismic refraction surveys acquired to determine the thickness of valley-fill deposits and to delineate geologic structures that might influence groundwater flow beneath the Smoke Tree Wash area in Joshua Tree National Park. These surveys identified a sedimentary basin that is fault-controlled. A profile across the Smoke Tree Wash fault zone reveals low gravity values and seismic velocities that coincide with a mapped strand of the Smoke Tree Wash fault. Modeling of the gravity data reveals a basin about 2–2.5 km long and 1 km wide that is roughly centered on this mapped strand, and bounded by inferred faults. According to the gravity model the deepest part of the basin is about 270 m, but this area coincides with low velocities that are not characteristic of typical basement complex rocks. Most likely, the density contrast assumed in the inversion is too high or the uncharacteristically low velocities represent highly fractured or weathered basement rocks, or both. A longer seismic profile extending onto basement outcrops would help differentiate which scenario is more accurate. The seismic velocities also determine the depth to water table along the profile to be about 40–60 m, consistent with water levels measured in water wells near the northern end of the profile.

  15. Flow Dynamics and Stability of the NE Greenland Ice Stream from Active Seismics and Radar

    NASA Astrophysics Data System (ADS)

    Riverman, K. L.; Alley, R. B.; Anandakrishnan, S.; Christianson, K. A.; Peters, L. E.; Muto, A.

    2015-12-01

    We find that dilatant till facilitates rapid ice flow in central Greenland, and regions of dryer till limit the expansion of ice flow. The Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland, draining 8.4% of the ice sheet's area. Fast ice flow initiates near the ice sheet summit in a region of high geothermal heat flow and extends some 700km downstream to three outlet glaciers along the NE Coast. The flow pattern and stability mechanism of this ice stream are unique to others in Greenland and Antarctica, and merit further study to ascertain the sensitivity of this ice stream to future climate change. In this study, we present the results of the first-ever ground-based geophysical survey of the initiation zone of NEGIS. Based on radar and preliminary seismic data, Christianson et al. (2014, EPSL) propose a flow mechanism for the ice stream based on topographically driven hydropotential lows which generate 'sticky' regions of the bed under the ice stream margins. We further test this hypothesis using a 40km reflection seismic survey across both ice stream margins. We find that regions of 'sticky' bed as observed by the radar survey are coincident with regions of the bed with seismic returns indicating drier subglacial sediments. These findings are further supported by five amplitude-verses-offset seismic surveys indicating dilatant till within the ice stream and consolidated sediments within its margins.

  16. Variation of the Earth tide-seismicity compliance parameter during the recent seismic activity of Fthiotida, Greece

    NASA Astrophysics Data System (ADS)

    Contadakis, Michael; Aarabelos, Dimitrios; Vergos, Georgios; Spatalas, Spyridon

    2014-05-01

    Applying the Hi(stogram)Cum(ulation) method, which was introduced recently by Cadicheanu, van Ruymbecke and Zhu (2007), we analyze the series of the earthquakes occurred in the last 50 years in seismic active areas of Greece, i.e. the areas (a) of the Mygdonian Basin(Contadakis et al. 2007), (b) of the Ionian Islands (Contadakis et al. 2012 ) and (c) of the Hellenic Arc (Vergos et al. 2012 ) . The result of the analysis for all the areas indicate that the monthly variation of the frequencies of earthquake occurrence is in accordance with the period of the tidal lunar monthly and semi-monthly (Mm and Mf) variations and the same happens with the corresponding daily variations of the frequencies of earthquake occurrence with the diurnal luni-solar (K1) and semidiurnal lunar (M2) tidal variations. In addition the confidence level for the identifiation of such period accordance between earthquakes occurrence frequency and tidal periods varies with seismic activity, i.e. the higher confidence level corresponds to periods with stronger seismic activity. These results are in favor of a tidal triggering process on earthquakes when the stress in the focal area is near the critical level. Based on these results, we consider the confidence level of earthquake occurrence - tidal period accordance, p, as an index of tectonic stress criticality for earthquake occurrence and we check on posterior if the variation of the confidence level index, p, indicate the fault matureness in the case of the recent seismic activity at Fthiotida, Greece. In this paper we present the results of this test. References Cadicheanu, N., van Ruymbeke, M andZhu P.,2007:Tidal triggering evidence of intermediate depth earthquakes in Vrancea zone(Romania), NHESS 7,733-740. Contadakis, M. E., Arabelos, D. N., Spatalas, S., 2009, Evidence for tidal triggering on the shallow earthquakes of the seismic area of Mygdonia basin, North Greece, in Terrestrial and Stellar Environment, eds.D. Arabelos, M

  17. Trace Gases - A Warning Signs of Impending Major Seismic Activity

    NASA Astrophysics Data System (ADS)

    Baijnath, J.; Freund, F.; Li, J.

    2013-12-01

    Seismological models can predict future earthquakes only with wide uncertainty windows, typically on the order of decades to centuries. To improve short-term earthquake forecasts, it is essential to understand the non-seismic processes that take place in Earth's crust during the build-up of tectonic stresses. Days prior to the January 2001 M 7.6 Gujurat earthquake in India, there was a significant increase in the regional CO concentration, reaching 240 ppbv over a 100 squared kilometers, as derived from data of the MOPITT sensor onboard the NASA Terra satellite. A possible explanation for these observations is that when stresses in Earth's crust are building, positive hole charge carriers are activated, which are highly mobile and spread from deep below the earth to the surface. Positive holes act as highly oxidizing oxygen radicals, oxidizing water to hydrogen peroxide. It is hypothesized that, as positive hole charge carriers arrive from below and traverse the soil, they are expected to oxidize soil organics, converting aliphatics to ketones, formaldehyde, CO and CO2. This is tested by using a closed chamber with a slab of gabbro rock. Ultrasound generated by a pair of 50 W, 40 kHz piezoelectric transducers, applied to one end of the gabbro slab was used to activate the positive holes. This created a high concentration of positive holes at the end of the rock that the electrical conductivity through the rock increased more than 1000-fold, while the increase in conductivity through the other end of the gabbro slab was on the order of 100-fold. On the other end of the slab, rock dust and various soils were placed. A stainless steel mesh was also placed over the soil and dust to allow a current to flow through the granular material. When the far end of the slab was subjected to the ultrasound, currents as large as 250 nA were recorded flowing through the length of the gabbro slab and through the dust/soil pile. Dry dust/soil and dust samples impregnated with

  18. Crustal transects across the Rif domains in North Morocco, from the RIFSIS seismic survey

    NASA Astrophysics Data System (ADS)

    Gil de la Iglesia, A.; Gallart, J.; Diaz Cusi, J.; Carbonell, R.; Levander, A.; Palomeras, I.; Harnafi, M.

    2013-12-01

    In October 2011, two 300 km-long NS and EW wide-angle seismic transects were carried out in N Morocco, across main domains of Rif cordillera, in a joint effort from Spanish-Moroccan-USA scientists. Main goal of the RIFSIS survey was to achieve, for the first time, detailed crustal velocity-depth models on the southern flank of the Gibraltar Arc System. This asymmetric, arcuated system surrounding the Alboran Sea and composed by the Betic ranges on the N and the Rif cordillera on the S has undergone a complex tectonic evolution since Miocene times. Different types of evolutionary models have been proposed in the last decades, poorly constrained by the available geophysical results, specially on the southern flank, where crustal depths around 30 km have been proposed from inversion modeling of potential field datasets, in contrast with greater values up to 40 km depths and significant lateral variations from RF analysis. In the RIFSIS survey, almost 1000 Texans stations were deployed along the two profiles and 3 shots of 1 T were detonated along each one. The NS transect was extended northwards in Spain by a 75 km long segment in the Betics, and southwards it connects with an analogous profile recorded in 2010 across the Atlas Mountains (SIMA project), hence providing a 700 km long continuous seismic transect sampling the different tectonic domains. The high density of recording stations allows building up of vertical seismic sections focused on the Moho PmP reflections that reveal important variations along this transect. An extensive analysis based on travel time forward modeling has also been performed and main results are presented here. The interpreted crustal structure differentiates two sedimentary layers on top of the basement, inferred from the observed first arrivals at short offsets, followed by upper, mid and lower crustal levels constrained by reflected phases visible in the record sections. The bottom of the crust is well defined from PmP phases

  19. Balancing Mitigation Against Impact: A Case Study From the 2005 Chicxulub Seismic Survey

    NASA Astrophysics Data System (ADS)

    Barton, P.; Diebold, J.; Gulick, S.

    2006-05-01

    In early 2005 the R/V Maurice Ewing conducted a large-scale deep seismic reflection-refraction survey offshore Yucatan, Mexico, to investigate the internal structure of the Chicxulub impact crater, centred on the coastline. Shots from a tuned 20 airgun, 6970 cu in array were recorded on a 6 km streamer and 25 ocean bottom seismometers (OBS). The water is exceptionally shallow to large distances offshore, reaching 30 m about 60 km from the land, making it unattractive to the larger marine mammals, although there are small populations of Atlantic and spotted dolphins living in the area, as well as several turtle breeding and feeding grounds on the Yucatan peninsula. In the light of calibrated tests of the Ewing's array (Tolstoy et al., 2004, Geophysical Research Letters 31, L14310), a 180 dB safety radius of 3.5 km around the gun array was adopted. An energetic campaign was organised by environmentalists opposing the work. In addition to the usual precautions of visual and listening watches by independent observers, gradual ramp-ups of the gun arrays, and power-downs or shut-downs for sightings, constraints were also placed to limit the survey to daylight hours and weather conditions not exceeding Beaufort 4. The operations were subject to several on-board inspections by the Mexican environmental authorities, causing logistical difficulties. Although less than 1% of the total working time was lost to shutdowns due to actual observation of dolphins or turtles, approximately 60% of the cruise time was taken up in precautionary inactivity. A diver in the water 3.5 km from the profiling ship reported that the sound in the water was barely noticeable, leading us to examine the actual sound levels recorded by both the 6 km streamer and the OBS hydrophones. The datasets are highly self-consistent, and give the same pattern of decay with distance past about 2 km offset, but with different overall levels: this may be due to geometry or calibration differences under

  20. Seismic exploration of Fuji volcano with active sources in 2003

    NASA Astrophysics Data System (ADS)

    Oikawa, J.; Kagiyama, T.; Tanaka, S.; Miyamachi, H.; Tsutsui, T.; Ikeda, Y.; Katayama, H.; Matsuo, N.; Oshima, H.; Nishimura, Y.; Yamamoto, K.; Watanabe, T.; Yamazaki, F.

    2004-12-01

    Fuji volcano (altitude 3,776 m) is the largest basaltic stratovolcano in Japan. In late August and early September 2003, seismic exploration was conducted around Fuji volcano by the detonation of 500 kg charges of dynamite to investigate the seismic structure of that area. Seismographs with an eigenfrequency of 2 Hz were used for observation, positioned along a WSW-ENE line passing through the summit of the mountain. A total of 469 observation points were installed at intervals of 250-500 m. The data were stored in memory on-site using data loggers. The sampling interval was 4 ms. Charges were detonated at 5 points, one at each end of the observation line and 3 along its length. The first arrival times at each observation point for each detonation were recorded as data. The P-wave velocity structure directly below the observation line was determined by forward calculation using the ray tracing method [Zelt and Smith, 1992]. The P-wave velocity structure below the volcano, assuming a layered structure, was found to be as follows. (1) The first layer extends for about 40 km around the summit and to a depth of 1-2 km. The P-wave velocity is 2.5 km/s on the upper surface of the layer and 3.5 km/s on the lower interface. (2) The second layer has P-wave velocities of 4.0 km/s on the top interface and 5.5 km/s at the lower interface. The layer is 25 km thick to the west of the summit and 1-2 km thick to the east, and forms a dome shape with a peak altitude of 2000 m directly below the summit. (3) The third layer is 5-12 km thick and has P-wave velocities of 5.7 km/s at the top interface and 6.5 km/s at the lower interface. This layer reaches shallower levels to the east of the summit, corresponding to the area where the second layer is thinner. Mt. Fuji is located slightly back from where the Philippine Sea Plate subducts below the Eurasian plate in association with collision with the Izu Peninsula. Matsuda (1971) suggested that Mt. Fuji lies on the same uplifted body as

  1. National Archive of Marine Seismic Surveys (NAMSS): Status Report on U.S. Geological Survey Program Providing Access to Proprietary Data

    NASA Astrophysics Data System (ADS)

    Hart, P. E.; Childs, J. R.

    2005-05-01

    During the last four decades, hundreds of thousands of line kilometers of 2D marine seismic reflection data have been collected by the hydrocarbon exploration industry within the United States Exclusive Economic Zone. The commercial value of much of these data has decreased significantly because of drilling moratoria and new technology such as 3D acquisition. However, these data still have tremendous value for scientific research and education purposes. The U.S. Geological Survey has recently made agreements with two commercial owners of large data holdings to transfer to the public domain over 250,000 line kilometers of marine data from off the eastern, western, and Alaskan coasts of the United States. In order to provide access to the data, the USGS has developed the National Archive of Marine Seismic Surveys (NAMSS) program. For a small fraction of the money that would be required to collect new data, work is underway to organize and recover digital data currently stored on tens of thousands of 9-track tapes. Even where new data collection efforts could be funded, current environmental restrictions on marine seismic exploration could preclude operations. The NAMSS web site at http://walrus.wr.usgs.gov/NAMSS/ has trackline maps of surveys that are now or will soon be available for downloading in SEG-Y format. As more owners and users become aware of this new data resource, it is hoped that additional partners in will join this data rescue effort.

  2. A Seismic Reflection Profiling Survey of Lake Toba, Sumatra, Indonesia: Preliminary Findings from the Field

    NASA Astrophysics Data System (ADS)

    Chesner, C. A.; Dolan, M. T.; Halsor, S. P.; Bohnenstiehl, D. R.; Liu, J.; Nasution, A.

    2012-12-01

    Lake Toba lies within the giant Toba Caldera that last erupted 74,000 years ago. In its early history, Lake Toba may have covered about 1800 km2, possibly reaching depths of 750 m. The central portion of the 100 x 30 km caldera has since been uplifted to form the asymmetrical Samosir Island resurgent dome (60 x 20 km). Its upper surface dips gently to the west while its eastern margin consists of a series of parallel normal faults with total displacement of at least 1100 m. Several lava domes have been emplaced along these faults as well as the southwestern caldera ring fracture. At least 30 m of laminated tuffaceous sand and silt, diatomaceous clay, diatomites, and volcanic ash cover Samosir Island and sediments up to 100 m have been reported. In an effort to understand the post-collapse sedimentation, structural, volcanic, and resurgent histories of the caldera, we conducted a 14 day seismic reflection profiling survey of Lake Toba in July/August 2012. An EdgeTech SB-512i "chirp" sonar unit was towed across about 900 km of transect lines. Signal penetration was not affected by water depth, which sometimes exceeded 500 m, but was often reduced by adverse tow conditions or strong stratigraphic reflectors, and occasionally lost altogether possibly due to gas pockets in the sediments. In areas of flat-lying or gently sloping lake bottom, about 10-30 m of lake sediments was typically detected. Along the steep caldera bounding faults and the faulted eastern margin of the Samosir resurgent dome virtually no sediments were detected. However, up to 90 m of laminated sediments were apparent on the crest and gently sloping submerged portions of Samosir. These thick sedimentary sequences showed distinct marker horizons with evidence of faulting, folding, sliding, and slumping. Local unconformities or onlapping sequences demonstrated discrete sedimentary episodes. Several subaqueous lava domes were discovered that uplifted, folded, and sometimes truncated the sedimentary

  3. New inferences from spectral seismic energy measurement of a link between regional seismicity and volcanic activity at Mt. Etna, Italy

    NASA Astrophysics Data System (ADS)

    Ortiz, R.; Falsaperla, S.; Marrero, J. M.; Messina, A.

    2009-04-01

    The existence of a relationship between regional seismicity and changes in volcanic activity has been the subject of several studies in the last years. Generally, activity in basaltic volcanoes such as Villarica (Chile) and Tungurahua (Ecuador) shows very little changes after the occurrence of regional earthquakes. In a few cases volcanic activity has changed before the occurrence of regional earthquakes, such as observed at Teide, Tenerife, in 2004 and 2005 (Tárraga et al., 2006). In this paper we explore the possible link between regional seismicity and changes in volcanic activity at Mt. Etna in 2006 and 2007. On 24 November, 2006 at 4:37:40 GMT an earthquake of magnitude 4.7 stroke the eastern coast of Sicily. The epicenter was localized 50 km SE of the south coast of the island, and at about 160 km from the summit craters of Mt. Etna. The SSEM (Spectral Seismic Energy Measurement) of the seismic signal at stations at 1 km and 6 km from the craters highlights that four hours before this earthquake the energy associated with volcanic tremor increased, reached a maximum, and finally became steady when the earthquake occurred. Conversely, neither before nor after the earthquake, the SSEM of stations located between 80 km and 120 km from the epicentre and outside the volcano edifice showed changes. On 5 September, 2007 at 21:24:13 GMT an earthquake of magnitude 3.2 and 7.9 km depth stroke the Lipari Island, at the north of Sicily. About 38 hours before the earthquake occurrence, there was an episode of lava fountain lasting 20 hours at Etna volcano. The SSEM of the seismic signal recorded during the lava fountain at a station located at 6 km from the craters highlights changes heralding this earthquake ten hours before its occurrence using the FFM method (e.g., Voight, 1988; Ortiz et al., 2003). A change in volcanic activity - with the onset of ash emission and Strombolian explosions - was observed a couple of hours before the occurrence of the regional

  4. Geomorphological features of active tectonics and ongoing seismicity of northeastern Kumaun Himalaya, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Pathak, Vivekanand; Pant, Charu C.; Darmwal, Gopal Singh

    2015-08-01

    The northeastern part of Kumaun Lesser Himalaya, Uttarakhand, India, lying between the rupture zones of 1905, Kangra and 1934, Bihar-Nepal earthquakes and known as `central seismic gap' is a segment of an active fault known to produce significant earthquakes and has not slipped in an unusually long time when compared to other segments. The studied section forms a part of this seismic gap and is seismically an active segment of the Himalayan arc, as compared to the remaining part of the Kumaun Lesser Himalaya and it is evident by active geomorphological features and seismicity data. The geomorphological features of various river valley transects suggest that the region had a history of tectonic rejuvenation which is testified by the deposition of various levels of terraces and their relative uplift, shifting and ponding of river channels, uplifted potholes, triangular facets on fault planes, fault scarps, etc. Further, the seismic data of five-station digital telemetered seismic network along with two stand alone systems show the distribution of earthquakes in or along the analyzed fault transects. It is observed that the microseismic earthquakes (magnitude 1.0-3.0) frequently occur in the region and hypocenters of these earthquakes are confined to shallow depths (10-20 km), with low stress drop values (1.0-10 bar) and higher peak ground velocity (PGV). The cluster of events is observed in the region, sandwiched between the Berinag Thrust (BT) in south and Main Central Thrust (MCT) in north. The occurrences of shallow focus earthquakes and the surface deformational features in the different river valley transect indicates that the region is undergoing neotectonic rejuvenation. In absence of chronology of the deposits it is difficult to relate it with extant seismicity, but from the geomorphic and seismic observations it may be concluded that the region is still tectonically active. The information would be very important in identifying the areas of hazard prone and

  5. Seismic investigation of gas hydrates in the Gulf of Mexico: Results from 2013 high-resolution 2D and multicomponent seismic surveys

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Shedd, W. W.; Frye, M.; Agena, W.; Miller, J. J.; Ruppel, C. D.

    2013-12-01

    In the spring of 2013, the U.S. Geological Survey led a 16-day seismic acquisition cruise aboard the R/V Pelican in the Gulf of Mexico to survey two established gas hydrate study sites. We used a pair of 105/105 cubic inch generator/injector airguns as the seismic source, and a 450-m 72-channel hydrophone streamer to record two-dimensional (2D) data. In addition, we also deployed at both sites an array of 4-component ocean-bottom seismometers (OBS) to record P- and S-wave energy at the seafloor from the same seismic source positions as the streamer data. At lease block Green Canyon 955 (GC955), we acquired 400 km of 2-D streamer data, in a 50- to 250-m-spaced grid augmented by several 20-km transects that provide long offsets for the OBS. The seafloor recording at GC955 was accomplished by a 2D array of 21 OBS at approximately 400-m spacing, including instruments carefully positioned at two of the three boreholes where extensive logging-while-drilling data is available to characterize the presence of gas hydrate. At lease block Walker Ridge 313 (WR313), we acquired 450 km of streamer data in a set of 11-km, 150- to 1,000-m-spaced, dip lines and 6- to 8-km, 500- to 1000-m-spaced strike lines. These were augmented by a set of 20-km lines that provide long offsets for a predominantly linear array of 25 400- to 800-m spaced OBS deployed in the dip direction in and around WR313. The 2D data provide at least five times better resolution of the gas hydrate stability zone than the available petroleum industry seismic data from the area; this enables considerably improved analysis and interpretation of stratigraphic and structural features including previously unseen faults and gas chimneys that may have considerable impact on gas migration. Initial processing indicates that the OBS data quality is good, and we anticipate that these data will yield estimates of P- and S-wave velocities, as well as PP (reflected) and PS (converted wave) images beneath each sensor location.

  6. 76 FR 68720 - Takes of Marine Mammals Incidental to Specified Activities; Low-Energy Marine Geophysical Survey...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... proposed IHA for the SIO seismic survey was published in the Federal Register on July 29, 2011 (76 FR 45518... published a notice in the Federal Register (76 FR 45518) making preliminary determinations and proposing to... previous notice for the proposed IHA (76 FR 45518, July 29, 2011). The activities to be conducted have...

  7. Volcanic activity observed from continuous seismic records in the region of the Klyuchevskoy group of volcanoes

    NASA Astrophysics Data System (ADS)

    Shapiro, N.; Droznin, D.; Droznina, S.; Senyukov, S.; Chebrov, V.; Gordeev, E.; Frank, W.

    2015-12-01

    We analyze continuous seismic records from 18 permanent stations operated in vicinity of the Klyuchevskoy group of volcanos (Kamchatka, Russia) during the period between 2009 and 2014. We explore the stability of the inter-station cross-correlation to detect different periods of sustained emission from seismic energy. The main idea of this approach is that cross-correlation waveforms computed from a wavefield emitted by a seismic source from a fixed position remain stable during the period when this source is acting. The detected periods of seismic emission correspond to different episodes of activity of volcanoes: Klyuchevskoy, Tolbachik, Shiveluch, and Kizimen. For Klyuchevskoy and Tolbachik whose recent eruptions are mostly effusive, the detected seismic signals correspond to typical volcanic tremor, likely caused by degassing processes. For Shiveluch and Kizimen producing more silicic lavas, the observed seismic emission often consists of many repetitive long period (LP) seismic events that might be related to the extrusion of viscous magmas. We develop an approach for automatic detection of these individual LP events in order to characterize variations of their size and recurrence in time.

  8. Transfer Learning for Activity Recognition: A Survey

    PubMed Central

    Cook, Diane; Feuz, Kyle D.; Krishnan, Narayanan C.

    2013-01-01

    Many intelligent systems that focus on the needs of a human require information about the activities being performed by the human. At the core of this capability is activity recognition, which is a challenging and well-researched problem. Activity recognition algorithms require substantial amounts of labeled training data yet need to perform well under very diverse circumstances. As a result, researchers have been designing methods to identify and utilize subtle connections between activity recognition datasets, or to perform transfer-based activity recognition. In this paper we survey the literature to highlight recent advances in transfer learning for activity recognition. We characterize existing approaches to transfer-based activity recognition by sensor modality, by differences between source and target environments, by data availability, and by type of information that is transferred. Finally, we present some grand challenges for the community to consider as this field is further developed. PMID:24039326

  9. US Geological Survey begins seismic ground response experiments in Washington State

    USGS Publications Warehouse

    Tarr, A.C.; King, K.W.

    1988-01-01

    This article briefly describes the experimental monitoring of minor seismic features caused by distant nuclear explosions, mining blasts and rhythmic human pushing against wooden homes. Some means of response prediction are outlined in Washington State and some effects of seismic amplification by weak clayey sediments are described. The results of several experiments are described. -A.Scarth

  10. A robust satellite technique for monitoring seismically active areas: The case of Bhuj Gujarat earthquake

    NASA Astrophysics Data System (ADS)

    Genzano, N.; Aliano, C.; Filizzola, C.; Pergola, N.; Tramutoli, V.

    2007-02-01

    A robust satellite data analysis technique (RAT) has been recently proposed as a suitable tool for satellite TIR surveys in seismically active regions and already successfully tested in different cases of earthquakes (both high and medium-low magnitudes). In this paper, the efficiency and the potentialities of the RAT technique have been tested even when it is applied to a wide area with extremely variable topography, land coverage and climatic characteristics (the whole Indian subcontinent). Bhuj-Gujarat's earthquake (occurred on 26th January 2001, MS ˜ 7.9) has been considered as a test case in the validation phase, while a relatively unperturbed period (no earthquakes with MS ≥ 5, in the same region and in the same period) has been analyzed for confutation purposes. To this aim, 6 years of Meteosat-5 TIR observations have been processed for the characterization of the TIR signal behaviour at each specific observation time and location. The anomalous TIR values, detected by RAT, have been evaluated in terms of time-space persistence in order to establish the existence of actually significant anomalous transients. The results indicate that the studied area was affected by significant positive thermal anomalies which were identified, at different intensity levels, not far from the Gujarat coast (since 15th January, but with a clearer evidence on 22nd January) and near the epicentral area (mainly on 21st January). On 25th January (1 day before Gujarat's earthquake) significant TIR anomalies appear on the Northern Indian subcontinent, showing a remarkable coincidence with the principal tectonic lineaments of the region (thrust Himalayan boundary). On the other hand, the results of the confutation analysis indicate that no meaningful TIR anomalies appear in the absence of seismic events with MS ≥ 5.

  11. Martian seismicity

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.; Grimm, Robert E.

    1991-01-01

    The design and ultimate success of network seismology experiments on Mars depends on the present level of Martian seismicity. Volcanic and tectonic landforms observed from imaging experiments show that Mars must have been a seismically active planet in the past and there is no reason to discount the notion that Mars is seismically active today but at a lower level of activity. Models are explored for present day Mars seismicity. Depending on the sensitivity and geometry of a seismic network and the attenuation and scattering properties of the interior, it appears that a reasonable number of Martian seismic events would be detected over the period of a decade. The thermoelastic cooling mechanism as estimated is surely a lower bound, and a more refined estimate would take into account specifically the regional cooling of Tharsis and lead to a higher frequency of seismic events.

  12. A preliminary census of engineering activities located in Sicily (Southern Italy) which may "potentially" induce seismicity

    NASA Astrophysics Data System (ADS)

    Aloisi, Marco; Briffa, Emanuela; Cannata, Andrea; Cannavò, Flavio; Gambino, Salvatore; Maiolino, Vincenza; Maugeri, Roberto; Palano, Mimmo; Privitera, Eugenio; Scaltrito, Antonio; Spampinato, Salvatore; Ursino, Andrea; Velardita, Rosanna

    2015-04-01

    The seismic events caused by human engineering activities are commonly termed as "triggered" and "induced". This class of earthquakes, though characterized by low-to-moderate magnitude, have significant social and economical implications since they occur close to the engineering activity responsible for triggering/inducing them and can be felt by the inhabitants living nearby, and may even produce damage. One of the first well-documented examples of induced seismicity was observed in 1932 in Algeria, when a shallow magnitude 3.0 earthquake occurred close to the Oued Fodda Dam. By the continuous global improvement of seismic monitoring networks, numerous other examples of human-induced earthquakes have been identified. Induced earthquakes occur at shallow depths and are related to a number of human activities, such as fluid injection under high pressure (e.g. waste-water disposal in deep wells, hydrofracturing activities in enhanced geothermal systems and oil recovery, shale-gas fracking, natural and CO2 gas storage), hydrocarbon exploitation, groundwater extraction, deep underground mining, large water impoundments and underground nuclear tests. In Italy, induced/triggered seismicity is suspected to have contributed to the disaster of the Vajont dam in 1963. Despite this suspected case and the presence in the Italian territory of a large amount of engineering activities "capable" of inducing seismicity, no extensive researches on this topic have been conducted to date. Hence, in order to improve knowledge and correctly assess the potential hazard at a specific location in the future, here we started a preliminary study on the entire range of engineering activities currently located in Sicily (Southern Italy) which may "potentially" induce seismicity. To this end, we performed: • a preliminary census of all engineering activities located in the study area by collecting all the useful information coming from available on-line catalogues; • a detailed compilation

  13. A preliminary summary of a seismic-refraction survey in the vicinity of the Tonto Forest Observatory, Arizona

    USGS Publications Warehouse

    Roller, J.C.; Jackson, W.H.; Warren, D.H.; Healy, J.H.

    1964-01-01

    The U.S. Geological Survey complete d a seismic-refraction survey in the vicinity of the Tonto Forest Seismological Observatory (T.F.S.O.) in April and May 1964. More than 1200 km of reversed profiles were surveyed to determine the crustal structure and crustal and upper mantle velocities in this area. The purpose of this work was to provide information on wave-propagation paths of seismic events recorded at T.F.S.O. and to improve the performance of the Observatory in locating and identifying these events. First arrivals indicate that the Mohorovicic discontinuity dips to the northeast by as much as 6 degrees under T.F.S.O., and may even be displaced vertically by as much as 5 km immediately north of the Observatory near the boundary of the Basin and Range a n d t he Colorado Plateau Provinces. A preliminary examination of the first arrivals indicates that the crust at T.F.S.O. is at least 30 km thick and is made up of at least two seismic layers. A thin veneer at the surface with a velocity of approximately 4 km/sec is underlain by a layer with a velocity of approximately 5.9 km/sec to 6.1 km/sec. An intermediate layer with velocity of 6.6 to 7.0 km/sec is probably present in the lower crust, but is not revealed by first arrivals. The velocity of seismic waves in the upper mantle is about 7.9 km/sec.

  14. Assessing the deep drilling potential of Lago de Tota, Colombia, with a seismic survey

    NASA Astrophysics Data System (ADS)

    Bird, B. W.; Wattrus, N. J.; Fonseca, H.; Velasco, F.; Escobar, J.

    2015-12-01

    Reconciling orbital-scale patterns of inter-hemispheric South American climate during the Quaternary requires continuous, high-resolution paleoclimate records that span multiple glacial cycles from both hemispheres. Southern Andean Quaternary climates are represented by multi-proxy results from Lake Titicaca (Peru-Bolivia) spanning the last 400 ka and by pending results from the Lago Junin Drilling Project (Peru). Although Northern Andean sediment records spanning the last few million years have been retrieved from the Bogota and Fúquene Basins in the Eastern Cordillera of the Colombian Andes, climatic reconstructions based on these cores have thus far been limited to pollen-based investigations. When viewed together with the Southern Hemisphere results, these records suggest an anti-phased hemispheric climatic response during glacial cycles. In order to better assess orbital-scale climate responses, however, independent temperature and hydroclimate proxies from the Northern Hemisphere are needed in addition to vegetation histories. As part of this objective, an effort is underway to develop a paleoclimate record from Lago de Tota (3030 m asl), the largest lake in Colombia and the third largest lake in the Andes. One of 17 highland tectonic basins in Eastern Cordillera, Lago de Tota formed during Tertiary uplift that deformed pre-foreland megasequences, synrift and back-arc megasequences. The precise age and thickness of sediments in the Lago de Tota basin has not previously been established. Here, we present results from a recent single-channel seismic reflection survey collected with a small (5 cubic inch) air gun and high-resolution CHIRP sub-bottom data. With these data, we examine the depositional history and sequence stratigraphy of Lago de Tota and assess its potential as a deep drilling target.

  15. Stable and unstable phases of elevated seismic activity at the persistently restless Telica Volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Rodgers, Mel; Roman, Diana C.; Geirsson, Halldor; LaFemina, Peter; McNutt, Stephen R.; Muñoz, Angelica; Tenorio, Virginia

    2015-01-01

    Telica Volcano, Nicaragua, is a persistently restless volcano with daily seismicity rates that can vary by orders of magnitude without apparent connection to eruptive activity. Low-frequency (LF) events are dominant and peaks in seismicity rate show little correlation with eruptive episodes, presenting a challenge for seismic monitoring and eruption forecasting. A short period seismic station (TELN) has been operated on Telica's summit since 1993, and in 2010 the installation of a six-station broadband seismic and eleven-station continuous GPS network (the TESAND network) was completed to document in detail the seismic characteristics of a persistently restless volcano. Between our study period of November 2009 and May 2013, over 400,000 events were detected at the TESAND summit station (TBTN), with daily event rates ranging from 5 to 1400. We present spectral analyses and classifications of ~ 200,000 events recorded by the TESAND network between April 2010 and March 2013, and earthquake locations for a sub-set of events between July 2010 and February 2012. In 2011 Telica erupted in a series of phreatic vulcanian explosions. Six months before the 2011 eruption, we observe a sudden decrease in LF events concurrent with a swarm of high-frequency (HF) events, followed by a decline in overall event rates, which reached a minimum at the eruption onset. We observe repeated periods of high and low seismicity rates and suggest these changes in seismicity represent repeated transitions between open-system and closed-system degassing. We suggest that these short- and long-term transitions between open to closed-system degassing form part of a long-term pattern of stable vs. unstable phases at Telica. Stable phases are characterised by steady high-rate seismicity and represent stable open-system degassing, whereas unstable phases are characterised by highly variable seismicity rates and represent repeated transitions from open to closed-system degassing, where the system is

  16. Seismic imaging of the geodynamic activity at the western Eger rift in central Europe

    NASA Astrophysics Data System (ADS)

    Mullick, N.; Buske, S.; Hrubcova, P.; Ruzek, B.; Shapiro, S.; Wigger, P.; Fischer, T.

    2015-04-01

    The western Eger rift at the Czech-German border in central Europe is an important geodynamically active area within the European Cenzoic rift system (ECRS) in the forelands of the Alps. Along with two other active areas of the ECRS, the French Massif Central and the east and west Eifel volcanic fields, it is characterized by numerous CO2-rich fluid emission points and frequent micro-seismicity. Existence of a plume(s) is indicated in the upper mantle which may be responsible for these observations. Here we reprocess a pre-existing deep seismic reflection profile '9HR' and interpret the subsurface structures as mapped by seismic reflectivity with previous findings, mainly from seismological and geochemical studies, to investigate the geodynamic activity in the subsurface. We find prominent hints of pathways which may allow magmatic fluids originating in the upper mantle to rise through the crust and cause the observed fluid emanations and earthquake activity.

  17. High resolution (chirp) survey in the Ionian sea (Italy, central Maditerranean): seismic evidence of mud diapirism and coral colonies

    NASA Astrophysics Data System (ADS)

    Fusi, N.; Savini, A.; Corselli, C.

    2003-04-01

    A CHIRP survey in the Ionian Sea between Calabria and Puglia (Italy) investigated: 1) the Calabrian margin, characterized by Eward dipping dip slip faults, which offset the sea bottom for a total throw of about 1200, and interested by diffuse mass-flow phenomena (slides and slumps); 2) the accretionary wedge, chiefly characterised by creep deposits; a flat plateau, identified in this area, is interpreted as the outcrop of coarse grained turbidites, coming from the steep Calabrian margin; 3) the Taranto Trench, affected by slumps in its upper part and by sedimentation of coarse grained sediments in the lower one; 4) the Apulian foreland, which rises from the Taranto trench through some appeninic (NNW-SSE) dip slip faults, with a total throw of about 1500 m; some anticlines, probably formed by Neogene-Pleistocene sediments and partly eroded, are interpreted on the basis of other seismic data (Doglioni et al., 1999; Merlini et al., 2000) as a local compression in a general extensive context. The identified echo characters have been compared with those described by Lee et al. (2002) and, on the basis of cores collected on some particular sites, they have been related to different kinds of sediments. In particular two echo characters have an interesting interpretation: 1) On the Apulian plateau we found a widespread presence of mounds, up to 50 m high, occurring as isolated mounds in the deepest zones (1600-800 m) and in groups in the shallower ones (800-600 m); they have been interpreted as coral mounds, in according to a recent discovery of living deep water coral colonies in this zone (Tursi A., Mastrototaro F., in press) and on the basis of their acoustic and morphological characters; in fact, due to high porosity and high water content, reef structures represent a poor seismic reflectors, appearing thus transparent (Hovland and Thomsen, 1997). Those coral mounds could be related to the intense fracturation of this area as a main via for fluid flow uprising. 2) Some

  18. Seismic Activity: Public Alert and Warning: Legal Implications

    NASA Astrophysics Data System (ADS)

    Zocchetti, D.

    2007-12-01

    As science and technology evolve in ways that increase our ability to inform the public of potentially destructive seismic activity, there are significant legal issues for consideration. Even though countries and even states within the United States have differing legal tenets that could either change or at least re-shape the outcome of specific legal questions that this session will be pondering, there are fundamental legal principals that will permeate. It is often said that the law lags behind society and in particular its technological developments. No doubt in the area of warning the public of impending destructive forces of nature or society, the law will need to do some catching up. The law is probably adequately developed for at least some preliminary discussion of the key issues. No matter the legal scheme, if there is a failure or perceived failure in the system to warn people of a pending emergencies, albeit an earthquake, tsunami, or other predictable event, those who are harmed or believe they are harmed will seek relief under the law. Every day there are situations wherein the failure to warn or to adequately warn is key, such as with faulty or defective consumer products, escaped prisoners, and police high-speed vehicle chases. With alert and warning systems for disaster, however, we have a unique set of facts. Generally, the systems and their failures occur during emergencies or at least during situations under apparently exigent circumstances when the disaster's predictability is widely recognized as less than 100 percent. The law, in particular United States tort law, has been particularly lenient when people and organizations are operating during compressed timeframes and their actions are generally considered necessary to address circumstances relative to public safety. The legal system has been forgiving when the actor that failed or appeared to fail was government. The courts have liberally applied the principal of sovereign immunity to

  19. A multidisciplinary approach to landslide structure characterization: integration of seismic tomography survey and high resolution LiDar data with the Sloping Local Base Level method.

    NASA Astrophysics Data System (ADS)

    Travelletti, Julien; Samyn, Kevin; Malet, Jean-Philippe; Grandjean, Gilles; Jaboyedoff, Michel

    2010-05-01

    A challenge to progress in the understanding of landslides is to precisely define their 3D geometry and structure as an input for volume estimation and further hydro-mechanical modelling. The objective of this work is to present a multidisciplinary approach to the geometrical modelling of the La Valette landslide by integrating seismic tomography survey (P and S wave) and high resolution LiDar data with the Sloping Local Base Level (SLBL) method. The La Valette landslide, triggered in March 1982, is one of the most important slope instability in the South French Alps. Its dimensions are 1380 m length and 290 m width, and the total volume is estimated at 3.5 106 m3. Since 2002, an important activity of the upper part of the landslide is observed, and consisted mainly in the retrogression of the crown through the opening of an important fracture over several meters and rotational slumps. The failed mass is currently loading the upper part of the mudslide and is a potential threat for the 170 residential communities. A seismic tomography survey combined to airborne and terrestrial LiDar data analysis have been carried out to identify the geological structures and discontinuities and characterize the stability of the failing mass. Seismic tomography allows direct and non-intrusive measurements of P and S waves velocities which are key parameters for the analysis of the mechanical properties of reworked and highly fissured masses. 4 seismic lines have been performed (3 of them in the direction of the slope and the other perpendicular). The 2 longest devices are composed of 24 geophones spaced by 5 meters and have a sufficient investigation depth for a large scale characterization of the landslide's structure with depth. The 2 shortest devices, composed of 24 geophones spaced by 2 meters bring information about the fracturing degree between the moving material of the landslide and the competent rock. 100gr of pentrite for each shot were used as seismic sources. The

  20. Reactivation of Stromboli's summit craters at the end of the 2007 effusive eruption detected by thermal surveys and seismicity

    NASA Astrophysics Data System (ADS)

    Marotta, E.; Calvari, S.; Cristaldi, A.; D'Auria, L.; Di Vito, M. A.; Moretti, R.; Peluso, R.; Spampinato, L.; Boschi, E.

    2015-11-01

    This work arises from the field observations made during the civil protection emergency period connected to the 2007 Stromboli eruption. We observed changes in the shallow feeding system of the volcano to which we give a volcanological interpretation and the relative implications. Here we describe the processes that occurred in the upper feeding system from the end of the 2007 effusive eruption on 3 April to the renewal of the strombolian explosive activity at the summit craters (30 June), interpreted using multidisciplinary data. We used thermal camera data collected both from helicopter and from a fixed station at 400 m to retrieve the evolving summit crater activity. These data, compared with seismic signals and published geochemical records, allowed us to detail the shifting of the degassing activity within the crater terrace from NE to SW, occurred between 15 and 25 April 2007 prior to the resumption of the strombolian activity. In particular, from mid-April, a gradual SW displacement in the maximum apparent temperatures was recorded at the vents within the summit craters, together with a change in the very long period location and confirmed by variations in geochemical indicators (CO2/SO2 plume ratios and CO2 fluxes) from literature. The shallow feeding system experienced a major readjustment after the end of the effusive activity, determining variations in the pressure leakage of the source, slowly deepening and shifting toward SW. All these data, together with the framework supplied by previous structural surveys, allowed us to propose that the compaction of debris accumulated in the uppermost conduit by inward crater collapses, occurred in early March, produced the observed anomalies. At Stromboli, major morphology changes, taking place in the following years, were anticipated by these small and apparently minor processes occurred in the upper feeding system. Other studies are relating similar changes to modifications of the eruptive activity also at other

  1. Seismic texture and amplitude analysis of large scale fluid escape pipes using time lapses seismic surveys: examples from the Loyal Field (Scotland, UK)

    NASA Astrophysics Data System (ADS)

    Maestrelli, Daniele; Jihad, Ali; Iacopini, David; Bond, Clare

    2016-04-01

    Fluid escape pipes are key features of primary interest for the analysis of vertical fluid flow and secondary hydrocarbon migration in sedimentary basin. Identified worldwide (Løset et al., 2009), they acquired more and more importance as they represent critical pathways for supply of methane and potential structure for leakage into the storage reservoir (Cartwright & Santamarina, 2015). Therefore, understanding their genesis, internal characteristics and seismic expression, is of great significance for the exploration industry. Here we propose a detailed characterization of the internal seismic texture of some seal bypass system (e.g fluid escape pipes) from a 4D seismic survey (released by the BP) recently acquired in the Loyal Field. The seal by pass structure are characterized by big-scale fluid escape pipes affecting the Upper Paleogene/Neogene stratigraphic succession in the Loyal Field, Scotland (UK). The Loyal field, is located on the edge of the Faroe-Shetland Channel slope, about 130 km west of Shetland (Quadrants 204/205 of the UKCS) and has been recently re-appraised and re developed by a consortium led by BP. The 3D detailed mapping analysis of the full and partial stack survey (processed using amplitude preservation workflows) shows a complex system of fluid pipe structure rooted in the pre Lista formation and developed across the paleogene and Neogene Units. Geometrical analysis show that pipes got diameter varying between 100-300 m and a length of 500 m to 2 km. Most pipes seem to terminate abruptly at discrete subsurface horizons or in diffuse termination suggesting multiple overpressured events and lateral fluid migration (through Darcy flows) across the overburden units. The internal texture analysis of the large pipes, (across both the root and main conduit zones), using near, medium and far offset stack dataset (processed through an amplitude preserved PSTM workflow) shows a tendency of up-bending of reflection (rather than pulls up artefacts

  2. Zonation of North Alex Mud Volcano Highlighted by 3-D Active and Passive Seismic Data

    NASA Astrophysics Data System (ADS)

    Bialas, J.; Lefeldt, M. R.; Klaeschen, D.; Papenberg, C. A.; Brueckmann, W.

    2010-12-01

    The West Nile Delta forms part of the source of the large turbiditic Nile Deep Sea Fan. Since the late Miocene sediments have formed an up to 10 km thick pile, which includes about 1 - 3 km of Messinian evaporates. The sediment load of the overburden implies strong overpressures and salt-related tectonic deformation. Both are favourable for fluid migration towards the seafloor guided by the fractured margin. The western deltaic system, Rosetta branch, has formed an 80 km wide continental shelf. Here at 700 m water depth the mud volcano North Alex (NA) developed his circular bathymetric feature, which proved to be an active gas and mud-expelling structure. A 3-D high-resolution multichannel seismic survey (IFM-GEOMAR P-Cable system) was completed across the mud volcano. 3-D time migration provided a 3-D data cube with a 6.25 m grid. Vertical seismic sections did reveal a large set of faults located within the main mud volcano as well as surrounding the structure. Internal faults are mainly related to episodic mud expulsion processes and continuous gas and fluid production. Deep cutting external faults surround the structure in a half circle shape. Horizontal amplitude maps (time slices) of indicate recent activity of these faults even up to the seafloor. High gas saturation of the sediments is indicated by inverted reflection events. In the centre the gas front cuts into the seafloor reflection while it dips down with increasing radius. Only with the small grid resolution inward dipping reflections become visible, which form an upward opened concave reflector plane underlying the top gas front. The interpretation assumes an oval lens shaped body (conduit) saturated with gas at the top of the mud volcano. It provides the upper termination of the mud chimney. This separation is further supported by passive seismic observations. Distant earthquakes can stimulate long-period harmonic oscillations in mud volcanoes. Such oscillations are detectable with three

  3. Predicting earthquakes by analyzing accelerating precursory seismic activity

    USGS Publications Warehouse

    Varnes, D.J.

    1989-01-01

    During 11 sequences of earthquakes that in retrospect can be classed as foreshocks, the accelerating rate at which seismic moment is released follows, at least in part, a simple equation. This equation (1) is {Mathematical expression},where {Mathematical expression} is the cumulative sum until time, t, of the square roots of seismic moments of individual foreshocks computed from reported magnitudes;C and n are constants; and tfis a limiting time at which the rate of seismic moment accumulation becomes infinite. The possible time of a major foreshock or main shock, tf,is found by the best fit of equation (1), or its integral, to step-like plots of {Mathematical expression} versus time using successive estimates of tfin linearized regressions until the maximum coefficient of determination, r2,is obtained. Analyzed examples include sequences preceding earthquakes at Cremasta, Greece, 2/5/66; Haicheng, China 2/4/75; Oaxaca, Mexico, 11/29/78; Petatlan, Mexico, 3/14/79; and Central Chile, 3/3/85. In 29 estimates of main-shock time, made as the sequences developed, the errors in 20 were less than one-half and in 9 less than one tenth the time remaining between the time of the last data used and the main shock. Some precursory sequences, or parts of them, yield no solution. Two sequences appear to include in their first parts the aftershocks of a previous event; plots using the integral of equation (1) show that the sequences are easily separable into aftershock and foreshock segments. Synthetic seismic sequences of shocks at equal time intervals were constructed to follow equation (1), using four values of n. In each series the resulting distributions of magnitudes closely follow the linear Gutenberg-Richter relation log N=a-bM, and the product n times b for each series is the same constant. In various forms and for decades, equation (1) has been used successfully to predict failure times of stressed metals and ceramics, landslides in soil and rock slopes, and volcanic

  4. Analysis of the seismic activity associated with the 2010 eruption of Merapi Volcano, Java

    NASA Astrophysics Data System (ADS)

    Budi-Santoso, Agus; Lesage, Philippe; Dwiyono, Sapari; Sumarti, Sri; Subandriyo; Surono; Jousset, Philippe; Metaxian, Jean-Philippe

    2013-07-01

    The 2010 eruption of Merapi is the first large explosive eruption of the volcano that has been instrumentally observed. The main characteristics of the seismic activity during the pre-eruptive period and the crisis are presented and interpreted in this paper. The first seismic precursors were a series of four shallow swarms during the period between 12 and 4 months before the eruption. These swarms are interpreted as the result of perturbations of the hydrothermal system by increasing heat flow. Shorter-term and more continuous precursory seismic activity started about 6 weeks before the initial explosion on 26 October 2010. During this period, the rate of seismicity increased almost constantly yielding a cumulative seismic energy release for volcano-tectonic (VT) and multiphase events (MP) of 7.5 × 1010 J. This value is 3 times the maximum energy release preceding previous effusive eruptions of Merapi. The high level reached and the accelerated behavior of both the deformation of the summit and the seismic activity are distinct features of the 2010 eruption. The hypocenters of VT events in 2010 occur in two clusters at of 2.5 to 5 km and less than 1.5 km depths below the summit. An aseismic zone was detected at 1.5-2.5 km depth, consistent with studies of previous eruptions, and indicating that this is a robust feature of Merapi's subsurface structure. Our analysis suggests that the aseismic zone is a poorly consolidated layer of altered material within the volcano. Deep VT events occurred mainly before 17 October 2010; subsequent to that time shallow activity strongly increased. The deep seismic activity is interpreted as associated with the enlargement of a narrow conduit by an unusually large volume of rapidly ascending magma. The shallow seismicity is interpreted as recording the final magma ascent and the rupture of a summit-dome plug, which triggered the eruption on 26 October 2010. Hindsight forecasting of the occurrence time of the eruption is performed

  5. Recent Seismic and Geodetic Activity at Multiple Volcanoes in the Ecuadorean Andes

    NASA Astrophysics Data System (ADS)

    Hernandez, S.; Ruiz, M. C.; McCausland, W. A.; Prejean, S. G.; Mothes, P. A.; Bell, A. F.; Hidalgo, S.; Barrington, C.; Yepez, M.; Aguaiza, S.; Plain, M.

    2015-12-01

    The state of volcanic activity often fluctuates between periods of repose and unrest. The transition time between a period of repose and unrest, or vice versa for an open system, can occur within a matter of hours or days. Because of this short time scale, real-time seismic and geodetic (e.g. tiltmeter, GPS) monitoring networks are crucial for characterizing the state of activity of a volcano. In the Ecuadorean Andes, 5 volcanoes demonstrate long-term (Tungurahua, Reventador, and Guagua Pichincha) or recently reactivated (Cotopaxi, Chiles-Cerro Negro) seismic and geodetic activity. The Instituto Geofisico regularly characterizes volcano seismicity into long period, very long period, volcano-tectonic, and tremor events. Significant recent changes at these volcanoes include: rigorous reactivation of glacier-capped Cotopaxi, drumbeat seismicity absent a dome extrusion at Tungurahua, and regularly reoccurring (~7 day recurrence interval), shallow seismic swarms at Guagua Pichincha. These volcanoes locate along both the Western and Eastern Cordillera of the Ecuadorean Andes and, where data are available, manifest important variations in chemical composition, daily gas flux, and surficial deformation. We summarize the long-term geophysical parameters measured at each volcano and place recent changes in each parameter in a larger magmatic and hydrothermal context. All of the studied volcanoes present significant societal hazards to local and regional communities.

  6. Evidence for the buried rim of Campi Flegrei caldera from 3-d active seismic imaging

    NASA Astrophysics Data System (ADS)

    Zollo, A.; Judenherc, S.; Auger, E.; D'Auria, L.; Virieux, J.; Capuano, P.; Chiarabba, C.; de Franco, R.; Makris, J.; Michelini, A.; Musacchio, G.

    2003-10-01

    An extended marine, active seismic survey has been performed on September, 2001 in the gulfs of Naples and Pozzuoli by recording about 5000 shots at a network of 62 sea bottom and 72 on shore seismographs. 3-D images of the shallow caldera structure are obtained from the tomographic inversion of about 77000 first P arrival times using the Benz et al. [1996] tomographic technique. The buried rim of the Campi Flegrei caldera is clearly detected at about 800-2000 m depth, as an anular high P-velocity and high density body. It has a diameter of about 8-12 km and a height of 1-2 km. According to stratigraphic and sonic log data from deep boreholes and tomographic P velocities, the rim is likely formed by solidified lavas and/or tuffs with interbedded lava. This study confirms the existence for a depressed limestone basement beneath the caldera at less than 4 km depth, while no evidence are found for shallower magmatic bodies.

  7. Continuous seismic-reflection survey of the Great Salt Lake, Utah- east of Antelope and Fremont Islands

    USGS Publications Warehouse

    Lambert, P.M.; West, J.C.

    1989-01-01

    A continuous seismic-reflection survey of the Great Salt Lake, Utah, was conducted east of Fremont and Antelope Islands in 1984 by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources and produced data along approximately 80 miles of seismic lines. The survey was conducted to determine depth to consolidated rock, and definition and continuity of overlying basin fill under the lake. Interpretation of the data indicates the presence of faulted rock dipping away from Fremont and Antelope Islands. A north-south-trending consolidated-rock ridge is identified 200 ft below lake bottom, 275 miles east of Fremont Island. Shallow rock is also inferred 380 ft below lake bottom, near Hooper Hot Springs, and 520 ft below lake bottom approximately 4 miles east of the south end of Antelope Island. Interpretation of reflections from overlying basin fill indicates fine-grained, thinly-bedded deposits that become coarser with depth. Strong reflectors in the basin fill can be correlated with water-bearing strata penetrated by wells near the north end of Antelope Island and along the east shore of the lake. Many continuous, high-amplitude reflections can be identified in data from basin fill and may represent sedimentary sections or aquifer boundaries but cannot be defined because of a lack of subsurface control in the area. (USGS)

  8. Variations of terrestrial geomagnetic activity correlated to M6+ global seismic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2013-04-01

    From the surface of the Sun, as a result of a solar flare, are expelled a coronal mass (CME or Coronal Mass Ejection) that can be observed from the Earth through a coronagraph in white light. This ejected material can be compared to an electrically charged cloud (plasma) mainly composed of electrons, protons and other small quantities of heavier elements such as helium, oxygen and iron that run radially from the Sun along the lines of the solar magnetic field and pushing into interplanetary space. Sometimes the CME able to reach the Earth causing major disruptions of its magnetosphere: mashed in the region illuminated by the Sun and expanding in the region not illuminated. This interaction creates extensive disruption of the Earth's geomagnetic field that can be detected by a radio receiver tuned to the ELF band (Extreme Low Frequency 0-30 Hz). The Radio Emissions Project (scientific research project founded in February 2009 by Gabriele Cataldi and Daniele Cataldi), analyzing the change in the Earth's geomagnetic field through an induction magnetometer tuned between 0.001 and 5 Hz (bandwidth in which possible to observe the geomagnetic pulsations) was able to detect the existence of a close relationship between this geomagnetic perturbations and the global seismic activity M6+. During the arrival of the CME on Earth, in the Earth's geomagnetic field are generated sudden and intensive emissions that have a bandwidth including between 0 and 15 Hz, an average duration of 2-8 hours, that preceding of 0-12 hours M6+ earthquakes. Between 1 January 2012 and 31 December 2012, all M6+ earthquakes recorded on a global scale were preceded by this type of signals which, due to their characteristics, have been called "Seismic Geomagnetic Precursors" (S.G.P.). The main feature of Seismic Geomagnetic Precursors is represented by the close relationship that they have with the solar activity. In fact, because the S.G.P. are geomagnetic emissions, their temporal modulation depends

  9. Seismic images of the active fault system in the Yunlin and Chiayi area of Taiwan.

    NASA Astrophysics Data System (ADS)

    Sun, Wei-Hsiang; Shih, Ruey-Chyuan

    2015-04-01

    The Yunlin and Chiayi area in western Taiwan are well known of having a higher risk of earthquake disaster. The main fault system that controls the structure deformation in this area consists of the Chiuchiungkeng fault, the Meishan fault, and the Gukeng fault. According to historical records, the 1906 Meishan earthquake, magnitude 7.1, was triggered by the right-lateral strike-slip fault Meishan fault. Previous Seismic surveys showed that the Meishan fault is a high angle fault with flower structure. The Chiuchiungkeng fault is a thrust fault, located at front of the western foothills. Formations on the hanging wall and foot wall of the fault, both dipping to the east with different angles, can be identified from seismic images. The Gukeng fault was never been studied before. From the recent study of GPS monitoring, we may found that the velocity field near the Gukeng fault had a significant difference at both side of the fault. In addition, there is other information showed that there exists an aseismic gap around the fault. The above phenomena could be considered as a stress accumulation along the Gukeng fault. In the other words, the Gukeng fault could be playing an important role of controlling the regional surface deformation and seismicity distribution in this area. In this case, it will be worthwhile of knowing where the Gukeng fault is, and its subsurface structure. In this presentation, we will show our study of the subsurface structure of the Gukeng fault by using the seismic exploration method. The data consist of the shallow seismic reflection images those conducted by ourselves and the deeper seismic profiles acquired by CPC. Three dimensional relationships between the Gukeng fault, the Meishan fault, the Chiuchiungkeng fault, and other structures such as the Hsiaomei anticline will be illustrated as well.

  10. Data report for seismic refraction surveys conducted from 1980 to 1982 in the Livermore Valley and the Santa Cruz Mountains, California

    USGS Publications Warehouse

    Williams, Angela J.; Brocher, Thomas M.; Mooney, Walter D.; Boken, Annette

    1999-01-01

    We provide documentation for two seismic refraction profiles acquired by the U.S. Geological Survey in the San Francisco Bay area between 1980 and 1982 in Livermore Valley and the Santa Cruz Mountains. We also include the waveforms and travel times from five aftershocks of the April 1980 Livermore earthquake that were recorded on temporary seismic stations and that have not been published. Although seismic refraction profiles from the 1980 Livermore study have been published, none of the other data for this experiment, including shot times and locations, receiver locations, data quality, and travel times, have been reported. Similarly, such data from the 1981 to 1982 seismic refraction survey in the Santa Cruz Mountains included here have not been published. The first-arrival travel times from these profiles are reported in the hope that they can be used for three-dimensional velocity models in the San Francisco Bay area, particularly for the Livermore Valley and Santa Cruz Mountains.

  11. Anthropogenically-Induced Superficial Seismic Activity Modulated By Slow-Slip Events in Guerrero, Mexico

    NASA Astrophysics Data System (ADS)

    Frank, W.; Shapiro, N.; Husker, A. L.; Kostoglodov, V.; Campillo, M.

    2014-12-01

    We use the data of the MASE seismic experiment operated during 2.5 years in Guerrero, Mexico to create a large catalog of seismic multiplets. This catalog is dominated by families of Low-Frequency Earthquakes (LFE) occurring in vicinity of the main subduction interface. In addition to more than one thousand LFE families, we detected nine repeating seismic event families that are located in the upper crust and are anthropogenically induced (AI) by mining blasts. Analysis of the recurrence of these AI events in time shows that their activity significantly increases during the strong Slow-Slip Event (SSE) in 2006. Modeled static stress perturbations induced by the SSE at the surface are ~5 kPa that is on the same order of magnitude as dynamic stress perturbations observed to trigger other low stress drop phenomena, such as tectonic tremor. We propose therefore that strong SSEs in Guerrero impose an extensional regime throughout the continental crust, modifying the stress field near the surface and increasing AI activity. This modulation of the recurrence of the crustal seismic events by the SSE-induced stress might be related to another recent observation: the SSE-induced reduction of seismic velocities linked to nonlinear elastic effects caused by opening of cracks (Rivet et al., 2011, 2014).

  12. Seismic evidence for Neogene and active shortening offshore of Lebanon (Shalimar cruise)

    NASA Astrophysics Data System (ADS)

    Carton, H.; Singh, S. C.; Tapponnier, P.; Elias, A.; Briais, A.; Sursock, A.; Jomaa, R.; King, G. C. P.; DaëRon, M.; Jacques, E.; Barrier, L.

    2009-07-01

    Lebanon, located on a 160-km-long transpressional bend of the left-lateral Levant (Dead Sea) fault system (LFS), has been the site of infrequent but large earthquakes, including one submarine, tsunamigenic event. The main objective of the Shalimar marine survey was to characterize and map active deformation offshore of Lebanon using a range of geophysical techniques, particularly seismic reflection profiling. The cruise results clearly establish the presence of young submarine thrust faults and folds and clarify the structure of this part of the Levant margin. A submarine fold belt, bounded by thrusts and lateral ramps and extending up to 30 km from the shoreline, is interpreted as the foreland thrust system of the actively growing Mount Lebanon range. There is no large fault extending into the Levant basin toward Cyprus, which indicates that thrusting only absorbs local transpression resulting from the Lebanese restraining bend. Both the Miocene and Plio-Quaternary sedimentary sequences are affected by shortening, with landward dipping blind thrusts and associated growth strata. The presence of the Messinian evaporites creates complex deformation patterns, including normal faults due both to folding accommodation and to gravity spreading, all well imaged in the seismic reflection profiles. Because the evaporite layer acts as a décollement level, shortening extends farther out seaward through a series of thrust imbricates or duplexes. The strongest shortening, observed between Beirut and Batroun, decreases toward the south between Saida and Tyre. North of Tripoli, the passive margin is not affected by Neogene deformation and is well preserved. We propose that since the Miocene, the northward propagating LFS interacted with margin structures inherited from the Mesozoic rifting phase and was deviated along the more rigid oceanic crust flooring the Levant basin, a process which led to the formation of the Lebanese restraining bend of the LFS and consequently to the

  13. Active Monitoring With The Use Of Seismic Vibrators: Experimental Systems And The Results Of Works

    NASA Astrophysics Data System (ADS)

    Kovalevsky, V.; Alekseev, A.; Glinsky, B.; Khairetdinov, M.; Seleznev, V.; Emanov, A.; Soloviev, V.

    2004-12-01

    Active methods of geophysical monitoring with the use of powerful seismic vibrators play an important role in the investigation of changes in the medium's stressed-deformed state in seismic prone zones for problems of seismic hazard prediction. In the last three decades, this scientific direction has been actively developed at institutes of Siberian Branch of Russian Academy of Sciences. In this period, experimental systems for the active monitoring of the medium, which include powerful vibrational sources with computer control systems, mobile specialized complexes for the precision recording of vibrational seismic signals, and data processing systems have been created. A review of various constructions of resonant vibrational seismic sources with a vibrational force of 100 tons in the frequency range from 5 to 15 Hz and the principles of creation of precision computer control systems and low-frequency three-component recording systems VIRS-M, VIRS-K, and ROSA is presented. A method for the active monitoring of the medium with the use of wideband sweep signals and narrow-band harmonic signals radiated by seismic vibrators has been developed. To determine the sensitivity of the active monitoring system, some experiments to detect the influence of the Earth's crust tidal deformations (of the order of 10-7) on seismic wave velocities have been performed. A 100-ton seismic vibrator and recording systems were located at a distance of 356 km. The radiation sessions of harmonic and sweep signals were repeated every 3 hours during 8 days. This made it possible to construct the time series of variations in the amplitudes and phases of the signals and wave arrival times. Both 12-hour and 24-hour periodicities correlated with the earth's tides were distinguished in the spectrum of variations of the recorded signals. The experiment has shown that the active monitoring system makes it possible to detect relative variations of the seismic wave velocities of the order of 10

  14. Noise-based body-wave seismic tomography in an active underground mine.

    NASA Astrophysics Data System (ADS)

    Olivier, G.; Brenguier, F.; Campillo, M.; Lynch, R.; Roux, P.

    2014-12-01

    Over the last decade, ambient noise tomography has become increasingly popular to image the earth's upper crust. The seismic noise recorded in the earth's crust is dominated by surface waves emanating from the interaction of the ocean with the solid earth. These surface waves are low frequency in nature ( < 1 Hz) and not usable for imaging smaller structures associated with mining or oil and gas applications. The seismic noise recorded at higher frequencies are typically from anthropogenic sources, which are short lived, spatially unstable and not well suited for constructing seismic Green's functions between sensors with conventional cross-correlation methods. To examine the use of ambient noise tomography for smaller scale applications, continuous data were recorded for 5 months in an active underground mine in Sweden located more than 1km below surface with 18 high frequency seismic sensors. A wide variety of broadband (10 - 3000 Hz) seismic noise sources are present in an active underground mine ranging from drilling, scraping, trucks, ore crushers and ventilation fans. Some of these sources generate favorable seismic noise, while others are peaked in frequency and not usable. In this presentation, I will show that the noise generated by mining activity can be useful if periods of seismic noise are carefully selected. Although noise sources are not temporally stable and not evenly distributed around the sensor array, good estimates of the seismic Green's functions between sensors can be retrieved for a broad frequency range (20 - 400 Hz) when a selective stacking scheme is used. For frequencies below 100 Hz, the reconstructed Green's functions show clear body-wave arrivals for almost all of the 153 sensor pairs. The arrival times of these body-waves are picked and used to image the local velocity structure. The resulting 3-dimensional image shows a high velocity structure that overlaps with a known ore-body. The material properties of the ore-body differ from

  15. Airgun inter-pulse noise field during a seismic survey in an Arctic ultra shallow marine environment.

    PubMed

    Guan, Shane; Vignola, Joseph; Judge, John; Turo, Diego

    2015-12-01

    Offshore oil and gas exploration using seismic airguns generates intense underwater pulses that could cause marine mammal hearing impairment and/or behavioral disturbances. However, few studies have investigated the resulting multipath propagation and reverberation from airgun pulses. This research uses continuous acoustic recordings collected in the Arctic during a low-level open-water shallow marine seismic survey, to measure noise levels between airgun pulses. Two methods were used to quantify noise levels during these inter-pulse intervals. The first, based on calculating the root-mean-square sound pressure level in various sub-intervals, is referred to as the increment computation method, and the second, which employs the Hilbert transform to calculate instantaneous acoustic amplitudes, is referred to as the Hilbert transform method. Analyses using both methods yield similar results, showing that the inter-pulse sound field exceeds ambient noise levels by as much as 9 dB during relatively quiet conditions. Inter-pulse noise levels are also related to the source distance, probably due to the higher reverberant conditions of the very shallow water environment. These methods can be used to quantify acoustic environment impacts from anthropogenic transient noises (e.g., seismic pulses, impact pile driving, and sonar pings) and to address potential acoustic masking affecting marine mammals. PMID:26723302

  16. Tomographic image of a seismically active volcano: Mammoth Mountain, California

    USGS Publications Warehouse

    Dawson, Phillip B.; Chouet, Bernard A.; Pitt, Andrew M.

    2016-01-01

    High-resolution tomographic P wave, S wave, and VP/VS velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 109 to 5.9 × 1010m3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10−3 to 7.9 × 10−3 (crack-like pores) and mean gas volume fraction ϕ = 8.1 × 10−4 to 3.4 × 10−3. The pore density parameter κ = 3ϕ/(4πα) = na3=0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to be 4.6 × 109 to 1.9 × 1011 kg. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 500 tons day−1, the reservoir could supply the emission of CO2 for ∼25–1040 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  17. Tomographic image of a seismically active volcano: Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Dawson, Phillip; Chouet, Bernard; Pitt, Andrew

    2016-01-01

    High-resolution tomographic P wave, S wave, and VP/VS velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 109 to 5.9 × 1010m3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ˜2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10-3 to 7.9 × 10-3 (crack-like pores) and mean gas volume fraction ϕ = 8.1 × 10-4 to 3.4 × 10-3. The pore density parameter κ = 3ϕ/(4πα) = na3=0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to be 4.6 × 109 to 1.9 × 1011 kg. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 500 tons day-1, the reservoir could supply the emission of CO2 for ˜25-1040 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  18. Tomographic Image of a Seismically Active Volcano: Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Dawson, P. B.; Chouet, B. A.; Pitt, A. M.

    2015-12-01

    High-resolution tomographic P wave, S wave, and VP /VS velocity structure models are derived for Mammoth Mountain, California using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (˜50 km3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ˜2 km below sea level. We infer that the reduction in seismic wave velocities is primarily due to the presence of CO2 distributed in oblate-spheroid pores with mean aspect ratio α ˜8 x 10-4 (crack-like pores) and gas volume fraction φ ˜4 x 10-4. The pore density parameter κ = 3φ / (4πα) = na3 = 0.12, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to range up to ˜1.6 x 1010 kg if the pores exclusively contain CO2, although he presence of an aqueous phase may lower this estimate by up to one order of magnitude. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 5 x 105 kg day-1, the reservoir could supply the emission of CO2 for ˜8 to ˜90 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  19. Canadian Seismic Agreement

    SciTech Connect

    Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lapointe, S.P.; Lamontagne, M.; Wong, C.; Anglin, F.M.; Adams, J.; Cajka, M.G.; McNeil, W.; Drysdale, J.A. )

    1992-05-01

    This is a progress report of work carried out under the terms of a research agreement entitled the Canadian Seismic Agreement'' between the US Nuclear Regulatory Commission (USNRC), the Canadian Commercial Corporation and the Geophysics Division of the Geological Survey of Canada (GD/GSC) during the period from July 01, 1989 to June 30, 1990. The Canadian Seismic Agreement'' supports generally the operation of various seismograph stations in eastern Canada and the collection and analysis of earthquake data for the purpose of mitigating seismic hazards in eastern Canada and the northeastern US. The specific activities carried out in this one-year period are summarized below under four headings; Eastern Canada Telemetred Network and local network developments, Datalab developments, strong-motion network developments and earthquake activity. During this period the first surface fault unequivocably determined to have accompanied a historic earthquake in eastern North America, occurred in northern Quebec.

  20. Structure of the deep oceanic lithosphere in the Northwestern Pacific ocean basin derived from active-source seismic data

    NASA Astrophysics Data System (ADS)

    Ohira, A.; Kodaira, S.; Nakamura, Y.; Fujie, G.; Arai, R.; Miura, S.

    2015-12-01

    Many seismological studies have detected the sharp seismic discontinuities in the upper mantle, some of which are interpreted the lithosphere-asthenosphere boundary (LAB). However there are few data at the old Pacific plate, in particular at ocean basin, which is critical information for understanding nature of the oceanic LAB. In 2014 we conducted an active-source refraction/reflection survey along a 1130-km-long line in southeast of the Shatsky Rise. Five ocean bottom seismometers (OBSs) were deployed and recovered by R/V Kairei of JAMSTEC. We used an airgun array with a total volume of 7,800 cubic inches with firing at intervals of 200 m. Multi-channel seismic reflection (MCS) data were also collected with a 444-channel, 6,000-m-long streamer cable. In OBS records the apparent velocity of the refraction waves from the uppermost mantle was high (< 8.6 km/sec), and considered to be caused by preferred orientation of olivine (e.g., Kodaira et al., 2014). Another remarkable feature is wide-angle reflection waves from the deep lithosphere at large (150-500 km) offsets. We applied the traveltime mapping method (Fujie et al., 2006), forward analysis (Zelt and Smith, 1992) and the amplitude modeling (Larsen and Grieger, 1998) to the OBS data. The results show that deep mantle reflectors exist at the depths from 35 to 60 km, and one possible explanation is that these reflectors correspond to patched low velocity zones around the base of the lithosphere. On MCS sections the clear and sharp Moho was imaged only at the southwestern end of the profile, but Moho was ambiguous or even not imaged in the most part of the profile. Since our seismic line covers the oceanic lithosphere with different ages that correspond to different stages of the Shatsky activity, the Moho appearance may reflect the variation of the Shatsky activity.

  1. Integrated Seismic Survey for Detecting Landslide Effects on High Speed Rail Line at Istanbul-Turkey

    NASA Astrophysics Data System (ADS)

    Grit, Mert; Kanli, Ali Ismet

    2016-02-01

    In this study, Multichannel Analysis of Surface Waves Method (MASW), seismic refraction tomography and seismic reflection methods are used together at Silivri district in Istanbul - a district with a landslide problem because of the high speed rail line project crossing through the area. The landslide structure, border and depth of the slip plane are investigated and correlated within the local geology. According to the obtained 2D seismic sections, the landslide occurs through the East-West direction in the study area and the landslide slip plane with its border are clearly obtained under the subsurface. The results prove that the study area is suitable enough for the landslide development and this evolution also affects the high speed rail line project.

  2. Firn air-content of Larsen C Ice Shelf, Antarctic Peninsula, from seismic velocities, borehole surveys and firn modelling

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Brisbourne, Alex; Booth, Adam; Kuipers Munneke, Peter; Bevan, Suzanne; Luckman, Adrian; Hubbard, Bryn; Gourmelen, Noel; Palmer, Steve; Holland, Paul; Ashmore, David; Shepherd, Andrew

    2016-04-01

    The rising surface temperature of Antarctic Peninsula ice shelves is strongly implicated in ice shelf disintegration, by exacerbating the compaction of firn layers. Firn compaction is expected to warm the ice column and, given sufficiently wet and compacted layers, to allow meltwater to penetrate into surface crevasses and thus enhance hydrofracture potential. Integrating seismic refraction surveys with borehole neutron and firn core density logging, we reveal vertical and horizontal changes in firn properties across Larsen C Ice Shelf. Patterns of firn air-content derived from seismic surveys are broadly similar to those estimated previously from airborne radar and satellite data. Specifically, these estimates show greater firn compaction in the north and landward inlets compared to the south, although spatial gradients in seismic-derived air-contents are less pronounced than those previously inferred. Firn thickness is less than 10 m in the extreme northwest of Larsen C, in Cabinet Inlet, yet exceeds 40 m in the southeast, suggesting that the inlet is a focus of firn compaction; indeed, buried layers of massive refrozen ice were observed in 200 MHz GPR data in Cabinet and Whirlwind Inlets during a field campaign in the 2014-15 austral summer. Depth profiles of firn density provide a reasonable fit with those derived from closely-located firn cores and neutron probe data. Our model of firn structure is driven by RACMO and includes a 'bucket'-type hydrological implementation, and simulates the depth-density profiles in the inlets well. Discrepancies between measured and modelled depth-density profiles become progressively greater towards the ice-shelf front. RACMO incorrectly simulates the particular leeward (sea-ice-influenced) microclimate of the shallow boundary layer, leading to excess melt and/or lack of snowfall. The spatial sampling density of our seismic observations will be augmented following a further field campaign in the 2016-17 austral summer

  3. Contributions to a shallow aquifer study by reprocessed seismic sections from petroleum exploration surveys, eastern Abu Dhabi, United Arab Emirates

    USGS Publications Warehouse

    Woodward, D.

    1994-01-01

    The US Geological Survey, in cooperation with the National Drilling Company of Abu Dhabi, is conducting a 4-year study of the fresh and slightly saline groundwater resources of the eastern Abu Dhabi Emirate. Most of this water occurs in a shallow aquifer, generally less than 150 m deep, in the Al Ain area. A critical part of the Al Ain area coincides with a former petroleum concession area where about 2780 km of vibroseis data were collected along 94 seismic lines during 1981-1983. Field methods, acquistion parameters, and section processing were originally designed to enhance reflections expected at depths ranging from 5000 to 6000 m, and subsurface features directly associated with the shallow aquifer system were deleted from the original seismic sections. The original field tapes from the vibroseis survey were reprocessed in an attempt to extract shallow subsurface information (depths less than 550 m) for investigating the shallow aquifer. A unique sequence of reproccessing parameters was established after reviewing the results from many experimental tests. Many enhancements to the resolution of shallow seismic reflections resulted from: (1) application of a 20-Hz, low-cut filter; (2) recomputation of static corrections to a datum nearer the land surface; (3) intensive velocity analyses; and (4) near-trace muting analyses. The number, resolution, and lateral continuity of shallow reflections were greatly enhanced on the reprocessed sections, as was the delineation of shallow, major faults. Reflections on a synthetic seismogram, created from a borehole drilled to a depth of 786 m on seismic line IQS-11, matcheddprecisely with shallow reflections on the reprocessed section. The 33 reprocessed sections were instrumental in preparing a map showing the major structural features that affect the shallow aquifer system. Analysis of the map provides a better understanding of the effect of these shallow features on the regional occurrence, movement, and quality of

  4. 76 FR 45518 - Takes of Marine Mammals Incidental to Specified Activities; Low-Energy Marine Geophysical Survey...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ..., 2010). Some dolphins seem to be attracted to the seismic vessel and floats, and some ride the bow wave... conducting a low- energy marine geophysical (i.e., seismic) survey in the western tropical Pacific Ocean... conducting a low-energy marine seismic survey in the western tropical Pacific Ocean. SIO, a part of...

  5. New seismic study begins in Puerto Rico

    USGS Publications Warehouse

    Tarr, A.C.

    1974-01-01

    A new seismological project is now underway in Puerto Rico to provide information needed for accurate assessment of the island's seismic hazard. The project should also help to increase understanding of the tectonics and geologic evolution of the Caribbean region. The Puerto Rico Seismic Program is being conducted by the Geological Survey with support provided by the Puerto Rico Water Resources Authority, an agency responsible for generation and distribution of electric power throughout the Commonwealth. The Program will include the installation of a network of high quality seismograph stations to monitor seismic activity on and around Puerto Rico. These stations will be distributed across the island to record the seismicity as uniformly as possible. The detection and accurate location of small earthquakes, as well as moderate magnitude shocks, will aid in mapping active seismic zones and in compiling frequency of occurrence statistics which ultimately wil be useful in seismic risk-zoning of hte island. 

  6. Multiple Seismic Array Observations for Tracing Deep Tremor Activity in Western Shikoku, Japan

    NASA Astrophysics Data System (ADS)

    Takeda, T.; Matsuzawa, T.; Shiomi, K.; Obara, K.

    2011-12-01

    Deep non-volcanic tremors become very active during episodic slow-slip events in western Japan and Cascadia. The episodic tremor and slow-slip events in western Shikoku, Japan, occur at a typical interval of 6 months. Recently, it has been reported that tremor migration activity is complex and shows different migrating directions depending on time scales (Ghosh et al., 2010). Such characteristics of tremor are important to understand the mechanism of tremor and the relationship between tremor and SSEs. However it is difficult to determine the location of tremors with high accuracy because tremors show faint signals and make the identification of P/S-wave arrivals difficult. Seismic array analysis is useful to evaluate tremor activity, especially to estimate the arrival direction of seismic energy (e.g. Ueno et al., 2010, Ghosh et al., 2010), as it can distinguish multiple tremor sources occurring simultaneously. Here, we have conducted seismic array observation and analyzed seismic data during tremor activity by applying the MUSIC method to trace tremor location and its migration in western Shikoku. We have installed five seismic arrays in western Shikoku since January 2011. One of the arrays contains 30 stations with 3-component seismometers with a natural frequency of 2 Hz (Type-L array). The array aperture size is 2 km and the mean interval between stations is approximately 200 m. Each of the other arrays (Type-S array) contains 9 seismic stations with the same type of seismometers of the Type-L array, and is deployed surrounding the Type-L array. The small array aperture size is 800 m and its mean station interval is approximately 150 m. All array stations have recorded continuous waveform data at a sampling of 200Hz. In May 2011, an episodic tremor and a short-term slip event occurred for the first time during the observation period. We could retrieve the array seismic data during the whole tremor episode. The analysis of data from the type-L array confirms

  7. Seismic hydraulic fracture migration originated by successive deep magma pulses: The 2011-2013 seismic series associated to the volcanic activity of El Hierro Island

    NASA Astrophysics Data System (ADS)

    Díaz-Moreno, A.; Ibáñez, J. M.; De Angelis, S.; García-Yeguas, A.; Prudencio, J.; Morales, J.; Tuvè, T.; García, L.

    2015-11-01

    In this manuscript we present a new interpretation of the seismic series that accompanied eruptive activity off the coast of El Hierro, Canary Islands, during 2011-2013. We estimated temporal variations of the Gutenberg-Richter b value throughout the period of analysis, and performed high-precision relocations of the preeruptive and syneruptive seismicity using a realistic 3-D velocity model. Our results suggest that eruptive activity and the accompanying seismicity were caused by repeated injections of magma from the mantle into the lower crust. These magma pulses occurred within a small and well-defined volume resulting in the emplacement of fresh magma along the crust-mantle boundary underneath El Hierro. We analyzed the distribution of earthquake hypocenters in time and space in order to assess seismic diffusivity in the lower crust. Our results suggest that very high earthquake rates underneath El Hierro represent the response of a stable lower crust to stress perturbations with pulsatory character, linked to the injection of magma from the mantle. Magma input from depth caused large stress perturbations to propagate into the lower crust generating energetic seismic swarms. The absence of any preferential alignment in the spatial pattern of seismicity reinforces our hypothesis that stress perturbation and related seismicity, had diffusive character. We conclude that the temporal and spatial evolution of seismicity was neither tracking the path of magma migration nor it defines the boundaries of magma storage volumes such as a midcrustal sill. Our conceptual model considers pulsatory magma injection from the upper mantle and its propagation along the Moho. We suggest, within this framework, that the spatial and temporal distributions of earthquake hypocenters reflect hydraulic fracturing processes associated with stress propagation due to magma movement.

  8. National Archive of Marine Seismic Surveys (NAMSS): A USGS-Boem Partnership to Provide Free and Easy Access to Previously Proprietary Seismic Reflection Data on the U.S. Outer Continental Shelf

    NASA Astrophysics Data System (ADS)

    Triezenberg, P. J.; Hart, P. E.; Childs, J. R.

    2014-12-01

    The National Archive of Marine Seismic Surveys (NAMSS) was established by the USGS in 2004 in an effort to rescue marine seismic reflection profile data acquired largely by the oil exploration industry throughout the US outer continental shelf (OCS). It features a Web interface for easy on-line geographic search and download. The commercial value of these data had decreased significantly because of drilling moratoria and newer acquisition technology, and large quantities were at risk of disposal. But, the data still had tremendous value for scientific research and education purposes, and an effort was undertaken to ensure that the data were preserved and publicly available. More recently, the USGS and Bureau of Ocean Energy Management (BOEM) have developed a partnership to make similarly available a much larger quantity of 2D and 3D seismic data acquired by the U.S. government for assessment of resources in the OCS. Under Federal regulation, BOEM is required to publicly release all processed geophysical data, including seismic profiles, acquired under an exploration permit, purchased and retained by BOEM, no sooner than 25 years after issuance of the permit. Data acquired prior to 1989 are now eligible for release. Currently these data are distributed on CD or DVD, but data discovery can be tedious. Inclusion of these data within NAMSS vastly increases the amount of seismic data available for research purposes. A new NAMSS geographical interface provides easy and intuitive access to the data library. The interface utilizes OpenLayers, Mapnik, and the Django web framework. In addition, metadata capabilities have been greatly increased using a PostgresSQL/PostGIS database incorporating a community-developed ISO-compliant XML template. The NAMSS database currently contains 452 2D seismic surveys comprising 1,645,956 line km and nine 3D seismic surveys covering 9,385 square km. The 2D data holdings consist of stack, migrated and depth sections, most in SEG-Y format.

  9. CHARMNZ, 2006 Gas Hydrates Survey on the Hikurangi Margin, New Zealand: First Results From Seismic and Related Data

    NASA Astrophysics Data System (ADS)

    Pecher, I. A.; Henrys, S. A.; Coffin, R.; Gorman, A. R.; Kukowski, N.; Crutchley, G.; Fohrmann, M.; Kilner, J.; Senger, K.; Wood, W. T.; Chiswell, S. M.; Herzer, R.

    2006-12-01

    CHARMNZ CH4 Hydrates on the AccRetionary Margins of New Zealand; R/V Tangaroa voyage TAN0607) in 2006 was the first survey dedicated to studying gas hydrates on the Hikurangi Margin east of New Zealand. During the two-week long cruise, we collected a variety of datasets, including multibeam bathymetry, 3.5-kHz data, seismic profiles, heat flow, piston cores for pore water chemistry and paleoceanography, dredge samples to study carbonates and for age dating, sonar profiles to detect vents, and CTDs to study methane in the water column. Some of these data will be presented in other presentations in this session. We present seismic profiles from our two main study areas. The seismic data were acquired with a 45/105 cu-in GI gun and a 600- m long 48-channel streamer. We acquired nine parallel seismic lines spaced ~1.85 km apart across an anticline offshore of the Wairarapa. Beneath this anticline, a high-reflectivity zone appears to intrude into the regional gas hydrate stability field as marked by bottom simulating reflections. We interpret this zone as free gas in a strongly upward-warping gas hydrate stability field, possibly caused by advective heat flow associated with fluid migration. The zone gets shallower from North to South which may reflect a time progression. Across Rock Garden, our second study area off Hawke's Bay, we collected seven parallel and two cross lines, again at ~1.85-km spacing. Our goal was to collect further evidence for our hypothesis that Rock Garden is being eroded by freeze-thaw cycles of hydrates beneath the seafloor. In this area, we also retrieved a temperature sensor that recorded bottom water temperatures for 15 months.

  10. Multivariable Observations of Pre and Co-Seismic Electromagnetic Activity in Peru: Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Heraud, J. A.; Lira, J. A.; Montes, L.; Rosas, S.; Centa, V.; Bleier, T. E.

    2012-12-01

    The Mw8.0 earthquake in Pisco, Peru of August 15, 2007 was reported previously and shown to have produced extensive co-seismic luminescence away from the epicenter. Continued research will be presented in which a high coincidence exists between the location of the areas where the luminescence was video recorded and reported by qualified witnesses and the geological formation in the bay in which Jurassic and Cretaceous lithologic igneous components are present, a condition that contributes to the displacement of electric charges in the rock. Additionally, the San Lorenzo Island has become the focus of a new research effort due to the past record of pre-seismic EQLs reported and published in relation with the mega-earthquake of 1746, the previously reported co-seismic EQLs in 2007 and new evidence of pre-seismic EQLs reported one and a half days before a ML4.6 earthquake on July 29, 2012. New experiments are hitherto being deployed in San Lorenzo Island to pursue the identification of favorable conditions for the propagation of electric charges in connection with pressure on rocks due to seismic activity. Thus, continuously recording video cameras, charge potential measuring plates, recording of HF and VHF noise and the installation of a new magnetometer to detect pulse activity in the local magnetic field and twin (+/-) air conductivity sensors are being installed on the island. Additionally, a new rock experiment to analyze the displacement of charges with local rocks is under way. The expectation of a Mega earthquake in the Lima area is building up as we approach the third century without mayor seismic activity in the area so the deployment of a new network of five magnetometers for the Lima area has started.

  11. Evaluating the Relationship Between Seismicity and Subsurface Well Activity in Utah

    NASA Astrophysics Data System (ADS)

    Lajoie, L. J.; Bennett, S. E. K.

    2014-12-01

    Understanding the relationship between seismicity and subsurface well activity is crucial to evaluating the seismic hazard of transient, non-tectonic seismicity. Several studies have demonstrated correlations between increased frequency of earthquake occurrence and the injection/production of fluids (e.g. oil, water) in nearby subsurface wells in intracontinental settings (e.g. Arkansas, Colorado, Ohio, Oklahoma, Texas). Here, we evaluate all earthquake magnitudes for the past 20-30 years across the diverse seismotectonic settings of Utah. We explore earthquakes within 5 km and subsequent to completion dates of oil and gas wells. We compare seismicity rates prior to well establishment with rates after well establishment in an attempt to discriminate between natural and anthropogenic earthquakes in areas of naturally high background seismicity. In a few central Utah locations, we find that the frequency of shallow (0-10 km) earthquakes increased subsequent to completion of gas wells within 5 km, and at depths broadly similar to bottom hole depths. However, these regions typically correspond to mining regions of the Wasatch Plateau, complicating our ability to distinguish between earthquakes related to either well activity or mining. We calculate earthquake density and well density and compare their ratio (earthquakes per area/wells per area) with several published metrics of seismotectonic setting. Areas with a higher earthquake-well ratio are located in relatively high strain regions (determined from GPS) associated with the Intermountain Seismic Belt, but cannot be attributed to any specific Quaternary-active fault. Additionally, higher ratio areas do not appear to coincide with anomalously high heat flow values, where rocks are typically thermally weakened. Incorporation of timing and volume data for well injection/production would allow for more robust temporal statistical analysis and hazard analysis.

  12. Seismic Response Control Of Structures Using Semi-Active and Passive Variable Stiffness Devices

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed M. A.

    Controllable devices such as Magneto-Rheological Fluid Dampers, Electro-Rheological Dampers, and controllable friction devices have been studied extensively with limited implementation in real structures. Such devices have shown great potential in reducing seismic demands, either as smart base isolation systems, or as smart devices for multistory structures. Although variable stiffness devices can be used for seismic control of structures, the vast majority of research effort has been given to the control of damping. The primary focus of this dissertation is to evaluate the seismic control of structures using semi-active and passive variable stiffness characteristics. Smart base isolation systems employing variable stiffness devices have been studied, and two semi-active control strategies are proposed. The control algorithms were designed to reduce the superstructure and base accelerations of seismically isolated structures subject to near-fault and far-field ground motions. Computational simulations of the proposed control algorithms on the benchmark structure have shown that excessive base displacements associated with the near-fault ground motions may be better mitigated with the use of variable stiffness devices. However, the device properties must be controllable to produce a wide range of stiffness changes for an effective control of the base displacements. The potential of controllable stiffness devices in limiting the base displacement due to near-fault excitation without compromising the performance of conventionally isolated structures, is illustrated. The application of passive variable stiffness devices for seismic response mitigation of multistory structures is also investigated. A stiffening bracing system (SBS) is proposed to replace the conventional bracing systems of braced frames. An optimization process for the SBS parameters has been developed. The main objective of the design process is to maintain a uniform inter-story drift angle over the

  13. Fault Activity Investigations in the Lower Tagus Valley (Portugal) With Seismic and Geoelectric Methods

    NASA Astrophysics Data System (ADS)

    Carvalho, J. G.; Gonçalves, R.; Torres, L. M.; Cabral, J.; Mendes-Victor, L. A.

    2004-05-01

    The Lower Tagus River Valley is located in Central Portugal, and includes a large portion of the densely populated area of Lisbon. It is sited in the Lower Tagus Cenozoic Basin, a tectonic depression where up to 2,000 m of Cenozoic sediments are preserved, which was developed in the Neogene as a compressive foredeep basin related to tectonic inversion of former Mesozoic extensional structures. It is only a few hundred kilometers distant from the Eurasia-Africa plate boundary, and is characterized by a moderate seismicity presenting a diffuse pattern, with historical earthquakes having caused serious damage, loss of lives and economical problems. It has therefore been the target of several seismic hazard studies in which extensive geological and geophysical research was carried out on several geological structures. This work focuses on the application of seismic and geoelectric methods to investigate an important NW-SE trending normal fault detected on deep oil-industry seismic reflection profiles in the Tagus Cenozoic Basin. In these seismic sections this fault clearly offsets horizons that are ascribed to the Upper Miocene. However, due to the poor near surface resolution of the seismic data and the fact that the fault is hidden under the recent alluvial cover of the Tagus River, it was not clear whether it displaced the upper sediments of Holocene age. In order to constrain the fault geometry and kinematics and to evaluate its recent tectonic activity, a few high-resolution seismic reflection profiles were acquired and refraction interpretation of the reflection data was performed. Some vertical electrical soundings were also carried out. A complex fault system was detected, apparently with normal and reverse faulting. The collected data strongly supports the possibility that one of the detected faults affects the uppermost Neogene sediments and very probably the Holocene alluvial sediments of the Tagus River. The evidence of recent activity on this fault, its

  14. Seismic activity of Tokyo area and Philippine Sea plate under Japanese Islands

    NASA Astrophysics Data System (ADS)

    Sakai, S.; Nakagawa, S.; Nanjo, K.; Kasahara, K.; Panayotopoulos, Y.; Tsuruoka, H.; Kurashimo, E.; Obara, K.; Hirata, N.; Kimura, H.; Honda, R.

    2012-12-01

    The Japanese government has estimated the probability of earthquake occurrence with magnitude 7-class during the next 30 years as 70 %. This estimation is based on five earthquakes that occurred in this area in the late 120 years. However, it has been revealed that this region is lying on more complicated tectonic condition due to the two subducted plates and the various types of earthquakes which have been caused by. Therefore, it is necessary to classify these earthquakes into inter-plate earthquakes and intra-plate ones. Then, we have been constructing a seismic observation network since 5 years ago. Tokyo Metropolitan area is a densely populated region of about 40 million people. It is the center of Japan both in politics and in economy. So that human activities have been conducting quite busily, this region is unsuitable for seismic observation. Then, we have decided to make an ultra high dense seismic observation network. We named it the Metropolitan Seismometer Observation Network; MeSO-net. MeSO-net consists of 296 seismic stations. Minimum interval is about 2km and average interval is about 5km.We picked the P- and S-wave arrival times manually. We applied double-difference tomography method to the dataset and estimated the velocity structure. We depicted the plate boundaries from the newly developed velocity model. And, we referred to the locations of the repeating earthquakes, the distributions of normal hypocenters and the focal mechanisms. Our plate model became relatively flat and a little shallower than previous one.Seismicity of Metropolitan area after the M9 event was compared to the one before M9 event. The seismic activity is about 4 times as high as before the M9 event occurred. We examined spatial distribution of the activated seismicity with respect to the newly developed plate configuration. The activated events are located on upper boundaries and they have almost thrust type mechanisms. Recently, a slow slip event has occurred on October in

  15. An Idea for an Active Seismic Experiment on Mars in 2008

    NASA Technical Reports Server (NTRS)

    Lognonne, Ph.; Banerdt, B.; Giardini, D.; Costard, F.

    2001-01-01

    The detection of liquid water is of prime interest and should have deep implications in the understanding of the Martian hydrological cycle and also in exobiology. In the frame of the 2007 joint CNES-NASA mission to Mars, a set of 4 NETLANDERS developed by an European consortium is expected to be launched in June 2007. We propose to use a second spacecraft going or landing to Mars to release near one of the Netlander a series of artificial metallic meteorites, in order to perform an active seismic experiment providing a seismic profile of the crust and subsurface.

  16. Comparison of microbial and sorbed soil gas surgace geochemical techniques with seismic surveys from the Southern Altiplano, Bolivia

    SciTech Connect

    Aranibar, O.R.; Tucker, J.D.; Hiltzman, D.C.

    1995-12-31

    Yacimientos Petroliferos Fiscales Bolivianos (YPFB) undertook a large seismic evaluation in the southern Altiplano, Bolivia in 1994. As an additional layer of information, sorbed soil gas and Microbial Oil Survey Technique (MOST) geochemical surveys were conducted to evaluate the hydrocarbon microseepage potential. The Wara Sara Prospect had 387 sorbed soil gas samples, collected from one meter depth, and 539 shallow soil microbial samples, collected from 15 to 20 centimeter depth. The sorbed soil gas samples were collected every 500 meters and microbial samples every 250 meters along geochemical traverses spaced 1 km apart. The presence of anmalous hydrocarbon microseepage is indicated by (1) a single hydrocarbon source identified by gas crossplots, (2) the high gas values with a broad range, (3) the high overall gas average, (4) the clusters of elevated samples, and (5) the right hand skewed data distributions.

  17. Seismic monitoring of geomorphic processes

    NASA Astrophysics Data System (ADS)

    Burtin, A.; Hovius, N.; Turowski, J. M.

    2014-12-01

    In seismology, the signal is usually analysed for earthquake data, but these represent less than 1% of continuous recording. The remaining data are considered as seismic noise and were for a long time ignored. Over the past decades, the analysis of seismic noise has constantly increased in popularity, and this has led to develop new approaches and applications in geophysics. The study of continuous seismic records is now open to other disciplines, like geomorphology. The motion of mass at the Earth's surface generates seismic waves that are recorded by nearby seismometers and can be used to monitor its transfer through the landscape. Surface processes vary in nature, mechanism, magnitude and space and time, and this variability can be observed in the seismic signals. This contribution aims to give an overview of the development and current opportunities for the seismic monitoring of geomorphic processes. We first describe the common principles of seismic signal monitoring and introduce time-frequency analysis for the purpose of identification and differentiation of surface processes. Second, we present techniques to detect, locate and quantify geomorphic events. Third, we review the diverse layout of seismic arrays and highlight their advantages and limitations for specific processes, like slope or channel activity. Finally, we illustrate all these characteristics with the analysis of seismic data acquired in a small debris-flow catchment where geomorphic events show interactions and feedbacks. Further developments must aim to fully understand the richness of the continuous seismic signals, to better quantify the geomorphic activity and improve the performance of warning systems. Seismic monitoring may ultimately allow the continuous survey of erosion and transfer of sediments in the landscape on the scales of external forcing.

  18. Common features and peculiarities of the seismic activity at Phlegraean Fields, Long Valley, and Vesuvius

    USGS Publications Warehouse

    Marzocchi, W.; Vilardo, G.; Hill, D.P.; Ricciardi, G.P.; Ricco, C.

    2001-01-01

    We analyzed and compared the seismic activity that has occurred in the last two to three decades in three distinct volcanic areas: Phlegraean Fields, Italy; Vesuvius, Italy; and Long Valley, California. Our main goal is to identify and discuss common features and peculiarities in the temporal evolution of earthquake sequences that may reflect similarities and differences in the generating processes between these volcanic systems. In particular, we tried to characterize the time series of the number of events and of the seismic energy release in terms of stochastic, deterministic, and chaotic components. The time sequences from each area consist of thousands of earthquakes that allow a detailed quantitative analysis and comparison. The results obtained showed no evidence for either deterministic or chaotic components in the earthquake sequences in Long Valley caldera, which appears to be dominated by stochastic behavior. In contrast, earthquake sequences at Phlegrean Fields and Mount Vesuvius show a deterministic signal mainly consisting of a 24-hour periodicity. Our analysis suggests that the modulation in seismicity is in some way related to thermal diurnal processes, rather than luni-solar tidal effects. Independently from the process that generates these periodicities on the seismicity., it is suggested that the lack (or presence) of diurnal cycles is seismic swarms of volcanic areas could be closely linked to the presence (or lack) of magma motion.

  19. A groundwater model for the Spruce Hole aquifer, Durham, NH, based on a detailed seismic refraction survey

    SciTech Connect

    Kerwin, R.A. . Dept. of Earth Sciences)

    1993-03-01

    The town of Durham and the University of New Hampshire are interested in using the Spruce Hole aquifer as a municipal pumping well site. The goals of this project were to determine the approximate thickness and areal extent of the aquifer, to determine the hydrologic characteristics and capabilities of the aquifer (groundwater flow directions and transmissivities), and to simulate the effect that pumping of the aquifer may have on the delicate ecosystem of Spruce Hole bog. The Spruce Hole aquifer is a drift deposit composed of glacial till and stratified sand and gravel and is underlain by metasedimentary bedrock. A kettlehole bog with a unique ecosystem with rare plants and insects is located near the center of the deposit. The author conducted a 65 site seismic refraction survey of the Spruce Hole aquifer to estimate water table elevation, bedrock depth, and saturated thickness, as well as till elevations (seismic velocities between 1.9 km/s and 2.6 km/s) at many of the locations. One-dimensional (cross section) and two-dimensional (map view) transmissivity based finite-difference groundwater models were developed to simulate the groundwater flow of the system and to determine transmissivity values for the stratified drift. An average transmissivity for the aquifer at each grid point in the model was determined through data from wells, the seismic refraction survey, and by matching estimated water table values with those calculated by the model. This model has produced simulations that are plausible representations of the ground-water system of the aquifer. A better understanding of kettlehole bog/groundwater system can be gotten from this work.

  20. Active deformation in the inner western Alps inferred from comparison between 1972-classical and 1996-GPS geodetic surveys

    NASA Astrophysics Data System (ADS)

    Sue, Christian; Martinod, Joseph; Tricart, Pierre; Thouvenot, François; Gamond, Jean-François; Fréchet, Julien; Marinier, Delphine; Glot, Jean-Paul; Grasso, Jean-Robert

    2000-04-01

    Eighteen geodetic points surveyed in 1972 by the French National Geographic Institute (IGN) were remeasured by GPS in 1996 in the Briançonnais and Piémont Zones, east of the Pelvoux massif (French Western Alps). A displacement vector set was determined for the two surveys' common points. Calculations of the strain-rate tensors associated with 15 triangular cells of the network have been performed. Only four of them show a strain rate significant at a 95% level of confidence. These data suggest an E-W extension of about 2-4 mm/yr between the western and eastern part of the network (Pelvoux external crystalline massif and Queyras blueschists, respectively) associated with N-S shortening. This active deformation agrees with neotectonic and seismotectonic data. The measured tectonic motion seems to be distributed throughout the central part of the Briançonnais zone, where the seismic activity is concentrated. The local seismicity has been precisely surveyed since 1989. It is moderate ( Ml<4.7) and no larger earthquake occured in the 1972-1989 period. The seismic deformation of the 1972-1996 period, extrapolated from the 1989-1996 local seismicity, accounts for less than 10% of the geodetic deformation. Thus, aseismic processes accommodated more than 90% of the observed deformation during this period. This could correspond to accumulation of elastic strain on locked faults, creep on faults or plastic deformation in a large crustal volume.

  1. Seismic evidence for active underplating below the megathrust earthquake zone in Japan.

    PubMed

    Kimura, Hisanori; Takeda, Tetsuya; Obara, Kazushige; Kasahara, Keiji

    2010-07-01

    Determining the structure of subduction zones is important for understanding mechanisms for the generation of interplate phenomena such as megathrust earthquakes. The peeling off of the uppermost part of a subducting slab and accretion to the bottom of an overlying plate (underplating) at deep regions has been inferred from exhumed metamorphic rocks and deep seismic imaging, but direct seismic evidence of this process is lacking. By comparing seismic reflection profiles with microearthquake distributions in central Japan, we show that repeating microearthquakes occur along the bottom interface of the layer peeling off from the subducting Philippine Sea plate. This region coincides with the location of slow-slip events that may serve as signals for monitoring active underplating. PMID:20616277

  2. Seismic and satellite observations of calving activity at major glacier fronts in Greenland

    NASA Astrophysics Data System (ADS)

    Danesi, Stefania; Salimbeni, Simone; Urbini, Stefano; Pondrelli, Silvia; Margheriti, Lucia

    2016-04-01

    The interaction between oceans and large outlet glaciers in polar regions contributes to the budget of the global water cycle. We have observed the dynamic of sizeable outlet glaciers in Greenland by the analysis of seismic data collected by the regional seismic network Greenland Ice Sheet Monitoring Network (GLISN) trying also to find out correspondence in the glacier tongue evolution derived by the observation of satellite images. By studying the long-period seismic signals at stations located at the mouth of large fjords (e.g. ILULI, NUUG, KULLO), we identify major calving events through the detection of the ground flexure in response to seiche waves generated by iceberg detachments. 
For the time spanning the period between 2010-2014, we fill out calving-event catalogues which can be useful for the estimation of spatial and temporal variations in volume of ice loss at major active fronts in Greenland.

  3. Two-dimensional seismic attenuation images of Stromboli Island using active data

    NASA Astrophysics Data System (ADS)

    Prudencio, J.; Del Pezzo, E.; Ibáñez, J. M.; Giampiccolo, E.; Patané, D.

    2015-03-01

    In this work we present intrinsic and scattering seismic attenuation 2-D images of Stromboli Volcano. We used 21,953 waveforms from air gun shots fired by an oceanographic vessel and recorded at 33 inland and 10 ocean bottom seismometer seismic stations. Coda wave envelopes of the filtered seismic traces were fitted to the energy transport equation in the diffusion approximation, obtaining a couple of separate Qi and Qs in six frequency bands. Using numerically estimated sensitivity kernels for coda waves, separate images of each quality factor were produced. Results appear stable and robust. They show that scattering attenuation prevails over intrinsic attenuation. The scattering pattern shows a strong concordance with the tectonic lineaments in the area, while an area of high total attenuation coincides with the zone where most of the volcanic activity occurs. Our results provide evidence that the most important attenuation effects in volcanic areas are associated with the presence of geological heterogeneities.

  4. A Predictive Model of Daily Seismic Activity Induced by Mining, Developed with Data Mining Methods

    NASA Astrophysics Data System (ADS)

    Jakubowski, Jacek

    2014-12-01

    The article presents the development and evaluation of a predictive classification model of daily seismic energy emissions induced by longwall mining in sector XVI of the Piast coal mine in Poland. The model uses data on tremor energy, basic characteristics of the longwall face and mined output in this sector over the period from July 1987 to March 2011. The predicted binary variable is the occurrence of a daily sum of tremor seismic energies in a longwall that is greater than or equal to the threshold value of 105 J. Three data mining analytical methods were applied: logistic regression,neural networks, and stochastic gradient boosted trees. The boosted trees model was chosen as the best for the purposes of the prediction. The validation sample results showed its good predictive capability, taking the complex nature of the phenomenon into account. This may indicate the applied model's suitability for a sequential, short-term prediction of mining induced seismic activity.

  5. Seismic sequence near Zakynthos Island, Greece, April 2006: Identification of the activated fault plane

    NASA Astrophysics Data System (ADS)

    Serpetsidaki, A.; Sokos, E.; Tselentis, G.-A.; Zahradnik, J.

    2010-01-01

    The April 2006 earthquake sequence near Zakynthos (Western Greece) is analysed to identify the fault plane(-s). The sequence (33 events) was relocated to assess physical insight into the hypocenter uncertainty. Moment tensor solution of three major events was performed, simultaneously with the determination of the centroid position. Joint analysis of the hypocenter position, centroid position and nodal planes indicated sub-horizontal fault planes. Moment tensor solutions of 15 smaller events were performed under assumption that the source positions are those of the hypocenters (without seeking centroids). Their focal mechanisms are highly similar and agree with the analysis of the three major events. The preferable seismotectonic interpretation is that the whole sequence activated a single sub-horizontal fault zone at a depth of about 13 km, corresponding to the interplate subduction boundary. Considering that the Ionian Sea is a high-seismicity area, the identification of the seismic fault is significant for the seismic hazard investigation of the region.

  6. A critique of the UK's JNCC seismic survey guidelines for minimising acoustic disturbance to marine mammals: best practise?

    PubMed

    Parsons, E C M; Dolman, Sarah J; Jasny, Michael; Rose, Naomi A; Simmonds, Mark P; Wright, Andrew J

    2009-05-01

    The United Kingdom's statutory conservation agency, the Joint Nature Conservation Committee (JNCC), developed guidelines in 1995 to minimise acoustic disturbance of marine mammals by oil and gas industry seismic surveys. These were the first national guidelines to be developed and have subsequently become the standard, or basis, of international mitigation measures for noise pollution during seismic surveys. However, relatively few aspects of these measures have a firm scientific basis or proven efficacy. Existing guidelines do not offer adequate protection to marine mammals, given the complex propagation of airgun pulses; the difficulty of monitoring in particular the smaller, cryptic, and/or deep-diving species, such as beaked whales and porpoises; limitations in monitoring requirements; lack of baseline data; and other biological and acoustical complications or unknowns. Current guidelines offer a 'common sense' approach to noise mitigation, but in light of recent research and ongoing concerns, they should be updated, with broader measures needed to ensure adequate species protection and to address data gaps. PMID:19342066

  7. Seismic activity triggered by water wells in the Paraná Basin, Brazil

    NASA Astrophysics Data System (ADS)

    AssumpçãO, Marcelo; Yamabe, Tereza H.; Barbosa, José Roberto; Hamza, Valiya; Lopes, Afonso E. V.; Balancin, Lucas; Bianchi, Marcelo B.

    2010-07-01

    Triggered seismicity is commonly associated with deep water reservoirs or injection wells where water is injected at high pressure into the reservoir rock. However, earth tremors related solely to the opening of groundwater wells are extremely rare. Here we present a clear case of seismicity induced by pore-pressure changes following the drilling of water wells that exploit a confined aquifer in the intracratonic Paraná Basin of southeastern Brazil. Since 2004, shallow seismic activity, with magnitudes up to 2.9 and intensities V MM, has been observed near deep wells (120-200 m) that were drilled in early 2003 near the town of Bebedouro. The wells were drilled for irrigation purposes, cross a sandstone layer about 60-80 m thick and extract water from a confined aquifer in fractured zones between basalt flow layers. Seismic activity, mainly event swarms, has occurred yearly since 2004, mostly during the rainy season when the wells are not pumped. During the dry season when the wells are pumped almost continuously, the activity is very low. A seismographic network, installed in March 2005, has located more than 2000 microearthquakes. The events are less than 1 km deep (mostly within the 0.5 km thick basalt layer) and cover an area roughly 1.5 km × 5 km across. The seismicity generally starts in a small area and expands to larger distances with an equivalent hydraulic diffusivity ranging from 0.06 to 0.6 m2/s. Geophysical and geothermal logging of several wells in the area showed that water from the shallow sandstone aquifer enters the well at the top and usually forms waterfalls. The waterfalls flow down the sides of the wells and feed the confined, fractured aquifer in the basalt layer at the bottom. Two seismic areas are observed: the main area surrounds several wells that are pumped continuously during the dry season, and a second area near another well (about 10 km from the first area) that is not used for irrigation and not pumped regularly. The main area

  8. Characterising Seismicity at Alutu, an Actively Deforming Volcano in the Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Wilks, M.; Nowacki, A.; Kendall, J. M.; Wookey, J. M.; Biggs, J.; Bastow, I. D.; Ayele, A.; Bedada, T.

    2013-12-01

    The Main Ethiopian Rift (MER) provides a unique example of the tectonic and volcanic processes occuring during the transition from continental rifting to oceanic spreading. Situated 100 km south of Addis Ababa along the eastern rift margin, Alutu is a silicic stratovolcano that geodetic measurements (InSAR and GPS) have shown is actively deforming. Though the volcano has received relatively little scientific attention it is also a site of economic significance as a geothermal power plant resides within the caldera. As part of ARGOS (Alutu Research Geophysical ObservationS), a multi-disciplinary project aiming to investigate the magmatic and hydrothermal processes occuring at Alutu, a seismic network of 12 broadband seismometers was deployed in January 2012. Other components of ARGOS include InSAR, GPS, geologic mapping and magnetotellurics. From the seismic dataset, P- and S-wave arrivals across the array were manually picked and used to locate events using a non-linear earthquake location algorithm (NonLinLoc) and a predefined 1D velocity model. Perturbations were later applied to this velocity model to investigate the sensitivity of the locations and evaluate the true uncertainties of the solutions. Over 1000 events were successfully located during 2012, where picks were possible at 4 or more stations. Seismicity clusters at both shallow depths (z<2 km) beneath the caldera and at deeper depths of 5-15 km. There is a significant increase in seismicity during the rainy months, suggesting the shallow events may be related to the hydrothermal system. We interpret the deeper events as being magmatic in origin. Events are also located along the eastern border faults that bound the outer edges of the MER and highlights that seismicity arises concurrently via tectonic processes. An adapted version of Richter's original local magnitude scale (ML) to account for attenuation within the MER (Keir et al., 2006) was then used to compute magnitudes for the best located events

  9. The preglacial sediment record of Lake Ladoga, Russia - first results from a seismic survey and sediment coring in 2013

    NASA Astrophysics Data System (ADS)

    Melles, Martin; Krastel, Sebastian; Fedorov, Grigory; Subetto, Dmitry A.; Savelieva, Larisa A.; Andreev, Andrej; Wagner, Bernd

    2014-05-01

    The new German-Russian project PLOT (Paleolimnological Transect) aims at investigating the Late Quaternary climatic and environmental history along a more than 6000 km long longitudinal transect crossing northern Eurasia. Special emphasis is put on the preglacial history. For this purpose shallow and deep seismic surveys shall be carried out on five lakes, which potentially host preglacial sediment records, followed by sediment coring based on the results of the seismic campaigns. The well-studied Lake El'gygytgyn represents the eastern-most location of the transect and acts as reference site. Within the scope of a pilot phase for the PLOT project, funded by the German Federal Ministry of Education and Research, we were able to investigate Lake Ladoga, which is located close to St. Petersburg at the western end of the transect. Lake Ladoga is the largest lake in Europe, covering an area of almost 18.000 km2. The modern sedimentation as well as the late glacial and Holocene history of the lake were already studied in detail over the past decades. The older, preglacial lake history, however, is only rudimentary known from a core transect drilled in the southern lake in the 1930th. The cores of up to about 60 m length were only briefly described and are not existing any more. The results from these cores, known from unpublished reports only, suggest the existence of marine sediments of presumably Eemian age, representing a time when Lake Lagoga was part of a precursor of the Baltic Sea, which had a connection via Ladoga and Onega Lakes to the White Sea and further to the Arctic Ocean. In late August/early September 2013 we carried out a seismic survey on Lake Ladoga using a Mini-GI-Gun and a 32-channel seismic streamer. In total, 1500 km of seismic profiles were measured, covering most parts of the lake. The seismic lines typically show acoustically well stratified Holocene muds overlaying rather transparent postglacial varves. These sediment successions can reach

  10. Temporal variation of mass-wasting activity in Mount St. Helens crater, Washington, U. S. A. indicated by seismic activity

    SciTech Connect

    Mills, H.H. )

    1991-11-01

    In the crater of Mount St. Helens, formed during the eruption of 18 May 1980, thousands of rockfalls may occur in a single day, and some rock and dirty-snow avalanches have traveled more than 1 km from their source. Because most seismic activity in the crater is produced by mass wasting, the former can be used to monitor the latter. The number and amplitude of seismic events per unit time provide a generalized measure of mass-wasting activity. In this study 1-min averages of seismic amplitudes were used as an index of rockfall activity during summer and early fall. Plots of this index show the diurnal cycle of rockfall activity and establish that the peak in activity occurs in mid to late afternoon. A correlation coefficient of 0.61 was found between daily maximum temperature and average seismic amplitude, although this value increases to 0.72 if a composite temperature variable that includes the maximum temperature of 1 to 3 preceding days as well as the present day is used. Correlation with precipitation is much weaker.

  11. Application of disturbance theory to assess impacts associated with a three-dimensional seismic survey in a freshwater marsh in southwest Louisiana

    NASA Astrophysics Data System (ADS)

    Bass, Aaron Stuard

    This study examined various practical and theoretical aspects of disturbance in a coastal wetland marsh in southern Louisiana. A literature review approached disturbance ecology from both practical and theoretical perspectives and assessed its applicability to developing broad predictive models. However, specific knowledge of environmental variables, competitive relationships, and the interactive effects of multiple disturbances are required for meaningful usage of these models. The Lacassine National Wildlife Refuge (LNWR) proved to be an ideal laboratory to test various aspects of ecological disturbance theory. I found that the primary disturbances affecting the LNWR have been hurricanes, droughts, water-level manipulations, prescribed burning, oil and gas recovery activities, grazing by Myocastor coypus (nutria), and managed cattle grazing. The 1990's application of three-dimensional (3-D) seismic technology used in the oil and gas recovery business challenged landowners, government regulators, and industry to develop ways to recover these resources without damaging surface features. I developed a conservative estimate that an area exceeding 2.5 times the area of Louisiana's coastal wetlands was covered by overlapping seismic surveys in southern Louisiana from 1997 through 2002, equal to 22.5 km2/year. I provided a general overview of 3-D seismic survey programs, potential adverse impacts, and management and restoration strategies. I also conducted a field study at the LNWR on vegetation in control and treatment transects before, and for two years after, a 3-D survey. I found vegetative cover and the amount of dead plant biomass were significantly lower in treatment plots, but live biomass was not different in treatment and control plots. Species richness was higher in treatment plots compared to control plots, but the live biomass and cover of the dominant species ( Panicum hemitomon) was lower. The live biomass and cover of Eleocharis spp., a colonizing

  12. An integrated approach to the seismic activity and structure of the central Lesser Antilles subduction megathrust seismogenic zone

    NASA Astrophysics Data System (ADS)

    Hirn, Alfred; Laigle, Mireille; Charvis, Philippe; Flueh, Ernst; Gallart, Josep; Kissling, Edi; Lebrun, Jean-Frederic; Nicolich, Rinaldo; Sachpazi, Maria

    2010-05-01

    In order to increase the understanding of plate boundaries that show currently low seismic activity, as was the Sumatra-Andaman subduction before the major earthquake in 2004, a cluster of surveys and cruises has been carried out in 2007 and coordinated under the European Union THALES WAS RIGHT project on the Lesser Antilles subduction zone of the Carribean-America plate boundary. A segment of the corresponding transform boundary just tragically ruptured in the 2010 January 12, Haïti earthquake. This cluster is composed by the German cruise TRAIL with the vessel F/S M. A. MERIAN, the French cruise SISMANTILLES II with the IFREMER vessel N/O ATALANTE), and French cruise OBSANTILLES with the IRD vessel N/O ANTEA. During these cruises and surveys, 80 OBS, Ocean Bottom Seismometers, 64 of which with 3-components seismometers and hydrophones, and 20 OBH with hydrophones have been brought together from several pools (Geoazur Nice, INSU/IPGP Paris, IfM-GEOMAR Kiel, AWI Bremerhaven), with up to 30 land stations (CSIC Barcelona, IPG Paris, INSU-RLBM and -Lithoscope, ETH Zurich). The deployment of all these instruments has been supported principally in addition by ANR Catastrophes Telluriques et Tsunamis (SUBSISMANTI), by the EU SALVADOR Programme of IFM-GEOMAR, as well as by the EU project THALES WAS RIGHT. The main goal of this large seismic investigation effort is the understanding of the behaviour of the seismogenic zone and location of potential source regions of mega-thrust earthquakes. Specific goals are the mapping of the subduction interplate in the range where it may be seismogenic along the Lesser Antilles Arc from Antigua to Martinique Islands, as a contribution to identification and localisation in advance of main rupture zones of possible future major earthquakes, and to the search for transient signals of the activity. The forearc region, commonly considered as a proxy to the seismogenic portion of the subduction mega-thrust fault plane, and which is here the

  13. New USGS seismic hazard maps for the United States

    USGS Publications Warehouse

    Frankel, A.; Mueller, C.; Perkins, D.; Barnhard, T.; Leyendecker, E.; Safak, E.; Hanson, S.; Dickman, N.; Hopper, M.

    1996-01-01

    The US Geological Survey (USGS) is preparing new seismic national maps for release in April 1996. The new maps plot probabilistic ground motions for return times of about 500, 1000, and 2500 years. Deterministic (scenario) ground-motion maps are being prepared for selected faults in the western US. Due to the diversity of tectonic settings in the US, mapping methodologies for different regions had to be modified. A four-model approach is used to eliminate the need for drawing seismic source zones to determine seismic activity levels. A logic tree approach is used to incorporate alternative models of seismic hazard and alternative relations of seismic attenuation.

  14. 4D Time-Lapse Seismic Analysis of Active Gas Seepage Systems on the Vestnesa Ridge, Offshore W-Svalbard

    NASA Astrophysics Data System (ADS)

    Bunz, S.; Hurter, S.; Plaza-Faverola, A. A.; Mienert, J.

    2014-12-01

    Active gas venting occurs on the Vestnesa Ridge, an elongated sediment drift north of the Molloy Transform and just east of the Molloy Ridge, one of the shortest segments of the slow spreading North-Atlantic Ridge system. The crest of the Vestnesa Ridge at water depth between 1200-1300 m is pierced with fluid-flow features. Seafloor pockmarks vary in size up to 1 km in diameter with significant morphological features consisting of small ridges, diapiric structures and small pits. Detailed hydro-acoustic surveying shows that gas mostly emanates from the small-scale pits, where also hydrates have been recovered by sediment sampling. High-resolution P-Cable 3D seismic data acquired in 2012 show vertical focused fluid flow features beneath the seafloor pockmarks. These co-called chimneys extend down to the free-gas zone underneath a bottom-simulating reflection (BSR). Here, they link up with small fault systems that might provide pathways to the deeper subsurface. The chimney features show a high variability in their acoustic characteristics with alternating blanked or masked zones and high-amplitude anomalies scattered through the whole vertical extent of the chimneys. The amplitude anomalies indicate high-impedance contrasts due to the likely presence of gas or a high-velocity material like gas hydrates or carbonates. In most cases, the high-amplitude anomalies line up along specific vertical pathways that connect nicely with the small-scale pits at the surface where gas bubbles seep from the seafloor. We re-acquired the 3D seismic survey in 2013 for time-lapse seismic studies in order to better understand the origin of the amplitude anomalies and in order to track potentially migrating gas fronts up along the chimney structure. The time-lapse seismic analysis indicates several areas, where gas migration may have led to changes in acoustic properties of the subsurface. These areas are located along chimney structures and the BSR. This work provides a basis for better

  15. Asymmetric active seismicity along the ultra-slow spreading Gakkel Ridge

    NASA Astrophysics Data System (ADS)

    Hopper, John R.; Voss, Peter H.; Lavier, Luc L.

    2015-04-01

    Ultra-slow spreading ridges are frequently characterised by spreading segments that are largely magma starved. Spreading along such segments does not occur by crustal creation/accretion processes such as intrusions, diking and volcanism, but rather by mechanical extension of the lithosphere, exposing the mantle to seafloor where it interacts with seawater to form serpentinite. Such exhumation is thought to occur along detachment faults that form concave down surfaces and produce an extensional geometry that is highly asymmetric. A consequence of all models that have been developed to simulate this type of extension is that stress and strain is focused primarily on the footwall block of the spreading system. This would predict that at any given time, only one side of the system should show active seismicity. In 2001, the Gakkel Ridge was extensively sampled by dredging during the AMORE cruise. These samples showed that the ridge is divided into distinct segments that today are either magmatically robust (only basalts recovered) or magmatically starved (dominantly serpentinised peridotite and gabbros recovered). We extracted earthquake data along the Gakkel Ridge from the global catalogs to investigate if these distinct segments exhibit any differences in active seismicity. We show that the western volcanic zone shows symmetric active seismicity, with earthquakes occurring on both sides of the ridge axis along a relatively restricted region. In contrast, the sparsely magmatic zone shows active seismicity dominantly along along the southern half of the ridge, with comparatively little seismicity to the north. These results are consistent with the proposed models for the formation of amagmatic spreading centers.

  16. Study of Seismic Activity Using Geophysical and Radio Physical Equipment for Observation

    NASA Astrophysics Data System (ADS)

    Kvavadze, N.; Tsereteli, N. S.

    2015-12-01

    One of the most dangerous and destructive natural hazards are earthquakes, which is confirmed by recent earthquakes such as Nepal 2015, Japan and Turkey 2011. Because of this, study of seismic activity is important. Studying any process, it is necessary to use different methods of observation, which allows us to increase accuracy of obtained data. Seismic activity is a complex problem and its study needs different types of observation methods. Two main problems of seismic activity study are: reliable instrumental observations and earthquake short-term predictions. In case of seismic risks it is necessary to have reliable accelerometer data. One of the most promising field in earthquake short-term prediction is very low frequency (VLF) electromagnetic wave propagation in ionosphere observation. To study Seismic activity of Caucasus region, was created observation complex using Accelerometer, Velocimeter and VLF electromagnetic waves received from communication stations (located in different area of the world) reflected from low ionosphere. System is created and operates at Tbilisi State University Ionosphere Observatory, near Tbilisi in Tabakhmela 42.41'70 N, 44.80'92 E, Georgia. Data obtained is sent to a local server located at M. Nodia Institute of Geophysics, TSU, for storage and processing. Diagram for complex is presented. Also data analysis methods were created and preliminary processing was done. In this paper we present some of the results: Earthquake data from ionosphere observations as well as local earthquakes recorded with accelerometer and velocimeter. Complex is first in 6 that will be placed around Georgia this year. We plan on widening network every year.

  17. Emergency preparedness activities during an ongoing seismic swarm: the experience of the 2011-2012 Pollino (Southern Italy) sequence

    NASA Astrophysics Data System (ADS)

    Masi, A.; Mucciarelli, M.; Chiauzzi, L.; De Costanzo, G.; Loperte, G.

    2012-04-01

    , Italian Institute of Geophysics and Vulcanology (INGV) in order to transfer information to the population to enhance self-protection capability and decrease its state of worry ("what to do" in case of an earthquake); 3. review of local plans of emergency, where available, using ad hoc inspection forms to collect data for verifying and updating the emergency plan content and requirements. Specifically, in order to prepare seismic scenarios of building damage and effects on population for emergency planning and civil defense drills to be organized, two more activities have been carried out: 4. collection of current vulnerability data on the building stock and the strategic infrastructures located in the area; 5. accurate survey of data on post earthquake retrofitting and microzonation actions carried out after the 1998 Pollino earthquake that struck the same involved villages. In some cases, as a consequence of the position of the involved area, the activities were carried out also in collaboration with Calabria Region authorities. Several points have arisen in carrying out the activities, mostly due to the interaction between risk governance and risk perception in the pre-event emergency management. At the abstract submission date the seismic sequence, and thus the activities here described, are still ongoing. Therefore, analysis and discussion of pro's and con's of the actions taken are currently in progress on a week-by-week basis.

  18. Elevated Seismic Activity Beneath the Slumbering Morne aux Diables Volcano, Northern Dominica and the Monitoring Role of the Seismic Research Centre

    NASA Astrophysics Data System (ADS)

    Watts, R. B.; Robertson, R. E.; Abraham, W.; Cole, P.; de Roche, T.; Edwards, S.; Higgins, M.; Johnson, M.; Joseph, E. P.; Latchman, J.; Lynch, L.; Nath, N.; Ramsingh, C.; Stewart, R. C.

    2012-12-01

    Since June 2009, periods of elevated seismic activity have been experienced around the flanks of Morne Aux Diables Volcano in northern Dominica. This long-dormant volcano is a complex of 7 andesitic lava domes with a central depression where a cold soufrière is evident. Prior to this activity, seismicity was very quiet except for a short period in 2000 and an intense short-lived swarm in April 2003. The most recent earthquake activity has been regularly felt by residents in villages on all flanks of the complex. In Dec 09/Jan10, scientists from the Seismic Research Centre (SRC), based in Trinidad & Tobago, in collaboration with staff of the Office of Disaster Management (ODM) and Dominica Public Seismic Network (DPSN) improved the monitoring capacity around this volcano from 1 to 7 seismic stations. Earthquakes are determined to be volcano-tectonic in nature and located at shallow depths (<4 km) beneath the central depression. Additionally, in Jan/Feb 10 geothermal sampling was undertaken and 2 permanent GPS sites were deployed. Public information leaflets prepared by SRC scientists using a "Question & Answer" format have been distributed to concerned citizens whilst many public meetings were carried out by ODM staff. Field investigations indicate that the previous Late Pleistocene activity of Morne Aux Diables switched from Pelèan dome growth and gravitational collapse to more explosive pumice-falls and associated ignimbrites, both styles forming extensive pyroclastic fans around the central complex. The town of Portsmouth is located on one of these fans ~5 km southwest of the central depression. Sporadic, short bursts of seismic activity continue at the time of writing.

  19. Investigation of the relationships between seismic activities and radon level in western Turkey.

    PubMed

    Tarakçı, M; Harmanşah, C; Saç, M M; İçhedef, M

    2014-01-01

    The distribution of radon activity is determined from pre-earthquake data. Analysis using Normal, Gamma, Weibull and Rayleigh distributions indicates that the variation of radon levels in seismically active regions is best described by a normal distribution. It was observed that radon levels would change in compressive fault lines prior to earthquake. Besides that it tended to increase before the earthquake and then decrease towards the time of earthquake occurrences. PMID:24215813

  20. The contribution of activated processes to Q. [stress corrosion cracking in seismic wave attenuation

    NASA Technical Reports Server (NTRS)

    Spetzler, H. A.; Getting, I. C.; Swanson, P. L.

    1980-01-01

    The possible role of activated processes in seismic attenuation is investigated. In this study, a solid is modeled by a parallel and series configuration of dashpots and springs. The contribution of stress and temperature activated processes to the long term dissipative behavior of this system is analyzed. Data from brittle rock deformation experiments suggest that one such process, stress corrosion cracking, may make a significant contribution to the attenuation factor, Q, especially for long period oscillations under significant tectonic stress.

  1. Testing the recent Santorini seismic activity for possible tidal triggering effect

    NASA Astrophysics Data System (ADS)

    Contadakis, Michael E.; Arabelos, Dimitrios N.; Vergos, George

    2013-04-01

    Applying the Hi(stogram)Cum(ulation) method, which was introduced recently by Cadicheanu, van Ruymbecke and Zhu (2007), we analyze the series of the earthquakes occurred in the last 50 years in seismic active areas of Greece, i.e. the areas (a) of the Mygdonian Basin(Contadakis et al. 2007), (b) of the Ionian Islands (Contadakis et al. 2012 ) and (c) of the Hellenic Arc (Vergos et al. 2012 ). The result of the analysis for all the areas indicate that the monthly variation of the frequencies of earthquake occurrence is in accordance with the period of the tidal lunar monthly and semi-monthly (Mm and Mf) variations and the same happens with the corresponding daily variations of the frequencies of earthquake occurrence with the diurnal luni-solar (K1) and semidiurnal lunar (M2) tidal variations. In addition the confidence level for the identification of such period accordance between earthquakes occurrence frequency and tidal periods varies with seismic activity, i.e. the higher confidence level corresponds to periods with stronger seismic activity. These results are in favor of a tidal triggering process on earthquakes when the stress in the focal area is near the critical level. Based on these results, we consider the confidence level of earthquake occurrence - tidal period accordance as an index of tectonic stress criticality for earthquake occurrence and we check if the recent increase in the seismic activity at the Santorini island complex indicate that the faults Kameni and Columbo (to which the seismicity is clustered) (Chouliaras et al. 2013) are mature for a stronger earthquake. In this paper we present the results of this test. References Cadicheanu, N., van Ruymbeke, M andZhu P.,2007:Tidal triggering evidence of intermediate depth earthquakes in Vrancea zone(Romania), NHESS 7,733-740. Contadakis, M. E., Arabelos, D. N., Spatalas, S., 2009, Evidence for tidal triggering on the shallow earthquakes of the seismic area of Mygdonia basin, North Greece, in

  2. Analysis of Seismic Activity of the last 15 Years Nearby Puerto Rico and Caribbean Region.

    NASA Astrophysics Data System (ADS)

    Huerta-Lopez, C. I.; Torres-Ortíz, D. M.; Fernández-Heredia, A. I.; Martínez-Cruzado, J. A.

    2015-12-01

    An earthquake catalog of the seismicity occurred during the last 15 years in the Caribbean region, nearby the vicinity of Puerto Rico Island (PRI) was compiled in order to capture the big picture of the regional seismic activity ratio and in particular at the epicentral regions of several historical and instrumentally recorded (during 2008-20015) large to moderate magnitude earthquakes occurred nearby PRI in onshore and offshore, which include the M6.4 earthquake of 01/13/2014, the largest earthquake recorded instrumentally nearby PRI. From the point of view of joint temporal-spatial distribution of epicenters, episodic temporal-spatial seismic activity is clearly seen as temporal-spatial concentrations during certain time intervals in different regions. These localized concentrations of epicenters that occur during certain time intervals in well localized/concentrated regions may suggest "seismic gaps" that shows no regular time interval, neither spatial pattern. In the epicentral region of the M6.4 01/13/2014 earthquake and the historical Mona Passage M7.5 earthquake of 10/11/1918, episodic concentrations in time and space of small magnitude earthquakes epicenters is evident, however do not show temporal pattern. Preliminary results of statistical analysis of an ongoing research in terms of the parameter b (Gutenberg-Richter relationship), and the Omori's law with the aim to relate the tectonic framework of the region (or sub-regions) such as structural heterogeneity stress are here presented/discussed.

  3. Seismic Spatial Autocorrelation as a Technique to Track Changes in the Permafrost Active Layer

    NASA Astrophysics Data System (ADS)

    Abbott, R. E.

    2013-12-01

    We present preliminary results from an effort to continuously track freezing and thawing of the permafrost active layer using a small-aperture seismic array. The 7-element array of three-component posthole seismometers is installed on permafrost at Poker Flat Research Range, near Fairbanks, Alaska. The array is configured in two three-station circles with 75 and 25 meter radii that share a common center station. This configuration is designed to resolve omnidirectional, high-frequency seismic microtremor (i.e. ambient noise). Microtremor is continuously monitored and the data are processed using the spatial autocorrelation (SPAC) method. The resulting SPAC coefficients are then inverted for shear-wave velocity structure versus depth. Thawed active-layer soils have a much slower seismic velocity than frozen soils, allowing us to track the depth and intensity of thawing. Persistent monitoring on a permanent array would allow for a way to investigate year-to-year changes without costly site visits. Results from the seismic array will compared to, and correlated with, other measurement techniques, such as physical probing and remote sensing methods. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Mapping Subsea Permafrost, Relict Methane Hydrate, and Gas Migration: New Cross-Shelf Multichannel Seismic Surveys on the Central US Beaufort Shelf

    NASA Astrophysics Data System (ADS)

    Ruppel, C. D.; Hart, P. E.; Moore, E.; Worley, C.; Brothers, L.

    2012-12-01

    In August 2012, the USGS Gas Hydrates Project, with support from DOE's Methane Hydrates R&D Program, conducted the first research-oriented multichannel seismic survey in 35 years across the Alaskan Beaufort Sea continental shelf. Our Central Beaufort margin study area stretches from Camden Bay on the west to Harrison Bay on the east and lies offshore some of the North Slope's most important petroleum systems. The new MCS data were collected in the eastern part of the Alaskan passive margin terrane, near the transition zone to the compressional Canning Mackenzie Deformed Margin described by Houseknecht and Bird. The Central Beaufort shelf was mostly exposed subaerially during Late Pleistocene time, leading to the formation of continuous permafrost and associated gas hydrates at depths greater than ~225 m. As Holocene sea level rise inundated the present-day shelf, the now-subsea permafrost began to thaw and associated gas hydrates would have begun to dissociate. The new surveys constitute the shelf component of site survey activities for Integrated Ocean Drilling pre-proposal 797, which outlines a multiplatform drilling program at 9 sites from the innermost shelf to the upper continental slope of the Alaskan Beaufort margin. The proposed drilling program will elucidate Late Pleistocene to contemporary climate history by accessing sediments currently or formerly hosting subsea permafrost and permafrost-associated methane hydrates on the shelf and sediments in which gas hydrate dynamics are driven by warming of impinging intermediate waters on the upper continental slope. Using a 24-channel digital streamer and a 2 kJ sparker source, the new MCS surveys provided up to several hundred meters of subseafloor penetration and were complemented by 4-24 kHz Chirp surveys for the shallowmost section, high frequency water column imaging for gas plumes, and Swathplus bathymetric mapping at water depths less than 60 to 80 m. The new MCS data, which in part reoccupy 30-year

  5. Seismicity characteristics of a potentially active Quaternary volcano: The Tatun Volcano Group, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Konstantinou, Konstantinos I.; Lin, Cheng-Horng; Liang, Wen-Tzong

    2007-02-01

    The Tatun Volcano Group (TVG) is located at the northern tip of Taiwan, near the capital Taipei and close to two nuclear power plants. Because of lack of any activity in historical times it has been classified as an extinct volcano, even though more recent studies suggest that TVG might have been active during the last 20 ka. In May 2003 a seismic monitoring project at the TVG area was initiated by deploying eight three-component seismic stations some of them equipped with both short-period and broadband sensors. During the 18 months observation period local seismicity mainly consisted of high frequency earthquakes either occurring as isolated events, or as a continuous sequence in the form of spasmodic bursts. Mixed and low frequency events were also present during the same period, even though they occurred only rarely. Arrival times from events with clear P-/S-wave phases were inverted in order to obtain a minimum 1D velocity model with station corrections. Probabilistic nonlinear earthquake locations were calculated for all these events using the newly derived velocity model. Most high frequency seismicity appeared to be concentrated near the areas of hydrothermal activity, forming tight clusters at depths shallower than 4 km. Relative locations, calculated using the double-difference method and utilising catalogue and cross-correlation differential traveltimes, showed insignificant differences when compared to the nonlinear probabilistic locations. In general, seismicity in the TVG area seems to be primarily driven by circulation of hydrothermal fluids as indicated by the occurrence of spasmodic bursts, mixed/low frequency events and a b-value (1.17 ± 0.1) higher than in any other part of Taiwan. These observations, that are similar to those reported in other dormant Quaternary volcanoes, indicate that a magma chamber may still exist beneath TVG and that a future eruption or period of unrest should not be considered unlikely.

  6. Seismic activity in the Sunnyside mining district, Carbon and Emery Counties, Utah, during 1968

    USGS Publications Warehouse

    Dunrud, C. Richard; Maberry, John O.; Hernandez, Jerome H.

    1970-01-01

    More than 20,000 local earth tremors were recorded by the seismic monitoring network in the Sunnyside mining district during 1968. This is about 40 percent of the number of tremors recorded by the network in 1967. In 1968 a total of 281 tremors were of sufficient magnitude to be located accurately--about 50 percent of the number of tremors in 1967 that were located accurately. As in previous years, nearly all the earth tremors originated near, or within a few thousand feet of, the mine workings. This distribution indicates that mine-induced stress changes caused most of the seismic activity. However, over periods of weeks and months there were significant changes in the distribution of seismic activity caused by tremors that were not directly related to mining but probably were caused by adjustment of natural stresses 6r by a complex combination of both natural and mine-induced stress changes. In 1968 the distribution of tremor hypocenters varied considerably with time, relative to active mining areas and to faults present in the mine workings. During the first 6 months, most tremors originated along or near faults that trend close to or through the active mine workings. However, in the last 6 months, the tremor hypocenters tended to concentrate in the rock mass closer to, or around, the active mining areas. This shift in concentration of seismic activity with time has been noted throughout the district many times since recording began in 1963, and is apparently caused by spontaneous releases of stored strain energy resulting from mine-induced stress changes. These spontaneous releases of strain energy, together with rock creep, apparently are the mechanism of adjustment within the rock mass toward equilibrium conditions, which are continually disrupted by mining. Although potentially hazardous bumps were rare in the Sunnyside mining district during 1968, smaller bumps and rock falls were more common in a given active mining area whenever hypocenters of larger

  7. Shear wave reflection seismic surveying in the Trondheim harbour area - imaging of land slide processes

    NASA Astrophysics Data System (ADS)

    Polom, U.; Hansen, L.; L'Heureux, S.; Longva, O.; Lecomte, I.; Krawczyk, C. M.

    2008-12-01

    The harbour area of Trondheim, Norway, was build on man-made land fillings at the coast of the Trondheim Fjord in several expansions since the last 80 years. The whole area is located on the deltaic sediments of the river Nidelven, which are overlying marine sediments that reach the bed rock in nearly 150 m depth. Some submarine land slides at the border of the sediment body nearby the harbour area were reported during the last decades. Therefore, many geological and geophysical investigations were carried out in recent years to explore the structure of the sediment body and its stability onshore and offshore in detail. Whereas high-resolution marine seismic methods archieved excellent results in the offshore area, common seismic investigations for the mostly paved harbour area itself were a difficult challenge. Therefore, SH polarized shear wave reflection seismics using a land streamer combined with a newly developed shear wave vibrator buggy of 30 kN peak force was applied, because this method is advantageous for paved surfaces. Overall 4.2 km 2.5D profiling was carried out in the harbour area along roads and parking places after optimizing of the field procedure. The whole operation was done at night in time slots from midnight to 5 am by road closures due to savety reasons and to minimize the noise from surrounding heavy traffic of trains, trucks and other heavy equipment. The field measurements achieved high resolution results of the sediment body structure, clear detection of the bedrock, and probably deeper structures within the bedrock. Due to the clear and continuous reflection events, also the shear wave velocity could be calculated at least down to the bedrock to indicate the stiffness of the sediment layers. The results of these onshore seismic profiles will be integrated in a combined onshore-offshore seismic profile grid for structural interpretation. Furthermore, the derived shear wave velocities will be combined with cone penetrometer testings and

  8. Controlled-Source Seismic Survey to Constrain Evolution of the Continental Cratonic Margin in Idaho and Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Petit, R.; Davenport, K.; Hole, J. A.; Harder, S.; Tikoff, B.; Russo, R. M.; Vervoort, J. D.; Han, L.; Sabey, L.; Wang, K.

    2012-12-01

    In August 2012, crustal-scale wide-angle reflection and refraction data were collected across Idaho and eastern Oregon. A unique feature of this area is the narrow juxtaposition between the North American continental craton and accreted oceanic terranes. This narrowness is a result of the sub-vertical Western Idaho Shear Zone (WISZ) formed by late Cretaceous transpression. Geochemical studies suggest that the crustal portion of the WISZ was offset 120-150 km east of the lithospheric mantle portion by Sevier thrusting. Post-WISZ, the cratonic margin has been modified by emplacement of the Idaho Batholith east of the WISZ, Eocene extension and related Challis volcanism, and Miocene extension associated with the Basin and Range and Columbia River Basalts. The seismic survey is part of the multidisciplinary IDOR project, funded by Earthscope, encompassing geochemistry, geochronology, structural geology, and broadband and controlled-source seismology. IDOR's goal is to understand how the steep continental margin modified and was modified by magmatism and deformation that occurred since its formation. Primary targets at depth include the deep geometry of the WISZ, the root of the Idaho Batholith, and deep signatures of Cenozoic extension. The 440 km long seismic line, running from the accreted terranes in the west, across the shear zone, the Idaho Batholith and beyond, is long enough to obtain reflections from the Moho and refractions from upper mantle. Along this line a crew of over 60 volunteers from twenty-two different universities deployed ~2600 vertical component seismometers at a 100-200 meter spacing. These instruments recorded the energy from nine 2000 pound explosive shots. These data will be used to produce a seismic velocity and structure model of the crust and upper-most mantle. Preliminary data and observations will be presented.

  9. Seismicity and eruptive activity at Fuego Volcano, Guatemala: February 1975 -January 1977

    USGS Publications Warehouse

    Yuan, A.T.E.; McNutt, S.R.; Harlow, D.H.

    1984-01-01

    We examine seismic and eruptive activity at Fuego Volcano (14??29???N, 90?? 53???W), a 3800-m-high stratovolcano located in the active volcanic arc of Guatemala. Eruptions at Fuego are typically short-lived vulcanian eruptions producing ash falls and ash flows of high-alumina basalt. From February 1975 to December 1976, five weak ash eruptions occurred, accompanied by small earthquake swarms. Between 0 and 140 (average ??? 10) A-type or high-frequency seismic events per day with M > 0.5 were recorded during this period. Estimated thermal energies for each eruption are greater by a factor of 106 than cumulative seismic energies, a larger ratio than that reported for other volcanoes. Over 4000 A-type events were recorded January 3-7, 1977 (cumulative seismic energy ??? 109 joules), yet no eruption occurred. Five 2-hour-long pulses of intense seismicity separated by 6-hour intervals of quiescence accounted for the majority of events. Maximum likelihood estimates of b-values range from 0.7 ?? 0.2 to 2.1 ?? 0.4 with systematically lower values corresponding to the five intense pulses. The low values suggest higher stress conditions. During the 1977 swarm, a tiltmeter located 6 km southeast of Fuego recorded a 14 ?? 3 microradian tilt event (down to SW). This value is too large to represent a simple change in the elastic strain field due to the earthquake swarm. We speculate that the earthquake swarm and tilt are indicative of subsurface magma movement. ?? 1984.

  10. The Effect of Recent Volcanic Activity on the Seismic Structure of Madagascar

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Aleqabi, G. I.; Pratt, M. J.; Shore, P.; Wiens, D. A.; Nyblade, A.; Rambolamanana, G.; Andriampenomanana Ny Ony, F. S. T.; Tsiriandrimanana, R.

    2014-12-01

    The seismic structure of Madagascar is determined using ambient-noise and two-plane-wave earthquake surface waves analyses. A deep low-velocity anomaly is seen in regions of recent volcanic activity in the central and northern regions of the island. The primary data used are from the 2011-2013 MACOMO (Madagascar, the Comoros, and Mozambique) broadband seismic array from the PASSCAL program of IRIS (Incorporated Research Institutions for Seismology), funded by the NSF. Additional data came from the RHUM-RUM project (led by G. Barruol and K. Sigloch), the Madagascar Seismic Profile (led by F. Tilmann), and the GSN. For the ambient-noise study, Rayleigh wave green's functions for all interstation paths are extracted from the broadband seismic data recorded from August 2011 until October 2013. Rayleigh wave group and phase velocity dispersion curves are extracted in the 8 - 50 s period range, identifying shallow crustal structure. For deeper structure, the two-plane-wave method is used on teleseismic earthquake data to obtain surface wave phase velocities in the 20 - 182 s period range. In the inversion, a finite-frequency kernel is used for each period, and a 1-D shear velocity structure is determined at each location. A three-dimensional S-wave velocity model of the crust and upper mantle is obtained from assembling the 1-D models. Preliminary results show a good correlation between the Rayleigh wave velocities and the geology of Madagascar, which includes areas of ancient Archaean craton. The slowest seismic velocities are associated with known volcanic regions in both the central and northern regions, which have experienced volcanic activity within the past million years.

  11. Crustal Structure in the Imperial Valley Region of California From Active-Source Seismic Investigations

    NASA Astrophysics Data System (ADS)

    Fuis, G. S.; Mooney, W. D.

    2008-12-01

    New crust is being generated by rifting in the Salton Trough. As the rift opens, mafic intrusive rocks fill it from below as young sedimentary rocks fill it from above. Rifting and intrusion produce high heat flow and temperatures that metamorphose the sedimentary rocks to shallow depths, forming a metasedimentary basement in the central part of the Trough, or Imperial Valley, thus consolidating the new crust. The U.S. Geological Survey conducted an extensive seismic-refraction survey in the Imperial Valley region of California in 1979, and recorded additional data in 1992. Profile data were modeled using a combination of forward and inverse modeling techniques. First arrivals on profiles and arrays from all shots were combined in an inversion for a basement-depth model. Finally an an existing gravity profile across the Salton Trough was modeled. Results are as follows: (1) No first-order velocity discontinuity is observed between sedimentary and "basement" rocks in the Imperial Valley; whereas such a discontinuity is observed on West Mesa, west of the Imperial Valley. In the Imperial Valley, basement velocity is 5.65 km/s, and basement is as much as 6 km deep. On West Mesa, basement velocity is 5.9 km/s and is at most 2 km deep. In the Imperial Valley, basement shoals beneath known geothermal areas, and the deepest wells (approx. 4 km) have penetrated only the upper part of the known Cenozoic stratigraphic column in the Salton Trough. Based on these results, we interpret basement in the Imperial Valley to be sedimentary rocks metamorphosed to lower greenschist facies and basement on West Mesa to be crystalline rocks. (2) The Imperial fault offsets basement in a normal sense by as much as 1 km down to the northeast, and there is an irregular basement scarp as high as 3.5 km between West Mesa and the Imperial Valley, which we interpret as a rift suture between old crystalline and young metasedimentary basement. (3) "Subbasement" (Vp 6.9 km/s) is seen at depths as

  12. Locadiff with ambient seismic noise : theoretical background and application to monitoring volcanoes and active faults.

    NASA Astrophysics Data System (ADS)

    Larose, Eric; Obermann, Anne; Planes, Thomas; Rossetto, Vincent; Margerin, Ludovic; Sens-Schoenfelder, Christoph; Campillo, Michel

    2015-04-01

    This contribution will cover recent theoretical, numerical, and field data processing developments aiming at modeling how coda waves are perturbed (in phase and amplitude) by mechanical changes in the crust. Using continuous ambient seismic noise, we cross-correlate data every day and compare the coda of the correlograms. We can relative velocity changes and waveform decorrelation along the year, that are related to mechanical changes in the shallow crust, associated to the seismic or volcanic activity, but also to environmental effects such as hydrology. Bibliography : Anne Obermann, Thomas Planes, Eric Larose and Michel Campillo, Imaging pre- and co-eruptive structural changes of a volcano with ambient seismic noise, J. Geophys. Res. 118 6285-6294 (2013). A. Obermann, B. Froment, M. Campillo, E. Larose, T. Planès, B. Valette, J. H. Chen, and Q. Y. Liu, Seismic noise correlations to image structural and mechanical changes associated with the Mw7.9 2008-Wenchuan earthquake, J. Geophys. Res. Solid Earth, 119, 1-14,(2014). Thomas Planès, Eric Larose, Ludovic Margerin, Vincent Rossetto, Christoph Sens-Schoenfelder, Decorrelation and phase-shift of coda waves induced by local changes : Multiple scattering approach and numerical validation, Waves in Random and Complex Media 24, 99-125, (2014)

  13. Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins

    SciTech Connect

    Carmichael, Joshua D.; Joughin, Ian; Behn, Mark D.; Das, Sarah; King, Matt A.; Stevens, Laura; Lizarralde, Dan

    2015-06-25

    We analyzed geophone and GPS measurements collected within the ablation zone of the western Greenland Ice Sheet during a ~35 day period of the 2011 melt season to study changes in ice deformation before, during, and after a supraglacial lake drainage event. During rapid lake drainage, ice flow speeds increased to ~400% of winter values, and icequake activity peaked. At times >7 days after drainage, this seismicity developed variability over both diurnal and longer periods (~10 days), while coincident ice speeds fell to ~150% of winter values and showed nightly peaks in spatial variability. Approximately 95% of all detected seismicity in the lake basin and its immediate vicinity was triggered by fracture propagation within near-surface ice (<330 m deep) that generated Rayleigh waves. Icequakes occurring before and during drainage frequently were collocated with the down flow (west) end of the primary hydrofracture through which the lake drained but shifted farther west and outside the lake basin after the drainage. We interpret these results to reveal vertical hydrofracture opening and local uplift during the drainage, followed by enhanced seismicity and ice flow on the downstream side of the lake basin. This region collocates with interferometric synthetic aperture radar-measured speedup in previous years and could reflect the migration path of the meltwater supplied to the bed by the lake. The diurnal seismic signal can be associated with nightly reductions in surface melt input that increase effective basal pressure and traction, thereby promoting elevated strain in the surficial ice.

  14. 76 FR 77782 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... Federal Register (75 FR 8652) with preliminary determinations and a proposed IHA. Ship maintenance issues..., 2010). Some dolphins seem to be attracted to the seismic vessel and floats, and some ride the bow wave..., incidental to conducting a marine geophysical (seismic) survey in the Commonwealth of the Northern...

  15. Seismic activity, inferred crustal stresses and seismotectonics in the Rana region, Northern Norway

    NASA Astrophysics Data System (ADS)

    Hicks, Erik C.; Bungum, Hilmar; Lindholm, Conrad D.

    2000-10-01

    The seismotectonic significance of the Rana region is known both from the fact that this was the location of the largest known earthquake in Fennoscandia in recent times, the MS 5.8-6.2 earthquake of August 31, 1819, and from its relatively high, constant seismic activity also in the 20th century. In order to study this region in more detail, a local seismic network has been in operation there since July 1997, as part of the NEONOR (Neotectonics in Norway) project. The network was primarily designed to detect possible activity on the Båsmoen fault which runs ˜50 km subparallel to the Rana fjord, and which shows signs of likely post glacial activity. The results have revealed a quite complex spatio-temporal distribution of seismic activity, and has also shown no activity on the Båsmoen fault itself. During the first 18 months of operation (July 1997-January 1999), the network has detected 373 locatable seismic events, of which 267 were local earthquakes. Most of these earthquakes occurred in five groups in the western parts of the network. All five groups had similar NNW-ESW trends in epicenter locations, and all have shallow foci (2-12 km), similar to what has also been found earlier for other concentrated earthquake zones in Northern Norway, and the magnitude range is between ML 0.1 and 2.8. Earthquake focal mechanism solutions within the network reveal a predominance for normal faulting with the tensional stress axis perpendicular do the coastline (implying an unusual coast-parallel orientation of the principal horizontal compressive stress). The earthquakes occur in a region of maximum post-glacial uplift gradients, which supports deglaciation flexure as a viable explanation for these earthquakes. A certain influence from more local factors, however, tied in general to crustal in homogeneities, cannot be ruled out.

  16. Fault activation after vigorous eruption: the December 8, 2015 seismic swarm at Mt. Etna

    NASA Astrophysics Data System (ADS)

    Alparone, Salvatore; Bonforte, Alessandro; Guglielmino, Francesco; Maiolino, Vincenza; Puglisi, Giuseppe; Ursino, Andrea

    2016-04-01

    From December 2, 2015, volcanic activity suddenly occurred on Mt. Etna with very violent fire fountaining at central crater, known also as "Voragine". This activity continued with other intense episodes at the same crater during the three following days and involving also, in turn, all the other three summit craters. This sudden eruption produced a rapid deflation of the volcano and was followed, from December 8, by a seismic swarm, with almost eighty earthquakes during this day, located on the uppermost segment of the Pernicana-Provenzana fault system (PFS). This seismicity was characterized by shallow foci (from few hundred meters until 1.5 km below the sea level) and mainshock with 3.6 magnitude. In order to investigate and measure the dynamics controlling and accompanying the PFS activation, a dataset composed of C-Band Sentinel-1A data has been used for SAR Interferometry (InSAR) analysis. Some interferograms have been generated from ascending and descending orbits in order to analyze both short- and long-term deformation. The availability of GPS data allowed comparing and integrating them with InSAR for ground truth and modeling aims. The surface kinematics and modeling obtained by DInSAR and GPS data and integration have been compared to the distribution of the seismicity and related focal mechanisms in order to define the fault geometry and motion. Moreover, essential constraints have been achieved about the PFS dynamic and its relationship with the intense volcanic activity occurred.

  17. Studies of the Correlation Between Ionospheric Anomalies and Seismic Activities in the Indian Subcontinent

    SciTech Connect

    Sasmal, S.; Chakrabarti, S. K.; Chakrabarti, S.

    2010-10-20

    The VLF (Very Low Frequency) signals are long thought to give away important information about the Lithosphere-Ionosphere coupling. It is recently established that the ionosphere may be perturbed due to seismic activities. The effects of this perturbation can be detected through the VLF wave amplitude. There are several methods to find this correlations and these methods can be used for the prediction of these seismic events. In this paper, first we present a brief history of the use of VLF propagation method for the study of seismo-ionospheric correlations. Then we present different methods proposed by us to find out the seismo-ionospheric correlations. At the Indian Centre for Space Physics, Kolkata we have been monitoring the VTX station at Vijayanarayanam from 2002. In the initial stage, we received 17 kHz signal and latter we received 18.2 kHz signal. In this paper, first we present the results for the 17 kHz signal during Sumatra earthquake in 2004 obtained from the terminator time analysis method. Then we present much detailed and statistical analysis using some new methods and present the results for 18.2 kHz signal. In order to establish the correlation between the ionospheric activities and the earthquakes, we need to understand what are the reference signals throughout the year. We present the result of the sunrise and sunset terminators for the 18.2 kHz signal as a function of the day of the year for a period of four years, viz, 2005 to 2008 when the solar activity was very low. In this case, the signal would primarily be affected by the Sun due to normal sunrise and sunset effects. Any deviation from this standardized calibration curve would point to influences by terrestrial (such as earthquakes) and extra-terrestrial (such as solar activities and other high energy phenomena). We present examples of deviations which occur in a period of sixteen months and show that the correlations with seismic events is significant and typically the highest deviation

  18. Methods and apparatus of suppressing tube waves within a bore hole and seismic surveying systems incorporating same

    DOEpatents

    West, Phillip B.; Haefner, Daryl

    2004-08-17

    Methods and apparatus for attenuating waves in a bore hole, and seismic surveying systems incorporating the same. In one embodiment, an attenuating device includes a soft compliant bladder coupled to a pressurized gas source. A pressure regulating system reduces the pressure of the gas from the gas source prior to entering the bladder and operates in conjunction with the hydrostatic pressure of the fluid in a bore hole to maintain the pressure of the bladder at a specified pressure relative to the surrounding bore hole pressure. Once the hydrostatic pressure of the bore hole fluid exceeds that of the gas source, bore hole fluid may be admitted into a vessel of the gas source to further compress and displace the gas contained therein. In another embodiment, a water-reactive material may be used to provide gas to the bladder wherein the amount of gas generated by the water-reactive material may depend on the hydrostatic pressure of the bore hole fluid.

  19. Methods and apparatus of suppressing tube waves within a bore hole and seismic surveying systems incorporating same

    DOEpatents

    West, Phillip B.; Haefner, Daryl

    2005-12-13

    Methods and apparatus for attenuating waves in a bore hole, and seismic surveying systems incorporating the same. In one embodiment, an attenuating device includes a soft compliant bladder coupled to a pressurized gas source. A pressure regulating system reduces the pressure of the gas from the gas source prior to entering the bladder and operates in conjunction with the hydrostatic pressure of the fluid in a bore hole to maintain the pressure of the bladder at a specified pressure relative to the surrounding bore hole pressure. Once the hydrostatic pressure of the bore hole fluid exceeds that of the gas source, bore hole fluid may be admitted into a vessel of the gas source to further compress and displace the gas contained therein. In another embodiment, a water-reactive material may be used to provide gas to the bladder wherein the amount of gas generated by the water-reactive material may depend on the hydrostatic pressure of the bore hole fluid.

  20. Multisensor surveys of historical buildings before, during and after a seismic sequence: the leaning bell tower of Ficarolo (Rovigo)

    NASA Astrophysics Data System (ADS)

    Teza, Giordano; Pesci, Arianna; Trevisani, Sebastiano

    2014-05-01

    Three regions of Northern Italy (Emilia Romagna, Veneto and Lombardy) were struck in May-June 2012 by a seismic sequence that included a moment magnitude 5.9 earthquake. Such a sequence caused significant damage to several historical buildings; in some cases complete structural collapse occurred. The 69-m high bell tower of Ficarolo (Rovigo province, Northern Italy) leans at a significant angle (~3° in the shaft). Because the combination of height and leaning angle is visually impressive, Ficarolo is also known as the 'Pisa of Polesine' (Polesine is the Venetian bank of the Po River), referring to the well-known 55-m high, 4° leaning tower of Pisa. A project aimed at studying the geometry of the tower, by means of terrestrial laser scanning (TLS), possible local seismic amplification and soil-structure interaction (SSI), by means of low-cost operational modal analysis (OMA) and geophysical measurements, began in early 2012, before the earthquake. In particular, the first series of data were taken in February 2012 (OMA) and April 2012 (TLS). The distance from Ficarolo of the epicenters of the six events with moment magnitude higher than 5.0 ranged from 9 km to 37 km. Several cracks appeared in the bell tower belfry and cusp. An inclinometer installed in 2003 showed that the base was unchanged, but the upper part of the shaft had moved by 2.5 cm after the main shock. No further displacements were detected as a result of the aftershocks. The repetition of the TLS and OMA surveys during and after the seismic sequence, together with infrared thermal imaging (IRT) measurements, allowed an evaluation of the changes caused by the earthquake. Two main results were obtained: (1) an estimate of earthquake induced damage to the Ficarolo's bell tower, which were relatively limited thanks to absence of SSI, and (2) it was demonstrated that fast measurements can be repeated during earthquake emergencies and that preventive measures can be carried out under reasonable time and

  1. Seismic structure of the extended continental crust in the Yamato Basin, Japan Sea, from ocean bottom seismometer survey

    NASA Astrophysics Data System (ADS)

    Nakahigashi, Kazuo; Shinohara, Masanao; Yamada, Tomoaki; Uehira, Kenji; Mochizuki, Kimihiro; Kanazawa, Toshihiko

    2013-05-01

    We present the result of a seismic experiment conducted using ocean bottom seismometers and an airgun in the Yamato Basin, of the Japan Sea. The Japan Sea is one of the most well-studied back-arc basins in the western Pacific. The Japan Sea is believed to have been formed by back-arc opening. However, the timing and formation processes of the opening of individual basins in and around the Japan Sea are not clear. To reveal the crustal structure of the Yamato Basin it is important to consider the formation process of the Japan Sea. Therefore, we conducted a seismic survey and estimated the P-wave seismic velocity structure beneath the 170-km profile using a 2-D ray-tracing method. A layer with a P-wave velocity of 3.4-4.0 km/s underlies the sedimentary sections, which is thought to consist of a sill-and-sediment complex. The upper crust below the profile varies greatly in thickness. The thickness of the upper crust is 3.5 km in the thinnest part and 7 km in the thickest part. The thickness of the lower crust is approximately 8 km and is relatively constant over the profile. The total thickness of the crust is approximately 15 km including the sedimentary layer. The distribution of P-wave velocities and the thickness indicate that the crust in the Yamato Basin is neither a typical continental nor a typical oceanic crust. From the point of view of seismic velocity, the obtained structure is more similar to a continental crust than to an oceanic crust. The large lateral thickness variation in the upper crust and the uniform thickness of the lower crust suggest that the crust in the study area was formed by rifting/extension of continental crust during the opening of the Japan Sea. The margins of the continent or of island arcs can be divided into two types: volcanic rifted margins and non-volcanic rifted margins. Volcanic rifted margins are normally classified by the presence of a high-velocity body in the lower crust. At the volcanic rifted margin, the high

  2. Fault mirrors in seismically active fault zones: A fossil of small earthquakes at shallow depths

    NASA Astrophysics Data System (ADS)

    Kuo, Li-Wei; Song, Sheng-Rong; Suppe, John; Yeh, En-Chao

    2016-03-01

    Fault mirrors (FMs) are naturally polished and glossy fault slip surfaces that can record seismic deformation at shallow depths. They are important for investigating the processes controlling dynamic fault slip. We characterize FMs in borehole samples from the hanging wall damage zone of the active Hsiaotungshi reverse fault, Taiwan. Here we report the first documented occurrence of the combination of silica gel and melt patches coating FMs, with the silica gel resembling those observed on experimentally formed FMs that were cataclastically generated. In addition, the melt patches, which are unambiguous indicators of coseismic slip, suggest that the natural FMs were produced at seismic rates, presumably resulting from flash heating at asperities on the slip surfaces. Since flash heating is efficient at small slip, we propose that these natural FMs represent fossils of small earthquakes, formed in either coseismic faulting and folding or aftershock deformation in the active Taiwan fold-and-thrust belt.

  3. Archive of digital boomer seismic reflection data collected during USGS field activities 95LCA03 and 96LCA02 in the Peace River of West-Central Florida, 1995 and 1996

    USGS Publications Warehouse

    Calderon, Karynna; Dadisman, Shawn V.; Tihansky, Ann B.; Lewelling, Bill R.; Flocks, James G.; Wiese, Dana S.; Kindinger, Jack G.; Harrison, Arnell S.

    2006-01-01

    In October and November of 1995 and February of 1996, the U.S. Geological Survey, in cooperation with the Southwest Florida Water Management District, conducted geophysical surveys of the Peace River in west-central Florida from east of Bartow to west of Arcadia. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, observers' logbooks, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided.

  4. First seismic shear wave velocity profile of the lunar crust as extracted from the Apollo 17 active seismic data by wavefield gradient analysis

    NASA Astrophysics Data System (ADS)

    Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir

    2016-04-01

    We present a new seismic velocity model of the shallow lunar crust, including, for the first time, shear wave velocity information. So far, the shear wave velocity structure of the lunar near-surface was effectively unconstrained due to the complexity of lunar seismograms. Intense scattering and low attenuation in the lunar crust lead to characteristic long-duration reverberations on the seismograms. The reverberations obscure later arriving shear waves and mode conversions, rendering them impossible to identify and analyze. Additionally, only vertical component data were recorded during the Apollo active seismic experiments, which further compromises the identification of shear waves. We applied a novel processing and analysis technique to the data of the Apollo 17 lunar seismic profiling experiment (LSPE), which involved recording seismic energy generated by several explosive packages on a small areal array of four vertical component geophones. Our approach is based on the analysis of the spatial gradients of the seismic wavefield and yields key parameters such as apparent phase velocity and rotational ground motion as a function of time (depth), which cannot be obtained through conventional seismic data analysis. These new observables significantly enhance the data for interpretation of the recorded seismic wavefield and allow, for example, for the identification of S wave arrivals based on their lower apparent phase velocities and distinct higher amount of generated rotational motion relative to compressional (P-) waves. Using our methodology, we successfully identified pure-mode and mode-converted refracted shear wave arrivals in the complex LSPE data and derived a P- and S-wave velocity model of the shallow lunar crust at the Apollo 17 landing site. The extracted elastic-parameter model supports the current understanding of the lunar near-surface structure, suggesting a thin layer of low-velocity lunar regolith overlying a heavily fractured crust of basaltic

  5. Unique seismic controlled sources: Using the demolition of smelter tower stacks and the City Hall in El Paso,TX for a seismic survey

    NASA Astrophysics Data System (ADS)

    Montana, C. J.; Gonzalez-Huizar, H.; Kaip, G.; Velasco, A. A.

    2013-12-01

    On April 13, 2013 the city of El Paso, TX demolished two old smelter smoke stacks leftover from the smelting days of ASARCO and the following day, demolished the City Hall building. These two events provided a unique opportunity to utilize two complex (demolition of two smoke stack towers plus a sequence of explosions at source site 1 and a sequence of explosions and the demolition of a building at source site 2) seismic sources to provide information about the uppermost subsurface of the surrounding areas of the City of El Paso. We deployed an array of 46 seismographs (Reftek Texans) connected to 4 Hz geophones along 3 survey lines: a NW to SE line extending from the ASARCO smokestacks site through City Hall and extending to a station location near the border (providing a revered profile); a W to E line extending from the ASARCO smoke stack location towards an end point in central El Paso; and a SSW to NNE line from City Hall towards a station location adjacent to the Franklin Mountains Mountain Range. The maximum source to receiver offset is over 5 km. The seismographs where deployed in an urban setting resulting in a challenging deployment in terms of security and integrity of the instruments. The recording mode was set to continuous from several hours before the stacks demolition to several hours after the City Hall building demolition. The data acquired is rich with many phases recorded. The main towers impact is clearly recorded along the length of all lines even though it was at the longest offset. The City Hall demolition site is located at a more central position that made it easier to be recorded. The complexity of the sources will require extensive signal processing to separate and determine specific phases. We will be using the line to develop a preliminary 2-D velocity model, which will be used to identify any faults and other geological structures buried beneath the deep river sediments near downtown El Paso.

  6. Ionospheric plasma deterioration in the area of enhanced seismic activity as compared to antipodal sites far from seismicity

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara; Arikan, Feza; Poustovalova, Ljubov; Stanislawska, Iwona

    2016-07-01

    The early magnetogram records from two nearly antipodal sites at Greenwich and Melbourne corresponding to the activity level at the invariant magnetic latitude of 50 deg give a long series of geomagnetic aa indices since 1868. The aa index derived from magnetic perturbation values at only two observatories (as distinct from the planetary ap index) experiences larger extreme values if either input site is well situated to the overhead ionospheric and/or field aligned current systems producing the magnetic storm effects. Analysis of the earthquakes catalogues since 1914 has shown the area of the peak global earthquake occurrence in the Pacific Ocean southwards from the magnetic equator, and, in particular, at Australia. In the present study the ionospheric critical frequency, foF2, is analyzed from the ionosonde measurements at the nearby observatories, Canberra and Slough (Chilton), and Moscow (control site) since 1944 to 2015. The daily-hourly-annual percentage occurrence of positive ionospheric W index (pW+) and negative index (pW-) is determined. It is found that the ionospheric plasma depletion pW- of the instant foF2 as compared to the monthly median is well correlated to the aa index at all three sites but the positive storm signatures show drastic difference at Canberra (no correlation of pW+ with aa index) as compared to two other sites where the high correlation is found of the ionospheric plasma density enhancement with the geomagnetic activity. A possible suppression of the enhanced ionospheric variability over the region of intense seismicity is discussed in the paper. This study is supported by TUBITAK EEEAG 115E915.

  7. Seismic reflection survey at Ayer Hangat site to investigate shallow subsurface structures

    NASA Astrophysics Data System (ADS)

    Khalil, Amin E.; Nawawi, Mohd; Kamel, Rami

    2016-01-01

    Ayer Hangat site is located in the island of Langkawi, northwest Malaysia. The site is characterized by the presence of hot spring. This hot spring is believed to be related to granitic intrusion nearby. Hence the present work is focusing on defining the shallow subsurface structures that control the migration of hot water to the surface. Seismic reflection method is used to achieve the goal of the present study. Forty three shot points were used with an offset of 5m of the nearest geophone. The shot-points interval is set to 1m. Seismograms were recorded on 24 channel TERRALOC instrument. The Geophone interval used was 1m. Conventional seismic data processing scheme was adopted. However, due to the fact that TERRALOC produce SEG2 data files, a script based on Obspy was written and used to convert to SEG-Y format. Afterwards, analyses were carried out using SU Package. The processed data is used to develop a model for the subsurface controlling structures. Such model will help in the understanding of the geothermal hot spring system in the area.

  8. Active-source seismic imaging below Lake Malawi (Nyasa) from the SEGMeNT project

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Scholz, C. A.; Gaherty, J. B.; Accardo, N. J.; McCartney, T.; Chindandali, P. R. N.; Kamihanda, G.; Trinhammer, P.; Wood, D. A.; Khalfan, M.; Ebinger, C. J.; Nyblade, A.; Mbogoni, G. J.; Mruma, A. H.; Salima, J.; Ferdinand-Wambura, R.

    2015-12-01

    Little is known about the controls on the initiation and development of magmatism and segmentation in young rift systems. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined in the upper crust by ~100-km-long border faults. Very little volcanism is associated with rifting; the only surface expression of magmatism occurs in an accommodation zone between segments to the north of the lake in the Rungwe Volcanic Province. The SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project is a multidisciplinary, multinational study that is acquiring a suite of geophysical, geological and geochemical data to characterize deformation and magmatism in the crust and mantle lithosphere along 2-3 segments of this rift. As a part of the SEGMeNT project, we acquired seismic reflection and refraction data in Lake Malawi (Nyasa) in March-April 2015. Over 2000 km of seismic reflection data were acquired with a 500 to 2580 cu in air gun array from GEUS/Aarhus and a 500- to 1500-m-long seismic streamer from Syracuse University over a grid of lines across and along the northern and central basins. Air gun shots from MCS profiles and 1000 km of additional shooting with large shot intervals were also recorded on 27 short-period and 6 broadband lake bottom seismometers from Scripps Oceanographic Institute as a part of the Ocean Bottom Seismic Instrument Pool (OBSIP) as well as the 55-station onshore seismic array. The OBS were deployed along one long strike line and two dip lines. We will present preliminary data and results from seismic reflection and refraction data acquired in the lake and their implications for crustal deformation within and between rift segments. Seismic reflection data image structures up to ~5-6 km below the lake bottom, including syntectonic sediments, intrabasinal faults and other complex horsts. Some intrabasinal faults in both the northern and

  9. Lateral slab tear tectonics of Calabria (S. Italy): investigating the STEP fault offshore eastern Sicily (the CIRCEE and DIONYSUS seismic surveys)

    NASA Astrophysics Data System (ADS)

    Gutscher, M. A.; Kopp, H.; Klaeschen, D.; Klingelhoefer, F.; Graindorge, D.

    2014-12-01

    Subduction and roll-back of narrow slabs is common in the Mediterranean region and is necessarily accompanied by a lithospheric scale slab edge tear fault or "STEP" (Subduction Transform Edge Propagator). We report on two recent marine geophysical surveys conducted in the Ionian Sea, offshore Eastern Sicily to investigate this type of structure: CIRCEE October 2013 R/V Le Suroit and DIONYSUS October 2014 R/V Meteor. The aim of the CIRCEE survey was to map potentially seismogenic faults offshore eastern Sicily and to seek the surface expression of the STEP fault (through high-resolution 72-channel seismic reflection profiles and swath mapping bathymetry). Strong historical earthquakes have struck this region repeatedly, whose origin in some cases remains unknown (1169, 1542, 1693). Two major crustal scale structures have been proposed as being related to the STEP: the Malta escarpment, and a combined normal-fault and strike-slip-fault system 20-50 km further east, striking roughly N50°W and well imaged by the CIRCEE data. The main objectives of the DIONYSUS deep seismic survey in autumn 2014 are to image the deep structure (crustal thickness, nature of the crust) of this ancient Tethyan age margin (likely a transform margin) and to seek deeper expressions of reactivation (lithospheric scale faulting) related to the slab tear. The internal geometry of the Calabrian subduction zone - the crystalline basement backstop, the slab dip, the accretionary wedge composition (detritic vs. evaporitic) and its thickness, is also a target of the deep seismic survey. To achieve these goals a German-French-Italian wide-angle seismic survey was performed in October 2014 using 60 OBS (30 from Kiel-Geomar and 30 from Ifremer/Univ. Brest) deployed along 4 long profiles, 3 of which are collocated along existing multi-channel seismic lines (Italian CROP profiles) depth processed at Geomar.

  10. Land 3D-seismic data: Preprocessing quality control utilizing survey design specifications, noise properties, normal moveout, first breaks, and offset

    USGS Publications Warehouse

    Raef, A.

    2009-01-01

    The recent proliferation of the 3D reflection seismic method into the near-surface area of geophysical applications, especially in response to the emergence of the need to comprehensively characterize and monitor near-surface carbon dioxide sequestration in shallow saline aquifers around the world, justifies the emphasis on cost-effective and robust quality control and assurance (QC/QA) workflow of 3D seismic data preprocessing that is suitable for near-surface applications. The main purpose of our seismic data preprocessing QC is to enable the use of appropriate header information, data that are free of noise-dominated traces, and/or flawed vertical stacking in subsequent processing steps. In this article, I provide an account of utilizing survey design specifications, noise properties, first breaks, and normal moveout for rapid and thorough graphical QC/QA diagnostics, which are easy to apply and efficient in the diagnosis of inconsistencies. A correlated vibroseis time-lapse 3D-seismic data set from a CO2-flood monitoring survey is used for demonstrating QC diagnostics. An important by-product of the QC workflow is establishing the number of layers for a refraction statics model in a data-driven graphical manner that capitalizes on the spatial coverage of the 3D seismic data. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  11. Summary of workshops concerning regional seismic source zones of parts of the conterminous United States, convened by the U.S. Geological Survey, 1979-1980, Golden, Colorado

    USGS Publications Warehouse

    Thenhaus, Paul C., (Edited By)

    1983-01-01

    Workshops were convened by the U.S. Geological Survey to obtain the latest information and concepts relative to defining seismic source zones for five regions of the United States. The zones, with some modifications, have been used in preparation of new national probabilistic ground motion hazard maps by the U.S. Geological Survey. The five regions addressed are the Great Basin, the Northern Rocky Mountains, the Southern Rocky Mountains, the Central Interior, and' the northeastern United States. Discussions at the workshops focussed on possible temporal and spatial variations of seismicity within the regions, latest ages of surface-fault displacements, most recent uplift or subsidence, geologic structural provinces as they relate to seismicity, and speculation on earthquake causes. Within the Great Basin region, the zones conform to areas characterized by a predominance of faults that have certain ages of latest surface displacements. In the Northern and Southern Rocky Mountain regions, zones primarily conform to distinctive structural terrane. In the Central Interior, primary emphasis was placed on an interpretation of the areal distribution of historic seismicity, although geophysical studies in the Reelfoot rift area provided data for defining zones in the New Madrid earthquake area. An interpretation of the historic seismicity also provided the basis for drawing the zones of the New England region. Estimates of earthquake maximum magnitudes and of recurrence times for these earthquakes are given for most of the zones and are based on either geologic data or opinion.

  12. High-resolution seismic monitoring of rockslide activity in the Illgraben, Switzerland

    NASA Astrophysics Data System (ADS)

    Burtin, Arnaud; Hovius, Niels; Dietze, Michael; McArdell, Brian

    2014-05-01

    Rockfalls and rockslides are important geomorphic processes in landscape dynamics. They contribute to the evolution of slopes and supply rock materials to channels, enabling fluvial incision. Hillslope processes are also a natural hazard that we need to quantify and, if possible, predict. For these reasons, it is necessary to determine the triggering conditions and mechanisms involved in rockfalls. Rainfall is a well-known contributor since water, through soil moisture or pore pressure, may lead to the inception and propagation of cracks and can induce slope failure. Water can also affect slope stability through effects of climatic conditions such as the fluctuations of temperature around the freezing point. During the winter of 2012, we have recorded with a seismic array of 8 instruments substantial rockslide activity that affected a gully in the Illgraben catchment in the Swiss Alps. Three stations were positioned directly around the gully with a nearest distance of 400 m. The period of intense activity did not start during a rainstorm as it is common in summer but during a period of oscillation of temperatures around the freezing point. The activity did not occur in a single event but lasted about a week with a decay in time of the event frequency. Many individual events had two distinct seismic signals, with first, a short duration phase of about 10 s at frequencies below 5 Hz that we interpret as a slope failure signature, followed by a second long duration signal of > 60 s at frequencies above 10 Hz that we attribute to the propagation of rock debris down the slope. Thanks to the array of seismic sensors, we can study the fine details of this rockslide sequence by locating the different events, determining their distribution in time, and systematic quantification of seismic metrics (energy, duration, intensity...). These observations are compared to independent meteorological constrains and laser scan data to obtain an estimate of the volume mobilized by the

  13. Regional seismic networks upgrade encouraged

    NASA Astrophysics Data System (ADS)

    A partnership between the U.S. National Seismic Network (USNSN)—planned by the U.S. Geological Survey for implementation in the early 1990s—and a group of modernized, independently run regional seismic networks is recommended by the National Research Council in their recent report, “Assessing the Nation's Earthquakes: The Health and Future of Regional Seismograph Networks.” The panel that prepared the report said that together, the facilities would constitute a National Seismic System, a satellite-based network capable of systematically monitoring and analyzing earthquakes throughout the nation within minutes of their occurrence.Regional seismic networks are arrays of tens to hundreds of seismic stations targeted chiefly on seismically active regions. They provide a broad range of data and information, which can be applied to public safety and emergency management, quantification of hazard and risk assessment associated with natural and human-induced earthquakes, surveillance of underground nuclear explosions, basic research on earthquake mechanics and dynamics, seismic wave propagation, seismotectonic processes, earthquake forecasting and prediction, and properties and composition of the crust and the internal structure of the Earth.

  14. The application of active-source seismic imaging techniques to transtensional problems the Walker Lane and Salton Trough

    NASA Astrophysics Data System (ADS)

    Kell, Anna Marie

    The plate margin in the western United States is an active tectonic region that contains the integrated deformation between the North American and Pacific plates. Nearly focused plate motion between the North American and Pacific plates within the northern Gulf of California gives way north of the Salton Trough to more diffuse deformation. In particular a large fraction of the slip along the southernmost San Andreas fault ultimately bleeds eastward, including about 20% of the total plate motion budget that finds its way through the transtensional Walker Lane Deformation Belt just east of the Sierra Nevada mountain range. Fault-bounded ranges combined with intervening low-lying basins characterize this region; the down-dropped features are often filled with water, which present opportunities for seismic imaging at unprecedented scales. Here I present active-source seismic imaging from the Salton Sea and Walker Lane Deformation Belt, including both marine applications in lakes and shallow seas, and more conventional land-based techniques along the Carson range front. The complex fault network beneath the Salton Trough in eastern California is the on-land continuation of the Gulf of California rift system, where North American-Pacific plate motion is accommodated by a series of long transform faults, separated by small pull-apart, transtensional basins; the right-lateral San Andreas fault bounds this system to the north where it carries, on average, about 50% of total plate motion. The Salton Sea resides within the most youthful and northerly "spreading center" in this several thousand-kilometer-long rift system. The Sea provides an ideal environment for the use of high-data-density marine seismic techniques. Two active-source seismic campaigns in 2010 and 2011 show progression of the development of the Salton pull-apart sub-basin and the northerly propagation of the Imperial-San Andreas system through time at varying resolutions. High fidelity seismic imagery

  15. Borehole-explosion and air-gun data acquired in the 2011 Salton Seismic Imaging Project (SSIP), southern California: description of the survey

    USGS Publications Warehouse

    Rose, Elizabeth J.; Fuis, Gary S.; Stock, Joann M.; Hole, John A.; Kell, Annie M.; Kent, Graham; Driscoll, Neal W.; Goldman, Mark; Reusch, Angela M.; Han, Liang; Sickler, Robert R.; Catchings, Rufus D.; Rymer, Michael J.; Criley, Coyn J.; Scheirer, Daniel S.; Skinner, Steven M.; Slayday-Criley, Coye J.; Murphy, Janice M.; Jensen, Edward G.; McClearn, Robert; Ferguson, Alex J.; Butcher, Lesley A.; Gardner, Max A.; Emmons, Iain; Loughran, Caleb L.; Svitek, Joseph R.; Bastien, Patrick C.; Cotton, Joseph A.; Croker, David S.; Harding, Alistair J.; Babcock, Jeffrey M.; Harder, Steven H.; Rosa, Carla M.

    2013-01-01

    The Imperial and Coachella Valleys are being formed by active plate-tectonic processes. From the Imperial Valley southward into the Gulf of California, plate motions are rifting the continent apart. In the Coachella Valley, the plates are sliding past one another along the San Andreas and related faults (fig. 1). These processes build the stunning landscapes of the region, but also produce damaging earthquakes. Rupture of the southern section of the San Andreas Fault (SAF), from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard that California will face in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of infrastructure (freeways, aqueducts, power, petroleum, and communication lines) that might bring much of southern California to a standstill. As part of the nation’s efforts to avert a catastrophe of this magnitude, a number of projects have been undertaken to more fully understand and mitigate the effects of such an event. The Salton Seismic Imaging Project (SSIP), funded jointly by the National Science Foundation (NSF) and the U.S. Geological Survey (USGS), seeks to understand, through seismic imaging, the structure of the Earth surrounding the SAF, including the sedimentary basins on which cities are built. The principal investigators (PIs) of this collaborative project represent the USGS, Virginia Polytechnic Institute and State University (Virginia Tech), California Institute of Technology (Caltech), Scripps Institution of Oceanography (Scripps), University of Nevada, Reno (UNR), and Stanford University. SSIP will create images of underground structure and sediments in the Imperial and Coachella Valleys and adjacent mountain ranges to investigate the earthquake hazards posed to cities in this area. Importantly, the images will help determine the underground geometry of the SAF, how deep the sediments are, and how fast

  16. High-resolution seismic reflection survey at the Manson crater, Iowa

    NASA Technical Reports Server (NTRS)

    Keiswetter, D. A.; Black, R.; Steeples, D. W.; Anderson, R. R.

    1993-01-01

    Approximately 17.4 km of high-resolution reflection data were acquired along an east-west radius of the Manson Impact Structure (MIS) to delineate the shallow (upper 300 m) subsurface structural configuration. The geometry of the shallow structure is poorly known due to a 30-90 m thick Pleistocene till cover. The resolution of the new seismic data is roughly 5-10 times that of existing Vibroseis data. Data quality varies rapidly along the line from exceptional to poor, due primarily to velocity variations associated with the geological complexity of the area. Preliminary results indicate subsurface structural blocks previously envisioned to be several hundreds of meters in size are actually an order of magnitude smaller and more complex. A seismogram-by-seismogram analysis is necessary to confidently identify intricate stratigraphic and structural relationships seen on preliminary CDP sections, as numerous faults, diffractions, and complicated reflection patterns create potential pitfalls.

  17. Deep seismic survey images crustal structure of Tornquist Zone beneath southern Baltic Sea

    SciTech Connect

    Not Available

    1991-06-01

    The Tornquist Zone is Europe's longest tectonic lineament and bisects the continent in a NW-SE direction from the North Sea (off NW Denmark) to the Black Sea. New deep seismic reflection and coincident refraction data have been collected across its 50 km wide, intensely faulted and inverted NW part. The marine reflection profile in the area north of Bornholm Island shows a tilted block structure in the rigid upper crust, whereas the lower crust seems to be more gently uplifted. A complex transition from the highly reflective lower crust to the mantle is indicated by mantle reflections and a curious wide-angle event recorded by a landstation on Bornholm Island. The authors suggest that deep-reaching inversion tectonics, induced by Alpine and Carpathian orogeny, were responsible for the development of the gross crust-mantle structure of the Tornquist Zone in the study area, which seems to be similar to that in Poland.

  18. High-resolution seismic reflection survey at the Manson crater, Iowa

    NASA Astrophysics Data System (ADS)

    Keiswetter, D. A.; Black, R.; Steeples, D. W.; Anderson, R. R.

    1993-03-01

    Approximately 17.4 km of high-resolution reflection data were acquired along an east-west radius of the Manson Impact Structure (MIS) to delineate the shallow (upper 300 m) subsurface structural configuration. The geometry of the shallow structure is poorly known due to a 30-90 m thick Pleistocene till cover. The resolution of the new seismic data is roughly 5-10 times that of existing Vibroseis data. Data quality varies rapidly along the line from exceptional to poor, due primarily to velocity variations associated with the geological complexity of the area. Preliminary results indicate subsurface structural blocks previously envisioned to be several hundreds of meters in size are actually an order of magnitude smaller and more complex. A seismogram-by-seismogram analysis is necessary to confidently identify intricate stratigraphic and structural relationships seen on preliminary CDP sections, as numerous faults, diffractions, and complicated reflection patterns create potential pitfalls.

  19. Using seismic reflection surveying to map gas-generated excess pore pressures at Finneidfjord, Norway

    NASA Astrophysics Data System (ADS)

    Baise, L. G.; Morgan, E. C.; Vanneste, M. W.; Longva, O.; Lecomte, I.; McAdoo, B. G.

    2009-12-01

    On the 20th of June, 1996, a multi-phase landslide that initiated under water and retrogressed onto land ultimately killed 4 people, destroyed several houses, and undermined a major highway in Finneidfjord, Norway, an area with a known history of landsliding in the Holocene. Geological and environmental conditions inherent to the 1996 slide include excess fluid/gas pressure (particularly in gas-bearing sediment), lateral and vertical lithological variability, slide-prone sediment layers, and changes in the water table due to heavy rainfall. In this study, we quantify pore pressures within the free gas accumulation at very shallow sub-surface depths using seismic reflection data. The trapped gas is thought to originate from the decomposition of river-deposited organic material. The gas front (a few meters below the seabed) produces a strong, polarity-reversed reflection, dramatically attenuating sub-surface reflections. On X-ray images of cores collected from the 5 km2 large gas zone, gas appears as vesicular spots. We use a previously published method incorporating continuous wavelet transforms to quantify attenuation produced by gas-bearing sediment. Taking the output from this method, and knowing or assuming values for other physical parameters, we invert for in situ pressure and equivalent thickness of the free gas layer. We compare our results to pressure data collected from a single piezometer penetrating the gas front, and then incorporate geostatistical methods to interpolate between our seismic profiles. The end product is a map of excess pore pressure estimates, which can be used in conjunction with bathymetry data and cores for more accurate slope stability analyses, ultimately identifying the more sensitive areas of the fjord.

  20. Peculiarities of ULF electromagnetic disturbances before strong earthquakes in seismic active zone of Kamchatka peninsula

    NASA Astrophysics Data System (ADS)

    Kopytenko, Y. A.; Ismagilov, V. S.; Schekotov, A.; Molchanov, O.; Chebrov, V.; Raspopov, O. M.

    2006-12-01

    Regular observations of ULF electromagnetic disturbances and acoustic emissions at st. Karymshino in seismic active zone of Kamchatka peninsula were carried out during 2001-2003 years. Five seismic active periods with strong earthquakes (M>5) were displayed during this period. These EQs occurred at the Pacific at 20-60 km depth at 100-140 km distances to the East from the st. Karymshino. Analysis of normalized dynamic power spectra of data of high-sensitive (0.2 pT/sqrt(Hz)) three-component induction magnetometer achieved a significant disorder of daily variation and increasing of the magnetic disturbance intensities (from 0.2 to ~1 pT) in the whole investigated frequency range (0.2-5 Hz). The anomaly intensity increasing was observed during the 12-18 hours before main seismic shocks. Maximum of the increasing occurred during 4-6 hours before the EQs. An increasing of acoustic emissions (F=30 Hz) was observed during the same period. A sharp decreasing of the magnetic disturbance intensities was observed 2-4 hours before the EQs. We suppose that physical processes in a hearth of forthcoming EQ lead to an irreversible avalanche-like formation of cracks and stimulation of the acoustic and ULF electromagnetic disturbances.

  1. Active deformation and seismicity in the Southern Alps (Italy): The Montello hill as a case study

    NASA Astrophysics Data System (ADS)

    Danesi, Stefania; Pondrelli, Silvia; Salimbeni, Simone; Cavaliere, Adriano; Serpelloni, Enrico; Danecek, Peter; Lovati, Sara; Massa, Marco

    2015-06-01

    The Montello anticline is a morphotectonic feature of the east pede-mountain of the South Alpine Chain in northern Italy, which lies ca. 40 km northwest of Venice, Italy. The purpose of this study is to characterize the present-day crustal deformation and seismotectonics of the Montello area through multi-parametric geophysical observations. We used new data obtained from the installation of a temporary network of 12 seismic stations and 6 GPS sites. The GPS observations indicate that there is ~ 1 mm/yr shortening across the Montello thrust. Sites located north of the Montello thrust front deviate from the ~ NNW-ward Adria-Eurasia convergence direction, as they are constrained by a relative rotation pole in northwestern Italy that has a NNE-ward motion trend. Over 18 months, seismographic recordings allowed us to locate 142 local seismic events with Ml 0.5-3.5 with good reliability (rms < 0.5). After cross-correlation analysis, we classified 42 of these events into six clusters, with cross-correlation thresholds > 0.80. The source focal solutions indicate that: (i) there is thrusting seismic activity on the basal, sub-horizontal, portion of the Montello structure; and (ii) strike-slip source kinematics prevail on the western edge of the Montello hill. Our observations on the source mechanisms and the measured crustal deformation confirm that the Montello thrust is tectonically active.

  2. Stress-strain sensor for monitoring seismic precursors and fault activities in the sand

    NASA Astrophysics Data System (ADS)

    Du, Qiujiao; Sun, Wei; Zeng, Zuoxun

    2016-04-01

    In this paper, a sensor to monitor stress-strain signals in a granular medium is used to detect seismic precursory information. Compared with the widely used sensors of borehole stress in the rock, the sensor has more convenient operation, higher output sensitivity, compactness and farther propagation effect. The stress and strain changes before Pu'er Ms6.4 earthquake in China are recorded by Beijing and Xinmin stations, and its corresponding fault activities are analyzed. Study indicates anomalous amplitude of strain signal reaches 10 times higher than that of ordinary background, and compressive oscillation and extensional oscillation occurred constantly before the earthquake. The method and results presented in the paper provide a new way for investigating seismic precursors for shallow-source earthquakes.

  3. Active source seismic experiment investigating the formation of the Ontong Java Plateau

    NASA Astrophysics Data System (ADS)

    Miura, S.; Noguchi, N.; Coffin, M. F.; Kawagle, S. A.; Verave, R. T.; Kodaira, S.; Fukao, Y.

    2010-12-01

    The Ontong Java Plateau (OJP) is one of the largest oceanic plateaus and possibly the most voluminous large igneous province (LIP) on Earth, and is thought to have formed by a non-plate tectonic mechanism such as 1) a plume head, 2) a bolide impact, or 3) atypical seafloor spreading. Due to massive magmatism over short durations of geological time, formations of the OJP and LIPs in general likely have had global scale environmental impacts (e.g., Oceanic Anoxic Events). Therefore, understanding how LIPs form is important not only for illuminating solid Earth processes, but also for advancing knowledge of associated environmental, including biospheric, changes. On the basis of the OJP’s shallow bathymetry, its crust has long been thought to be thicker than normal oceanic crust. However, previous seismic and gravimetric analyses of its crustal thickness produced inconsistent results. To understand how the OJP formed, we conducted a seismic survey using a multi-channel seismic (MCS) hydrophone streamer and 100 ocean bottom seismometers (OBS) in February-March 2010 (EOS, submitted). New MCS data confirm that sediment approximately 1 s (two-way travel time) thick covers the uppermost OJP. Sediment layers are generally flat-lying, except near seamounts, in a local depression, and around some faults. Because of the flat-lying seafloor and shallow water depths, several water-bottom multiples of large amplitude characterize the MCS data, making identification of sub-basement reflections challenging. On the northernmost part of the seismic line, a reflection event at about 12 s (two-way travel time) differs unambiguously from multiple reflections, and may represent the base of the OJP’s crust. OBS data show first refraction arrivals within 100-km offsets. First arrivals with an apparent velocity of 7 km/s can be identified at offsets greater than 100 km. This may indicate a thick high velocity (~7 km/s) layer in the OJP’s lower crust. This high velocity layer may be

  4. Worksite Health Promotion Activities. 1992 National Survey. Summary Report.

    ERIC Educational Resources Information Center

    Public Health Service (DHHS), Rockville, MD. Office of Disease Prevention and Health Promotion.

    The survey reported in this document examined worksite health promotion and disease prevention activities in 1,507 private worksites in the United States. Specificlly, the survey assessed policies, practices, services, facilities, information, and activities sponsored by employers to improve the health of their employees, and assessed health…

  5. Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics

  6. Active and passive seismic studies of geothermal resources in New Mexico and investigations of earthquake hazards to geothermal development

    SciTech Connect

    Morgan, P.; Daggett, P.H.

    1980-01-01

    Seismic data were collected in southwestern New Mexico to investigate the sources of the geothermal anomalies and to investigate the potential earthquake hazards of geothermal development. No major crustal structure anomalies have been located related to known geothermal resources, and no areas of continual seismicity have been identified, which is interpreted to indicate a lack of active, or recently active crustal intrusions in southwestern New Mexico. Without a magnetic heat source, the geothermal potential of the known anomalies is probably limited to intermediate and low temperature applications (<180/sup 0/C). The lack of continual seismicity indicates low seismic hazard in the area directly related to geothermal development, although the historic and geologically recent tectonic activity should be taken into consideration during any development in the area. A model of forced groundwater convection is presented to explain the geothermal anomalies in southwestern New Mexico, which is consistent with all available geological and geophysical data from the area.

  7. Assessing low-activity faults for the seismic safety of dams

    SciTech Connect

    Page, W.D.; Savage, W.U.; McLaren, M.K.

    1995-12-31

    Dams have been a familiar construct in the northern Sierra Nevada range in California (north of the San Joaquin River) since the forty-niners and farmers diverted water to their gold mines and farms in the mid 19th century. Today, more than 370 dams dot the region from the Central Valley to the eastern escarpment. Fifty-five more dam streams on the eastern slope. The dams are of all types: 240 earth fill; 56 concrete gravity; 45 rock and earth fills; 35 rock fill; 14 concrete arch; 9 hydraulic fill; and 29 various other types. We use the northern Sierra Nevada to illustrate the assessment of low-activity faults for the seismic safety of dams. The approach, techniques, and methods of evaluation are applicable to other regions characterized by low seismicity and low-activity faults having long recurrence intervals. Even though several moderate earthquakes had shaken the Sierra Nevada since 1849 (for example, the 1875 magnitude 5.8 Honey Lake and the 1909 magnitudes 5 and 5.5 Downieville earthquakes), seismic analyses for dams in the area generally were not performed prior to the middle of this century. Following the 1971 magnitude 6.7 San Fernando earthquake, when the hydraulic-fill Lower Van Norman Dam in southern California narrowly escaped catastrophic failure, the California Division of Safety of Dams and the Federal Energy Regulatory Commission required seismic safety to be addressed with increasing rigor. In 1975, the magnitude 5.7 Oroville earthquake on the Cleveland Hill fault near Oroville Dam in the Sierra Nevada foothills, showed convincingly that earthquakes and surface faulting could occur within the range. Following this event, faults along the ancient Foothills fault system have been extensively investigated at dam sites.

  8. Seismic body wave separation in volcano-tectonic activity inferred by the Convolutive Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; De Lauro, Enza; De Martino, Salvatore; Falanga, Mariarosaria; Petrosino, Simona

    2015-04-01

    One of the main challenge in volcano-seismological literature is to locate and characterize the source of volcano/tectonic seismic activity. This passes through the identification at least of the onset of the main phases, i.e. the body waves. Many efforts have been made to solve the problem of a clear separation of P and S phases both from a theoretical point of view and developing numerical algorithms suitable for specific cases (see, e.g., Küperkoch et al., 2012). Recently, a robust automatic procedure has been implemented for extracting the prominent seismic waveforms from continuously recorded signals and thus allowing for picking the main phases. The intuitive notion of maximum non-gaussianity is achieved adopting techniques which involve higher-order statistics in frequency domain., i.e, the Convolutive Independent Component Analysis (CICA). This technique is successful in the case of the blind source separation of convolutive mixtures. In seismological framework, indeed, seismic signals are thought as the convolution of a source function with path, site and the instrument response. In addition, time-delayed versions of the same source exist, due to multipath propagation typically caused by reverberations from some obstacle. In this work, we focus on the Volcano Tectonic (VT) activity at Campi Flegrei Caldera (Italy) during the 2006 ground uplift (Ciaramella et al., 2011). The activity was characterized approximately by 300 low-magnitude VT earthquakes (Md < 2; for the definition of duration magnitude, see Petrosino et al. 2008). Most of them were concentrated in distinct seismic sequences with hypocenters mainly clustered beneath the Solfatara-Accademia area, at depths ranging between 1 and 4 km b.s.l.. The obtained results show the clear separation of P and S phases: the technique not only allows the identification of the S-P time delay giving the timing of both phases but also provides the independent waveforms of the P and S phases. This is an enormous

  9. Active fault mapping in Karonga-Malawi after the December 19, 2009 Ms 6.2 seismic event

    NASA Astrophysics Data System (ADS)

    Macheyeki, A. S.; Mdala, H.; Chapola, L. S.; Manhiça, V. J.; Chisambi, J.; Feitio, P.; Ayele, A.; Barongo, J.; Ferdinand, R. W.; Ogubazghi, G.; Goitom, B.; Hlatywayo, J. D.; Kianji, G. K.; Marobhe, I.; Mulowezi, A.; Mutamina, D.; Mwano, J. M.; Shumba, B.; Tumwikirize, I.

    2015-02-01

    The East African Rift System (EARS) has natural hazards - earthquakes, volcanic eruptions, and landslides along the faulted margins, and in response to ground shaking. Strong damaging earthquakes have been occurring in the region along the EARS throughout historical time, example being the 7.4 (Ms) of December 1910. The most recent damaging earthquake is the Karonga earthquake in Malawi, which occurred on 19th December, 2009 with a magnitude of 6.2 (Ms). The earthquake claimed four lives and destroyed over 5000 houses. In its effort to improve seismic hazard assessment in the region, Eastern and Southern Africa Seismological Working Group (ESARSWG) under the sponsorship of the International Program on Physical Sciences (IPPS) carried out a study on active fault mapping in the region. The fieldwork employed geological and geophysical techniques. The geophysical techniques employed are ground magnetic, seismic refraction and resistivity surveys but are reported elsewhere. This article gives findings from geological techniques. The geological techniques aimed primarily at mapping of active faults in the area in order to delineate presence or absence of fault segments. Results show that the Karonga fault (the Karonga fault here referred to as the fault that ruptured to the surface following the 6th-19th December 2009 earthquake events in the Karonga area) is about 9 km long and dominated by dip slip faulting with dextral and insignificant sinistral components and it is made up of 3-4 segments of length 2-3 km. The segments are characterized by both left and right steps. Although field mapping show only 9 km of surface rupture, maximum vertical offset of about 43 cm imply that the surface rupture was in little excess of 14 km that corresponds with Mw = 6.4. We recommend the use or integration of multidisciplinary techniques in order to better understand the fault history, mechanism and other behavior of the fault/s for better urban planning in the area.

  10. Seismic investigations of ancient Lake Ohrid (Macedonia/Albania): a pre-site survey for the SCOPSCO ICDP-drilling campaign

    NASA Astrophysics Data System (ADS)

    Lindhorst, K.; Krastel, S.; Schwenk, T.; Kurschat, S.; Daut, G.; Wessel, M.; Wagner, B.

    2009-04-01

    Lake Ohrid (Macedonia/Albania) is probably the oldest lake in Europe (2-5 Ma), and has been found as an important archive to study the sedimentary evolution of a graben system over several million years. Lake Ohrid has a length of 30 km (N-S) and a width of 15 km (W-E) and covers an area of 360 sqkm. Two major mountain chains surround the lake, on the west side the Mocra Mountains (app. 1500 m) and on the east side the Galicica Mountain (app. 2250 m). With more than 210 endemic species described, the lake is a unique aquatic ecosystem that is of worldwide importance. An international group of scientists has recently submitted a full drilling proposal entitled SCOPSCO (Scientific Collaboration On Past Speciation Conditions in Lake Ohrid) to ICDP in order to (i) to obtain more precise information about the age and origin of the lake, (ii) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (iii) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (iv) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. The lake was the target of several geophysical pre-site surveys starting with a first shallow seismic campaign in spring 2004 using a high resolution parametric sediment echosounder (INNOMAR SES-96 light). Airgun multichannel seismic data were collected during two surveys in 2007 and 2008, resulting in a dense grid of seismic lines over the entire lake. In total 650 km of shallow seismic lines 400 km of airgun multichannel seismics demonstrates the potential of Lake Ohrid as target for ICDP. Seismic profiles show that the lake can be divided into slope areas and a large central basin. The slope areas are characterized by a dense net of faults

  11. Earth's magnetic field anomalies that precede the M6+ global seismic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2014-05-01

    In this work has been analyzed the Earth's magnetic field variations and the M6+ global seismic activity to verify if M6+ earthquakes are preceded by a change of the Earth's magnetic field. The data of Earth's magnetic field used to conduct the study of correlation are provided by the induction magnetometer of Radio Emissions Project's station (Lat: 41°41'4.27"N, Long: 12°38'33,60"E, Albano Laziale, Rome, Italy), equipped with a ELF receiver prototype (with a vertically aligned coil antenna) capable to detect the variations of the intensity of the Earth's magnetic field on Z magnetic component. The M6+ global seismic activity data are provided in real-time by USGS, INGV and CSEM. The sample of data used to conduct the study refers to the period between 1 January 2012 and 31 December 2012. The Earth's magnetic field variations data set has been marked with the times (time markers) of M6+ earthquakes occurred on a global scale and has been verified the existence of disturbances of the Earth's geomagnetic field in the time interval that preceded the M6+ global seismic activity. The correlation study showed that all M6+ earthquakes recorded on 2012 were preceded by an increase of the Earth's magnetic field, detected in the Z magnetic component. The authors measured the time lag elapsed between the maximum increment of the Earth's magnetic field recorded before an earthquake M6+ and the date and time at which this occurred, and has been verified that the minimum time lag recorded between the Earth's magnetic field increase and the earthquake M6+ has been 1 minute (9 October 2012, Balleny Islands, M6,4); while, the maximum time lag recorded has been 3600 minutes (26 June 2012, China, M6,3). The average time lag has been 629.47 minutes. In addition, the average time lag is deflected in relation to the magnitude increase. Key words: Seismic Geomagnetic Precursor (SGP), Interplanetary Seismic Precursor (ISP), Earth's magnetic field variations, earthquakes, prevision.

  12. The role of the Montello hill in the seismicity and active deformation of Southern Alps

    NASA Astrophysics Data System (ADS)

    Pondrelli, S.; Serpelloni, E.; Danesi, S.; Lovati, S.; Massa, M.; Mastrolembo Ventura, B.; Danecek, P.; Cavaliere, A.; Salimbeni, S.

    2013-12-01

    The most remarkable geomorphological feature of the eastern Southern Alps (northern Italy) is the Montello anticline, a ~15km long SSW-NNE elongated hill, sited ~40km north of Venice, and offset of ~15 km to the south from the main pede-Alpine thrust front. It has been generated by the uplift and the deformation produced by a S-verging blind thrust, constrained by morphotectonic analyses of uplifted river terraces and sub-surface data. Despite it is presently considered as one of the main S-verging seismogenic segments of the tectonically active Southern Alps thrust front, its real seismogenic potential is still matter of debate. Although the area has been hit in 1695 by a Mw 6.5 earthquake, the Montello is currently characterized by slower seismicity activity than its confining segments and geodetic deformation rates are at the mm/yr level. In order to study the present day crustal deformation at the fault-scale and to improve the detection of background seismicity associated to the 'seismically silent' Montello thrust and to understand its interseismic behavior, we have installed a temporary multi-parametric geophysical network, which integrates space geodetic (GPS) and seismological observations during the 2010-2011 time-interval, running semi-continuous GPS experiments from 2009 to 2013. We recorded 142 local events (compared to the 43 events located by the Italian Seismic Network), located with good reliability (rms < 0.5) with Ml between 1.5 and 3.5. The available continuous and semi-continuous GPS data show that ~2 mm/yr of N-S convergence are accommodated across this sector of the Southern Alps, but the deformation signal appears more complex than what expected by a single thrust fault. GPS, although preliminary and not sampling optimally possible lateral variations of the strain-rate field, show a remarkable change of the kinematics across the external Montello thrust front. The GPS and seismological data collected during the experiment suggest that the

  13. Geomorphology, active duplexing, and earthquakes within the Central Himalayan seismic gap

    NASA Astrophysics Data System (ADS)

    Morell, K. D.; Sandiford, M.; Rajendran, C. C.; Rajendran, K.

    2013-12-01

    The ~500 km long 'Central Himalayan seismic gap' of northwest India, is the largest section of the Himalaya that has not experienced a very large earthquake (Mw > 7.0) in the past 200-500 years. The slip deficit associated with this seismic quiescence has led many to suggest that the region is overdue for a great earthquake (Mw >8), an event which could be potentially devastating given the region's high population (>10 million). Despite the recognition that the region is under considerable seismic risk, the geometry of active fault structures that could potentially fail during large earthquakes remains poorly defined. This has arisen, to a certain extent, because moderate earthquakes, such as the Mw 6.3 1999 event near the city of Chamoli and the Mw 7.0 1991 earthquake near Uttarkashi (responsible for ~1000 deaths), have not produced obvious surface ruptures and do not appear to coincide with surficially mapped faults. We present new geomorphic and river longitudinal profile data that define a prominent ~400 km long distinctive geomorphic transition at the base of the high Himalaya in the seismic gap, defined as a sharp dividing line north of which there are significant increases in normalized river steepness (ksn), hillslope angles, and local relief. We interpret the morphologic changes across the geomorphic boundary to be produced due to a northward increase in rock uplift rate, given that the boundary cross-cuts mapped structures and lithologic contacts, yet coincides exactly with: 1) the axial trace of the geophysically-imaged ramp-flat transition in the Main Himalayan Thrust, 2) significant northward increases in instrumentally-recorded seismicity, and 3) an order of magnitude change in published Ar-Ar bedrock cooling ages. The available datasets suggest that such an increase in rock uplift rate is best explained by a ~400 km long by ~50 km wide active duplex along the Main Himalayan Thrust ramp, with the leading edge of the duplex giving rise to the

  14. Temporal Variations of Magnetic Field Associated with Seismic Activity at Cerro Machin Volcano, Colombia

    NASA Astrophysics Data System (ADS)

    Londono, J. M.; Serna, J. P.; Guzman, J.

    2011-12-01

    A study of magnetic variations was carried out at Cerro Machin Volcano, Colombia for the period 2009 -2010, with two permanent magnetometers located at South and North of the central dome, separated about 2.5 km each other. After corrections, we found that there is no clear correlation between volcanic seismicity and temporal changes of magnetic field for each magnetometer station, if they are analyzed individually. On the contrary, when we calculated the residual Magnetic field (RMF), for each magnetometer, and then we made the subtraction between them, and plot it vs time, we found a clear correlation of changes in local magnetic field with the occurrence of volcanic seismicity (ML >1.6). We found a change in the RMF between 1584 nT and 1608 nT, each time that a volcano-tectonic earthquake occurred. The máximum lapse time between the previous change in RMF and the further occurrence of the earthquake is 24 days, with an average of 11 days. This pattern occurred more than 9 times during the studied period. Based on the results, we believed that the simple methodology proposed here, is a good tool for monitoring changes in seismicity associated with activity at Cerro Machín volcano. We suggest that the temporal changes of RMF at Cerro Machín Volcano, are associated with piezo-magnetic effects, due to changes in strain-stress inside the volcano, produced by the interaction between local faulting and magma movement.

  15. Geological and tectonic implications obtained from first seismic activity investigation around Lembang fault

    NASA Astrophysics Data System (ADS)

    Afnimar; Yulianto, Eko; Rasmid

    2015-12-01

    The Lembang fault located at northern part of populated Bandung basin is the most conspicuous fault that potentially capable in generating earthquakes. The first seismic investigation around Lembang fault has been done by deploying a seismic network from May 2010 till December 2011 to estimate the seismic activities around that fault. Nine events were recorded and distributed around the fault. Seven events were likely to be generated by the Lembang fault and two events were not. The events related to the Lembang fault strongly suggest that this fault has left-lateral kinematic. It shows vector movement of Australian plate toward NNE might have been responsible for the Lembang fault kinematic following its initial vertical gravitational movement. The 1-D velocity model obtained from inversion indicates the stratigraphy configuration around the fault composed at least three layers of low Vp/Vs at the top, high Vp/Vs at the middle layer and moderate Vp/Vs at the bottom. In comparison with general geology of the area, top, mid and bottom layers may consecutively represent Quaternary volcanic layer, pre-Quaternary water-filled sedimentary layer and pre-Quaternary basement. Two eastern events related to minor faults and were caused by a gravitational collapse.

  16. Late Pleistocene to Present - normal and strike slip - faulting in the western Gulf of Corinth; data from high resolution seismic reflection SISCOR surveys

    NASA Astrophysics Data System (ADS)

    Beckers, Arnaud; Bodeux, Sarah; Beck, Christian; Hubert-Ferrari, Aurélia; Tripsanas, Efthymios; Sakellariou, Dimitris; De Batist, Marc; De Rycker, Koen; Bascou, Pascale; Versteeg, Willem

    2013-04-01

    The Gulf of Corinth is one of the fastest-spreading intracontinental rift on Earth, a 120km long E-W structure propagating westward toward the Aegean subduction zone. Present day kinematics (GPS data) indicates an opening direction oriented NNE-SSW and an opening rate increasing westward from 11 mm y-1 in the central part to 16 mm y-1 in the westernmost part. The high extension rate in the western part of the rift would imply a high seismic hazard if faults are not creeping. Our work concerns this western extremity of the Gulf of Corinth, for which we propose an accurate map of submarine faults. The map is based on two high-resolution seismic reflection surveys (single channel sparker) performed aboard HCMR's R/V ALKYON, within the frame of SISCOR ANR Project. About 600 km of seismic lines were acquired, with a 200 mstwt maximum penetration, down to what we infer to represent the MIS 5 discontinuity. The highlighted faults network can be described as follows. In the eastern part, where the water depth reaches 450m, the sedimentary infill is faulted by the known North Eratini, South Eratini and West Channel faults. At the longitude of the Trizonia Island, the seafloor in mainly horizontal and the only fault is the south dipping Trizonia fault. Between the Trizonia Island and the Mornos Delta, the shallower northern part of the gulf shows a diffuse pattern of deformation with faults striking mainly E-W and ESE-WNW. It shows south and north dipping normal faults, strike-slip faults, as well as an inherited basement relief. To the south of this complex fault network, numerous mass transport deposits coming from the Mornos Delta and from steep slopes at the western end of the Trizonia fault make the identification of active faults difficult. In the southern part of the rift, no fault has been observed between the Psatopyrgos fault bounding the southern side of the Gulf and the Mornos Delta. To the West, between the Mornos Delta and the Rion Straits, three main south

  17. Characterising volcanic activity of Piton de la Fournaise volcano by the spatial distribution of seismic velocity changes

    NASA Astrophysics Data System (ADS)

    Sens-Schoenfelder, C.; Pomponi, E.

    2013-12-01

    We apply Passive Image Interferometry to investigate the seismic noise recorded from October 2009 until December 2011 by 21 stations of the IPGP/OVPF seismic network installed on Piton de la Fournaise volcano within the UnderVolc project. The analyzed period contains three eruptions in 2009 and January 2010, two eruptions plus one dyke intrusion in late 2010, and a seismic crises in 2011. Seismic noise of vertical and horizontal components is cross-correlated to measure velocity changes as apparent stretching of the coda. For some station pairs the apparent velocity changes exceed 1% and a decorrelation of waveforms is observed at the time of volcanic activity. This distorts monitoring results if changes are measured with respect to a global reference. To overcome this we present a method to estimate changes using multiple references that stabilizes the quality of estimated velocity changes. We observe abrupt changes that occur coincident with volcanic events as well as long term transient signals. Using a simple assumption about the spatial sensitivity of our measurements we can map the spatial distribution of velocity changes for selected periods. Comparing these signals with volcanic activity and GPS derived surface deformation we can identify patterns of the velocity changes that appear characteristic for the type of volcanic activity. We can differentiate intrusive processes associated with inflation and increased seismic activity, periods of relaxation without seismicity and eruptions solely based on the velocity signal. This information can help to assess the processes acting in the volcano.

  18. Physical modeling of the formation and evolution of seismically active fault zones

    USGS Publications Warehouse

    Ponomarev, A.V.; Zavyalov, A.D.; Smirnov, V.B.; Lockner, D.A.

    1997-01-01

    Acoustic emission (AE) in rocks is studied as a model of natural seismicity. A special technique for rock loading has been used to help study the processes that control the development of AE during brittle deformation. This technique allows us to extend to hours fault growth which would normally occur very rapidly. In this way, the period of most intense interaction of acoustic events can be studied in detail. Characteristics of the acoustic regime (AR) include the Gutenberg-Richter b-value, spatial distribution of hypocenters with characteristic fractal (correlation) dimension d, Hurst exponent H, and crack concentration parameter Pc. The fractal structure of AR changes with the onset of the drop in differential stress during sample deformation. The change results from the active interaction of microcracks. This transition of the spatial distribution of AE hypocenters is accompanied by a corresponding change in the temporal correlation of events and in the distribution of event amplitudes as signified by a decrease of b-value. The characteristic structure that develops in the low-energy background AE is similar to the sequence of the strongest microfracture events. When the AR fractal structure develops, the variations of d and b are synchronous and d = 3b. This relation which occurs once the fractal structure is formed only holds for average values of d and b. Time variations of d and b are anticorrelated. The degree of temporal correlation of AR has time variations that are similar to d and b variations. The observed variations in laboratory AE experiments are compared with natural seismicity parameters. The close correspondence between laboratory-scale observations and naturally occurring seismicity suggests a possible new approach for understanding the evolution of complex seismicity patterns in nature. ?? 1997 Elsevier Science B.V. All rights reserved.

  19. The Evolution of the Campi Flegrei caldera (Italy): High- and low-frequency multichannel 2.5D seismic surveying for an amphibian IODP/ICDP drilling approach

    NASA Astrophysics Data System (ADS)

    Steinmann, Lena; Spiess, Volkhard; Sacchi, Marco

    2016-04-01

    Caldera-forming eruptions are considered as one of the most catastrophic natural events to affect the Earth's surface and human society. The half-submerged Campi Flegrei caldera, located in southern Italy, belongs to the world's most active calderas and, thus, has received particular attention in scientific communities and governmental institutions. Therefore, it has also become subject to a joint approach in the IODP and ICDP programmes. Despite ample research, no scientific consensus regarding the formation history of the Campi Flegrei caldera has been reached yet. So far, it is still under debate whether the Campi Flegrei caldera was formed by only one ignimbritic eruption, namely the Neapolitan Yellow Tuff (NYT) eruption at 15 ka or, if it is a nested-caldera system related to the NYT and the Campanian Ignimbrite (CI) eruption at 39 ka. In the last decades, the Campi Flegrei caldera has been characterized by short-term episodes of unrest involving considerable ground deformation (uplift and subsidence of several meters), seismicity and increased temperature at fumaroles. Furthermore, long-term deformation can be observed in the central part of the caldera with uplift rates of several tens of meters within a few thousand years. Recently, it has been proposed that the long-term deformation may be related to caldera resurgence, while short-term uplift episodes are probably triggered by the injection of magmatic fluids into a shallow hydrothermal system at ~2 km depth. However, both long-term and short term uplift could be interpreted as eruption precursor, thereby posing high-concern for a future eruption, which would expose more than 1.5 million people living in the surroundings of the volcanic district to extreme volcanic risks. During a joint Italian-German research expedition in 2008, a semi-3D grid (100-150 m profile spacing) of high-frequency (up to 1000 Hz) multichannel seismic data were acquired to support both the ongoing onshore ICDP and a proposed

  20. Melt-Triggered Seismic Response in Hydraulically-Active Polar Ice: Observations and Methods

    NASA Astrophysics Data System (ADS)

    Carmichael, Joshua D.

    occurrence at night relative to that in the day. Contrary to our expectations, we find that the timing of GPS-derived surface speeds do not clearly indicate this seismic activity on any given day. Rather, these icequakes are best explained by peaks in localized strain gradients that develop at night when decreased subglacial water flux likely increases variability in basal traction. Additionally, our results appear comprise the first detailed seismic observations targeted at an actively draining lake. Our last study addresses the apparent deficiency in observed basal icequakes detected from Greenland lake site. To explain the lack of deep icequakes, we compute thresholds on the magnitude of detectable basal events within the network and thereby illustrate that surficial icequakes with similar magnitudes and spectral content are more likely to be observed. By restricting our attention to seismic events that produce lower frequency waveforms, we find a population of nearly monochromatic, sub-1Hz, large magnitude ( M w ≤ 3) seismic events borne from remote glaciogenic sources. In contrast to surficial icequakes, these events occur without significant bias between day and/or night periods and are best explained as glacial earthquakes generated by sliding episodes or iceberg calving events in the vicinity of Jakobshavn Glacier. These events occur daily and not correlate with the presence of local, surficial seismicity. We conclude with three general assertions regarding melt-triggered response characteristics of polar ice. First, hydraulic connections established by fracture events do not necessarily result in seismogenic basal stick slip, and therefore cannot necessarily be observed with conventional GPS monitoring. This was demonstrated at Taylor Glacier. Here, meltwater input to a hydraulic pathway led to fracture growth deep within a cold glacier without any change in surface speed. Second, the presence of melt-triggered basal sliding does not necessarily induce a clear

  1. 2008 United States National Seismic Hazard Maps

    USGS Publications Warehouse

    Petersen, M.D.; and others

    2008-01-01

    The U.S. Geological Survey recently updated the National Seismic Hazard Maps by incorporating new seismic, geologic, and geodetic information on earthquake rates and associated ground shaking. The 2008 versions supersede those released in 1996 and 2002. These maps are the basis for seismic design provisions of building codes, insurance rate structures, earthquake loss studies, retrofit priorities, and land-use planning. Their use in design of buildings, bridges, highways, and critical infrastructure allows structures to better withstand earthquake shaking, saving lives and reducing disruption to critical activities following a damaging event. The maps also help engineers avoid costs from over-design for unlikely levels of ground motion.

  2. Broadband seismic monitoring of active volcanoes using deterministic and stochastic approaches

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Nakano, M.; Maeda, T.; Yepes, H.; Palacios, P.; Ruiz, M. C.; Arrais, S.; Vaca, M.; Molina, I.; Yamashina, T.

    2009-12-01

    We systematically used two approaches to analyze broadband seismic signals observed at active volcanoes: one is waveform inversion of very-long-period (VLP) signals in the frequency domain assuming possible source mechanisms; the other is a source location method of long-period (LP) and tremor using their amplitudes. The deterministic approach of the waveform inversion is useful to constrain the source mechanism and location, but is basically only applicable to VLP signals with periods longer than a few seconds. The source location method uses seismic amplitudes corrected for site amplifications and assumes isotropic radiation of S waves. This assumption of isotropic radiation is apparently inconsistent with the hypothesis of crack geometry at the LP source. Using the source location method, we estimated the best-fit source location of a VLP/LP event at Cotopaxi using a frequency band of 7-12 Hz and Q = 60. This location was close to the best-fit source location determined by waveform inversion of the VLP/LP event using a VLP band of 5-12.5 s. The waveform inversion indicated that a crack mechanism better explained the VLP signals than an isotropic mechanism. These results indicated that isotropic radiation is not inherent to the source and only appears at high frequencies. We also obtained a best-fit location of an explosion event at Tungurahua when using a frequency band of 5-10 Hz and Q = 60. This frequency band and Q value also yielded reasonable locations for the sources of tremor signals associated with lahars and pyroclastic flows at Tungurahua. The isotropic radiation assumption may be valid in a high frequency range in which the path effect caused by the scattering of seismic waves results in an isotropic radiation pattern of S waves. The source location method may be categorized as a stochastic approach based on the nature of scattering waves. We further applied the waveform inversion to VLP signals observed at only two stations during a volcanic crisis

  3. The Influence of Seismic Amplification and Distanced Surcharge on the Active Thrust on Earth-Reinforced Walls

    SciTech Connect

    Biondi, Giovani; Grassi, Francesco; Maugeri, Michele

    2008-07-08

    The paper describes a closed form pseudo-static solution for the estimation of the active earth-pressure coefficient for an earth-reinforced wall assuming a non-uniform profile of the seismic coefficients along the wall height and a distanced uniformly-distributed surcharge on the backfill surface. The static and seismic hydraulic conditions of the backfill are also accounted for. A parametric analysis is carried out and the obtained results are discussed.

  4. Results of a shallow seismic-refraction survey in the Little Valley area near Hemet, Riverside County, California

    USGS Publications Warehouse

    Duell, L.F., Jr.

    1995-01-01

    Little Valley, a small locally named valley southeast of the city of Hemet in Riverside County, California, is being evaluated for development of a constructed wetland and infiltration area as part of a water-resources management program in the area. The valley is a granitic basin filled with unconsolidated material. In August 1993 and June and July 1994, the U.S. Geological Survey conducted a seismic-refraction survey consisting of four lines northwest of the valley, eight lines in the valley, and six lines northeast of the valley. Two interpretations were made for the lines: a two-layer model yielded an estimate of the minimum depths to bedrock and a three-layer model yielded the most likely depths to bedrock. Results of the interpretation of the three-layer model indicate that the unsaturated unconsolidated surface layer ranges in thickness from 12 to 83 feet in the valley and 24 to 131 feet northeast of the valley. The mean compressional velocity for this layer was about 1,660 feet per second. A saturated middle layer was detected in some parts of the study area, but not in others--probably because of insufficient thickness in some places; however, in order to determine the "most likely" depths to bedrock, it was assumed that the layer was present throughout the valley. Depths to this layer were verified on three seismic lines using the water level from the only well in the valley. Data for additional verification were not available for wells near Little Valley. The bedrock slope from most of Little Valley is down toward the northeast. Bedrock profiles show that the bedrock surface is very uneven in the study area. The interpreted most likely depth to bedrock in the valley ranged from land surface (exposed) to a depth of 176 feet below land surface, and northeast of the valley it ranged from 118 to 331 feet below land surface. Bedrock depths were verified using lithologic logs from test holes drilled previously in the area. On the basis of a measured mean

  5. The ROBEX-ASN - A Concept Study for an active seismic Network on the Moon

    NASA Astrophysics Data System (ADS)

    Czeluschke, A.; Knapmeyer, M.; Sohl, F.; Bamberg, M.; Lange, C.; Luther, R.; Margonis, A.; Rosta, R.; Schmitz, N.; Robex Asn Study Team

    2014-04-01

    The Helmholtz Alliance "Robotic Exploration of Extreme Environments - ROBEX", brings together space and deep-sea researchers. The project partners are jointly developing technologies for the exploration of highly inaccessible terrains. The research on the Moon and in the deep sea would answer different scientific questions but should be addressed by a common method (seismic surveys) and technological solution. The overall goal is to develop a combination of a stationary system and one or more mobile elements. The stationary system would provide the energy supply and the possibility to exchange data between the elements and the ground station. The mobile elements will perform the actual scientific exploration in the deep sea or on the Moon. It is the overarching objective of the ROBEX Alliance is the equipment of these systems with innovative technologies for energy exchange and data transfer. Most processes should be conducted fully autonomously [4]. Science-critical decisions will be made semi-autonomously with Human-in-the Loop.

  6. Analysis of the seismicity activity of the volcano Ceboruco, Nayarit, Mexico

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ayala, N. A.; Nunez-Cornu, F. J.; Escudero, C. R.; Zamora-Camacho, A.; Gomez, A.

    2014-12-01

    The Ceboruco is a stratovolcano is located in the state of Nayarit,Mexico (104 ° 30'31 .25 "W, 21 ° 7'28 .35" N, 2280msnm). This is an volcano active, as part of the Trans-Mexican Volcanic Belt, Nelson (1986) reports that it has had activity during the last 1000 years has averaged eruptions every 125 years or so, having last erupted in 1870, currently has fumarolic activity. In the past 20 years there has been an increase in the population and socio-economic activities around the volcano (Suárez Plascencia, 2013); which reason the Ceboruco study has become a necessity in several ways. Recent investigations of seismicity (Rodríguez Uribe et al., 2013) have classified the earthquakes in four families Ceboruco considering the waveform and spectral features. We present analysis included 57 days of seismicity from March to October 2012, in the period we located 97 events with arrivals of P and S waves clear, registered in at least three seasons, three components of the temporal network Ceboruco volcano.

  7. Soft computing analysis of the possible correlation between temporal and energy release patterns in seismic activity

    NASA Astrophysics Data System (ADS)

    Konstantaras, Anthony; Katsifarakis, Emmanouil; Artzouxaltzis, Xristos; Makris, John; Vallianatos, Filippos; Varley, Martin

    2010-05-01

    This paper is a preliminary investigation of the possible correlation of temporal and energy release patterns of seismic activity involving the preparation processes of consecutive sizeable seismic events [1,2]. The background idea is that during periods of low-level seismic activity, stress processes in the crust accumulate energy at the seismogenic area whilst larger seismic events act as a decongesting mechanism releasing considerable energy [3,4]. A dynamic algorithm is being developed aiming to identify and cluster pre- and post- seismic events to the main earthquake following on research carried out by Zubkov [5] and Dobrovolsky [6,7]. This clustering technique along with energy release equations dependent on Richter's scale [8,9] allow for an estimate to be drawn regarding the amount of the energy being released by the seismic sequence. The above approach is being implemented as a monitoring tool to investigate the behaviour of the underlying energy management system by introducing this information to various neural [10,11] and soft computing models [1,12,13,14]. The incorporation of intelligent systems aims towards the detection and simulation of the possible relationship between energy release patterns and time-intervals among consecutive sizeable earthquakes [1,15]. Anticipated successful training of the imported intelligent systems may result in a real-time, on-line processing methodology [1,16] capable to dynamically approximate the time-interval between the latest and the next forthcoming sizeable seismic event by monitoring the energy release process in a specific seismogenic area. Indexing terms: pattern recognition, long-term earthquake precursors, neural networks, soft computing, earthquake occurrence intervals References [1] Konstantaras A., Vallianatos F., Varley M.R. and Makris J. P.: ‘Soft computing modelling of seismicity in the southern Hellenic arc', IEEE Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [2] Eneva M. and

  8. Soft computing analysis of the possible correlation between temporal and energy release patterns in seismic activity

    NASA Astrophysics Data System (ADS)

    Konstantaras, Anthony; Katsifarakis, Emmanouil; Artzouxaltzis, Xristos; Makris, John; Vallianatos, Filippos; Varley, Martin

    2010-05-01

    This paper is a preliminary investigation of the possible correlation of temporal and energy release patterns of seismic activity involving the preparation processes of consecutive sizeable seismic events [1,2]. The background idea is that during periods of low-level seismic activity, stress processes in the crust accumulate energy at the seismogenic area whilst larger seismic events act as a decongesting mechanism releasing considerable energy [3,4]. A dynamic algorithm is being developed aiming to identify and cluster pre- and post- seismic events to the main earthquake following on research carried out by Zubkov [5] and Dobrovolsky [6,7]. This clustering technique along with energy release equations dependent on Richter's scale [8,9] allow for an estimate to be drawn regarding the amount of the energy being released by the seismic sequence. The above approach is being implemented as a monitoring tool to investigate the behaviour of the underlying energy management system by introducing this information to various neural [10,11] and soft computing models [1,12,13,14]. The incorporation of intelligent systems aims towards the detection and simulation of the possible relationship between energy release patterns and time-intervals among consecutive sizeable earthquakes [1,15]. Anticipated successful training of the imported intelligent systems may result in a real-time, on-line processing methodology [1,16] capable to dynamically approximate the time-interval between the latest and the next forthcoming sizeable seismic event by monitoring the energy release process in a specific seismogenic area. Indexing terms: pattern recognition, long-term earthquake precursors, neural networks, soft computing, earthquake occurrence intervals References [1] Konstantaras A., Vallianatos F., Varley M.R. and Makris J. P.: ‘Soft computing modelling of seismicity in the southern Hellenic arc', IEEE Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [2] Eneva M. and

  9. Geology of the area of induced seismic activity at Monticello Reservoir, South Carolina

    SciTech Connect

    Secor, D.T. Jr.; Smith, W.A.; Snoke, A.W.; Peck, L.S.; Pitcher, D.M.; Prowell, D.C.; Simpson, D.H.

    1982-08-10

    This study provides geological background information necessary for an evaluation of the earthquake hazard in an area of induced seismic activity at Monticello Reservoir, South Carolina. This region contains a thick stratified sequence of Proterozoic Z and Cambrian metasedimentary and metavolcanic rocks. In the early to middle Paleozoic, this sequence was recrystallized and deformed under metamorphic conditions that ranged from greenschist to amphibolite facies and experienced at least two episodes of folding. The region has been intruded by late kinematic to postkinematic granitoid plutons of Silurian and Carboniferous ages and by numerous northwest trending diabase diks of Late Traissic and Early Jurassic age. The region south of Monticello Reservoir in the Carolina slate belt experienced two episodes of faulting in the late Paleozoic and/or early to middle Mesozoic. The older group of faults trends approximately east, has only small displacements, and is characterized by extensive silicifiction of the fault zones. The younger group of faults trends approximately north has experienced dip slip displacements up to 1700 m and is characterized by carbonate mineralization in the fault zones. Both sets of faults are cut by an undeformed diabase dike of Late Triassic or Early Jurassic age. The induced seismic activity around Monticello Reservoir is occurring in a heterogeneous quartz monzonite pluton of Carboniferous age. The pluton contains large enclaves of country rock and is cut by numerous, diversely oriented small faults and joint. These local inhomogeneities in the pluton together with an irregular stress field are interpreted to control the diffuse seismic activity around the reservoir. In view of the apparent absence of lengthy faults it is unlikely that a large-magnitude earthquake will occur in response to the stress and pore pressure changes related to the impoundment of Monticello Reservoir.

  10. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOEpatents

    He, W.; Anderson, R.N.

    1998-08-25

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

  11. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOEpatents

    He, Wei; Anderson, Roger N.

    1998-01-01

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.

  12. Movement of the Earth pole and the seismic activity in 2001-2012

    NASA Astrophysics Data System (ADS)

    Andreev, Aleksey; Zabbarova, Regina; Lapaeva, Valentina; Nefedyev, Yuri

    2014-05-01

    The relationship between the parameters which characterize the movement of the Earth pole and seismic activity are considered. The correlation of the considered parameters is studied. The discussions about the relationship of poles movement and irregularity in speed of Earth rotation with seismic activity were actively performed in 60- 70th years of last century. Mainly, the influence of seismicity on pole movement was considered in this works. In particular, the question about excitation of a pole by earthquakes chandler's fluctuations was studied. An interest in the similar researches continues till now. The chandler's movements investigations and their relation with rotation of the Earth and seismicity were proceeded. The correlation between appearance of earthquakes and abnormal evasion of time and latitude for the observatories located near an epicenter was also discussed. What changes in position of the Earth pole do occur as a result of the strongest earthquakes? To answer on this question it is necessary to study variations of "an average pole", where the basic periodic components in movement of a pole having amplitude 0.1"-0.3" are accepted. To perform the analysis of the pole co-ordinates (X and Y) the International service of the Earth rotation for 1995-2012 have been considered. Linear Orlov-Saharov transformation has been applied to an exception of the periodic movement. On the basis of this positions changes of an average pole (aperiodicity displacement and long periodical variations of an axis of rotation in a Earth body) have been calculated with an interval of 0.1 years. Was found the changes of position of an average pole of the Earth was preceded the most considerable seismic events of the beginning of 21 century. As a whole, the increase of seismic activity has begun after 2002 only. For example, there were 2 strong earthquakes with magnitude 7 and more (Salvador, India) in 2001 , 2 earthquakes (Tajikistan, Taiwan) occurred in 2002, and 5

  13. The 2013 earthquake swarm in Helike, Greece: seismic activity at the root of old normal faults

    NASA Astrophysics Data System (ADS)

    Kapetanidis, V.; Deschamps, A.; Papadimitriou, P.; Matrullo, E.; Karakonstantis, A.; Bozionelos, G.; Kaviris, G.; Serpetsidaki, A.; Lyon-Caen, H.; Voulgaris, N.; Bernard, P.; Sokos, E.; Makropoulos, K.

    2015-09-01

    The Corinth Rift in Central Greece has been studied extensively during the past decades, as it is one of the most seismically active regions in Europe. It is characterized by normal faulting and extension rates between 6 and 15 mm yr-1 in an approximately N10E° direction. On 2013 May 21, an earthquake swarm was initiated with a series of small events 4 km southeast of Aigion city. In the next days, the seismic activity became more intense, with outbursts of several stronger events of magnitude between 3.3 and 3.7. The seismicity migrated towards the east during June, followed by a sudden activation of the western part of the swarm on July 15th. More than 1500 events have been detected and manually analysed during the period between 2013 May 21 and August 31, using over 15 local stations in epicentral distances up to 30 km and a local velocity model determined by an error minimization method. Waveform similarity-based analysis was performed, revealing several distinct multiplets within the earthquake swarm. High-resolution relocation was applied using the double-difference algorithm HypoDD, incorporating both catalogue and cross-correlation differential traveltime data, which managed to separate the initial seismic cloud into several smaller, densely concentrated spatial clusters of strongly correlated events. Focal mechanism solutions for over 170 events were determined using P-wave first motion polarities, while regional waveform modelling was applied for the calculation of moment tensors for the 18 largest events of the sequence. Selected events belonging to common spatial groups were considered for the calculation of composite mechanisms to characterize different parts of the swarm. The solutions are mainly in agreement with the regional NNE-SSW extension, representing typical normal faulting on 30-50° north-dipping planes, while a few exhibit slip in an NNE-SSW direction, on a roughly subhorizontal plane. Moment magnitudes were calculated by spectral analysis

  14. Preliminary Results from the iMUSH Active Source Seismic Experiment

    NASA Astrophysics Data System (ADS)

    Levander, Alan; Kiser, Eric; Palomeras, Imma; Zelt, Colin; Schmandt, Brandon; Hansen, Steve; Harder, Steven; Creagar, Kenneth; Vidale, John; Abers, Geoffrey

    2015-04-01

    iMUSH (imaging Magma Under Saint Helens) is a US NSF sponsored multi-disciplinary investigation of Mount Saint Helens (MSH), currently the most active volcano in the Cascades arc in the northwestern United States. The project consists of active and passive seismic experiments, extensive magnetotelluric sounding, and geological/geochemical studies involving scientists at 7 institutions in the U.S. and Europe. The long-term goal of the seismic project is to combine analysis of the active source data with that of data from the 70 element broadband seismograph operating from summer 2014 until 2016. Combining seismic and MT analyses with other data, we hope to image the MSH volcanic plumbing system from the surface to the subducting Juan de Fuca slab. Here we describe preliminary results of the iMUSH active source seismic experiment, conducted in July and August 2014. The active source experiment consisted of twenty-three 454 or 908 kg weight shots recorded by ~3500 seismographs deployed at ~6,000 locations. Of these instruments, ~900 Nodal Seismic instruments were deployed continuously for two weeks in an areal array within 10 km of the MSH summit. 2,500 PASSCAL Texan instruments were deployed twice for five days in 3 areal arrays and 2 dense orthogonal linear arrays that extended from MSH to distances > 80 km. Overall the data quality from the shots is excellent. The seismograph arrays also recorded dozens of micro-earthquakes beneath the MSH summit and along the MSH seismic zone, and numerous other local and regional earthquakes. In addition, at least one low frequency event beneath MSH was recorded during the experiment. At this point we have begun various types of analysis of the data set: We have determined an average 1D Vp structure from stacking short-term/long-term average ratios, we have determined the 2-D Vp structure from ray-trace inversions along the two orthogonal profiles (in the NW-SE and NE-SW directions), and we have made low-fold CMP stacks of the

  15. Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 96LCA04 in Lakes Mabel and Starr, Central Florida, August 1996

    USGS Publications Warehouse

    Harrison, Arnell S.; Dadisman, Shawn V.; Swancar, Amy; Tihansky, Ann B.; Flocks, James G.; Wiese, Dana S.

    2008-01-01

    In August of 1996, the U.S. Geological Survey conducted geophysical surveys of Lakes Mabel and Starr, central Florida, as part of the Central Highlands Lakes project, which is part of a larger USGS Lakes and Coastal Aquifers (LCA) study. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, Geographic Information System (GIS) files, observer's logbook; and formal Federal Geographic Data Committee (FGDC) metadata. Filtered and gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansions of acronyms and abbreviations used in this report. For detailed information about the hydrologic setting of Lake Starr and the interpretation of some of these seismic reflection data, see Swancar and others (2000) at http://fl.water.usgs.gov/publications/Abstracts/wri00_4030_swancar.html. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. The USGS Florida Integrated Science Center (FISC) - St. Petersburg assigns a unique identifier to each cruise or field activity. For example, 96LCA04 tells us the data were collected in 1996 for the Lakes and Coastal Aquifers (LCA) study and the data were collected during the fourth field activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. The boomer plate is an acoustic energy source that consists of capacitors charged to a high voltage and discharged through a transducer in the water. The transducer is towed on a sled floating on the water surface and when

  16. 75 FR 27563 - Agency Information Collection Activities: Voluntary Customer Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Voluntary Customer... Voluntary Customer Survey. This request for comment is being made pursuant to the Paperwork Reduction Act of... following information collection: Title: Voluntary Customer Survey. OMB Number: Will be assigned...

  17. Field Report on the iMUSH Active Source Seismic Experiment

    NASA Astrophysics Data System (ADS)

    Kiser, E.; Levander, A.; Schmandt, B.; Palomeras, I.; Harder, S. H.; Creager, K. C.; Vidale, J. E.; Malone, S. D.

    2014-12-01

    In the second half of July we completed the iMUSH active source seismic experiment, one component of the Imaging Magma Under Saint Helens project. A team of ~75 volunteers deployed 3500 seismographs to ~5920 locations on and around Mount St. Helens over the course of 3 weeks. This instrument deployment was accompanied by 23 shots distributed around the volcano. Instrumentation consisted of ~2550 Reftek 125A (Texan) seismographs with 4.5 Hz geophones, and 920 Nodal Seismic recorders with 10 Hz geophones. The shots were also recorded by the permanent stations of the Pacific Northwest Seismograph Network and 70 iMUSH broadband seismographs. Fifteen of the shots, 424 kg each, formed two rings around Mount Saint Helens at 15 km and 30 km radius from the summit. Eight of the shots, 828 kg each, were fired at distances of 50 to 80 km from MSH on NW-SE and NE-SW azimuths. The deployment geometry consisted of two lines oriented NW/SE and NE/SW, and three arrays. The offset of the lines ranged from 150 km to 190 km with an average spacing of 200 m. The first array was centered on the volcano with a radius of 30 km, and required both driving and hiking to deploy. Arrays two and three were set out with, and centered on, the NW/SE line. These arrays had a distance range from MSH of 30-75 km and an azimuth range of about 100 degrees. In addition to this large-scale deployment, we set out 7 beamforming arrays approximately collocated with iMUSH broadband seismographs, and above clusters of seismicity in the region. The aperture of these arrays was about 1 km with an instrument spacing of 100 m. The final deployment ended only days before the AGU abstract deadline, so we have not yet examined all of the data. However, the preliminary indications are that signal to noise is excellent: The shots, several of which registered on PNSN as ML>2.1, carried across the entire array, and were recorded as far away as Seattle and Corvallis on permanent stations. The array also recorded a

  18. Geoazur's contribution in instrumentation to monitor seismic activity of the Earth

    NASA Astrophysics Data System (ADS)

    Yates, B.; Hello, Y.; Anglade, A.; Desprez, O.; Ogé, A.; Charvis, P.; Deschamps, A.; Galve, A.; Nolet, G.; Sukhovich, A.

    2011-12-01

    Seismic activity in the earth is mainly located near the tectonic plate boundaries, in the deep ocean (expansion centers) or near their margins (subduction zones). Travel times and waveforms of recorded seismograms can be used to reconstruct the three-dimensional wave speed distribution in the earth with seismic tomography or to image specific boundaries in the deep earth. Because of the lack of permanent sea-bottom seismometers these observation are conducted over short period of time using portable ocean bottom seismometers. Geaozur has a long experience and strong skills in designing and deploying Ocean Bottom Seismometers all over the world. We have developed two types of ocean bottom instruments. The "Hippocampe" for long deployment and "Lady bug" for aftershock monitoring or for fast overlaps during wide angle experiments. Early warning systems for tsunamis and earthquakes have been developed in recent years but these need real time data transmission and direct control of the instrument. We have developed a permanent real time Broad Band instrument installed in the Mediterranean Sea and connected to the Antares Neutrinos telescope. This instrument offers all the advantages of a very heavy and costly installation, such as the ability to do real-time seismology on the seafloor. Such real-time seafloor monitoring is especially important for seismic hazard. Major earthquakes cause human and economic losses directly related to the strong motion of the ground or by induced phenomena such as tsunamis and landslides. Fiber optical cables provide a high-capacity lightweight alternative to traditional copper cables. Three-component sensors analyze permanently the noise signal and detect the events to record. Major events can force the network to transmit data with almost zero lag time. The optical link also allows us to retrieve events at a later date. However, OBSs alone can never provide the density and long term, homogeneous data coverage needed for local and global

  19. Fault mirrors of seismically active faults: A fossil of small earthquakes at shallow depths

    NASA Astrophysics Data System (ADS)

    Kuo, L.; Song, S.; Suppe, J.

    2013-12-01

    Many faults are decorated with naturally polished and glossy surfaces named fault mirrors (FMs) formed during slips. The characterization of FMs is of paramount importance to investigate physico-chemical processes controlling dynamic fault mechanics during earthquakes. Here we present detailed microstructural and mineralogical observations of the FMs from borehole cores of seismically active faults. The borehole cores were recovered from 600 to 800 m depth located in the hanging wall of the Hsiaotungshi fault in Taiwan which ruptured during 1935 Mw7.1 Hsinchu-Taichung earthquake. Scanning electron microscope (SEM) images of FMs show that two distinct textural domains, fault gouge and coated materials (nanograins, melt patchs, and graphite), were cut by a well-defined boundary. Melt patches and graphite, determined by X-ray diffraction (XRD), Transmission electron microscope (TEM), and SEM-EDS analysis, were found to be distributed heterogeneously on the slip surfaces. On the basis of the current kinematic cross section of the Hsiaotungshi fault, all the FMs were exhumed less than 5 km, where ambient temperatures are less than 150°C. It seems that the amorphous materials on the FMs were generated by seismic slips. The sintering nanograins coating the slip surfaces was also suggested to be produced at high slip rates from both natural observation and recent rock deformation experiments. In addition, graphite could be produced by seismic slips and lubricate the fault based on the rock deformation experiments. Our observation suggests that the FMs were composed of several indicators of coseismic events (melt patches, sintering nanograins, and graphite) corresponding to small thermal perturbation generated by seismic slips. Although the contribution of these coseismic indicators on frictional behavior remains largely unknown, it suggests that multiple dynamic weakening mechanisms such as flash heating, powder lubrication and graphitization may be involved during

  20. 4D seismic study of active gas seepage systems on the Vestnesa Ridge, offshore W-Svalbard

    NASA Astrophysics Data System (ADS)

    Bünz, Stefan; Plaza-Faverola, Andreia; Hurter, Sandra; Mienert, Jürgen

    2014-05-01

    Active gas venting occurs on the Vestnesa Ridge, an elongated sediment drift north of the Molloy Transform and just east of the Molloy Ridge, one of the shortest segments of the slow spreading North-Atlantic Ridge system. The crest of the Vestnesa Ridge at water depth between 1200-1300 m is pierced with fluid-flow features. Seafloor pockmarks vary in size up to 1 km in diameter. High-resolution P-Cable 3D seismic data acquired in 2012 show vertical focused fluid flow features beneath the seafloor pockmarks. These co-called chimneys extend down to the free-gas zone underneath a bottom-simulating reflection. Here, they link up with small fault systems that might provide pathways to the deeper subsurface. The chimney features show a high variability in their acoustic characteristics with alternating blanked or masked zones and high-amplitude anomalies scattered through the whole vertical extent of the chimneys. The amplitude anomalies indicate high-impedance contrasts due to the likely presence of gas or a high-velocity material like gas hydrates or carbonates. We re-acquired the 3D seismic survey in 2013 for time-lapse seismic studies in order to better understand the origin of the amplitude anomalies and in order to track potentially migrating gas fronts up along the chimney structure. Here, we will present the preliminary results of this time-lapse analysis, which will allow us to better understand gas migration and seafloor plumbing systems in continental margins. This work is part of CAGE - Centre of Excellence for Arctic Gas Hydrate, Environment and Climate. Details on the CAGE research plan and organization can be found on www.cage.uit.no to foster opportunities for cross-disciplinary collaboration. Based in Tromsø, at the world's northernmost University, CAGE establishes the intellectual and infrastructure resources for studying the amount of methane hydrate and magnitude of methane release in Arctic Ocean environments on time scales from the Neogene to the

  1. Overdeepened glacigenic landforms in Lake Thun (Switzerland) revealed by a multichannel reflection seismic survey

    NASA Astrophysics Data System (ADS)

    Fabbri, Stefano; Herwegh, Marco; Schlunegger, Fritz; Hübscher, Christian; Weiss, Benedikt J.; Schmelzbach, Cédric; Horstmeyer, Heinrich; Buechi, Marius W.; Anselmetti, Flavio S.

    2016-04-01

    Recently acquired high-resolution multibeam bathymetry, in combination with a 2D multichannel reflection seismic campaign on perialpine Lake Thun (Switzerland) reveals new insights into the diverse geometry of the lake basin and a so far unknown subaquatic moraine crest with unprecedented clarity. These new data will improve our comprehension concerning the retreat phases of the Aare glacier, the morphology of its proximal deposits and the facies architecture of the subglacial units. The overdeepened basin of Lake Thun was formed by a combination of tectonically predefined weak zones and glacial erosion during the last glacial periods. The new data indicate that below the outermost edge of a morphologically distinct platform in the south eastern part of the lake basin, a ridge structure marked by strong reflection amplitudes occurs. This structure is interpreted as a subaquatic terminal moraine crest, most likely created by a slightly advancing or stagnant grounded Aare glacier during its major retreating phase. The terminal moraine smoothly transforms downstream into well distinguishable foresets with internally recognisable layering, which dip steeply towards the deepest part of the basin, eventually transforming into bottomsets. This depositional sequence formed by the fore- and bottomsets represents ˜50% of the overall sediment volume that fills the basin and was deposited while the glacier was stagnant, interpreted to represent a rather short period of time of a few hundreds of years. This sequence is overlain by lacustrine deposits formed by late-glacial and Holocene laminated muds comprising intercalated turbidites (Wirth et al. 2011). Little is known about the exact timing and behaviour of retreating glaciers between their recessional phase from the Alpine foreland to the deglaciation of the inner-Alpine ice cap, mostly due to the lack of well-developed moraines that indicate glacial stabilization or slight readvance. Findings from pollen analyses by

  2. Gpr and Seismic Based Non-Destructive Geophysical Survey for Reinforcement of Historical Fire Tower of Sopron-Hungary

    NASA Astrophysics Data System (ADS)

    Kanli, A. I.; Taller, G.; Nagy, P.; Tildy, P.; Pronay, Z.; Toros, E.

    2013-12-01

    The Fire-Tower which is located in the main square at the hearth of Sopron is the symbol of the city. The museum of Sopron exists in the Storno-house west from the tower. The new city hall stands next to the tower to the east. Funds are from the roman age while the tower was first mentioned in writing in 1409. In 1676, it was burned down to the ground, but re-constructed. In 1894, the old City Hall was deconstucted, but the tower became unstable. István Kiss and Frigyes Schulek saved it by the walling up of the gate. In the year 1928, the scuptures of the main gate which symbolizes the fidelity of the town was sculpted by Zsigmond Kisfaludy Strobl. The old building was deconstructed from its west side, a new concrate museum was built in 1970. After years, important renovation and reinforcement studies had to be needed. For this aim, during the renovation and reinforcement studies, GPR and Seismic based non-destructive geophysical surveys were carried out before and after cement injection to observe the changes of the wall conditions of the historical tower located in Sopron-Hungary for understanding the success of the reinforcements studies. In the GPR survey, 400 MHz and 900 MHz antennas were used. The space between each profiles were taken as 0.5 m for 400 MHz and 0.25m for 900 MHz respectively. After the injection process, reflections from the fractured and porous zones were weakened imaged clearly by GPR data and significant rise of the p-wave velocities were observed.

  3. Time Variation of Seismic Anisotropy, Stress and Cracks on Active Volcanoes (Invited)

    NASA Astrophysics Data System (ADS)

    Savage, M. K.

    2013-12-01

    We summarize measurements of seismic anisotropy and its relation to other geophysical measurements of stress and cracks on eleven active volcanoes; Unzen (Unz), Sakurajima (Sak), Aso, Asama (Asm) and Kirishima (Kir) in Japan; Okmok (Okm) in Alaska, Ruapehu (Rua) and Tongariro (Ton) in New Zealand, Soufriere Hills (Sou) in Montserrat, Kilauea (Kil) in Hawaii and Piton de la Fournaise (PdF) in La Reunion. We used the MFAST shear wave splitting computer code, an objective code that is fully automatic except for the S arrival pick. Fast polarization directions (phi) should be parallel to cracks and hence the maximum horizontal stress direction. Time delays (dt) increase with path length and percent anisotropy, usually related to crack density. Where possible we used S waves from deep earthquakes to ensure that the movement of the earthquakes was not correlated with the volcanic activity. At some volcanoes we used families of repeating events with similar waveforms and at most volcanoes we also computed splitting at earthquakes local to the volcano. We compared the phi and dt variation in time to eruption occurrences and to other available parameters including seismicity rate, b-values, focal mechanisms, isotropic velocity changes from noise cross-correlation, Vp/Vs ratios, Geodetic measurements such as GPS and tilt, and gas flux. All volcanoes had some stations with excellent shear wave arrivals that yielded measureable splitting. Individual measurements showed scatter in most areas, but at most of the volcanoes, moving averages of phi or dt (or both) yielded time variations that correlated with other measurements related to volcanic activity or to stress changes or changes in crack-filling material such as gas flux. The multiplet studies did not yield slowly varying splitting but instead showed distinct jumps in splitting parameters at various times, which appears to be caused in part by cycle skipping. Time resolution of changes depends on the seismicity available

  4. Thermal anomalies in fumaroles at Vulcano island (Italy) and their relationship with seismic activity and stress-induced permeability changes

    NASA Astrophysics Data System (ADS)

    Madonia, Paolo; Cusano, Paola; Diliberto, Iole Serena; Cangemi, Marianna

    2016-04-01

    Fumarole thermal monitoring is a useful tool in the evaluation of volcanic activity, since temperatures strongly relate to the upward flux of magmatic volatiles. Once depurated from meteorological noise, their variations can reflect permeability changes due to crustal stress dynamics eventually associated to seismic activity. In this work, we discuss a fumarole temperature record acquired in the period September 2009 - May 2012 at Vulcano island (Italy), during which changes of volcanic state, local seismic activity and teleseisms occurred. Apart from positive thermal anomalies driven by increments in volcanic activity, we observed 3 episodes at least of concurrence between tectonic earthquakes and fumarole temperature increments, with particular reference to the local August 16th, 2010 Lipari earthquake, the March 11th, 2011 Sendai-Honshu (Japan) earthquake and a seismic swarm occurred along the Tindari-Letojanni fault in July-August 2011. We interpreted the seismic-related anomalies as "crustal fluid transients", i.e. signals of volcanogenic vapour flow variations induced by stress-induced permeability changes. From this perspective fumarolic activity can be considered as a tracer of geodynamic instability but, since seismic and volcanic phenomena are in mutual cause-effect relationships, a multidisciplinary observation system is mandatory for correctly addressing thermal data interpretation.

  5. Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey, PSInSAR and Kinematic Structural Analysis

    SciTech Connect

    Teplow, William J.; Warren, Ian

    2015-08-12

    The DOE cost-share program applied innovative and cutting edge seismic surveying and processing, permanent scatter interferometry-synthetic aperture radar (PSInSAR) and structural kinematics to the exploration problem of locating and mapping largeaperture fractures (LAFs) for the purpose of targeting geothermal production wells. The San Emidio geothermal resource area, which is under lease to USG, contains production wells that have encountered and currently produce from LAFs in the southern half of the resource area (Figure 2). The USG lease block, incorporating the northern extension of the San Emidio geothermal resource, extends 3 miles north of the operating wellfield. The northern lease block was known to contain shallow thermal waters but was previously unexplored by deep drilling. Results of the Phase 1 exploration program are described in detail in the Phase 1 Final Report (Teplow et al., 2011). The DOE cost shared program was completed as planned on September 30, 2014. This report summarizes results from all of Phase 1 and 2 activities.

  6. Assessment of Stress-Strain State of Seismically Active Region of Armenia According to the Results of Hydrogeodynamic Monitoring

    NASA Astrophysics Data System (ADS)

    Munkhsaikhan, A.; Avetyan, R.; Pashayan, R.

    2015-12-01

    Results of hydrogeodynamic monitoring, data of the chemical analysis of water were compared with seismic regime of the region aiming to study and evaluate stress-strain state of earth crust of Central Armenia during 2010-2014. Methodolgy of processing water level data came down to allocating tectonic-seismic stress taking into account the following factors: atmosphere pressure, precipitations, size of snow cover and tidal variations. The overall picture of the stress-strain state of the territory yearly was defined by calculated value of deformations around each hydrogeodynamic borehole taking into account the number of seismic events which occurred during that period. Maps of the isolines of equal values of deformations were drawn which reflect space-time regularity of the modern geodynamics of Armenia. The resluts of the correlation between parametres of hydrogeochemical effects and charaectreristics of earthquakes have shown that statistically significant connection between effect parametres (effect time, extremum time) and characteristics of seismic events (energetic class, epicentral distance ) was determined for the changes of parameters of the chemical composition of underground water. Histogram of changes of values of geochemical components of waters of mineral springs in space was drawn for the period of monitoring observations. The analysis of data allowed allocating more informative parameters of chemical composition of mineral water: gas component-carbon dioxide (CO2). Magnesium -Mg2+, chloride -Cl- where allocated from the macrocomponenet composition. According to the catalogue of seismic data there was drawn diagram of the frequency of earthquakes, reflecting the distribution of the earthquake number according to magnitude M (according to rule LgN=a-bM) in logarithmic scale. Coefficient of seismic activity was calculated - a, by which variations seismic activity of the region is evaluated. Thus, modern tectonic movements of earth crust of Armenia are

  7. Seismic monitoring of torrential and fluvial processes

    NASA Astrophysics Data System (ADS)

    Burtin, Arnaud; Hovius, Niels; Turowski, Jens M.

    2016-04-01

    In seismology, the signal is usually analysed for earthquake data, but earthquakes represent less than 1 % of continuous recording. The remaining data are considered as seismic noise and were for a long time ignored. Over the past decades, the analysis of seismic noise has constantly increased in popularity, and this has led to the development of new approaches and applications in geophysics. The study of continuous seismic records is now open to other disciplines, like geomorphology. The motion of mass at the Earth's surface generates seismic waves that are recorded by nearby seismometers and can be used to monitor mass transfer throughout the landscape. Surface processes vary in nature, mechanism, magnitude, space and time, and this variability can be observed in the seismic signals. This contribution gives an overview of the development and current opportunities for the seismic monitoring of geomorphic processes. We first describe the common principles of seismic signal monitoring and introduce time-frequency analysis for the purpose of identification and differentiation of surface processes. Second, we present techniques to detect, locate and quantify geomorphic events. Third, we review the diverse layout of seismic arrays and highlight their advantages and limitations for specific processes, like slope or channel activity. Finally, we illustrate all these characteristics with the analysis of seismic data acquired in a small debris-flow catchment where geomorphic events show interactions and feedbacks. Further developments must aim to fully understand the richness of the continuous seismic signals, to better quantify the geomorphic activity and to improve the performance of warning systems. Seismic monitoring may ultimately allow the continuous survey of erosion and transfer of sediments in the landscape on the scales of external forcing.

  8. Geomorphic evidence of active faults growth in the Norcia seismic area (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Materazzi, Marco; Aringoli, Domenico; Farabollini, Piero; Giacopetti, Marco; Pambianchi, Gilberto; Tondi, Emanuele; Troiani, Francesco

    2016-04-01

    Fault-growth by segment linkage is one of the fundamental processes controlling the evolution, in both time and the space, of fault systems. In fact, step-like trajectories shown by length-displacement diagrams for individual fault arrays suggest that the development of evolved structures result by the linkage of single fault segments. The type of interaction between faults and the rate at which faults reactivate not only control the long term tectonic evolution of an area, but also influence the seismic hazard, as earthquake recurrence intervals tend to decrease as fault slip rate increase. The use of Geomorphological investigations represents an important tool to constrain the latest history of active faults. In this case, attention has to be given to recognize morphostructural, historical, environmental features at the surface, since they record the long-term seismic behavior due to the fault growth processes (Tondi and Cello, 2003). The aim of this work is to investigate the long term morphotectonic evolution of a well know seismic area in the central Apennines: the Norcia intramontane basin (Aringoli et al., 2005). The activity of the Norcia seismic area is characterized by moderate events and by strong earthquakes with maximum intensities of X-XI degrees MCS and equivalent magnitudes around 6.5±7.0 (CPTI, 2004). Based on the morphostructural features as well as on the historical seismicity of the area, we may divide the Norcia seismic area into three minor basins roughly NW-SE oriented: the Preci sub-basin in the north; the S. Scolastica and the Castel S. Maria sub-basins in the south. The wider basin (S. Scolastica) is separated from the other two by ridges transversally oriented with respect the basins themselves; they are the geomorphological response to the tectonic deformation which characterizes the whole area. Other geomorphological evidences of tectonic activity are represented by deformation of old summit erosional surfaces, hydrographic network

  9. Structure of the active rift zone and margins of the northern Imperial Valley from Salton Seismic Imaging Project (SSIP) data

    NASA Astrophysics Data System (ADS)

    Livers, A.; Han, L.; Delph, J. R.; White-Gaynor, A. L.; Petit, R.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2012-12-01

    First-arrival refraction data were used to create a seismic velocity model of the upper crust across the actively rifting northern Imperial Valley and its margins. The densely sampled seismic refraction data were acquired by the Salton Seismic Imaging Project (SSIP) , which is investigating rift processes in the northern-most rift segment of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. A 95-km long seismic line was acquired across the northern Imperial Valley, through the Salton Sea geothermal field, parallel to the five Salton Butte volcanoes and perpendicular to the Brawley Seismic Zone and major strike-slip faults. Nineteen explosive shots were recorded with 100 m seismometer spacing across the valley and with 300-500 m spacing into the adjacent ranges. First-arrival travel times were picked from shot gathers along this line and a seismic velocity model was produced using tomographic inversion. Sedimentary basement and seismic basement in the valley are interpreted to be sediment metamorphosed by the very high heat flow. The velocity model shows that this basement to the west of the Brawley Seismic Zone is at ~4-km depth. The basement shallows to ~2-km depth in the active geothermal field and Salton Buttes volcanic field which locally coincide with the Brawley Seismic Zone. At the eastern edge of the geothermal field, the basement drops off again to ~3.5-km depth. The eastern edge of the valley appears to be fault bounded by the along-strike extension of the Sand Hills Fault, an inactive strike-slip fault. The seismic velocities to the east of the fault correspond to metamorphic rock of the Chocolate Mountains, different from the metamorphosed basement in the valley. The western edge of the valley appears to be fault bounded by the active Superstition Hills Fault. To the west of the valley, >4-km deep valley basement extends to the active Superstition Hills Fault. Basement then shallows

  10. US Geological Survey activities, fiscal year 1981

    SciTech Connect

    Not Available

    1981-01-01

    Activities in Alaska, Mount St. Helens, leasing and regulatory procedure, coal, royalty management, water data telemetry, acid rain, hazardous wastes, oil and gas resources, and digital cartography are reviewed. Chemical and nuclear wastes and petroleum exploration in Alaska are discussed. Management issues are addressed. Mapping activities are reported. Water resources, conservation, and earth sciences, are also reviewed.

  11. Seismic protection of frame structures via semi-active control: modeling and implementation issues

    NASA Astrophysics Data System (ADS)

    Gattulli, Vincenzo; Lepidi, Marco; Potenza, Francesco

    2009-12-01

    Theoretical and practical issues concerning the multi-faceted task of mitigating the latero-torsional seismic response of a prototypal frame structure with asymmetric mass distribution are approached. Chevron braces with embedded magnetorheological dampers acting on the interstory drift are used to ensure additional energy dissipation. The semi-active control strategy employed to govern the modification of the damper characteristics via feedback is based on the selection of optimal forces according to a H2/LQG criterion, with respect to which the actual forces are regulated by a clipped-optimal logic. A dynamic observer is used to estimate the state through a non-collocated placement of the acceleration sensors. Several aspects to be addressed throughout the complex process including the design, modelization, and implementation phases of semi-active protection systems are discussed. Finally, experimental results obtained to mitigate the motion induced by ground excitation in a large-scale laboratory prototype, simulating the seismic response of a two-story building, are summarized.

  12. Possibilities for Observations of Electromagnetic Perturbations Related to Seismic Activity with Swarm Satellites

    NASA Astrophysics Data System (ADS)

    De Santis, A.; Mandea, M.; Balasis, G.

    2014-12-01

    It has been suggested that intense seismic activity might generate upward electromagnetic (EM) perturbations that can be detected by ground-based and low altitude spaceborne measurements. For instance, DEMETER satellite (2004-2010) very low frequency (VLF) wave observations pointed out a statistically significant decrease of the measured ionospheric wave intensity a few hours before large shallow earthquakes (EQs). This result would confirm the existence of a lithosphere-atmosphere-ionosphere coupling before the occurrence of an impending significant EQ. Swarm offers a great opportunity to study EM perturbations possibly related to seismic activity because it is a multi-satellite low Earth orbit (LEO) mission with a unique space-time configuration able to measure both electric and magnetic fields at various altitudes in the topside ionosphere. Here, we are analyzing, using various signal processing techniques, Swarm measurements shortly before and after large shallow EQs (magnitude above 7 and depth < 40 km) that occurred in the first year of the mission and report on the initial results of our analysis.

  13. Estimating activity-related energy expenditure under sedentary conditions using a tri-axial seismic accelerometer.

    PubMed

    van Hees, Vincent T; van Lummel, Rob C; Westerterp, Klaas R

    2009-06-01

    Activity-related energy expenditure (AEE) is difficult to quantify, especially under sedentary conditions. Here, a model was developed using the detected type of physical activity (PA) and movement intensity (MI), based on a tri-axial seismic accelerometer (DynaPort MiniMod; McRoberts B.V., The Hague, the Netherlands), with energy expenditure for PA as a reference. The relation between AEE (J/min/kg), MI, and the type of PA was determined for standardized PAs as performed in a laboratory including: lying, sitting, standing, and walking. AEE (J/min/kg) was calculated from total energy expenditure (TEE) and sleeping metabolic rate (SMR) as assessed with indirect calorimetry ((TEEx0.9)-SMR). Subsequently, the model was validated over 23-h intervals in a respiration chamber. Subjects were 15 healthy women (age: 22+/-2 years; BMI: 24.0+/-4.0 kg/m2). Predicted AEE in the chamber was significantly related to measured AEE both within (r2=0.81+/-0.06, P<0.00001) and between (r2=0.70, P<0.001) subjects. The explained variation in AEE by the model was higher than the explained variation by MI alone. This shows that a tri-axial seismic accelerometer is a valid tool for estimating AEE under sedentary conditions. PMID:19282829

  14. Long Term Seismic Observation in Mariana by OBSs : Activity of Deep Earthquakes

    NASA Astrophysics Data System (ADS)

    Shiobara, H.; Mochizuki, K.; Ohki, S.; Kanazawa, T.; Fukao, Y.; Sugioka, H.; Suyehiro, K.

    2003-12-01

    In order to obtain the deep arc structural image of Mariana, a large-scale seismic observation by using 58 long-term ocean bottom seismometers (LTOBS) has been started since June 2003 for about one year. It is a part of the MARGINS program (US-JAPAN COLLABORATIVE RESEARCH: MULTI-SCALE SEISMIC IMAGING OF THE MARIANA SUBDUCTION FACTORY), and the aim of this observation is the crustal and mantle structure modeling by using passive and active seismic sources. The 50 and 8 LTOBSs are owned by LDEO and ERI, respectively, and they were deployed during the cruise of R/V Kaiyo (Jamstec), KY03-06. Prior to this experiment, we made a pilot long-term seismic array observation in the same area by using 10 LTOBSs, deployed in Oct. 2001 by R/V Yokosuka (Jamstec) and recovered in Feb. 2003 by R/V Kaiyo. This LTOBS has been developed by ERI, which has the PMD sensor (WB2023LP) and a titanium sphere housing (D=50cm) and was already used in several long-term observations (ex. trans-PHS array observation presented at the AGU fall meeting, 2000, S51B-02). Two of 10 LTOBSs could not be recovered due to malfunction of the releasing system, and one recovered had a trouble in the sensor control unit. But, seven others have obtained more than 11 months long data continuously. As passive source studies of these observations use characteristic deep earthquakes in this area, the activity of them will be introduced in this presentation, from the data obtained just above them. At the first step, difference of hypocenters of known events, listed on the PDE catalog, is examined. There are 59 events of epicenters within a circular area centered at 19° N, 145° E with radius of 1000km from the catalog during the observation. P and S arrivals are picked by using the WIN system, and the iasp91 model (only {VP} with {{VP}/{V_S}=1.732}) is used for the hypocenter determination. Station corrections are applied only for the sediment layer, estimated from several arrival time data of P and P-S converted

  15. Mapping of active faults based on the analysis of high-resolution seismic reflection profiles in offshore Montenegro

    NASA Astrophysics Data System (ADS)

    Vucic, Ljiljana; Glavatovic, Branislav

    2014-05-01

    High-resolution seismic-reflection data analysis is considered as important tool for mapping of active tectonic faults, since seismic exploration methods on varied scales can image subsurface structures of different depth ranges. Mapping of active faults for the offshore area of Montenegro is performed in Petrel software, using reflection database consist of 2D profiles in length of about 3.500 kilometers and 311 square kilometers of 3D seismics, acquired from 1979 to 2003. Montenegro offshore area is influenced by recent tectonic activity with numerous faults, folded faults and over trusts. Based on reflection profiles analysis, the trust fault system offshore Montenegro is reveled, parallel to the coast and extending up to 15 kilometers from the offshore line. Then, the system of normal top carbonate fault planes is mapped and characterized on the southern Adriatic, with NE trending. The tectonic interpretation of the seismic reflection profiles in Montenegro point toward the existence of principally reverse tectonic forms in the carbonate sediments, covered by young Quaternary sandy sediments of thickness 1-3 kilometers. Also, reflective seismic data indicate the active uplifting of evaporite dome on about 10 kilometers of coastline.

  16. Goldstone field test activities: Sky survey

    NASA Technical Reports Server (NTRS)

    Gulkis, S.; Olsen, E. T.

    1986-01-01

    The goals are to conduct a research and development program aimed at determining the most effective way to do SETI within the constraints of current technology and estimated budgets. The general search strategy adopted is that which is recommended by the SETI Science Working Group. The strategy for an all sky survey for SETI was further developed over the last year. Scan patterns, scan rates, and signal detection algorithms were developed. Spectral power measurement instrumentation was tested at the Venus Station of the Goldstone Deep Space Communication Complex. A specially designed radio frequency interference (RFI) measurement system was built and installed at the Venus Station. A data base management system for storage and retrieval of the RFI data was partially implemented on a VAX 750 computer at the Jet Propulsion Laboratory.

  17. Surveys show support for green 'activities'.

    PubMed

    Baillie, Jonathan

    2012-03-01

    Two independently conducted surveys on sustainability - one into the 'views and values' of NHS 'leaders', and the other questioning the public about the importance of the 'green agenda' in the NHS, and their opinions on how the service might most effectively reduce its carbon footprint, form the basis of Sustainability in the NHS: Health Check 2012, a new NHS Sustainable Development Unit (NHS SDU) publication. As HEJ editor Jonathan Baillie reports, the new document also presents updated data on the 'size' of the carbon footprint of the NHS in England, showing that, although good work by a number of Trusts in the past two years has seen healthcare-generated carbon emissions start to 'level off', the biggest contributors have been the current health service spending review, and the increased national availability of renewable energy. PMID:22515017

  18. Short-term disturbance by a commercial two-dimensional seismic survey does not lead to long-term displacement of harbour porpoises.

    PubMed

    Thompson, Paul M; Brookes, Kate L; Graham, Isla M; Barton, Tim R; Needham, Keith; Bradbury, Gareth; Merchant, Nathan D

    2013-11-22

    Assessments of the impact of offshore energy developments are constrained because it is not known whether fine-scale behavioural responses to noise lead to broader-scale displacement of protected small cetaceans. We used passive acoustic monitoring and digital aerial surveys to study changes in the occurrence of harbour porpoises across a 2000 km(2) study area during a commercial two-dimensional seismic survey in the North Sea. Acoustic and visual data provided evidence of group responses to airgun noise from the 470 cu inch array over ranges of 5-10 km, at received peak-to-peak sound pressure levels of 165-172 dB re 1 µPa and sound exposure levels (SELs) of 145-151 dB re 1 µPa(2) s(-1). However, animals were typically detected again at affected sites within a few hours, and the level of response declined through the 10 day survey. Overall, acoustic detections decreased significantly during the survey period in the impact area compared with a control area, but this effect was small in relation to natural variation. These results demonstrate that prolonged seismic survey noise did not lead to broader-scale displacement into suboptimal or higher-risk habitats, and suggest that impact assessments should focus on sublethal effects resulting from changes in foraging performance of animals within affected sites. PMID:24089338

  19. Short-term disturbance by a commercial two-dimensional seismic survey does not lead to long-term displacement of harbour porpoises

    PubMed Central

    Thompson, Paul M.; Brookes, Kate L.; Graham, Isla M.; Barton, Tim R.; Needham, Keith; Bradbury, Gareth; Merchant, Nathan D.

    2013-01-01

    Assessments of the impact of offshore energy developments are constrained because it is not known whether fine-scale behavioural responses to noise lead to broader-scale displacement of protected small cetaceans. We used passive acoustic monitoring and digital aerial surveys to study changes in the occurrence of harbour porpoises across a 2000 km2 study area during a commercial two-dimensional seismic survey in the North Sea. Acoustic and visual data provided evidence of group responses to airgun noise from the 470 cu inch array over ranges of 5–10 km, at received peak-to-peak sound pressure levels of 165–172 dB re 1 µPa and sound exposure levels (SELs) of 145–151 dB re 1 µPa2 s−1. However, animals were typically detected again at affected sites within a few hours, and the level of response declined through the 10 day survey. Overall, acoustic detections decreased significantly during the survey period in the impact area compared with a control area, but this effect was small in relation to natural variation. These results demonstrate that prolonged seismic survey noise did not lead to broader-scale displacement into suboptimal or higher-risk habitats, and suggest that impact assessments should focus on sublethal effects resulting from changes in foraging performance of animals within affected sites. PMID:24089338

  20. General aviation activity survey. Annual summary report for 1992

    SciTech Connect

    Not Available

    1992-01-01

    This report presents the results of the annual General Aviation Activity Survey. The survey is conducted by the FAA to obtain information on the flight activity of the United States registered general aviation aircraft fleet. The report contains breakdowns of active aircraft, annual flight hours, average flight hours and other statistics by manufacturer/model group, aircraft type, state and region of based aircraft, and primary use. Also included are fuel consumption, lifetime airframe hours, engine hours, miles flown estimates, estimates of the number of landings, IFR hours flown, and grade of fuel consumed by the general aviation fleet. Aircraft, Aircraft activity, Aircraft use, Fuel consumption, General aviation, Hours flown, Miles flown.

  1. FM&TI (Forward Modeling & Tomographic Inversion) approach in passive and active seismic studies

    NASA Astrophysics Data System (ADS)

    Koulakov, Ivan

    2010-05-01

    Seismic tomography is like a photography taken by a camera with deformed and blurred lenses. Amplitudes and shapes of seismic patterns derived at tomographic images are often strongly biased with respect to real structures in the Earth. In particular, tomography usually provides continuous velocity distributions, while the major velocity changes in the Earth often occur on first order interfaces. While working with noisy data, one has to apply strong damping which makes impossible retrieving realistic amplitudes of anomalies. Uneven ray sampling may cause variable damping effect: within one model, one may obtain over- and underdamped solutions in different parts of the study area. Lack of some ray orientations may cause smearing of seismic patterns. Due to these and other reasons, quantitative values reported in most tomographic studies, although supported by pseudo-formal criteria (e.g. trade-off curves), do not often represent the reality. We propose an approach which is used to construct a realistic structure of the Earth based on a combination of forward modeling and tomographic inversion. Based on available a-priori information we construct a synthetic model with realistic patterns. Then we compute synthetic times and invert them using the same tomographic code with the same parameters as in the case of observed data processing. The reconstruction result is compared with the tomographic image of observed data inversion. For the parts where discrepancy is observed, we correct the synthetic model and repeat the forward modeling and inversion again. After several trials we obtain similar results of synthetic and observed data inversion. In this case we claim that the derived synthetic model adequately represents the real structure of the Earth. In the talk, several examples of applying this approach at various scales for different data schemes are presented: (1) few real and synthetic examples of active source refraction travel time data; (2) local earthquake

  2. Seismicity and active tectonic processes in the ultra-slow spreading Lena Trough, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Läderach, C.; Schlindwein, V.; Schenke, H.-W.; Jokat, W.

    2011-03-01

    With its remote location in the ice-covered Fram Strait, Lena Trough is a poorly known segment of the global mid-ocean ridge system. It is a prominent member of the ultra-slow spreading mid-ocean ridges but its spreading mechanisms are not well understood. We relocalized teleseismically recorded earthquakes from the past five decades to identify tectonic processes in Lena Trough and the adjacent Spitsbergen Fracture Zone (FZ). During two cruises with RV Polarstern in 2008 and 2009 we deployed seismic arrays on ice floes to record the local seismicity of Lena Trough. We could identify and localize microseismic events which we assume to be present in the entire rift valley. In contrast, our relocalization of teleseismically recorded earthquakes shows an asymmetric epicentre distribution along Lena Trough with earthquakes occurring predominately along the western valley flanks of Lena Trough. In 2009 February/March, several high-magnitude earthquakes peaking in an Mb 6.6 event occurred in an outside-corner setting of the Spitsbergen FZ. This is the strongest earthquake which has ever been recorded in Fram Strait and its location at the outside-corner high of the ultra-slow spreading ridge is exceptional. Comparing the seismicity with the magnetic anomalies and high-resolution multibeam bathymetry, we divide Lena Trough in a symmetrically spreading northern part and an asymmetrically spreading southern part south of the South Lena FZ. We propose that a complex interaction between the former De Geer Megashear zone, which separated Greenland from Svalbard starting at Late Mesozoic/Early Cenozoic times, and the developing rift in the southern Lena Trough resulted an increasing eastward dislocation towards the Spitsbergen FZ between older spreading axes and the recent active spreading axis which we believe to be located west of the bathymetric rift valley flanks in a wide extensional plain.

  3. Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands - II: Deception Island images

    NASA Astrophysics Data System (ADS)

    Prudencio, Janire; Ibáñez, Jesús M.; García-Yeguas, Araceli; Del Pezzo, Edoardo; Posadas, Antonio M.

    2013-12-01

    In this work, we present regional maps of the inverse intrinsic quality factor (Qi-1), the inverse scattering quality factor (Qs-1) and total inverse quality factor (Qt-1) for the volcanic environment of Deception Island (Antarctica). Our attenuation study is based on diffusion approximation, which permits us to obtain the attenuation coefficients for every single couple source-receiver separately. The data set used in this research is derived from an active seismic experiment using more than 5200 offshore shots (air guns) recorded at 32 onshore seismic stations and four ocean bottom seismometers. To arrive at a regional distribution of these values, we used a new mapping technique based on a Gaussian space probability function. This approach led us to create `2-D probabilistic maps' of values of intrinsic and scattering seismic attenuation. The 2-D tomographic images confirm the existence of a high attenuation body below an inner bay of Deception Island. This structure, previously observed in 2-D and 3-D velocity tomography of the region, is associated with a massive magma reservoir. Magnetotelluric studies reach a similar interpretation of this strong anomaly. Additionally, we observed areas with lower attenuation effects that bear correlation with consolidated structures described in other studies and associated with the crystalline basement of the area. Our calculations of the transport mean-free path and absorption length for intrinsic attenuation gave respective values of ≈ 950 m and 5 km, which are lower than the values obtained in tectonic regions or volcanic areas such as Tenerife Island. However, as observed in other volcanic regions, our results indicate that scattering effects dominate strongly over the intrinsic attenuation.

  4. Geodynamics of the Dead Sea Fault: Do active faulting and past earthquakes determine the seismic gaps?

    NASA Astrophysics Data System (ADS)

    Meghraoui, Mustapha

    2014-05-01

    The ~1000-km-long North-South trending Dead Sea transform fault (DSF) presents structural discontinuities and includes segments that experienced large earthquakes (Mw>7) in historical times. The Wadi Araba and Jordan Valley, the Lebanese restraining bend, the Missyaf and Ghab fault segments in Syria and the Ziyaret Fault segment in Turkey display geometrical complexities made of step overs, restraining and releasing bends that may constitute major obstacles to earthquake rupture propagation. Using active tectonics, GPS measurements and paleoseismology we investigate the kinematics and long-term/short term slip rates along the DSF. Tectonic geomorphology with paleoseismic trenching and archeoseismic investigations indicate repeated faulting events and left-lateral slip rate ranging from 4 mm/yr in the southern fault section to 6 mm/yr in the northern fault section. Except for the northernmost DSF section, these estimates of fault slip rate are consistent with GPS measurements that show 4 to 5 mm/yr deformation rate across the plate boundary. However, recent GPS results showing ~2.5 mm/yr velocity rate of the northern DSF appears to be quite different than the ~6 mm/yr paleoseismic slip rate. The kinematic modeling that combines GPS and seismotectonic results implies a complex geodynamic pattern where the DSF transforms the Cyprus arc subduction zone into transpressive tectonics on the East Anatolian fault. The timing of past earthquake ruptures shows the occurrence of seismic sequences and a southward migration of large earthquakes, with the existence of major seismic gaps along strike. In this paper, we discuss the role of the DSF in the regional geodynamics and its implication on the identification of seismic gaps.

  5. Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins

    DOE PAGESBeta

    Carmichael, Joshua D.; Joughin, Ian; Behn, Mark D.; Das, Sarah; King, Matt A.; Stevens, Laura; Lizarralde, Dan

    2015-06-25

    We analyzed geophone and GPS measurements collected within the ablation zone of the western Greenland Ice Sheet during a ~35 day period of the 2011 melt season to study changes in ice deformation before, during, and after a supraglacial lake drainage event. During rapid lake drainage, ice flow speeds increased to ~400% of winter values, and icequake activity peaked. At times >7 days after drainage, this seismicity developed variability over both diurnal and longer periods (~10 days), while coincident ice speeds fell to ~150% of winter values and showed nightly peaks in spatial variability. Approximately 95% of all detected seismicitymore » in the lake basin and its immediate vicinity was triggered by fracture propagation within near-surface ice (<330 m deep) that generated Rayleigh waves. Icequakes occurring before and during drainage frequently were collocated with the down flow (west) end of the primary hydrofracture through which the lake drained but shifted farther west and outside the lake basin after the drainage. We interpret these results to reveal vertical hydrofracture opening and local uplift during the drainage, followed by enhanced seismicity and ice flow on the downstream side of the lake basin. This region collocates with interferometric synthetic aperture radar-measured speedup in previous years and could reflect the migration path of the meltwater supplied to the bed by the lake. The diurnal seismic signal can be associated with nightly reductions in surface melt input that increase effective basal pressure and traction, thereby promoting elevated strain in the surficial ice.« less

  6. Seismic analysis of the LSST telescope

    NASA Astrophysics Data System (ADS)

    Neill, Douglas R.

    2012-09-01

    The Large Synoptic Survey Telescope (LSST) will be located on the seismically active Chilean mountain of Cerro Pachón. The accelerations resulting from seismic events produce the most demanding load cases the telescope and its components must withstand. Seismic ground accelerations were applied to a comprehensive finite element analysis (FEA) model which included the telescope, its pier and the mountain top. Response accelerations for specific critical components (camera and secondary mirror assembly) on the telescope were determined by applying seismic accelerations in the form of Power Spectral Densities (PSD) to the FEA model. The PSDs were chosen based on the components design lives. Survival level accelerations were determined utilizing PSDs for seismic events with return periods 10 times the telescope's design life which is equivalent to a 10% chance of occurring over the lifetime. Since the telescope has a design life of 30 years it was analyzed for a return period of 300 years. Operational level seismic accelerations were determined using return periods of 5 times the lifetimes. Since the seismic accelerations provided by the Chilean design codes were provided in the form of Peak Spectral Accelerations (PSA), a method to convert between the two forms was developed. The accelerations are also affected by damping level. The LSST incorporates added damping to meets its rapid slew and settle requirements. This added damping also reduces the components' seismic accelerations. The analysis was repeated for the telescope horizon and zenith pointing. Closed form solutions were utilized to verify the results.

  7. High-resolution seismic surveys in the Lake Balaton to image the stratigraphic architecture of Late Miocene basin fill beneath the lake

    NASA Astrophysics Data System (ADS)

    Visnovitz, Ferenc; Balázs, Attila; Horváth, Ferenc

    2013-04-01

    the Pannonian Lake. The shoreline clinoforms can offer evidence of climatically-driven cyclic lake level oscillations with maximum amplitude of 20 to 40 meters that are below the resolution of the hydrocarbon exploration land seismic. Periods of dryland conditions are suggested by occurrence of many mounded features which are interpreted as freshwater limestone banks. Morphology showed by seismic sections hint to volcanic features which can be corroborated by magnetic surveys and correlated with basaltic butes with known ages around the lake. This gives us the chance to date the time and rate of tectonic deformations, particularly determine the slip rate of the major left-lateral strike-slip fault parallel with the longitudinal axis (WSW-ENE) of the lake. This could be an essential information for the whole Pannonian basin as its neotectonic activity is controlled by this and other similar strike-slip faults.

  8. Repeat Measurements of Seismic Noise at the Waiotapu Geothermal Area, North Island, NZ

    SciTech Connect

    Whiteford, P.C.

    1995-01-01

    The amplitudes of seismic ground noise were remeasured at 66 sites in the Waiotapu and Reporoa geothermal areas in 1995 to determine whether amplitudes had changed since the first survey in 1970. In both 1995 and 1970 high levels of seismic noise occurred in two localities, one at Waiotapu and one at Reporoa. The elevated levels of seismic noise at most sites are thought to be caused by surface or near-surface geothermal activity. At seven sites in the Waiotapu area seismic noise levels were almost the same in 1995 as in 1970, indicating no change in the intensity of the source of the geothermal seismic noise. At most other sites the 1995 seismic noise levels were different to those measured in 1970, although at sites with high levels of seismic noise the differences were usually less than at sites with low levels of seismic noise.

  9. 3D elastic full waveform inversion: case study from a land seismic survey

    NASA Astrophysics Data System (ADS)

    Kormann, Jean; Marti, David; Rodriguez, Juan-Esteban; Marzan, Ignacio; Ferrer, Miguel; Gutierrez, Natalia; Farres, Albert; Hanzich, Mauricio; de la Puente, Josep; Carbonell, Ramon

    2016-04-01

    Full Waveform Inversion (FWI) is one of the most advanced processing methods that is recently reaching a mature state after years of solving theoretical and technical issues such as the non-uniqueness of the solution and harnessing the huge computational power required by realistic scenarios. BSIT (Barcelona Subsurface Imaging Tools, www.bsc.es/bsit) includes a FWI algorithm that can tackle with very complex problems involving large datasets. We present here the application of this system to a 3D dataset acquired to constrain the shallow subsurface. This is where the wavefield is the most complicated, because most of the wavefield conversions takes place in the shallow region and also because the media is much more laterally heterogeneous. With this in mind, at least isotropic elastic approximation would be suitable as kernel engine for FWI. The current study explores the possibilities to apply elastic isotropic FWI using only the vertical component of the recorded seismograms. The survey covers an area of 500×500 m2, and consists in a receivers grid of 10 m×20 m combined with a 250 kg accelerated weight-drop as source on a displaced grid of 20 m×20 m. One of the main challenges in this case study is the costly 3D modeling that includes topography and substantial free surface effects. FWI is applied to a data subset (shooting lines 4 to 12), and is performed for 3 frequencies ranging from 15 to 25 Hz. The starting models are obtained from travel-time tomography and the all computation is run on 75 nodes of Mare Nostrum supercomputer during 3 days. The resulting models provide a higher resolution of the subsurface structures, and show a good correlation with the available borehole measurements. FWI allows to extend in a reliable way this 1D knowledge (borehole) to 3D.

  10. Dissolution of bedded rock salt: A seismic profile across the active eastern margin of the Hutchinson Salt Member, central Kansas

    USGS Publications Warehouse

    Anderson, N.L.; Hopkins, J.; Martinez, A.; Knapp, R.W.; Macfarlane, P.A.; Watney, W.L.; Black, R.

    1994-01-01

    Since late Tertiary, bedded rock salt of the Permian Hutchinson Salt Member has been dissolved more-or-less continuously along its active eastern margin in central Kansas as a result of sustained contact with unconfined, undersaturated groundwater. The associated westward migration of the eastern margin has resulted in surface subsidence and the contemporaneous sedimentation of predominantly valley-filling Quarternary alluvium. In places, these alluvium deposits extend more than 25 km to the east of the present-day edge of the main body of contiguous rock salt. The margin could have receded this distance during the past several million years. From an environmental perspective, the continued leaching of the Hutchinson Salt is a major concern. This predominantly natural dissolution occurs in a broad zone across the central part of the State and adversely affects groundwater and surface-water quality as nonpoint source pollution. Significant surface subsidence occurs as well. Most of these subsidence features have formed gradually; others developed in a more catastrophic manner. The latter in particular pose real threats to roadways, railways, and buried oil and gas pipelines. In an effort to further clarify the process of natural salt dissolution in central Kansas and with the long-term goal of mitigating the adverse environmental affects of such leaching, the Kansas Geological Survey acquired a 4-km seismic profile across the eastern margin of the Hutchinson Salt in the Punkin Center area of central Kansas. The interpretation of these seismic data (and supporting surficial and borehole geologic control) is consistent with several hypotheses regarding the process and mechanisms of dissolution. More specifically these data support the theses that: 1. (1) Dissolution along the active eastern margin of the Hutchinson Salt Member was initiated during late Tertiary. Leaching has resulted in the steady westward migration of the eastern margin, surface subsidence, and the

  11. Updated Colombian Seismic Hazard Map

    NASA Astrophysics Data System (ADS)

    Eraso, J.; Arcila, M.; Romero, J.; Dimate, C.; Bermúdez, M. L.; Alvarado, C.

    2013-05-01

    The Colombian seismic hazard map used by the National Building Code (NSR-98) in effect until 2009 was developed in 1996. Since then, the National Seismological Network of Colombia has improved in both coverage and technology providing fifteen years of additional seismic records. These improvements have allowed a better understanding of the regional geology and tectonics which in addition to the seismic activity in Colombia with destructive effects has motivated the interest and the need to develop a new seismic hazard assessment in this country. Taking advantage of new instrumental information sources such as new broad band stations of the National Seismological Network, new historical seismicity data, standardized global databases availability, and in general, of advances in models and techniques, a new Colombian seismic hazard map was developed. A PSHA model was applied. The use of the PSHA model is because it incorporates the effects of all seismic sources that may affect a particular site solving the uncertainties caused by the parameters and assumptions defined in this kind of studies. First, the seismic sources geometry and a complete and homogeneous seismic catalog were defined; the parameters of seismic rate of each one of the seismic sources occurrence were calculated establishing a national seismotectonic model. Several of attenuation-distance relationships were selected depending on the type of seismicity considered. The seismic hazard was estimated using the CRISIS2007 software created by the Engineering Institute of the Universidad Nacional Autónoma de México -UNAM (National Autonomous University of Mexico). A uniformly spaced grid each 0.1° was used to calculate the peak ground acceleration (PGA) and response spectral values at 0.1, 0.2, 0.3, 0.5, 0.75, 1, 1.5, 2, 2.5 and 3.0 seconds with return periods of 75, 225, 475, 975 and 2475 years. For each site, a uniform hazard spectrum and exceedance rate curves were calculated. With the results, it is

  12. Tectonic expression of an active slab tear from high-resolution seismic and bathymetric data offshore Sicily (Ionian Sea)

    NASA Astrophysics Data System (ADS)

    Gutscher, Marc-André; Dominguez, Stephane; Lepinay, Bernard Mercier; Pinheiro, Luis; Gallais, Flora; Babonneau, Nathalie; Cattaneo, Antonio; Le Faou, Yann; Barreca, Giovanni; Micallef, Aaron; Rovere, Marzia

    2016-01-01

    Subduction of a narrow slab of oceanic lithosphere beneath a tightly curved orogenic arc requires the presence of at least one lithospheric scale tear fault. While the Calabrian subduction beneath southern Italy is considered to be the type example of this geodynamic setting, the geometry, kinematics and surface expression of the associated lateral, slab tear fault offshore eastern Sicily remain controversial. Results from a new marine geophysical survey conducted in the Ionian Sea, using high-resolution bathymetry and seismic profiling reveal active faulting at the seafloor within a 140 km long, two-branched fault system near Alfeo Seamount. The previously unidentified 60 km long NW trending North Alfeo Fault system shows primarily strike-slip kinematics as indicated by the morphology and steep-dipping transpressional and transtensional faults. Available earthquake focal mechanisms indicate dextral strike-slip motion along this fault segment. The 80 km long SSE trending South Alfeo fault system is expressed by one or two steeply dipping normal faults, bounding the western side of a 500+ m thick, 5 km wide, elongate, syntectonic Plio-Quaternary sedimentary basin. Both branches of the fault system are mechanically capable of generating magnitude 6-7 earthquakes like those that struck eastern Sicily in 1169, 1542, and 1693.

  13. Seismic Activity in Northern Izu-Bonin arc by Ocean Bottom Seismograph Observations

    NASA Astrophysics Data System (ADS)

    Obana, K.; Kamiya, S.; Kodaira, S.; Suetsugu, D.; Takahashi, N.; Sakaguchi, H.

    2006-12-01

    The Izu-Bonin Island arc is an oceanic island arc, where the Pacific plate subducts beneath the Philippine Sea plate. Suyehiro et al. (1996) found a thick andesitic middle crust with velocity of 6 km/s in northern Izu arc. Recent active seismic experiments in the Izu-Bonin arc show significant variations of the thickness of the middle crust along the volcanic front (Kodaira et al, 2005). The thickness of the middle crust shows an inverse correlation with the average P-wave crustal velocity and the SiO2 composition of the Quaternary volcanoes along the arc. Crustal evolution in the oceanic island arc is a process including magma evolution in the mantle wedge. To understand the nature of the crustal evolution in the oceanic island arc, we have to clarify structures in the mantle wedge along the arc in addition to the oceanic island arc crust. We conducted seismicity observations by a temporal ocean bottom seismograph (OBS) network in northern Izu-Bonin arc between Tori-shima and Hachijo-jima (30° to 34°N) to investigate structures of the oceanic island arc crust and the mantle wedge in northern Izu-Bonin arc by seismic tomography. The OBS network consists of 40 pop-up type OBSs with a three-component short-period seismometer. The OBSs were deployed in April 2006 and retrieved in July after about 80-day observations. The OBS data were processed with seismic data recorded at island stations on Hachijo-jima and Aoga-shima. These island stations are operated by National Research Institute for Earth Science and Disaster Prevention. From the preliminary results of the hypocenters, many earthquakes were located along the subducting Pacific plate. Along the volcanic front, shallow earthquake clusters were observed around Tori-shima and Sumisu-Jima islands. Another shallow earthquake cluster was observed near a seamount of echelon chains in the back-arc region of the Izu-Bonin arc. Earthquakes in the fore-arc region show strong attenuation at OBSs in the back-arc region

  14. Active and long-lived permanent forearc deformation driven by the subduction seismic cycle

    NASA Astrophysics Data System (ADS)

    Aron Melo, Felipe Alejandro

    I have used geological, geophysical and engineering methods to explore mechanisms of upper plate, brittle deformation at active forearc regions. My dissertation particularly addresses the permanent deformation style experienced by the forearc following great subduction ruptures, such as the 2010 M w8.8 Maule, Chile and 2011 Mw9.0 Tohoku, Japan earthquakes. These events triggered large, shallow seismicity on upper plate normal faults above the rupture reaching Mw7.0. First I present new structural data from the Chilean Coastal Cordillera over the rupture zone of the Maule earthquake. The study area contains the Pichilemu normal fault, which produced the large crustal aftershocks of the megathrust event. Normal faults are the major neotectonic structural elements but reverse faults also exist. Crustal seismicity and GPS surface displacements show that the forearc experiences pulses of rapid coseismic extension, parallel to the heave of the megathrust, and slow interseismic, convergence-parallel shortening. These cycles, over geologic time, build the forearc structural grain, reactivating structures properly-oriented respect to the deformation field of each stage of the interplate cycle. Great subduction events may play a fundamental role in constructing the crustal architecture of extensional forearc regions. Static mechanical models of coseismic and interseismic upper plate deformation are used to explore for distinct features that could result from brittle fracturing over the two stages of the interplate cycle. I show that the semi-elliptical outline of the first-order normal faults along the Coastal Cordillera may define the location of a characteristic, long-lived megathrust segment. Finally, using data from the Global CMT catalog I analyzed the seismic behavior through time of forearc regions that have experienced great subduction ruptures >Mw7.7 worldwide. Between 61% and 83% of the cases where upper plate earthquakes exhibited periods of increased seismicity

  15. Crosswell CASSM(Continuous Active-Source Seismic Monitoring): Recent Developments (Invited)

    NASA Astrophysics Data System (ADS)

    Daley, T. M.; Niu, F.; Ajo Franklin, J. B.; Solbau, R.; Silver, P. G.

    2009-12-01

    Continuous active-source monitoring using borehole sources and sensors in a crosswell configuration has proven to be a useful tool for monitoring subsurface processes (Silver, et al, 2007; Daley, et al, 2007; Niu, et al, 2008). This recent work has focused on two applications: monitoring stress changes related to seismicity and monitoring changes in fluid distribution related to geologic storage of CO2. Field tests have demonstrated precision in travel time measurement of up to 1.1 x 10-7 s, and in velocity perturbation measurement of up to 1.1 x 10-5 (Niu, et al 2008). In this talk I will summarize our preceding work and discuss current developments. Current efforts address both hardware and design challenges to improving the methodology. Hardware issues include deployment of multiple piezoelectric sources in shallow and deep boreholes, source and sensor deployment on tubing inside casing, and deployment with other monitoring instrumentation. Design issues are focused on use of multiple sources and/or sensors to obtain optimal spatial resolution for monitoring processes in the interwell region. This design issue can be investigated with optimal experiment design theory. New field experiments for monitoring seismicity (at SAFOD) and CO2 injection (at a US Dept of Energy pilot) are in the design/deployment stage. Current status of these projects will be discussed. References: Silver, P.G., Daley, T.M., Niu, F., Majer, E.L., 2007, Active source monitoring of crosswell seismic travel time for stress induced changes, Bulletin of Seismological Society of America, v97, n1B, p281-293. Daley, T.M., R.D. Solbau, J.B. Ajo-Franklin, S.M. Benson, 2007, Continuous active-source monitoring of CO2 injection in a brine aquifer, Geophysics, v72, n5, pA57-A61, DOI:10.1190/1.2754716. Niu, F., Silver, P.G., Daley, T.M., Cheng, X., Majer, E.L., 2008, Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site, Nature, 454, 204-208, DOI:10

  16. High resolution seismic imaging of an active normal fault in the Agri Valley, Southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Improta, L.; Bruno, P.; di Fiore, V.; Mariani, S.

    2004-12-01

    The Agri Valley is an intermontane basin located in the Southern Apennine seismic belt (Italy) whose formation in tied to large NW-trending trastensional and extensional faults active since Early Pleistocene. Recent faulting activity in the area is documented by faulted paleosoils and suggested by a M7 earthquake that struck the basin in 1857. On the contrary, present-day background seismicity in the area is extremely low. Despite intense geomorphic investigations, the identification of the source responsible for this historical event and of further large seismogenic faults in the area is still a matter of debate. A new NW trending normal faulting system has been recently recognized based on subtle geomorphic expressions on the ridge bounding the basin westward. Recent faulting activity along this structure is locally documented by a trench. Aimed at yielding new information about the shallow structure of the fault, we conducted a high resolution seismic experiment in a small lacustrine basin, located 4 km south of the trench, in which the presence of the fault is inferred by a linear surface warping but trench excavation is impractical. Both multi-fold wide-angle data and multichannel near vertical reflection data have been collected along a 220-m-long profile in order to obtain an accurate model of the basin combining seismic velocity and reflectivity images. About 3600 first arrival traveltimes picked on 36 wide-angle record sections have been inverted by a non-linear tomographic technique that is specially designed to image complex structures. The tomographic inversion provides a high-resolution velocity model of the basin down to 60 m depth. The model is strongly heterogeneous and displays sharp lateral velocity variations. Seismic reflection processing has been applied to both data sets. Data have been edited for trace quality and first (refracted and direct) arrivals have been muted. A following FK dip filtering on the shot gathers reduced the energy

  17. Dating previously balanced rocks in seismically active parts of California and Nevada

    USGS Publications Warehouse

    Bell, J.W.; Brune, J.N.; Liu, T.; Zreda, M.; Yount, J.C.

    1998-01-01

    Precariously balanced boulders that could be knocked down by strong earthquake ground motion are found in some seismically active areas of southern California and Nevada. In this study we used two independent surface-exposure dating techniques - rock-varnish microlamination and cosmogenic 36Cl dating methodologies - to estimate minimum- and maximum-limiting ages, respectively, of the precarious boulders and by inference the elapsed time since the sites were shaken down. The results of the exposure dating indicate that all of the precarious rocks are >10.5 ka and that some may be significantly older. At Victorville and Jacumba, California, these results show that the precarious rocks have not been knocked down for at least 10.5 k.y., a conclusion in apparent conflict with some commonly used probabilistic seismic hazard maps. At Yucca Mountain, Nevada, the ages of the precarious rocks are >10.5 to >27.0 ka, providing an independent measure of the minimum time elapsed since faulting occurred on the Solitario Canyon fault.

  18. Tectonic history and thrust-fold deformation style of seismically active structures near Coalinga

    SciTech Connect

    Namson, J.S. ); Davis, T.L.; Lagoe, M.B.

    1990-01-01

    The stratigraphy of the Coalinga region can be divided into tectostratigraphic facies whose boundaries delineate two major tectonic events - one in the mid-Cenozoic (38-17 Ma) and one in the late Cenozoic (less than 3 Ma). The succession of these tectostratigraphic facies, and an integration of geology, subsurface well data, a seismic-reflection profile, and earthquake seismicity on a retrodeformable cross section, yield a model for the tectonic evolution of the Coalinga region. This model suggests that the structural style of both deformational events is characteristic of fold and thrust belts. The model also indicates that the causative fault of the May 2 earthquake is a ramped thrust. The results of this study, in combination with regional geologic relations, suggest that the Coalinga region is part of an active fold and thrust belt which borders the west and south sides of the San Joaquin Valley. The potential for future earthquakes due to movement of other blind thrust faults within this belt should be evaluated.

  19. Seismic activity and water level fluctuations in the artificial lakes of Aliakmonas river (NW Greece)

    NASA Astrophysics Data System (ADS)

    Petrou, Panagiota; Chouliaras, Gerasimos; Drakatos, George

    2015-04-01

    The Public Power Corporation (PPC) of Greece has established four dammed reservoirs, downstream of each other on Aliakmonas River in North Western Greece (namely the artificial lakes of Ilarionas, Polyphyto, Sfikia and Asomata). In addition to the monitoring of the reservoir water levels the PPC has also installed a dense seismological network in the wider area. In this investigation the correlation between the local seismic activity and the water level fluctuations at the Ilarionas and Polyphyto reservoirs is studied. On October 25th, 1984, during the Asomata reservoir initial filling, a Ms=5.4 earthquake occurred in the region which was characterized by weak seismicity, until the strong earthquake of Ms=6.5 that occurred on May 13th, 1995, at a distance of 18 km from the southern edge of the Polyphyto reservoir. More recently, on July 2nd and 3rd, 2013, two moderate earthquakes (Ml=4.7 and Ml=4.6) occurred, almost a year after the filling of the Ilarionas reservoir in 2012. In addition to these events, fourteen earthquakes with magnitudes equal or greater to Ml=4 have also been detected in the wider area of the Aliakmonas reservoir.

  20. On dependence of seismic activity on 11 year variations in solar activity and/or cosmic rays

    NASA Astrophysics Data System (ADS)

    Zhantayev, Zhumabek; Khachikyan, Galina; Breusov, Nikolay

    2014-05-01

    It is found in the last decades that seismic activity of the Earth has a tendency to increase with decreasing solar activity (increasing cosmic rays). A good example of this effect may be the growing number of catastrophic earthquakes in the recent rather long solar minimum. Such results support idea on existence a solar-lithosphere relationship which, no doubts, is a part of total pattern of solar-terrestrial relationships. The physical mechanism of solar-terrestrial relationships is not developed yet. It is believed at present that one of the main contenders for such mechanism may be the global electric circuit (GEC) - vertical current loops, piercing and electrodynamically coupling all geospheres. It is also believed, that the upper boundary of the GEC is located at the magnetopause, where magnetic field of the solar wind reconnects with the geomagnetic field, that results in penetrating solar wind energy into the earth's environment. The effectiveness of the GEC operation depends on intensity of cosmic rays (CR), which ionize the air in the middle atmosphere and provide its conductivity. In connection with the foregoing, it can be expected: i) quantitatively, an increasing seismic activity from solar maximum to solar minimum may be in the same range as increasing CR flux; and ii) in those regions of the globe, where the crust is shipped by the magnetic field lines with number L= ~ 2.0, which are populated by anomalous cosmic rays (ACR), the relationship of seismic activity with variations in solar activity will be manifested most clearly, since there is a pronounced dependence of ACR on solar activity variations. Checking an assumption (i) with data of the global seismological catalog of the NEIC, USGS for 1973-2010, it was found that yearly number of earthquake with magnitude M≥4.5 varies into the 11 year solar cycle in a quantitative range of about 7-8% increasing to solar minimum, that qualitatively and quantitatively as well is in agreement with the

  1. Bias in Student Survey Findings from Active Parental Consent Procedures

    ERIC Educational Resources Information Center

    Shaw, Thérèse; Cross, Donna; Thomas, Laura T.; Zubrick, Stephen R.

    2015-01-01

    Increasingly, researchers are required to obtain active (explicit) parental consent prior to surveying children and adolescents in schools. This study assessed the potential bias present in a sample of actively consented students, and in the estimates of associations between variables obtained from this sample. Students (n = 3496) from 36…

  2. Plio-Quaternary Shortening on the Algerian Margin: Evidence From Multibeam Bathymetry and Seismic Reflection Survey off Boumerdes

    NASA Astrophysics Data System (ADS)

    Strzerzynski, P.; Cattaneo, A.; Deverchere, J.; Yelles, K.; Mercier de Lepinay, B.; Domzig, A.; Bracene, R.

    2008-12-01

    The northern limit of Algeria is one of the most seismically active regions of the western Mediterranean, with potential magnitudes estimated at up to 7,5. Instrumental seismicity is detected mainly onshore and expresses a NW-SE dominant shortening. However, since the May 2003 Boumerdès earthquake, offshore deformation attracts scientists' attention. The aim of this note is to describe a system of Plio-Quaternary folds and blind thrusts at the foot of the continental slope offshore Boumerdès based on data acquired in 2003 and 2005 (Maradja 1 and Maradja 2/ Samra cruises). On a S-N oriented transect offshore Boumerdès, three uplifted basins are observed from the mid-continental slope down to 30-40 km within the Balearic abyssal plain. These basins are limited by scarps corresponding to the north-western flanks of Plio-Quaternary anticlines. The geometry of the sedimentary units allows to distinguish Messinian salt features (developed early) from other tectonic (s.s.) compressional structures that formed later as a series of diachronous folds. The folding of the Miocene layers is clearly tectonically (s.s.) controlled. It initiated during the Plio-Quaternary and progressively migrated from the slope toward the abyssal plain. The pattern of perched basins and the folding distribution strongly suggest the occurrence of a system of flat and blind thrust ramps. As no thrusts are observed in the Miocene layers, flats and thrust ramps have to be deeper, probably rooted in the basement, as evidenced during the 2003 Boumerdes Mw 6.9 event. The position of basement highs below the Miocene deposits compared to the active fronts indicates that the shape of the Plio-Quaternary fold and thrust belt is controlled by these previous basement highs. Uplifted basins are less developed in size and depth on the slope than in the abyssal plain, suggesting that the flat length increases from the slope to the abyssal plain. We interpret this increase as being directly related to crustal

  3. Spatial heterogeneities of deviatoric stress and pore-pressure in Kyushu, Japan, and their implication for seismic activity

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Chikura, Hiromi; Ohkura, Takahiro; Miyazaki, Masahiro; Shimizu, Hiroshi; Abe, Yuki; Inoue, Hiroyuki; Yoshikawa, Shin; Yamashita, Yusuke

    2013-04-01

    We investigated the spatial variation in stress fields and pore fluid pressures on Kyushu Island, southwestern Japan. High seismic activity is found not only along active faults in Kyushu Island (southwestern Japan) but also in the central area of the island where there are active volcanoes. We consider the focal mechanisms of the shallow earthquakes on Kyushu Island to determine the relative deviatoric stress field and pore fluid factor. Generally, the stress field corresponds to a strike slip regime in this area. A decline in the maximum principal compressional stress is found in the western part of the high seismicity area, in the middle of Kyushu Island; this may be caused by a thickening of the seismogenic zone, as estimated from D90 analysis. At thin seismogenic layer, strike slip faulting dominates and strain rate from GPS study is high. In the active fault zone, seismic activity along the fault is high, and the pore pressure within the zone is higher than the values observed elsewhere, suggesting a mechanism explained by the fault valve model of Sibson [1992]. The pore pressure in the high seismic area with scattered hypocenter distribution in the middle part is lower than that in the active fault zones.

  4. Long-Term Soil Gas Surveys in the Northern Part of the Modena Province Pre, During and After the 2012 Seismic Sequence

    NASA Astrophysics Data System (ADS)

    Sciarra, A.; Cantucci, B.; Galli, G.; Cinti, D.; Quattrocchi, F.

    2014-12-01

    Three geochemical surveys of soil gas (CO2 and CH4 flux measurements, He, H2, CO2, CH4 and C2H6 concentrations) and isotopic analyses (δ13C-CH4, δD-CH4, δ13C-CO2) were carried out as part of a feasibility study for a natural gas storage site in the Modena Province (Northern Italy), during the 2006-2009 period. In May-June 2012, a seismic sequence (main shocks of ML 5.9 and 5.8) was occurred closely to the investigated area. Chemical and isotopic analysis were repeated in May 2012, September 2012, June 2013 and July 2014. In the 2006-2009 period, at the pre-seismic conditions, chemical composition of soil gas showed that the southern part of the studied area is CH4-dominated, whereas the northern part is CO2-dominated. Relatively anomalous fluxes and concentrations were recorded with a spotted areal distribution. Anyway, CO2 and CH4 values are within the typical range of vegetative and of organic exhalation of the cultivated soil. 2012-2013 soil gas results show CO2 values essentially unvaried with respect to pre-earthquake surveys, while the 2014 values highlight an increasing of CO2 flux in the whole study area. On the contrary, CH4 values seem to be on average higher after the seismic sequence, although with a decreasing trend in the last survey (2014). Isotopic analysis were carried out only on samples with anomalous values. The δ13C-CO2 value suggests a prevalent shallow origin of CO2 (i.e. organic and/or soil-derived) probably related to anaerobic oxidation of heavy hydrocarbons. Methane isotopic data (δ13C-CH4) indicate a typical biogenic origin (i.e. microbial hydrocarbon production) of the CH4, as recognized elsewhere in the Po Plain and surroundings. Obtained results highlight a different CO2 and CH4 behaviour before, during and after the seismic events. These variations could be produced by increasing of bacterial (e.g. peat strata) and methanogenic fermentation processes in the first meters of the soil. No hints of deep degassing can be inferred for

  5. Evolution of earthquake rupture potential along active faults, inferred from seismicity rates and size distributions

    NASA Astrophysics Data System (ADS)

    Tormann, Thessa; Wiemer, Stefan; Enescu, Bogdan; Woessner, Jochen

    2016-04-01

    One of the major unresolved questions in seismology is the evolution in time and space of the earthquake rupture potential and thus time-dependent hazard along active faults. What happens after a major event: is the potential for further large events reduced as predicted from elastic rebound, or increased as proposed by current-state short-term clustering models? How does the rupture potential distribute in space, i.e. does it reveal imprints of stress transfer? Based on the rich earthquake record from the Pacific Plate along the Japanese coastline we investigate what information on spatial distributions and temporal changes of a normalized rupture potential (NRP) for different magnitudes can be derived from time-varying, local statistical characteristics of well and frequently observed small-to-moderate seismicity. Seismicity records show strong spatio-temporal variability in both activity rates and size distribution. We analyze 18 years of seismicity, including the massive 2011 M9 Tohoku earthquake and its aftermath. We show that the size distribution of earthquakes has significantly changed before (increased fraction of larger magnitudes) and after that mainshock (increased fraction of smaller magnitudes), strongest in areas of highest coseismic slip. Remarkably, a rapid recovery of this effect is observed within only few years. We combine this significant temporal variability in earthquake size distributions with local activity rates and infer the evolution of NRP distributions. We study complex spatial patterns and how they evolve, and more detailed temporal characteristics in a simplified spatial selection, i.e. inside and outside the high slip zone of the M9 earthquake. We resolve an immediate and strong NRP increase for large events prior to the Tohoku event in the subsequent high slip patch and a very rapid decrease inside this high-stress-release area, coupled with a lasting increase of NRP in the immediate surroundings. Even in the center of the Tohoku

  6. Combined analysis of passive and active seismic measurements using additional geologic data for the determination of shallow subsurface structures

    NASA Astrophysics Data System (ADS)

    Horstmann, Tobias; Brüstle, Andrea; Spies, Thomas; Schlittenhardt, Jörg; Schmidt, Bernd

    2016-04-01

    A detailed knowledge of subsurface structure is essential for geotechnical projects and local seismic hazard analyses. Passive seismic methods like microtremor measurements are widely used in geotechnical practice, but limitations and developments are still in focus of scientific discussion. The presentation outlines microtremor measurements in the context of microzonation in the scale of districts or small communities. H/V measurements are used to identify zones with similar underground properties. Subsequently a shear wave velocity (Vs) depth profile for each zone is determined by array measurements at selected sites. To reduce possible uncertainties in dispersion curve analyses of passive array measurements and ambiguities within the inversion process, we conducted an additional active seismic experiment and included available geological information. The presented work is realized in the framework of the research project MAGS2 ("Microseismic Activity of Geothermal Systems") and deals with the determination of seismic hazard analysis at sites near deep geothermal power plants in Germany. The measurements were conducted in the Upper Rhine Graben (URG) and the Bavarian molasses, where geothermal power plants are in operation. The results of the H/V- and array-measurements in the region of Landau (URG) are presented and compared to known geological-tectonic structures. The H/V measurements show several zones with similar H/V-curves which indicate homogenous underground properties. Additionally to the passive seismic measurements an active refraction experiment was performed and evaluated using the MASW method („Multichannel Analysis of Surface Waves") to strengthen the determination of shear-wave-velocity depth profile. The dispersion curves for Rayleigh-waves of the active experiment support the Rayleigh-dispersion curves from passive measurements and therefore provide a valuable supplement. Furthermore, the Rayleigh-wave ellipticity was calculated to reduce

  7. Explosive Activity at Tungurahua Volcano: Analysis of Seismic and Infrasonic Data from 2006 - 2011

    NASA Astrophysics Data System (ADS)

    Steele, A. L.; Ruiz, M. C.; Lyons, J. J.

    2012-12-01

    Tungurahua is an active, steep-sided andesitic stratovolcano, located in central Ecuador. Historic eruptions are characterized by strong explosions, lava and pyroclastic flows, lahars and tephra fallout. After 75 years of quiescence, a renewed phase of explosive activity began in October 1999. Since, Tungurahua has experienced a series of eruptive cycles, with almost continuous activity separated by only short periods (months) of repose. We apply several statistical techniques to a continuous catalog of over 4500 volcanic explosions, recorded between July 2006 and May 2011. Reduced amplitudes and energies are calculated for each event using four collocated broadband seismic and infrasound sensors. An initial time series analysis isolates 8 phases of activity: Jul-Aug 2006, Feb-Apr 2007, Jul 2007-Feb 2008, Mar 2008-Jun 2009, Jan-Mar 2010, May-Jul 2010, Nov-Dec 2010 and Apr-May 2011. Small temporal changes in the volcanic eruption mechanism across successive episodes are identified by a lack of dependency in event rate auto-correlation and a continuous fluctuation in the proxy b-value of moving-window, frequency-amplitude distributions. We highlight the May-July 2010 episode because it is statistically distinct from the other periods of explosive activity. Peak explosion event rate during this time is approximately six times that of any other episode across the observation period (max ~ 242 events; 31 May 2010), while cumulative daily seismo-acoustic explosion energies are at least an order of magnitude greater. The coefficient of variation (Cv = σ/μ, where; σ is the standard deviation; and μ is the mean repose time of explosions) is used to show a strong clustering of events with time (episodes 1-5 & 7-8 = Cv ~ 2-5) and not representative of a Poisson controlled process. A Cv ~ 13.7 in May-July 2010 (episode 6) further highlights the anomalous nature of activity during this period. The volcano acoustic-seismic ratio (VASR, or η), the ratio of elastic energy

  8. Correlation Between Radon Outgassing and Seismic Activity Along the Hayward Fault Near Berkeley, California

    NASA Astrophysics Data System (ADS)

    Holtmann-Rice, D.; Cuff, K.

    2003-12-01

    Results from previous studies indicate that radon concentration values are significantly higher over selected sections of the Hayward fault than adjacent areas. This phenomenon is believed to be attributed to the presence of abundant fractures in rock associated with the fault, which act as pathways for radon as it migrates from depth towards the earth?s surface. In an attempt to determine whether or not a relationship exists between seismicity along the fault, the production of microfractures, and emanation of radon, a radon outgassing monitoring study was conducted along an active section of the Hayward fault in Berkeley, California. The study was carried out by using an alphaMETER 611, which is a device capable of accurately measuring radon concentrations every 15 minutes. The alphaMETER was placed at the bottom of a sealed one meter deep well, in close proximity to a section of the Hayward fault located along the northwestern face of the Berkeley Hills. Once per week for several months data collected by the alphaMETER was downloaded into a laptop computer. Data from the alphaMETER was then compared with seismic data recorded by local seismometers to see if any correlation existed. A general correlation between variation in radon concentration and the occurrence of small earthquakes was found. Significant peaks in radon concentration were observed within an approximately one week period before the occurrence of small earthquakes. Concentration values then decreased dramatically just prior to and during periods when the earthquakes occurred. Such correlation is very similar to that recently observed in association with a magnitude five earthquake along the Anatolian Fault, reported by geoscientists working in Turkey using similar instrumentation (Inan, 2003, personal communication). The most plausible explanation for the observed correlation is as follows: 1) prior to a given earthquake, stress build up within a particular fault region leads to the formation of

  9. 1990 Nationwide Truck Activity and Commodity Survey selected tabulations

    SciTech Connect

    Not Available

    1993-06-01

    The Nationwide Truck Activity and Commodity Survey (NTACS) provides detailed activity data for a sample of trucks covered in the 1987 Truck Inventory and Use Survey (TIUS) for days selected at random over a 12-month period ending in 1990. The NTACS was conducted by the US Bureau of the Census for the US Department of Transportation (DOT). A Public Use File for the NTACS was developed by Oak Ridge National Laboratory (ORNL) under a reimbursable agreement with the DOT. The content of the Public Use File and the detailed design of the NTACS are described in the ORNL Report [open quotes]Technical Documentation for the 1990 Nationwide Truck Activity and Commodity Survey Public Use File[close quotes]. (1992). ORNL Technical Report No. TM-12188, Oak Ridge National Laboratory, Oak Ridge, TN 37831. The main purpose of this summary report is to provide selected tables based on the public use file.

  10. Semi-active seismic response control of base-isolated building with MR damper

    NASA Astrophysics Data System (ADS)

    Soda, Satsuya; Kusumoto, Haruhide; Chatani, Ryosuke; Iwata, Norio; Fujitani, Hideo; Shiozaki, Yoichi; Hiwatashi, Takeshi

    2003-07-01

    This study deals with a shake table test on a three-story base-isolated steel frame. The frame rests on four roller bearings for isolation and is equipped with four laminated rubbers as shear spring. An MR damper is used in the test to perform semi-active seismic response control. The basic control algorithm applied in the study is to simulate the load-deflection of an origin-restoring friction damper (ORFD) which is a sort of friction damper that looses its resistance when it moves toward the origin, making sure for the base-isolated system to minimize residual displacement even after an extremely strong ground motion. Also attempted is a hybrid type control that superposes viscous damping on the ORFD when the damper moves from the peak displacement toward the origin.

  11. 77 FR 25829 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to Marine Seismic... Marine Seismic Survey in the Beaufort Sea, Alaska AGENCY: National Marine Fisheries Service (NMFS... only, incidental to a proposed 3- dimensional (3D) ocean bottom cable (OBC) seismic survey in...

  12. Quaternary grabens in southernmost Illinois: Deformation near an active intraplate seismic zone

    USGS Publications Warehouse

    Nelson, W.J.; Denny, F.B.; Follmer, L.R.; Masters, J.M.

    1999-01-01

    Narrow grabens displace Quaternary sediments near the northern edge of the Mississippi Embayment in extreme southern Illinois, east-central United States. Grabens are part of the Fluorspar Area Fault Complex (FAFC), which has been recurrently active throughout Phanerozoic time. The FAFC strikes directly toward the New Madrid Seismic Zone (NMSZ), scene of some of the largest intra-plate earthquakes in history. The NMSZ and FAFC share origin in a failed Cambrian rift (Reelfoot Rift). Every major fault zone of the FAFC in Illinois exhibits Quaternary displacement. The structures appear to be strike-slip pull-apart grabens, but the magnitude and direction of horizontal slip and their relationship to the current stress field are unknown. Upper Tertiary strata are vertically displaced more than 100 m, Illinoian and older Pleistocene strata 10 to 30 m, and Wisconsinan deposits 1 m or less. No Holocene deformation has been observed. Average vertical slip rates are estimated at 0.01 to 0.03 mm/year, and recurrence intervals for earthquakes of magnitude 6 to 7 are on the order of 10,000s of years for any given fault. Previous authors remarked that the small amount of surface deformation in the New Madrid area implies that the NMSZ is a young feature. Our findings show that tectonic activity has shifted around throughout the Quaternary in the central Mississippi Valley. In addition to the NMSZ and southern Illinois, the Wabash Valley (Illinois-Indiana), Benton Hills (Missouri), Crowley's Ridge (Arkansas-Missouri), and possibly other sites have experienced Quaternary tectonism. The NMSZ may be only the latest manifestation of seismicity in an intensely fractured intra-plate region.

  13. Active Source Tomography of Stromboli Volcano (Italy): Results From the 2006 Seismic Experiment.

    NASA Astrophysics Data System (ADS)

    Zuccarello, L.; Patanè, D.; Cocina, O.; Castellano, M.; Sgroi, T.; Favali, P.; de Gori, P.

    2008-12-01

    Stromboli island, located in the Southern Tyrrhenian sea, is the emerged part (about 900 m a.s.l.) of a 3km-high strato-volcano. Its persistent Strombolian activity, documented for over 2000 years, is sometimes interrupted by lava effusions or major explosions. Despite the amount of recent published geophysical studies aimed to clarifying eruption dynamics, the spatial extend and geometrical characteristics of the plumbing system remain poorly understood. In fact, the knowledge of the inner structure and the zones of magma storage is limited to the upper few hundreds meters of the volcanic edifice and P- and S-waves velocity models are available only in restricted areas. In order to obtain a more suitable internal structural and velocity models of the volcano, from 25 November to 2 December 2006, a seismic tomography experiment through active seismics using air-gun sources was carried out and the final Vp model is here presented. The data has been inverted for the Vp structure by using the code Simulps13q, considering a 3D grid of nodes spaced 0.5 km down to 2 km depth, beneath the central part of volcano. The results show a relatively high velocity zones located both in the inner part of the volcanic structure, at about 1km b.s.l. and in the last 200-300 m a.s.l. in correspondence with the volcanic conduit. Slower zones were located around the summit craters in agreement with volcanological and petrological informations for the area. The relatively high velocity zones could suggest the presence of intrusive bodies related to the plumbing system.

  14. Exhumed analogues of seismically active carbonate-bearing thrusts: fault architecture and deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Tesei, T.; Collettini, C.; Viti, C.; Barchi, M. R.

    2012-12-01

    In May 2012 a M = 5.9 earthquake followed by a long aftershock sequence struck the Northern Italy. The sequence occurred at 4-10 km depth within the active front of Northern Apennines Prism and the major events nucleate within, or propagate through, a thick sequence of carbonates. In an inner sector of the Northern Apennines, ancient carbonate-bearing thrusts exposed at the surface, represent exhumed analogues of structures generating seismicity in the active front. Here we document fault architecture and deformation mechanisms of three regional carbonate bearing thrusts with displacement of several kilometers and exhumation in the range of 1-4 km. Fault zone structure and deformation mechanisms are controlled by the lithology of the faulted rocks. In layered limestones and marly-limestones the fault zone is up to 200 m thick and is