Science.gov

Sample records for active seismic zone

  1. Structure and seismic activity of the Lesser Antilles subduction zone

    NASA Astrophysics Data System (ADS)

    Evain, M.; Galve, A.; Charvis, P.; Laigle, M.; Ruiz Fernandez, M.; Kopp, H.; Hirn, A.; Flueh, E. R.; Thales Scientific Party

    2011-12-01

    Several active and passive seismic experiments conducted in 2007 in the framework of the European program "Thales Was Right" and of the French ANR program "Subsismanti" provided a unique set of geophysical data highlighting the deep structure of the central part of the Lesser Antilles subduction zone, offshore Dominica and Martinique, and its seismic activity during a period of 8 months. The region is characterized by a relatively low rate of seismicity that is often attributed to the slow (2 cm/yr) subduction of the old, 90 My, Atlantic lithosphere beneath the Caribbean Plate. Based on tomographic inversion of wide-angle seismic data, the forearc can clearly be divided into an inner forearc, characterised by a high vertical velocity gradient in the igneous crust, and an outer forearc with lower crustal velocity gradient. The thick, high velocity, inner forearc is possibly the extension at depth of the Mesozoic Caribbean crust outcropping in La Désirade Island. The outer forearc, up to 70 km wide in the northern part of the study area, is getting narrower to the south and disappears offshore Martinique. Based on its seismic velocity structure with velocities higher than 6 km/s the backstop consists, at least partly, of magmatic rocks. The outer forearc is also highly deformed and faulted within the subducting trend of the Tiburon Ridge. With respect to the inner forearc velocity structure the outer forearc basement could either correspond to an accreted oceanic terrane or made of highly fractured rocks. The inner forearc is a dense, poorly deformable crustal block, tilted southward as a whole. It acts as a rigid buttress increasing the strain within both the overriding and subducting plates. This appears clearly in the current local seismicity affecting the subducting and the overriding plates that is located beneath the inner forearc. We detected earthquakes beneath the Caribbean forearc and in the Atlantic oceanic plate as well. The main seismic activity is

  2. The Salton Seismic Imaging Project (SSIP): Active Rift Processes in the Brawley Seismic Zone

    NASA Astrophysics Data System (ADS)

    Han, L.; Hole, J. A.; Stock, J. M.; Fuis, G. S.; Rymer, M. J.; Driscoll, N. W.; Kent, G.; Harding, A. J.; Gonzalez-Fernandez, A.; Lazaro-Mancilla, O.

    2011-12-01

    The Salton Seismic Imaging Project (SSIP), funded by NSF and USGS, acquired seismic data in and across the Salton Trough in southern California and northern Mexico in March 2011. The project addresses both rifting processes at the northern end of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. Seven lines of onshore refraction and low-fold reflection data were acquired in the Coachella, Imperial, and Mexicali Valleys, two lines and a grid of airgun and OBS data were acquired in the Salton Sea, and onshore-offshore data were recorded. Almost 2800 land seismometers and 50 OBS's were used in almost 5000 deployments at almost 4300 sites, in spacing as dense as 100 m. These instruments received seismic signals from 126 explosive shots up to 1400 kg and over 2300 airgun shots. In the central Salton Trough, North American lithosphere appears to have been rifted completely apart. Based primarily on a 1979 seismic refraction project, the 20-22 km thick crust is apparently composed entirely of new crust added by magmatism from below and sedimentation from above. Active rifting of this new crust is manifested by shallow (<10km depth) seismicity in the oblique Brawley Seismic Zone (BSZ), small Salton Buttes volcanoes aligned perpendicular to the transform faults, very high heat flow (~140 mW/m2), and geothermal energy production. This presentation is focused on an onshore-offshore line of densely sampled refraction and low-fold reflection data that crosses the Brawley Seismic Zone and Salton Buttes in the direction of plate motion. At the time of abstract submission, data analysis was very preliminary, consisting of first-arrival tomography of the onshore half of the line for upper crustal seismic velocity. Crystalline basement (>5 km/s), comprised of late-Pliocene to Quaternary sediment metamorphosed by the high heat flow, occurs at ~2 km depth beneath the Salton Buttes and geothermal field and ~4 km

  3. Delineation of Active Basement Faults in the Eastern Tennessee and Charlevoix Intraplate Seismic Zones

    NASA Astrophysics Data System (ADS)

    Powell, C. A.; Langston, C. A.; Cooley, M.

    2013-12-01

    Recognition of distinct, seismogenic basement faults within the eastern Tennessee seismic zone (ETSZ) and the Charlevoix seismic zone (CSZ) is now possible using local earthquake tomography and datasets containing a sufficiently large number of earthquakes. Unlike the New Madrid seismic zone where seismicity clearly defines active fault segments, earthquake activity in the ETSZ and CSZ appears diffuse. New arrival time inversions for hypocenter relocations and 3-D velocity variations using datasets in excess of 1000 earthquakes suggest the presence of distinct basement faults in both seismic zones. In the ETSZ, relocated hypocenters align in near-vertical segments trending NE-SW, parallel to the long dimension of the seismic zone. Earthquakes in the most seismogenic portion of the ETSZ delineate another set of near-vertical faults trending roughly E-ESE. These apparent trends and steep dips are compatible with ETSZ focal mechanism solutions. The solutions are remarkably consistent and indicate strike-slip motion along the entire length of the seismic zone. Relocated hypocenter clusters in the CSZ define planes that trend and dip in directions that are compatible with known Iapitan rift faults. Seismicity defining the planes becomes disrupted where the rift faults encounter a major zone of deformation produced by a Devonian meteor impact. We will perform a joint statistical analysis of hypocenter alignments and focal mechanism nodal plane orientations in the ETSZ and the CSZ to determine the spatial orientations of dominant seismogenic basement faults. Quantifying the locations and dimensions of active basement faults will be important for seismic hazard assessment and for models addressing the driving mechanisms for these intraplate zones.

  4. On interrelation between seismic activity and the Earth crust deformations of Vrancea zone

    NASA Astrophysics Data System (ADS)

    Dultsev, A.; Pronyshyn, R.; Siejka, Z.; Serant, O.; Tretyak, K.; Zablotskyj, F.

    2009-04-01

    An investigated territory covers the whole seismically active zone of Vrancea mountains (Romania). It is located between 43° and 47° parallels in latitude and 23° and 29° meridians in longitude. The weekly solutions of coordinates of six permanent stations (BACA, BAIA, BUCU, COST, DEVA, IGEO) allocated on the territories of Romania and Moldova have been used as the initial data for carrying out of the investigations. These initial data were obtained during 2007-2008. The results of determination of the earthquake parameters (coordinates, focal depth, magnitude and energy) have been obtained from a network of seismic stations. An analysis of the temporal earthquake distribution in 2007-2008 showed the alternation of the periods of seismic activity and its absence. The duration of these periods ranges from one to three weeks. The Earth crust deformation parameters between the recurrent periods of seismic activity and its absence have been calculated on basis of weekly solutions for the territory bounded by GPS-permanent stations. The accumulative values of the earthquake energy and magnitude were calculated for the periods of seismic activity. It had been ascertained that the territory of Vrancea zone undergoes the permanent stretching into northeast and southwest directions as well as the compressing into northwest and southeast ones. In fact, the more fast attenuation of the seismic waves occurs in the direction of the contraction axis and the slowest attenuation of ones occurs in the direction of the axis of elongation. The parameters of total amplitude and earthquake energy in the periods of seismic activity have high-degree correlation with difference of the deformations of next periods of seismic activity and its absence. It enables to predict a change of the deformation increment in the zone of earthquake focuses of Vrancea territory by means of the earthquake total force.

  5. Seismic activity offshore Martinique and Dominica islands (Central Lesser Antilles subduction zone) from temporary onshore and offshore seismic networks

    NASA Astrophysics Data System (ADS)

    Ruiz, M.; Galve, A.; Monfret, T.; Sapin, M.; Charvis, P.; Laigle, M.; Evain, M.; Hirn, A.; Flueh, E.; Gallart, J.; Diaz, J.; Lebrun, J. F.

    2013-09-01

    This work focuses on the analysis of a unique set of seismological data recorded by two temporary networks of seismometers deployed onshore and offshore in the Central Lesser Antilles Island Arc from Martinique to Guadeloupe islands. During the whole recording period, extending from January to the end of August 2007, more than 1300 local seismic events were detected in this area. A subset of 769 earthquakes was located precisely by using HypoEllipse. We also computed focal mechanisms using P-wave polarities of the best azimuthally constrained earthquakes. We detected earthquakes beneath the Caribbean forearc and in the Atlantic oceanic plate as well. At depth seismicity delineates the Wadati-Benioff Zone down to 170 km depth. The main seismic activity is concentrated in the lower crust and in the mantle wedge, close to the island arc beneath an inner forearc domain in comparison to an outer forearc domain where little seismicity is observed. We propose that the difference of the seismicity beneath the inner and the outer forearc is related to a difference of crustal structure between the inner forearc interpreted as a dense, thick and rigid crustal block and the lighter and more flexible outer forearc. Seismicity is enhanced beneath the inner forearc because it likely increases the vertical stress applied to the subducting plate.

  6. Seismic evidence for active underplating below the megathrust earthquake zone in Japan.

    PubMed

    Kimura, Hisanori; Takeda, Tetsuya; Obara, Kazushige; Kasahara, Keiji

    2010-07-01

    Determining the structure of subduction zones is important for understanding mechanisms for the generation of interplate phenomena such as megathrust earthquakes. The peeling off of the uppermost part of a subducting slab and accretion to the bottom of an overlying plate (underplating) at deep regions has been inferred from exhumed metamorphic rocks and deep seismic imaging, but direct seismic evidence of this process is lacking. By comparing seismic reflection profiles with microearthquake distributions in central Japan, we show that repeating microearthquakes occur along the bottom interface of the layer peeling off from the subducting Philippine Sea plate. This region coincides with the location of slow-slip events that may serve as signals for monitoring active underplating.

  7. Seismic Activity offshore Martinique and Dominique islands (Lesser Antilles subduction zone)

    NASA Astrophysics Data System (ADS)

    Ruiz Fernandez, Mario; Galve, Audrey; Monfret, Tony; Charvis, Philippe; Laigle, Mireille; Flueh, Ernst; Gallart, Josep; Hello, Yann

    2010-05-01

    In the framework of the European project Thales was Right, two seismic surveys (Sismantilles II and Obsantilles) were carried out to better constrain the lithospheric structure of the Lesser Antilles subduction zone, its seismic activity and to evaluate the associated seismic hazards. Sismantilles II experiment was conducted in January, 2007 onboard R/V Atalante (IFREMER). A total of 90 OBS belonging to Géoazur, INSU-CNRS and IFM-Geomar were deployed on a regular grid, offshore Antigua, Guadeloupe, Dominique and Martinique islands. During the active part of the survey, more than 2500 km of multichannel seismic profiles were shot along the grid lines. Then the OBS remained on the seafloor continuously recording for the seismic activity for approximately 4 months. On April 2007 Obsantilles experiment, carried out onboard R/V Antea (IRD), was focused on the recovery of those OBS and the redeployment of 28 instruments (Géoazur OBS) off Martinique and Dominica Islands for 4 additional months of continuous recording of the seismicity. This work focuses on the analysis of the seismological data recorded in the southern sector of the study area, offshore Martinique and Dominique. During the two recording periods, extending from January to the end of August 2007, more than 3300 seismic events were detected in this area. Approximately 1100 earthquakes had enough quality to be correctly located. Station corrections, obtained from multichannel seismic profiles, were introduced to each OBS to take in to account the sedimentary cover and better constrain the hypocentral determinations. Results show events located at shallower depths in the northern sector of the array, close to the Tiburon Ridge, where the seismic activity is mainly located between 20 to 40 km depth. In the southern sector, offshore Martinique, hypocenters become deeper, ranging to 60 km depth and dipping to the west. Focal solutions have also been obtained using the P wave polarities of the best azimuthally

  8. Structural and Lithologic Characteristics of the Wenchuan Earthquake Fault Zone and its Relationship with Seismic Activity

    NASA Astrophysics Data System (ADS)

    Wang, H.; Li, H.; Pei, J.; Li, T.; Huang, Y.; Zhao, Z.

    2010-12-01

    the older earthquake, but rather along the edge of the gouge. According to the gouge statistics of the whole fault zone, seismic events have the obvious tendency towards the foot wall, and the thickness of gouge is proportional to the activity of the fault, indicating that the width of fault zone is directly related to the number and evolution history of earthquakes . Repeated earthquakes maybe the main cause for the formation of the Longmenshan Moutains

  9. Active faults in the deformation zone off Noto Peninsula, Japan, revealed by high- resolution seismic profiles

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Okamura, Y.; Murakami, F.; Kimura, H.; Ikehara, K.

    2008-12-01

    Recently, a lot of earthquakes occur in Japan. The deformation zone which many faults and folds have concentrated exists on the Japan Sea side of Japan. The 2007 Noto Hanto Earthquake (MJMA 6.9) and 2007 Chuetsu-oki Earthquake (MJMA 6.8) were caused by activity of parts of faults in this deformation zone. The Noto Hanto Earthquake occurred on 25 March, 2007 under the northwestern coast of Noto Peninsula, Ishikawa Prefecture, Japan. This earthquake is located in Quaternary deformation zone that is continued from northern margin of Noto Peninsula to southeast direction (Okamura, 2007a). National Institute of Advanced Industrial Science and Technology (AIST) carried out high-resolution seismic survey using Boomer and 12 channels short streamer cable in the northern part off Noto Peninsula, in order to clarify distribution and activities of active faults in the deformation zone. A twelve channels short streamer cable with 2.5 meter channel spacing developed by AIST and private corporation is designed to get high resolution seismic profiles in shallow sea area. The multi-channel system is possible to equip on a small fishing boat, because the data acquisition system is based on PC and the length of the cable is short and easy to handle. Moreover, because the channel spacing is short, this cable is very effective for a high- resolution seismic profiling survey in the shallow sea, and seismic data obtained by multi-channel cable can be improved by velocity analysis and CDP stack. In the northern part off Noto Peninsula, seismic profiles depicting geologic structure up to 100 meters deep under sea floor were obtained. The most remarkable reflection surface recognized in the seismic profiles is erosion surface at the Last Glacial Maximum (LGM). In the western part, sediments about 30 meters (40 msec) thick cover the erosional surface that is distributed under the shelf shallower than 100m in depth and the sediments thin toward offshore and east. Flexures like deformation in

  10. Peculiarities of ULF electromagnetic disturbances before strong earthquakes in seismic active zone of Kamchatka peninsula

    NASA Astrophysics Data System (ADS)

    Kopytenko, Y. A.; Ismagilov, V. S.; Schekotov, A.; Molchanov, O.; Chebrov, V.; Raspopov, O. M.

    2006-12-01

    Regular observations of ULF electromagnetic disturbances and acoustic emissions at st. Karymshino in seismic active zone of Kamchatka peninsula were carried out during 2001-2003 years. Five seismic active periods with strong earthquakes (M>5) were displayed during this period. These EQs occurred at the Pacific at 20-60 km depth at 100-140 km distances to the East from the st. Karymshino. Analysis of normalized dynamic power spectra of data of high-sensitive (0.2 pT/sqrt(Hz)) three-component induction magnetometer achieved a significant disorder of daily variation and increasing of the magnetic disturbance intensities (from 0.2 to ~1 pT) in the whole investigated frequency range (0.2-5 Hz). The anomaly intensity increasing was observed during the 12-18 hours before main seismic shocks. Maximum of the increasing occurred during 4-6 hours before the EQs. An increasing of acoustic emissions (F=30 Hz) was observed during the same period. A sharp decreasing of the magnetic disturbance intensities was observed 2-4 hours before the EQs. We suppose that physical processes in a hearth of forthcoming EQ lead to an irreversible avalanche-like formation of cracks and stimulation of the acoustic and ULF electromagnetic disturbances.

  11. Seismic sequences in the Sombrero Seismic Zone

    NASA Astrophysics Data System (ADS)

    Pulliam, J.; Huerfano, V. A.; ten Brink, U.; von Hillebrandt, C.

    2007-05-01

    The northeastern Caribbean, in the vicinity of Puerto Rico and the Virgin Islands, has a long and well-documented history of devastating earthquakes and tsunamis, including major events in 1670, 1787, 1867, 1916, 1918, and 1943. Recently, seismicity has been concentrated to the north and west of the British Virgin Islands, in the region referred to as the Sombrero Seismic Zone by the Puerto Rico Seismic Network (PRSN). In the combined seismicity catalog maintained by the PRSN, several hundred small to moderate magnitude events can be found in this region prior to 2006. However, beginning in 2006 and continuing to the present, the rate of seismicity in the Sombrero suddenly increased, and a new locus of activity developed to the east of the previous location. Accurate estimates of seismic hazard, and the tsunamigenic potential of seismic events, depend on an accurate and comprehensive understanding of how strain is being accommodated in this corner region. Are faults locked and accumulating strain for release in a major event? Or is strain being released via slip over a diffuse system of faults? A careful analysis of seismicity patterns in the Sombrero region has the potential to both identify faults and modes of failure, provided the aggregation scheme is tuned to properly identify related events. To this end, we experimented with a scheme to identify seismic sequences based on physical and temporal proximity, under the assumptions that (a) events occur on related fault systems as stress is refocused by immediately previous events and (b) such 'stress waves' die out with time, so that two events that occur on the same system within a relatively short time window can be said to have a similar 'trigger' in ways that two nearby events that occurred years apart cannot. Patterns that emerge from the identification, temporal sequence, and refined locations of such sequences of events carry information about stress accommodation that is obscured by large clouds of

  12. Quaternary grabens in southernmost Illinois: Deformation near an active intraplate seismic zone

    USGS Publications Warehouse

    Nelson, W.J.; Denny, F.B.; Follmer, L.R.; Masters, J.M.

    1999-01-01

    Narrow grabens displace Quaternary sediments near the northern edge of the Mississippi Embayment in extreme southern Illinois, east-central United States. Grabens are part of the Fluorspar Area Fault Complex (FAFC), which has been recurrently active throughout Phanerozoic time. The FAFC strikes directly toward the New Madrid Seismic Zone (NMSZ), scene of some of the largest intra-plate earthquakes in history. The NMSZ and FAFC share origin in a failed Cambrian rift (Reelfoot Rift). Every major fault zone of the FAFC in Illinois exhibits Quaternary displacement. The structures appear to be strike-slip pull-apart grabens, but the magnitude and direction of horizontal slip and their relationship to the current stress field are unknown. Upper Tertiary strata are vertically displaced more than 100 m, Illinoian and older Pleistocene strata 10 to 30 m, and Wisconsinan deposits 1 m or less. No Holocene deformation has been observed. Average vertical slip rates are estimated at 0.01 to 0.03 mm/year, and recurrence intervals for earthquakes of magnitude 6 to 7 are on the order of 10,000s of years for any given fault. Previous authors remarked that the small amount of surface deformation in the New Madrid area implies that the NMSZ is a young feature. Our findings show that tectonic activity has shifted around throughout the Quaternary in the central Mississippi Valley. In addition to the NMSZ and southern Illinois, the Wabash Valley (Illinois-Indiana), Benton Hills (Missouri), Crowley's Ridge (Arkansas-Missouri), and possibly other sites have experienced Quaternary tectonism. The NMSZ may be only the latest manifestation of seismicity in an intensely fractured intra-plate region.

  13. Seismically Articulating Kilauea Volcano's Active Conduits, Rift Zones, and Faults through HVO's Second Fifty Years

    NASA Astrophysics Data System (ADS)

    Okubo, P.; Nakata, J.; Klein, F.; Koyanagi, R.; Thelen, W.

    2011-12-01

    While seismic monitoring of active Hawaiian volcanoes began 100 years ago, the build-up of the U. S. Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO) seismographic network to its current configuration began in 1955, when Jerry Eaton established remote stations that telemetered data via landline to recorders at HVO. With network expansion through the 1960's, earthquake location and cataloging capabilities have evolved to afford a computer processed seismic catalog now spanning fifty years. Location accuracy and catalog completeness to smaller magnitudes have increased. Research and insights developed using HVO's seismic record have exploited the ability to seismically monitor volcanic activity at depth, to identify active regions within the volcanoes on the basis of computed hypocentral locations, to infer regions of magma storage by recognizing different families of volcanic earthquakes, and to forecast volcanic activity in both short and longer term from seismicity patterns. HVO's seismicity catalog was central to calculations of probabilistic seismic hazards. The ability to develop and implement additional analytical and interpretive capabilities has kept pace with improvements in both field and laboratory hardware and software. While the basic capabilities continue as part of HVO's core monitoring, additional interpretive capabilities now include adding details of volcanic and earthquake source regions, and viewing seismic data in juxtaposition with other observatory data streams. As HVO looks to its next century of volcano studies, research and development continue to shape the future. Broadband seismic recording at HVO has enabled extensive study by Chouet, Dawson, and co-workers of the relationship of very-long-period seismic sources beneath Kilauea's summit caldera to magma supply and transport. Recent upgrades have improved the ability to use these data in seismic cataloging and research. Data processing upgrades have bolstered the ability to

  14. Incipient extension along the active convergent margin of Nubia in Sicily, Italy: Cefalù-Etna seismic zone

    NASA Astrophysics Data System (ADS)

    Billi, Andrea; Presti, Debora; Orecchio, Barbara; Faccenna, Claudio; Neri, Giancarlo

    2010-08-01

    Recent geodetic data are compatible with NNE-SSW tectonic extension at a rate of ˜5 mm/yr in Sicily, southern Italy, within a broader region of net active compression along the Nubian plate margin (northern Africa). The structures that accommodate such extensional regime and its cause are still unknown. From field structural surveys and seismological analyses, the geometry, kinematics, structural architecture, and seismic potential of an extensional seismic zone linking Cefalù and Mount Etna in central eastern Sicily are defined. The zone includes high-angle WNW striking normal and right-lateral strike-slip faults and subordinate north and NNE striking strike-slip faults either right or left lateral. The occurrence of small discontinuous faults and the absence of related depressions and sedimentary basins suggest that the extensional regime is still in an incipient stage. The ongoing seismic activity possibly reactivates preexisting faults. Instrumentally and historically recorded earthquakes are lower than about 6 in magnitude, and destructive events are historically unknown since at least 1300 A.D. This apparent upper bound of earthquake magnitudes is consistent with the maximum magnitude values estimated from the length of the longest mapped faults and sources of seismic swarms, which all together suggest a value between 6 and 6.5 as the maximum expected magnitude that can be proposed at the present stage of investigation for earthquakes in the study area. Lateral extension on preexisting faults and upwelling of melt mantle material beneath Mount Etna are considered viable processes to explain, at least in part, the active extensional tectonics along the Cefalù-Etna seismic zone. Strike-slip seismic faulting beneath Mount Etna may be part of a previously proposed diffuse transfer zone affecting northeastern Sicily and including the Tindari Fault.

  15. Structure of the active rift zone and margins of the northern Imperial Valley from Salton Seismic Imaging Project (SSIP) data

    NASA Astrophysics Data System (ADS)

    Livers, A.; Han, L.; Delph, J. R.; White-Gaynor, A. L.; Petit, R.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2012-12-01

    First-arrival refraction data were used to create a seismic velocity model of the upper crust across the actively rifting northern Imperial Valley and its margins. The densely sampled seismic refraction data were acquired by the Salton Seismic Imaging Project (SSIP) , which is investigating rift processes in the northern-most rift segment of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. A 95-km long seismic line was acquired across the northern Imperial Valley, through the Salton Sea geothermal field, parallel to the five Salton Butte volcanoes and perpendicular to the Brawley Seismic Zone and major strike-slip faults. Nineteen explosive shots were recorded with 100 m seismometer spacing across the valley and with 300-500 m spacing into the adjacent ranges. First-arrival travel times were picked from shot gathers along this line and a seismic velocity model was produced using tomographic inversion. Sedimentary basement and seismic basement in the valley are interpreted to be sediment metamorphosed by the very high heat flow. The velocity model shows that this basement to the west of the Brawley Seismic Zone is at ~4-km depth. The basement shallows to ~2-km depth in the active geothermal field and Salton Buttes volcanic field which locally coincide with the Brawley Seismic Zone. At the eastern edge of the geothermal field, the basement drops off again to ~3.5-km depth. The eastern edge of the valley appears to be fault bounded by the along-strike extension of the Sand Hills Fault, an inactive strike-slip fault. The seismic velocities to the east of the fault correspond to metamorphic rock of the Chocolate Mountains, different from the metamorphosed basement in the valley. The western edge of the valley appears to be fault bounded by the active Superstition Hills Fault. To the west of the valley, >4-km deep valley basement extends to the active Superstition Hills Fault. Basement then shallows

  16. Physical modeling of the formation and evolution of seismically active fault zones

    USGS Publications Warehouse

    Ponomarev, A.V.; Zavyalov, A.D.; Smirnov, V.B.; Lockner, D.A.

    1997-01-01

    Acoustic emission (AE) in rocks is studied as a model of natural seismicity. A special technique for rock loading has been used to help study the processes that control the development of AE during brittle deformation. This technique allows us to extend to hours fault growth which would normally occur very rapidly. In this way, the period of most intense interaction of acoustic events can be studied in detail. Characteristics of the acoustic regime (AR) include the Gutenberg-Richter b-value, spatial distribution of hypocenters with characteristic fractal (correlation) dimension d, Hurst exponent H, and crack concentration parameter Pc. The fractal structure of AR changes with the onset of the drop in differential stress during sample deformation. The change results from the active interaction of microcracks. This transition of the spatial distribution of AE hypocenters is accompanied by a corresponding change in the temporal correlation of events and in the distribution of event amplitudes as signified by a decrease of b-value. The characteristic structure that develops in the low-energy background AE is similar to the sequence of the strongest microfracture events. When the AR fractal structure develops, the variations of d and b are synchronous and d = 3b. This relation which occurs once the fractal structure is formed only holds for average values of d and b. Time variations of d and b are anticorrelated. The degree of temporal correlation of AR has time variations that are similar to d and b variations. The observed variations in laboratory AE experiments are compared with natural seismicity parameters. The close correspondence between laboratory-scale observations and naturally occurring seismicity suggests a possible new approach for understanding the evolution of complex seismicity patterns in nature. ?? 1997 Elsevier Science B.V. All rights reserved.

  17. On the seismic activity of the Malibu Coast Fault Zone, and other ethical problems in engineering geoscience

    SciTech Connect

    Cronin, V.S. . Geosciences Dept.)

    1992-01-01

    The Malibu Coast Fault Zone (MCFZ) merges eastward with the active Santa Monica, Hollywood, Raymond Hill, Sierra Madre, and Cucamonga Faults of the central Transverse Ranges. West of Point Dume, the MCFZ extends offshore to join the active Santa Cruz Island Fault. Active microearthquake seismicity along the MCFZ trend indicates that it is seismogenic. Focal mechanism solutions for several of these earthquakes indicate thrusting along faults with the same orientation as the MCFZ. The geomorphology of the MCFZ is consistent with the interpretation that the MCFZ is active. Scarps in unconsolidated sands along the continental shelf just south of Malibu indicate recent offset. In the Santa Monica Mountains, late Tertiary and Quaternary marine sedimentary strata are exposed on the hanging-wall side of the MCFZ, indicating active uplift of the Santa Monica Mountains. Given the other indicators of fault activity, the trench studies that must still be undertaken across the MCFZ are more likely to establish the chronology of recent displacement along the MCFZ than to indicate that the fault is not active. It has been suggested that the MCFZ has not yet been formally recognized as an active, seismogenic fault zone because of the expected loss of property value should the MCFZ be designated an active fault. Geoscientists fear being held liable for loss of property value, even though their assessment of fault activity may be scientifically valid. What are the ethical responsibilities of geoscientists involved in seismic risk assessment along the MCFZ Are political or financial considerations valid criteria to use in assessing the activity of a fault These are not abstract questions of geoethics, because the lives and properties of countless people are potentially at risk.

  18. Active crustal deformation of the El Salvador Fault Zone (ESFZ) using GPS data: Implications in seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Staller, Alejandra; Benito, Belen; Jesús Martínez-Díaz, José; Hernández, Douglas; Hernández-Rey, Román; Alonso-Henar, Jorge

    2014-05-01

    El Salvador, Central America, is part of the Chortis block in the northwestern boundary of the Caribbean plate. This block is interacting with a diffuse triple junction point with the Cocos and North American plates. Among the structures that cut the Miocene to Pleistocene volcanic deposits stands out the El Salvador Fault Zone (ESFZ): It is oriented in N90º-100ºE direction, and it is composed of several structural segments that deform Quaternary deposits with right-lateral and oblique slip motions. The ESFZ is seismically active and capable of producing earthquakes such as the February 13, 2001 with Mw 6.6 (Martínez-Díaz et al., 2004), that seriously affected the population, leaving many casualties. This structure plays an important role in the tectonics of the Chortis block, since its motion is directly related to the drift of the Caribbean plate to the east and not with the partitioning of the deformation of the Cocos subduction (here not coupled) (Álvarez-Gómez et al., 2008). Together with the volcanic arc of El Salvador, this zone constitutes a weakness area that allows the motion of forearc block toward the NW. The geometry and the degree of activity of the ESFZ are not studied enough. However their knowledge is essential to understand the seismic hazard associated to this important seismogenic structure. For this reason, since 2007 a GPS dense network was established along the ESFZ (ZFESNet) in order to obtain GPS velocity measurements which are later used to explain the nature of strain accumulation on major faults along the ESFZ. The current work aims at understanding active crustal deformation of the ESFZ through kinematic model. The results provide significant information to be included in a new estimation of seismic hazard taking into account the major structures in ESFZ.

  19. Real time electromagnetic monitoring system used for short-term earthquakes forecast related to the seismic-active Vrancea zone

    NASA Astrophysics Data System (ADS)

    Stanica, Dumitru; Armand Stanica, Dragos

    2016-04-01

    The existence of the pre-seismic electromagnetic signals related to the earthquakes is still under scientific debate and requires new reliable information about their possible inter-relationship. In this paper, to obtain new insights into the seismic active Vrancea zone (Romania), a 3-D magnetotelluric imaging has been used to strengthen the connection between the geodynamic model and a possible generation mechanism of the intermediate depth earthquakes. Consequently, it is considered that before an earthquake initiation, due to the torsion effect, a high stress reached inside the seismogenic volume that may generates dehydration and rupture processes of the rocks, associated with the fluid migration through the lithospheric faults system, what leads to the resistivity changes. These changes have been investigated by using ULF electromagnetic data recorded in real time at the Geodynamic Observatory Provita de Sus (GOPS), placed on the Carpathian Electrical Conductivity Anomaly (CECA) at about 100km far from the seismic active Vrancea zone. The daily mean distribution of the normalized function Bzn(f) = Bz(f)/Bperp(f) (where: Bz is vertical component of the geomagnetic field; Bperp is geomagnetic component perpendicular to strike; f is frequency in Hz) and its standard deviation are performed by using a FFT band-pass filter analysis in the ULF range 0.001Hz to 0.0083Hz, for which a 2-D geoelectrical structure under GOPS has been identified. To provide reliable information in anticipating the likelihood occurrence of an earthquake of Mw higher than 4, a statistical analysis based on standardized random variable equation has been used to identify the anomalous intervals on the new time series (Bzn*) carried out in a span of three years (2013-2015). The final conclusion is that the Bzn* shows a significant anomalous effect some days (weeks) before an impending earthquake and it should be used for short-term earthquakes forecast.

  20. Seismicity of the eastern Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Bruestle, A.; Kueperkoch, L.; Rische, M.; Meier, T.; Friederich, W.; Egelados Working Group

    2012-04-01

    The Hellenic Subduction Zone (HSZ) is the seismically most active region of Europe. The African plate is subducting beneath the Aegean lithosphere with a relative velocity of 4 cm per year. A detailed picture of the microseismicity of the eastern HSZ was obtained by the recordings of the temporary networks CYCNET (September 2002 - September 2005) and EGELADOS (October 2005 - March 2007). In total, nearly 7000 earthquakes were located with a location uncertainty of less than 20 km. The SE Aegean is dominated by (1) shallow intraplate seismicity within the Aegean plate, by (2) interplate seismicity at the plate contact and by (3) intermediate deep seismicity along the subducting African slab. Strong shallow seismicity in the upper plate is observed along the Ptolemy graben south of Crete extending towards the Karpathos Basin, indicating intense recent deformation of the forearc. In contrary, low shallow seismicity around Rhodes indicates only minor seismic crustal deformation of the upper plate. An almost NS-striking zone of microseismicity has been located, running from the Karpathos basin via the Nisyros volcanic complex towards the EW striking Gökova graben. In the SE Aegean the geometry of the Wadati-Benioff-Zone (WBZ) within the subducting African plate is revealed in detail by the observed microseismicity. Between about 50 to 100 km depth a continuous band of intermediate deep seismicity describes the strongly curved geometry of the slab. From the central to the eastern margin of the HSZ, the dip direction of the WBZ changes from N to NW with a strong increase of the dip angle beneath the eastern Cretan Sea. The margin of the dipping African slab is marked by an abrupt end of the observed WBZ beneath SW Anatolia. Below 100 km depth, the WBZ of the eastern HSZ is dominated by an isolated cluster of intense intermediate deep seismicity (at 100-180 km depth) beneath the Nisyros volcanic complex. It has an extension of about 100x80 km and is build up of 3 parallel

  1. Study on Seismic Zoning of Sino-Mongolia Arc Areas

    NASA Astrophysics Data System (ADS)

    Xu, G.

    2015-12-01

    According to the agreement of Cooperation on seismic zoning between Institute of Geophysics, China Earthquake Administration and Research Center of Astronomy and Geophysics, Mongolian Academy of Science, the data of geotectonics, active faults, seismicity and geophysical field were collected and analyzed, then field investigation proceeded for Bolnay Faults, Ar Hutul Faults and Gobi Altay Faults, and a uniform earthquake catalogue of Mongolia and North China were established for the seismic hazard study in Sino-Mongolia arc areas. Furthermore the active faults and epicenters were mapped and 2 seismic belts and their 54 potential seismic sources are determined. Based on the data and results above mentioned the seismicity parameters for the two seismic belts and their potential sources were studied. Finally, the seismic zoning with different probability in Sino-Mongolia arc areas was carried out using China probabilistic hazard analysis method. By analyzing the data and results, we draw the following main conclusions. Firstly, the origin of tectonic stress field in the study areas is the collision and pressure of the India Plate to Eurasian Plate, passing from the Qinghai-Tibet Plateau. This is the reason why the seismicity is higher in the west than in the east, and all of earthquakes with magnitude 8 or greater occurred in the west. Secondly, the determination of the 2 arc seismic belts, Altay seismic belt and Bolnay-Baikal seismic belt, are reasonable in terms of their geotectonic location, geodynamic origin and seismicity characteristics. Finally, there are some differences between our results and the Mongolia Intensity Zoning map published in 1985 in terms of shape of seismic zoning map, especially in the areas near Ulaanbaatar. We argue that our relsults are reasonable if we take into account the data use of recent study of active faults and their parameters, so it can be used as a reference for seismic design.

  2. New insights on the deep geodynamic processes within Vrancea active seismic zone as inferred from non-tidal gravity changes

    NASA Astrophysics Data System (ADS)

    Besutiu, L.

    2012-04-01

    Vrancea experiment Located in the bending zone of East Carpathians, just at the junction of three major lithospheric compartments, the so-called Vrancea zone exhibits unusual intermediate-depth seismicity within full intra-continental environment. The dominant idea is that the upper mantle seismicity is due to a slab relict hanging below the Vrancea crust. However, several aspects, among which the issues of its connection with the crust, are under debate. The presence of the intermediate-depth earthquakes with vertical-extension mechanism advocate for an active attachment of the oceanic lithosphere relict sinking into the upper mantle, but some seismic tomography images seem to point out a completely detached high velocity body. However, the low resolution makes the results questionable. A gravity experiment has been conducted in order to infer the lithosphere dynamics within the Vrancea seismic region from the space-time change of the gravity field in the area. Systematic high accuracy gravity observations have been performed within a dedicated gravity network consisting of 13 epoch-stations regularly spread over the study area and a geo-traverse crossing the epicentre zone. Instruments and methodology Using a Scintrex CG-5 relative meter, absolute gravity values have been transferred on each pillar from the both second order Romanian national gravity reference network and the Central Europe UNIGRACE network. Gravity values on the base stations located along the geo-traverse have been referred to one of the end base-stations, located outside the active geodynamic area in a stable environment. All gravity observations were corrected for tide and drift. Due to the short distance between the stations, corrections for atmospheric pressure change have not been considered. Main results As the second order Romanian national gravity network provides absolute gravity for the 1980's epoch, and the UNIGRACE network offers absolute gravity for 2000's epoch, pairs of absolute

  3. Reassessing the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Atkinson, Gail; Bakun, Bill; Bodin, Paul; Boore, David; Camer, Chris; Frankel, Art; Gasperini, Paulo; Gomberg, Joan; Hanks, Tom; Hermann, Bob; Hough, Susan; Johnston, Arch; Kenner, Shelley; Langston, Chuck; Linker, Mark; Mayne, Paul; Petersen, Mark; Powell, Christine; Prescott, Will; Schweig, Eugene; Segall, Paul; Stein, Seth; Stuart, Bill; Tuttle, Martitia; VanArsdale, Roy

    The central enigma of the mid-continent region in the United States known as the New Madrid seismic zone (NMSZ; Figure 1) involves the mechanisms that give rise to recurrent great earthquakes far from plate boundaries. Given the lack of significant topographic relief that is the hallmark of tectonic activity in most actively deforming regions, most of us feel a need to “pinch ourselves to see if we're dreaming” when confronted with evidence that, at some probability levels, the earthquake hazard throughout the NMSZ is comparable to that estimated for the San Francisco Bay region.Although assessing the hazard in the NMSZ is in many ways more challenging than in the western United States, and the uncertainties are much greater, careful scientific study has led to a consensus on the issues most critical to seismic hazard assessment.

  4. Active seismic experiment

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.; Talwani, P.

    1972-01-01

    The Apollo 16 active seismic experiment (ASE) was designed to generate and monitor seismic waves for the study of the lunar near-surface structure. Several seismic energy sources are used: an astronaut-activated thumper device, a mortar package that contains rocket-launched grenades, and the impulse produced by the lunar module ascent. Analysis of some seismic signals recorded by the ASE has provided data concerning the near-surface structure at the Descartes landing site. Two compressional seismic velocities have so far been recognized in the seismic data. The deployment of the ASE is described, and the significant results obtained are discussed.

  5. A seismic source zone model for the seismic hazard assessment of Slovakia

    NASA Astrophysics Data System (ADS)

    Hók, Jozef; Kysel, Robert; Kováč, Michal; Moczo, Peter; Kristek, Jozef; Kristeková, Miriam; Šujan, Martin

    2016-06-01

    We present a new seismic source zone model for the seismic hazard assessment of Slovakia based on a new seismotectonic model of the territory of Slovakia and adjacent areas. The seismotectonic model has been developed using a new Slovak earthquake catalogue (SLOVEC 2011), successive division of the large-scale geological structures into tectonic regions, seismogeological domains and seismogenic structures. The main criteria for definitions of regions, domains and structures are the age of the last tectonic consolidation of geological structures, thickness of lithosphere, thickness of crust, geothermal conditions, current tectonic regime and seismic activity. The seismic source zones are presented on a 1:1,000,000 scale map.

  6. Elements of the Seismic Structure and Activity of the Lesser Antilles Subduction Zone (Guadeloupe and Martinique Islands) from the SISMANTILLES Seismic Survey

    NASA Astrophysics Data System (ADS)

    Laigle, M.; Roux, E.; Sapin, M.; Hirn, A.; de Voogd, B.; Charvis, P.; Hello, Y.; Murai, Y.; Nishimura, Y.; Shimamura, H.; Galve, A.; Lepine, J.; Lebrun, J.; Diaz, J.; Gallart, J.; Beauducel, F.; Viode, J.

    2005-12-01

    The Lesser Antilles is an active subduction zone, prone to future major earthquakes as it has experienced in the past with the occurrence in 1843 of a M>7.5 probably mega-thrust earthquake that destroyed Pointe-a-Pitre city on Guadeloupe Island. The SISMANTILLES project was carried out at a regional scale for a first reconnaissance of the seismic structure and activity from northern Guadeloupe to Martinique islands. The project focused more particularly on the detection, mapping and characterisation of the potentially seimogenic part of the interplate subduction fault. The french N/O Nadir vessel acquired 2500 km of deep-penetration multichannel reflection seismic (MCS) profiles. Up to 37 3-components Ocean Bottom Seismometers (OBS) were deployed offshore over several weeks together with a set of 3-components broadened-band stations on the islands (Martinique, Dominica, Guadeloupe and Antigua). These instruments recorded continuously both the MCS shots that provided wide angle reflexion and refraction (WARR) data as well as the local, regional and teleseismic earthquakes. On MCS profiles, reflections from the top of the subducting oceanic crust and decollement can be followed down to several km depth beneath the thick accretionary prism. Detailed velocity analysis provided depth structural sections that are used as an input for the forward modeling of WARR data. Thanks to these data, we can constrain on 3 transects to the arc, the part where the forearc deep crust is in contact with the subducting oceanic plate, considered as a proxy for the seismogenic part. Its location with respect to the deformation front and the volcanic arc and its downdip size appear significantly variable along the arc. The local earthquakes now reliably located in map and depth thanks to the high-quality P and S observations of the OBS network can be discussed with respect to these imaged structures. Local earthquakes P & S tomography as well as receiver functions analysis will bring more

  7. Crustal Structure Across the Okavango Rift Zone, Botswana: Initial Results From the PRIDE-SEISORZ Active-Source Seismic Profile

    NASA Astrophysics Data System (ADS)

    Canales, J. P.; Moffat, L.; Lizarralde, D.; Laletsang, K.; Harder, S. H.; Kaip, G.; Modisi, M.

    2015-12-01

    The PRIDE project aims to understand the processes of continental rift initiation and evolution by analyzing along-axis trends in the southern portion of the East Africa Rift System, from Botswana through Zambia and Malawi. The SEISORZ active-source seismic component of PRIDE focused on the Okavango Rift Zone (ORZ) in northwestern Botswana, with the main goal of imaging the crustal structure across the ORZ. This will allow us to estimate total crustal extension, determine the pattern and amount of thinning, assess the possible presence of melt within the rift zone, and assess the contrasts in crustal blocks across the rift, which closely follows the trend of a fold belt. In November 2014 we conducted a crustal-scale, 450-km-long seismic refraction/wide-angle reflection profile consisting of 19 sources (shots in 30-m-deep boreholes) spaced ~25 km apart from each other, and 900 receivers (IRIS/PASSCAL "Texan" dataloggers and 4.5Hz geophones) with ~500 m spacing. From NW to SE, the profile crosses several tectonic domains: the Congo craton, the Damara metamorphic belt and the Ghanzi-Chobe fold belt where the axis of the ORZ is located, and continues into the Kalahari craton. The record sections display clear crustal refraction (Pg) and wide-angle Moho reflection (PmP) phases for all 17 of the good-quality shots, and a mantle refraction arrival (Pn), with the Pg-PmP-Pn triplication appearing at 175 km offset. There are distinct changes in the traveltime and amplitude of these phases along the transect, and on either side of the axis, that seem to correlate with sharp transitions across tectonic terrains. Initial modeling suggests: (1) the presence of a sedimentary half-graben structure at the rift axis beneath the Okavango delta, bounded to the SE by the Kunyere-Thamalakane fault system; (2) faster crustal Vp in the domains to the NW of the ORZ; and (3) thicker crust (45-50 km) at both ends of the profile within the Congo and Kalahari craton domains than at the ORZ and

  8. The Seismic Coupling of Subduction Zones Revisited

    NASA Astrophysics Data System (ADS)

    Scholz, C.; Campos, J.

    2012-04-01

    The nature of seismic coupling for many of the world's subduction zones has been reevaluated. Geodetic estimates of seismic coupling obtained from GPS measurements of upper plate deformation during the interseismic period are summarized. We compared those with new estimates of seismic coupling obtained from seismological data. The results show that with a few notable exceptions the results using the two methods agree to within about 10%. The seismological estimates have been greatly improved over those made 20-30 years ago because of an abundance of paleoseismological data that greatly extend the temporal record of great subduction earthquakes and by the occurrence, in the intervening years, of an unusual number of great and giant earthquakes that have filled in some of the most critical holes in the seismic record. The data also, again with a few notable exceptions, support the frictional instability theory of seismic coupling, and in particular, the test of that theory made by Scholz and Campos [1995]. Overall, the results support their prediction that high coupling occurs for subduction zones subjected to high normal forces with a switch to low coupling occurring fairly abruptly as the normal force decreases below a critical value. There is also considerable variation of coupling within individual subduction zones. Earthquake asperities correlate with areas of high coupling and hence have a semblance of permanence, but the rupture zones and asperity distributions of great earthquakes may differ greatly between seismic cycles because of differences in the phase of seismic flux accumulation.

  9. The seismic coupling of subduction zones revisited

    NASA Astrophysics Data System (ADS)

    Scholz, Christopher H.; Campos, Jaime

    2012-05-01

    The nature of seismic coupling for many of the world's subduction zones has been reevaluated. Geodetic estimates of seismic coupling obtained from GPS measurements of upper plate deformation during the interseismic period are summarized. We compared those with new estimates of seismic coupling obtained from seismological data. The results show that with a few notable exceptions the two methods agree to within about 10%. The seismological estimates have been greatly improved over those made 20-30 years ago because of an abundance of paleoseismological data that greatly extend the temporal record of great subduction earthquakes and by the occurrence, in the intervening years, of an unusual number of great and giant earthquakes that have filled in some of the most critical holes in the seismic record. The data also, again with a few notable exceptions, support the frictional instability theory of seismic coupling, and in particular, the test of that theory made by Scholz and Campos (1995). Overall, the results support their prediction that high coupling occurs for subduction zones subjected to high normal forces with a switch to low coupling occurring fairly abruptly as the normal force decreases below a critical value. There is also considerable variation of coupling within individual subduction zones. Earthquake asperities correlate with areas of high coupling and hence have a semblance of permanence, but the rupture zones and asperity distributions of great earthquakes may differ greatly between seismic cycles because of differences in the phase of seismic flux accumulation.

  10. Active seismic and microseismic reflection imaging of the Precordilleran crust, fore-arc of the North-Chilean subduction zone (Central Andes)

    NASA Astrophysics Data System (ADS)

    Wenske, Ina; Hellwig, Olaf; Schmelzbach, Cedric; Buske, Stefan; Kummerow, Jörn; Wigger, Peter; Shapiro, Serge A.

    2013-04-01

    In the fore-arc of the Chilean subduction zone, prominent trench-parallel fault systems can be traced for more than thousand kilometers in north-south direction. These fault systems possibly crosscut parts or the entire crust and are expected to have a close relationship to transient processes of the subduction earthquake cycle. With the motivation to image and characterize the structural inventory and the processes that occur in the vicinity of these large-scale fault zones, we are currently performing a combined analysis of active and passive seismic data sets. The active-seismic data analysis is intended to provide images of the faults at depth and allow linking surface information to subsurface structures. The correlation of the active seismic data with the observed seismicity around these fault systems complements the imaging and potentially reveals the origin and the nature of the seismicity (incl. tremors) bound to these fault systems. Furthermore, reflection information extracted from passive-seismic waveform data has the potential to complement the active seismic imaging. In 1996, an approximately 350 km long west-east running reflection seismic profile was acquired to image the entire crust of the Central Andean fore-arc system (North Chile; ANCORP96 seismic line). Several features such as the downgoing plate (Nazca reflector) and the Quebrada Blanca Bright Spot at mid-crustal level were clearly imaged using both standard CMP processing and Kirchhoff prestack depth migration. The latter proved to be more successful in coping with the low data coverage and varying data quality. However, the original images were not providing conclusive information on the upper crust (< 10 km depth) due to the sparse acquisition geometry and the partly insufficient removal of source-generated noise. The major goal of our current re-processing of the ANCORP96 reflection seismic data set using adapted noise-suppression schemes and a novel prestack depth migration technique

  11. Active and passive seismic imaging of the Precordilleran crust, fore-arc of the North-Chilean subduction zone (Central Andes)

    NASA Astrophysics Data System (ADS)

    Wenske, Ina; Hellwig, Olaf; Buske, Stefan; Wigger, Peter; Shapiro, Serge A.

    2014-05-01

    In the fore-arc of the Chilean subduction zone the prominent trench-parallel fault systems can be traced for several thousand kilometers in the north-south direction. These fault systems possibly crosscut parts or the entire crust and are expected to have a close relationship to transient processes of the subduction earthquake cycle. With the motivation to image and characterize the structural inventory and the processes that occur in the vicinity of these large-scale fault zones, we are currently performing a combined analysis of active and passive seismic data sets. The active-seismic data analysis is intended to provide images of the faults at depth and allow linking surface information to subsurface structures. The correlation of the active seismic data with the observed seismicity around these fault systems complements the image and potentially reveals the origin and the nature of the seismicity (including tremors) bound to these fault systems. In 1996, an approximately 350 km long, west-east running reflection seismic profile was acquired to image the entire crust of the Central Andean fore-arc system (North Chile; ANCORP96 seismic line). Several features such as the downgoing plate (Nazca reflector) and the Quebrada Blanca Bright Spot at mid-crustal level were clearly imaged using both standard CMP processing and Kirchhoff prestack depth migration. The latter proved to be more successful in coping with the low data coverage and varying data quality. However, the original images did not provide conclusive information on the upper crust (< 10 km depth) due to the sparse acquisition geom- etry and the insufficient removal of source-generated noise. The major goal of our current re-processing of the ANCORP96 reflection seismic data set is to provide improved images of the upper and middle crust, Thereby, resolving the shallow and perhaps steeply dipping segments of the major fault systems, which were not detected by the original processing. This is done by using

  12. An array method for detection, location and characterization of multi-scale seismic energy release associated to the deformation processes of active subduction zones

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Satriano, C.; Bernard, P.; Vilotte, J.; Obara, K.

    2013-12-01

    Detection, location and characterization of the seismic energy release associated to deformation processes in active subduction zones are fundamental for understanding the dynamics of active deformation and the mechanisms of generation and rupturing of large subduction earthquakes. The statistical analysis of this seismic energy release, spanning a wide range of space and time scales, as well as phenomena, (e.g., earthquakes, seismic repeaters, low and very low-frequency earthquakes, tectonic tremors) can provide original insides to the problem. We developed a new methodology exploiting the frequency selective coherence of the wave field at dense seismic arrays and local antennas that leads to stable and reliable detection, blind source separation, and location of distributed non-stationary sources. The methodology consist of: (1) a signal processing scheme yielding a simplified representation of a seismic signal by an adaptive time-frequency characterization of its statistical properties; (2) a fully probabilistic detection and location algorithm based on back projection of stacked local cross-correlations of the simplified signals. This new approach has been developed and tested on the Shikoku region in Japan, which is an exceptional field laboratory, due to its high seismic activity comprising a wide variety of phenomena observed by the dense Hi-net seismic network operated by NIED. We evaluate the capability and potential of the proposed methodology to detect, locate and characterize the energy release associated to possibly overlapping seismic radiation from earthquakes and low-frequency tectonic tremors. As future direction we also discuss an application to the International Maule Aftershock Deployment (IMAD) in Chile.

  13. An array method for detection, location and characterization of multi-scale seismic energy release associated to the deformation processes of active subduction zones

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Satriano, C.; Bernard, P.; Vilotte, J.; Obara, K.

    2011-12-01

    Detection, location and characterization of the seismic energy release associated to deformation processes in active subduction zones are fundamental for understanding the dynamics of active deformation and the mechanisms of generation and rupturing of large subduction earthquakes. The statistical analysis of this seismic energy release, spanning a wide range of space and time scales, as well as phenomena, (e.g., earthquakes, seismic repeaters, low and very low-frequency earthquakes, tectonic tremors) can provide original insides to the problem. We developed a new methodology exploiting the frequency selective coherence of the wave field at dense seismic arrays and local antennas that leads to stable and reliable detection, blind source separation, and location of distributed non-stationary sources. The methodology consist of: (1) a signal processing scheme yielding a simplified representation of a seismic signal by an adaptive time-frequency characterization of its statistical properties; (2) a fully probabilistic detection and location algorithm based on back projection of stacked local cross-correlations of the simplified signals. This new approach has been developed and tested on the Shikoku region in Japan, which is an exceptional field laboratory, due to its high seismic activity comprising a wide variety of phenomena observed by the dense Hi-net seismic network operated by NIED. We evaluate the capability and potential of the proposed methodology to detect, locate and characterize the energy release associated to possibly overlapping seismic radiation from earthquakes and low-frequency tectonic tremors. As future direction we also discuss an application to the International Maule Aftershock Deployment (IMAD) in Chile.

  14. The New Madrid Seismic Zone: not dead yet.

    PubMed

    Page, Morgan T; Hough, Susan E

    2014-02-14

    The extent to which ongoing seismicity in intraplate regions represents long-lived aftershock activity is unclear. We examined historical and instrumental seismicity in the New Madrid central U.S. region to determine whether present-day seismicity is composed predominantly of aftershocks of the 1811-1812 earthquake sequence. High aftershock productivity is required both to match the observation of multiple mainshocks and to explain the modern level of activity as aftershocks; synthetic sequences consistent with these observations substantially overpredict the number of events of magnitude ≥ 6 that were observed in the past 200 years. Our results imply that ongoing background seismicity in the New Madrid region is driven by ongoing strain accrual processes and that, despite low deformation rates, seismic activity in the zone is not decaying with time.

  15. Multiscale seismic imaging of active fault zones for hazard assessment: A case study of the Santa Monica fault zone, Los Angeles, California

    USGS Publications Warehouse

    Pratt, T.L.; Dolan, J.F.; Odum, J.K.; Stephenson, W.J.; Williams, R.A.; Templeton, M.E.

    1998-01-01

    High-resolution seismic reflection profiles at two different scales were acquired across the transpressional Santa Monica Fault of north Los Angeles as part of an integrated hazard assessment of the fault. The seismic data confirm the location of the fault and related shallow faulting seen in a trench to deeper structures known from regional studies. The trench shows a series of near-vertical strike-slip faults beneath a topographic scarp inferred to be caused by thrusting on the Santa Monica fault. Analysis of the disruption of soil horizons in the trench indicates multiple earthquakes have occurred on these strike-slip faults within the past 50 000 years, with the latest being 1000 to 3000 years ago. A 3.8-km-long, high-resolution seismic reflection profile shows reflector truncations that constrain the shallow portion of the Santa Monica Fault (upper 300 m) to dip northward between 30?? and 55??, most likely 30?? to 35??, in contrast to the 60?? to 70?? dip interpreted for the deeper portion of the fault. Prominent, nearly continuous reflectors on the profile are interpreted to be the erosional unconformity between the 1.2 Ma and older Pico Formation and the base of alluvial fan deposits. The unconformity lies at depths of 30-60 m north of the fault and 110-130 m south of the fault, with about 100 m of vertical displacement (180 m of dip-slip motion on a 30??-35?? dipping fault) across the fault since deposition of the upper Pico Formation. The continuity of the unconformity on the seismic profile constrains the fault to lie in a relatively narrow (50 m) zone, and to project to the surface beneath Ohio Avenue immediately south of the trench. A very high-resolution seismic profile adjacent to the trench images reflectors in the 15 to 60 m depth range that are arched slightly by folding just north of the fault. A disrupted zone on the profile beneath the south end of the trench is interpreted as being caused by the deeper portions of the trenched strike

  16. Gravity of the New Madrid seismic zone; a preliminary study

    USGS Publications Warehouse

    Langenheim, V.E.

    1995-01-01

    In the winter of 1811-12, three of the largest historic earthquakes in the United States occurred near New Madrid, Mo. Seismicity continues to the present day throughout a tightly clustered pattern of epicenters centered on the bootheel of Missouri, including parts of northeastern Arkansas, northwestern Tennessee, western Kentucky, and southern Illinois. In 1990, the New Madrid seismic zone/Central United States became the first seismically active region east of the Rocky Mountains to be designated a priority research area within the National Earthquake Hazards Reduction Program (NEHRP). This Professional Paper is a collection of papers, some published separately, presenting results of the newly intensified research program in this area. Major components of this research program include tectonic framework studies, seismicity and deformation monitoring and modeling, improved seismic hazard and risk assessments, and cooperative hazard mitigation studies.

  17. Upper plate deformation and seismic barrier in front of Nazca subduction zone: The Chololo Fault System and active tectonics along the Coastal Cordillera, southern Peru

    NASA Astrophysics Data System (ADS)

    Audin, Laurence; Lacan, Pierre; Tavera, Hernando; Bondoux, Francis

    2008-11-01

    The South America plate boundary is one of the most active subduction zone. The recent Mw = 8.4 Arequipa 2001 earthquake ruptured the subduction plane toward the south over 400 km and stopped abruptly on the Ilo Peninsula. In this exact region, the subduction seismic crisis induced the reactivation of continental fault systems in the coastal area. We studied the main reactivated fault system that trends perpendicular to the trench by detailed mapping of fault related-geomorphic features. Also, at a longer time scale, a recurrent Quaternary transtensive tectonic activity of the CFS is expressed by offset river gullies and alluvial fans. The presence of such extensional fault systems trending orthogonal to the trench along the Coastal Cordillera in southern Peru is interpreted to reflect a strong coupling between the two plates. In this particular case, stress transfer to the upper plate, at least along the coastal fringe, appears to have induced crustal seismic events that were initiated mainly during and after the 2001 earthquake. The seafloor roughness of the subducting plate is usually thought to be a cause of segmentation along subduction zones. However, after comparing and discussing the role of inherited structures within the upper plate to the subduction zone segmentation in southern Peru, we suggest that the continental structure itself may exert some feedback control on the segmentation of the subduction zone and thus participate to define the rupture pattern of major subduction earthquakes along the southern Peru continental margin.

  18. Active seismic monitoring of changes of the reflection response of a crystalline shear zone due to fluid injection in the crust at the Continental Deep Drilling Site, Germany

    NASA Astrophysics Data System (ADS)

    Beilecke, T.; Kurt, B.; Stefan, B.

    2005-12-01

    In theory and in the laboratory variations of the hydraulic pressure can be detected with seismic methods: A lowering of the hydraulic pressure leads to the closure of micro-cracks within the rock (increase of the differential or effective pressure). Subsequently, the seismic velocities increase. An increase of the hydraulic pressure leads to reverse seismic effects. Consequently, seismic impedance contrasts and associated reflection amplitudes vary in the case of a propagating fluid pressure front in a rock matrix with inhomogeneous permeability - as is the case at shear zones. The largest amplitude changes can be expected with vertical ray inclination on the impedance contrast. Generally, the expected effects are small however (Kaselow, 2004). The practical utilization of active seismics for the detection of pressure changes at large scale in hard rock is currently being studied at the Continental Deep Drilling Site (KTB). The injection of water (200 l/min) in a depth of about 4000 m into the so-called SE2 shear zone in the KTB pilot hole was monitored with active seismics between May 2004 and April 2005. The core of the experiment layout is a fixed 5-arm geophone array consisting of 24 3-component geophones, buried at about 70 cm depth. The source signal is a vertical vibrator sweep of 30 s length with the spectrum 30-120 Hz. The signal is sent into the ground 32 times during each cycle, detected with the array and recorded separately for each geophone channel, without prior correlation with the source signal. This allows maximum post-processing with seismic processing and analysis tools and especially permits the use of array properties to increase the signal-to-noise ratio. Critical parameters of the experiment are the repeatability of the source signal as well as the stability of the receiver properties. Another pivot is the hydraulic pressure and its distribution built up within the rock matrix. Estimations based on model calculations show that a change of

  19. A seismotectonic model for the 300-kilometer-long eastern Tennessee seismic zone

    USGS Publications Warehouse

    Powell, C.A.; Bollinger, G.A.; Chapman, M.C.; Sibol, M.S.; Johnston, A.C.; Wheeler, R.L.

    1994-01-01

    Ten years of monitoring microearthquakes with a regional seismic network has revealed the presence of a well-defined, linear zone of seismic activity in eastern Tennessee. This zone produced the second highest release of seismic strain energy in the United States east of the Rocky Mountains during the last decade, when normalized by crustal area. The data indicate that seismicity produced by regional, intraplate stresses is now concentrating near the boundary between relatively strong and weak basement crustal blocks.

  20. A seismic hazard uncertainty analysis for the New Madrid seismic zone

    USGS Publications Warehouse

    Cramer, C.H.

    2001-01-01

    A review of the scientific issues relevant to characterizing earthquake sources in the New Madrid seismic zone has led to the development of a logic tree of possible alternative parameters. A variability analysis, using Monte Carlo sampling of this consensus logic tree, is presented and discussed. The analysis shows that for 2%-exceedence-in-50-year hazard, the best-estimate seismic hazard map is similar to previously published seismic hazard maps for the area. For peak ground acceleration (PGA) and spectral acceleration at 0.2 and 1.0 s (0.2 and 1.0 s Sa), the coefficient of variation (COV) representing the knowledge-based uncertainty in seismic hazard can exceed 0.6 over the New Madrid seismic zone and diminishes to about 0.1 away from areas of seismic activity. Sensitivity analyses show that the largest contributor to PGA, 0.2 and 1.0 s Sa seismic hazard variability is the uncertainty in the location of future 1811-1812 New Madrid sized earthquakes. This is followed by the variability due to the choice of ground motion attenuation relation, the magnitude for the 1811-1812 New Madrid earthquakes, and the recurrence interval for M>6.5 events. Seismic hazard is not very sensitive to the variability in seismogenic width and length. Published by Elsevier Science B.V.

  1. Structural and thermal control of seismic activity and megathrust rupture dynamics in subduction zones: Lessons from the Mw 9.0, 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Satriano, Claudio; Dionicio, Viviana; Miyake, Hiroe; Uchida, Naoki; Vilotte, Jean-Pierre; Bernard, Pascal

    2014-10-01

    The 2011 Tohoku megathrust earthquake ruptured a vast region of the northeast Japan Trench subduction zone in a way that had not been enough anticipated by earthquake and tsunami risk scenarios. We analyzed the Tohoku rupture combining high-frequency back-projection analysis with low frequency kinematic inversion of the co-seismic slip. Results support the to-day well-accepted broadband characteristics of this earthquake. Most of the seismic moment is released during the first 100 s, with large co-seismic slip (up to 55 m) offshore Miyagi in a compact region on the landward side of the trench. Coherent high-frequency radiation areas and relatively low co-seismic slip are a distinctive signature of the slab-mantle interface. The broadband characteristics of the Tohoku rupture are interpreted, integrating the seismic activity and structure information on the NE Japan forearc region, as a signature of along-dip segmentation and segment interactions, that result from thermal structure, plate geometry, material composition and fracture heterogeneities along the plate boundary interface. Deep mantle corner flow and low dehydration rates along the cold subduction slab interface lead to an extended seismogenic slab-mantle interface, with strong bi-material contrast controlling larger propagation distance in the downdip preferred rupture direction. Off Miyagi, plate bending below the mantle wedge, ∼142.3°E at ∼25 km depth, is associated with the eastern limit of the deep M7-8-class thrust-earthquakes, and of the strongest coherent high-frequency generation areas. The region of the slab-crust interface between the mantle wedge limit, ∼142.7°E at ∼20 km depth, and a trenchward plate bending, ∼143.2°E at ∼15 km, acted as an effective barrier resisting for many centuries to stress-loading gradient induced by deep stable sliding and large earthquakes along the slab-mantle interface. The 2011 Tohoku earthquake, whose hypocenter is located on the east side of the

  2. The Olmsted fault zone, southernmost Illinois: A key to understanding seismic hazard in the northern new Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.

    2005-01-01

    Geological deformation in the northern New Madrid seismic zone, near Olmsted, Illinois (USA), is analyzed using integrated compressional-wave (P) and horizontally polarized-wave (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-wave reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-wave images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate zone more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic zone. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-wave seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic zone. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns. ?? 2005 Elsevier B.V. All rights reserved.

  3. Teleseismic Tomography of the Eastern Tennessee Seismic Zone

    NASA Astrophysics Data System (ADS)

    Olasanmi, Olorunfemi Temitope

    This research investigates the properties of the crust and the upper mantle beneath the eastern Tennessee seismic zone (ETSZ). The ETSZ is a major seismic feature that is located in the southeastern United States. The zone spans portions of eastern Tennessee, North Carolina, Virginia, Georgia and Alabama and is, after the New Madrid seismic zone, the second most active seismic region of the North America east of the Rocky Mountains. This NE trending zone of intraplate seismicity is about 300km long and 100km wide. A striking geophysical anomaly crossing this region is called the New York-Alabama magnetic lineament. The most seismically active part of this zone is along and to the SW of this aeromagnetic anomaly. In this thesis 3-D velocity images of the earth beneath the ETSZ were obtained by using Fast Marching Teleseismic Tomography package. The starting data was adopted from the previous study by Agbaje (2012) and consisted of 2855 residuals from 217 teleseismic events that were recorded by 28 stations within the ETSZ. The tomographic images show significant velocity anomalies, confirming complex tectonic evolution and revealing basement features that can be correlated with regional gravity and magnetic anomalies. The results of the tomographic inversion in the crust agree with the previous tomographic studies that used local earthquake data (Powell et al., 2014). However, the most significant anomaly resolved persists through most of the upper mantle and suggests the presence of a major, southeast dipping, high velocity anomaly located beneath the Blue Ridge province. The anomaly is interpreted to possibly be a fossil slab dating back to the accretion of Carolina terrane during Devonian.

  4. Cockade-textured cataclasite and silica gel from damage zone in carbonated ultramafics: markers of cycles of seismic activity?

    NASA Astrophysics Data System (ADS)

    Scarsi, Marco; Crispini, Laura; Garofalo, Paolo; Capponi, Giovanni

    2016-04-01

    Shallow crustal processes occurring during seismic slips and generating fracture networks are of great interest due to their complex interplay with a spectrum of other geological processes . Our study focuses on faults with peculiar core textures, similar to those of "cockade breccia" (Genna et al., 1996) and "clast cortex grains" (Rempe et al., 2014), and on their relation with syntectonic hydrothermal alteration linked with Au bearing-quartz and chalcedony veins. Our work aims to study the enviromental conditions for the formation of such peculiar texture, their relation with the hydrothermal vein system and their potential as shallow seismic indicators. We present field, microstructural and petrochemical data of a peculiar damage zone of fault rocks located in carbonated peridotites and serpentinites of the Ligurian Alps (Voltri Massif, Italy). These are mainly reverse faults, which are coeval with syntectonic Au-bearing quartz veins and chalcedony veins (Giorza et al., 2010), in which lherzolites occupy the hangingwall of the faults and serpentinites the footwall. The fault rocks show evidence for carbonation, as olivine and serpentine are clearly transformed into an assemblage made of magnesite, dolomite and minor ankerite. The damage zones of the faults are serpentinite-rich and about 10 m in thickness, while the cataclasite cores are carbonate-rich and ca. 1 m thick. The top of the fault core shows the occurrence of a chalcedony shear veins with chatter marks and slikenlines on the surface. The "cockade breccia" is made of spherical aggregates of Fe-Mg carbonates and are 1 mm to 3 cm in size. These aggregates show cores of microcrystalline Fe-Mg carbonates, and concentric outer layers of relatively coarser Fe-Mg carbonates with radial or laminated texture. In some cases, these aggregates show evidence for rotation along secondary slip zones. We interpret all these features as the products of chemical interaction between the olivine and serpentine initially

  5. Stress channelling and partitioning of seismicity in the Charlevoix seismic zone, Québec, Canada

    NASA Astrophysics Data System (ADS)

    Baird, Alan F.; McKinnon, Stephen D.; Godin, Laurent

    2009-10-01

    The Charlevoix seismic zone (CSZ) in the St Lawrence valley of Québec is historically the most active in eastern Canada. The structurally complex region comprises rift faults formed during the opening of the Iapetus Ocean, superimposed by a 350 Ma meteorite impact structure, resulting in a circular highly fractured zone. Although seismicity is localized along two steeply dipping planar rift-parallel zones, previous work indicates that most of the large-scale rift faults bound the low magnitude background seismicity rather than generate earthquakes themselves. In order to gain insight into the mechanics of the partitioning of this seismicity, a 2-D model of the CSZ was built using the stress analysis code FLAC. The rift faults are represented by frictional discontinuities. The heavily fractured impact structure is represented by an elastic continuum of reduced modulus. Boundary displacements are used to generate a regional stress field with the major horizontal component in the direction of tectonic loading. Given a high strength, the rift faults have little effect on the stress patterns. Stress trajectories naturally flow around the crater of reduced elastic modulus, leaving the fractured area with lower stresses than the background level. However, when the rift faults have low strength, they are unable to support stress trajectories inclined to them, due to the resolved shear stress exceeding their strength. This prevents trajectories from flowing out of the rift, effectively channelling higher magnitude stresses into the region of the impact structure between the faults. Low-strength bounding faults can thus explain the localization of seismicity into linear bands, rather than distributed seismicity throughout the impact structure. It also explains how the rift faults act as boundaries to regions of low magnitude seismicity. These results indicate that the interplay between faults of varying strength and zones of differing elastic modulus can give rise to

  6. Investigating Stress and Seismicity in the Charlevoix Seismic Zone: Evidence from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Baird, A. F.; Bastow, I. D.

    2013-12-01

    The Charlevoix seismic zone, located in the St. Lawrence Valley of Quebec Canada, is one of the most seismically active intra-plate regions in the World, with five earthquakes larger than magnitude 6 occurring since records began in the 1660s. The region is structurally complex, comprising rift faults formed during the opening of the Iapetus Ocean (the St. Lawrence rift), superimposed by a 350 Ma meteorite impact structure. Seismicity occurs along the rift, both in the region of overlap with the crater and extending outside the crater to the NE. A difficulty in explaining the seismicity is that the rift faults strike NE-SW, subparallel to the regional compressive stress orientation, and thus are poorly oriented for reactivation. However, a recent stress inversion from earthquake focal mechanisms suggest that the stress field within the CSZ may be locally very complex, with some regions deviating from the regional orientation by as much as a 50 degree CW rotation [1]. Here we investigate the strain and stress fields around the CSZ by measuring seismic anisotropy by shear-wave splitting. We analysed both upper mantle anisotropic fabrics using teleseismic SKS arrivals, and shallow crustal anisotropy using local earthquakes. While the SKS results show relatively consistent E-W fast directions across all stations, the local results show strong local perturbations. Events outside the crater to the NE have predominately NE-SW oriented fast directions parallel to both the St. Lawrence and the regional tectonic stress field. Inside the crater most fast directions are roughly E-W, matching the deeper SKS results, and also similar in orientation to the perturbed stress field from the focal mechanism stress inversion [1]. A possible explanation for the lateral crustal variation is that anisotropy outside the crater may be dominated by stress aligned cracks, while inside the crater the heavily fractured crust may be unable to maintain a large horizontal stress difference

  7. Assessing the Seismic Potential Hazard of the Makran Subduction Zone

    NASA Astrophysics Data System (ADS)

    Frohling, E.; Szeliga, W. M.; Melbourne, T. I.; Abolghasem, A.; Lodi, S. H.

    2013-12-01

    Long quiescent subduction zones like the Makran, Sunda, and Cascadia, which have long recurrence intervals for large (> Mw 8) earthquakes, often have poorly known seismic histories and are particularly vulnerable and often ill-prepared. The Makran subduction zone has not been studied extensively, but the 1945 Mw 8.1 earthquake and subsequent tsunami, as well as more recent mid magnitude, intermediate depth (50-100 km) seismicity, demonstrates the active seismic nature of the region. Recent increases in regional GPS and seismic monitoring now permit the modeling of strain accumulations and seismic potential of the Makran subduction zone. Subduction zone seismicity indicates that the eastern half of the Makran is presently more active than the western half. It has been hypothesized that the relative quiescence of the western half is due to aseismic behavior. However, based on GPS evidence, the entire subduction zone generally appears to be coupled and has been accumulating stress that could be released in another > 8.0 Mw earthquake. To assess the degree of coupling, we utilize existing GPS data to create a fault coupling model for the Makran using a preliminary 2-D fault geometry derived from ISC hypocenters. Our 2-D modeling is done using the backslip approach and defines the parameters in our coupling model; we forego the generation of a 3-D model due to the low spatial density of available GPS data. We compare the use of both NUVEL-1A plate motions and modern Arabian plate motions derived from GPS station velocities in Oman to drive subduction for our fault coupling model. To avoid non-physical inversion results, we impose second order smoothing to eliminate steep strain gradients. The fit of the modeled inter-seismic deformation vectors are assessed against the observed strain from the GPS data. Initial observations indicate that the entire subduction zone is currently locked and accumulating strain, with no identifiable gaps in the interseismic locking

  8. The mechanics of the South Iceland Seismic Zone

    NASA Technical Reports Server (NTRS)

    Hackman, M. Christine; Bilham, Roger; King, Geoffrey C. P.

    1990-01-01

    The mechanics of the South Iceland Seismic Zone is examined by means of boundary element modeling. The differences between the observed geometry of the major tectonically active features and that of a geometrically orthogonal ridge-transform system (which assumes that the upper part of the earth's crust is an elastic plate containing vertical cuts) are examined. It is suggested that north-south faults can accommodate transform deformation only if the faults are longer or more numerous than those observed so far. This is considered reasonable because earthquake surface rupture lengths are commonly less than the inferred fault length at depth. The South Iceland Seismic Zone is subject to sequences of large earthquake every 45-112 years. In comparing the seismic moment release derived from earthquake magnitudes with that predicted by the models, it is confirmed that the system of north-south faults can act as a transform fault.

  9. Mid mantle seismic anisotropy around subduction zones

    NASA Astrophysics Data System (ADS)

    Faccenda, M.

    2014-02-01

    There is increasing evidence for mid mantle seismic anisotropy around subduction zones whose interpretation remains elusive. In this study I estimate the strain-induced mid mantle fabric and associated seismic anisotropy developing in 3D petrological-thermo-mechanical subduction models where the slab is either stagnating over the 660 km discontinuity or penetrating into the lower mantle. The modelling of synthetic lattice-preferred-orientation (LPO) development of wadsleyite and perovskite has been calibrated with results from deformational experiments and ab-initio atomic scale models, and the single crystal elastic tensor of the different mineral phases is scaled by local P-T conditions. The lower transition zone (ringwoodite + garnet) is assumed to be isotropic. Mid mantle fabric develops in proximity of the subducting slab where deformation and stresses are high, except at depths where upwelling or downwelling material undergoes phase transformations, yielding to LPO reset. The upper transition zone (wadsleyite + garnet) is characterized by weak transverse isotropy (2-3%) with symmetry axes oriented and fast S wave polarized dip-normal. A slightly stronger transverse isotropy develops in the lower mantle (perovskite + periclase), where the symmetry axes, the polarization of the fast S wave and the maximum Vp and dVs are parallel to the slab dip and subduction direction. For stagnating slab models this translates into negative and positive radial anisotropy in the upper transition zone and lower mantle back-arc, respectively, minimum delay times for vertically travelling shear waves and large shear wave splitting for waves propagating horizontally in the lower mantle. These results may help in reconciling the seismic anisotropy patterns observed in some subduction zones with subduction-induced deformation, such as those measured in the mid mantle between the Australian plate and the New Hebrides-Tonga-Kermadec trenches that I interpret as related to stagnating

  10. Teleseismic Tomography of the Eastern Tennessee Seismic Zone

    NASA Astrophysics Data System (ADS)

    Olasanmi, O. T.; Arroucau, P.; Vlahovic, G.

    2014-12-01

    In this work we perform a tomographic inversion of teleseismic data to investigate the properties of the crust and the uppermost mantle beneath the eastern Tennessee seismic zone (ETSZ). The ETSZ is a major seismic feature located in the southeastern United States. The zone spans portions of eastern Tennessee, North Carolina, Virginia, Georgia and Alabama and is, after the New Madrid seismic zone, the second most active seismic region of the North America east of the Rocky Mountains. Earthquakes in the ETSZ appear to align along a sharp, linear magnetic feature, called the New York-Alabama Lineament (NYAL), which acts as the northwest edge of the seismic zone and is attributed to a strike-slip fault affecting the Precambrian basement. A total of 2652 relative P-wave arrival time residuals from 201 teleseismic events recorded at 28 regional seismic station have been extracted from the continuous records using the adaptive stacking code. The three-dimensional model was computed down to 300km. The tomographic images show significant velocity anomalies, confirming complex tectonic evolution and revealing basement features that can be correlated with regional gravity and magnetic anomalies. One of the main features of the three-dimensional model is a significant velocity contrast across the NYAL that extends through the crust and the uppermost mantle, with high velocity anomalies northwest of the NYAL and lower velocities southwest of the NYAL. Our results support the hypothesis that the lineament is a major basement fault associated with a tectonic boundary produced by merging of the southern Appalachian basement with the Granite-Rhyolite basement during the Grenville orogeny.

  11. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    SciTech Connect

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismic moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.

  12. Seismic Investigations of the Zagros-Bitlis Thrust Zone

    NASA Astrophysics Data System (ADS)

    Gritto, R.; Sibol, M.; Caron, P.; Quigley, K.; Ghalib, H.; Chen, Y.

    2009-05-01

    We present results of crustal studies obtained with seismic data from the Northern Iraq Seismic Network (NISN). NISN has operated 10 broadband stations in north-eastern Iraq since late 2005. At present, over 800 GB of seismic waveform data have been analyzed. The aim of the present study is to derive models of the local and regional crustal structure of north and north-eastern Iraq, including the northern extension of the Zagros collision zone. This goal is, in part, achieved by estimating local and regional seismic velocity models using receiver function- and surface wave dispersion analyses and to use these velocity models to obtain accurate hypocenter locations and event focal mechanisms. Our analysis of hypocenter locations produces a clear picture of the seismicity associated with the tectonics of the region. The largest seismicity rate is confined to the active northern section of the Zagros thrust zone, while it decreases towards the southern end, before the intensity increases in the Bandar Abbas region again. Additionally, the rift zones in the Read Sea and the Gulf of Aden are clearly demarked by high seismicity rates. Our analysis of waveform data indicates clear propagation paths from the west or south-west across the Arabian shield as well as from the north and east into NISN. Phases including Pn, Pg, Sn, Lg, as well as LR are clearly observed on these seismograms. In contrast, blockage or attenuation of Pg and Sg-wave energy is observed for propagation paths across the Zagros-Bitlis zone from the south, while Pn and Sn phases are not affected. These findings are in support of earlier tectonic models that suggested the existence of multiple parallel listric faults splitting off the main Zagros fault zone in east-west direction. These faults appear to attenuate the crustal phases while the refracted phases, propagating across the mantle lid, remain unaffected. We will present surface wave analysis in support of these findings, indicating multi

  13. Cockade-textured cataclasite and silica gel from damage zone in carbonated ultramafics: markers of cycles of seismic activity?

    NASA Astrophysics Data System (ADS)

    Scarsi, Marco; Crispini, Laura; Garofalo, Paolo; Capponi, Giovanni

    2016-04-01

    Shallow crustal processes occurring during seismic slips and generating fracture networks are of great interest due to their complex interplay with a spectrum of other geological processes . Our study focuses on faults with peculiar core textures, similar to those of "cockade breccia" (Genna et al., 1996) and "clast cortex grains" (Rempe et al., 2014), and on their relation with syntectonic hydrothermal alteration linked with Au bearing-quartz and chalcedony veins. Our work aims to study the enviromental conditions for the formation of such peculiar texture, their relation with the hydrothermal vein system and their potential as shallow seismic indicators. We present field, microstructural and petrochemical data of a peculiar damage zone of fault rocks located in carbonated peridotites and serpentinites of the Ligurian Alps (Voltri Massif, Italy). These are mainly reverse faults, which are coeval with syntectonic Au-bearing quartz veins and chalcedony veins (Giorza et al., 2010), in which lherzolites occupy the hangingwall of the faults and serpentinites the footwall. The fault rocks show evidence for carbonation, as olivine and serpentine are clearly transformed into an assemblage made of magnesite, dolomite and minor ankerite. The damage zones of the faults are serpentinite-rich and about 10 m in thickness, while the cataclasite cores are carbonate-rich and ca. 1 m thick. The top of the fault core shows the occurrence of a chalcedony shear veins with chatter marks and slikenlines on the surface. The "cockade breccia" is made of spherical aggregates of Fe-Mg carbonates and are 1 mm to 3 cm in size. These aggregates show cores of microcrystalline Fe-Mg carbonates, and concentric outer layers of relatively coarser Fe-Mg carbonates with radial or laminated texture. In some cases, these aggregates show evidence for rotation along secondary slip zones. We interpret all these features as the products of chemical interaction between the olivine and serpentine initially

  14. Method for processing seismic data to identify anomalous absorption zones

    DOEpatents

    Taner, M. Turhan

    2006-01-03

    A method is disclosed for identifying zones anomalously absorptive of seismic energy. The method includes jointly time-frequency decomposing seismic traces, low frequency bandpass filtering the decomposed traces to determine a general trend of mean frequency and bandwidth of the seismic traces, and high frequency bandpass filtering the decomposed traces to determine local variations in the mean frequency and bandwidth of the seismic traces. Anomalous zones are determined where there is difference between the general trend and the local variations.

  15. High Resolution Seismic Imaging of the Brawley Seismic Fault Zone

    NASA Astrophysics Data System (ADS)

    Goldman, M.; Catchings, R. D.; Rymer, M. J.; Lohman, R. B.; McGuire, J. J.; Sickler, R. R.; Criley, C.; Rosa, C.

    2011-12-01

    In March 2010, we acquired a series of high-resolution P-wave seismic reflection and refraction data sets across faults in the Brawley seismic zone (BSZ) within the Salton Sea Geothermal Field (SSGF). Our objectives were to determine the dip, possible structural complexities, and seismic velocities within the BSZ. One dataset was 3.4 km long trending east-west, and consisted of 334 shots recorded by a 2.4 km spread of 40 hz geophones placed every 10 meters. The spread was initially laid out from the first station at the eastern end of the profile to roughly 2/3 into the profile. After about half the shots, the spread was shifted from roughly 1/3 into the profile to the last station at the western end of the profile. P-waves were generated by Betsy-Seisgun 'shots' spaced every 10 meters. Initial analysis of first breaks indicate near-surface velocities of ~500-600 meters/sec, and deeper velocities of around 2000 meters/sec. Preliminary investigation of shot gathers indicate a prominent fault that extends to the ground surface. This fault is on a projection of the Kalin fault from about 40 m to the south, and broke the surface down to the west with an approximately north-south strike during a local swarm of earthquakes in 2005 and also slipped at the surface in association with the 2010 El Mayor-Cucapah earthquake in Baja California. The dataset is part of the combined Obsidian Creep data set, and provides the most detailed, publicly available subsurface images of fault structures in the BSZ and SSGF.

  16. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    DOE PAGES

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less

  17. Imaging fault zones using 3D seismic image processing techniques

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    and collecting these into "disturbance geobodies". These seismic image processing methods represents a first efficient step toward a construction of a robust technique to investigate sub-seismic strain, mapping noisy deformed zones and displacement within subsurface geology (Dutzer et al.,2011; Iacopini et al.,2012). In all these cases, accurate fault interpretation is critical in applied geology to building a robust and reliable reservoir model, and is essential for further study of fault seal behavior, and reservoir compartmentalization. They are also fundamental for understanding how deformation localizes within sedimentary basins, including the processes associated with active seismogenetic faults and mega-thrust systems in subduction zones. Dutzer, JF, Basford., H., Purves., S. 2009, Investigating fault sealing potential through fault relative seismic volume analysis. Petroleum Geology Conference series 2010, 7:509-515; doi:10.1144/0070509 Marfurt, K.J., Chopra, S., 2007, Seismic attributes for prospect identification and reservoir characterization. SEG Geophysical development Iacopini, D., Butler, RWH. & Purves, S. (2012). 'Seismic imaging of thrust faults and structural damage: a visualization workflow for deepwater thrust belts'. First Break, vol 5, no. 30, pp. 39-46.

  18. Seismic-wave attenuation associated with crustal faults in the New Madrid seismic zone

    USGS Publications Warehouse

    Hamilton, R.M.; Mooney, W.D.

    1990-01-01

    The attenuation of upper crustal seismic waves that are refracted with a velocity of about 6 kilometers per second varies greatly among profiles in the area of the New Madrid seismic zone in the central Mississippi Valley. The waves that have the strongest attenuation pass through the seismic trend along the axis of the Reelfoot rift in the area of the Blytheville arch. Defocusing of the waves in a low-velocity zone and/ or seismic scattering and absorption could cause the attenuation; these effects are most likely associated with the highly deformed rocks along the arch. Consequently, strong seismic-wave attenuation may be a useful criterion for identifying seismogenic fault zones.

  19. Identifying active interplate and intraplate fault zones in the western Caribbean plate from seismic reflection data and the significance of the Pedro Bank fault zone in the tectonic history of the Nicaraguan Rise

    NASA Astrophysics Data System (ADS)

    Ott, B.; Mann, P.

    2015-12-01

    The offshore Nicaraguan Rise in the western Caribbean Sea is an approximately 500,000 km2 area of Precambrian to Late Cretaceous tectonic terranes that have been assembled during the Late Cretaceous formation of the Caribbean plate and include: 1) the Chortis block, a continental fragment; 2) the Great Arc of the Caribbean, a deformed Cretaceous arc, and 3) the Caribbean large igneous province formed in late Cretaceous time. Middle Eocene to Recent eastward motion of the Caribbean plate has been largely controlled by strike-slip faulting along the northern Caribbean plate boundary zone that bounds the northern margin of the Nicaraguan Rise. These faults reactivate older rift structures near the island of Jamaica and form the transtensional basins of the Honduran Borderlands near Honduras. Recent GPS studies suggest that small amount of intraplate motion within the current margin of error of GPS measurements (1-3 mm/yr) may occur within the center of the western Caribbean plate at the Pedro Bank fault zone and Hess Escarpment. This study uses a database of over 54,000 km of modern and vintage 2D seismic data, combined with earthquake data and results from previous GPS studies to define the active areas of inter- and intraplate fault zones in the western Caribbean. Intraplate deformation occurs along the 700-km-long Pedro Bank fault zone that traverses the center of the Nicaraguan Rise and reactivates the paleo suture zone between the Great Arc of the Caribbean and the Caribbean large igneous province. The Pedro Bank fault zone also drives active extension at the 200-km-long San Andres rift along the southwest margin of the Nicaraguan Rise. Influence of the Cocos Ridge indentor may be contributing to reactivation of faulting along the southwesternmost, active segment of the Hess Escarpment.

  20. 40 CFR 258.14 - Seismic impact zones.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Seismic impact zones. 258.14 Section 258.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.14 Seismic impact zones. (a) New MSWLF units...

  1. Global distribution of carbon dioxide discharges, and major zones of seismicity

    USGS Publications Warehouse

    Barnes, Ivan; Irwin, William P.; White, Donald E.

    1978-01-01

    Carbon dioxide discharges of the circum-Pacific belt are in a seismically active zone and in part stem from contact metamorphism. Carbon dioxide discharges in Europe and Asia Minor, also in an area of high seismic activity, are in part from regional metamorphism and are in areas of very high heat flow.

  2. Definition of Exclusion Zones Using Seismic Data

    NASA Astrophysics Data System (ADS)

    Bartal, Y.; Villagran, M.; Ben Horin, Y.; Leonard, G.; Joswig, M.

    - In verifying compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), there is a motivation to be effective, efficient and economical and to prevent abuse of the right to conduct an On-site Inspection (OSI) in the territory of a challenged State Party. In particular, it is in the interest of a State Party to avoid irrelevant search in specific areas. In this study we propose several techniques to determine `exclusion zones', which are defined as areas where an event could not have possibly occurred. All techniques are based on simple ideas of arrival time differences between seismic stations and thus are less prone to modeling errors compared to standard event location methods. The techniques proposed are: angular sector exclusion based on a tripartite micro array, half-space exclusion based on a station pair, and closed area exclusion based on circumferential networks.

  3. Seismic Zone of Craiova and its Surroundings

    NASA Astrophysics Data System (ADS)

    Nita, Laura-Simona

    2013-04-01

    The mapping of the Romanian area, based of the seismic range, put Craiova and the metropolitan zone, in seismic class C of level 8. This increased level is due to crustal fissure, oriented N-S on the Craiova meridian, which resonates with seismic waves from Vrancea epicenter. Craiova and the metropolitan zone is placed on the separated lithologic substrates, so, the effects of seism are not uniform between urban and peri-urban areas. The highest piedmont area and the terraces (V, IV, III), with a predominant substrate of conglomerate and sandstone, decrease effect of the earthquake. The first and the second terraces and the meadow, with a predominant content of marls and clays, are very elastic and increase the effect of earthquake. The most exposed are the villages placed on the right side of the Jiu River, where these landforms are very common and in case of earthquake, can be reactivated. In Romania there are just shallow depth and intermediate depth earthquakes. The frequency of earthquakes with a greater than 7.2 magnitude on the Richter scale is three times in a century. The most magnitude for a Romanian earthquake took place on 10 of November 1940 and it has a magnitude of 7.6 on the Richter scale. The 1977 Vrancea Earthquake occurred on March 4, 21:20 local time. It had a magnitude of 7.2 with an epicenter in Vrancea. The fracture occurred at a depth of 94 kilometers but it was a multishock earthquake with several outbreaks in the south-west part of Vrancea County. In 55 seconds the earthquake killed about 1,500 people in Romania (1,400 in Bucharest), wounded more than 11,300 and about 33,000 buildings and structures collapsed. The shock wave was felt in almost all countries in the Balkan Peninsula, as well as Ukraine and Moldova, but with a lower intensity. When the moving is vertically, in a time of 7-8 seconds, the next move is horizontally. The horizontally waves, shear waves, carry 75% of total energy. The poorly constructed buildings will fall even

  4. Exploring the seismic expression of fault zones in 3D seismic volumes

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2016-04-01

    Mapping and understanding distributed deformation is a major challenge for the structural interpretation of seismic data. However, volumes of seismic signal disturbance with low signal/noise ratio are systematically observed within 3D seismic datasets around fault systems. These seismic disturbance zones (SDZ) are commonly characterized by complex perturbations of the signal and occur at the sub-seismic to seismic scale. They may store important information on deformation distributed around those larger scale structures that may be readily interpreted in conventional amplitude displays of seismic data scale. We introduce a method to detect fault-related disturbance zones and to discriminate between this and other noise sources such as those associated with the seismic acquisition (footprint noise). Two case studies, from the Taranaki basin and deep-water Niger delta are presented. These resolve structure within SDZs using tensor and semblance attributes along with conventional seismic mapping. The tensor attribute is more efficient in tracking volumes containing structural displacements while structurally-oriented semblance coherency is commonly disturbed by small waveform variations around the fault throw. We propose a workflow to map and cross-plot seismic waveform signal properties extracted from the seismic disturbance zone as a tool to investigate the seismic signature and explore seismic facies of a SDZ.

  5. Exploring the seismic expression of fault zones in 3D seismic volumes

    NASA Astrophysics Data System (ADS)

    Iacopini, D.; Butler, R. W. H.; Purves, S.; McArdle, N.; De Freslon, N.

    2016-08-01

    Mapping and understanding distributed deformation is a major challenge for the structural interpretation of seismic data. However, volumes of seismic signal disturbance with low signal/noise ratio are systematically observed within 3D seismic datasets around fault systems. These seismic disturbance zones (SDZ) are commonly characterized by complex perturbations of the signal and occur at the sub-seismic (10 s m) to seismic scale (100 s m). They may store important information on deformation distributed around those larger scale structures that may be readily interpreted in conventional amplitude displays of seismic data. We introduce a method to detect fault-related disturbance zones and to discriminate between this and other noise sources such as those associated with the seismic acquisition (footprint noise). Two case studies from the Taranaki basin and deep-water Niger delta are presented. These resolve SDZs using tensor and semblance attributes along with conventional seismic mapping. The tensor attribute is more efficient in tracking volumes containing structural displacements while structurally-oriented semblance coherency is commonly disturbed by small waveform variations around the fault throw. We propose a workflow to map and cross-plot seismic waveform signal properties extracted from the seismic disturbance zone as a tool to investigate the seismic signature and explore seismic facies of a SDZ.

  6. Seismicity around the Cimandiri fault zone, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Febriani, Febty

    2016-02-01

    We analyzed the seismicity activity around the Cimandiri fault zone, West Java, Indonesia by using the earthquake catalogs listed by Indonesian Meteorological Climatological and Geophysical (BMKG) and International Seismological Centre (ISC) from 1973 to 2013 (M>=1 and depth ≤ 0-50 km), along with the focal mechanism data from National Research Institute of Earth Science and Disaster Prevention (NIED) from 2007 to 2014 (M>4; depth ≤ 50 km) and Global CMT catalog from 1976 to 2014 (M=0-10 and depth ≤ 50 km). The result from earthquake catalogs suggest that there are earthquake activities around the Cimandiri fault zone in the recent years, which is also supported by the results of focal mechanism data analysis from NIED data and Global CMT catalog.

  7. 3D seismic imaging of an active, normal fault zone in southern Apennines (Italy): Clues on fluid-driven microearthquake fracturing

    NASA Astrophysics Data System (ADS)

    Amoroso, O.; Zollo, A.; Virieux, J.

    2012-12-01

    Lagonegro units located in the axial sector is well reproduced by the low P-wave anomalies ranging between 4.0-4.5 km/s. Their eastward extension is just above the Apulian Platform in the depth range between 4.0 and 8.0 km . The seismicity spatial distribution delineates at SE the border of the Irpinia master fault, while at NE it shows a more diffused pattern due to the presence of a system of highly organized, sub-parallel normal faults as it has been inferred from the fault mechanisms and the coherent orientation of the tensional axes. The Vp/Vs ratio shows a large variability ranging from 1.7-1.8 at shallow depths and increasing up to 2-2.2 between 5 km and 12 km depths, where most of present microseismicity occurs. Such high values are a strong proxy for a fluid-saturated state of rock formations and of their inner pore pressure conditions. The evidence for a predominant microearthquake activity confined within the volume of highest Vp/Vs ratio indicates that pore pressure changes induced by fluid flow/diffusion in a highly fractured medium, may be the primary mechanism controlling and driving the background seismic activity along the Irpinia fault zone.

  8. Tomographic Analysis of the West Bohemia Seismic Zone

    NASA Astrophysics Data System (ADS)

    Alexandrakis, Catherine; Calo, Marco; Vavrycuk, Vaclav

    2013-04-01

    The West Bohemia Seismic Zone is located on the border between Czech Republic and Germany. This region has several areas which experience periodic microseismic swarm activity. The installation of the West Bohemia Seismic Network (WEBNET) has allowed constant monitoring of the town Nový Kostel and surrounding area. Nový Kostel is one of the most active areas. Larger swarms, such as those in 1997, 2000, 2007, 2008 and 2011, have been studied in terms of source mechanisms and swarm characteristics. Despite these analyses, questions remain regarding the subsurface structure in and around the focal zone, and the swarm trigger. In this study, we investigate the seismic velocity structures within and around Nový Kostel using double-difference tomography and Weighted Average Model (WAM) post-processing analysis. To do this, we calculate a set of velocity models using a range of reasonable starting parameterizations that are compatible with the experimental information used. The WAM analysis produces a single averaged model and calculates the weighted standard deviation at each inversion node. By averaging the models together, bias and artefacts from the starting models are reduced. In addition, the weighted standard deviation is used to assess the averaged Vp and Vs models for stability and resolution. The full control on the reliability of the Vp and Vs models allows us to also calculate a Vp/Vs model by directly dividing the P and S seismic velocities. Initial results using a subset of the 2008 swarm indicated a low-Vp/Vs layer overlaying the focal zone, and high Vp and Vp/Vs values along the fault zone. This hinted towards a low-permeability layer acting as a fluid trap, and potentially triggering the swarms. Here, we further the investigation by using the full WEBNET catalog from 1991-2011. We invert the full catalog of P and S arrival times along with detailed inversions of individual swarms to produce a structural model of the Nový Kostel area.

  9. Complex Faulting within the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Deshon, H. R.; Powell, C. A.; Magnani, M.; Bisrat, S. T.

    2010-12-01

    Relative relocations derived using double-difference tomography techniques reveal a complex sequence of faulting within the New Madrid Seismic Zone (NMSZ) and upper Mississippi Embayment. The majority of NMSZ seismicity recorded over the last 30 years occurs along four limbs: 1) a NE-SW trending dextral strike-slip fault, termed the Axial fault, coincident with the central valley of the Cambrian Reelfoot Rift system; 2) the SE-NW trending Reelfoot thrust fault; 3) a E-W trending left lateral strike-slip fault extending off of the northern terminus of the Reelfoot fault, here termed New Madrid west; and 4) a NE-SW dextral strike-slip fault also extending off of the northern terminus of the Reelfoot fault, here termed New Madrid north. Each of these segments is thought to have ruptured during the 1811-1812 large earthquake sequence. A fifth segment, the Bootheel lineament, is marked by 1811-1812 related liquefaction features but appears largely aseismic, though we suggest there are at least five events in the catalog associated with this feature. Geological and geophysical evidence across the embayment suggests that the region is crossed by additional faults at shallow depths (<1-2 km), while seismicity is generally confined to the 3-20 km depth range. Here we present relative relocations derived using catalog and waveform cross-correlation differential times of the 1989-1992 local PANDA network and the 1995-2010 Cooperative New Madrid Seismic Network. We show that the four known seismic lineations exhibit internal complexity. For example, New Madrid north is composed of two parallel faults rather then a single fault, and seismicity associated with the Axial lineation exhibits temporal changes along strike and becomes spatially more diffuse south of the Axial fault/Bootheel lineament intersection. Seismicity along the southern Reelfoot fault does not define a dipping plane consistent with thrust faulting, unlike the northern Reelfoot fault, and is associated with

  10. Observations of seismic activity in Southern Lebanon

    NASA Astrophysics Data System (ADS)

    Meirova, T.; Hofstetter, R.

    2013-04-01

    Recent seismic activity in southern Lebanon is of particular interest since the tectonic framework of this region is poorly understood. In addition, seismicity in this region is very infrequent compared with the Roum fault to the east, which is seismically active. Between early 2008 and the end of 2010, intense seismic activity occurred in the area. This was manifested by several swarm-like sequences and continuous trickling seismicity over many days, amounting in total to more than 900 earthquakes in the magnitude range of 0.5 ≤ M d ≤ 5.2. The region of activity extended in a 40-km long zone mainly in a N-S direction and was located about 10 km west of the Roum fault. The largest earthquake, with a duration magnitude of M d = 5.2, occurred on February 15, 2008, and was located at 33.327° N, 35.406° E at a depth of 3 km. The mean-horizontal peak ground acceleration observed at two nearby accelerometers exceeded 0.05 g, where the strongest peak horizontal acceleration was 55 cm/s2 at about 20 km SE of the epicenter. Application of the HypoDD algorithm yielded a pronounced N-S zone, parallel to the Roum fault, which was not known to be seismically active. Focal mechanism, based on full waveform inversion and the directivity effect of the strongest earthquake, suggests left-lateral strike-slip NNW-SSE faulting that crosses the NE-SW traverse faults in southern Lebanon.

  11. Seismic-wave attenuation associated with crustal faults in the new madrid seismic zone.

    PubMed

    Hamilton, R M; Mooney, W D

    1990-04-20

    The attenuation of upper crustal seismic waves that are refracted with a velocity of about 6 kilometers per second varies greatly among profiles in the area of the New Madrid seismic zone in the central Mississippi Valley. The waves that have the strongest attenuation pass through the seismic trend along the axis of the Reelfoot rift in the area of the Blytheville arch. Defocusing of the waves in a low-velocity zone and/or seismic scattering and absorption could cause the attenuation; these effects are most likely associated with the highly deformed rocks along the arch. Consequently, strong seismic-wave attenuation may be a useful criterion for identifying seismogenic fault zones.

  12. An analysis of seismic hazard in the Upper Rhine Graben enlightened by the example of the New Madrid seismic zone.

    NASA Astrophysics Data System (ADS)

    Doubre, Cécile; Masson, Frédéric; Mazzotti, Stéphane; Meghraoui, Mustapha

    2014-05-01

    Seismic hazard in the "stable" continental regions and low-level deformation zones is one of the most difficult issues to address in Earth sciences. In these zones, instrumental and historical seismicity are not well known (sparse seismic networks, seismic cycle too long to be covered by the human history, episodic seismic activity) and many active structures remain poorly characterized or unknown. This is the case of the Upper Rhine Graben, the central segment of the European Cenozoic rift system (ECRIS) of Oligocene age, which extends from the North Sea through Germany and France to the Mediterranean coast over a distance of some 1100 km. Even if this region has already experienced some destructive earthquakes, its present-day seismicity is moderate and the deformation observed by geodesy is very small (below the current measurement accuracy). The strain rate does not exceed 10-10 and paleoseismic studies indicate an average return period of 2.5 to 3 103 ka for large earthquakes. The largest earthquake known for this zone is the 1356 Basel earthquake, with a magnitude generally estimated about 6.5 (Meghraoui et al., 2001) but recently re-evaluated between 6.7 and 7.1 (Fäh et al et al., 2009). A comparison of the Upper Rhine Graben with equivalent regions around the world could help improve our evaluation of seismic hazard of this region. This is the case of the New Madrid seismic zone, one of the best studied intraplate system in central USA, which experienced an M 7.0 - 7.5 earthquake in 1811-1812 and shares several characteristics with the Upper Rhine Graben, i.e. the general framework of inherited geological structures (reactivation of a failed rift / graben), seismicity patterns (spatial variability of small and large earthquakes), the null or low rate of deformation, and the location in a "stable" continental interior. Looking at the Upper Rhine Graben as an analogue of the New Madrid seismic zone, we can re-evaluate its seismic hazard and consider the

  13. Western Rainier Seismic Zone Airborne Laser Swath Mapping

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Haugerud, Ralph A.; Johnson, Samuel Y.; Scott, Kevin M.; Weaver, Craig S.; Martinez, Diana M.; Zeigler, John C.; Latypov, Damir

    2003-01-01

    Airborne laser swath mapping (ALSM) of the Puget Lowland conducted by TerraPoint LLC for the Purget Sound Lidar Concortium (PSLC), has been successful in revealing Holocene fault scarps and lendsliders hidden beneath the dense, temperate rain forest cover and in quantifying shoreline terrace uplift. Expanding the PSLC efforts, NASA-USGS collaboration is now focusing on topographic mapping of seismogenic zones adjacent to volcanois in the western Cascades range in order to assess the presence of active faulting and tectonic deformation, better define the extend of lahars and understand their flow processes, and characterize landslide occurrence. Mapping of the western Rainier zone (WRZ) was conducted by TerraPoint in late 2002, after leaf fall and before snow accumulation. The WRZ is a NNW-trending, approx. 30 km-long zone of seismicity west of Mount Rainier National Park. The Puget Lowland ALSM methods were modified to accommodate challenges posed by the steep, high relief terrian. The laser data, acquired with a density of approx. 2 pulses /sq m, was filtered to identify returns from the ground from which a bare Earth digital elevation model (DEM) was produced with a grid size of 1.8 m. The RMS elevation accuracy of the DEM in flat, unvegetated areas is approx. 10cm based on consistency between overlapping flight swaths and comparisons to ground control points. The resulting DEM substantially improves upon Shuttle Radar Topography Mission and USGS photogrammetric mapping. For example, the DEM defines the size and spatial distribution of flood erratics left by the Electron lahar and of megaclasts within the Round Pass lahar, important for characterizing the lahar hydraulics. A previously unknown lateral levee on the Round Pass lahar is also revealed. In addition, to illustrating geomorfic feature within the WRZ, future plans for laser mapping of the Saint Helens and Darrington seismic zones will be described.

  14. Imaging the West Bohemia Seismic Zone

    NASA Astrophysics Data System (ADS)

    Alexandrakis, C.; Calo, M.; Bouchaala, F.; Vavrycuk, V.

    2013-12-01

    West Bohemia is located at the suture of three mantle lithosphere plates, the Eger Rift, the Cheb basin and is the site of Quaternary volcanism. This complex tectonic setting results in localized, periodic earthquake swarms throughout the region and many CO2 springs and gas exhalation sites. Nový Kostel, the most active swarm area, experiences frequent swarms of several hundreds to thousands of earthquakes over a period of weeks to several months. It is a unique study area, since the swarm region is surrounded by the West Bohemia Seismic Network (WEBNET), providing observations in all directions. Larger swarms, such as those in 1985/1986, 1997, 2000, 2007 and 2008, have been studied in terms of source mechanisms and swarm characteristics (Fischer and Michálek, 2003; Fischer et al., 2010; Vavryčuk, 2011). The seismicity is always located in the same area and depth range (6-15 km), however the active fault planes differ. This indicates changes to the local stress field, and may relate to the complicated tectonic situation and/or migrating fluids. Many studies have examined individual swarms and compared the earthquake episodes, however the mechanisms behind the phenomenon are still not understood. This has motivated many studies, including recent proposals for a reflection seismic profile directly over the swarm area and multidisciplinary monitoring through ICDP. In this study, we image the velocity structure within and around the swarm area using double-difference tomography (Zhang and Thurber, 2003) and Weighted Average Model (WAM) post-processing analysis (Calò et al., 2011). The WAM analysis averages together velocity models calculated with a variety of reasonable starting parameters. The velocities are weighted by the raypath proximity and density at an inversion node. This reduces starting model bias and artifacts, and yields a weighted standard deviation at each grid point. Earthquake locations and WEBNET P and S arrival times for the two most recent large

  15. Development of GIS Database for New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Birhanemeskel, Y. T.; Vlahovic, G.; Arroucau, P.; Malhotra, R.; Powell, C. A.

    2010-12-01

    The New Madrid Seismic Zone (NMSZ) of the central Mississippi river valley is currently the most seismically active region in the central and eastern United States. A number of earthquakes occurred in NMSZ between 1811 and 1812, of which three major earthquakes with magnitudes greater than 7 destroyed the town of New Madrid, Missouri. Intraplate seismicity like the New Madrid seismicity is difficult to explain in the framework of plate tectonics and requires analyzing various geological, geophysical and seismological data to better understand its causes. ArcGIS® 9.3.1 software with license type ArcEditor was used to build a geodatabase containing multiple layers that are useful for the study of intraplate seismicity. These layers include earthquake locations, gravity and magnetic anomalies, lithology, topography, velocity anomalies as resolved by arrival time tomography and geological structures like intrusions and faults. The data for these layers were obtained from the U.S Geological Survey, from the Center for Earthquake Research and Information at the University of Memphis, TN, and from paper maps. Zipped files of various formats (.xls, .shp, .txt, .tar, etc) were downloaded and converted to a format compatible with ArcGIS. To keep compatibility of the data, editing of the attribute table of the raw data was completed before importing the data to Arc Catalog. Geo-referencing and digitizing processes were also done to import layers of contour lines and geological structures with correct vector information from papers maps. Layers were clipped in order to make sure that they fit the spatial extent of the study area (from 34°S to 40°N in latitude and from 93°W to 86°W in longitude). The New Madrid seismicity will be analyzed by looking for possible relationships that exist between the data layers using various spatial and geostatistical tools. For example the distribution of earthquakes will be analyzed with respect to the potential field and velocity

  16. Seismic source zoning and maximum credible earthquake prognosis of the Greater Kashmir Territory, NW Himalaya

    NASA Astrophysics Data System (ADS)

    Sana, Hamid; Nath, Sankar Kumar

    2016-09-01

    We present the seismic source zoning of the tectonically active Greater Kashmir territory of the Northwestern Himalaya and seismicity analysis (Gutenberg-Richter parameters) and maximum credible earthquake (m max) estimation of each zone. The earthquake catalogue used in the analysis is an extensive one compiled from various sources which spans from 1907 to 2012. Five seismogenic zones were delineated, viz. Hazara-Kashmir Syntaxis, Karakorum Seismic Zone, Kohistan Seismic Zone, Nanga Parbat Syntaxis, and SE-Kashmir Seismic Zone. Then, the seismicity analysis and maximum credible earthquake estimation were carried out for each zone. The low b value (<1.0) indicates a higher stress regime in all the zones except Nanga Parbat Syntaxis Seismic Zone and SE-Kashmir Seismic Zone. The m max was estimated following three different methodologies, the fault parameter approach, convergence rates using geodetic measurements, and the probabilistic approach using the earthquake catalogue and is estimated to be M w 7.7, M w 8.5, and M w 8.1, respectively. The maximum credible earthquake (m max) estimated for each zone shows that Hazara Kashmir Syntaxis Seismic Zone has the highest m max of M w 8.1 (±0.36), which is espoused by the historical 1555 Kashmir earthquake of M w 7.6 as well as the recent 8 October 2005 Kashmir earthquake of M w 7.6. The variation in the estimated m max by the above discussed methodologies is obvious, as the definition and interpretation of the m max change with the method. Interestingly, historical archives (˜900 years) do not speak of a great earthquake in this region, which is attributed to the complex and unique tectonic and geologic setup of the Kashmir Himalaya. The convergence is this part of the Himalaya is distributed not only along the main boundary faults but also along the various active out-of-sequence faults as compared to the Central Himalaya, where it is mainly adjusted along the main boundary fault.

  17. Prediction of subsurface fracture in mining zone of Papua using passive seismic tomography based on Fresnel zone

    SciTech Connect

    Setiadi, Herlan; Nurhandoko, Bagus Endar B.; Wely, Woen; Riyanto, Erwin

    2015-04-16

    Fracture prediction in a block cave of underground mine is very important to monitor the structure of the fracture that can be harmful to the mining activities. Many methods can be used to obtain such information, such as TDR (Time Domain Relectometry) and open hole. Both of them have limitations in range measurement. Passive seismic tomography is one of the subsurface imaging method. It has advantage in terms of measurements, cost, and rich of rock physical information. This passive seismic tomography studies using Fresnel zone to model the wavepath by using frequency parameter. Fresnel zone was developed by Nurhandoko in 2000. The result of this study is tomography of P and S wave velocity which can predict position of fracture. The study also attempted to use sum of the wavefronts to obtain position and time of seismic event occurence. Fresnel zone tomography and the summation wavefront can predict location of geological structure of mine area as well.

  18. Three Dimensional velocity Structure in the New Madrid and Other SCR Seismic Zones

    NASA Astrophysics Data System (ADS)

    Powell, C. A.

    2002-12-01

    Recent tomographic inversions of travel time data accumulated for active SCR seismic zones have revealed strong velocity contrasts that appear to control the distribution of seismicity. Velocity images have been obtained for the New Madrid seismic zone (NMSZ), the eastern Tennessee seismic zone (ETSZ), and the Charlevoix seismic zone (CSZ). We have also obtained a preliminary velocity model for the aftershock region associated with the Mw=7.7 January 26th Bhuj, India earthquake. Both P and S waves were inverted for velocity structure in the NMSZ. High velocity bodies were imaged and are interpreted to be intrusions associated with the axis and edge of the Reelfoot graben. Low velocities were imaged near the intersection of the long NE arm of seismicity and the NW trending arm; the low velocities are attributed to highly fractured, fluid saturated crust and are associated with shallow earthquake swarms. In general, earthquakes tend to avoid regions with higher than average velocities and concentrate in areas of low velocity or along the edges of high velocity zones. Similar results were obtained for both the ETSZ and the CSZ. A prominent low-velocity zone was detected in the ETSZ; most earthquakes occur in rocks that surround the lowest-velocity regions. An elongated, high velocity region is present at mid-crustal depths in the CSZ; earthquakes avoid the high velocity body and separate into two bands, one on either side of the feature. Larger earthquakes (exceeding magnitude 4) have occurred along the northern edge of the high velocity region. Our results suggest that earthquakes in SCR seismic zones tend to occur in rocks where strain energy is concentrating. This observation is consistent with results from high resolution tomographic images of fault zones in California.

  19. Lunar seismic profiling experiment natural activity study

    NASA Technical Reports Server (NTRS)

    Duennebier, F. K.

    1976-01-01

    The Lunar Seismic Experiment Natural Activity Study has provided a unique opportunity to study the high frequency (4-20 Hz) portion to the seismic spectrum on the moon. The data obtained from the LSPE was studied to evaluate the origin and importance of the process that generates thermal moonquakes and the characteristics of the seismic scattering zone at the lunar surface. The detection of thermal moonquakes by the LSPE array made it possible to locate the sources of many events and determine that they are definitely not generated by astronaut activities but are the result of a natural process on the moon. The propagation of seismic waves in the near-surface layers was studied in a qualitative manner. In the absence of an adequate theoretical model for the propagation of seismic waves in the moon, it is not possible to assign a depth for the scattering layer. The LSPE data does define several parameters which must be satisfied by any model developed in the future.

  20. A non extensive statistical physics analysis of the Hellenic subduction zone seismicity

    NASA Astrophysics Data System (ADS)

    Vallianatos, F.; Papadakis, G.; Michas, G.; Sammonds, P.

    2012-04-01

    The Hellenic subduction zone is the most seismically active region in Europe [Becker & Meier, 2010]. The spatial and temporal distribution of seismicity as well as the analysis of the magnitude distribution of earthquakes concerning the Hellenic subduction zone, has been studied using the concept of Non-Extensive Statistical Physics (NESP) [Tsallis, 1988 ; Tsallis, 2009]. Non-Extensive Statistical Physics, which is a generalization of Boltzmann-Gibbs statistical physics, seems a suitable framework for studying complex systems (Vallianatos, 2011). Using this concept, Abe & Suzuki (2003;2005) investigated the spatial and temporal properties of the seismicity in California and Japan and recently Darooneh & Dadashinia (2008) in Iran. Furthermore, Telesca (2011) calculated the thermodynamic parameter q of the magnitude distribution of earthquakes of the southern California earthquake catalogue. Using the external seismic zones of 36 seismic sources of shallow earthquakes in the Aegean and the surrounding area [Papazachos, 1990], we formed a dataset concerning the seismicity of shallow earthquakes (focal depth ≤ 60km) of the subduction zone, which is based on the instrumental data of the Geodynamic Institute of the National Observatory of Athens (http://www.gein.noa.gr/, period 1990-2011). The catalogue consists of 12800 seismic events which correspond to 15 polygons of the aforementioned external seismic zones. These polygons define the subduction zone, as they are associated with the compressional stress field which characterizes a subducting regime. For each event, moment magnitude was calculated from ML according to the suggestions of Papazachos et al. (1997). The cumulative distribution functions of the inter-event times and the inter-event distances as well as the magnitude distribution for each seismic zone have been estimated, presenting a variation in the q-triplet along the Hellenic subduction zone. The models used, fit rather well to the observed

  1. Rapid intraplate strain accumulation in the New Madrid seismic zone

    USGS Publications Warehouse

    Liu, L.; Zoback, M.D.; Segall, P.

    1992-01-01

    Remeasurement of a triangulation network in the southern part of the New Madrid seismic zone with the Global Positioning System has revealed rapid crustal strain accumulation since the 1950s. This area experienced three large (moment magnitudes >8) earthquakes in 1811 to 1812. The orientation and sense of shear is consistent with right-lateral strike slip motion along a northeast-trending fault zone (as indicated by current seismicity). Detection of crustal strain accumulation may be a useful discriminant for identifying areas where potentially damaging intraplate earthquakes may occur despite the absence of large earthquakes during historic time.

  2. Rapid intraplate strain accumulation in the New Madrid seismic zone

    SciTech Connect

    Liu, L.; Zoback, M.D.; Segall, P. USGS, Menlo Park, CA )

    1992-09-01

    Remeasurement of a triangulation network in the southern part of the New Madrid seismic zone with the Global Positioning System has revealed rapid crustal strain accumulation since the 1950s. This area experienced three large (moment magnitudes greater than 8) earthquakes in 1811 to 1812. The orientation and sense of shear is consistent with right-lateral strike slip motion along a northeast-trending fault zone (as indicated by current seismicity). Detection of crustal strain accumulation may be a useful discriminant for identifying areas where potentially damaging intraplate earthquakes may occur despite the absence of large earthquakes during historic time. 34 refs.

  3. Towards a bayesian seismotectonic zoning for use in Probabilistic Seismic Hazard Assessment (PSHA)

    SciTech Connect

    Le Goff, Boris; Fitzenz, Delphine; Beauval, Celine

    2011-03-14

    The mathematical representation of seismic sources is an important part of probabilistic seismic hazard assessment. It reflects the association of the seismicity with the tectonically-active geological structures evidenced by seismotectonic studies. Given that most active faults are not characterized well enough, seismic sources are generally defined as areal zones, delimited with finite boundary polygons, within which the geological features of active tectonics and the seismicity are deemed homogeneous (e.g., focal depth, seismicity rate, and maximum magnitude). Besides the lack of data (e.g., narrow range of recorded magnitudes), the application of this representation generates different problems: 1) a large sensitivity of resulting hazard maps on the location of zone boundaries, while these boundaries are set by expert decision; 2) the zoning can not represent any variation in faulting mechanism; 3) the seismicity rates are distributed throughout the zones and we lose the location of the determinant information used for their calculation. We propose an exploratory study for an alternative procedure in area source modeling. First, different data (e.g., geomorphology, geology, fault orientations) will be combined by using automated spatial partitioning (investigation of both supervised and unsupervised methods) in order to obtain several information classes, which may be defined as areal source zones. Then, a given hypocenter belonging to a given ''zone'', from now on called seismicity model, will be expressed by a probability computed from the 2D (spatial) probability density function (pdf) for the active tectonic model used as an a priori and updated with specific data from seismicity catalogs (e.g., focal mechanism) or other new data sources (e.g., geomorphology, subsurface exploration). This hypocenter will thus be allowed to contribute to several models, with weights given by the value of the pdf for each model. The annual rate of occurrence, for a given

  4. Seismic Holography of Solar Activity

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles

    2000-01-01

    The basic goal of the project was to extend holographic seismic imaging techniques developed under a previous NASA contract, and to incorporate phase diagnostics. Phase-sensitive imaging gives us a powerful probe of local thermal and Doppler perturbations in active region subphotospheres, allowing us to map thermal structure and flows associated with "acoustic moats" and "acoustic glories". These remarkable features were discovered during our work, by applying simple acoustic power holography to active regions. Included in the original project statement was an effort to obtain the first seismic images of active regions on the Sun's far surface.

  5. The Salton Seismic Imaging Project: Seismic velocity structure of the Brawley Seismic Zone, Salton Buttes and Geothermal Field, Salton Trough, California

    NASA Astrophysics Data System (ADS)

    Delph, J.; Hole, J. A.; Fuis, G. S.; Stock, J. M.; Rymer, M. J.

    2011-12-01

    The Salton Trough is an active rift in southern California in a step-over between the plate-bounding Imperial and San Andreas Faults. In March 2011, the Salton Seismic Imaging Project (SSIP) investigated the rift's crustal structure by acquiring several seismic refraction and reflection lines. One of the densely sampled refraction lines crosses the northern-most Imperial Valley, perpendicular to the strike-slip faults and parallel to a line of small Quaternary rhyolitic volcanoes. The line crosses the obliquely extensional Brawley Seismic Zone and goes through one of the most geothermally productive areas in the United States. Well logs indicate the valley is filled by several kilometers of late Pliocene-recent lacustrine, fluvial, and shallow marine sediment. The 42-km long seismic line was comprised of eleven 110-460 kg explosive shots and receivers at a 100 m spacing. First arrival travel times were used to build a tomographic seismic velocity image of the upper crust. Velocity in the valley increases smoothly from <2 km/s to >5 km/s, indicating diagenesis and gradational metamorphism of rift sediments at very shallow depth due to an elevated geotherm. The velocity gradient is much smaller in the relatively low velocity (<6 km/s) crystalline basement comprised of recently metamorphosed sediment reaching greenschist to lower amphibolite facies. The depth of this basement is about 4-km below the aseismic region of the valley west of the Brawley Seismic Zone, but rises sharply to ~2 km depth beneath the seismically, geothermally, and volcanically active area of the Brawley Seismic Zone. The basement deepens to the northeast of the active tectonic zone and then is abruptly offset to shallower depth on the northeast side of the valley. This offset may be the subsurficial expression of a paleofault, most likely an extension of the Sand Hills Fault, which bounds the basin to the east. Basement velocity east of the fault is ~5.7 km/s, consistent with the granitic rocks

  6. Seismic gaps and source zones of recent large earthquakes in coastal Peru

    USGS Publications Warehouse

    Dewey, J.W.; Spence, W.

    1979-01-01

    The earthquakes of central coastal Peru occur principally in two distinct zones of shallow earthquake activity that are inland of and parallel to the axis of the Peru Trench. The interface-thrust (IT) zone includes the great thrust-fault earthquakes of 17 October 1966 and 3 October 1974. The coastal-plate interior (CPI) zone includes the great earthquake of 31 May 1970, and is located about 50 km inland of and 30 km deeper than the interface thrust zone. The occurrence of a large earthquake in one zone may not relieve elastic strain in the adjoining zone, thus complicating the application of the seismic gap concept to central coastal Peru. However, recognition of two seismic zones may facilitate detection of seismicity precursory to a large earthquake in a given zone; removal of probable CPI-zone earthquakes from plots of seismicity prior to the 1974 main shock dramatically emphasizes the high seismic activity near the rupture zone of that earthquake in the five years preceding the main shock. Other conclusions on the seismicity of coastal Peru that affect the application of the seismic gap concept to this region are: (1) Aftershocks of the great earthquakes of 1966, 1970, and 1974 occurred in spatially separated clusters. Some clusters may represent distinct small source regions triggered by the main shock rather than delimiting the total extent of main-shock rupture. The uncertainty in the interpretation of aftershock clusters results in corresponding uncertainties in estimates of stress drop and estimates of the dimensions of the seismic gap that has been filled by a major earthquake. (2) Aftershocks of the great thrust-fault earthquakes of 1966 and 1974 generally did not extend seaward as far as the Peru Trench. (3) None of the three great earthquakes produced significant teleseismic activity in the following month in the source regions of the other two earthquakes. The earthquake hypocenters that form the basis of this study were relocated using station

  7. On the mechanism of seismic decoupling and back are spreading at subduction zones

    SciTech Connect

    Scholz, C.H.; Campos, J.

    1995-11-10

    This report discusses a force model for the mechanics of seismic decoupling and back arc spreading at subduction zones. This model predicts three regimes: seismically coupled compressional arcs; seismically decoupled extensional arcs; and strongly extensional arcs with back arc spreading.

  8. High concentrated gas hydrate zone imaged in seismic data

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Saeki, T.; Oikawa, N.; Inamori, T.; Fujii, T.; Takayama, T.; Hayashi, M.; Nakamizu, M.

    2006-12-01

    Japan Oil, Gas and Metals National Corporation (JOGMEC), as a member of MH21 Research Consortium, takes charge of a study of the Research for Resources Assessment, and is pursuing a possibility that gas hydrate, which is presumed to be distributed around ocean area of Japan, will be energy resources. As part of the study, 3D seismic survey was conducted from Tokai-oki to Kumano-nada in the eastern Nankai Trough by METI (Ministry of Economy, Trade and Industry) in 2002 under the national program of assessment for gas hydrates as energy resources. As well as 3D seismic survey, drilling program was conducted in this area and information of physical property was acquired. Additionally, velocity analysis and seismic attribute analysis were conducted. It is revealed that gas hydrate zone is correlated with high resistivity and high velocity, and a lot of gas hydrates are found in turbidite sand with much porosity. JOGMEC is conducting analysis of seismic data and is doing resources assessment of gas hydrate compiling information of physical property which was acquired by drilling, result of velocity analysis, and result of seismic attribute analysis. This time, we introduce some seismic images of high concentrated gas hydrate zone appears in Tokai-oki area.

  9. Seismic measurements of the internal properties of fault zones

    USGS Publications Warehouse

    Mooney, W.D.; Ginzburg, A.

    1986-01-01

    The internal properties within and adjacent to fault zones are reviewed, principally on the basis of laboratory, borehole, and seismic refraction and reflection data. The deformation of rocks by faulting ranges from intragrain microcracking to severe alteration. Saturated microcracked and mildly fractured rocks do not exhibit a significant reduction in velocity, but, from borehole measurements, densely fractured rocks do show significantly reduced velocities, the amount of reduction generally proportional to the fracture density. Highly fractured rock and thick fault gouge along the creeping portion of the San Andreas fault are evidenced by a pronounced seismic low-velocity zone (LVZ), which is either very thin or absent along locked portions of the fault. Thus there is a correlation between fault slip behavior and seismic velocity structure within the fault zone; high pore pressure within the pronounced LVZ may be conductive to fault creep. Deep seismic reflection data indicate that crustal faults sometimes extend through the entire crust. Models of these data and geologic evidence are consistent with a composition of deep faults consisting of highly foliated, seismically anisotropic mylonites. ?? 1986 Birkha??user Verlag, Basel.

  10. Tsunami potential assessment based on rupture zones, focal mechanisms and repeat times of strong earthquakes in the major Atlantic-Mediterranean seismic fracture zone

    NASA Astrophysics Data System (ADS)

    Agalos, Apostolos; Papadopoulos, Gerassimos A.; Kijko, Andrzej; Papageorgiou, Antonia; Smit, Ansie; Triantafyllou, Ioanna

    2016-04-01

    In the major Atlantic-Mediterranean seismic fracture zone, extended from Azores islands in the west to the easternmost Mediterranean Sea in the east, including the Marmara and Black Seas, a number of 22 tsunamigenic zones have been determined from historical and instrumental tsunami documentation. Although some tsunamis were produced by volcanic activity or landslides, the majority of them was generated by strong earthquakes. Since the generation of seismic tsunamis depends on several factors, like the earthquake size, focal depth and focal mechanism, the study of such parameters is of particular importance for the assessment of the potential for the generation of future tsunamis. However, one may not rule out the possibility for tsunami generation in areas outside of the 22 zones determined so far. For the Atlantic-Mediterranean seismic fracture zone we have compiled a catalogue of strong, potentially tsunamigenic (focal depth less than 100 km) historical earthquakes from various data bases and other sources. The lateral areas of rupture zones of these earthquakes were determined. Rupture zone is the area where the strain after the earthquake has dropped substantially with respect the strain before the earthquake. Aftershock areas were assumed to determine areas of rupture zones for instrumental earthquakes. For historical earthquakes macroseismic criteria were used such as spots of higher-degree seismic intensity and of important ground failures. For the period of instrumental seismicity, focal mechanism solutions from CMT, EMMA and other data bases were selected for strong earthquakes. From the geographical distribution of seismic rupture zones and the corresponding focal mechanisms in the entire Atlantic-Mediterranean seismic fracture zone we determined potentially tsunamigenic zones regardless they are known to have produced seismic tsunamis in the past or not. An attempt has been made to calculate in each one of such zones the repeat times of strong

  11. Velocity Structure in the West Bohemia Seismic Zone: Velocity Models Retrieved from different Earthquake Swarms

    NASA Astrophysics Data System (ADS)

    Alexandrakis, C.; Löberich, E.; Kieslich, A.; Calo, M.; Vavrycuk, V.; Buske, S.

    2015-12-01

    Earthquake swarms, fluid migration and gas springs are indications of the ongoing geodynamic processes within the West Bohemia seismic zone located at the Czech-German border. The possible relationship between the fluids, gas and seismicity is of particular interest and has motivated numerous past, ongoing and future studies, including a multidisciplinary monitoring proposal through the International Continental Scientific Drilling Program (ICDP). The most seismically active area within the West Bohemia seismic zone is located at the Czech town Nový Kostel. The Nový Kostel zone experiences frequent swarms of several hundreds to thousands of earthquakes over a period of weeks to several months. The seismicity is always located in the same area and depth range (~5-15 km), however the activated fault segments and planes differ. For example, the 2008 swarm activated faults along the southern end of the seismic zone, the 2011 swarm activated the northern segment, and the recent 2014 swarm activated the middle of the seismic zone. This indicates changes to the local stress field, and may relate to fluid migration and/or the complicated tectonic situation. The West Bohemia Seismic Network (WEBNET) is ideally located for studying the Nový Kostel swarm area and provides good azimuthal coverage. Here, we use the high quality P- and S-wave arrival picks recorded by WEBNET to calculate swarm-dependent velocity models for the 2008 and 2011 swarms, and an averaged (swarm independent) model using earthquakes recorded between 1991 and 2011. To this end, we use double-difference tomography to calculate P- and S-wave velocity models. The models are compared and examined in terms of swarm-dependent velocities and structures. Since the P-to-S velocity ratio is particularly sensitive to the presence of pore fluids, we derive ratio models directly from the inverted P- and S-wave models in order to investigate the potential influence of fluids on the seismicity. Finally, clustering

  12. Log of an exploratory trench in the New Madrid seismic zone near Blytheville, Arkansas

    USGS Publications Warehouse

    Haller, Kathleen M.; Crone, Anthony J.

    1986-01-01

    During the winter of 1811-12, at least three major earthquakes having estimated magnitudes of MS 8.3-8.8 (Nuttli and Herrmann, 1984) struck the area near New Madrid, Mo. Since the 1811-12 series of earthquakes, 20 damaging earthquakes have occurred in the area (Nuttli, 1982), making the New Madrid seismic zone (fig. 1) the most seismically active area in the Eastern United States (Hadley and Devine, 1974).  The zone, extending from about lat 35° to 37° N., approximately parallels the Mississippi River and encompasses an area roughly 50 km wide (Nuttli, 1979).

  13. Seismic signature of a hydrous mantle transition zone

    NASA Astrophysics Data System (ADS)

    Thio, Vincent; Cobden, Laura; Trampert, Jeannot

    2016-01-01

    Although water has a major influence on tectonic and other geodynamic processes, little is known about its quantity and distribution within the deep Earth. In the last few decades, laboratory experiments on nominally anhydrous minerals (NAMs) of the transition zone have shown that these minerals can contain significant amounts of water, up to 3.3 wt%. In this study, we investigate if it is possible to use seismic observations to distinguish between a hydrous and anhydrous transition zone. We perform an extensive literature search of mineral experimental data, to generate a compilation of the water storage capacities, elastic parameters and phase boundary data for potentially hydrous minerals in the transition zone, and use thermodynamic modelling to compute synthetic seismic profiles of density, VP and VS at transition zone temperatures and pressures. We find that large uncertainties on the mineral phase equilibria (ca. 2 GPa) and elastic properties produce a wide range of seismic profiles. In particular, there is a lack of data at temperatures corresponding to those along a 1300 °C adiabat or hotter, which may be expected at transition zone pressures. Comparing our hydrous transition zone models with equivalent profiles at anhydrous conditions, we see that the depths of the 410 and 660 discontinuities cannot at present be used to map the water content of the transition zone due to these uncertainties. Further, while average velocities and densities inside the transition zone clearly decrease with increasing water content, there is a near-perfect trade-off with increases in temperature. It is therefore difficult to distinguish thermal from water effects, and the conventional view of a slow and thick transition zone for water and slow and thin transition zone for high temperature should be regarded with caution. A better diagnostic for water may be given by the average velocity gradients of the transition zone, which increase with increasing water content (but

  14. Study of a subsurface fracture zone by vertical seismic profiling

    NASA Astrophysics Data System (ADS)

    Stewart, Robert R.; Turpening, Roger M.; Toksoz, M. Nafi

    Remotely estimating the properties of subsurface fracture zones is important in characterizing the structure of the shallow earth. We present a vertical seismic profiling (VSP) technique to make this fracture zone estimation and discuss the results of a VSP experiment performed in the upper 770 m of the Michigan Basin. Both P and SH waves were used to observe an explosively-fractured volume of Antrim shale. The experiment was divided into two parts: a "before" survey run on the unaltered rock, then an identical "after" survey executed across the fractured volume. A seismic velocity structure of the basin was calculated from the "before" survey. Comparison of the "after" observations to the "before" data, elucidated the fracture volume and its effective elastic parameters. From travel-time delays, amplitude attenuation, converted and scattered waves, we estimated the depth (395 m), shape (ellipsoidal), size (10 m × 20 m × 30 m) and porosity (20%) of the fracture zone.

  15. Seismic investigation of an ocean-continent transition zone in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Qiu, X.; Xu, H.; Zhan, W.; Sun, Z.

    2011-12-01

    Rifted continental margins and basins are mainly formed by the lithospheric extension. Thined lithosphere of passive continental margins results in decompression melt of magma and created oceanic crust and thined ocean-continent transition (OCT) zone. Two refraction profiles used ocean bottom seismometers deployed in the broad continental shelf and three multi-channel seismic reflection lines in the northern South China Sea, acquired by the ship "Shiyan 2" of the South China Sea Institute of Oceanology, Chinese Academy of Sciences in 2010, are processed and interpreted in this study. Seismic reflection lines cut through the Dongsha rise, Zhu-1 and Zhu-2 depression within a Tertiary basin, Pear River Mouth basin (called as Zhujiangkou basin). These tectonic features are clear imaged in the seismic reflection records. Numerous normal faults, cutted through the basement and related to the stretch of the northern South China Sea margin, are imaged and interpreted. Reflection characteristics of the ocean-continent transition (OCT) zone are summaried and outlined. The COT zone is mainly divided into the northern syn-rift subsidence zone, central volcano or buried volcano uplift zone and tilt faulted block near the South Chia Sea basin. Compared to the previous seismic reflection data and refraction velocity models, the segmentation range of the OCT zone is outlined, from width of about 225 km in the northeastern South China Sea , of 160 km in the central to of 110 km in the north-central South China Sea. Based on the epicenter distribution of sporadic and large than 6 magnitude earthquakes, it suggests the OCT zone in the northern South China Sea at present is still an active seismic zone.

  16. Major Existence of Very Low Frequency Earthquakes in Background Seismicity Along Subduction Zone of South-western Japan

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.

    2003-12-01

    The condense, high quality and equalized broadband seismic network provided us to recognize the variety of seismic sources. The active volcanoes excite seismic waves with various frequency characteristics. Some cases show the long period seismic waves greater than 10 sec associates with volcanic activities. The tectonic seismic events originated at the close to trench zone are frequently lack of high frequency, greater than 1 Hz, seismic wave component. Meanwhile, the many low frequency earthquakes and tremors whose sources are not explicated are occurred in lower crust and subcrustal region. The subduction zone of Philippine Sea plate in south-western Japan is actively genetic area of low frequency earthquake group. The broadband seismic array of Japan region observed unknown long period ground motions. The seismograms are higher amplitude between 10 and 30 sec period than ground noise level. The earthquake JMA and USGS catalogues don_ft list about these long period seismograms. The arrival order of wave packet means that these events locate subduction zone around Japan. The hypocenters of unknown events are estimated by arrival times of vertical peak amplitude using the assumption that the ground motion dominates Rayleigh wave. The more detailed determination of major events is performed by combined technique for moment tensor inversion and grid search. The moment magnitude of uncatalogued event is greater than 3.5 because of the detection limitation. The largest event is distributed to about 4.5 Mw level and special event is greater than 5.0. The frequency characteristics show that source time is 7 to 20 sec by comparison with synthetic seismograms. We call these uncatalogued events _gvery low frequency earthquake_h. The hypocenters are located to two kinds of zones along the Philippine Sea subducting plate in south-western Japan. The one zone is very close to the trough. The seismicity listed by earthquake catalogues is low level in the zone and hypocenters are

  17. Storage of fluids and melts at subduction zones detectable by seismic tomography

    NASA Astrophysics Data System (ADS)

    Luehr, B. G.; Koulakov, I.; Rabbel, W.; Brotopuspito, K. S.; Surono, S.

    2015-12-01

    During the last decades investigations at active continental margins discovered the link between the subduction of fluid saturated oceanic plates and the process of ascent of these fluids and partial melts forming a magmatic system that leads to volcanism at the earth surface. For this purpose the geophysical structure of the mantle and crustal range above the down going slap has been imaged. Information is required about the slap, the ascent paths, as well as the reservoires of fluids and partial melts in the mantle and the crust up to the volcanoes at the surface. Statistically the distance between the volcanoes of volcanic arcs down to their Wadati Benioff zone results of approximately 100 kilometers in mean value. Surprisingly, this depth range shows pronounced seismicity at most of all subduction zones. Additionally, mineralogical laboratory investigations have shown that dehydration of the diving plate has a maximum at temperature and pressure conditions we find at around 100 km depth. The ascent of the fluids and the appearance of partial melts as well as the distribution of these materials in the crust can be resolved by seismic tomographic methods using records of local natural seismicity. With these methods these areas are corresponding to lowered seismic velocities, high Vp/Vs ratios, as well as increased attenuation of seismic shear waves. The anomalies and their time dependence are controlled by the fluids. The seismic velocity anomalies detected so far are within a range of a few per cent to more than 30% reduction. But, to explore plate boundaries large and complex amphibious experiments are required, in which active and passive seismic investigations should be combined to achieve best results. The seismic station distribution should cover an area from before the trench up to far behind the volcanic chain, to provide under favorable conditions information down to 150 km depth. Findings of different subduction zones will be compared and discussed.

  18. Pre-eruption deformation and seismic anomalies in 2012 in Tolbachik volcanic zone, Kamchatka

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yulia; Saltykov, Vadim; Titkov, Nikolay

    2014-05-01

    Tolbachik volcanic zone (active volcano Plosky Tolbachik, dormant volcano Ostry Tolbachik and Tolbachik zone of cinder cones) is situated in the south part of Klyuchevskaya group of volcanoes in Kamchatka. All historical fissure eruptions of Tolbachik volcanic zone (1740, 1941, 1975-76 and 2012-13) were connected with one or another activity of Plosky Tolbachik volcano. In 1941 the fissure vent was occurred during the completion of 1939-41 terminal eruption of Plosky Tolbachik. In 1975 the Large Tolbachik Fissure Eruption (LTFE) was forestalled by Plosky Tolbachik terminal activity of the Hawaiian type and then was accompanied by the catastrophic collapse in the crater of Plosky Tolbachik. What events took place in the vicinity of Plosky Tolbachik in 2012 before the 2012-13 fissure eruption? In contrast of the 1975-76 LTFE the eruption 2012-13 was not preceded by intensive seismic preparation. Nowadays Klyuchevskaya group of volcanoes is under monitoring by 12 seismic stations, so we can investigate seismicity in details on the lower energy level then forty years ago. We analyzed seismicity of Plosky Tolbachik using regional catalogue 1999-2012. Anomalies of low-energy (M≥1.5) seismicity parameters (increase of seismicity rate and seismic energy) were discovered. This is evidence of seismic activization covered the whole Plosky Tolbachik volcano. The significance of this anomaly was estimated by distribution function of emitted seismic energy. Statistically significant transition of seismicity from background level to high and extremely high levels was revealed. It corresponds to multiple growth of earthquake number and seismic energy in 2012, July-November (five months before the eruption). The seismicity transition from background level to high level was happen in August 2012. During last three weeks before fissure eruption seismicity of analyzed seismoactive volume was on extremely high level. Earthquakes from fissure site directly appeared only on November 27

  19. Down-depth Seismicity Gaps and the Shape of the Seismic Zone along the entire Indonesian arc from Relocated Hypocenters

    NASA Astrophysics Data System (ADS)

    Das, S.

    2005-05-01

    Using thousands of handpicked P, S, pP, sP, PcP, and ScP phases from digitally recorded seismograms, together with International Seismological Centre reported phases, we obtain improved hypocentral locations for ~2600 earthquakes deeper than 50 km with mb > ~5.0 earthquakes, for the period 1962 to September 1996, along the Indonesian subduction zone. The seismicity distribution is found to be very non-uniform both along the arc and in depth. Gaps in the relocated hypocenters exist along depth in most places of the arc, with its upper edge varying from 100-450 km depth and its lower edge from 350-670 km in different portions of the arc. The relocated hypocenters show that (1) a portion of the Indonesian arc between ~110°E and 123°E longitude, and deeper than ~500 km, is dipping southward at an angle of ~75°, that is, in a direction opposite to the upper part of the north dipping slab, suggesting southward lateral flow in the mantle, relative to the plate motion vector here. (2) East of about 108°E, the seismic zone is wider near 670 km than near the 500 km depth. (3) The seismic zone between 129--131°E in the 100--200 km depth range is the widest along the arc both in strike and downdip. This region, near the highest arc curvature, has the highest seismic activity, and is the only part of the arc with earthquakes continuously occurring from the surface down to below 600 km. (4) The very deep earthquakes under Sulawesi are shown to be part of the west-southwest dipping Seram slab. (5) In the westernmost part of the Banda arc, the slab is under downdip tension in the 50-250 km depth range, while the deepest portion of the slab in this region is under compression. From 128-131°E the slab between 100--200 km depth is under mainly horizontal compression. Our study supports the "two-slab" model for the Banda arc. 3-D computer animations of the subduction zone will be presented. Das, S. (2004) Seismicity Gaps and the Shape of the Seismic Zone in the Banda Sea Region

  20. The earthquake potential of the New Madrid seismic zone

    USGS Publications Warehouse

    Tuttle, M.P.; Schweig, E.S.; Sims, J.D.; Lafferty, R.H.; Wolf, L.W.; Haynes, M.L.

    2002-01-01

    The fault system responsible for New Madrid seismicity has generated temporally clustered very large earthquakes in A.D. 900 ?? 100 years and A.D. 1450 ?? 150 years as well as in 1811-1812. Given the uncertainties in dating liquefaction features, the time between the past three New Madrid events may be as short as 200 years and as long as 800 years, with an average of 500 years. This advance in understanding the Late Holocene history of the New Madrid seismic zone and thus, the contemporary tectonic behavior of the associated fault system was made through studies of hundreds of earthquake-induced liquefaction features at more than 250 sites across the New Madrid region. We have found evidence that prehistoric sand blows, like those that formed during the 1811-1812 earthquakes, are probably compound structures resulting from multiple earthquakes closely clustered in time or earthquake sequences. From the spatial distribution and size of sand blows and their sedimentary units, we infer the source zones and estimate the magnitudes of earthquakes within each sequence and thereby characterize the detailed behavior of the fault system. It appears that fault rupture was complex and that the central branch of the seismic zone produced very large earthquakes during the A.D. 900 and A.D. 1450 events as well as in 1811-1812. On the basis of a minimum recurrence rate of 200 years, we are now entering the period during which the next 1811-1812-type event could occur.

  1. Multiscale seismic imaging of the Western-Pacific subduction zone

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2011-12-01

    We used multiscale seismic tomography to determine the detailed 3-D structure of the crust and mantle under the Western-Pacific subduction zone. The subducting Pacific and Philippine Sea (PHS) slabs are imaged clearly from their entering the mantle at the oceanic trenches to their reaching the mantle transition zone and finally to the core-mantle boundary (CMB). High-resolution local tomography of Northeast Japan has imaged the shallow portion of the slab from the Japan Trench down to about 200 km depth under Japan Sea. The 3-D Vp and Vs structures of the forearc region under the Pacific Ocean are constrained by locating suboceanic events precisely with sP depth phases. Strong structural heterogeneity is revealed in the megathrust zone under the forearc region, and there is a good correlation between the heterogeneity and the distribution of large thrust earthquakes including the great 2011 Tohoku-oki earthquake (Mw 9.0). A joint inversion of local and teleseismic data imaged the subducting Pacific slab down to 670 km depth under the Japan Islands and the Japan Sea. The PHS slab is detected down to 500 km depth under SW Japan. A mantle upwelling is found under SW Japan that rises from about 400 km depth right above the Pacific slab up to the PHS slab. Regional and global tomography revealed the Pacific slab that is stagnant in the mantle transition zone under Eastern China. A big mantle wedge (BMW) has formed in the upper mantle above the stagnant slab. Convective circulations in the BMW and deep dehydration of the stagnant slab may have caused the intraplate volcanoes in NE Asia, such as the Changbai and Wudalianchi volcanoes. The active Tengchong volcanism in SW China is caused by a similar process in the BMW above the subducting Burma (or Indian) slab. Global tomography shows pieces of fast anomalies in the middle and lower mantle as well as in the D" layer above the CMB, suggesting that the stagnant slab finally collapses down to the lower mantle and CMB as a

  2. Two Decades of Seismic Monitoring by WEBNET: Disclosing a Lifecycle of an Earthquake Swarm Zone

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Horalek, J.; Cermakova, H.; Michalek, J.; Doubravova, J.; Bouskova, A.; Bachura, M.

    2014-12-01

    The area of West Bohemia/Vogtland in western Eger Rift is typified by earthquake swarm activity with maximum magnitudes not exceeding ML 5. The seismicity is dominated by the area near Novy Kostel where earthquakes cluster along a narrow and steeply dipping focal zone of 8 km length that strikes about N-S in the depth range 7-11 km. Detailed seismic monitoring has been carried out by the WEBNET seismic network since 1992. During that period earthquake swarms with several mainshocks exceeding magnitude level ML 3 took place in 2000, 2008 and 2011. These swarms were characteristic by episodic character where the activity of individual episodes overlapped in time and space. Interestingly, the rate of activity of individual swarms increased with each subsequent swarm; the 2000 swarm being the slowest and the 2011 swarm the most rapid one. In 2014 the character of seismicity has changed from a swarm-like activity to a mainshock-aftershock activity. Already three mainshocks has occurred since May 2014; the ML 3.6 event of May 24, the ML 4.5 event of May 31 and the ML 3.5 event of August 3. All these events were followed by a short aftershock sequence of one to four days duration. All three events exceeded the following aftershocks by more than one magnitude level and none of these mainshocks were preceded by foreshocks, which differentiates this activity from the preceding swarm seismicity. Interestingly, the hypocenters of the mentioned earthquake swarms and mainshock-aftershock sequences share a common fault zone and overlap significantly. We present detailed analysis of precise hypocenter locations and statistical characteristics of the activity in order to find the origin of different behavior of seismic activity, which results in either earthquake swarms or mainshock-aftershock activity.

  3. The Vrancea seismic zone and its analogue in the Banda Arc, eastern Indonesia

    NASA Astrophysics Data System (ADS)

    Milsom, John

    2005-12-01

    It is now widely, although not universally, accepted that the Carpathian orogen marks the site of an arc-continent collision that followed the subduction of a now vanished small ocean basin. Seismic tomography has defined a high-velocity anomaly in the upper mantle similar to those associated with subduction zones worldwide. There is, however, no recognisable Wadati-Benioff Zone (WBZ), and intermediate-depth seismicity is confined to a relatively small, roughly cylindrical and vertically elongated region beneath the extreme southeastern corner of the mountain chain. There is no consensus in the published studies as to the origin of this 'Vrancea Zone'. The Banda Sea region of eastern Indonesia has sometimes been cited as an analogue for the Pannonian/Transylvanian basin and the enclosing Carpathian orocline, but at first sight the patterns of seismicity appear very different. Intermediate depth seismic activity defines a subducted slab that dips north, south and west beneath the Banda Sea, a configuration explained as a consequence of the rapid expansion of the sea during roll-back subduction. If the similar scenario proposed for the Carpathians is correct, then it is the absence of a Carpathian WBZ that is actually anomalous. Closer examination of Banda Arc seismicity shows that it can be divided into two parts, these being a scoop-shaped WBZ and an adjacent 'Damar Zone' of much more intense intermediate-depth activity. At its eastern end the Damar Zone merges with the WBZ, but in the west there is evidence for separation from it. A plausible explanation of this pattern is that a lower layer of the downgoing slab is peeling away from the remainder. The Banda/Australia collision is now almost complete and the activity in the WBZ proper can be expected to decrease. Damar Zone activity, on the other hand, may persist for a much longer period, migrating towards the foreland as the detaching layer separates from the remainder of the subducted lithosphere. In a few

  4. Seismic Signature of a Hydrous Mantle Transition Zone

    NASA Astrophysics Data System (ADS)

    Cobden, L. J.; Thio, V.; Trampert, J.

    2014-12-01

    The quantity and distribution of water inside the deep Earth has major consequences for tectonic and geodynamic processes, yet remains essentially unconstrained. Laboratory experiments on nominally anhydrous minerals (NAMs) of the mantle transition zone have indicated that these minerals in particular are capable of storing significant amounts of water. We pose the question of whether seismology can be used to distinguish a hydrous from an anhydrous transition zone. We perform an extensive literature search of the experimentally-determined elastic properties and phase equilibria of hydrous NAMs, and use thermodynamic modelling to predict the seismic properties (Vp, Vs and density) of these minerals at transition zone pressures and temperatures. We compare these models with their anhydrous counterparts, taking into account the (often large) uncertainties in the mineralogical data. We find that much experimental work remains to be done for completely defining the elastic parameters and phase equilibria of the hydrous minerals, and large uncertainties produce a wide range of possible seismic structures. This uncertainty makes it difficult to use metrics such as the depths of the 410 and 660 discontinuities for mapping transition zone water content. At the same time, average P and S wave velocities inside the transition zone are not helpful, since there is a near-perfect trade-off between changes in water content, changes in temperature and changes in iron content. Average velocity gradients, density and density gradients appear to be both sensitive to, and diagnostic of, the presence of water. However these parameters are difficult to resolve seismically. Potentially the impedance contrast at 410 may also be useful, depending on the partitioning of water between olivine and wadsleyite. From a seismological perspective, it would be most helpful for future experimental studies to focus on better constraining the phase boundaries in hydrous (Mg,Fe)2SiO4, since these

  5. CPT site characterization for seismic hazards in the New Madrid seismic zone

    USGS Publications Warehouse

    Liao, T.; Mayne, P.W.; Tuttle, M.P.; Schweig, E.S.; Van Arsdale, R.B.

    2002-01-01

    A series of cone penetration tests (CPTs) were conducted in the vicinity of the New Madrid seismic zone in central USA for quantifying seismic hazards, obtaining geotechnical soil properties, and conducting studies at liquefaction sites related to the 1811-1812 and prehistoric New Madrid earthquakes. The seismic piezocone provides four independent measurements for delineating the stratigraphy, liquefaction potential, and site amplification parameters. At the same location, two independent assessments of soil liquefaction susceptibility can be made using both the normalized tip resistance (qc1N) and shear wave velocity (Vs1). In lieu of traditional deterministic approaches, the CPT data can be processed using probability curves to assess the level and likelihood of future liquefaction occurrence. ?? 2002 Elsevier Science Ltd. All rights reserved.

  6. Neotectonic structure in the central new madrid seismic zone: Evidence from multimode seismic-reflection data

    USGS Publications Warehouse

    Woolery, E.W.; Street, R.L.; Wang, Z.; Harris, J.B.; McIntyre, J.

    1999-01-01

    Approximately 14.5 km of conventional P-wave and 2.2 km of horizontally polarized shear-wave seismic-reflection data acquired in the Kentucky Bend area of the central New Madrid Seismic Zone provide evidence of extensive neotectonic near-surface structure. The style and geometry of the deformation are consistent with documented historical geomorphic features, contemporary geomorphic features, and contemporary seismicity. The data image high-angle transpressional faults that strike between N30??W and N50??W. The fault planes exhibit apparent northeast and southwest dips. The opposing high-angle planes represent secondary splay or imbricate faults that responded to torsional bending of a lower-angle master fault.

  7. Landslides in the New Madrid seismic zone

    SciTech Connect

    Jibson, R.W.; Keefer, D.K.

    1985-01-01

    During the New Madrid earthquakes of 1811-12, bluffs bordering the Mississippi alluvial plain in the epicentral region underwent large-scale landsliding. Between Cairo, Illinois and Memphis, Tennessee, the authors mapped 221 large landslides of three types: (1) old, eroded, coherent block slides and slumps; (2) old earth flows; and (3) young, fresh slumps that occur only along near-river bluffs and are the only landslides present along such bluffs. Historical accounts and field evidence indicate that most or all old coherent slides and earth flows date to the 1811-12 earthquakes and that the only currently active, large-scale landsliding in the area occurs along bluffs bordering the river. Analysis of old coherent slides and earth flows indicates that landslide distribution is most strongly affected by slope height, but that proximity to the hypocenters of the 1811-12 earthquakes also has a significant effect. Slope-stability analyses of an old coherent slide and an earth flow selected as representative of the principal kinds of landslides present indicate that both were stable in aseismic conditions even when water tables were at highest possible levels. However, a dynamic Newmark displacement analysis shows that ground shaking such as that in 1811-12 would cause large displacements leading to catastrophic failure in both slides. These results indicate that in large earthquakes landsliding in much of the study are is likely. Moderate earthquakes may also trigger landslides at some locations.

  8. Fault zone regulation, seismic hazard, and social vulnerability in Los Angeles, California: Hazard or urban amenity?

    NASA Astrophysics Data System (ADS)

    Toké, Nathan A.; Boone, Christopher G.; Arrowsmith, J. Ramón

    2014-09-01

    Public perception and regulation of environmental hazards are important factors in the development and configuration of cities. Throughout California, probabilistic seismic hazard mapping and geologic investigations of active faults have spatially quantified earthquake hazard. In Los Angeles, these analyses have informed earthquake engineering, public awareness, the insurance industry, and the government regulation of developments near faults. Understanding the impact of natural hazards regulation on the social and built geography of cities is vital for informing future science and policy directions. We constructed a relative social vulnerability index classification for Los Angeles to examine the social condition within regions of significant seismic hazard, including areas regulated as Alquist-Priolo (AP) Act earthquake fault zones. Despite hazard disclosures, social vulnerability is lowest within AP regulatory zones and vulnerability increases with distance from them. Because the AP Act requires building setbacks from active faults, newer developments in these zones are bisected by parks. Parcel-level analysis demonstrates that homes adjacent to these fault zone parks are the most valuable in their neighborhoods. At a broad scale, a Landsat-based normalized difference vegetation index shows that greenness near AP zones is greater than the rest of the metropolitan area. In the parks-poor city of Los Angeles, fault zone regulation has contributed to the construction of park space within areas of earthquake hazard, thus transforming zones of natural hazard into amenities, attracting populations of relatively high social status, and demonstrating that the distribution of social vulnerability is sometimes more strongly tied to amenities than hazards.

  9. Formation of damage zone and seismic velocity variations during hydraulic stimulation: numerical modelling and field observations

    NASA Astrophysics Data System (ADS)

    Shalev, Eyal; Calò, Marco; Lyakhovsky, Vladimir

    2013-11-01

    During hydraulic stimulations, a complex interaction is observed between the injected flux and pressure, number and magnitude of induced seismic events, and changes in seismic velocities. In this paper, we model formation and propagation of damage zones and seismicity patterns induced by wellbore fluid injection. The model includes the coupling of poroelastic deformation and groundwater flow with damage evolution (weakening and healing) and its effect on the elastic and hydrologic parameters of crystalline rocks. Results show that three subsequent interactions occur during stimulation. (1) Injected flux-pressure interaction: typically, after a flux increase, the wellbore pressure also rises to satisfy the flux conditions. Thereafter, the elevated pore pressure triggers damage accumulation and seismic activity, that is, accompanied by permeability increase. As a result, wellbore pressure decreases retaining the target injected flux. (2) Wellbore pressure-seismicity interaction: damage processes create an elongated damage zone in the direction close to the main principal stress. The rocks within the damage zone go through partial healing and remain in a medium damage state. Damage that originates around the injection well propagates within the damage zone away from the well, raising the damage state of the already damaged rocks, and is followed by compaction and fast partial healing back to a medium damage state. This `damage wave' behaviour is associated with the injected flux changes only in early stages while fracture's height (h) is larger than its length (l). The ratio h/l controls the deformation process that is responsible for several key features of the damage zone. (3) Stress- and damage-induced variations of the seismic P-wave velocities (Vp). Vp gradually decreases as damage is accumulated and increases after rock failure as the shear stress is released and healing and compaction are dominant. Typically, Vp decreases within the damage zone and increases in

  10. Seismic Forecasting of Solar Activity

    NASA Technical Reports Server (NTRS)

    Braun, Douglas; Lindsey, Charles

    2001-01-01

    We have developed and improved helioseismic imaging techniques of the far-side of the Sun as part of a synoptic monitor of solar activity. In collaboration with the MIDI team at Stanford University we are routinely applying our analysis to images within 24 hours of their acquisition by SOHO. For the first time, real-time seismic maps of large active regions on the Sun's far surface are publicly available. The synoptic images show examples of active regions persisting for one or more solar rotations, as well as those initially detected forming on the solar far side. Until recently, imaging the far surface of the Sun has been essentially blind to active regions more than about 50 degrees from the antipode of disk center. In a paper recently accepted for publication, we have demonstrated how acoustic travel-time perturbations may be mapped over the entire hemisphere of the Sun facing away from the Earth, including the polar regions. In addition to offering significant improvements to ongoing space weather forecasting efforts, the procedure offers the possibility of local seismic monitoring of both the temporal and spatial variations in the acoustic properties of the Sun over the entire far surface.

  11. Subduction zone locking, strain partitioning, intraplate deformation and their implications to Seismic Hazards in South America

    NASA Astrophysics Data System (ADS)

    Galgana, G. A.; Mahdyiar, M.; Shen-Tu, B.; Pontbriand, C. W.; Klein, E.; Wang, F.; Shabestari, K.; Yang, W.

    2014-12-01

    We analyze active crustal deformation in South America (SA) using published GPS observations and historic seismicity along the Nazca Trench and the active Ecuador-Colombia-Venezuela Plate boundary Zone. GPS-constrained kinematisc models that incorporate block and continuum techniques are used to assess patterns of regional tectonic deformation and its implications to seismic potential. We determine interplate coupling distributions, fault slip-rates, and intraplate crustal strain rates in combination with historic earthquakes within 40 seismic zones crust to provide moment rate constraints. Along the Nazca subduction zone, we resolve a series of highly coupled patches, interpreted as high-friction producing "asperities" beneath the coasts of Ecuador, Peru and Chile. These include areas responsible for the 2010 Mw 8.8 Maule Earthquake and the 2014 Mw 8.2 Iquique Earthquake. Predicted tectonic block motions and fault slip rates reveal that the northern part of South America deforms rapidly, with crustal fault slip rates as much as ~20 mm/a. Fault slip and locking patterns reveal that the Oca Ancón-Pilar-Boconó fault system plays a key role in absorbing most of the complex eastward and southward convergence patterns in northeastern Colombia and Venezuela, while the near-parallel system of faults in eastern Colombia and Ecuador absorb part of the transpressional motion due to the ~55 mm/a Nazca-SA plate convergence. These kinematic models, in combination with historic seismicity rates, provide moment deficit rates that reveal regions with high seismic potential, such as coastal Ecuador, Bucaramanga, Arica and Antofagasta. We eventually use the combined information from moment rates and fault coupling patterns to further constrain stochastic seismic hazard models of the region by implementing realistic trench rupture scenarios (see Mahdyiar et al., this volume).

  12. A classification of morphoseismic features in the New Madrid seismic zone

    SciTech Connect

    Knox, R.; Stewart, D. . Dept. of Geosciences)

    1993-03-01

    The New Madrid Seismic Zone (NMSZ) contains thousands of surface features distributed over 5,000 square miles in four states. These are attributable to some combination of (1) seismically-induced liquefaction (SIL), (2) secondary deformation, and (3) seismically-induced slope failures. Most of these features were produced by the 1811--12 series of great earthquakes, but some predate and some postdate 1811--12. Subsequent non-seismic factors, such as hydrologically-induced liquefaction (HIL), mechanically-induced liquefaction (MIL), human activities, mass wasting, eolian and fluvial processes have modified all of these features. Morphoseismic features are new landforms produced by earthquakes, or are pre-existing landforms modified by them. Involved are complex interrelationships among several variables, including: (1) intensity and duration of seismic ground motion, (2) surface wave harmonics, (3) depth to water table, (4) depth to basement, (5) particle size, composition, and sorting of sediment making up the liquefied (LZ) and non-liquefied zones (NLZ), (6) topographic parameters, and (7) attitudes of beds and lenses susceptible to liquefaction. Morphoseismic features are depicted as results of a time-flow sequence initiated by primary basement disturbances which produce three major categories of surface response: secondary deformation, liquefaction and slope failure. Nine subcategories incorporate features produced by or resulting in: extruded sand, intruded sand, lateral spreading, faulting, subsidence of large areas, uplift of large areas, altered streams, coherent landslides, and incoherent landslides. The total morphoseismic features identified by this classification are 34 in number.

  13. Central Washington seismicity; Evidence for a reactivated buried continental rift and northwest-trending structural zones

    SciTech Connect

    Johnson, P.A. )

    1989-11-01

    Analysis of central Washington seismicity of the past two decades reveals some interesting features. Shallow seismicity and deep seismicity occur as different geographic distributions. Concentration of seismicity along north- to northwest-oriented trends appears to be related to a buried continental rift and possible associated fault zones. Hypothesized extensions of the Chiwaukum graben and Straight Creek fault systems are plausible structural controls on the seismicity.

  14. Seismic exploration noise reduction in the Marginal Ice Zone.

    PubMed

    Tollefsen, Dag; Sagen, Hanne

    2014-07-01

    A sonobuoy field was deployed in the Marginal Ice Zone of the Fram Strait in June 2011 to study the spatial variability of ambient noise. High noise levels observed at 10-200 Hz are attributed to distant (1400 km range) seismic exploration. The noise levels decreased with range into the ice cover; the reduction is fitted by a spreading loss model with a frequency-dependent attenuation factor less than for under-ice interior Arctic propagation. Numerical modeling predicts transmission loss of the same order as the observed noise level reduction and indicates a significant loss contribution from under-ice interaction. PMID:24993237

  15. Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone.

    PubMed

    Calvert, Andrew J

    2004-03-11

    At convergent continental margins, the relative motion between the subducting oceanic plate and the overriding continent is usually accommodated by movement along a single, thin interface known as a megathrust. Great thrust earthquakes occur on the shallow part of this interface where the two plates are locked together. Earthquakes of lower magnitude occur within the underlying oceanic plate, and have been linked to geochemical dehydration reactions caused by the plate's descent. Here I present deep seismic reflection data from the northern Cascadia subduction zone that show that the inter-plate boundary is up to 16 km thick and comprises two megathrust shear zones that bound a >5-km-thick, approximately 110-km-wide region of imbricated crustal rocks. Earthquakes within the subducting plate occur predominantly in two geographic bands where the dip of the plate is inferred to increase as it is forced around the edges of the imbricated inter-plate boundary zone. This implies that seismicity in the subducting slab is controlled primarily by deformation in the upper part of the plate. Slip on the shallower megathrust shear zone, which may occur by aseismic slow slip, will transport crustal rocks into the upper mantle above the subducting oceanic plate and may, in part, provide an explanation for the unusually low seismic wave speeds that are observed there.

  16. Detailed Seismic Velocity Structure of the Plate Boundary, Cascadia Subduction Zone, from Prestack Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Fortin, W.; Holbrook, W.; Tobin, H. J.; Keranen, K. M.; Everson, E.; Mallick, S.; Padhi, A.

    2013-12-01

    Understanding the geologic makeup of the Cascadia Subduction Zone (CSZ) has great importance for understanding seismic hazards in the coastal margin of the U.S. Pacific Northwest. The Cascadia margin is a potential earthquake and tsunami threat to the many millions who live in the area, yet details of its structure and mechanics remain poorly understood. In particular, the character of the subduction interface is elusive due to the CSZ's relatively aseismic behavior and low seismic reflectivity, making imaging difficult for passive and active source methods, respectively. In July 2012 seismic data were acquired as a part of the COAST project, spanning the important transition from the Cascadia basin, across the deformation front, and into the accretionary wedge. This modern data, coupled with sophisticated pre-stack full waveform seismic inversion methods, allows us to create highly detailed velocity models. While still computationally expensive, current computing clusters can perform these inversions with enough lateral density to yield highly detailed velocity information in both the vertical and horizontal. Here we present pre-stack full waveform inversions of a seismic line from the center of the COAST survey offshore Washington state as a cross section of the velocity structure of the CSZ. This detailed velocity model is a necessary initial step toward a detailed porosity cross section to be used to determine the role of fluids in the CSZ. Using these new data we investigate the lateral variability in reflectivity of the subducting plate boundary reflection in terms of its seismic velocity.

  17. Seismic characteristics of outer-rise earthquakes in the different seismic coupling subduction zones

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Hua; Lin, Jing-Yi

    2013-04-01

    Characterizing the seismogenic zone of major subduction plate boundaries provides us a possible to reduce large earthquakes hazard. In the past several decades, many scientists have analyzed various geophysical methods and datasets, such as seismic and geodetic ground motion data, historical tsunami deposits, aftershock distributions, and seafloor bathymetry, trying to understand the mechanisms behind great devastating earthquakes, and to estimate the probability of a major earthquake occurrence in the future. In this study, by using the global earthquake catalog (GCMT) from January 1, 1976 to December 31, 2011. We firstly re-examines the outer-rise earthquake model proposed by the Christensen (1988) at the subduction zones suggested to have different coupling levels. The compressive stress cumulated during the subducting processes are often reflected by the occurrence of compressional outer-rise earthquakes. Thus, in the region where the compressional outer-rise earthquakes take place without any corresponding large underthrusting earthquakes, the seismic potential is usually considered to be high. We re-examined the high seismic potential areas determined by this criteria in Christensen (1988) and confirm that the large underthrusting earthquakes did really occur in the 30 years following the appearance of compressional outer-rise events, such as in Tonga region in the vicinity of 20S, a Mw 8.3 large earthquake occurred in 2006. This result represents that the outer-rise earthquake model could be an indicator for the generation of large earthquakes along subduction zones. In addition, to have a more accurate estimation for the seismic potential, we discuss the relationship between the generation of earthquakes and the change of cumulative gravitational potential energy caused by earthquakes (ΔGPE) over time. Our result shows an acceleration of ΔGPE before large earthquakes. Our result also shows that the extensional outer-rise events for strong seismic coupling

  18. Seismic velocity structure in the western part of Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Obana, K.; Takahashi, T.; Nakanishi, A.; Kodaira, S.; Kaneda, Y.

    2011-12-01

    In the Nankai Trough, three major seismogenic zones of megathrust earthquake exist (Tokai, Tonankai and Nankai earthquake regions). The Hyuga-nada region was distinguished from these seismogenic zones because of the lack of megathrust earthquake. However, recent studies show the possibility of simultaneous rupture of the Nankai and Hyuga-nada segments was also pointed out [e.g., Furumura et al, 2010 JGR]. Because seismic velocity structure is one of the useful and basic information for understanding the possibility of seismic linkage of Nankai and Hyuga-nada segments, Japan Agency for Marine-Earth Science and Technology has been carried out a series of wide-angle active source surveys and local seismic observations among the three major seismogenic zones and Hyuga-nada segment from 2008, as a part of "Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan". We are performing two set of three-dimensional seismic velocity tomographic inversions, one is in the Hyuga-nada region and the other is western part of the coseismic rupture area of 1946 Nankai earthquake, to discuss the relationship between the structural heterogeneities and the location of segment boundary between Hyuga-nada and Nankai segment. For the analysis of Hyuga-nada segment, we used both active and passive source data. The obtained velocity model clearly showed the subducted Kyushu-Palau ridge as thick low velocity Philippine Sea slab in the southwestern part. Our velocity image also indicates that "the thin oceanic crust zone" located between Nankai segment and Kyushu-Palau Ridge segment, founded by Nakanishi et al [2010, AGU] by analyzing of the active source survey, continuously exists from trough axis to near the coastline of Kyushu Island. The overriding plate just above the coseismic slip area of 1968 Hyuga-nada earthquake shows relatively high velocity. Although the tomographic study in

  19. Slow deformation and lower seismic hazard at the new madrid seismic zone

    PubMed

    Newman; Stein; Weber; Engeln; Mao; Dixon

    1999-04-23

    Global Positioning System (GPS) measurements across the New Madrid seismic zone (NMSZ) in the central United States show little, if any, motion. These data are consistent with platewide continuous GPS data away from the NMSZ, which show no motion within uncertainties. Both these data and the frequency-magnitude relation for seismicity imply that had the largest shocks in the series of earthquakes that occurred in 1811 and 1812 been magnitude 8, their recurrence interval should well exceed 2500 years, longer than has been assumed. Alternatively, the largest 1811 and 1812 earthquakes and those in the paleoseismic record may have been much smaller than typically assumed. Hence, the hazard posed by great earthquakes in the NMSZ appears to be overestimated. PMID:10213680

  20. Damage, permeability and sealing processes of an exhumed seismic fault zone; The Gole Larghe Fault Zone, Italian Alps

    NASA Astrophysics Data System (ADS)

    Mitchell, Thomas; Rempe, Marieke; Smith, Steven; Renner, Joerg; Di Toro, Giulio

    2013-04-01

    (~10-21m2). Here the fault-fracture networks were associated with pervasive fluid-rock interaction, defining a c. 200 m wide alteration zone bounded by fluid infiltration fronts with irregular geometry. Fracture density is lower in the damage zones, and partial healing results in higher sample permeabilities (~10-18m2). Laboratory P-wave velocities correlate well with both the architecture and sealing characteristics of the fault zone. P-wave velocities are uniformly high (up to 6km/s) both within and immediately surrounding the central zone, consistent with pervasive sealing of fractures and low sample permeability. In the damage zones P-wave velocities are much lower (3-4km/s) due to the presence of open fractures. Our field and laboratory measurements highlight the close interplay between fracturing, fluid flow, mineralization, and the strength of large fault zones. Importantly, they demonstrate that seismic wave velocities and permeability depend on both fracture density and the degree of fracture sealing, which has implications for the interpretation of active fault zone structure based on geophysical data.

  1. Seismicity and crustal structure in the Orozco Fracture Zone: Project Rose Phase II

    NASA Astrophysics Data System (ADS)

    Ouchi, Toru; Ibrahim, Abou-Bakr K.; Latham, Gary V.

    1982-10-01

    A total of 301 earthquakes were recorded in the vicinity of the Orozco fracture zone by seven Texas ocean bottom seismograph stations during the 2-week period of the Rivera Ocean Seismic Experiment (ROSE) (phase II). Using data from the entire ROSE array, hypocenters of 50 earthquakes were determined. These revealed two distinct zones of seismic activity within the fracture zone. In addition to these earthquake families, many very small events were detected by a station located very close to the spreading center of the East Pacific Rise. The magnitudes of these earthquakes, defined by their duration times, were so small that most of them were recorded only at this station (station 14) in continual or swarmlike occurrences. The slope of the frequency-magnitude distribution of these events is significantly larger than those of other earthquake groups detected during the experiment, i.e., they appear to have an unusually high b value. These results suggest that this new population of earthquakes may be associated with volcanic activity or stress release within highly fractured crustal material. Refraction studies in the fracture zone reveal the presence of a rather high-velocity crustal layer (6.9-7.0 km/s) beneath the experiment zone. The Moho velocity and the crustal thickness are estimated at 7.8 km/s and 6.2 km, respectively.

  2. Seismic reflection images of shallow faulting, northernmost Mississippi embayment, north of the New Madrid seismic zone

    USGS Publications Warehouse

    McBride, J.H.; Nelson, W.J.

    2001-01-01

    High-resolution seismic reflection surveys document tectonic faults that displace Pleistocene and older strata just beyond the northeast termination of the New Madrid seismic zone, at the northernmost extent of the Mississippi embayment. These faults, which are part of the Fluorspar Area fault complex in southeastern Illinois, are directly in line with the northeast-trending seismic zone. The reflection data were acquired using an elastic weight-drop source recorded to 500 msec by a 48-geophone array (24-fold) with a 10-ft (??3.0m) station interval. Recognizable reflections were recorded to about 200 msec (100-150 m). The effects of multiple reflections, numerous diffractions, low apparent velocity (i.e., steeply dipping) noise, and the relatively low-frequency content of the recorded signal provided challenges for data processing and interpreting subtle fault offsets. Data processing steps that were critical to the detection of faults included residual statics, post-stack migration, deconvolution, and noise-reduction filtering. Seismic migration was crucial for detecting and mitigating complex fault-related diffraction patterns, which produced an apparent 'folding' of reflectors on unmigrated sections. Detected individual offsets of shallow reflectors range from 5 to 10 m for the top of Paleozoic bedrock and younger strata. The migrated sections generally indicate vertical to steeply dipping normal and reverse faults, which in places outline small horsts and/or grabens. Tilting or folding of stratal reflectors associated with faulting is also locally observed. At one site, the observed faulting is superimposed over a prominent antiformal structure, which may itself be a product of the Quaternary deformation that produced the steep normal and reverse faults. Our results suggest that faulting of the Paleozoic bedrock and younger sediments of the northern Mississippi embayment is more pervasive and less localized than previously thought.

  3. Waveform cross-correlation and relocations for seismic events in the San Jacinto Fault Zone

    NASA Astrophysics Data System (ADS)

    Galipchak, E.; Kurzon, I.; Vernon, F.; Pavlis, G. L.; Ben-Zion, Y.

    2012-12-01

    We introduce a new approach for the relocation of local seismic events using waveform cross-correlation and automatic detection algorithm. This approach is developed and implemented for the San Jacinto Fault Zone (SJFZ), where recent cross-correlation and double-difference relocation methods (e.g., Hauksson et al. 2011) account up to ~75% of the seismic events, due to the complex nature of the SJFZ. The fault zone complexity features include a mismatch between the fault traces and seismicity clusters and strong heterogeneity of focal mechanisms. Our goal is to develop an efficient relocation method in which ~90% of the seismic events would be considered. The 'dbxcor' tool of the Antelope software package (e.g., Pavlis & Vernon 2010) is a graphic cross-correlation method involving an active reviewing of the cross-correlation process by a seismic analyst. The method is adjusted here for the analysis of local events from the original algorithm developed mainly for the processing of teleseismic events. The advantage of this approach is that the analyst may keep many of the waveforms that would have been dropped out due to the cross-correlation threshold, thereby increasing the percentage of events considered in the process. Moreover, the method allows an interactive demonstration and identification of different nearby source mechanisms, thus helping to examine the heterogeneity of the fault zone. A pre-request of the cross-correlation algorithm is the existence of arrivals for each waveform in the process. This required tuning a set of efficient automated detectors for grasping the specific nature of seismicity in the SJFZ. Applying such detectors we manage to increase the catalogue by up to 40% of additional events not reviewed previously by analysts. This improvement allows incorporating not only more events into the relocation process, but also additional stations, which were missed by previous automatic or manual picking of P and S arrivals. The relocated events

  4. Shallow seismicity patterns in the northwestern section of the Mexico Subduction Zone

    NASA Astrophysics Data System (ADS)

    Abbott, Elizabeth R.; Brudzinski, Michael R.

    2015-11-01

    This study characterizes subduction related seismicity with local deployments along the northwestern section of the Mexico Subduction Zone where 4 portions of the plate interface have ruptured in 1973, 1985, 1995, and 2003. It has been proposed that the subducted boundary between the Cocos and Rivera plates occurs beneath this region, as indicated by inland volcanic activity, a gap in tectonic tremor, and the Manzanillo Trough and Colima Graben, which are depressions thought to be associated with the splitting of the two plates after subduction. Data from 50 broadband stations that comprised the MARS seismic array, deployed from January 2006 to June 2007, were processed with the software program Antelope and its generalized source location algorithm, genloc, to detect and locate earthquakes within the network. Slab surface depth contours from the resulting catalog indicate a change in subduction trajectory between the Rivera and Cocos plates. The earthquake locations are spatially anti-correlated with tectonic tremor, supporting the idea that they represent different types of fault slip. Hypocentral patterns also reveal areas of more intense seismic activity (clusters) that appear to be associated with the 2003 and 1973 megathrust rupture regions. Seismicity concentrated inland of the 2003 rupture is consistent with slip on a shallowly dipping trajectory for the Rivera plate interface as opposed to crustal faulting in the overriding North American plate. A prominent cluster of seismicity within the suspected 1973 rupture zone appears to be a commonly active portion of the megathrust as it has been active during three previous deployments. We support these interpretations by determining focal mechanisms and detailed relocations of the largest events within the 1973 and inland 2003 clusters, which indicate primarily thrust mechanisms near the plate interface.

  5. Probing the Detailed Seismic Velocity Structure of Subduction Zones Using Advanced Seismic Tomography Methods

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.

    2005-12-01

    Subduction zones are one of the most important components of the Earth's plate tectonic system. Knowing the detailed seismic velocity structure within and around subducting slabs is vital to understand the constitution of the slab, the cause of intermediate depth earthquakes inside the slab, the fluid distribution and recycling, and tremor occurrence [Hacker et al., 2001; Obara, 2002].Thanks to the ability of double-difference tomography [Zhang and Thurber, 2003] to resolve the fine-scale structure near the source region and the favorable seismicity distribution inside many subducting slabs, it is now possible to characterize the fine details of the velocity structure and earthquake locations inside the slab, as shown in the study of the Japan subduction zone [Zhang et al., 2004]. We further develop the double-difference tomography method in two aspects: the first improvement is to use an adaptive inversion mesh rather than a regular inversion grid and the second improvement is to determine a reliable Vp/Vs structure using various strategies rather than directly from Vp and Vs [see our abstract ``Strategies to solve for a better Vp/Vs model using P and S arrival time'' at Session T29]. The adaptive mesh seismic tomography method is based on tetrahedral diagrams and can automatically adjust the inversion mesh according to the ray distribution so that the inversion mesh nodes are denser where there are more rays and vice versa [Zhang and Thurber, 2005]. As a result, the number of inversion mesh nodes is greatly reduced compared to a regular inversion grid with comparable spatial resolution, and the tomographic system is more stable and better conditioned. This improvement is quite valuable for characterizing the fine structure of the subduction zone considering the highly uneven distribution of earthquakes within and around the subducting slab. The second improvement, to determine a reliable Vp/Vs model, lies in jointly inverting Vp, Vs, and Vp/Vs using P, S, and S

  6. Stress development in heterogenetic lithosphere: Insights into earthquake processes in the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Zhan, Yan; Hou, Guiting; Kusky, Timothy; Gregg, Patricia M.

    2016-03-01

    The New Madrid Seismic Zone (NMSZ) in the Midwestern United States was the site of several major M 6.8-8 earthquakes in 1811-1812, and remains seismically active. Although this region has been investigated extensively, the ultimate controls on earthquake initiation and the duration of the seismicity remain unclear. In this study, we develop a finite element model for the Central United States to conduct a series of numerical experiments with the goal of determining the impact of heterogeneity in the upper crust, the lower crust, and the mantle on earthquake nucleation and rupture processes. Regional seismic tomography data (CITE) are utilized to infer the viscosity structure of the lithosphere which provide an important input to the numerical models. Results indicate that when differential stresses build in the Central United States, the stresses accumulating beneath the Reelfoot Rift in the NMSZ are highly concentrated, whereas the stresses below the geologically similar Midcontinent Rift System are comparatively low. The numerical observations coincide with the observed distribution of seismicity throughout the region. By comparing the numerical results with three reference models, we argue that an extensive mantle low velocity zone beneath the NMSZ produces differential stress localization in the layers above. Furthermore, the relatively strong crust in this region, exhibited by high seismic velocities, enables the elevated stress to extend to the base of the ancient rift system, reactivating fossil rifting faults and therefore triggering earthquakes. These results show that, if boundary displacements are significant, the NMSZ is able to localize tectonic stresses, which may be released when faults close to failure are triggered by external processes such as melting of the Laurentide ice sheet or rapid river incision.

  7. Multiscale Finite-frequency Seismic Imaging of the Southern Alaska Subduction Zone

    NASA Astrophysics Data System (ADS)

    Song, X.; Hung, S. H.; Tong, P.; Liu, Q.

    2015-12-01

    Southern Alaska is one of the most seismically active regions in north America as the Pacific plate subducts northward beneath North America plate along the Aleutian trench. In this study, we determine 3-D variations of P- and S-wave speed and Possion's ratio (Vp/Vs) perturbations of the southern Alaska subduction zone based on broadband tele-seismic data recorded by 198 seismic stations for about 2000 events with magnitudes greater than 5.5 during the period from June 2000 to December 2014. Relative arrival times of P and S phases bwtween stations are accurately measured by adapting the efficient multi-channel cross-correlation (MCCC) technique. The obtained arrival-time data are then used to tomographically image the Vp and Vs structures beneath the stations based on 3-D finite-frequency sensitivity kernels and a wavelet-based multi-scale model parameterization. Our results show strong positive velocity anomalies in the crust and upper mantle starting at a depth of about 50km and extending to northwestward down to a depth of 200 km and covering about 350 km in horizontal distance. The high velocity feature interpreted as a cold slab has a thickness of about 50km and a subducting angle of about 45o, consistent with some previous studies of southern Alaska. We also plan to further obtain high-resolution seismic imaging of southern Alaska subduction zone by utilizing the converted and coda waves of tele-seismic main phases (e.g., P and S) based on a hybrid tomographic technique combining spectral-element method (SEM) and frequency-wavenumber (FK) method. The 3D Vp and Vs models obtained from finite-frequency traveltime tomography thus can serve as a proper starting velocity model for the hybrid SEM-FK imaging to further reveal high-resolution details of the subduction zone.

  8. Late Pleistocene and Holocene paleoseismology of an intraplate seismic zone in a large alluvial valley, the New Madrid seismic zone, Central USA

    NASA Astrophysics Data System (ADS)

    Guccione, Margaret J.

    2005-10-01

    . Seven fault segments are recognized by microseismicity and geomorphology. Surface faulting has been recognized at three of these segments, Reelfoot fault, New Madrid North fault, and Bootheel fault. The Reelfoot fault is a compressive stepover along the strike-slip fault and has up to 11 m of surface relief ([Carlson, S.D., 2000. Formation and geomorphic history of Reelfoot Lake: insight into the New Madrid seismic zone. M.S. Thesis, University of Arkansas, Fayetteville, Arkansas, U.S.A]) deforming abandoned and active Mississippi River channels ([Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43 (2002), 313 349]). The New Madrid North fault apparently has only strike-slip motion and is recognized by modern microseismicity, geomorphic anomalies, and sand cataclasis ([Baldwin, J.N., Barron A.D., Kelson, K.I., Harris, J.B., Cashman, S., 2002. Preliminary paleoseismic and geophysical investigation of the North Farrenburg lineament: primary tectonic deformation associated with the New Madrid North Fault?. Seismological Research Letters 73, 393 413]). The Bootheel fault, which is not identified by the modern microseismicity, is associated with extensive liquefaction and offset channels ([Guccione, M.J., Marple, R., Autin, W.J., 2005, Evidence for Holocene displacements on the Bootheel fault (lineament) in southeastern Missouri: Seismotectonic implications for the New Madrid region. Geological Society of America Bulletin 117, 319 333]). The fault has dominantly strike-slip motion but also has a vertical component of slip. Other recognized surface deformation includes relatively low-relief folding at Big Lake/Manila high ([Guccione, M.J., VanArdale, R.B., Hehr, L.H., 2000. Origin and age of the Manila high and associated Big Lake “Sunklands”, New Madrid seismic zone, northeastern Arkansas. Geological Society of America Bulletin 112, 579 590

  9. Fault zone structure and seismic reflection characteristics in zones of slow slip and tsunami earthquakes

    NASA Astrophysics Data System (ADS)

    Bell, Rebecca; Henrys, Stuart; Sutherland, Rupert; Barker, Daniel; Wallace, Laura; Holden, Caroline; Power, William; Wang, Xiaoming; Morgan, Joanna; Warner, Michael; Downes, Gaye

    2015-04-01

    Over the last couple of decades we have learned that a whole spectrum of different fault slip behaviour takes place on subduction megathrust faults from stick-slip earthquakes to slow slip and stable sliding. Geophysical data, including seismic reflection data, can be used to characterise margins and fault zones that undergo different modes of slip. In this presentation we will focus on the Hikurangi margin, New Zealand, which exhibits marked along-strike changes in seismic behaviour and margin characteristics. Campaign and continuous GPS measurements reveal deep interseismic coupling and deep slow slip events (~30-60 km) at the southern Hikurangi margin. The northern margin, in contrast, experiences aseismic slip and shallow (<10-15 km) slow slip events (SSE) every 18-24 months with equivalent moment magnitudes of Mw 6.5-6.8. Updip of the SSE region two unusual megathrust earthquakes occurred in March and May 1947 with characteristics typical of tsunami earthquakes. The Hikurangi margin is therefore an excellent natural laboratory to study differential fault slip behaviour. Using 2D seismic reflection, magnetic anomaly and geodetic data we observe in the source areas of the 1947 tsunami earthquakes i) low amplitude interface reflectivity, ii) shallower interface relief, iii) bathymetric ridges, iv) magnetic anomaly highs and in the case of the March 1947 earthquake v) stronger geodetic coupling. We suggest that this is due to the subduction of seamounts, similar in dimensions to seamounts observed on the incoming Pacific plate, to depths of <10 km. We propose a source model for the 1947 tsunami earthquakes based on geophysical data and find that extremely low rupture velocities (c. 300 m/s) are required to model the observed large tsunami run-up heights (Bell et al. 2014, EPSL). Our study suggests that subducted topography can cause the nucleation of moderate earthquakes with complex, low velocity rupture scenarios that enhance tsunami waves, and the role of

  10. Seismicity and Fault Zone Structure Near the Xinfengjiang Water Reservoir, Guangdong, China

    NASA Astrophysics Data System (ADS)

    Yang, H.; Sun, X.; He, L.; Wang, S.

    2015-12-01

    Xingfengjiang Water Reservoir (XWR) was built in 1958 and the first impoundment was conducted in 1959. Immediately following the reservoir impoundment, a series of earthquakes occurred in the vicinity of the XWR, including the 1962 M6.1 earthquake that occurred ~1 km next to the dam. Numerous small earthquakes take place in this region presently, making it one of the most active seismic zones in Guangdong. To investigate the present seismicity and associated fault zone structure, we deployed a temporary seismic network, including a dense linear array across the Ren-Zi-Shi fault southwest to the reservoir. The temporary network is consisted of 42 stations that are operated in the field for more than one month. Because of the mountainous terrain, it is impossible to deploy broadband sensors. Here we use DDV-5 seismometer with a central frequency of 120Hz-5s that is independent on external GPS and battery. During our deployment, numerous earthquakes were recorded. Preliminary results of travel time analysis have shown the characteristic of low velocity fault zone. More detailed analysis, including relocation of earthquakes, ambient noise cross correlation, and modeling body waves, will be presented.

  11. Gravity anomalies, forearc morphology and seismicity in subduction zones

    NASA Astrophysics Data System (ADS)

    Bassett, D.; Watts, A. B.; Das, S.

    2012-12-01

    We apply spectral averaging techniques to isolate and remove the long-wavelength large-amplitude trench-normal topographic and free-air gravity anomaly "high" and "low" associated with subduction zones. The residual grids generated illuminate the short-wavelength structure of the forearc. Systematic analysis of all subduction boundaries on Earth has enabled a classification of these grids with particular emphasis placed on topography and gravity anomalies observed in the region above the shallow seismogenic portion of the plate interface. The isostatic compensation of these anomalies is investigated using 3D calculations of the gravitational admittance and coherence. In the shallow region of the megathrust, typically within 100 km from the trench, isolated residual anomalies with amplitudes of up to 2.5 km and 125 mGal are generally interpreted as accreted/subducting relief in the form of seamounts and other bathymetric features. While most of these anomalies, which have radii < 50km, are correlated with areas of reduced seismicity, several in regions such as Japan and Java appear to have influenced the nucleation and/or propagation of large magnitude earthquakes. Long-wavelength (500 - >1000 km) trench-parallel forearc ridges with residual anomalies of up to 1.5 km and 150 mGal are identified in approximately one-third of the subduction zones analyzed. Despite great length along strike, these ridges are less than 100 km wide and several appear uncompensated. A high proportion of arc-normal structure and the truncation/morphological transition of trench-parallel forearc ridges is explained through the identification and tracking of pre-existing structure on the over-riding and subducting plates into the seismogenic portion of the plate boundary. Spatial correlations between regions with well-defined trench-parallel forearc ridges and the occurrence of large magnitude interplate earthquakes, in addition to the uncompensated state of these ridges, suggest links

  12. Influence of the continental margin on the stress field and seismicity in the intraplate Acaraú Seismic Zone, NE Brazil

    NASA Astrophysics Data System (ADS)

    Oliveira, Paulo H. S.; Ferreira, Joaquim M.; Bezerra, Francisco H. R.; Assumpção, Marcelo; do Nascimento, Aderson F.; Sousa, Maria O. L.; Menezes, Eduardo A. S.

    2015-09-01

    The Borborema province in NE Brazil is characterized by seismic sequences with small earthquakes that can last 10 yr or more. The seismicity in this region is concentrated in three main seismic zones. In this work, we investigate the stress field in one of these zones, the Acaraú Seismic Zone, which is located in the NW part of the Borborema province. This seismic zone exhibits earthquake sequences that contain repeated earthquakes with similar waveforms and a shallow depth. Using a local network, we investigated a seismic sequence close to the town of Santana do Acaraú from December 2009 to December 2010, and we present detailed results (velocity model, hypocentres and focal mechanism) from this network. In addition, we inverted seven focal mechanisms, including six that were used in previous studies, and determined the directions of the three main axes of the regional stress field. Selecting a very precise set of 12 earthquakes, we found an active seismic zone with a depth between 3.5 and 4.8 km and with a horizontal dimension of approximately 2.5 km in the NW-SE direction (azimuth of 118°) and a strike-slip focal mechanism. The new seismic fault and some of the previous seismic faults determined in previous studies occur near the continental-scale Transbrasiliano lineament, but they exhibit no direct relationship with that ancient structure. The stress field is characterized by NW-SE trending compression and NE-SW trending extension. This result suggests that the rheological contrast between the continental-oceanic crusts created flexural stresses with maximum horizontal compression parallel to the continental margin. This stress pattern occurs along the Potiguar basin and continues west as far as the Amazon fan along the Equatorial margin of Brazil. This stress field and related seismicity may be a characteristic of this type of passive margin that is generated during the transform shearing between the South America and Africa plates and that exhibits an

  13. Observations of intraplate deformation in continental interiors: examples from the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Craig, Tim; Calais, Eric

    2014-05-01

    The relationship between intraplate seismicity and the accumulation and distribution of intraplate strain remain a controversial topic. Strain-rates are typically very low, and often below that observable using routine geodetic techniques, despite numerous intraplate regions evidencing the capacity to produce large magnitude earthquakes. One of the best-known examples of major intraplate earthquakes are the M7-7.5 New Madrid events of 1811-1812 (Central-Eastern United States), and their associated aftershock sequence, which continues to this day - occurring in a region with little geomorphic expression of active tectonics, and little measurable strain accumulation observable so far on the timescales of modern geodesy. Here we present the results of a study into the factors influencing earthquake occurrence in the New Madrid Seismic Zone, one of the most seismically active regions of intraplate North America. We present updated geodetic observations of the New Madrid region, along with the surrounding areas, resulting from over 13 years of continuous GPS observations. The relationship between both long-term secular and short-term periodic signals in the geodetic data and the observed seismic activity of the region leads to an enhanced understanding of the factors modulating the timing and occurrence of intraplate earthquakes in this region.

  14. Making Waves: Seismic Waves Activities and Demonstrations

    NASA Astrophysics Data System (ADS)

    Braile, S. J.; Braile, L. W.

    2011-12-01

    The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.

  15. Geophysical setting of the Reelfoot Rift and relations between rift structures and the New Madrid seismic zone

    USGS Publications Warehouse

    Hildenbrand, T.G.; Hendricks, J.D.

    1995-01-01

    In the winter of 1811-12, three of the largest historic earthquakes in the United States occurred near New Madrid, Missouri. Seismicity continues to the present day throughout a tightly clustered pattern of epicenters centered on the bootheel of Missouri, including parts of northeastern Arkansas, northwestern Tennessee, western Kentucky, and southern Illinois. In 1990, the New Madrid seismic zone/Central United States became the first seismically active region east of the Rocky Mountains to be designated a priority research area within the National Earthquake Hazards Reduction Program (NEHRP). This Professional Paper is a collection of papers, some published separately, presenting results of the newly intensified research program in this area. Major components of this research program include tectonic framework studies, seismicity and deformation monitoring and modeling, improved seismic hazard and risk assessments, and cooperative hazard mitigation studies.

  16. Aftershock Seismicity of the 27 February 2010 Mw 8.8 Maule Earthquake Rupture Zone

    NASA Astrophysics Data System (ADS)

    Lange, D.; Tilmann, F. J.; Barrientos, S. E.; Bataille, K.; Beck, S. L.; Bernard, P.; Campos, J. A.; Comte, D.; Haberland, C. A.; Heit, B.; Methe, P.; Peyrat, S.; Rietbrock, A.; Roecker, S.; Schurr, B.; Vilotte, J.

    2010-12-01

    On 27 February 2010 the Mw 8.8 Maule earthquake in Central Chile ruptured a well known seismic gap, which last broke in 1835. Shortly after the mainshock Chilean agencies (UC Santiago, UC Concepción) and the international seismological community (USA (IRIS), France (IPGP), UK (University of Liverpool), Germany (GFZ)) installed a total of 142 portable seismic stations along the whole rupture zone in order to capture the aftershock activity. Here, we present the aftershock distribution based on automatic detection algorithms and picking engines (MPX; STA/LTA) which will be calibrated with a subset of manually picked events. Initial processing of 70 days of continuous data (20 March until 29 May 2010) from IRIS and GFZ stations resulted in the detection of well over 30,000 events. Of these, we consider a higher quality subset of 12,824 hypocentres based on more than 12 automatically picked P arrivals. Because picking errors can be large for the smaller arrivals, the depths of located events are not always reliable, particularly far from the coast. Nevertheless, a few first order features can be identified: 1.) A pronounced cluster of seismicity is apparent at 25-35 km depth and 50-120 km perpendicular distance from the trench (with some NS variation). 2.) A secondary band of seismicity can be identified at 40-50 km depth and ~150-160 km perpendicular trench distance and between 34° and 37°S. Although the secondary band lies along the continuation of the primary one, it is clearly separated from it by a gap with sparse seismicity. It is not yet possible to state whether these events occurred on the plate interface or in the downgoing plate. 3.) Intense crustal seismicity is found in the region of Pichilemu. This region hosted the strongest aftershock (Mw=6.9), a normal faulting event with NW strike. The aftershocks extend from the plate interface to the surface and are aligned on a NNW-SSE oriented band in map view. 4.) An isolated shallow cluster of crustal

  17. Seismogenic structures in the central Virginia seismic zone

    SciTech Connect

    Coruh, C.; Bollinger, G.A.; Costain, J.K.

    1988-08-01

    A correlation between earthquake hypocenters and seismic reflection data in central Virginia has become apparent on an automatic line drawing (ALD) display of seismic reflection data. With the reprocessed Virginia I-64 reflection Vibroseis data extended to 14 s, reflectors are imaged from the lower crust as well as from the upper crust. Specifically, the improved resolution and data quality of ALDs have produced an image of an antiformal structure bounded by mid-crustal reflections on the bottom and by major thrusts at the top. The reflections that define the roof of the antiform are most prominent from about 6 s (18 km) on the east near Richmond under the Coastal Plain sediments, to 1-1.3 s (3-4 km) between Richmond and Charlottesville, and to 3.5 s (10.5 km) on the west. Seismic signatures that can be followed downward from the surface between Charlottesville and Richmond appear to be truncated at the roof of the antiform. The dominant reflections that define the roof correlate with the seismic signature of the transported Taconic suture on the west flank and mylonites on the east flank. The distribution of hypocenters in the area shows an excellent correlation with the westward-dipping reflections that form the roof of the antiform on its western flank. Earthquake activity in this locale may be related to reactivation of the thrusts defining the roof and/or faults above the antiformal structure; however, distribution of the easternmost and deepest set of hypocenters appears to be related to an extensive near-vertical diabase dike swarm of Mesozoic age.

  18. Seismicity gaps and the shape of the seismic zone in the Banda Sea region from relocated hypocenters

    NASA Astrophysics Data System (ADS)

    Das, S.

    2004-12-01

    We relocate hypocenters for more than 800 earthquakes deeper than 50 km with mb ≳ 5.0, along the Banda arc, using several thousand handpicked direct, depth, and core-reflected phases, in addition to phases reported by the International Seismological Centre. The seismicity distribution is found to be very nonuniform both along the arc and in depth. Gaps in the relocated hypocenters exist along depth in most places of the arc, with the upper edge of the gaps varying from 100 to 450 km depth and the lower edge varying from 350 to 670 km in different portions of the arc. The seismic zone between 129 and 131°E in the 100-200 km depth range is the widest along the arc both in strike and downdip. This region, near the highest arc curvature, has the highest seismic activity and is the only part of the arc with earthquakes continuously occurring from the surface down to below 600 km. The very deep earthquakes under Sulawesi are shown to be part of the west-southwest dipping Seram slab. In the westernmost part of the Banda arc the slab is under downdip tension in the 50-250 km depth range, while the deepest portion of the slab in this region is under compression. From 128 to 131°E the slab between 100 and 200 km depth is under mainly horizontal compression. Our study supports the "two-slab" model for the Banda arc. The depth of the Wadati-Benioff zone below the volcanoes is ˜60-100 km for the five volcanoes between 128 and 130°E and ˜150 km for the 23 volcanoes between 118 and 124°E.

  19. Seismic Characterization of the Transition from Continental to Oceanic Subduction along the western Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Pearce, F. D.; Rondenay, S.; Zhang, H.; Sachpazi, M.; Charalampakis, M.; Royden, L.

    2010-12-01

    The Hellenic subduction zone is located in the east-central Mediterranean region and exhibits large variations in convergence rate along its western edge. Differences in the lithosphere entering the subduction zone are believed to drive the different rates of convergence. While seismic reflection data has shown a transition from continental to oceanic lithosphere along the foreland, no detailed images of the mantle-wedge structure have been available to test this hypothesis. Here, we use high-resolution seismic images across northern and southern Greece to investigate differences in the subducted crust along the western Hellenic subduction zone. We deployed 40 broadband seismometers from the IRIS PASSCAL pool across Greece in a northern line (NL, across Northern Greece) and southern line (SL, across Peloponnesus, Attica, and Evia), each roughly perpendicular to the trench axis. We recorded over 50 high-quality teleseismic events with good azimuthal coverage from each line. We processed them using a 2D teleseismic migration algorithm based on the Generalized Radon Transform and a 3D receiver function algorithm that includes dipping interfaces. In addition, we constructed a 3D velocity model by applying double-difference tomography to ~5000 local earthquakes. The 3D velocity model was used to construct an optimal background model for the teleseismic imaging. Migration and RF images reveal N60E dipping low-velocity layers beneath both NL and SL. From high-resolution migration images, we interpret an ~8 km thick low-velocity layer beneath SL as subducted oceanic crust and a ~20 km thick low-velocity layer beneath NL as subducted continental crust. Relocated earthquakes show that the NL subducted crust is seismically active near the foreland down to 50 km depth presumably as a result of slab flexure. Beyond this region, the subducted crust is aseismic until its signal disappears at ~70 km depth. In contrast, the SL subducted crust is marked by seismicity that extends

  20. The Nature of Co-seismic Rupture Zone of the 2010 Mentawai Tsunami Earthquake from Full Waveform Inversion of Long Offset Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Huot, G.

    2015-12-01

    The Sumatra subduction zone is one of the most seismically active zone on Earth. In the last one decade alone, it has hosted three Mw>8.4 great earthquakes (2004, 2005, 2007) along with 2010 tsunami earthquake. Although the 2007 Mentawai earthquake had Mw=8.4, it did not produce tsunami whereas the 2010 earthquake had Mw=7.8 only in the same region, it produced a large tsunami with a run up height of up to 8 m on Pagai Island, taking 800 lives. Therefore, understanding why an earthquake produce tsunami is fundamental for risk assessment as well for subduction zone processes. Prior to the 2010 earthquake we had acquired ultra-long offsets seismic reflection data in 2009 in the co-seismic slip zone using a 15 km long streamer, the longest streamer ever used, and found that the earth ruptured the frontal section of the subduction zone, which is normally believed to be aseismic, and possibly produced the tsunami. In order to quantify the nature of the co-seismic rupture zone and its link with the tsunami generation, we performed full waveform inversion of seismic reflection data. In order to obtain the high-resolution velocity model for the full waveform inversion, we first downward continue the data to the seafloor, picked first arrivals, and performed tomography. We used the tomographic velocity model as an input to the full waveform inversion. This process also reduced the computation cost significantly as the water depth in this area is 5.5 km. The resulting models shows the presence of thrust faults extending up to the subducting oceanic plate, suggesting that the frontal section of the subduction in this region was indeed locked, capable of hosting great earthquakes. Our inverted model provides the resolution of tens of meters, allowing to characterize the nature of the megathrust and other faults, and hence estimate the effective porosity, permeability and stress along these faults, subsequently the pore pressure.

  1. Stress changes induced at neighbouring faults by the June 2000 earthquakes, South Iceland Seismic Zone

    NASA Astrophysics Data System (ADS)

    Plateaux, Romain; Angelier, Jacques; Bergerat, Françoise; Cappa, Frédéric; Stefansson, Ragnar

    2010-05-01

    The Icelandic rift system belongs to the Mid-Atlantic Ridge and is connected to the offshore Reykjanes and Kolbeinsey ridges by two active transform zones. Plate separation occurs at a rate of nearly 2 cm/yr along the N105°E direction. With respect to the Icelandic Hotspot, westward plate velocities in Iceland are 1.8-2.2 cm/yr for North America and 0-0.4 cm/yr for Eurasia, resulting in a westward displacement of the Icelandic Rift relative to the hotspot. Rift jumps occur when the plate boundary has migrated to a critical point to the west, and a new rift develops above the hotspot apex while the old rift is dying out. The two active transform zones, the Tjörnes Fracture Zone (TFZ) and the South Iceland Seismic Zone (SISZ), resulted from such eastward rift jumps. Our study focuses on the SISZ which is an onland, E-W trending transform zone where N-S trending right-lateral strike-slip faults accommodate left-lateral transform motion as revealed by historical seismicity. During the most recent seismic crisis, in June 2000, two major earthquakes of magnitude (Mw) 6.4 occurred along N-S right-lateral faults in the central segment of the SISZ. The high sensitivity SIL (South Iceland Lowlands) seismic network run by the Icelandic Meteorological Office (IMO) provided a complete record of earthquakes down to magnitude Mw = -1. Here, we present an analysis of this earthquakes sequence in term of stress regimes in order to examine the response of two faults that did not experience significant motion during the earthquakes, and hence to determine how far such fault zones provide information about stress changes in space and time when large earthquakes occur at distance of some tens of kilometres. The faults considered are the Skard and Leirubakki faults, along which large earthquakes and significant displacement occurred in the past Using seismological data recorded from 1991 to 2007, we carried out stress inversion of focal mechanisms of 1,340 earthquakes that affected

  2. Neotectonic and seismotectonic investigation of seismically active regions in Tunisia: a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Bahrouni, N.; Bouaziz, S.; Soumaya, A.; Ben Ayed, N.; Attafi, K.; Houla, Y.; El Ghali, A.; Rebai, N.

    2014-04-01

    Due to its key position within the Africa-Europe convergence zone, Tunisia is marked by thrusting, folding, and faulting and has a major rupture zones associated with active faults. Consequently, most of Tunisian land is seismically active with significant active deformations, showing recent seismic events and their relative surface effects. This paper reports on several aspects of the seismotectonics, historical, and present-day seismicity and places them in the general tectonic and geodynamic framework of Tunisia. Field investigations, based on an integrated multidisciplinary approach, included (1) the identification of active faults, their motion and displacement, geomorphic aspects, and scarps and their relation with the general structural map of Tunisia and (2) an extensive analysis of brittle tectonic deformation affecting Quaternary deposits in several sites throughout Tunisia. The integration of field data within the existing data related to the seismic events that took place during the last decades allowed the establishment of an earthquake distribution map, as well as major seismic zones for better understanding of the seismicity database of Tunisia. To establish microzonation maps in seismic regions such as Gafsa and its surroundings, we have analyzed surface effects and secondary structures associated with active faults and correlated them with deformation rates, reconstructed for significant seismic events. Most faults exhibited typical left-stepping en-echelon with strike-slip component pattern suggesting that Tunisia is presently subjected to NNW-SSE compression. The focal mechanism of most Tunisia earthquakes combined with the existing tectonic and structural information and reconstruction of the Quaternary stress tensor allowed (a) better understanding of seismic zoning, (b) provided better assessment of the seismic hazard, and (c) facilitated the interpretation of the relationship between seismic zones and the geodynamic African-Eurasian plate

  3. Crustal Structure across The Southwest Longmenshan Fault Zone from Seismic Controlled Source Seismic Data

    NASA Astrophysics Data System (ADS)

    Tian, X.; Wang, F.; Liu, B.

    2014-12-01

    The Lushan eathquake, which epicenter and focal depth were at 30.308° N, 102.888° E, and 14.0 km, is the latest intense earthquake occurring in the southwest section of the Longmenshan fault zone after the Ms 8.0 Wenchuan earthquake in 2008. According to the emergency field observations, the slip distribution of the Lushan earthquake was concentrated at the hypocenter, and did not rupture to the surface(Chen et al, 2013). The rupture history constrained by inverting waveforms showed that the causative fault plane of the Lushan event is apparently not a simple extension of either the Pengguan fault or the Beichuan fault that ruptured during the 2008 Mw 8.0 Wenchuan earthquake. The focal mechanism using the Cut and paste algorithm showed this event occurred on a high dip-angle fault, but its dip angle is not steep enough to rupture the surface. All these research is not independent on the heterogeneous crust structure of the Longmenshan fault zone. A 450 km-long wide-angle reflection/refraction profile executed during September and October 2013. This experiment have provided the best opportunities to obtain better knowledge of seismic structure and properties of crust and uppermost mantle beneath the Southwest Longmenshan fault zone. This seismic profile extends from the west Sichuan Plain, through the Longmenshan Fault zone, and into the west Sichuan Plateau. We observed clear Pg, refraction Phase from the upper crust, Pi1/Pi2/Pi3, reflection/refraction Phase from intra-crust, PmP, reflection from the Moho boundary, and the Pn phase, refraction Phase from uppermost mantle. We present a hybrid tomographic and layered velocity model of the crust and uppermost mantle along the profile. The final velocity model reveals large variations both in structure and velocity, and is demonstrated that a particular model has minimum structure. The model shows the crustal thickness of the region is very variable. The Moho topography varies more than 10km in the southwest

  4. Lattice-Preferred orientations of olivine in subducting oceanic lithosphere derived from the observed seismic anisotropies in double seismic zones

    NASA Astrophysics Data System (ADS)

    Han, Peng; Wei, Dongping; Zhang, Keliang; Sun, Zhentian; Zhou, Xiaoya

    2016-08-01

    Subduction zones can generally be classified into Mariana type and Chilean type depending on plate ages, plate thicknesses, subduction angles, back-arc deformation patterns, etc. The double seismic zones (DSZs) in subduction zones are mainly divided into type I and type II which, respectively, correspond to the Mariana type and Chilean type in most cases. Seismic anisotropy is an important parameter characterizing the geophysical features of the lithosphere, including the subduction zones, and can be described by the two parameters of delay time δt and fast wave polarization direction ϕ. We totally collected 524 seismic anisotropy data records from 24 DSZs and analyzed the statistical correlations between seismic anisotropy and the related physical parameters of DSZs. Our statistical analysis demonstrated that the fast wave polarization directions are parallel to the trench strike with no more than 30° for most type I DSZs, while being nearly perpendicular to the trench strike for type II DSZs. We also calculated roughly linear correlations that the delay time δt increases with dip angles but decreases with subduction rates. A linear equation was summarized to describe the strong correlation between DSZ's subduction angle α DSZ and seismic anisotropy in subduction zones. These results suggest that the anisotropic structure of the subducting lithosphere can be described as a possible equivalent crystal similar to the olivine crystal with three mutually orthogonal polarization axes, of which the longest and the second axes are nearly along the trench-perpendicular and trench-parallel directions, respectively.

  5. Evidences of a lithospheric fault zone in the Sicily Channel continental rift (southern Italy) from instrumental seismicity data

    NASA Astrophysics Data System (ADS)

    Calò, M.; Parisi, L.

    2014-10-01

    Sicily Channel is a portion of Mediterranean Sea, between Sicily (Southern Italy) and Tunisia, representing a part of the foreland Apennine-Maghrebian thrust belt. The seismicity of the region is commonly associated with the normal faulting related to the rifting process and volcanic activity of the region. However, certain seismic patterns suggest the existence of some mechanism coexisting with the rifting process. In this work, we present the results of a statistical analysis of the instrumental seismicity and a reliable relocalization of the events recorded in the last 30 yr in the Sicily Channel and western Sicily using the Double Difference method and 3-D Vp and Vs tomographic models. Our procedure allows us to discern the seismic regime of the Sicily sea from the Tyrrhenian one and to describe the main features of an active fault zone in the study area that could not be related to the rifting process. We report that most of the events are highly clustered in the region between 12.5°-13.5°E and 35.5°-37°N with hypocentral depth of 5-40 km, and reaching 70 km depth in the southernmost sector. The alignment of the seismic clusters, the distribution of volcanic and geothermal regions and the location of some large events occurred in the last century suggest the existence of a subvertical shear zone extending for least 250 km and oriented approximately NNE-SSW. The spatial distribution of the seismic moment suggests that this transfer fault zone is seismically discontinuous showing large seismic gaps in proximity of the Ferdinandea Island, and Graham and Nameless Bank.

  6. Analysis of the seismic origin of landslides: examples from the New Madrid seismic zone

    USGS Publications Warehouse

    Jibson, R.W.; Keefer, D.K.

    1993-01-01

    By analyzing two landslides in the New Madrid seismic zone, we develop an approach for judging if a landslide or group of landslides of unknown origin was more likely to have formed as a result of earthquake shaking or in aseismic conditions. The two landslides analyzed are representative of two groups of land-slides that previous research on the geomorphology and regional distribution of landslides in this region indicates may have been triggered by the 1811-1812 New Madrid earthquakes. Slope-stability models of aseismic conditions show that neither landslide is likely to have formed aseismically even in unrealistically high ground-water conditions. Our analysis yields a general relationship between Newmark landslide displacement, earthquake shaking intensity, and the critical acceleration of a landslide. -from Authors

  7. 3-Component Reflection Seismic Survey Across the Seismogenic Coupling Zone in Chile (Project TIPTEQ)

    NASA Astrophysics Data System (ADS)

    Micksch, U.; Gross, K.; Buske, S.; Krawczyk, C. M.; Stiller, M.; Wigger, P.; Araneda, M.; Bataille, K.; Bribach, J.; Lüth, S.; Mechie, J.; Schulze, A.; Shapiro, S. A.; Ziegenhagen, T.

    2005-12-01

    The TIPTEQ project (from The Incoming Plate to mega-Thrust EarthQuake processes) studies processes which generate mega-thrust earthquakes at convergent plate margins, with the Chilean subduction zone as natural laboratory. The seismogenic coupling zones at convergent margin plate interfaces harbour some 90% of the global seismicity, and in the case of Chile, the hypocenter of the largest historically recorded earthquake in 1960 (Mw = 9.5). The rupture started at 38° S with a hypocentral depth of some 30 km below the continental forearc and continued towards the south for approximately 1000 km. The active seismic experiment component of TIPTEQ crosses the 1960 earthquake hypocenter. The survey consists of a 95 km long near-vertical reflection seismic profile shot in January 2005. 180 three-component geophones were deployed along an 18 km long spread, moving 4.5 km in a daily roll-along. Explosive shots, with a spacing of 1.5 km, allow an up to 8-fold CDP coverage. The W-E trending line runs across part of the Central Valley and continues over the coastal cordillera towards the Pacific. The seismic line shows good reflectivity and internal structures of the accretionary wedge and the plate interface. The down-going plate is clearly visible at c. 8 s TWT near the coast, reaching 17 s TWT at the eastern end of the profile. Two more experiment configurations were applied in addition: An expanding spread profiling setup aims at the down-dip limit of the seismogenic coupling zone at 30-50 km depth to image the hypocenter of the 1960 earthquake in more detail (10-fold coverage); a SH experiment configuration (1-fold coverage) served as a pilot study to test SH-wave generation in a crustal regime. Using the three component data, S-wave images could yield an improved picture of the petrophysical contrasts within the subduction zone. We present the results from poststack- and prestack-migration of the near-vertical reflection experiment, as well as a first interpretation of

  8. Velocity models and Hypocenter Relocations for the Charlevoix Seismic Zone

    NASA Astrophysics Data System (ADS)

    Powell, C. A.; Langston, C. A.

    2015-12-01

    We present 3-D P- and S-wave velocity (Vp and Vs) models and new hypocenter locations for the Charlevoix seismic zone (CSZ) based upon local travel time tomography. Prominent velocity anomalies and the distribution of earthquakes are discussed in relation to known structural features produced by Iapetan rifting and a large Devonian meteor impact. The CSZ is located along the St. Lawrence River about 100 km downstream from Quebec City, Canada. A 7 station permanent network, augmented by temporary stations, records more than 200 earthquakes annually. The inversion dataset consists of 1,329 earthquakes providing 8,540 P-wave and 8,304 S-wave arrival times. Velocity model resolution is adequate to a depth of at least16 km as indicated by recovery of synthetic checkerboard models. Low Vp and Vs are associated with the impact structure to a depth of 12 km. A prominent high Vp feature is present north of the impact structure and high Vp and Vs extend below the impact at depths exceeding 12 km. Following inversion, hypocenter location errors are less than 0.2 km horizontally and 0.4 km vertically. Hypocenters form a semicircle delineating the eastern margin of the impact structure. Northeast of the impact, hypocenters cluster into planes in several locations, suggesting the presence of distinct, seismogenic faults. The planes trend NE, in the same direction as the Iapitan rift faults, and dip to the SE. One steeply dipping plane is located below the north shore of the St. Lawrence River and extends to a depth of at least 30 km. Two other planes with shallower dips are located below the river and extend to depths of 12 and 15 km. All three planes are disrupted when they encounter the impact but the north shore plane appears to continue through and below the impact zone. The presence of through-going Iapetan faults within the impact structure is an important constraint for 3-D stress models developed to explain the spatial distribution of seismicity in the CSZ. We identify

  9. Deep Structure and Earthquake Generating Properties in the Yamasaki Fault Zone, Southwest Japan, Estimated from Dense Seismic Observation

    NASA Astrophysics Data System (ADS)

    Nishigami, K.; Shibutani, T.; Katao, H.; Yamaguchi, S.; Mamada, Y.

    2012-12-01

    The Yamasaki fault zone is a left-lateral, strike-slip active fault with a total length of about 80 km in southwest Japan. We deployed dense seismic observation network, which is composed of 32 stations with average spacing of 5-10 km, around the Yamasaki fault zone. We have been estimating detailed fault structure such as fault dip and shape, segmentation, and possible location of asperities and rupture initiation point, as well as generating properties of earthquakes in and around the fault zone, through analyses of accurate hypocenter distribution, focal mechanism, 3-D velocity tomography, coda wave inversion, and other waveform analyses. We also deployed a linear seismic array across the fault, composed of 20 stations with about 20 m spacing, in order to delineate the fault-zone structure in more detail using the seismic waves trapped inside the low velocity fault-zone. We also estimated detailed resistivity structure at shallow depth of the fault zone by AMT (audio-frequency magnetotelluric) surveys. In the scattering analysis of seismic coda waves, we used the waveform data of dense temporary stations from 2008 to 2010 and also the routine-stations data in 2002 and 2003, and estimated 3-D distribution of relative scattering coefficients around the Yamasaki fault zone. In this analysis, 3,033 waveforms recorded at 60 stations for 136 earthquakes were used. This result shows that microseismicity is high and scattering coefficient is relatively larger in the upper crust along the entire fault zone. The distribution of strong scatterers suggests that the Ohara and Hijima faults, which are the segments in the northwestern part of the Yamasaki fault zone, have almost vertical fault plane from surface to a depth of about 15 km. We will construct a fault structure model and discuss its relation to seismic activity in the Yamasaki fault zone. We used seismic network data operated by Universities, NIED, AIST, and JMA. This study has been carried out as a part of the

  10. Strain Accumulation and Release in the South Iceland Seismic Zone (Invited)

    NASA Astrophysics Data System (ADS)

    Arnadottir, T.; Hreinsdottir, S.; Geirsson, H.; Ofeigsson, B.

    2013-12-01

    Iceland is located on the Mid-Atlantic ridge, straddling the plate boundary of the North-American and Eurasian plates. Several active volcanic zones and two main transforms accommodate the plate spreading across the island. In the South, the South Iceland Seismic Zone (SISZ) forms the active plate boundary between the Hengill triple junction in the west, and the Eastern Volcanic Zone. The SISZ translates the E-W left lateral shear at depth by faulting on numerous N-S oriented faults in the brittle crust forming the southern margin of the proposed Hreppar micro-plate in South Iceland. In June 2000 and May 2008, two sets of magnitude 6.5 and 6.0 main shocks struck the SISZ. Both earthquake episodes consisted of a pair of main shocks of similar size rupturing closely spaced faults, where static and dynamic stress changes generated by the first event triggered the second main shock further west. The June 2000 earthquakes occurred in the central part of the SISZ, and the May 2008 events in the western part, close to the Hengill triple junction. Since June 2000 annual GPS measurements have been conducted in a geodetic network in South Iceland and a number of continuous GPS stations have been installed. We report strain rate variations in South Iceland derived from GPS observations during 2000 to 2013. In addition to plate motion, and post-seismic signals, the surface deformation is complicated by magma accumulation under active volcanoes at the eastern border of the SISZ - Hekla, and Eyjafjallajökull - as well as subsidence and contraction in the Hengill area caused by fluid withdrawal for geothermal energy production. We also note an increase in strain rates in the epicentral area of the May 2008 main shocks during 2004 to 2007. Previous studies have indicated that the seismic moment released in the June 2000 and May 2008 earthquakes is only half of the accumulated stress since the last major earthquake sequence in 1896-1912. Thus, magnitude 6-7 events may be expected

  11. Patterns of seismic activity preceding large earthquakes

    NASA Technical Reports Server (NTRS)

    Shaw, Bruce E.; Carlson, J. M.; Langer, J. S.

    1992-01-01

    A mechanical model of seismic faults is employed to investigate the seismic activities that occur prior to major events. The block-and-spring model dynamically generates a statistical distribution of smaller slipping events that precede large events, and the results satisfy the Gutenberg-Richter law. The scaling behavior during a loading cycle suggests small but systematic variations in space and time with maximum activity acceleration near the future epicenter. Activity patterns inferred from data on seismicity in California demonstrate a regional aspect; increased activity in certain areas are found to precede major earthquake events. One example is given regarding the Loma Prieta earthquake of 1989 which is located near a fault section associated with increased activity levels.

  12. Stress development in heterogenetic lithosphere: Insights into earthquake processes in the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Zhan, Y.; Gregg, P. M.; Hou, G.

    2015-12-01

    The New Madrid Seismic Zone (NMSZ) in the Central and Eastern United States (CEUS) is the site of several major M 6.8-8 earthquakes in 1811-1812, and remains seismically active. Although extensive investigations have been carried out, the ultimate controls on earthquake initiation and the duration of the seismicity remains unclear. Especially ambiguous is the role of a heterogenetic lithosphere in the development and propagation of stress throughout the crust in intraplate settings. In this study, we develop a finite element model to conduct a series of numerical experiments, the goal of which is to determine the impact of heterogeneity in the Upper Crust, the Lower Crust, and the Mantle on earthquake nucleation and rupture processes. Results indicate that when the differential stresses are built up from boundary displacements, similar to tectonic loading, the stresses below the Reelfoot Rift in the NMSZ are highly concentrated, whereas the stresses below the geologically similar Midcontinent Rift System are low, corresponding with the earthquakes distribution. By comparing the results with three reference models, we argue that the extensive Mantle Low Velocity Zone (MLVZ) beneath the NMSZ produces differential stress localization in the layers above. Furthermore, the relatively strong crust in this region, exhibited by high seismic velocity, enables the elevated stress to extend to the bottom of the ancient rift system, reactivating fossil rifting faults and therefore triggering earthquakes. Although our numerical models focus on loading by a far-field stress source, they explain why the New Madrid inevitably became the most earthquake susceptible region in the CEUS since a heterogeneous lithosphere. Specifically, the presence of the MLVZ will further concentrate stresses resulting from other unloading process, such as melting of the ice sheets or sudden river incision.

  13. Earthquake Rate Changes and Interevent Distance Distributions in the Brawley Seismic Zone

    NASA Astrophysics Data System (ADS)

    Llenos, A. L.; Michael, A. J.

    2013-12-01

    The Brawley Seismic Zone (BSZ), located in the Salton Trough of southern California, has a long history of earthquake swarm activity and a high level of geothermal energy exploitation activity. A swarm occurred in August 2012 near the North Brawley Geothermal Field (NBGF), which raised the question of whether it and other recent earthquake rate changes may have been induced by fluid extraction and injection activity (e.g., Chen and Shearer, JGR, 2011; Brodsky and Lajoie, Science, 2013). We explore this issue by examining earthquake rate changes and interevent distance distributions in two geothermal fields in the region, the NBGF and the Salton Sea Geothermal Field (SSGF). In Oklahoma and Arkansas, where considerable wastewater injection occurs, increases in background seismicity rate and aftershock productivity and decreases in interevent distance have been diagnostic of fluid-injection induced seismicity (Llenos and Michael, BSSA, in press). Here we test if similar changes occur that may be associated with fluid injection and extraction at the two geothermal fields. We identify clusters in earthquake catalogs from 1981-2012 in the SSGF and the NBGF, then compute interevent distances within each cluster. Preliminary results suggest that in both fields, the interevent spacing does not appear to change significantly with the start of fluid injection or extraction in 1982. We also use the stochastic Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, JASA, 1988) to determine if changes in the underlying earthquake driving processes, either natural or due to geothermal exploitation activities, have occurred in the BSZ, as shown by statistically significant changes in the model parameters. While increases in the background seismicity rate and aftershock productivity parameters were associated with fluid-injection induced earthquake rate changes in Oklahoma and Arkansas, preliminary results indicate that similar changes are not as apparent in the BSZ. The higher heat

  14. Principal Slip Zones in Carbonate: Microstructural Characterization and Implications for the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    Smith, Steven; Billi, Andrea; di Toro, Giulio

    2010-05-01

    Main shocks in central Italy, such as the L'Aquila Mw 6.3 earthquake on 6 April 2009, and associated foreshock and aftershock sequences, often nucleate within, and rupture through, carbonate-bearing rocks within the upper-crust. One way to understand the mechanical behaviour of such rocks during the passage of earthquake ruptures is to study the Principal Slip Zones (PSZs) of exhumed faults. The PSZs are thought to accommodate a majority of displacement during individual earthquake slip events, and potentially contain a rich variety of information about earthquake-related processes and, more generally, deformation mechanisms throughout the seismic cycle. At present, however, there are no reliable microstructural or geochemical indicators of seismic slip in carbonate rocks. We present detailed field and microstructural observations of the PSZs of large-displacement, seismically active normal fault zones in the central Apennines of Italy. The fault zones are exhumed from <3km depth and cut 3-5km thick sequences of platform limestone. Samples were collected from individual PSZs containing polished slip surfaces with both small (centimetres to metres) and large (metres to hundreds of metres) displacements, including the main PSZ that defines the active Quaternary fault scarp. Small displacement slipping zones are characterized by typical cataclastic fabrics, including angular grains cross-cut by brittle fractures, and a gradual decrease in grain-size towards the polished slip surface. In contrast, large-displacement slipping zones always contain a continuous, texturally-distinct layer up to 2-3mm in thickness that lies immediately beneath the polished slip surface. This layer is itself internally zoned; up to 6 distinct zones can be present, each between 200-300µm in thickness, and recognized on the basis of grain-size, colour, and textural variations. In some cases, the zones developed at the expense of one another. 100-200µm-thick, syn-tectonic calcite veins

  15. Characterizing potentially induced earthquake rate changes in the Brawley Seismic Zone, southern California

    USGS Publications Warehouse

    Llenos, Andrea L.; Michael, Andrew J.

    2016-01-01

    The Brawley seismic zone (BSZ), in the Salton trough of southern California, has a history of earthquake swarms and geothermal energy exploitation. Some earthquake rate changes may have been induced by fluid extraction and injection activity at local geothermal fields, particularly at the North Brawley Geothermal Field (NBGF) and at the Salton Sea Geothermal Field (SSGF). We explore this issue by examining earthquake rate changes and interevent distance distributions in these fields. In Oklahoma and Arkansas, where considerable wastewater injection occurs, increases in background seismicity rate and aftershock productivity and decreases in interevent distance were indicative of fluid‐injection‐induced seismicity. Here, we test if similar changes occur that may be associated with fluid injection and extraction in geothermal areas. We use stochastic epidemic‐type aftershock sequence models to detect changes in the underlying seismogenic processes, shown by statistically significant changes in the model parameters. The most robust model changes in the SSGF roughly occur when large changes in net fluid production occur, but a similar correlation is not seen in the NBGF. Also, although both background seismicity rate and aftershock productivity increased for fluid‐injection‐induced earthquake rate changes in Oklahoma and Arkansas, the background rate increases significantly in the BSZ only, roughly corresponding with net fluid production rate increases. Moreover, in both fields the interevent spacing does not change significantly during active energy projects. This suggests that, although geothermal field activities in a tectonically active region may not significantly change the physics of earthquake interactions, earthquake rates may still be driven by fluid injection or extraction rates, particularly in the SSGF.

  16. Two-dimensional seismic image of the San Andreas Fault in the Northern Gabilan Range, central California: Evidence for fluids in the fault zone

    USGS Publications Warehouse

    Thurber, C.; Roecker, S.; Ellsworth, W.; Chen, Y.; Lutter, W.; Sessions, R.

    1997-01-01

    A joint inversion for two-dimensional P-wave velocity (Vp), P-to-S velocity ratio (Vp/Vs), and earthquake locations along the San Andreas fault (SAF) in central California reveals a complex relationship among seismicity, fault zone structure, and the surface fault trace. A zone of low Vp and high Vp/Vs lies beneath the SAF surface trace (SAFST), extending to a depth of about 6 km. Most of the seismic activity along the SAF occurs at depths of 3 to 7 km in a southwest-dipping zone that roughly intersects the SAFST, and lies near the southwest edge of the low Vp and high Vp/Vs zones. Tests indicate that models in which this seismic zone is significantly closer to vertical can be confidently rejected. A second high Vp/Vs zone extends to the northeast, apparently dipping beneath the Diablo Range. Another zone of seismicity underlies the northeast portion of this Vp/Vs high. The high Vp/Vs zones cut across areas of very different Vp values, indicating that the high Vp/Vs values are due to the presence of fluids, not just lithology. The close association between the zones of high Vp/Vs and seismicity suggests a direct involvement of fluids in the faulting process. Copyright 1997 by the American Geophysical Union.

  17. Seismic constraints on a large dyking event and initiation of a transform fault zone in Western Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Ahmed, AbdulHakim; Doubre, Cecile; Leroy, Sylvie; Perrot, Julie; Audin, Laurence; Rolandone, Frederique; Keir, Derek; Al-Ganad, Ismael; Sholan, Jamal; Khanbari, Khaled; Mohamed, Kassim; Vergne, Jerome; Jacques, Eric; Nercessian, Alex

    2013-04-01

    In November 2010, a large number of events were recorded by the world seismic networks showing important activity occurring along the western part of the Aden Ridge. West of the Shulka El Sheik fracture zone, events in this large seismic swarm (magnitudes above 5) occurred in a complex area, where the change of both the ridge direction and the bathymetry suggest the propagation of the ridge into a continental lithosphere and the influence of the Afar plume. We combine several sets of data from permanent networks and temporary 3C broad stations installed after the beginning of the event along the southern and eastern coasts of Yemen and Djibouti respectively, we located more than 600 earthquakes with magnitudes ranging from 2.5 to 5.6 that occurred during the first months following the first event. The spatial distribution of the main seismicity reveals a very clear N115° -trending alignment, parallel to the mean direction of the en-echelon spreading segments that form the ridge at this longitude. Half of the events, which represent half of the total seismic energy released during the first months, are located in the central third section of the segment. Here several volcanic cones and recent lava flows observed from bathymetric and acoustic reflectivity data during the Tadjouraden cruise (Audin, 1999, Dauteuil et al., 2001) constitute the sea floor. In addition to this main activity, two small groups of events suggest the activiation of landslides into a large fan and the activity in a volcanic area 50 km due east from the main active zone. The time evolution of the seismicity shows several bursts of activity. Some of them are clearly related to sudden activities within the volcanic areas, when others exhibit horizontal migration of the events, with velocity around ˜ 1 km/h. The time-space evolution of the seismicity clearly reveals the intrusion of dykes associated with magma propagation from the crustal magmatic centres into the rift zone. Taking into account

  18. Seismic-reflection profiles of the New Madrid seismic zone-data along the Mississippi River near Caruthersville, Missouri

    USGS Publications Warehouse

    Crone, A.J.; Harding, S.T.; Russ, D.P.; Shedlock, K.M.

    1986-01-01

    Three major seismic-reflection programs have been conducted by the USGS in the New Madrid seismic zone. The first program consisted of 32 km of conventional Vibroseis profiling designed to investigate the subsurface structure associated with scarps and lineaments in northwestern Tennessee (Zoback, 1979). A second, more extensive Vibroseis program collected about 250 km of data from all parts of the New Madrid seismic zone in Missouri, Arkansas, and Tennessee (Hamilton and Zoback, 1979, 1982; Zoback and others, 1980). The profiles presented here are part of the third program that collected about 240 km of high-resolution seismic-reflection data from a boat along the Mississippi River between Osceola, Ark., and Wickliffe, Ky. (fig. 1). The data for profiles A, B, C, and D were collected between river miles 839-1/2 and 850-1/2 from near the Interstate-155 bridge to upstream of Caruthersville, Mo. (fig. 2). Profiles on this part of the river are important for three reasons: (1) they connect many of the land-based profiles on either side of the river, (2) they are near the northeast termination of a linear, 120km-long, northeast-southwest zone of seismicity that extends from northeast Arkansas to Caruthersville, Mo. (Stauder, 1982; fig. 1), and (3) they cross the southwesterly projection of the Cottonwood Grove fault (fig. 1), a fault having a substantial amount of vertical Cenozoic offset (Zoback and others, 1980).

  19. Cambrian to Recent Structures around the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Thomas, W. A.; Hickman, J. B.

    2011-12-01

    In the region of the New Madrid seismic zone (NMSZ), upper crustal structures indicate a long history of deformational events and persistent weak crust. Deep wells and seismic profiles document prominent structures: Cambrian northeast-striking Mississippi Valley graben (MVg), intersecting the east-striking Rough Creek graben (RCg); a late Paleozoic arch and reactivated faults; and Mesozoic-Cenozoic Mississippi Embayment syncline (MEs). MVg extension parallels that of the late stages of Iapetan rifting of Laurentia, oblique to strike of the RCg. A Middle Cambrian and older clastic succession thickens >1 km across the MVg boundary faults, and is ~8 km thick within the RCg. In the RCg, the west-striking northern boundary faults curve into southwestward splays; stratigraphic units dip northward into the northern boundary fault system and northwestward into the southwest-striking splays, suggesting pull-apart basins along strike-slip faults. Broad subregional thickening of Upper Cambrian-Lower Ordovician carbonate rocks indicates anomalous downwarp along the RCg during post-rift thermal subsidence; a regionally average carbonate thickness accumulated across the MVg. Low gradients of stratigraphic thickness change suggest little fault movement in the Late Cambrian-Early Ordovician. Palinspastic restoration of the pre-Cretaceous unconformity shows a broad south-plunging arch in upper Paleozoic and older rocks along the southern part of the MVg. Reactivated normal faults have >500-m displacement in the upper Paleozoic rocks on the limbs of the arch and aggregate as much as 2 km of vertical separation at the top of Precambrian crystalline basement. Farther north near the intersection with the RCg, a high-amplitude short-wavelength diapiric anticline within the MVg has a core of ductilely deformed Middle Cambrian shale beneath the Upper Cambrian-Lower Ordovician carbonates. Geometry of the shale diapir suggests contraction approximately perpendicular to the graben

  20. Deep Heterogeneous Structure and Earthquake Generating Properties in the Yamasaki Fault Zone Estimated from Dense Seismic Observation

    NASA Astrophysics Data System (ADS)

    Nishigami, K.; Shibutani, T.; Katao, H.; Yamaguchi, S.; Mamada, Y.

    2011-12-01

    The Yamasaki fault zone is a left-lateral, strike-slip active fault with a total length of about 80 km in southwest Japan. We deployed dense seismic observation network, which is composed of 32 stations with average spacing of 5-10 km, around the Yamasaki fault zone. We have been estimating detailed fault structure such as fault dip and shape, segmentation, and possible location of asperities and rupture initiation point, as well as generating properties of earthquakes in the fault zone, through analyses of accurate hypocenter distribution, focal mechanism, 3-D velocity tomography, coda wave inversion, and other waveform analyses. We also deployed a linear seismic array across the fault, composed of 20 stations with about 20 m spacing, in order to delineate the fault-zone structure in more detail using the seismic waves trapped inside the low velocity fault-zone. We also estimated resistivity structure at shallow depth of the fault zone by AMT (audio-frequency magnetotelluric) and MT surveys. In the scattering analysis of coda waves, we used the waveform data of dense temporary stations from 2008 to 2010 and also the routine stations in 2002 and 2003. Fig.1 shows an example of the result, 3-D distribution of relative scattering coefficients estimated around the Yamasaki fault zone. In this analysis, 2,391 waveforms recorded at 60 stations for 121 earthquakes were used. This result shows that microseismicity is high and scattering coefficient is relatively larger in the upper crust along the entire fault zone. The distribution of strong scatterers suggests that the Ohara and Hijima faults, which are the segments in the northwestern part of the Yamasaki fault zone, have almost vertical fault plane from surface to a depth of about 15 km. We will construct a fault structure model and discuss its relation to seismic activity in the Yamasaki fault zone. We used seismic network data operated by Univs., NIED, AIST, and JMA. This study is carried out as a part of the

  1. A Three-Dimensional Reflection Seismic Investigation of Seismogenic Zone, in the eastern Nankai accretionary prism

    NASA Astrophysics Data System (ADS)

    Ike, T.; Tokuyama, H.; Ashi, J.; Kuramoto, S.; Matsushima, J.; Yokota, T.; Pascal, G.; Lallemant, S.

    2001-12-01

    We carried out a 3-D reflection seismic survey [SFJ-KAIKO] in the eastern Nankai accretionary prism from June to July 2000. The crustal deformation of the eastern Nankai accretionary prism affected by a nearby collision between the Izu-Bonin arc and the central Japan. Several active fault systems were described by many high-resolution seismic data, and proposed that the Tokai and Kodaiba fault systems were derived from a decollement plane. The main objective of our experiment was to image the plate boundary and identify the up-dip limit of seismogenic zone. The 3-D survey covers 45km long and 5km wide area with 51 seismic lines, located about 50km southwest from Omaezaki. We applied the non-iterative Kirchhoff pre-stack time migration method (Matsushima et.,al 2001) with stacking velocity analysis to our 3-D data. The processed 3-D data gives us a significantly clear image of the thrust faults and the relationship between sediment deformation and thrust activity. A preliminary 3-D interpretation was conducted and leaded the following results.1) The Tokai and Kodaiba thrusts are clearly imaged as out-of-sequence thrusts. 2) Both thrusts are active fault that revealed by the structure of deformed sediments near seafloor. 3) A strong and low frequency reflector can be traced in the entire profile that should be a decollement plane. Tokai and Kodaiba fault systems merged to the decollement plane at same depth. The contact area of the thrust faults and the decollement may be suggesting the up-dip limit of seismogenic zone of the eastern Nankai accretionary prism .The 3-D image will contribute to reveal the mechanism of disastrous earthquakes in the Tokai area.

  2. Apollo 14 active seismic experiment.

    NASA Technical Reports Server (NTRS)

    Watkins, J. S.; Kovach, R. L.

    1972-01-01

    Explosion seismic refraction data indicate that the lunar near-surface rocks at the Apollo 14 site consist of a regolith 8.5 meters thick and characterized by a compressional wave velocity of 104 meters per second. The regolith is underlain by a layer with a compressional wave velocity of 299 meters per second. The thickness of this layer, which we interpret to be the Fra Mauro Formation, is between 16 and 76 meters. The layer immediately beneath this has a velocity greater than 370 meters per second. We found no evidence of permafrost.

  3. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    SciTech Connect

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie; Lee, Rebekah; Cole, Chris

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  4. Regional Observation of Seismic Activity in Baekdu Mountain

    NASA Astrophysics Data System (ADS)

    Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol

    2015-04-01

    Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.

  5. Hydrothermal fault zone mapping using seismic and electrical measurements

    NASA Astrophysics Data System (ADS)

    Onacha, Stephen Alumasa

    This dissertation presents a new method of using earthquakes and resistivity data to characterize permeable hydrothermal reservoirs. The method is applied to field examples from Casa Diablo in the Long Valley Caldera, California; Mt. Longonot, Kenya; and Krafla, Iceland. The new method has significant practical value in the exploration and production of geothermal energy. The method uses P- and S-wave velocity, S-wave polarization and splitting magnitude, resistivity and magnetotelluric (MT) strike directions to determine fracture-porosity and orientation. The conceptual model used to characterize the buried, fluid-circulating fault zones in hydrothermal systems is based on geological and fracture models. The method has been tested with field earthquake and resistivity data; core samples; temperature measurements; and, for the case of Krafla, with a drilled well. The use of resistivity and microearthquake measurements is based on theoretical formulation of shared porosity, anisotropy and polarization. The relation of resistivity and a double porosity-operator is solved using a basis function. The porosity-operator is used to generate a correlation function between P-wave velocity and resistivity. This correlation is then used to generate P-wave velocity from 2-D resistivity models. The resistivity models are generated from magnetotelluric (MT) by using the Non-Linear Conjugate Gradient (NLCG) inversion method. The seismic and electrical measurements used come from portable, multi station microearthquake (MEQ) monitoring networks and multi-profile, MT and transient electromagnetic (TEM) observation campaigns. The main conclusions in this dissertation are listed below: (1) Strong evidence exists for correlation between MT strike direction and anisotropy and MEQ S-wave splitting at sites close to fluid-filled fracture zones. (2) A porosity operator generated from a double porosity model has been used to generate valid P-wave velocity models from resistivity data. This

  6. Interseismic Coupling, Megathrust Earthquakes and Seismic Swarms Along the Chilean Subduction Zone (38°-18°S)

    NASA Astrophysics Data System (ADS)

    Métois, M.; Vigny, C.; Socquet, A.

    2016-05-01

    The recent expansion of dense GPS networks over plate boundaries allows for remarkably precise mapping of interseismic coupling along active faults. The interseismic coupling coefficient is related to the ratio between slipping velocity on the fault during the interseismic period and the long-term plates velocity, but the interpretation of coupling in terms of mechanical behavior of the fault is still unclear. Here, we investigate the link between coupling and seismicity over the Chilean subduction zone that ruptured three times in the last 5 years with major earthquakes (Maule Mw 8.8 in 2010, Iquique Mw 8.1 in 2014 and Illapel Mw 8.4 in 2015). We combine recent GPS data acquired over the margin (38°-18°S) with older data to get the first nearly continuous picture of the interseismic coupling variations on the subduction interface. Here, we show that at least six low coupling zones (LCZ), areas where coupling is low relatively to the neighboring highly coupled segments can be identified. We also find that for the three most recent Mw > 8 events, co-seismic asperities correlate well with highly coupled segments, while LCZs behaved as barriers and stopped the ruptures. The relation between coupling and background seismicity in the interseismic period before the events is less clear. However, we note that swarm sequences are prone to occur in intermediate coupling areas at the transition between LCZ and neighboring segments, and that the background seismicity tends to concentrate on the downdip part of the seismogenic locked zone. Thus, highly coupled segments usually exhibit low background seismicity. In this overall context, the Metropolitan segment that partly ruptured during the 2015 Illapel earthquake appears as an outlier since both coupling and background seismicity were high before the rupture, raising the issue of the remaining seismic hazard in this very densely populated area.

  7. Low Vp/Vs ratios and Earthquake Occurrence in Intraplate Seismic zones

    NASA Astrophysics Data System (ADS)

    Powell, C. A.

    2011-12-01

    Local earthquake tomography results for three North American intraplate seismic zones demonstrate a correspondence between anomalously low Vp/Vs ratios and earthquake occurrence. Vp and Vs models are determined for the New Madrid seismic zone (NMSZ), the eastern Tennessee seismic zone (ETSZ) and the Charlevoix seismic zone (CSZ) and Vp/Vs ratios are found by dividing Vp by Vs in those portions of the models where P- and S-wave raypath coverage is similar. In the NMSZ, Vp/Vs ratios as low as 1.62 are associated with the northern portion of the Reelfoot fault and the two arms of seismicity extending from its northern end. In the ETSZ, Vp/Vs ratios of 1.68 occur at depths greater than 12 km and are associated with the most seismogenic portion of the zone. Only a limited data set is available for the CSZ but low Vp/Vs ratios of 1.68 occur at depths exceeding 8 km and correspond to the two major NE trending branches of seismicity. Low Vp/Vs ratios are produced by negative Vp anomalies and positive Vs anomalies in all three seismic zones, suggesting the controlling factor is rock composition rather than the presence of fractures and elevated pore pressure. Compositionally, low Vp/Vs ratios can be explained by the presence of quartz rich rocks. For example, the 1.62 Vp/Vs ratio in the NMSZ can be attributed to rocks containing about 25 to 30% (weight percent) more quartz than is commonly found in granite. Quartz is a weak mineral and the presence of quartz-rich rocks could facilitate ductile behavior (creep) at depth, resulting in shear strain loading and the generation of earthquakes in the crust above. The presence of quartz rich basement rocks may place an important constraint on the location of intraplate seismic zones.

  8. Seismic hazard and risk assessment in the intraplate environment: The New Madrid seismic zone of the central United States

    USGS Publications Warehouse

    Wang, Z.

    2007-01-01

    Although the causes of large intraplate earthquakes are still not fully understood, they pose certain hazard and risk to societies. Estimating hazard and risk in these regions is difficult because of lack of earthquake records. The New Madrid seismic zone is one such region where large and rare intraplate earthquakes (M = 7.0 or greater) pose significant hazard and risk. Many different definitions of hazard and risk have been used, and the resulting estimates differ dramatically. In this paper, seismic hazard is defined as the natural phenomenon generated by earthquakes, such as ground motion, and is quantified by two parameters: a level of hazard and its occurrence frequency or mean recurrence interval; seismic risk is defined as the probability of occurrence of a specific level of seismic hazard over a certain time and is quantified by three parameters: probability, a level of hazard, and exposure time. Probabilistic seismic hazard analysis (PSHA), a commonly used method for estimating seismic hazard and risk, derives a relationship between a ground motion parameter and its return period (hazard curve). The return period is not an independent temporal parameter but a mathematical extrapolation of the recurrence interval of earthquakes and the uncertainty of ground motion. Therefore, it is difficult to understand and use PSHA. A new method is proposed and applied here for estimating seismic hazard in the New Madrid seismic zone. This method provides hazard estimates that are consistent with the state of our knowledge and can be easily applied to other intraplate regions. ?? 2007 The Geological Society of America.

  9. Seismic Fault Zone Rocks from a Subduction Megathrust (Kodiak Is., AK)

    NASA Astrophysics Data System (ADS)

    Meneghini, F.; di Toro, G.; Moore, C. J.; Rowe, C. D.

    2008-12-01

    Subduction megathrusts nucleate some of the largest earthquakes on Earth, including the 1964 Mw9.2 Alaskan earthquake. We describe the fault zone and the fault rocks from the thickest slipping zone ever described in subduction complexes. The aim is to discriminate (microstructurally and chemically) fault rocks produced during seismic slip and to reconstruct the seismic cycle in the fault zone. In the ancient analogue of the active Alaskan subduction complex, cropping out in Kodiak Island, decimeter- thick cohesive black-colored layers are at the core of 10's of meters thick foliated cataclasites. The cataclasites are part of a melange regarded as a paleo-decollement active at 12 - 14 km in depth and 230 - 260 ° C. Each black layer is traced continuously for tens of meters along a single outcrop, and, through structural correlations, across 2 km of section along strike. The black rocks features a complex layering of glass-looking and granular-looking layers. "Glassy" and "granular" layers textures are composed of sub-rounded grains (< 100 micron) of quartz and albite floating in an ultrafine matrix (< 4 micron). In the matrix of glassy-looking layers, tabular microlites of albite are common, showing an oscillatory zoning typical of magmatic rocks that is absent in the cataclasites. "Granular" layers, are more tightly packed, less sorted, enriched in crushed feldspar microlites and depleted in phyllosilicates with respect to the "glassy" layers. XRF and XRPD analyses suggest chemical fractionation between the foliated cataclasites and the black rocks (e.g. enrichment in Na in the black rocks). Crosscutting relationships between granular- and glassy-like layers occur. Alternatively, flow and intrusion structures between the two layers are observed, suggesting that they flowed and deformed in a ductile fashion. Based on these observations, we hypothesize that the black rocks (1) are the result of frictional melting (glassy-looking layers) and fluidization (granular

  10. Seismicity and structural heterogeneities around the western Nankai Trough subduction zone, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yojiro; Obana, Koichiro; Takahashi, Tsutomu; Nakanishi, Ayako; Kodaira, Shuichi; Kaneda, Yoshiyuki

    2014-06-01

    The Nankai and Hyuga-nada seismogenic segments, in the western part of the Nankai subduction zone off southwestern Japan, have sometimes ruptured separately and sometimes simultaneously. To investigate the relationships among heterogeneities of seismic structure, spatial variation of the incoming plate, and the seismogenic segments, we carried out seismic observations in the western Nankai subduction zone and modeled the area with 3D seismic tomography using both onshore and offshore seismic data. Our seismic observations suggested that the pattern of seismicity is related to heterogeneities within the subducted plate rather than the seismogenic segments. The up-dip depth limit of seismicity along the plate boundary and in the oceanic crust is typically around 15 km, corresponding to the depth of dehydration of the oceanic crust. In addition, the seaward-extended seismicity observed where the subducted plate was considered to have rough internal structures. In the resulting velocity model, the up-dip limit of the area where the P-wave velocity just above the plate boundary exceeds 6 km/s corresponds to the up-dip limit of coseismic slip in the 1968 Hyuga-nada and 1946 Nankai earthquakes. Between the two coseismic rupture zones is an area of lower P-wave velocity about 40 km wide that is evidence of lateral heterogeneities in the upper plate along the trough-parallel direction. Structural heterogeneities in the upper plate may explain the variety of coseismic slip patterns in this region.

  11. A Trial of the Delineation of Gas Hydrate Bearing Zones using Seismic Methods Offshore Tokai Japan

    NASA Astrophysics Data System (ADS)

    Inamori, T.; Hato, M.

    2002-12-01

    MITI Research Well 'Nankai Trough' was drilled at offshore Tokai Japan in 1999/2000 and the existence of gas hydrate was confirmed by various proofs through borehole measurement or coring. It gave so big impact to the view of Japan_fs future energy resources and other scientific interests.The METI, Ministry of Economy, Trade and Industry, has started the national project "Methane Hydrate Exploration study" in Japan since the fall 2001. Bottom Simulating Reflectors (BSRs) were widely found on the marine seismic data acquired offshore Japan especially in the shelf-slope near Nankai Trough. BSRs are thought to be the bottom of gas hydrate stability zones, we cannot, however, get the information of gas hydrate bearing zones, such as the height of those, the porosity, the gas hydrate saturation etc, only from BSRs. In order to estimate the amount of gas hydrate accurately, we have to get those reservoir parameters of gas hydrate bearing zones from marine seismic data. The velocity of these zones is greater than that of the surrounding sediment, because pure gas hydrate has high velocity that is more than 3,000 m/s. This means the interval velocity is the key for exploration of gas hydrate. First, we have tried to image the gas hydrate bearing zones from seismic stacking velocity analysis. After the conversion to interval velocity from NMO velocity by Dix's equation, we imaged the P-wave velocity section through 2D seismic line. We successfully imaged high velocity zones above BSRs and low velocity zones beneath BSRs on P-wave velocity section. But the resolution of the section from the velocity analysis is not so high. Although we have only two adjacent well log data on the seismic line, in order to make more detailed map, we tried to execute the seismic impedance inversion with MITI Nankai Trough Well data. We made a simple initial model and inverted to seismic impedance value. We got the good impedance section and delineated the gas hydrate bearing zones through it

  12. An Algorithm for Evaluating Fresnel-Zone Textural Roughness for Seismic Facies Interpretation

    NASA Astrophysics Data System (ADS)

    Di, H.; Gao, D.

    2014-12-01

    In reflection seismic interpretation, a 1-D convolutional model is commonly used to interpret amplitude variations based on the geometric ray theory assuming seismic wave to reflect at a reflection point; however, the propagation of seismic waves actually occurs in a finite zone around the geometric ray path and gets reflected from a zone known as Fresnel zone. The collected signal at the surface turns out to be the superposition of reflections from within the Fresnel zone, which is a function of texture. Generally, for a rough texture such as sandstone, the dominant reflection is from the zone margin, while for a smooth texture such as marine shale, the dominant reflection is from the zone center. Based on this concept, Fresnel-zone texture directly affects amplitude variations with offset (AVO), azimuth (AVAZ), and frequency (AVF). Here we develop a computer algorithm for evaluating Fresnel-zone textural roughness. The algorithm starts with dividing the Fresnel zone into a set of micro-zones. It then builds an initial texture model to be convolved with an extracted wavelet. By comparing the synthetic signal from a Fresnel zone to the real seismic signal within an analysis window at a target location, the model is adjusted and updated until both synthetic and real signals match best. The roughness is evaluated as the correlation coefficient between the generated texture model within the Fresnel zone and the ideal model for a rough texture medium. Our new algorithm is applied to a deep-water 3D seismic volume over offshore Angola, west Africa. The results show that a rough texture is associated with channel sands, whereas a smooth texture with marine shale.

  13. High-resolution 3-D P wave attenuation structure of the New Madrid Seismic Zone using local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Bisrat, Shishay T.; DeShon, Heather R.; Pesicek, Jeremy; Thurber, Clifford

    2014-01-01

    A three-dimensional (3-D), high-resolution P wave seismic attenuation model for the New Madrid Seismic Zone (NMSZ) is determined using P wave path attenuation (t*) values of small-magnitude earthquakes (MD < 3.9). Events were recorded at 89 broadband and short-period seismometers of the Cooperative New Madrid Seismic Zone Network and 40 short-period seismometers of the Portable Array for Numerical Data Acquisition experiment. The amplitude spectra of all the earthquakes are simultaneously inverted for source, path (t*), and site parameters. The t* values are inverted for QP using local earthquake tomography methods and a known 3-D P wave velocity model for the region. The four major seismicity arms of the NMSZ exhibit reduced QP (higher attenuation) than the surrounding crust. The highest attenuation anomalies coincide with areas of previously reported high swarm activity attributed to fluid-rich fractures along the southeast extension of the Reelfoot fault. The QP results are consistent with previous attenuation studies in the region, which showed that active fault zones and fractured crust in the NMSZ are highly attenuating.

  14. Monitoring deep geodynamic processes within Vrancea intermediate-depth seismic zone by geodetic means

    NASA Astrophysics Data System (ADS)

    Besutiu, Lucian; Zlagnean, Luminita

    2015-04-01

    Background Located in the bending zone of East Carpathians, the so-called Vrancea zone is one of the most active seismic regions in Europe. Despite many years of international research, its intermediate-depth seismicity within full intra-continental environment still represents a challenge of the 21st century. Infrastructure In the attempt to join the above-mentioned efforts, the Solid Earth Dynamics Department (SEDD) in the Institute of Geodynamics of the Romanian Academy has developed a special research infrastructure, mainly devoted to gravity and space geodesy observations. A geodetic network covering the epicentre area of the intermediate-depth earthquakes has been designed and implemented for monitoring deep geodynamic processes and their surface echoes. Within each base-station of the above-mentioned network, a still-reinforced concrete pillar allows for high accuracy repeated gravity and GPS determinations. Results Starting from some results of the previously run CERGOP and UNIGRACE European programmes, to which additional SEDD repeated field campaigns were added, an unusual geodynamic behaviour has been revealed in the area. 1) Crust deformation: unlike the overall uprising of East Carpathians, as a result of denudation followed by erosion, their SE bending zone, with Vrancea epicentre area exhibits a slight subsidence. 2) Gravity change: more than 200 microgals non-tidal gravity decrease over a 20 years time-span has been noticed within the subsiding area. Extended observations showed the gravity lowering as a nowadays continuing process. Interpretation This strange combination of topography subsidence and gravity lowering has been interpreted in terms of crust stretching in the Vrancea epicentre zone due to the gravity pull created by densification of the lower crust as a result of phase-transform processes taking place in the lithospheric compartment sunken into the upper mantle. The occurrence of crust earthquakes with vertical-extension focal

  15. A three-dimensional P wave velocity model for the Charlevoix seismic zone, Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Vlahovic, Gordana; Powell, Christine; Lamontagne, Maurice

    2003-09-01

    A three-dimensional P wave velocity model has been developed for the Charlevoix seismic zone (CSZ). The CSZ is located along the St. Lawrence River ˜100 km northeast of Quebec City, Canada, and is one of the most active seismic zones in eastern North America. Five earthquakes with magnitudes equal to or exceeding 6.0 have occurred in the CSZ in historic time, and around 200 earthquakes occur annually. Hypocenters are located in Precambrian basement rocks. Basement rocks have been affected by numerous tectonic events including Grenvillian collision, Iapetan rifting, and meteor impact. We performed a sequential, tomographic inversion for P wave velocity structure based upon 3093 P wave arrivals from 489 earthquakes recorded by 12 stations. High velocity is associated with the center of the impact crater. The region of high velocity is surrounded by low velocities interpreted to be highly disrupted rocks. An elongated, high-velocity region is present at midcrustal depths that trends parallel to the St. Lawrence River. Earthquakes avoid the high-velocity body and separate into two bands, one on either side of the feature. Larger earthquakes (magnitude ≥ 4) have occurred along the northern edges of the high-velocity region.

  16. Long Period Co-Seismic Gravity Modeling of Silent Slip Earthquakes Along the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Hayes, T. J.

    2004-05-01

    The Cascadia Subduction Zone (CSZ) is an area of large and potentially catastrophic seismic events which occur as large magnitude (Mm>8) events. The mitigation of such hazards within highly populated areas presents a difficult problem which is dependent upon such observations as plate motion and strain accumulation. Long period Bouguer anomalies may act as a proxy for permanent strain deformation at depth. To date there are no large scale models that successfully model the temporal gravity signal over extended spatial regions encompassing more than one fault. These deep slip events typically last for days to weeks which would generate a long period signal. The highly periodic (13--16 months) silent slip events along the Cascadia Subduction Zone (CSZ) present a ideal location for the observation of such long period signals. Models of co-seismic gravity changes based on the analytical solutions of Okada (1985) and Okubo (1992), which act as an upper limit, are in the range of 30 μ gals--800 μ gals. These amplitudes are well within the range of land based observations and potentially within the observable limits of several remote sensing satellites designed specifically for gravity data (e.g. GRACE, CHAMP, GEOS). This same technique should be applicable to any mechanism in which deformation occurs such as volcanic activity or glacial rebound.

  17. Seismicity and Geometry Properties of the Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Papadimitriou, E. E.; Karakostas, V. G.; Vallianatos, F.; Makropoulos, C.; Drakatos, G.

    2014-12-01

    Recent seismicity and fault plane solutions of earthquakes that occurred along the Hellenic Arc-Trench system are engaged for approximating the geometry of the subducted oceanic plate. Seismicity and focal mechanisms confirm the gentle subduction (~15o-20o) of the oceanic crust reaching a depth of 20 km at a distance of 100 km from the trench. The slab is then bending at larger angles, and in particular at ~45o up to the depth of 80 km and at ~65o up to the depth of 180 km, when seismicity ceased. This geometry of the slab is shown in a bunch of cross sections normal to the convergence strike, up to ~25o (east Crete Island). To the east the sparse inslab seismicity reveals an almost vertical dipping of the lower part (from 80 km downdip) of the descending slab. The slab interface that accommodates hazardous earthquakes is clearly nonplanar with the main seismic moment release taking place on its up-dip side. The fore-arc, upper plate seismicity, is remarkably low in comparison with both subduction and back arc seismicity, and confined inside a seismogenic layer having a width not exceeding the 20km. Offshore seismicity is spatially variable forming distinctive streaks thus revealing that parts of the oceanic crust are probably slipped aseismically. This observation along with the fact that coupling in the Hellenic arc is only about a tenth of the plate motion, imply the presence of areas of lower and higher coupling across the subduction interface. Areas of high coupling imply areas of the slab interface subjected to high normal forces and correlate with earthquake asperities. Although asperity distributions vary substantially through time, identification of such characteristics in the seismogenesis can have a significant impact in the seismic hazard assessment. This research has been co-funded by the European Union (European Social Fund) and Greek national resources under the framework of the "THALES Program: SEISMO FEAR HELLARC" project.

  18. Seismic imaging of the stagnant Pacific slab in the mantle transition zone under East Asia

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2008-12-01

    We used regional and global seismic tomography to determine high-resolution 3-D P-wave velocity structure of the crust and mantle down to 1200 km depth under Western Pacific to East Asia (Zhao, 2004, 2007; Huang and Zhao, 2006). A large number of arrival times of P, pP, PP and PcP waves recorded by many seismic stations in East Asia are used in the tomographic inversions. The subducting Pacific slab is imaged clearly as a high-velocity zone from the oceanic trenches down to 670-km depth, and intermediate-depth and deep earthquakes are located within the slab. The Pacific slab becomes stagnant in the mantle transition zone under eastern China. The western edge of the stagnant slab is generally parallel with the Japan trench and the Ryukyu trench and roughly coincides with a prominent surface topographic boundary in East China. Although there are some discrepancies between the topographic boundary and the western edge of the stagnant slab, both of them are located approximately 1800 km west of the trenches. The entire Pacific slab is stagnant in the mantle transition zone under Northeast China (53-37 degree north latitude). Under 37-28 degree north latitude, however, some of the slab materials are visible below the 670-km discontinuity, though most of the slab materials are still in the transition zone, suggesting that part of the slab materials have started to drop down to the lower mantle. Under the Mariana arc, the Pacific slab penetrates directly down to the lower mantle. It is also visible that the Philippine Sea slab has subducted down to the mantle transition zone depth under western Japan and the Ryukyu back-arc region (Abdelwahed and Zhao, 2007). There are three active intraplate volcanoes in China. The Changbai and Wudalianchi volcanoes in Northeast China are underlain by significant slow anomalies in the upper mantle, above the stagnant Pacific slab, suggesting that the two active volcanoes are not hot spots but a kind of back-arc volcanoes associated with

  19. Imaging 3D seismic velocity along the seismogenic zone of Algarve region (southern Portugal)

    NASA Astrophysics Data System (ADS)

    Rocha, João.; Bezzeghoud, Mourad; Caldeira, Bento; Dias, Nuno; Borges, José; Matias, Luís.; Dorbath, Catherine; Carrilho, Fernando

    2010-05-01

    seismotectonic picture of the region. This work is expected to produce a more detailed knowledge of the structure of the crust over the region of Algarve, being able to identify seismogenic zones, potentially generators of significant seismic events and also the identification of zones of active faults.

  20. Earthquakes in the Orozco transform zone: seismicity, source mechanisms, and tectonics

    USGS Publications Warehouse

    Trehu, Anne M.; Solomon, Sean C.

    1983-01-01

    As part of the Rivera Ocean Seismic Experiment, a network of ocean bottom seismometers and hydrophones was deployed in order to determine the seismic characteristics of the Orozco transform fault in the central eastern Pacific. We present hypocentral locations and source mechanisms for 70 earthquakes recorded by this network. All epicenters are within the transform region of the Orozco Fracture Zone and clearly delineate the active plate boundary. About half of the epicenters define a narrow line of activity parallel to the spreading direction and situated along a deep topographic trough that forms the northern boundary of the transform zone (region 1). Most focal depths for these events are very shallow, within 4 km of the seafloor; several well-determined focal depths, however, are as great as 7 km. No shallowing of seismic activity is observed as the rise-transform intersection is approached; to the contrary, the deepest events are within 10 km of the intersection. First motion polarities for most of the earthquakes in region 1 are compatible with right-lateral strike slip faulting along a nearly vertical plane, striking parallel to the spreading direction. Another zone of activity is observed in the central part of the transform (region 2). The apparent horizontal and vertical distribution of activity in this region is more scattered than in the first, and the first motion radiation patterns of these events do not appear to be compatible with any known fault mechanism. Pronounced lateral variations in crustal velocity structure are indicated for the transform region from refraction data and measurements of wave propagation directions. The effect of this lateral heterogeneity on hypocenters and fault plane solutions is evaluated by tracing rays through a three-dimensional velocity grid. While findings for events in region 1 are not significantly affected, in region 2, epicentral mislocations of up to 10 km and azimuthal deflections of up to 45° may result from

  1. Earthquakes in the Orozco Transform Zone: Seismicity, source mechanisms, and tectonics

    NASA Astrophysics Data System (ADS)

    TréHu, Anne M.; Solomon, Sean C.

    1983-10-01

    As part of the Rivera Ocean Seismic Experiment, a network of ocean bottom seismometers and hydrophones was deployed in order to determine the seismic characteristics of the Orozco transform fault in the central eastern Pacific. We present hypocentral locations and source mechanisms for 70 earthquakes recorded by this network. All epicenters are within the transform region of the Orozco Fracture Zone and clearly delineate the active plate boundary. About half of the epicenters define a narrow line of activity parallel to the spreading direction and situated along a deep topographic trough that forms the northern boundary of the transform zone (region 1). Most focal depths for these events are very shallow, within 4 km of the seafloor; several well-determined focal depths, however, are as great as 7 km. No shallowing of seismic activity is observed as the rise-transform intersection is approached; to the contrary, the deepest events are within 10 km of the intersection. First motion polarities for most of the earthquakes in region 1 are compatible with right-lateral strike slip faulting along a nearly vertical plane, striking parallel to the spreading direction. Another zone of activity is observed in the central part of the transform (region 2). The apparent horizontal and vertical distribution of activity in this region is more scattered than in the first, and the first motion radiation patterns of these events do not appear to be compatible with any known fault mechanism. Pronounced lateral variations in crustal velocity structure are indicated for the transform region from refraction data and measurements of wave propagation directions. The effect of this lateral heterogeneity on hypocenters and fault plane solutions is evaluated by tracing rays through a three-dimensional velocity grid. While findings for events in region 1 are not significantly affected, in region 2, epicentral mislocations of up to 10 km and azimuthal deflections of up to 45° may result from

  2. Anatomy of a megathrust: The 2010 M8.8 Maule, Chile earthquake rupture zone imaged using seismic tomography

    NASA Astrophysics Data System (ADS)

    Hicks, Stephen P.; Rietbrock, Andreas; Ryder, Isabelle M. A.; Lee, Chao-Shing; Miller, Matthew

    2014-11-01

    Knowledge of seismic velocities in the seismogenic part of subduction zones can reveal how material properties may influence large ruptures. Observations of aftershocks that followed the 2010 Mw 8.8 Maule, Chile earthquake provide an exceptional dataset to examine the physical properties of a megathrust rupture zone. We manually analysed aftershocks from onshore seismic stations and ocean bottom seismometers to derive a 3-D velocity model of the rupture zone using local earthquake tomography. From the trench to the magmatic arc, our velocity model illuminates the main features within the subduction zone. We interpret an east-dipping high P-wave velocity anomaly (>6.9 km/s) as the subducting oceanic crust and a low P-wave velocity (<6.25 km/s) in the marine forearc as the accretionary complex. We find two large P-wave velocity anomalies (∼7.8 km/s) beneath the coastline. These velocities indicate an ultramafic composition, possibly related to extension and a mantle upwelling during the Triassic. We assess the role played by physical heterogeneity in governing megathrust behaviour. Greatest slip during the Maule earthquake occurred in areas of moderate P-wave velocity (6.5-7.5 km/s), where the interface is structurally more uniform. At shallow depths, high fluid pressure likely influenced the up-dip limit of seismic activity. The high velocity bodies lie above portions of the plate interface where there was reduced coseismic slip and minimal postseismic activity. The northern velocity anomaly may have acted as a structural discontinuity within the forearc, influencing the pronounced crustal seismicity in the Pichilemu region. Our work provides evidence for how the ancient geological structure of the forearc may influence the seismic behaviour of subduction megathrusts.

  3. Seismic velocity models for the Denali fault zone along the Richardson Highway, Alaska

    USGS Publications Warehouse

    Brocher, T.M.; Fuis, G.S.; Lutter, W.J.; Christensen, N.I.; Ratchkovski, N.A.

    2004-01-01

    Crustal-scale seismic-velocity models across the Denali fault zone along the Richardson Highway show a 50-km-thick crust, a near vertical fault trace, and a 5-km-wide damage zone associated with the fault near Trans-Alaska Pipeline Pump Station 10, which provided the closest strong ground motion recordings of the 2002 Denali fault earthquake. We compare models, derived from seismic reflection and refraction surveys acquired in 1986 and 1987, to laboratory measurements of seismic velocities for typical metamorphic rocks exposed along the profiles. Our model for the 1986 seismic reflection profile indicates a 5-km-wide low-velocity zone in the upper 1 km of the Denali fault zone, which we interpret as fault gouge. Deeper refractions from our 1987 line image a 40-km wide, 5-km-deep low-velocity zone along the Denali fault and nearby associated fault strands, which we attribute to a composite damage zone along several strands of the Denali fault zone and to the obliquity of the seismic line to the fault zone. Our velocity model and other geophysical data indicate a nearly vertical Denali fault zone to a depth of 30 km. After-shocks of the 2002 Denali fault earthquake and our velocity model provide evidence for a flower structure along the fault zone consisting of faults dipping toward and truncated by the Denali fault. Wide-angle reflections indicate that the crustal thickness beneath the Denali fault is transitional between the 60-km-thick crust beneath the Alaska Range to the south, and the extended, 30-km-thick crust of the Yukon-Tanana terrane to the north.

  4. Seismic blanking zones in the deep-water Ullung Basin, East Sea of Korea.

    NASA Astrophysics Data System (ADS)

    Ryu, Byong-Jae; Riedel, Michael; Yoo, Dong-Geun

    2015-04-01

    A total 12366.395 L.km of 2D multichannel seismic data were acquired by the Korea Institute of Geoscience and Mineral Resources (KIGAM) for detecting and mapping seismic indicators for the presence of gas hydrate in the deep-water Ulleung Basin, East Sea of Korea. The seismic data were acquired using Trilogy System of Geco-Prakla, Bolt Air-gun System onboard the R/V TAMHAE II of KIGAM during the years of 2000 to 2004. The seismic faices of shallow sediments were also analyzed to understand the sedimentary strata developed in the basin. Seismic data were processed to define gas hydrate indicators such as bottom simulating reflectors (BSRs) and seismic blank zones. The BSR was identified by (a) its polarity opposite to the seafloor, (b) its seafloor-parallel reflection behavior, and (c) its occurrence at a sub-bottom depth corresponding to the expected base of gas hydrate stability zone, on heat flow and other thermal data for the region and on seismic velocity data. The seismic velocity analysis was also conducted for determining the velocity deviation effect of high-velocity gas hydrate and underlying low-velocity free gas. The BSRs occur mainly in the southern part of the basin where mass transport deposits are widely occurring. A number of vertical to sub-vertical seismic blanking zones were identified in the basin. The blanking zones are near-vertical broad chimney-like structures of reduced seismic reflectivity. They may be formed by gas and/or fluid upwelling through fractures and faults. Many of the blanking zones show apparent velocity pull-up effects of sediment layering structures that are interpreted to be a result of higher velocity gas hydrate. The presence of substantial amounts of gas hydrate in the blank zones were first found by piston coring in 2007, and subsequently confirmed by two deep-drilling expeditions in 2007 and 2010. Most of the blanking zones occur in well-bedded turbidite/hemi-pelagic sediments in the northern deep basin. The

  5. Stress drop at the Kephalonia Transform Zone estimated from the 2014 seismic sequence

    NASA Astrophysics Data System (ADS)

    Caporali, Alessandro; Bruyninx, Carine; Fernandes, Rui; Ganas, Athanassios; Kenyeres, Ambrus; Lidberg, Martin; Stangl, Guenter; Steffen, Holger; Zurutuza, Joaquin

    2016-01-01

    The Kephalonia Transform Zone (KTZ) is a seismically active dextral transform fault decoupling the extensional deformed area of the Ionian Abyssal Plain and the compressional deformed area of the Mediterranean Ridge. We estimate a prominent steady state strain rate of 225 ± 20 nstrain/year across the KTZ from the mean velocities of permanent Global Navigation Satellite System (GNSS) stations in East Italy and West Greece, which confirms previous estimates. Based on the regional statistical seismicity and using the local Gutenberg-Richter relation we investigate the energetic balance between stress accumulated as a consequence of the continuous dextral shear deformation, and the average stress released by shallow seismicity. If the maximum expected magnitude is Mw = 7.4, the estimated a and b parameters of the local Gutenberg-Richter relation and the geodetically determined shear-strain rate set an upper limit to the regional stress drop ∆σ ≤ 0.4 MPa. We verify these values by analyzing a seismic sequence on the KTZ between January and February 2014, which culminated in the Mw= 6.09 event of Jan. 26, and the Mw= 6.14 event of Feb. 3. The estimated epicenters lie within a few kilometers from each other, on the western side of the Kephalonia Island, at a hypocentral depth ≤ 10 km. The measured coseismic displacements of GNSS stations in this area fit the expected surface dislocation, which can be predicted for an elastic half-space using the measured fault-plane solutions as input. If the hypocenters of the aftershocks are taken as indicator of optimal dextral shear-stress orientation, then a low regional deviatoric stress of 0.4 MPa, that is comparable with the maximum regional stress drop estimated above, is required for the Coulomb stress to match the pattern of the aftershocks of the 2014 sequence. As a consequence, we conclude that the regional deviatoric stress and the seismically released shear stress are in close balance in the KTZ seismic province.

  6. High Resolution Seismic Imaging of Fault Zones: Methods and Examples From The San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Catchings, R. D.; Rymer, M. J.; Goldman, M.; Prentice, C. S.; Sickler, R. R.; Criley, C.

    2011-12-01

    Seismic imaging of fault zones at shallow depths is challenging. Conventional seismic reflection methods do not work well in fault zones that consist of non-planar strata or that have large variations in velocity structure, two properties that occur in most fault zones. Understanding the structure and geometry of fault zones is important to elucidate the earthquake hazard associated with fault zones and the barrier effect that faults impose on subsurface fluid flow. In collaboration with the San Francisco Public Utilities Commission (SFPUC) at San Andreas Lake on the San Francisco peninsula, we acquired combined seismic P-wave and S-wave reflection, refraction, and guided-wave data to image the principal strand of the San Andreas Fault (SAF) that ruptured the surface during the 1906 San Francisco earthquake and additional fault strands east of the rupture. The locations and geometries of these fault strands are important because the SFPUC is seismically retrofitting the Hetch Hetchy water delivery system, which provides much of the water for the San Francisco Bay area, and the delivery system is close to the SAF at San Andreas Lake. Seismic reflection images did not image the SAF zone well due to the brecciated bedrock, a lack of layered stratigraphy, and widely varying velocities. Tomographic P-wave velocity images clearly delineate the fault zone as a low-velocity zone at about 10 m depth in more competent rock, but due to soil saturation above the rock, the P-waves do not clearly image the fault strands at shallower depths. S-wave velocity images, however, clearly show a diagnostic low-velocity zone at the mapped 1906 surface break. To image the fault zone at greater depths, we utilized guided waves, which exhibit high amplitude seismic energy within fault zones. The guided waves appear to image the fault zone at varying depths depending on the frequency of the seismic waves. At higher frequencies (~30 to 40 Hz), the guided waves show strong amplification at the

  7. Tectonic significance of the South Iceland Seismic Transform Zone

    NASA Astrophysics Data System (ADS)

    Luxey, Pascal; Blondel, Philippe; Parson, Lindsay M.

    1997-08-01

    The subaerial expression of the Mid-Atlantic Ridge on Iceland comprises two overlapping spreading axes, referred to as the West Volcanic Zone (WVZ) and the East Volcanic Zone (EVZ), respectively. The way the spreading rate is distributed on both volcanic zones has an important impact on the stress pattern in the overlap area. Our field data from the area trace the evolution of the stress direction as recorded by slip motion on fault planes. We found four different strike-slip stress phases. An early N-S compression phase (A) preceded a NE-SW compression phase (B). This phase was followed by a SE-NW compression phase (C). However, we cannot date an E-W compression, phase (D), relative to the other phases. Numerical modeling based on the assumption that the WVZ has been permanently active during the last 3 Myr and that the EVZ is propagating southward confirms that stress directions have rotated clockwise by more than 140°. These results fit perfectly with our field analysis, and we propose that phase A corresponds to initial EVZ ridge-tip propagation, phase B to emplacement of the EVZ southern tip near Torfajökull, and phase C to an extreme southern location near the Surtsey Islands of the EVZ southern tip. Phase D could correspond to an intermediate stage between phases B and C. We suggest that this sequence of tectonics, recorded in a regional overlapping ridge-tip setting, is directly analogous to smaller-scale and more common phenomena at second-order ridge discontinuities throughout the global mid-ocean ridge system.

  8. Variation of seismic coupling with slab detachment and upper plate structure along the western Hellenic subduction zone

    NASA Astrophysics Data System (ADS)

    Laigle, Mireille; Sachpazi, Maria; Hirn, Alfred

    2004-10-01

    The western Hellenic subduction zone is characterized by a trenchward velocity of the upper plate. In the Ionian islands segment, complete seismic coupling is achieved, as is predicted by standard plate-tectonic models in which there is no slab pull force because the slab has broken off. The moderate local seismic moment rate relates to a shallow downdip limit for the seismogenic interface. This characteristic may be attributed to the ductility of the lower crust of the upper plate, which allows a décollement between the upper crust of the overriding plate and the subducting plate. Farther south, a deeper downdip limit of the seismogenic interface is indicated by thrust-faulting earthquakes, which persist much deeper in western Crete. A correspondingly larger downdip width of this seismogenic zone is consistent with the suggested larger maximum magnitude of earthquakes here. However, since the seismic moment release rate seems to be moderate in the Peloponnese and western Crete, like in in the Ionian islands, this seismically active interface cannot maintain complete seismic coupling across its larger downdip width. A cause may be the lateral addition of overweight to the part of the slab still attached in Crete, by the free fall of its part that has broken off from the surface further north. This increased slab pull reduces the compressive normal stress across the seismogenic interface and thus causes partial seismic coupling in its shallower part. However, the width of this part may provide an additional area contributing to slip in large earthquakes, which may nucleate deeper on stick-slip parts of the interface. Hints at anomalies in structure and seismicity, which need to be resolved, may relate to the present location of the edge of the tear in the slab.

  9. Evidences of Attenuation Zones Under Vesuvius Volcano By Local and Regional Seismicity

    NASA Astrophysics Data System (ADS)

    Cubellis, E.; Marturano, A.

    The seismicity at Vesuvius is characterised by events of moderate-energy concentrated in the caldera area. The foci of events are shallow, with depths less than 6 km under sea level. Periods of greater actvity were recorded in 1989, 1990, and, more recently, in 1995 and 1996. On October, 9, 1999 an earthquake (Ml=3.6) felt outside vesuvian area took place at Vesuvius-crater. It was not only the most energetic one since the last eruption of 1944 but also one of the most energetic among those occurring in the Vesuvian area since Roman times, as shown by an analysis of historical seismicity. Following the 9 october 1999 event, questionnaires were sent to all middle schools in the Vesuvian area and surrounding towns in order to define the extent to which the earthquake had been felt. The felt index was thus obtained, which represent the per- centage response to the question: Did you feel the earthquake? and used in later data processing. The felt index is a continuous parameter and this feature makes it possible, among other things, to relate it to ground motion parameters and overcome the prob- lem of the limits involved in using integer values of intensity. In particular, Q quality factor was determined by assuming direct proportionality between energy and felt in- dex. The values obtained were Q=60-90 and, Qa=100-150, in reasonable agreement with the P-wave quality factor of 70 to 100 reported below active volcanoes, consis- tent with high temperatures and generally associated with the presence of magmatic bodies. The near Southern Apennine seismogenetic zone, 50-100 km from Vesuvius, is characterised by prevalent normal faulting and large historical earthquakes. The last, the Irpinia earthquake of November 23, 1980 (Ms=6.9), developed on three fault sources at least, with apenninic trend (NW-SE), was characterised by elevated atten- uation zones in epicentral and external areas too. In particular, the macroseismic field showed a 25 km wide circular attenuation zone

  10. Effects of Shear Zone Development on Seismic Anisotropy in the Lower Grenvillian Crust

    NASA Astrophysics Data System (ADS)

    Song, W. J.; Gerbi, C. C.; Johnson, S. E.; Vel, S. S.

    2014-12-01

    Deep crustal structure, particularly the geometry of shear zones, affects the degree of crust-mantle coupling and the kinematics of crustal deformation. In principle, shear zones in the deep crust can be visible using seismic imaging due to the change in the orientations and modes of anisotropic minerals. However, matching the seismic signals to structures present remains a challenge. This work seeks to bridge some of that gap. We utilize the Parry Sound domain in the western Central Gneiss Belt of the Grenville orogen, Ontario, Canada, to develop quantitative relationships between geologic structures and seismic anisotropy. This region provides excellent examples of granulite and amphibolite facies shear zones up to several km wide. We investigated three rock types: (1) regionally deformed mafic and felsic granulite facies orthogneiss, (2) granulite facies shear zones, and (3) amphibolite facies shear zones. Both of the latter two derived from (1). Using the numerical architecture of asymptotic expansion homogenization (which considers grain-scale elastic interactions), we computed much higher precision seismic velocities than is possible with conventional Voigt-Reuss-Hill algorithms. In all sheared felsic rocks, the dominant quartz slip system was prism + rhomb indicating slowest Vp direction paralleled lineation because in quartz a-axis is near the slowest direction. In contrast, in all sheared mafic rocks, the fastest amphibole direction is strongly parallel to the lineation. As a consequence of combining the quartz and amphibole deformation, rocks comprising felsic and mafic layers have a weak seismic anisotropy. In monolithological shear zones, anisotropy can exceed 10%. Despite the promise this work illustrates, we must continue to consider the influence of inherited fabrics in the host rock. In a second line of investigation, we explored how shear zone volume fraction affects seismic anisotropy.

  11. Comparing the New Madrid Seismic Zone with the Osning Thrust: implications for GIA-induced intraplate tectonics in northern Germany

    NASA Astrophysics Data System (ADS)

    Brandes, Christian; Steffen, Holger; Wu, Patrick; Tanner, David; Winsemann, Jutta

    2013-04-01

    Continental intraplate tectonics is a widespread phenomenon that causes significant earthquakes. These earthquakes even occur in areas that are characterized by low strain rates and there are often long intervals between the individual seismic events (Gangopadhyay & Talwani, 2003) that result in a hazard potential. To better understand the controlling factors of intraplate plate earthquakes in northern Germany, we compare the Osning Thrust with the intensively-studied New Madrid Seismic Zone in the Midwest USA. Both areas share major similarities such as a failed rift-basin setting, the presence of intrusive magmatic bodies in the subsurface, tectonic reactivation during the Late Cretaceous, paleo- and historic seismicity and comparable fault parameters. In addition, both areas have a very similar Late Pleistocene deglaciation history. New Madrid was c. 340 km south of the Laurentide ice sheet and ice retreat started around 21 ka and was completed by 8.5 ka (Grollimund & Zoback, 2001). The Osning Thrust was c. 310 km south of the Scandinavian ice sheet and deglaciation began at 24 ka. Both areas show historic seismicity in a similar time frame (New Madrid Seismic Zone: 1811-1812, Johnston & Schweig, 1996); Osning Thrust: 1612 and 1767, Grünthal & Bosse, 1997). We use numerical simulations to identify the timing of potentially GIA-induced fault activity, which are based on the fault stability margin concept of Wu & Hasegawa (1996). From our modelling results it is evident that the fault stability margin changed to negative between 16 and 13 ka for the Osning Thrust, which matches the OSL data of fault-related growth strata (Brandes et al., 2012). For the New Madrid Seismic Zone, the fault stability margin becomes zero between 2.5 ka BP (before 1812) to about 2 ka after the 1812 event, depending on the parameters of the model. This indicates that for both seismic zones, seismicity due to deglaciation was and still is very likely. From this study it can be derived

  12. Seismicity of the St. Lawrence paleorift faults overprinted by a meteorite impact crater: Implications for crustal strength based on new earthquake relocations in the Charlevoix Seismic Zone, Eastern Canada

    NASA Astrophysics Data System (ADS)

    Yu, H.; Harrington, R. M.; Liu, Y.; Lamontagne, M.; Pang, M.

    2015-12-01

    The Charlevoix Seismic Zone (CSZ), located along the St. Lawrence River (SLR) ~100 km downstream from Quebec City, is the most active seismic zone in eastern Canada with five historic earthquakes of M 6-7 and ~ 200 events/year reported by the Canadian National Seismograph Network. Cataloged earthquake epicenters outline two broad linear zones along the SLR with little shallow seismicity in between. Earthquakes form diffuse clusters between major dipping faults rather than concentrating on fault planes. Detailed fault geometry in the CSZ is uncertain and the effect on local seismicity of a meteorite impact structure that overprints the paleorift faults remains ambiguous. Here we relocate 1639 earthquakes occurring in the CSZ between 01/1988 - 10/2010 using the double-difference relocation method HypoDD and waveforms primarily from 7 local permanent stations. We use the layered SLR north shore velocity model from Lamontagne (1999), and travel time differences based on both catalog and cross-correlated P and S-phase picks. Of the 1639 relocated earthquakes, 1236 (75.4%) satisfied selection criteria of horizontal and vertical errors less than 2 km and 1 km respectively. Cross-sections of relocated seismicity show hypocenters along distinct active fault segments. Earthquakes located beneath the north shore of the SLR are likely correlated with the NW Gouffre fault, forming a ~10 km wide seismic zone parallel to the river, with dip angle changing to near vertical at the northern edge of the impact zone. In contrast, seismicity beneath the SLR forms a diffuse cloud within the impact structure, likely representing a highly fractured volume. It further implies that faults could be locally weak and subject to high pore-fluid pressures. Seismicity outside the impact structure defines linear structures aligning with the Charlevoix fault. Relocated events of M > 4 all locate outside the impact structure, indicating they nucleated on the NE-SW-oriented paleorift faults.

  13. Space Geodesy and the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Smalley, Robert; Ellis, Michael A.

    2008-07-01

    One of the most contentious issues related to earthquake hazards in the United States centers on the midcontinent and the origin, magnitudes, and likely recurrence intervals of the 1811-1812 New Madrid earthquakes that occurred there. The stakeholder groups in the debate (local and state governments, reinsurance companies, American businesses, and the scientific community) are similar to the stakeholder groups in regions more famous for large earthquakes. However, debate about New Madrid seismic hazard has been fiercer because of the lack of two fundamental components of seismic hazard estimation: an explanatory model for large, midplate earthquakes; and sufficient or sufficiently precise data about the causes, effects, and histories of such earthquakes.

  14. Enriquillo–Plantain Garden fault zone in Jamaica: paleoseismology and seismic hazard

    USGS Publications Warehouse

    Koehler, R.D.; Mann, P.; Prentice, Carol S.; Brown, L.; Benford, B.; Grandison-Wiggins, M.

    2013-01-01

    The countries of Jamaica, Haiti, and the Dominican Republic all straddle the Enriquillo–Plantain Garden fault zone ( EPGFZ), a major left-lateral, strike-slip fault system bounding the Caribbean and North American plates. Past large earthquakes that destroyed the capital cities of Kingston, Jamaica (1692, 1907), and Port-au-Prince, Haiti (1751, 1770), as well as the 2010 Haiti earthquake that killed more than 50,000 people, have heightened awareness of seismic hazards in the northern Caribbean. We present here new geomorphic and paleoseismic information bearing on the location and relative activity of the EPGFZ, which marks the plate boundary in Jamaica. Documentation of a river bank exposure and several trenches indicate that this fault is active and has the potential to cause major destructive earthquakes in Jamaica. The results suggest that the fault has not ruptured the surface in at least 500 yr and possibly as long as 28 ka. The long period of quiescence and subdued geomorphic expression of the EPGFZ indicates that it may only accommodate part of the ∼7–9 mm=yr plate deformation rate measured geodetically and that slip may be partitioned on other undocumented faults. Large uncertainties related to the neotectonic framework of Jamaica remain and more detailed fault characterization studies are necessary to accurately assess seismic hazards.

  15. Fault zone reverberations from cross-correlations of earthquake waveforms and seismic noise

    NASA Astrophysics Data System (ADS)

    Hillers, Gregor; Campillo, Michel

    2016-03-01

    Seismic wavefields interact with low-velocity fault damage zones. Waveforms of ballistic fault zone head waves, trapped waves, reflected waves and signatures of trapped noise can provide important information on structural and mechanical fault zone properties. Here we extend the class of observable fault zone waves and reconstruct in-fault reverberations or multiples in a strike-slip faulting environment. Manifestations of the reverberations are significant, consistent wave fronts in the coda of cross-correlation functions that are obtained from scattered earthquake waveforms and seismic noise recorded by a linear fault zone array. The physical reconstruction of Green's functions is evident from the high similarity between the signals obtained from the two different scattered wavefields. Modal partitioning of the reverberation wavefield can be tuned using different data normalization techniques. The results imply that fault zones create their own ambiance, and that the here reconstructed reverberations are a key seismic signature of wear zones. Using synthetic waveform modelling we show that reverberations can be used for the imaging of structural units by estimating the location, extend and magnitude of lateral velocity contrasts. The robust reconstruction of the reverberations from noise records suggests the possibility to resolve the response of the damage zone material to various external and internal loading mechanisms.

  16. Location, structure, and seismicity of the Seattle fault zone, Washington: Evidence from aeromagnetic anomalies, geologic mapping, and seismic-reflection data

    USGS Publications Warehouse

    Blakely, R.J.; Wells, R.E.; Weaver, C.S.; Johnson, S.Y.

    2002-01-01

    A high-resolution aeromagnetic survey of the Puget Lowland shows details of the Seattle fault zone, an active but largely concealed east-trending zone of reverse faulting at the southern margin of the Seattle basin. Three elongate, east-trending magnetic anomalies are associated with north-dipping Tertiary strata exposed in the hanging wall; the magnetic anomalies indicate where these strata continue beneath glacial deposits. The northernmost anomaly, a narrow, elongate magnetic high, precisely correlates with magnetic Miocene volcanic conglomerate. The middle anomaly, a broad magnetic low, correlates with thick, nonmagnetic Eocene and Oligocene marine and fluvial strata. The southern anomaly, a broad, complex magnetic high, correlates with Eocene volcanic and sedimentary rocks. This tripartite package of anomalies is especially clear over Bainbridge Island west of Seattle and over the region east of Lake Washington. Although attenuated in the intervening region, the pattern can be correlated with the mapped strike of beds following a northwest-striking anticline beneath Seattle. The aeromagnetic and geologic data define three main strands of the Seattle fault zone identified in marine seismic-reflection profiles to be subparallel to mapped bedrock trends over a distance of >50 km. The locus of faulting coincides with a diffuse zone of shallow crustal seismicity and the region of uplift produced by the M 7 Seattle earthquake of A.D. 900-930.

  17. An Examination of Seismicity Linking the Solomon Islands and Vanuatu Subduction Zones

    NASA Astrophysics Data System (ADS)

    Neely, J. S.; Furlong, K. P.

    2015-12-01

    The Solomon Islands-Vanuatu composite subduction zone represents a tectonically complex region along the Pacific-Australia plate boundary in the southwest Pacific Ocean. Here the Australia plate subducts under the Pacific plate in two segments: the South Solomon Trench and the Vanuatu Trench. The two subducting sections are offset by a 200 km long, transform fault - the San Cristobal Trough (SCT) - which acts as a Subduction-Transform Edge Propagator (STEP) fault. The subducting segments have experienced much more frequent and larger seismic events than the STEP fault. The northern Vanuatu trench hosted a M8.0 earthquake in 2013. In 2014, at the juncture of the western terminus of the SCT and the southern South Solomon Trench, two earthquakes (M7.4 and M7.6) occurred with disparate mechanisms (dominantly thrust and strike-slip respectively), which we interpret to indicate the tearing of the Australia plate as its northern section subducts and southern section translates along the SCT. During the 2013-2014 timeframe, little seismic activity occurred along the STEP fault. However, in May 2015, three M6.8-6.9 strike-slip events occurred in rapid succession as the STEP fault ruptured east to west. These recent events share similarities with a 1993 strike-slip STEP sequence on the SCT. Analysis of the 1993 and 2015 STEP earthquake sequences provides constraints on the plate boundary geometry of this major transform fault. Preliminary research suggests that plate motion along the STEP fault is partitioned between larger east-west oriented strike-slip events and smaller north-south thrust earthquakes. Additionally, the differences in seismic activity between the subducting slabs and the STEP fault can provide insights into how stress is transferred along the plate boundary and the mechanisms by which that stress is released.

  18. 3D Euler deconvolution in the New Madrid seismic zone (eastern US)

    NASA Astrophysics Data System (ADS)

    Arroucau, P.; Vlahovic, G.; Powell, C. A.

    2011-12-01

    The seismicity of intraplate continental interiors is one of the most challenging -though a bit overlooked- research topics in seismology. The most famous of those is undoubtedly the New Madrid seismic zone (NMSZ), named after the city of New Madrid, Missouri, that was destroyed by one of the three M>7.0 earthquakes that occurred in central United States during the winter 1811-1812. After two centuries, there is still no consensus about what caused that crisis, how it is related to the current moderate magnitude activity of that region, and how likely it is that similarly large events will occur again in a near future in the NMSZ or in its vicinity. As often in such geodynamic settings, a key question is the role of structural reactivation in the current stress field. As modern earthquakes of the NMSZ mostly occur in the Precambrian basement, below the Mississippi embayment sedimentary cover and at such depths that no deformation is observed at the surface, almost no direct observation is available about faults segments that would be responsible for that seismicity. Yet the activity of the NMSZ is known to coincide with a Precambrian failed rift, the Reelfoot rift, whose geometry is mostly inferred from potential field data. In this work, we apply 3D Euler deconvolution to the total magnetic intensity field of the NMSZ. Euler deconvolution is a technique commonly used in exploration geophysics to determine the depth of magnetic sources and more generally to produce depth-to-basement maps and image deep structures buried beneath non-magnetic sedimentary cover. We obtain basement topography maps that we compare with previously published maps and with the earthquake distribution in the NMSZ.

  19. Seismic Risk Assessment of Active Faults in Japan in Terms of Population Exposure to Seismic Intensity

    NASA Astrophysics Data System (ADS)

    Nojima, Nobuoto; Fujiwara, Hiroyuki; Morikawa, Nobuyuki; Ishikawa, Yutaka; Okumura, Toshihiko; Miyakoshi, Junichi

    This study evaluates and compares seismic risks associated with inland crustal earthquakes in Japan on the basis of published data available on the Japan Seismic Hazard Information Station (J-SHIS). First, taking account of prediction uncertainty of the attenuation law of seismic intensity, the evaluation method for population exposure (PEX) to seismic intensity is presented. The method is applied to 333 seismic events potentially caused by main active faults (154 cases) and other active faults (179 cases). The relationship between population exposure and the probability of occurrence of seismic events ("P-PEX relation") and the resultant seismic risk curves are obtained. Generalized risk index which incorporates the effects of focusing on urgency (probability) or significance (PEX) is defined, producing various risk rankings of active faults.

  20. Use of archaeology to date liquefaction features and seismic events in the new madrid seismic zone, Central United States

    USGS Publications Warehouse

    Tuttle, M.P.; Lafferty, R. H.; Guccione, M.J.; Schweig, E. S.; Lopinot, N.; Cande, R.F.; Dyer-Williams, K.; Haynes, M.

    1996-01-01

    Prehistoric earthquake-induced liquefaction features occur in association with Native American occupation horizons in the New Madrid seismic zone. Age control of these liquefaction features, including sand-blow deposits, sand-blow craters, and sand dikes, can be accomplished by extensive sampling and flotation processing of datable materials as well as archaeobotanical analysis of associated archaeological horizons and pits. This approach increases both the amount of carbon for radiocarbon dating and the precision dating of artifact assemblages. Using this approach, we dated liquefaction features at four sites northwest of Blytheville, Arkansas, and found that at least one significant earthquake occurred in the New Madrid seismic zone between A.D. 1180 and 1400, probably about A.D. 1300 ?? 100 yr. In addition, we found three buried sand blows that formed between 3340 B.C. and A.D. 780. In this region where very large to great earthquakes appear to be closely timed, archaeology is helping to develop a paleoearthquake chronology for the New Madrid seismic zone. ?? 1996 John Wiley & Sons, Inc.

  1. Microstructural study of the Mertz shear zone, East Antarctica. Implications for deformation processes and seismic anisotropy.

    NASA Astrophysics Data System (ADS)

    Lamarque, Gaëlle; Bascou, Jérôme; Maurice, Claire; Cottin, Jean-Yves; Ménot, René-Pierre

    2015-04-01

    The Mertz Shear Zone (MSZ; 146°E 67°S; East Antarctica) is one major lithospheric-scale structure which outcrops on the eastern edge of the Terre Adélie Craton (Ménot et al., 2007) and that could connected with shear zones of South Australia (e.g., Kalinjala or Coorong shear zone (Kleinschmidt and Talarico, 2000; Gibson et al., 2013)) before the Cretaceous opening of the Southern Ocean. Geochronological and metamorphic studies indicated an MSZ activity at 1.7 and 1.5 Ga respectively in amphibolite and greenschists facies conditions. The deformation affects both the intermediate and lower crust levels, without associated voluminous magma injection. Granulite crop out in the area of the MSZ. They were dated at 2.4 Ga (Ménot et al., 2005) and could represent some preserved Neoarchean tectonites. These rocks show various degrees of deformation including penetrative structures that may display comparable features with that observed in amphibolite and greenschists facies rocks, i.e. NS-striking and steeply dipping foliation with weekly plunging lineation. In the field, cinematic indicators for the MSZ argue for a dominant dextral shear sense. We proceed to optical analysis and crystallographic preferred orientation (CPO) measurements using EBSD technique in order to better constrain the deformation processes. Our results highlight (1) a microstructural gradient from highly deformed rocks (mylonites), forming plurimetric large shear bands and showing evidences of plastic deformation, to slightly deformed rocks in preserved cores with no evidences of plastic deformation or with a clear strong static recrystallization; (2) CPO of minerals related with variations on deformation conditions. Feldspar and quartz CPO argue for plastic deformation at high temperature in the most deformed domains and for the absence of deformation or an important stage of static recrystallization in preserved cores; (3) uncommon CPO in orthopyroxene which are characterized by [010]-axes

  2. Seismo-thermo-mechanical modeling of subduction zone seismicity

    NASA Astrophysics Data System (ADS)

    van Dinther, Y.; Gerya, T.; Dalguer, L. A.; Mai, P. M.

    2013-12-01

    Recent megathrust earthquakes, e.g., the 2011 M9.0 Tohoku and the 2004 M9.2 Sumatra events, illustrated both their disastrous human and economic impact and our limited physical understanding of their spatial occurrence. To improve long-term seismic hazard assessment by overcoming the restricted direct observations in time and space, we developed a new numerical seismo-thermo-mechanical (STM) modeling approach. This approach may help to shed light onto the interaction between long-term subduction dynamics and deformation and associated short-term seismicity. Additional advantages of this STM approach include the physically consistent emergence of rupture paths, both on- and off-megathrust, and the inclusion of three key ingredients for seismic cycling; rate-dependent friction, slow tectonic loading, and visco-elastic relaxation. Following a successful validation against a laboratory seismic cycle model (van Dinther et al., 2013), this study extents this validation to a more realistic geometry and physical setup resembling Southern Chile. Results agree with a range of seismological, geodetic, and geological observations, albeit for their coseismic speeds. In particular, we observe a surprisingly good spatial agreement with inter- and coseismic displacements measured before and during the 2010 M8.8 Maule earthquake. These models imply that the temperature (and stress) dependence of viscosity, and corresponding interseismic locking, limit hypocenter locations to temperatures below ˜350C, which corresponds to ˜4-14 km below the fore-arc Moho. This temperature dependence furthermore inhibits ruptures from propagating beyond ˜450C, as they pass the physically-consistent brittle-ductile transition. To sustain subduction along the megathrust and generate events with observed recurrence and source parameters, the megathrust is constrained to be weak (i.e., pore fluid pressures of ˜75% to 99% of that of solid pressures). In the second part of this study we analyze the

  3. Seismic imaging of deformation zones associated with normal fault-related folding

    NASA Astrophysics Data System (ADS)

    Lapadat, Alexandru; Imber, Jonathan; Iacopini, David; Hobbs, Richard

    2016-04-01

    Folds associated with normal faulting, which are mainly the result of fault propagation and linkage of normal fault segments, can exhibit complex deformation patterns, with multiple synthetic splay faults, reverse faults and small antithetic Riedel structures accommodating flexure of the beds. Their identification is critical in evaluating connectivity of potential hydrocarbon reservoirs and sealing capacity of faults. Previous research showed that seismic attributes can be successfully used to image complex structures and deformation distribution in submarine thrust folds. We use seismic trace and coherency attributes, a combination of instantaneous phase, tensor discontinuity and semblance attributes to identify deformation structures at the limit of seismic resolution, which accommodate seismic scale folding associated with normal faulting from Inner Moray Firth Basin, offshore Scotland. We identify synthetic splay faults and reverse faults adjacent to the master normal faults, which are localized in areas with highest fold amplitudes. This zone of small scale faulting is the widest in areas with highest fault throw / fold amplitude, or where a bend is present in the main fault surface. We also explore the possibility that changes in elastic properties of the rocks due to deformation can contribute to amplitude reductions in the fault damage zones. We analyse a pre-stack time-migrated 3D seismic data-set, where seismic reflections corresponding to a regionally-continuous and homogeneous carbonate layer display a positive correlation between strain distribution and amplitude variations adjacent to the faults. Seismic amplitude values are homogeneously distributed within the undeformed area of the footwall, with a minimum deviation from a mean amplitude value calculated for each seismic line. Meanwhile, the amplitude dimming zone is more pronounced (negative deviation increases) and widens within the relay zone, where sub-seismic scale faults, which accommodate

  4. Seismic Activity in the Gulf of Mexico: a Preliminary Analysis

    NASA Astrophysics Data System (ADS)

    Franco, S. I.; Canet, C.; Iglesias, A.; Valdes-Gonzales, C. M.

    2013-05-01

    The southwestern corner of Gulf of Mexico (around the northern Isthmus of Tehuantepec) is exposed to an intense deep (> 100 km) seismic activity caused by the subduction of the Cocos plate. Aside from this, the gulf has been considered as a zone of low or no-seismicity. However, a sparse shallow seismic activity is observed across the Gulf of Mexico; some of these earthquakes have been strongly felt (e.g. 23/05/2007 and 10/09/2006), and the Jaltipan, 1959 earthquake caused fatalities and severe destruction in central and southern Veracruz. In this work we analyze 5 relevant earthquakes that occurred since 2001. At the central Gulf of Mexico focal mechanisms show inverse faults oriented approximately NW-SE with dip near 45 degrees, suggesting a link to sediment loading and/or to salt tectonics. On the other hand, in the southwestern corner of the gulf we analyzed some clear examples of strike-slip faults and activity probably related to the Veracruz Fault. One anomalous earthquake, recorded in 2007 in the western margin of the gulf, shows a strike-slip mechanism indicating a transform regime probably related with the East Mexican Fault. The recent improvement of the Mexican Seismological broadband network have allowed to record small earthquakes distributed in and around the Gulf of Mexico. Although the intermediate and large earthquakes in the region are infrequent, the historic evidence indicates that the magnitudes could reach Mw~6.4. This fact could be taken in consideration to reassess the seismic hazard for oil and industrial infrastructure in the region.

  5. Seismic evidence for an inner core transition zone

    PubMed

    Song; Helmberger

    1998-10-30

    Seismic waves that traverse Earth's inner core along north-south paths produce unusually broad pulse shapes at long periods (compared with waves along east-west paths) and reflections from below the inner core boundary at short periods. The observations provide compelling evidence for a seismic velocity discontinuity along north-south paths about 200 kilometers below the inner core boundary separating an isotropic upper inner core from an anisotropic lower inner core. The triplication associated with such a structure might be responsible for reported waveform complexity of short-period inner core arrivals along north-south paths and, if the depth of the boundary is laterally variable, their large travel-time variation.

  6. Ionospheric Response Due to Seismic Activity

    NASA Astrophysics Data System (ADS)

    Sharma, Dinesh Kumar

    2016-07-01

    Signatures of the seismic activity in the ionospheric F2 region have been studied by analyzing the measurement of electron and ion temperatures during the occurrence of earthquake. The ionospheric electron and ion temperatures data recorded by the RPA payload aboard the Indian SROSS-C2 satellite during the period from January 1995 to December 2000 were used for the altitude range 430-630 km over Indian region. The normal day's electron and ion temperatures have been compared to the temperatures recorded during the seismic activity. The details of seismic events were obtained from USGS earthquake data information website. It has been found that the average electron temperature is enhanced during the occurrence of earthquakes by 1.2 to 1.5 times and this enhancement was for ion temperature ranging from 1.1to 1.3 times over the normal day's average temperatures. The above careful quantitative analysis of ionospheric electron and ion temperatures data shows the consistent enhancement in the ionospheric electron and ion temperatures. It is expected that the seismogenic vertical electrical field propagates up to the ionospheric heights and induces Joule heating that may cause the enhancement in ionospheric temperatures.

  7. Issues Related to Seismic Activity Induced by the Injection of CO2 in Deep Saline Aquifers

    SciTech Connect

    Sminchak, Joel; Gupta, Neeraj; Byrer, Charles; Bergman, Perry

    2001-05-31

    technology provides effective tools for investigating and preventing induced seismic activity. More research is recommended on developing site selection criteria and operational constraints for CO2 storage sites near zones of seismic concerns.

  8. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, southwestern China

    PubMed Central

    2010-01-01

    The spatio-temporal variations of soil gas in the seismic fault zone produced by the 12 May 2008 Wenchuan Ms 8.0 earthquake were investigated based on the field measurements of soil gas concentrations after the main shock. Concentrations of He, H2, CO2, CH4, O2, N2, Rn, and Hg in soil gas were measured in the field at eight short profiles across the seismic rupture zone in June and December 2008 and July 2009. Soil-gas concentrations of more than 800 sampling sites were obtained. The data showed that the magnitudes of the He and H2 anomalies of three surveys declined significantly with decreasing strength of the aftershocks with time. The maximum concentrations of He and H2 (40 and 279.4 ppm, respectively) were found in three replicates at the south part of the rupture zone close to the epicenter. The spatio-temporal variations of CO2, Rn, and Hg concentrations differed obviously between the north and south parts of the fault zone. The maximum He and H2 concentrations in Jun 2008 occurred near the parts of the rupture zone where vertical displacements were larger. The anomalies of He, H2, CO2, Rn, and Hg concentrations could be related to the variation in the regional stress field and the aftershock activity. PMID:21134257

  9. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, southwestern China.

    PubMed

    Zhou, Xiaocheng; Du, Jianguo; Chen, Zhi; Cheng, Jianwu; Tang, Yi; Yang, Liming; Xie, Chao; Cui, Yueju; Liu, Lei; Yi, Li; Yang, Panxin; Li, Ying

    2010-12-06

    The spatio-temporal variations of soil gas in the seismic fault zone produced by the 12 May 2008 Wenchuan Ms 8.0 earthquake were investigated based on the field measurements of soil gas concentrations after the main shock. Concentrations of He, H2, CO2, CH4, O2, N2, Rn, and Hg in soil gas were measured in the field at eight short profiles across the seismic rupture zone in June and December 2008 and July 2009. Soil-gas concentrations of more than 800 sampling sites were obtained. The data showed that the magnitudes of the He and H2 anomalies of three surveys declined significantly with decreasing strength of the aftershocks with time. The maximum concentrations of He and H2 (40 and 279.4 ppm, respectively) were found in three replicates at the south part of the rupture zone close to the epicenter. The spatio-temporal variations of CO2, Rn, and Hg concentrations differed obviously between the north and south parts of the fault zone. The maximum He and H2 concentrations in Jun 2008 occurred near the parts of the rupture zone where vertical displacements were larger. The anomalies of He, H2, CO2, Rn, and Hg concentrations could be related to the variation in the regional stress field and the aftershock activity.

  10. Large-scale high-resolution seismic study in the western end of the Nankai seismogenic zone

    NASA Astrophysics Data System (ADS)

    Nakanishi, A.; Kodaira, S.; Fujie, G.; Obana, K.; Takizawa, K.; Kashiwase, K.; Kaneda, Y.

    2009-12-01

    In the Nankai Trough subduction seismogenic zone, M8-class great earthquake area can be divided into three segments; they are source regions of the Nankai, Tonankai and presumed Tokai earthquakes. The Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. Possibility of a megathrust earthquake along the Nankai Trough from Tokai to the Hyuga-nada, east off the Kyushu Island, Japan, is recently pointed out. To understand rupture synchronization and segmentation of the Nankai megathrust earthquake, it is important to know the deep seismic image and activity in the Hyuga-nada, the western end of the Nankai seismogenic zone. To obtain the deep structure related to the rupture synchronization and segmentation in this region, the large-scale high-resolution wide-angle seismic study was conducted in Dec. 2008. In this study, 160 ocean bottom seismographs are deployed with a spacing of 5km along four seismic profiles, 830km in a total length. A tuned airgun system (7800 cu. in.) was shot every 200m along these profiles (Fig. 1). This research is part of ‘Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes’ funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. The subducting plate interface beneath coseismic slip zone of the 1968 event (Mw7.5) is the top of the oceanic crust contacting with the old accreted sediments. The young accretionary sediments (Vp<5km/s) above the subducting Philippine Sea plate reaches a maximum thickness of ~10km, and is widely distributed landward. In the northwestern half of the slip zone of the 1968 event, the young Accretionary sediments become thin abruptly. Figure 1: Location map of seismic survey

  11. The Afar triple junction accommodation zone from InSAR derived strain and seismicity

    NASA Astrophysics Data System (ADS)

    Pagli, C.; Ebinger, C. J.; Keir, D.; Wang, H.

    2015-12-01

    Strain and seismicity show us the mode by which deformation is accommodated in rifting continents. Here we present a combined analysis of InSAR derived strain maps and seismicity of the Afar triple junction from 2006 to 2010. Our analysis shows that that the plate spreading motion is accommodated in different modes. A dogbone-shaped seismicity and strain distribution dominates the northern Red Sea branch of the triple junction, likely as a result of repeated dike intrusions 2005-2010. East of the triple junction, in the Gulf of Aden branch the strain and seismicity distribution appears decoupled. The strain focuses across the central part of several overlapping rifts, while the seismicity mainly occurs at the rift tips. Conversely, the Main Ethiopian Rift branch shows a narrow and elongated zone of both high strain and seismicity. The pattern suggests that the recent history of magmatic intrusions in the northern branch and mainly tectonic extension in the other branches creates a diverse triple junction accommodation zone.

  12. Thrust-type subduction-zone earthquakes and seamount asperites: A physical model for seismic rupture

    SciTech Connect

    Cloos, M. )

    1992-07-01

    A thrust-type subduction-zone earthquake of M{sub W} 7.6 ruptures an area of {approximately}6,000 km{sup 2}, has a seismic slip of {approximately}1 m, and is nucleated by the rupture of an asperity {approximately}25km across. A model for thrust-type subduction-zone seismicity is proposed in which basaltic seamounts jammed against the base of the overriding plate act as strong asperities that rupture by stick-slip faulting. A M{sub W} 7.6 event would correspond to the near-basal rupture of a {approximately}2-km-tall seamount. The base of the seamount is surrounded by a low shear-strength layer composed of subducting sediment that also deforms between seismic events by distributed strain (viscous flow). Planar faults form in this layer as the seismic rupture propagates out of the seamount at speeds of kilometers per second. The faults in the shear zone are disrupted after the event by aseismic, slow viscous flow of the subducting sediment layer. Consequently, the extent of fault rupture varies for different earthquakes nucleated at the same seamount asperity because new fault surfaces form in the surrounding subducting sediment layer during each fast seismic rupture.

  13. Imaging of reflection seismic energy for mapping shallow fracture zones in crystalline rocks

    SciTech Connect

    Kim, J.D.; Moon, W.M. ); Lodha, G.; Serzu, M.; Soonawala, N. )

    1994-05-01

    The high-resolution reflection seismic technique is being used increasingly to address geologic exploration and engineering problems. There are, however, a number of problems in applying reflection seismic techniques in a crystalline rock environment. The reflection seismic data collected over a fractured crystalline rock environment are often characterized by low signal-to-noise (S/N) and inconsistent reflection events. Thus it is important to develop data processing strategies and correlation schemes for the imaging of fracture zones in crystalline rocks. Two sets of very low S/N, high-resolution seismic data, previously collected by two different contractors in Pinawa, Canada, and the island of Aespoe, Sweden, were reprocessed and analyzed, with special emphasis on the shallow reflection events occurring at depths as shallow as 60--100 m.

  14. Reconciling short recurrence intervals with minor deformation in the New Madrid seismic zone

    USGS Publications Warehouse

    Schweig, E.S.; Ellis, M.A.

    1994-01-01

    At least three great earthquakes occurred in the New Madrid seismic zone in 1811 and 1812. Estimates of present-day strain rates suggest that such events may have a repeat time of 1000 years or less. Paleoseismological data also indicate that earthquakes large enough to cause soil liquefaction have occurred several times in the past 5000 years. However, pervasive crustal deformation expected from such a high frequency of large earthquakes is not observed. This suggests that the seismic zone is a young feature, possibly as young as several tens of thousands of years old and no more than a few million years old.At least three great earthquakes occurred in the New Madrid seismic zone in 1811 and 1812. Estimates of present-day strain rates suggest that such events may have a repeat time of 1000 years or less. Paleoseismological data also indicate that earthquakes large enough to cause soil liquefaction have occurred several times in the past 5000 years. However, pervasive crustal deformation expected from such a high frequency of large earthquakes is not observed. This suggests that the seismic zone is a young feature, possibly as young as several tens of thousands of years old and no more than a few million years old.

  15. Evidence for a high-velocity slab associated with the Hindu Kush seismic zone

    NASA Astrophysics Data System (ADS)

    Mellors, R. J.; Pavlis, G. L.; Hamburger, M. W.; Al-Shukri, H. J.; Lukk, A. A.

    1995-03-01

    We used teleseismic travel time residuals to determine lateral velocity variations of the crust and upper mantle in the Pamir-Hindu Kush region in Tadjikistan and Afghanistan. Data from 29 analog seismic stations in Tadjikistan and northern Afghanistan were used to determine travel time residuals for 210 teleseismic events ranging in distance from 28 deg to 87 deg and covering a broad range of azimuths. We inverted for velocity perturbations over a rectangular grid with a block size of 99 x 99 km. The model extended to a depth of 350 km with a 50-km-thick first layer and two 150-km-thick deeper layers. The results show a strong and well-resolved zone of high velocities in the upper mantle at depths greater than 200 km, coincident with the location of the Hindu Kush seismic zone. No clear velocity perturbations are associated with the Pamir seismic zone. Above 200 km little correlation is observed with the seismic zone, but indications of thicker crust under the Pamir and thinner crust under the Tadjik Depression are seen. The high velocities are most likely caused by the presence of oceanic lithosphere at depth.

  16. Evidence of contemporary and ancient excess fluid pressure in the New Madrid seismic zone of the Reelfoot Rift, central United States

    USGS Publications Warehouse

    McKeown, F.A.; Diehl, S.

    1994-01-01

    In the winter of 1811-12, three of the largest historic earthquakes in the United States occurred near New Madrid, Missouri. Seismicity continues to the present day throughout a tightly clustered pattern of epicenters centered on the bootheel of Missouri, including parts of northeastern Arkansas, northwestern Tennessee, western Kentucky, and southern Illinois. In 1990, the New Madrid seismic zone/central United States became the first seismically active region east of the Rocky Mountains to be designated a priority research area within the National Earthquake Hazards Reduction Program (NEHRP). This professional paper is a collection of papers, some published separately, presenting results of the newly intensified research program in this area. Major components of this research program include tectonic framework studies, seismicity and deformation monitoring and modeling, improved seismic hazard and risk assessments, and cooperative hazard mitigation studies.

  17. Seismic interferometry of the mantle transition zone beneath the western United States

    NASA Astrophysics Data System (ADS)

    Anderson, H. R.; Thorne, M. S.; Schmerr, N. C.; Brown, S. P.

    2011-12-01

    Determination of mantle structure is critical in understanding the ongoing dynamic processes in the Earth's interior and determining how the deep interior is connected to volcanic and tectonic features at the surface. Discontinuities within the mantle originating from solid-to-solid mineralogical phase transitions of olivine are important indicators of mantle temperature and composition, and provide key clues for interpreting velocity heterogeneity imaged by seismic tomography. Here we develop a new cross-correlation interferometry technique, to image the detailed topography of discontinuity surfaces and associated phase transitions within the mantle transition zone. Our interferometric technique is applied to 185 events originating along the South American subduction zone, recorded as transverse component broadband seismograms at dense seismic arrays in North America, including EarthScope's Transportable Array, and at the Japanese F-net seismic network. To retrieve upper mantle discontinuity structure, we study underside reflections of S-wave energy from the upper mantle discontinuities, arriving as precursory energy to the seismic phase SS. Our interferometric analysis consists of migrating the direct S-wave energy transmitted through the transition zone discontinuities recorded at North American seismic arrays with SS precursor energy reflecting off the underside of the discontinuities recorded at the F-net seismic array. This approach removes uncertainties in earthquake location and seismic velocity structure on the source side of the underside reflection point, providing enhanced vertical resolution of discontinuity topography over past studies. We present newly detailed images of the mantle discontinuity structure beneath the western United States, and compare our results with tomographic imaging. Initial results indicate large variations in mantle temperature and composition across the western United States associated with the subducting Juan de Fuca slab

  18. 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone.

    PubMed

    Moreno, Marcos; Rosenau, Matthias; Oncken, Onno

    2010-09-01

    The magnitude-8.8 Maule (Chile) earthquake of 27 February 2010 ruptured a segment of the Andean subduction zone megathrust that has been suspected to be of high seismic potential. It is the largest earthquake to rupture a mature seismic gap in a subduction zone that has been monitored with a dense space-geodetic network before the event. This provides an image of the pre-seismically locked state of the plate interface of unprecedentedly high resolution, allowing for an assessment of the spatial correlation of interseismic locking with coseismic slip. Pre-seismic locking might be used to anticipate future ruptures in many seismic gaps, given the fundamental assumption that locking and slip are similar. This hypothesis, however, could not be tested without the occurrence of the first gap-filling earthquake. Here we show evidence that the 2010 Maule earthquake slip distribution correlates closely with the patchwork of interseismic locking distribution as derived by inversion of global positioning system (GPS) observations during the previous decade. The earthquake nucleated in a region of high locking gradient and released most of the stresses accumulated in the area since the last major event in 1835. Two regions of high seismic slip (asperities) appeared to be nearly fully locked before the earthquake. Between these asperities, the rupture bridged a zone that was creeping interseismically with consistently low coseismic slip. The rupture stopped in areas that were highly locked before the earthquake but where pre-stress had been significantly reduced by overlapping twentieth-century earthquakes. Our work suggests that coseismic slip heterogeneity at the scale of single asperities should indicate the seismic potential of future great earthquakes, which thus might be anticipated by geodetic observations.

  19. Estimating Strain Accumulation in the New Madrid and Wabash Valley Seismic Zones

    NASA Astrophysics Data System (ADS)

    Craig, T. J.; Calais, E.

    2014-12-01

    The mechanical behaviour -- and hence earthquake potential -- of faults in continental interiors is a question of critical importance for the resultant seismic hazard, but no consensus has yet been reached on this controversial topic. The debate has focused on the central and eastern United States, in particular the New Madrid Seismic Zone, struck by three magnitude 7 or greater earthquakes in 1811--1812, and to a lesser extent the Wabash Valley Seismic Zone just to the north. A key aspect of this issue is the rate at which strain is currently accruing on those faults in the plate interior, a quantity that remains debated. Understanding if the present-day strain rates indicate sufficient motion to account for the historical and paleoseismological earthquakes by steady-state fault behaviour, or if strain accumulation is time-dependent in this area, is critical for investigating the causative process driving this seismicity in the plate interior, and how regional strain reflects the interplay between stresses arising from different geological processes. Here we address this issue with an analysis of up to 14 years of continuous GPS data from a network of 200 sites in the central United States centred on the New Madrid and Wabash Valley seismic zones. We find that high-quality sites in these regions show motions that are consistently within the 95% confidence limit of zero deformation relative to a rigid background. These results place an upper bound on regional strain accrual of 0.2 mm/yr and 0.5 mm/yr in the New Madrid and Wabash Valley Seismic Zones, respectively. These results, together with increasing evidence for temporal clustering and spatial migration of earthquake sequences in continental interiors, indicate that either tectonic loading rates or fault properties vary with time in the NMSZ and possibly plate-wide.

  20. The Crustal Structure of the Eastern Tennessee Seismic Zone Imaged by means of Seismic Noise Tomography and Potential Fields Inversion Methods

    NASA Astrophysics Data System (ADS)

    Brandmayr, E.; Arroucau, P.; Kuponiyi, A.; Vlahovic, G.

    2015-12-01

    We investigate the crustal structure of the Eastern Tennessee Seismic Zone (ETSZ) by means of group velocity tomography maps from seismic noise data analysis and potential fields inversion with the located Euler deconvolution method. Preliminary tomography results show that, in the uppermost crust, the New York-Alabama (NY-AL) magnetic lineament surface projection represents the boundary between a low velocity anomaly to the NW of the lineament and a high velocity anomaly to the SE of it. The low velocity anomaly migrates towards SE with increasing depth, suggesting a possible SE dipping weak structure in which most of the seismic activity takes place. Inversion of magnetic field data shows that the top of the magnetic basement ranges between 5 and 10 km of depth in the Valley and the Ridge physiographic province while it is shallower (less than 2 km of depth) and locally outcropping in the Blue Ridge province and in the Cumberland Plateau province. The estimated depth of the top of the magnetic basement is in general agreement with existing sedimentary cover map of the broad study area, although the local features of the ETSZ presented in this work are not resolved by previous studies due to poor resolution. The correlation between the magnetic signature and the position of the seismic velocity anomalies support the interpretation of the low velocity zone as a major basement fault, trending NE-SW and juxtaposing Granite-Rhyolite basement to the NW from Grenville southern Appalachian basement to the SE, of which the NY-AL magnetic lineament is the projection on the surface. In order to better constrain our interpretation, inversion of tomography results to obtain absolute shear waves velocity models will be performed as a next step.

  1. Seismic Wave Attenuation Estimated from Tectonic Tremor and Radiated Energy in Tremor for Various Subduction Zones

    NASA Astrophysics Data System (ADS)

    Yabe, S.; Baltay, A.; Ide, S.; Beroza, G. C.

    2013-12-01

    Ground motion prediction is an essential component of earthquake hazard assessment. Seismic wave attenuation with distance is an important, yet difficult to constrain, factor for such estimation. Using the empirical method of ground motion prediction equations (GMPEs), seismic wave attenuation with distance, which includes both the effect of anelastic attenuation and scattering, can be estimated from the distance decay of peak ground velocity (PGV) or peak ground acceleration (PGA) of ordinary earthquakes; however, in some regions where plate-boundary earthquakes are infrequent, such as Cascadia and Nankai, there are fewer data with which to constrain the empirical parameters. In both of those subduction zones, tectonic tremor occurs often. In this study, we use tectonic tremor to estimate the seismic wave attenuation with distance, and in turn use the attenuation results to estimate the radiated seismic energy of tremor. Our primary interest is in the variations among subduction zones. Ground motion attenuation and the distribution of released seismic energy from tremors are two important subduction zone characteristics. Therefore, it is very interesting to see whether there are variations of these parameters in different subduction zones, or regionally within the same subduction zone. It is also useful to estimate how much energy is released by tectonic tremor from accumulated energy to help understand subduction dynamics and the difference between ordinary earthquakes and tremor. We use the tectonic tremor catalog of Ide (2012) in Nankai, Cascadia, Mexico and southern Chile. We measured PGV and PGA of individual tremor bursts at each station. We assume a simple GMPE relationship and estimate seismic attenuation and relative site amplification factors from the data. In the Nankai subduction zone, there are almost no earthquakes on the plate interface, but intra-slab earthquakes occur frequently. Both the seismic wave attenuation with distance and the site

  2. Variable post-Paleozoic deformation detected by seismic reflection profiling across the northwestern "prong" of New Madrid seismic zone

    USGS Publications Warehouse

    McBride, J.H.; Pugin, Andre J.M.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.; Devera, J.A.; Denny, F.B.; Woolery, E.W.

    2003-01-01

    High-resolution shallow seismic reflection profiles across the northwesternmost part of the New Madrid seismic zone (NMSZ) and northwestern margin of the Reelfoot rift, near the confluence of the Ohio and Mississippi Rivers in the northern Mississippi embayment, reveal intense structural deformation that apparently took place during the late Paleozoic and/or Mesozoic up to near the end of the Cretaceous Period. The seismic profiles were sited on both sides of the northeast-trending Olmsted fault, defined by varying elevations of the top of Mississippian (locally base of Cretaceous) bedrock. The trend of this fault is close to and parallel with an unusually straight segment of the Ohio River and is approximately on trend with the westernmost of two groups of northeast-aligned epicenters ("prongs") in the NMSZ. Initially suspected on the basis of pre-existing borehole data, the deformation along the fault has been confirmed by four seismic reflection profiles, combined with some new information from drilling. The new data reveal (1) many high-angle normal and reverse faults expressed as narrow grabens and anticlines (suggesting both extensional and compressional regimes) that involved the largest displacements during the late Cretaceous (McNairy); (2) a different style of deformation involving probably more horizontal displacements (i.e., thrusting) that occurred at the end of this phase near the end of McNairy deposition, with some fault offsets of Paleocene and younger units; (3) zones of steeply dipping faults that bound chaotic blocks similar to that observed previously from the nearby Commerce geophysical lineament (CGL); and (4) complex internal deformation stratigraphically restricted to the McNairy, suggestive of major sediment liquefaction or landsliding. Our results thus confirm the prevalence of complex Cretaceous deformations continuing up into Tertiary strata near the northern terminus of the NMSZ. ?? 2003 Elsevier Science B.V. All rights reserved.

  3. Structure of the eastern Seattle fault zone, Washington state: New insights from seismic reflection data

    USGS Publications Warehouse

    Liberty, L.M.; Pratt, T.L.

    2008-01-01

    We identify and characterize the active Seattle fault zone (SFZ) east of Lake Washington with newly acquired seismic reflection data. Our results focus on structures observed in the upper 1 km below the cities of Bellevue, Sammamish, Newcastle, and Fall City, Washington. The SFZ appears as a broad zone of faulting and folding at the southern boundary of the Seattle basin and north edge of the Seattle uplift. We interpret the Seattle fault as a thrust fault that accommodates north-south shortening by forming a fault-propagation fold with a forelimb breakthrough. The blind tip of the main fault forms a synclinal growth fold (deformation front) that extends at least 8 km east of Vasa Park (west side of Lake Sammamish) and defines the south edge of the Seattle basin. South of the deformation front is the forelimb break-through fault, which was exposed in a trench at Vasa Park. The Newcastle Hills anticline, a broad anticline forming the north part of the Seattle uplift east of Lake Washington, is interpreted to lie between the main blind strand of the Seattle fault and a backthrust. Our profiles, on the northern limb of this anticline, consistently image north-dipping strata. A structural model for the SFZ east of Lake Washington is consistent with about 8 km of slip on the upper part of the Seattle fault, but the amount of motion is only loosely constrained.

  4. Earthquake Hazard in the New Madrid Seismic Zone Remains a Concern

    USGS Publications Warehouse

    Frankel, A.D.; Applegate, D.; Tuttle, M.P.; Williams, R.A.

    2009-01-01

    There is broad agreement in the scientific community that a continuing concern exists for a major destructive earthquake in the New Madrid seismic zone. Many structures in Memphis, Tenn., St. Louis, Mo., and other communities in the central Mississippi River Valley region are vulnerable and at risk from severe ground shaking. This assessment is based on decades of research on New Madrid earthquakes and related phenomena by dozens of Federal, university, State, and consulting earth scientists. Considerable interest has developed recently from media reports that the New Madrid seismic zone may be shutting down. These reports stem from published research using global positioning system (GPS) instruments with results of geodetic measurements of strain in the Earth's crust. Because of a lack of measurable strain at the surface in some areas of the seismic zone over the past 14 years, arguments have been advanced that there is no buildup of stress at depth within the New Madrid seismic zone and that the zone may no longer pose a significant hazard. As part of the consensus-building process used to develop the national seismic hazard maps, the U.S. Geological Survey (USGS) convened a workshop of experts in 2006 to evaluate the latest findings in earthquake hazards in the Eastern United States. These experts considered the GPS data from New Madrid available at that time that also showed little to no ground movement at the surface. The experts did not find the GPS data to be a convincing reason to lower the assessment of earthquake hazard in the New Madrid region, especially in light of the many other types of data that are used to construct the hazard assessment, several of which are described here.

  5. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  6. The seismicity of Ethiopia; active plate tectonics

    USGS Publications Warehouse

    Mohr, P.

    1981-01-01

    Ethiopia, descended from the semimythical Kingdom of Punt, lies at the strategic intersection of Schmidt's jigsaw puzzle where the Red Sea, Gulf of Aden, and the African Rift System meet. Because of geologically recent uplift combined with rapid downcutting erosion by rivers, notably the Blue Nile (Abbay), Ethiopia is the most mountainous country in Africa. It is also the most volcanically active, while its historical seismicity matches that of the midocean ridges. And, in a sense, Ethiopia is host to an evoloving ocean ridge system. 

  7. CRUSTAL STRUCTURE OF THE SOUTHERN CALAVERAS FAULT ZONE, CENTRAL CALIFORNIA, FROM SEISMIC REFRACTION INVESTIGATIONS.

    USGS Publications Warehouse

    Blumling, Peter; Mooney, Walter D.; Lee, W.H.K.

    1985-01-01

    A magnitude 5. 7 earthquake on August 6, 1979, within the Calaveras fault zone, near Coyote Lake of west-central California, motivated a seismic-refraction investigation in this area. A northwest-southeast profile along the fault, as well as two fan profiles across the fault were recorded to examine the velocity structure of this region. The analysis of the data reveals a complicated upper crustal velocity structure with strong lateral variations in all directions. Velocities within the fault zone were determined from the fan profiles. Near Anderson Lake, a pronounced delay of first arrivals on the fan records indicates a vertical 1- to 2-km-wide near-surface, low-velocity zone along the fault. Near Coyote Lake, the delays observed in the fan records correlate with two subsurface en-echelon fault planes which have been previously identified from lineations in the seismicity pattern. Refs.

  8. Systems for low frequency seismic and infrasound detection of geo-pressure transition zones

    DOEpatents

    Shook, G. Michael; LeRoy, Samuel D.; Benzing, William M.

    2007-10-16

    Methods for determining the existence and characteristics of a gradational pressurized zone within a subterranean formation are disclosed. One embodiment involves employing an attenuation relationship between a seismic response signal and increasing wavelet wavelength, which relationship may be used to detect a gradational pressurized zone and/or determine characteristics thereof. In another embodiment, a method for analyzing data contained within a response signal for signal characteristics that may change in relation to the distance between an input signal source and the gradational pressurized zone is disclosed. In a further embodiment, the relationship between response signal wavelet frequency and comparative amplitude may be used to estimate an optimal wavelet wavelength or range of wavelengths used for data processing or input signal selection. Systems for seismic exploration and data analysis for practicing the above-mentioned method embodiments are also disclosed.

  9. Methods and systems for low frequency seismic and infrasound detection of geo-pressure transition zones

    DOEpatents

    Shook, G. Michael; LeRoy, Samuel D.; Benzing, William M.

    2006-07-18

    Methods for determining the existence and characteristics of a gradational pressurized zone within a subterranean formation are disclosed. One embodiment involves employing an attenuation relationship between a seismic response signal and increasing wavelet wavelength, which relationship may be used to detect a gradational pressurized zone and/or determine characteristics thereof. In another embodiment, a method for analyzing data contained within a response signal for signal characteristics that may change in relation to the distance between an input signal source and the gradational pressurized zone is disclosed. In a further embodiment, the relationship between response signal wavelet frequency and comparative amplitude may be used to estimate an optimal wavelet wavelength or range of wavelengths used for data processing or input signal selection. Systems for seismic exploration and data analysis for practicing the above-mentioned method embodiments are also disclosed.

  10. Crustal velocity structure associated with the eastern Tennessee seismic zone: Vp and Vs images based upon local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Powell, Christine A.; Withers, Mitchell M.; Cox, Randel Tom; Vlahovic, Gordana; Arroucau, Pierre

    2014-01-01

    We present three-dimensional P and S wave velocity models for the active eastern Tennessee seismic zone (ETSZ) using arrival time data from more than 1000 local earthquakes. A nonlinear tomography method is used that involves sequential inversion for model and hypocenter parameters. We image several velocity anomalies that persist through most of the inversion volume. Some anomalies support the presence of known features such as an ancient rift zone in northern Tennessee. Other anomalies reveal the presence of basement features that can be correlated with regional gravity and magnetic anomalies. We image a narrow, NE-SW trending, steeply dipping zone of low velocities that extends to a depth of at least 24 km and is associated with the vertical projection of the prominent New York-Alabama magnetic lineament. The low-velocity zone may have an apparent dip to the SE at depths exceeding 15 km. The low-velocity zone is interpreted as a major basement fault juxtaposing Granite-Rhyolite basement to the NW from Grenville southern Appalachian basement to the SE. Relocated hypocenters align in near-vertical segments suggesting reactivation of a distributed zone of deformation associated with a major strike-slip fault. We suggest that the ETSZ represents reactivation of an ancient shear zone established during formation of the super continent Rodinia.

  11. Kinematics of the New Madrid seismic zone, central United States, based on stepover models

    USGS Publications Warehouse

    Pratt, Thomas L.

    2012-01-01

    Seismicity in the New Madrid seismic zone (NMSZ) of the central United States is generally attributed to a stepover structure in which the Reelfoot thrust fault transfers slip between parallel strike-slip faults. However, some arms of the seismic zone do not fit this simple model. Comparison of the NMSZ with an analog sandbox model of a restraining stepover structure explains all of the arms of seismicity as only part of the extensive pattern of faults that characterizes stepover structures. Computer models show that the stepover structure may form because differences in the trends of lower crustal shearing and inherited upper crustal faults make a step between en echelon fault segments the easiest path for slip in the upper crust. The models predict that the modern seismicity occurs only on a subset of the faults in the New Madrid stepover structure, that only the southern part of the stepover structure ruptured in the A.D. 1811–1812 earthquakes, and that the stepover formed because the trends of older faults are not the same as the current direction of shearing.

  12. Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity

    USGS Publications Warehouse

    McCrory, Patricia A.; Blair, J. Luke; Waldhause, Felix; Oppenheimer, David H.

    2012-01-01

    A new model of the subducted Juan de Fuca plate beneath western North America allows first-order correlations between the occurrence of Wadati-Benioff zone earthquakes and slab geometry, temperature, and hydration state. The geo-referenced 3D model, constructed from weighted control points, integrates depth information from earthquake locations and regional seismic velocity studies. We use the model to separate earthquakes that occur in the Cascadia forearc from those that occur within the underlying Juan de Fuca plate and thereby reveal previously obscured details regarding the spatial distribution of earthquakes. Seismicity within the slab is most prevalent where the slab is warped beneath northwestern California and western Washington suggesting that slab flexure, in addition to expected metamorphic dehydration processes, promotes earthquake occurrence within the subducted oceanic plate. Earthquake patterns beneath western Vancouver Island are consistent with slab dehydration processes. Conversely, the lack of slab earthquakes beneath western Oregon is consistent with an anhydrous slab. Double-differenced relocated seismicity resolves a double seismic zone within the slab beneath northwestern California that strongly constrains the location of the plate interface and delineates a cluster of seismicity 10 km above the surface that includes the 1992 M7.1 Mendocino earthquake. We infer that this earthquake ruptured a surface within the Cascadia accretionary margin above the Juan de Fuca plate. We further speculate that this earthquake is associated with a detached fragment of former Farallon plate. Other subsurface tectonic elements within the forearc may have the potential to generate similar damaging earthquakes.

  13. Monitoring transient changes within overpressured regions of subduction zones using ambient seismic noise.

    PubMed

    Chaves, Esteban J; Schwartz, Susan Y

    2016-01-01

    In subduction zones, elevated pore fluid pressure, generally linked to metamorphic dehydration reactions, has a profound influence on the mechanical behavior of the plate interface and forearc crust through its control on effective stress. We use seismic noise-based monitoring to characterize seismic velocity variations following the 2012 Nicoya Peninsula, Costa Rica earthquake [M w (moment magnitude) 7.6] that we attribute to the presence of pressurized pore fluids. Our study reveals a strong velocity reduction (~0.6%) in a region where previous work identified high forearc pore fluid pressure. The depth of this velocity reduction is constrained to be below 5 km and therefore not the result of near-surface damage due to strong ground motions; rather, we posit that it is caused by fracturing of the fluid-pressurized weakened crust due to dynamic stresses. Although pressurized fluids have been implicated in causing coseismic velocity reductions beneath the Japanese volcanic arc, this is the first report of a similar phenomenon in a subduction zone setting. It demonstrates the potential to identify pressurized fluids in subduction zones using temporal variations of seismic velocity inferred from ambient seismic noise correlations. PMID:26824075

  14. Monitoring transient changes within overpressured regions of subduction zones using ambient seismic noise

    PubMed Central

    Chaves, Esteban J.; Schwartz, Susan Y.

    2016-01-01

    In subduction zones, elevated pore fluid pressure, generally linked to metamorphic dehydration reactions, has a profound influence on the mechanical behavior of the plate interface and forearc crust through its control on effective stress. We use seismic noise–based monitoring to characterize seismic velocity variations following the 2012 Nicoya Peninsula, Costa Rica earthquake [Mw (moment magnitude) 7.6] that we attribute to the presence of pressurized pore fluids. Our study reveals a strong velocity reduction (~0.6%) in a region where previous work identified high forearc pore fluid pressure. The depth of this velocity reduction is constrained to be below 5 km and therefore not the result of near-surface damage due to strong ground motions; rather, we posit that it is caused by fracturing of the fluid-pressurized weakened crust due to dynamic stresses. Although pressurized fluids have been implicated in causing coseismic velocity reductions beneath the Japanese volcanic arc, this is the first report of a similar phenomenon in a subduction zone setting. It demonstrates the potential to identify pressurized fluids in subduction zones using temporal variations of seismic velocity inferred from ambient seismic noise correlations. PMID:26824075

  15. Monitoring transient changes within overpressured regions of subduction zones using ambient seismic noise.

    PubMed

    Chaves, Esteban J; Schwartz, Susan Y

    2016-01-01

    In subduction zones, elevated pore fluid pressure, generally linked to metamorphic dehydration reactions, has a profound influence on the mechanical behavior of the plate interface and forearc crust through its control on effective stress. We use seismic noise-based monitoring to characterize seismic velocity variations following the 2012 Nicoya Peninsula, Costa Rica earthquake [M w (moment magnitude) 7.6] that we attribute to the presence of pressurized pore fluids. Our study reveals a strong velocity reduction (~0.6%) in a region where previous work identified high forearc pore fluid pressure. The depth of this velocity reduction is constrained to be below 5 km and therefore not the result of near-surface damage due to strong ground motions; rather, we posit that it is caused by fracturing of the fluid-pressurized weakened crust due to dynamic stresses. Although pressurized fluids have been implicated in causing coseismic velocity reductions beneath the Japanese volcanic arc, this is the first report of a similar phenomenon in a subduction zone setting. It demonstrates the potential to identify pressurized fluids in subduction zones using temporal variations of seismic velocity inferred from ambient seismic noise correlations.

  16. Cyclic stressing and seismicity at strongly coupled subduction zones

    USGS Publications Warehouse

    Taylor, M.A.J.; Zheng, G.; Rice, J.R.; Stuart, W.D.; Dmowska, R.

    1996-01-01

    We use the finite element method to analyze stress variations in and near a strongly coupled subduction zone during an earthquake cycle. Deformation is assumed to be uniform along strike (plane strain on a cross section normal to the trench axis), and periodic earthquake slip is imposed consistent with the long-term rate of plate convergence and degree of coupling. Simulations of stress and displacement rate fields represent periodic fluctuations in time superimposed on an average field. The oceanic plate, descending slab, and continental lithosphere are assumed here to respond elastically to these fluctuations, and the remaining mantle under and between plates is assumed to respond as Maxwell viscoelastic. In the first part of the analysis we find that computed stress fluctuations in space and time are generally consistent with observed earthquake mechanism variations with time since a great thrust event. In particular, trench-normal extensional earthquakes tend to occur early in the earthquake cycle toward the outer rise but occur more abundantly late in the cycle in the subducting slab downdip of the main thrust zone. Compressional earthquakes, when they occur at all, have the opposite pattern. Our results suggest also that the actual timing of extensional outer rise events is controlled by the rheology of the shallow aseismic portion of the thrust interface. The second part of the analysis shows the effects of mantle relaxation on the rate of ground surface deformation during the earthquake cycle. Models without relaxation predict a strong overall compressional strain rate in the continental plate above the main thrust zone, with the strain rate constant between mainshocks. However with significant relaxation present, a localized region of unusually low compressional, or even slightly extensional, strain rate develops along the surface of the continental plate above and somewhat inland from the downdip edge of the locked main thrust zone. The low strain rate

  17. Nucleation, propagation and arrest of seismic swarms in the Tjörnes Fracture Zone (North Iceland)

    NASA Astrophysics Data System (ADS)

    Rivalta, E.; Passarelli, L.; Maccaferri, F.; Hensch, M.; Metzger, S.; Jakobsdottir, S. S.; Corbi, F.; Jonsson, S.; Dahm, T.

    2015-12-01

    The Tjörnes Fracture Zone (TFZ) connects the Northern Volcanic Zone to the Mid-Atlantic ridge north of Iceland. It primarily consists of two transform structures, the Húsavík-Flatey Fault (HFF) and the Grímsey Oblique Rift (GOR), which together have experienced about ten M>6 earthquakes since 1750. There is growing concern that a large earthquake may be due in the TFZ. The GOR and the northwestern part of the HFF have been seismically very active during the past two decades, often in the form of seismic swarms of various intensity and duration. The most energetic swarms during this period took place in October 2012 and March 2013, with several M>5 earthquakes. These and previous swarms occurred offshore and are poorly understood, in particular regarding the physical mechanism behind their generation and to what extent the swarm-like activity might temporally or permanently modify the hazard in the entire TFZ. Here we study the spatio-temporal pattern of earthquake swarms occurring in the TFZ since 1996. We find that the swarms show spatial complementarity, i.e., in general they do not overlap spatially with earlier swarms. Moreover, together they have progressively filled up the entire GOR and the western half of the HFF. Each swarm shows a clear migration of hypocenters on their respective fault planes. This is particularly visible in the September-October 2012 and March 2013 sequences, where the earthquakes expanded concentrically from a central, focused patch on the fault to the entire fault area excited by seismicity. The swarms typically start as very localized microseismicity, lasting for a few hours to a few days. Then, the hypocenter area starts to expand, with earthquakes migrating at velocities ranging from 1 km/day up to 1 km/h. The migration sometimes accelerates or decelerates, depending on the case, and then comes to a sudden stop, with microseismicity continuing on the fault plane for a few days or weeks. The estimated rupture duration and

  18. Seismic activity in the Transantarctic Mountains recorded by the TAMSEIS seismic array.

    NASA Astrophysics Data System (ADS)

    Anandakrishnan, S.; Stapley, N.; Lawrence, J. F.; Winberry, J. P.; Shore, P. J.; Voigt, D. E.; Wiens, D.; Nyblade, A.

    2004-12-01

    To investigate the links between glaciation and tectonics, we conducted a large-scale seismic deployment in Antarctica that measured local and regional seismicity of both the glaciated terrain of East Antarctica and the non-glaciated Transantarctic Mountains (TAM). The TAM are hypothesized to have formed by rift-flank uplift of the southwestern margin of the West Antarctic Rift System. Active extension of this rift and/or continued uplift of the TAM would likely result in relatively high levels of seismicity along the mountain front. In addition to seismicity from tectonic activity, we suggest that the flow of glaciers, particularly where they accelerate through the TAM, could result in glacier-induced seismicity. We recorded relatively high levels of local seismicity in the TAM. The majority of the seismicity was close to and slightly west of the TAM, beneath the East Antarctic Ice Sheet. We used the double-difference hypocenter location method (Waldhauser and Ellsworth, 2000; Waldhauser 2001) to better image clusters of events. Many of the events are shallow and cluster beneath the David Glacier (which leads to the Drygalski Ice Tongue) and the Darwin Glacier. We suggest that these events are due to fracture at the base of the glaciers, as they steepen towards the coast. We continue to investigate the possibility of surface crevassing and TAM uplift-induced seismicity (along faults which the glaciers have exploited) as the cause of the seismicity.

  19. Seismic properties of lawsonite eclogites from the southern Motagua fault zone, Guatemala

    NASA Astrophysics Data System (ADS)

    Kim, Daeyeong; Wallis, Simon; Endo, Shunsuke; Ree, Jin-Han

    2016-05-01

    We present new data on the crystal preferred orientation (CPO) and seismic properties of omphacite and lawsonite in extremely fresh eclogite from the southern Motagua fault zone, Guatemala, to discuss the seismic anisotropy of subducting oceanic crust. The CPO of omphacite is characterized by (010)[001], and it shows P-wave seismic anisotropies (AVP) of 1.4%-3.2% and S-wave seismic anisotropies (AVS) of 1.4%-2.7%. Lawsonite exhibits (001) planes parallel to the foliation and [010] axes parallel to the lineation, and seismic anisotropies of 1.7%-6.6% AVP and 3.4%-14.7% AVS. The seismic anisotropy of a rock mass consisting solely of omphacite and lawsonite is 1.2%-4.1% AVP and 1.8%-6.8% AVS. For events that propagate more or less parallel to the maximum extension direction, X, the fast S-wave velocity (VS) polarization is parallel to the Z in the Y-Z section (rotated from the X-Z section), causing trench-normal seismic anisotropy for orthogonal subduction. Based on the high modal abundance and strong fabric of lawsonite, the AVS of eclogites is estimated as ~ 11.7% in the case that lawsonite makes up ~ 75% of the rock mass. On this basis, we suggest that lawsonite in both blueschist and eclogite may play important roles in the formation of complex pattern of seismic anisotropy observed in NE Japan: weak trench-parallel anisotropy in the forearc basin domains and trench-normal anisotropy in the backarc region.

  20. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    SciTech Connect

    Karyono; Mazzini, Adriano; Sugiharto, Anton; Lupi, Matteo; Syafri, Ildrem; Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat

    2015-04-24

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  1. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    NASA Astrophysics Data System (ADS)

    Karyono, Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Masturyono, Rudiyanto, Ariska; Pranata, Bayu; Muzli, Widodo, Handi Sulistyo; Sudrajat, Ajat; Sugiharto, Anton

    2015-04-01

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green's functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  2. Seismic evidence for deep fluid circulation in the overriding plate of subduction zones

    NASA Astrophysics Data System (ADS)

    Tauzin, B.; Reynard, B.; Bodin, T.; Perrillat, J. P.; Debayle, E.

    2015-12-01

    In subduction zones, non-volcanic tremors are associated with fluid circulations (Obara, 2002). Their sources are often located on the interplate boundary (Rogers and Dragert, 2003; Shelly et al, 2006; La Rocca, 2009), consistent with fluids released by the dehydration of subducted plates (Hacker et al., 2003). Reports of tremors in the overriding continental crust of several subduction zones in the world (Kao et al., 2005; Payero et al., 2008; Ide, 2012) suggest fluid circulation at shallower depths but potential fluid paths are poorly documented. Here we obtained seismic observations from receiver functions that evidence the close association between the shallow tremor zone, electrical conductivity, and tectonic features of the Cascadia overriding plate. A seismic discontinuity near 15 km depth in the crust of the overriding North American plate is attributed to the Conrad discontinuity. This interface is segmented, and its interruption is spatially correlated with conductive regions and shallow swarms of seismicity and non-volcanic tremors. These observations suggest that shallow fluid circulation, tremors and seismicity are controlled by fault zones limiting blocks of accreted terranes in the overriding plate (Brudzinski and Allen, 2007). These zones constitute fluid "escape" routes that may contribute unloading fluid pressure on the megathrust. Obara, K. (2002). Science, 296, 1679-1681. Rogers, G., & Dragert, H. (2003). Science, 300, 1942-1943. Shelly, D. R., et al. (2006). Nature, 442, 188-191. La Rocca, M., et al. (2009). Science, 323, 620-623. Kao, H., et al. (2005). Nature, 436, 841-844. Payero, J. S., et al. (2008). Geophysical Research Letters, 35. Ide, S. (2012). Journal of Geophysical Research: Solid Earth, 117. Brudzinski, M. R., & Allen, R. M. (2007). Geology, 35, 907-910.

  3. Induced seismicity and CO2 leakage through fault zones during large-scale underground injection in a multilayered sedimentary system

    NASA Astrophysics Data System (ADS)

    Rinaldi, A.; Rutqvist, J.; Jeanne, P.; Cappa, F.

    2013-12-01

    The importance of geomechanics including the potential for reactivating faults associated with large-scale geologic carbon sequestration operations has recently become more widely recognized. However, not withstanding the potential for triggering notable (felt) seismic events, the potential for buoyancy-driven CO2 to reach potable groundwater and the ground surface is more important from safety and storage-efficiency perspectives. In this context, this work extends previous studies on the geomechanical modeling of fault responses during underground carbon dioxide injection, focusing on short-term integrity of the sealing caprock, and hence of potential leakage of either brine or CO2 to shallow groundwater aquifers during active injection. We account for a stress/strain-dependent permeability and study the leakage through a fault zone as its permeability changes during a reactivation, also causing seismicity. We analyze several scenarios related to the injected amount of CO2 (and hence as a function of the overpressure) both involving minor and major faults, and analyze the profile risks of leakage for different stress/strain permeability coupling functions, as well as increasing the complexity of the fault zone in terms of hydromechanical heterogeneities. We conclude that whereas it is very difficult to predict how much fault permeability could change upon reactivation, this process can have a significant impact on the leakage rate. The presence of hydromechanical heterogeneity influences the pressure diffusion, as well as the effective normal and shear stress evolution. Hydromechanical heterogeneities (i) strengthen the fault zone resulting in earthquake of small magnitude, and (ii) prevent a good fluid migration upward along the fault. We also study the effects of the caprock and aquifer thickness on the resulting induced seismicity and CO2 leakage, both in heterogeneous and homogeneous fault zone. Results show that a thin caprock or aquifer allows smaller events

  4. Wide-Angle Seismic Experiment Across the Oeste Fault Zone, Central Andes, Northern Chile.

    NASA Astrophysics Data System (ADS)

    Lorenzo, J. M.; Yáñez, G. A.; Vera, E. E.; Sepúlveda, J.

    2008-12-01

    From December 6-21, 2007, we conducted a 3-component, radio-telemetric, seismic survey along a ~ 15-km wide E-W transect in the Central Andes, at a latitude of ~ 22.41° S, centered north of the city of Calama (68.9° W), Chile. The study area is sandwiched between the Central Depression in the west and the Andean Western Cordillera of Chile. Recording stations, nominally spaced at intervals of either 125 or 250 m collected up to 3.5 s of refracted seismic arrivals at maximum source-receiver offsets exceeding 15 km. Ten shothole sources, spaced 2-6 km apart focused energy on the shallow (0-3 km), crustal, Paleogene-age structures. Preliminary, tomographic inversions of refracted first arrivals show the top of a shallow (< 1km), high- velocity (VP, ~5 km/s) crust, deepening sharply eastward to at least 2 km. At the surface, this central basement step correlates to a regionally extensive (> 600 km), strike-slip fault zone known as the Oeste fault. Turning ray densities suggest the base of the overlying velocity gradient unit (VP, 2-4 km/s) dips inwardly from both east and west directions toward the Oeste fault to depths of almost 1 km. Plate reorganization commencing at least by the latter half of the Oligocene led from oblique to more orthogonal convergence between the South American and the Nazca (Farallon) Plates. We interpret previously mapped, older, minor faults as being generated within the right-lateral, orogen-parallel, Oeste strike-slip fault zone, and postdated by Neogene, N-S striking thrust faults. In this context we also interpret that the spatial distribution of velocity units requires an period of extensional activity that may (1) postdate the transpressional strike slip fault activity of the Neogene, (2) be related to a later releasing bend through the translation and interaction of rigid blocks hidden at depth or even (3) be the consequence of inelastic failure from the result of flexural loading.

  5. Periodic variation of stress field in the Koyna-Warna reservoir triggered seismic zone inferred from focal mechanism studies

    NASA Astrophysics Data System (ADS)

    Rao, N. Purnachandra; Shashidhar, D.

    2016-06-01

    The Koyna-Warna region in western India is globally recognized as the premier site of reservoir triggered seismicity (RTS) associated with the Koyna and Warna reservoirs. The region is characterized by continuous seismic activity observed since several decades, including the world's largest triggered earthquake of M6.3 which occurred in Koyna in 1967. While the role of reservoirs in triggering earthquakes has been widely discussed, the actual tectonic mechanism controlling earthquake genesis in this region is hardly understood. The Koyna-Warna region is exclusively governed by earthquakes of strike-slip and normal fault mechanism distinct from the thrust faulting seen in other active zones in the Indian region. In the present study, a comprehensive catalog of 50 focal mechanism solutions of earthquakes that occurred during the last 45 years in the Koyna-Warna region is developed, both from previous literature and from moment tensor inversion studies by the authors using broadband data from a local seismic network operating since 2005. The seismicity and fault plane data have enabled precise delineation of trends of the major causative faults, which are further accentuated using the double-difference technique. Stress inversion of the focal mechanism data has provided the best fitting principal compressive and tensile stress field of the region, which in conjunction with the deciphered fault zones provides a feasible model of seismogenesis in this region. Based on the observed temporal variation of faulting mechanism a model of alternating cycles of predominantly strike-slip and normal faulting is proposed, which is attributed to a periodic peaking and relaxation respectively of the horizontal compressive stress field in this region due to the Indian plate collision with Eurasia.

  6. Estimation of recurrence interval of large earthquakes on the central Longmen Shan fault zone based on seismic moment accumulation/release model.

    PubMed

    Ren, Junjie; Zhang, Shimin

    2013-01-01

    Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9) occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7 ± 0.3) × 10¹⁷ N m/yr, and a recurrence interval of 3900 ± 400 yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region. PMID:23878524

  7. Estimation of Recurrence Interval of Large Earthquakes on the Central Longmen Shan Fault Zone Based on Seismic Moment Accumulation/Release Model

    PubMed Central

    Zhang, Shimin

    2013-01-01

    Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9) occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7 ± 0.3) × 1017 N m/yr, and a recurrence interval of 3900 ± 400 yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region. PMID:23878524

  8. Estimation of recurrence interval of large earthquakes on the central Longmen Shan fault zone based on seismic moment accumulation/release model.

    PubMed

    Ren, Junjie; Zhang, Shimin

    2013-01-01

    Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9) occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7 ± 0.3) × 10¹⁷ N m/yr, and a recurrence interval of 3900 ± 400 yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region.

  9. Continuous, Large-Scale Processing of Seismic Archives for High-Resolution Monitoring of Seismic Activity and Seismogenic Properties

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.

    2012-12-01

    the computational framework for double-difference processing the combined parametric and waveform archives of the ISC, NEIC, and IRIS with over three million recorded earthquakes worldwide. Since our methods are scalable and run on inexpensive Beowulf clusters, periodic re-analysis of such archives may thus become a routine procedure to continuously improve resolution in existing global earthquake catalogs. Results from subduction zones and aftershock sequences of recent great earthquakes demonstrate the considerable social and economic impact that high-resolution images of active faults, when available in real-time, will have in the prompt evaluation and mitigation of seismic hazards. These results also highlight the need for consistent long-term seismic monitoring and archiving of records.

  10. Geyser's Eruptive Activity in Broadband Seismic Records

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yulia; Saltykov, Vadim

    2010-05-01

    A geyser is a spring characterized by intermittent discharge of water ejected turbulently and accompanied by a vapor phase (steam). The formation of geysers is due to particular hydrogeological conditions, which exist in only a few places on Earth, so they are a fairly rare phenomenon. The reasons of geyser periodicity and specifics of the activity for every particular geyser are not completely clear yet. So almost for all known geysers it is necessary to develop the personal model. In given study we first use seismic method for detection of possible hidden feature of geyser's eruptive activity in Kamchatkan Valley of the Geysers. Broadband seismic records of geyser generated signals were obtained in hydrothermal field. The Valley of the Geysers belongs to Kronotskiy State Natural Biosphere Reserve and the UNESCO World Natural Heritage Site "Volcanoes of Kamchatka". Neither seismological nor geophysical investigations were carried out here earlier. In September, 2009 seismic observation was organized in geyser's field by 24-bit digital output broadband seismometers (GURALP CMG-6TD flat velocity response 0.033-50 Hz). Four geysers were surveyed: the fountain type Big and Giant geysers; the cone type Pearl geyser and the short-period Gap geyser. Seismometers were set as possible close to the geyser's surface vent (usually at the distance near 3-5 m). Main parameters of the eruptions for the investigated geysers: - The Giant geyser is the most powerful among the regular active geysers in Kamchatkan Valley of the Geysers. The height of the fountain reaches 30 meters, the mass of water erupted is about 40-60 tons. The main cycle of activity varies significantly: in 1945 the intervals between eruptions was near 3 hours, nowadays it is 5-6 hours. As a geyser of fountain type, the Giant geyser erupts from the 2*3 m2 pool of water. - The Big geyser was flooded by the lake after the natural catastrophe (giant mud-stone avalanche, formed by landslide, bed into Geiyzernaya

  11. Microstructures, deformation mechanisms and seismic properties of a Palaeoproterozoic shear zone: The Mertz shear zone, East-Antarctica

    NASA Astrophysics Data System (ADS)

    Lamarque, Gaëlle; Bascou, Jérôme; Maurice, Claire; Cottin, Jean-Yves; Riel, Nicolas; Ménot, René-Pierre

    2016-06-01

    The Mertz shear zone (MSZ) is a lithospheric scale structure that recorded mid-crustal deformation during the 1.7 Ga orogeny. We performed a microstructural and crystallographic preferred orientation (CPO) study of samples from both mylonites and tectonic boudins that constitute relics of the Terre Adélie Craton (TAC). The deformation is highly accommodated in the MSZ by anastomosed shear bands, which become more scattered elsewhere in the TAC. Most of the MSZ amphibolite-facies mylonites display similar CPO, thermal conditions, intensity of deformation and dominant shear strain. Preserved granulite-facies boudins show both coaxial and non-coaxial strains related to the previous 2.45 Ga event. This former deformation is more penetrative and less localized and shows a deformation gradient, later affected by a major phase of recrystallization during retrogression at 2.42 Ga. Both MSZ samples and granulite-facies tectonic boudins present microstructures that reflect a variety of deformation mechanisms associated with the rock creep that induce contrasted CPO of minerals (quartz, feldspar, biotite, amphibole and orthopyroxene). In particular, we highlight the development of an "uncommon" CPO in orthopyroxene from weakly deformed samples characterized by (010)-planes oriented parallel to the foliation plane, [001]-axes parallel to the stretching lineation and clustering of [100]-axes near the Y structural direction. Lastly, we computed the seismic properties of the amphibolite and granulite facies rocks in the MSZ area in order to evaluate the contribution of the deformed intermediate and lower continental crust to the seismic anisotropy recorded above the MSZ. Our results reveal that (i) the low content of amphibole and biotite in the rock formations of the TAC, and (ii) the interactions between the CPO of the different mineralogical phases, generate a seismically isotropic crust. Thus, the seismic anisotropy recorded by the seismic stations of the TAC, including the

  12. InSight detection of a Lithospheric Low Seismic Velocity Zone in Mars

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Nimmo, F.; Lay, T.

    2014-12-01

    Most seismological models for the interior of Mars lack an upper mantle low velocity zone. However, there is expected to be a large thermal gradient across the stagnant conductive lid (lithosphere) of Mars. This gradient should tend to decrease elastic wave velocities with increasing depth, with this effect dominating the opposing tendency caused by increasing pressure with depth because Mars has low gravity. An upper mantle lithosphere with a low velocity zone (LVZ) beneath a thin high velocity "seismic lid" is thus predicted. The upcoming NASA InSight mission includes a three-component seismometer, which should provide the first opportunity to directly detect any lithospheric LVZ in Mars. Seismic wavefields expected for Mars mantle velocity structures with or without a strong LVZ are very distinct and may be distinguished by observing a modest number of seismic sources at different epicentral ranges. The LVZ models predict shadow zones for high-frequency seismic body wave phases such as P, S, PP and SS, etc. The most diagnostic waves that can be used to evaluate presence of a lithospheric LVZ given a single seismometer are intermediate period surface waves, which travel along the great circle from a seismic source to the seismometer along both minor- and (if the source is large enough) major-arc directions. An LVZ produces distinctive dispersion, with a Rayleigh wave Airy phase around 100 s period and very different surface wave seismograms compared to a model with no LVZ. Even a single observation of long-period surface waves from a known range can be diagnostic of the lithospheric structure. Establishing the existence of an LVZ has major implications for thermal evolution, volatile content and internal dynamics of the planet.

  13. Monitoring seismic and silent faulting along the Atacama Fault System and its relation to the subduction zone seismic cycle: A Creepmeter Study in N-CHile

    NASA Astrophysics Data System (ADS)

    Victor, Pia; Ziegenhagen, Thomas; Bach, Christoph; Walter, Thomas; Oncken, Onno

    2010-05-01

    The relationship between crustal forearc faults and subduction zone processes is little understood and therefore the modern seismogenic capacity of these faults cannot be determined. The Atacama Fault System (AFS) is the dominant trench parallel fault in N-Chile with an along strike extent of 1000km. In order to characterize the mode of deformation accumulation and its spatio-temporal distribution, we are continuously monitoring displacement accumulation along active fault branches with a recently installed Creepmeter array. All the installed Creepmeters use 12 mm thick Invar-rod as length standard buried up to 0.7 m depth to reduce the signal to noise ratio, and measure the length standard change across a fault on outcrop scale. The currently deployed 9 sites are designed for displacement detection in the range of 0.001 - 50 mm/yr with a sampling rate of 1/min. The monitored fault branches have been chosen such that 3 Creepmeter sites are located in the Iquique seismic gap of the subduction zone, 5 instruments are located in the segment that recently ruptured in the 2007 Tocopilla earthquake, whereof 2 are located on the Mejillones Peninsula and one is located in the Antofagasta segment that last ruptured in the 1995 Antofagasta Earthquake. This enables us to compare the mode of strain accumulation in different stages of the subduction zone seismic cycle. The first datasets (> 1 yr) show that the instruments both in the Antofagasta and Tocopilla segments display a continuous creep signal equivalent to extensional displacement across the fault zone superimposed by sudden displacement events related to subduction zone earthquakes. The sum of both amounts to 0.02 mm/y - 0.1 mm/y of displacement which is less than predicted by the geological long-term observation. The data from the Chomache Fault located in the Iquique segment shows only a creep signal for the first year after installation with an average extensional displacement rate of 0.05 mm/y. No sudden

  14. Angola Seismicity MAP

    NASA Astrophysics Data System (ADS)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic

  15. Velocity structure and the role of fluids in the West Bohemia Seismic Zone

    NASA Astrophysics Data System (ADS)

    Alexandrakis, C.; Calò, M.; Bouchaala, F.; Vavryčuk, V.

    2014-08-01

    In this study, we apply the double-difference tomography to investigate the detailed 3-D structure within and around the Nový Kostel Seismic Zone, an area in the Czech Republic known for frequent occurrences of earthquake swarms. We use data from the 2008 swarm since it has already been analysed in terms of earthquake focal mechanisms, principal faults, tectonic stress and foci migration. We selected about 500 microearthquakes recorded at 22 local seismic stations of the West Bohemia seismic monitoring network (WEBNET). Applying double-difference tomography, combined with weighted average model (WAM) post-processing to correct for parameter dependence effects, we produce and interpret 3-D models of the Vp-to-Vs ratio (Vp/Vs) in and around the focal zone. The modelled Vp/Vs ratio shows several distinct structures, namely an area of high Vp/Vs ratio correlating with the foci of the microearthquakes, and a layer of low values directly above it. These structures may reflect changes in lithology and/or fluid concentration. The overlaying low Vp/Vs ratio layer coincides with the base of the Fichtelgebirge (Smrčiny) granitic intrusion. It is possible that the base of the layer acts as a fluid trap and an upper limit to the seismicity, resulting in observed periodic swarms.

  16. Seismic imaging of transition zone discontinuities suggests hot mantle west of Hawaii.

    PubMed

    Cao, Q; van der Hilst, R D; de Hoop, M V; Shim, S-H

    2011-05-27

    The Hawaiian hotspot is often attributed to hot material rising from depth in the mantle, but efforts to detect a thermal plume seismically have been inconclusive. To investigate pertinent thermal anomalies, we imaged with inverse scattering of SS waves the depths to seismic discontinuities below the Central Pacific, which we explain with olivine and garnet transitions in a pyrolitic mantle. The presence of an 800- to 2000-kilometer-wide thermal anomaly (ΔT(max) ~300 to 400 kelvin) deep in the transition zone west of Hawaii suggests that hot material does not rise from the lower mantle through a narrow vertical plume but accumulates near the base of the transition zone before being entrained in flow toward Hawaii and, perhaps, other islands. This implies that geochemical trends in Hawaiian lavas cannot constrain lower mantle domains directly. PMID:21617072

  17. Seismic imaging of transition zone discontinuities suggests hot mantle west of Hawaii.

    PubMed

    Cao, Q; van der Hilst, R D; de Hoop, M V; Shim, S-H

    2011-05-27

    The Hawaiian hotspot is often attributed to hot material rising from depth in the mantle, but efforts to detect a thermal plume seismically have been inconclusive. To investigate pertinent thermal anomalies, we imaged with inverse scattering of SS waves the depths to seismic discontinuities below the Central Pacific, which we explain with olivine and garnet transitions in a pyrolitic mantle. The presence of an 800- to 2000-kilometer-wide thermal anomaly (ΔT(max) ~300 to 400 kelvin) deep in the transition zone west of Hawaii suggests that hot material does not rise from the lower mantle through a narrow vertical plume but accumulates near the base of the transition zone before being entrained in flow toward Hawaii and, perhaps, other islands. This implies that geochemical trends in Hawaiian lavas cannot constrain lower mantle domains directly.

  18. Seismic Imaging of the San Jacinto Fault Zone Area From Seismogenic Depth to the Surface

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Y.

    2015-12-01

    I review multi-scale multi-signal seismological results on structural properties within and around the San Jacinto Fault Zone (SJFZ). The results are based on data of the regional southern California and ANZA networks, additional near-fault seismometers and linear arrays with instrument spacing 25-50 m that cross the SJFZ at several locations, and a spatially-dense rectangular array with 1108 vertical-component sensors separated by 10-30 m centered on the fault. The studies utilize earthquake data to derive Vp and Vs velocity models with horizontal resolution of 1-2 km over the depth section 2-15 km, ambient noise with frequencies up to 1 Hz to image with similar horizontal resolution the depth section 0.5-7 km, and high-frequency seismic noise from the linear and rectangular arrays for high-resolution imaging of the top 0.5 km. Pronounced damage regions with low seismic velocities and anomalous Vp/Vs ratios are observed around the SJFZ, as well as the San Andreas and Elsinore faults. The damage zones follow generally a flower-shape with depth. The section of the SJFZ from Cajon pass to the San Jacinto basin has a faster SW side, while the section farther to the SE has an opposite velocity contrast with faster NE side. The damage zones and velocity contrasts produce at various locations fault zone trapped and head waves that are utilized to obtain high-resolution information on inner fault zone components (bimaterial interfaces, trapping structures). Analyses of high-frequency noise recorded by the fault zone arrays reveal complex shallow material with very low seismic velocities and strong lateral and vertical variations.

  19. Aseismic Slip on the Northern Cascadia Subduction Zone: Impacts on Seismic Hazard Estimates

    NASA Astrophysics Data System (ADS)

    Dragert, H.; Mazzotti, S.; Wang, K.

    2002-12-01

    Based on data from the few longer operating continuous GPS sites in southwestern British Columbia and northwestern Washington State, aseismic slip appears to occur repeatedly on the deeper interface of the Cascadia Subduction Zone (CSZ) underlying the eastern Olympics and southern Vancouver Is. The spatial and temporal character of the slip events observed so far have implications for regional seismic hazard estimates. During the period between slips, stress accumulates over an interface region wider than the normal locked/transition zone of the CSZ. However, it appears that there is little long-term stress accumulation on the deeper interface and the potential rupture zone for the next megathrust earthquake remains predominantly offshore. Because of its location downdip of the locked plate interface, a deep aseismic slip produces a small, discrete Coulomb stress increment of the order of 0.01 MPa which moves the locked zone closer to rupture, potentially acting as a trigger for a future great thrust earthquake. The spatial correlation of the boundary of the slip zone with the location of large in-slab earthquakes also suggests a common structural cause or a possible stress interaction. The silent slips and in-slab earthquakes may both be related to a common process of slab dehydration. However, the observed slip events create a Coulomb shadow for normal earthquakes on steeply dipping faults within the descending slab downdip from the slip zone. The region of slip also underlies the areas of high crustal seismicity of Puget Sound and Georgia Strait, but estimates of Coulomb stress changes on crustal faults due to deep slip are extremely sensitive to geometry, thus obscuring patterns of possible crustal stress interactions. To date, no temporal correlations have been found between rates of crustal seismicity and the occurrence of aseismic slip.

  20. Erosion influences the seismicity of active thrust faults.

    PubMed

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J Bruce H

    2014-11-21

    Assessing seismic hazards remains one of the most challenging scientific issues in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show via a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1-20 mm yr(-1), as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1-10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to trigger shallow seismicity or promote the rupture of deep continental earthquakes up to the surface.

  1. New seismic images of the cascadia subduction zone from cruise SO 108-ORWELL

    USGS Publications Warehouse

    Flueh, E.R.; Fisher, M.A.; Bialas, J.; Childs, J. R.; Klaeschen, D.; Kukowski, Nina; Parsons, T.; Scholl, D. W.; ten Brink, U.; Trehu, A.M.; Vidal, N.

    1998-01-01

    In April and May 1996, a geophysical study of the Cascadia continental margin off Oregon and Washington was conducted aboard the German R/V Sonne. This cooperative experiment by GEOMAR and the USGS acquired wide-angle reflection and refraction seismic data, using ocean-bottom seismometers (OBS) and hydrophones (OBH), and multichannel seismic reflection (MCS) data. The main goal of this experiment was to investigate the internal structure and associated earthquake hazard of the Cascadia subduction zone and to image the downgoing plate. Coincident MCS and wide-angle profiles along two tracks are presented here. The plate boundary has been imaged precisely beneath the wide accretionary wedge close to shore at c13km depth. Thus, the downgoing plate dips more shallowly than previously assumed. The dip of the plate changes from 2?? to 4?? at the eastern boundary of the wedge on the northern profile, whereas approximately 3km of sediment is entering the subduction zone. On the southern profile, where the incoming sedimentary section is about 2.2km thick, the plate dips about 0.5?? to 1.5?? near the deformation front and increases to 3.5?? further landwards. On both profiles, the deformation of the accretionary wedge has produced six ridges on the seafloor, three of which represent active faulting, as indicated by growth folding. The ridges are bordered by landward verging faults which reach as deep as the top of the oceanic basement. Thus, the entire incoming sediment package is being accreted. At least two phases of accretion are evident, and the rocks of the older accretionary phase(s) forms the backstop for the younger phase, which started around 1.5 Ma ago. This documents that the 30 to 50km wide frontal part of the accretionary wedge, which is characterized by landward vergent thrusts, is a Pleistocene feature which was formed in response to the high input of sediment building the fans during glacial periods. Velocities increase quite rapidly within the wedge, both

  2. Slab seismicity in the Western Hellenic Subduction Zone: Constraints from tomography and double-difference relocation

    NASA Astrophysics Data System (ADS)

    Halpaap, Felix; Rondenay, Stéphane; Ottemöller, Lars

    2016-04-01

    The Western Hellenic subduction zone is characterized by a transition from oceanic to continental subduction. In the southern oceanic portion of the system, abundant seismicity reaches intermediate depths of 100-120 km, while the northern continental portion rarely exhibits deep earthquakes. Our study aims to investigate how this oceanic-continental transition affects fluid release and related seismicity along strike, by focusing on the distribution of intermediate depth earthquakes. To obtain a detailed image of the seismicity, we carry out a tomographic inversion for P- and S-velocities and double-difference earthquake relocation using a dataset of unprecedented spatial coverage in this area. Here we present results of these analyses in conjunction with high-resolution profiles from migrated receiver function images obtained from the MEDUSA experiment. We generate tomographic models by inverting data from 237 manually picked, well locatable events recorded at up to 130 stations. Stations from the permanent Greek network and the EGELADOS experiment supplement the 3-D coverage of the modeled domain, which covers a large part of mainland Greece and surrounding offshore areas. Corrections for the sphericity of the Earth and our update to the SIMULR16 package, which now allows S-inversion, help improve our previous models. Flexible gridding focusses the inversion on the domains of highest gradient around the slab, and we evaluate the resolution with checker board tests. We use the resulting velocity model to relocate earthquakes via the Double-Difference method, using a large dataset of differential traveltimes obtained by crosscorrelation of seismograms. Tens of earthquakes align along two planes forming a double seismic zone in the southern, oceanic portion of the subduction zone. With increasing subduction depth, the earthquakes appear closer to the center of the slab, outlining probable deserpentinization of the slab and concomitant eclogitization of dry crustal

  3. Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States.

    PubMed

    Song, Teh-Ru Alex; Helmberger, Don V; Grand, Stephen P

    2004-02-01

    The seismic discontinuity at 410 km depth in the Earth's mantle is generally attributed to the phase transition of (Mg,Fe)2SiO4 (refs 1, 2) from the olivine to wadsleyite structure. Variation in the depth of this discontinuity is often taken as a proxy for mantle temperature owing to its response to thermal perturbations. For example, a cold anomaly would elevate the 410-km discontinuity, because of its positive Clapeyron slope, whereas a warm anomaly would depress the discontinuity. But trade-offs between seismic wave-speed heterogeneity and discontinuity topography often inhibit detailed analysis of these discontinuities, and structure often appears very complicated. Here we simultaneously model seismic refracted waves and scattered waves from the 410-km discontinuity in the western United States to constrain structure in the region. We find a low-velocity zone, with a shear-wave velocity drop of 5%, on top of the 410-km discontinuity beneath the northwestern United States, extending from southwestern Oregon to the northern Basin and Range province. This low-velocity zone has a thickness that varies from 20 to 90 km with rapid lateral variations. Its spatial extent coincides with both an anomalous composition of overlying volcanism and seismic 'receiver-function' observations observed above the region. We interpret the low-velocity zone as a compositional anomaly, possibly due to a dense partial-melt layer, which may be linked to prior subduction of the Farallon plate and back-arc extension. The existence of such a layer could be indicative of high water content in the Earth's transition zone.

  4. Seismic activity noted at Medicine Lake Highlands

    SciTech Connect

    Blum, D.

    1988-12-01

    The sudden rumble of earthquakes beneath Medicine Lake Highlands this fall gave geologists an early warning that one of Northern California's volcanoes may be stirring back to life. Researchers stressed that an eruption of the volcano is not expected soon. But the flurry of underground shocks in late September, combined with new evidence of a pool of molten rock beneath the big volcano, has led them to monitor Medicine Lake with new wariness. The volcano has been dormant since 1910, when it ejected a brief flurry of ash - worrying no one. A federal team plans to take measurements of Medicine Lake, testing for changes in its shape caused by underground pressures. The work is scheduled for spring because snows have made the volcano inaccessible. But the new seismic network is an effective lookout, sensitive to very small increases in activity.

  5. Shear Wave Splitting from Local Earthquakes in the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Martin, P.; Arroucau, P.; Vlahovic, G.

    2012-12-01

    In this study we investigate crustal anisotropy in the New Madrid seismic zone (NMSZ), by analyzing shear wave splitting from local earthquake data. The NMSZ is centrally located in the United States, spanning portions of western Tennessee, northeastern Arkansas, and southeastern Missouri. The NMSZ is also the location in which three of the largest known earthquakes took place in North America, occurring in 1811-1812. Although many seismic studies have been performed in this region, there is no consensus about which driving mechanism could satisfy both the current observations, as well as the historically observed seismicity. Therefore, it is important to continue investigating the NMSZ, to gain a better understanding of its seismicity, and the possible mechanisms that drive it. The automated technique developed by Savage et al. (2010) is used to perform the shear wave splitting measurements at 120 seismic stations within the NMSZ. The Center for Earthquake Research and Information (CERI) at the University of Memphis provided data for 1151 earthquakes spanning the years 2003-2011. The initial event selection was reduced to 245 earthquakes ranging in magnitude from 2.0 to 4.6, which fell within the shear wave window of one or more of the stations. The results of this study provide information about orientation of microcracks in the upper portion of the crust; future work will include analysis for temporal and spatial variations in order to assess the state of stress in the region.

  6. A comparison of seismicity in world's subduction zones: Implication by the difference of b-values

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Ide, S.

    2013-12-01

    Since the pioneering study of Uyeda and Kanamori (1979), it has been thought that world's subduction zones can be classified into two types: Chile and Mariana types. Ruff and Kanamori (1980) suggested that the maximum earthquake size within each subduction zone correlates with convergence rate and age of subducting lithosphere. Subduction zones with younger lithosphere and larger convergence rates are associated with great earthquakes (Chile), while subduction zones with older lithosphere and smaller convergence rates have low seismicity (Mariana). However, these correlations are obscured after the 2004 Sumatra earthquake and the 2009 Tohoku earthquake. Furthermore, McCaffrey (2008) pointed out that the history of observation is much shorter than the recurrence times of very large earthquakes, suggesting a possibility that any subduction zone may produce earthquakes larger than magnitude 9. In the present study, we compare world's subduction zones in terms of b-values in the Gutenberg-Richer relation. We divided world's subduction zones into 146 regions, each of which is bordered by a trench section of about 500 km and extends for 200 km from the trench section in the direction of relative plate motion. In each region, earthquakes equal to or larger than M4.5 occurring during 1988-2009 were extracted from ISC catalog. We find a positive correlation between b-values and ages of subducting lithosphere, which is one of the two important variables discussed in Ruff and Kanamori (1980). Subduction zones with younger lithosphere are associated with high b-values and vice versa, while we cannot find a correlation between b-values and convergence rates. We used the ages determined by Müller et al. (2008) and convergence rate calculated using PB2002 (Bird, 2003) for convergence rate. We also found a negative correlation between b-values and the estimates of seismic coupling, which is defined as the ratio of the observed seismic moment release rate to the rate calculated

  7. Quiet zone within a seismic gap near western Nicaragua: Possible location of a future large earthquake

    USGS Publications Warehouse

    Harlow, D.H.; White, R.A.; Cifuentes, I.L.; Aburto, Q.A.

    1981-01-01

    A 5700-square-kilometer quiet zone occurs in the midst of the locations of more than 4000 earthquakes off the Pacific coast of Nicaragua. The region is indicated by the seismic gap technique to be a likely location for an earthquake of magnitude larger than 7. The quiet zone has existed since at least 1950; the last large earthquake originating from this area occurred in 1898 and was of magnitude 7.5. A rough estimate indicates that the magnitude of an earthquake rupturing the entire quiet zone could be as large as that of the 1898 event. It is not yet possible to forecast a time frame for the occurrence of such an earthquake in the quiet zone. Copyright ?? 1981 AAAS.

  8. Precursory seismic quiescence along the Sumatra-Andaman subduction zone: past and present

    NASA Astrophysics Data System (ADS)

    Sukrungsri, Santawat; Pailoplee, Santi

    2016-07-01

    In this study, the seismic quiescence prior to hazardous earthquakes was analyzed along the Sumatra-Andaman subduction zone (SASZ). The seismicity data were screened statistically with mainshock earthquakes of M w ≥ 4.4 reported during 1980-2015 being defined as the completeness database. In order to examine the possibility of using the seismic quiescence stage as a marker of subsequent earthquakes, the seismicity data reported prior to the eight major earthquakes along the SASZ were analyzed for changes in their seismicity rate using the statistical Z test. Iterative tests revealed that Z factors of N = 50 events and T = 2 years were optimal for detecting sudden rate changes such as quiescence and to map these spatially. The observed quiescence periods conformed to the subsequent major earthquake occurrences both spatially and temporally. Using suitable conditions obtained from successive retrospective tests, the seismicity rate changes were then mapped from the most up-to-date seismicity data available. This revealed three areas along the SASZ that might generate a major earthquake in the future: (i) Nicobar Islands (Z = 6.7), (ii) the western offshore side of Sumatra Island (Z = 7.1), and (iii) western Myanmar (Z = 6.7). The performance of a stochastic test using a number of synthetic randomized catalogues indicated these levels of anomalous Z value showed the above anomaly is unlikely due to chance or random fluctuations of the earthquake. Thus, these three areas have a high possibility of generating a strong-to-major earthquake in the future.

  9. Variations of seismic velocities in the Kachchh rift zone, Gujarat, India, during 2001-2013

    NASA Astrophysics Data System (ADS)

    Mandal, Prantik

    2016-03-01

    We herein study variations of seismic velocities in the main rupture zone (MRZ) of the Mw 7.7 2001 Bhuj earthquake for the time periods [2001-05, 2006-08, 2009-10 and 2011-13], by constructing dVp(%), dVs(%) and d(Vp/Vs)(%) tomograms using high-quality arrival times of 28,902 P- and 28,696 S-waves from 4644 precise JHD (joint hypocentral determination) relocations of local events. Differential tomograms for 2001-05 reveal a marked decrease in seismic velocities (low dVp, low dVs and high d(Vp/Vs)) in the MRZ (at 5-35 km depths) during 2001-10, which is attributed to an increase in crack/fracture density (higher pore fluid pressure) resulted from the intense fracturing that occurred during the mainshock and post-seismic periods. While we observe a slight recovery or increase in seismic velocities 2011-13, this could be related to the healing process (lower pore fluid pressure due to sealing of cracks) of the causative fault zone of the 2001 Bhuj mainshock. The temporal reduction in seismic velocities is observed to be higher at deeper levels (more fluid enrichment under near-lithostatic pressure) than that at shallower levels. Fluid source for low velocity zone (LVZ) at 0-10 km depths (with high d(Vp/Vs)) could be attributed to the presence of meteoric water or soft alluvium sediments with higher water content, while fluid source for LVZ at 10-35 km depths could be due to the presence of brine fluids (released from the metamorphic dewatering) and volatile CO2 (emanating from the crystallization of carbonatite melts in the asthenosphere), in fractures and pores. We also imaged two prominent LVZs associated with the Katrol Hill fault zone and Island Belt fault zone, extending from shallow upper-crust to sub-crustal depth, which might be facilitating the deeper circulation of metamorphic fluids/volatile CO2, thereby, the generation of lower crustal earthquakes occurring in the Kachchh rift zone.

  10. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone

    NASA Astrophysics Data System (ADS)

    Nagaya, Takayoshi; Walker, Andrew M.; Wookey, James; Wallis, Simon R.; Ishii, Kazuhiko; Kendall, J.-Michael

    2016-07-01

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed.

  11. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone.

    PubMed

    Nagaya, Takayoshi; Walker, Andrew M; Wookey, James; Wallis, Simon R; Ishii, Kazuhiko; Kendall, J-Michael

    2016-01-01

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed. PMID:27436676

  12. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone

    PubMed Central

    Nagaya, Takayoshi; Walker, Andrew M.; Wookey, James; Wallis, Simon R.; Ishii, Kazuhiko; Kendall, J. -Michael

    2016-01-01

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed. PMID:27436676

  13. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone.

    PubMed

    Nagaya, Takayoshi; Walker, Andrew M; Wookey, James; Wallis, Simon R; Ishii, Kazuhiko; Kendall, J-Michael

    2016-07-20

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed.

  14. Finite-frequency sensitivity kernels of seismic waves to fault zone structures

    NASA Astrophysics Data System (ADS)

    Allam, A. A.; Tape, C.; Ben-Zion, Y.

    2015-12-01

    We analyse the volumetric sensitivity of fault zone seismic head and trapped waves by constructing finite-frequency sensitivity (Fréchet) kernels for these phases using a suite of idealized and tomographically derived velocity models of fault zones. We first validate numerical calculations by waveform comparisons with analytical results for two simple fault zone models: a vertical bimaterial interface separating two solids of differing elastic properties, and a `vertical sandwich' with a vertical low velocity zone surrounded on both sides by higher velocity media. Establishing numerical accuracy up to 12 Hz, we compute sensitivity kernels for various phases that arise in these and more realistic models. In contrast to direct P body waves, which have little or no sensitivity to the internal fault zone structure, the sensitivity kernels for head waves have sharp peaks with high values near the fault in the faster medium. Surface wave kernels show the broadest spatial distribution of sensitivity, while trapped wave kernels are extremely narrow with sensitivity focused entirely inside the low-velocity fault zone layer. Trapped waves are shown to exhibit sensitivity patterns similar to Love waves, with decreasing width as a function of frequency and multiple Fresnel zones of alternating polarity. In models that include smoothing of the boundaries of the low velocity zone, there is little effect on the trapped wave kernels, which are focused in the central core of the low velocity zone. When the source is located outside a shallow fault zone layer, trapped waves propagate through the surrounding medium with body wave sensitivity before becoming confined. The results provide building blocks for full waveform tomography of fault zone regions combining high-frequency head, trapped, body, and surface waves. Such an imaging approach can constrain fault zone structure across a larger range of scales than has previously been possible.

  15. Seismic hazard assessment for oil-and-gas-bearing shelf zones: A case study of the North Caspian region

    NASA Astrophysics Data System (ADS)

    Krylov, A. A.; Ivashchenko, A. I.; Kovachev, S. A.

    2015-11-01

    Seismic hazard assessment is done for oil field areas in the North Caspian region by a method earlier successfully applied to other areas. The method involves general seismic zoning data, available regional databases on recurrence of seismic shaking, known models of ground motion attenuation in seismoactive regions, and data on geological and geophysical surveys in the studied area. The assigned level of seismic hazard of the region is refined using probabilistic analysis; additionally, disaggregation is made and accelerograms are synthesized (the latter are necessary for seismic microzoning of particular sites using the numerical nonlinear analysis of ground seismic response). The amplitude and spectral characteristics of ground motions are obtained which are necessary for seismic resistance design and construction of petroleum industry objects.

  16. The Pollino Seismic Sequence: Activated Graben Structures in a Seismic Gap

    NASA Astrophysics Data System (ADS)

    Rößler, Dirk; Passarelli, Luigi; Govoni, Aladino; Bindi, Dino; Cesca, Simone; Hainzl, Sebatian; Maccaferri, Francesco; Rivalta, Eleonora; Woith, Heiko; Dahm, Torsten

    2015-04-01

    The Mercure Basin (MB) and the Castrovillari Fault (CF) in the Pollino range (Southern Apennines, Italy) represent one of the most prominent seismic gaps in the Italian seismic catalogue, with no M>5.5 earthquakes during the last centuries. In historical times several swarm-like seismic sequences occurred in the area including two intense swarms within the past two decades. The most energetic one started in 2010 and has been still active in 2014. The seismicity culminated in autumn 2012 with a M=5 event on 25 October. The range hosts a number of opposing normal faults forming a graben-like structure. Their rheology and their interactions are unclear. Current debates include the potential of the MB and the CF to host large earthquakes and the style of deformation. Understanding the seismicity and the behaviour of the faults is necessary to assess the tectonics and the seismic hazard. The GFZ German Research Centre for Geosciences and INGV, Italy, have jointly monitored the ongoing seismicity using a small-aperture seismic array, integrated in a temporary seismic network. Based on this installation, we located more than 16,000 local earthquakes that occurred between November 2012 and September 2014. Here we investigate quantitatively all the phases of the seismic sequence starting from January 2010. Event locations along with moment tensor inversion constrain spatially the structures activated by the swarm and the migration pattern of the seismicity. The seismicity forms clusters concentrated within the southern part of the MB and along the Pollino Fault linking MB and CF. Most earthquakes are confined to the upper 10 km of the crust in an area of ~15x15 km2. However, sparse seismicity at depths between 15 and 20 km and moderate seismicity further north with deepening hypocenters also exist. In contrast, the CF appears aseismic; only the northern part has experienced micro-seismicity. The spatial distribution is however more complex than the major tectonic structures

  17. A source generation model for near-field seismic impact of coal fractures in stress concentration zones

    NASA Astrophysics Data System (ADS)

    Feng, Junjun; Wang, Enyuan; Shen, Rongxi; Chen, Liang; Li, Xuelong; Li, Nan

    2016-08-01

    To study the near-field seismic impact of coal fractures in stress concentration zones, we established a source generation model based on finite dislocation source theory and dynamic fracture mechanics, derived an analytical expression for near-field seismic displacements caused by coal fractures in the zone and numerically computed the resultant near-field seismic displacements within the coal mass. The results show that (1) the larger difference between the vertical and horizontal normal stresses in the stress concentration zone leads to a greater fracture speed, which thereby causes a stronger seismic impact; (2) the P-wave component in the near-field seismic displacements mainly impacts on the middle of the roadway, while the SH- and SV wave components mainly affect the junctions between the roadway and both the roof and the floor, and the damage caused by the SH- and SV waves within the coal mass is more significant than that caused by the P-waves; and (3) the effective way to mitigate the seismic impact induced by coal fractures in stress concentration zones is to reduce the difference between the vertical and horizontal normal stresses as far as possible. It is hoped that this study will provide a better understanding of the seismic impacts induced by coal fractures in stress concentration zones and thus help engineers to discover ways to prevent roadway failure.

  18. The Calabrian subduction zone (Ionian Sea): Historical seismicity and a new review of the system from multi-channel seismic data

    NASA Astrophysics Data System (ADS)

    Gallais, Flora; Gutscher, Marc-Andre; Torelli, Luigi; Polonia, Alina; Graindorge, David

    2010-05-01

    The Calabrian subduction zone is included in the long W-E elongated compressive South Mediterranean belt. This subduction is located in the complex Central Mediterranean area and accommodates the African/Eurasian convergence at very slow rates (<5 mm/y reported by a recent GPS study). The presence of shallow to deep earthquakes (down to 500 km depth) under Calabria and the South East Tyrrhenian Sea images a 70° NW dipping slab, associated with an active volcanic arc: the Aeolian Islands in the Tyrrhenian Sea. But no thrusts events characteristic of active subduction have been recorded during the instrumental era. However, the South Calabrian/East Sicilian region is well-known to have been affected by strong historical seismicity with Mercalli intensities reaching XI. The sources of these events is often linked to the activity of crustal, normal faults in the Calabrian region: 1638, 1783, 1905. Furthermore, important details of the Messina 1908 earthquake (72000 killed) and tsunami remain unresolved, in particular the origin of the tsunami (fault induced or submarine landslide). Moreover, the origin of two of the most destructive earthquakes (1169 and 1693) remains enigmatic. For the 1169 and 1693 (60000 killed and 5 to 10 m tsunami wave) Catania earthquakes, the source faults are the subject of debate and linked alternatively to the activity of the Malta escarpment or of the subduction fault plane (because the isoseismals are open to the sea). In this case, the 1169 earthquake which had similar intensities and a comparable isoseismal pattern, is suggested to have the same source and so the fault plane may have be locked between these two events. To better understand the origins of the 1169 and 1693 major events and seek evidence of activity of Calabrian system, we present new results from reprocessed 96-channels seismic reflection profiles (French Archimede cruise, 1997) offshore Sicily. Interpretation of the seismic dataset is based on correlations with published

  19. Recognizing and dating prehistoric liquefaction features: Lessons learned in the New Madrid seismic zone, central United States

    USGS Publications Warehouse

    Tuttle, M.P.; Schweig, E.S.

    1996-01-01

    The New Madrid seismic zone (NMSZ), which experienced severe liquefaction during the great New Madrid, Missouri, earthquakes of 1811 and 1812 as well as during several prehistoric earthquakes, is a superb laboratory for the study of world-class, arthquake-induced liquefaction features and their use in paleoseismology. In seismically active regions like the NMSZ, frequent large earthquakes can produce a complex record of liquefaction events that is difficult to interpret. Lessons learned studying liquefaction features in the NMSZ may help to unravel the paleoseismic record in other seismically active regions. Soil characteristics of liquefaction features, as well as their structural and sratigraphic relations to Native American occupation horizons and other cultural features, an help to distinguish prehistoric liquefaction features from historic features. In addition, analyses of artifact assemblages and botanical content of cultural horizons can help to narrow the age ranges of liquefaction features. Future research should focus on methods for defining source areas and estimating magnitudes of prehistoric earthquakes from liquefaction features. Also, new methods for dating liquefaction features are needed.

  20. Subsurface structure along the eastern marginal fault zone of Yokote Basin by Seismic reflection profiling studies, Northeast Japan

    NASA Astrophysics Data System (ADS)

    Kagohara, K.; Imaizumi, T.; Echigo, T.; Miyauchi, T.; Sato, H.

    2005-12-01

    Typical reverse faults, which are known as Senya earthquake faults appeared along the western foot of the Mahiru Mountains, associated with The Rikuu Earthquake (Mj7.2) of 1896 in Northeast Japan. Eastern marginal fault zone of the Yokote Basin consist of four main surface ruptures, about 35 km long, Obonai fault, Shiraiwa fault, Ota fault and Senya fault, depending on their continuity and strike (Matsuda et al., 1980). We carried out the seismic reflection profiling across these faults (Kawaguchi03 Seismic line, Unjono04 Seismic line and Kotaki05 Seismic line) to clarify the subsurface structure of these reverse fault system based on the data of tectonic geomorphology and structural geology and furthermore, to discuss the timing of migration of the thrusting from the range front to the basin margin. The seismic source was mini-vibrator trucks, with 20seconds of 10-100Hz signals at 10m or 5m intervals. The sweep signals were recorded by a digital telemetry system (GDAPS-4a) with 10 Hz geophones. The obtained seismic reflection data were processed by conventional Common mid-point (CMP) methods, including post-stack migration and depth conversion. The resulting seismic reflection profile reveals a thrust structure beneath these areas. At the Center of Senya hills there are two thrusts and one high angle reverse fault (1997 Seismic Line). Senya fault is an active frontal emergent thrust with flat and ramp structure. Although, the high angle reverse fault, located along the foot of the range is a short-cut branching fault from the Senya fault in the central part of the Senya hill (Sato et al., 1998), in the Unjono04 seismic line, the depth of the flat and ramp structure gradually shallow in the north part of the Senya hill, where the flexure scarp accompanied with antithetic faults formed on the fluvial terraces. In the Kawaguchi03 seismic line, the concealed fault, 0.5km below the surface, branched from the master Ota fault, form a flexure scarplet on the alluvial fan

  1. Mid-mantle seismic anisotropy patterns around subduction zones predicted by numerical modelling

    NASA Astrophysics Data System (ADS)

    Faccenda, Manuele

    2014-05-01

    There is increasing evidence for mid mantle seismic anisotropy around subduction zones whose interpretation remains elusive. In this study I estimate the strain-induced mid mantle fabric and associated seismic anisotropy developing in 3D petrological-thermo-mechanical subduction models where the slab is either stagnating over the 660 km discontinuity or penetrating into the lower mantle. The modeling of synthetic lattice-preferred-orientation (LPO) development of wadsleyite and perovskite has been calibrated with results from deformational experiments and ab-initio atomic scale models, and the single crystal elastic tensor of the different mineral phases is scaled by local P-T conditions. The lower transition zone (ringwoodite + garnet) is assumed to be isotropic. Mid mantle fabric develops in proximity of the subducting slab where deformation and stresses are high, except at depths where upwelling or downwelling material undergoes phase transformations, yielding to LPO reset. The upper transition zone (wadsleyite + garnet) is characterized by weak transverse isotropy (2-3%) with symmetry axes oriented and fast S wave polarized dip-normal. A slightly stronger transverse isotropy develops in the lower mantle (perovskite + periclase), where the symmetry axes, the polarization of the fast S wave and the maximum Vp and dVs are parallel to the slab dip and subduction direction. For stagnating slab models this translates into negative and positive radial anisotropy in the upper transition zone and lower mantle back-arc, respectively, minimum delay times for vertically travelling shear waves and large shear wave splitting for waves propagating horizontally in the lower mantle. These results may help in reconciling the seismic anisotropy patterns observed in some subduction zones with subduction-induced deformation, such as those measured in the mid mantle between the Australian plate and the New Hebrides-Tonga-Kermadec trenches that I interpret as related to stagnating

  2. Seismicity rate changes in the Salton Sea Geothermal Field and the San Jacinto Fault Zone after the 2010 Mw 7.2 El Mayor-Cucapah earthquake

    NASA Astrophysics Data System (ADS)

    Meng, Xiaofeng; Peng, Zhigang

    2014-06-01

    Whether static or dynamic stress changes play the most important role in triggering earthquakes in the near field is still in debate. Here, we examine the seismicity rate changes in southern California following the 2010 Mw 7.2 El Mayor-Cucapah earthquake. We focus on the Salton Sea Geothermal Field (SSGF) and the San Jacinto Fault Zone (SJFZ) because of high-sensitivity continuous borehole recordings and ample background seismicity. A significant increase in seismic activity is found in both study regions immediately following the main shock. However, near the SSGF where the static Coulomb stress decreased, the seismicity rate dropped below the pre-main-shock rate after ˜1 month. In comparison, along the SJFZ with an increase in the static Coulomb stress, the seismicity rate remained higher than the background rate with several moderate-size earthquakes occurring in the subsequent months. While we cannot completely rule out other mechanisms, these observations are best consistent with a widespread increase in seismicity from dynamic stress changes immediately after the main shock, and longer term seismicity rate changes from static stress changes. Our observation, together with other recent studies, suggests that both static and dynamic stress changes are important in triggering near-field earthquakes, but their affected regions and timescales are different.

  3. Dehydration of hydrous minerals and formation of nanocrystals by frictional heating in experimental seismic fault zones

    NASA Astrophysics Data System (ADS)

    Jung, S.; Chae, S.; Ree, J.; Hirose, T.; Kim, J.

    2013-12-01

    Recent studies on experimental and natural carbonate faults have shown that the formation of nanocrystals produced by thermal decomposition or deformation during seismic slip can lead to significant slip weakening and large earthquakes. Natural fault rocks contain various hydrous minerals that can be easily decomposed by frictional heating and possibly form nanocrystals. However, thermal decomposition of hydrous minerals during seismic slip has not been studied much. We performed rotary-shear experiments on amphibolites and metapelites at seismic slip rates (up to 1.3 m/s) and at normal stress of 2-16 MPa to investigate thermal decomposition of hydrous minerals. The frictional property of the metapelites is characterized by two transient peak frictions followed by a final slip weakening leading to a steady-state friction, while the amphibolites exhibit three peak frictions and subsequent steady-state friction. The simulated fault zones consist of a principal slip zone (PSZ) mantled by damage zone (DZ). The PSZ is a molten layer laden with clasts of quartz (metapelites) and plagioclase (amphibolites). Hornblendes of the amphibolites and biotites of the metapelites in DZ show dark stripes along cleavage planes in plane-polarized light (PPL). These hornblende and biotite grains become totally dark in PPL immediately adjacent to PSZ. Scanning electron microscopy (SEM) shows that tiny holes (1 to 10 μm) occur in dark colored biotites of DZ. The darker stripes of hornblende appear rugged in SEM images. Selected area electron diffraction (SAED) and high-resolution transmission electron microscope (HRTEM) analyses reveal that the dark cleavage stripes of biotite and hornblende consist of cavity- and nanocrystal-bands. We interpret these cavity- and nanocrystal-bands of the dark cleavage stripes are products of biotite- and hornblende-dehydration preferably occurring along cleavage planes. We believe nanocrystals not only lower friction but also facilitate reaction and

  4. Seismological implications of a lithospheric low seismic velocity zone in Mars

    NASA Astrophysics Data System (ADS)

    Zheng, Yingcai; Nimmo, Francis; Lay, Thorne

    2015-03-01

    Most seismological models for the interior of Mars lack an upper mantle low velocity zone. However, there is expected to be a large thermal gradient across the stagnant conductive lid (lithosphere) of Mars. This gradient should tend to decrease elastic wave velocities with increasing depth, with this effect dominating the opposing tendency caused by increasing pressure with depth because Mars has low gravity. An upper mantle lithosphere with a low velocity zone (LVZ) beneath a thin high velocity "seismic lid" is thus predicted. The upcoming NASA InSight mission includes a three-component seismometer, which should provide the first opportunity to directly detect any lithospheric LVZ in Mars. Seismic wavefields expected for Mars mantle velocity structures with or without a strong LVZ are very distinct. The LVZ models predict shadow zones for high-frequency seismic body wave phases such as P, S, PP and SS, etc. The most diagnostic waves that can be used to evaluate presence of a lithospheric LVZ given a single seismometer are intermediate-period global surface waves, which travel along the great circle from a seismic source to the seismometer. An LVZ produces distinctive dispersion, with a Rayleigh wave Airy phase around 100 s period and very different surface wave seismograms compared to a model with no LVZ. Even a single observation of long-period surface waves from a known range can be diagnostic of the lithospheric structure. Establishing the existence of an LVZ has major implications for thermal evolution, volatile content and internal dynamics of the planet.

  5. Directly imaging steeply-dipping fault zones in geothermal fields with multicomponent seismic data

    SciTech Connect

    Chen, Ting; Huang, Lianjie

    2015-07-30

    For characterizing geothermal systems, it is important to have clear images of steeply-dipping fault zones because they may confine the boundaries of geothermal reservoirs and influence hydrothermal flow. Elastic reverse-time migration (ERTM) is the most promising tool for subsurface imaging with multicomponent seismic data. However, conventional ERTM usually generates significant artifacts caused by the cross correlation of undesired wavefields and the polarity reversal of shear waves. In addition, it is difficult for conventional ERTM to directly image steeply-dipping fault zones. We develop a new ERTM imaging method in this paper to reduce these artifacts and directly image steeply-dipping fault zones. In our new ERTM method, forward-propagated source wavefields and backward-propagated receiver wavefields are decomposed into compressional (P) and shear (S) components. Furthermore, each component of these wavefields is separated into left- and right-going, or downgoing and upgoing waves. The cross correlation imaging condition is applied to the separated wavefields along opposite propagation directions. For converted waves (P-to-S or S-to-P), the polarity correction is applied to the separated wavefields based on the analysis of Poynting vectors. Numerical imaging examples of synthetic seismic data demonstrate that our new ERTM method produces high-resolution images of steeply-dipping fault zones.

  6. Directly imaging steeply-dipping fault zones in geothermal fields with multicomponent seismic data

    DOE PAGES

    Chen, Ting; Huang, Lianjie

    2015-07-30

    For characterizing geothermal systems, it is important to have clear images of steeply-dipping fault zones because they may confine the boundaries of geothermal reservoirs and influence hydrothermal flow. Elastic reverse-time migration (ERTM) is the most promising tool for subsurface imaging with multicomponent seismic data. However, conventional ERTM usually generates significant artifacts caused by the cross correlation of undesired wavefields and the polarity reversal of shear waves. In addition, it is difficult for conventional ERTM to directly image steeply-dipping fault zones. We develop a new ERTM imaging method in this paper to reduce these artifacts and directly image steeply-dipping fault zones.more » In our new ERTM method, forward-propagated source wavefields and backward-propagated receiver wavefields are decomposed into compressional (P) and shear (S) components. Furthermore, each component of these wavefields is separated into left- and right-going, or downgoing and upgoing waves. The cross correlation imaging condition is applied to the separated wavefields along opposite propagation directions. For converted waves (P-to-S or S-to-P), the polarity correction is applied to the separated wavefields based on the analysis of Poynting vectors. Numerical imaging examples of synthetic seismic data demonstrate that our new ERTM method produces high-resolution images of steeply-dipping fault zones.« less

  7. Imaging the Seismic Cycle in the Central Andean Subduction Zone from Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Ortega-Culaciati, F.; Becerra-Carreño, V. C.; Socquet, A.; Jara, J.; Carrizo, D.; Norabuena, E. O.; Simons, M.; Vigny, C.; Bataille, K. D.; Moreno, M.; Baez, J. C.; Comte, D.; Contreras-Reyes, E.; Delorme, A.; Genrich, J. F.; Klein, E.; Ortega, I.; Valderas, M. C.

    2015-12-01

    We aim to quantify spatial and temporal evolution of fault slip behavior during all stages of the seismic cycle in subduction megathrusts, with the eventual goal of improving our understanding of the mechanical behavior of the subduction system and its implications for earthquake and tsunami hazards. In this work, we analyze the portion of the Nazca-SouthAmerican plates subduction zone affected by the 1868 southern Peru and 1877 northern Chile mega-earthquakes. The 1868 and 1878 events defined a seismic gap that did not experience a large earthquake for over 124 years. Only recently, the 1995 Mw 8.1 Antofagasta, 2001 Mw 8.4 Arequipa, 2007 Mw 7.7 Tocopilla, and 2014 Mw 8.2 Pisagua earthquakes released only a small fraction of the potential slip budget, thereby raising concerns about continued seismic and tsunami hazard. We use over a decade of observations from continuous and campaign GPS networks to analyze inter-seismic strain accumulation, as well as co-seimic deformation associated to the more recent earthquakes in the in the Central Andean region. We obtain inferences of slip (and back-slip) behavior using a consistent and robust inversion framework that accounts for the spatial variability of the constraint provided by the observations on slip across the subduction megathrust. We present an updated inter-seismic coupling model and estimates of pre-, co- and post- seismic slip behavior associated with the most recent 2014 Mw 8.2 Pisagua earthquake. We analyze our results, along with published information on the recent and historical large earthquakes, to characterize the regions of the megathrust that tend to behave aseismically, and those that are capable to accumulate a slip budget (ultimately leading to the generation of large earthquakes), to what extent such regions may overlap, and discuss the potential for large earthquakes in the region.

  8. Seismic Probing of the Base of a Tectonic Plate from Subduction Zone to Trench Outer Rise: Hikurangi Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Kent, G. M.; Lamb, S. H.; Savage, M. K.; Stern, T. A.; Stratford, W. R.

    2015-12-01

    The nature of the base of a tectonic plate (LAB) is the 3rd dimension of plate tectonics. Recent seismic studies of the LAB have revealed planar features that show very different characteristics. In the oceans, the top of the S-wave low velocity zone shows a systematic deepening with plate age that fits plate-cooling models. However, the change in radial anisotropy has a markedly constant depth of ~70 km, regardless of plate age. A recent land-based study (SAHKE 2) of the subducted Pacific Plate in the southern Hikurangi margin has imaged a pair of distinct reflectors defining a ~10 km thick channel parallel to and ~70 km below the top of the ~15° dipping plate. Low velocities indicate that the channel is a zone of partial melt or high volatile content, acting as a weak base to the plate. Receiver function studies along the Japan margin have also imaged layers at these depths, parallel to the top of the plate and dipping up to 45°. We propose probing the base of the tectonic plate by tracing potential LAB seismic reflectors from their dipping portions in the subduction zone to where they bend in the trench outer rise. If the seismically identified boundary represents a 'frozen-in' feature, created at the mid ocean ridge, then it will remain parallel to the top of the plate, and its nature will remain unchanged as it is tracked over the outer rise. Alternatively, if the base of the plate is a thin channel of partial melt, then one would expect thickening of the channel beneath the outer rise due to melt ponding in the core of the flexure; this melt ponding may be the source of volcanic activity. A 500-km survey will trace the Pacific plate LAB from the subduction zone into the trench outer rise. The deeper part of the line coincides with the part of the plate where the ~10 km thick 'melt' channel was clearly imaged with the SAHKE 2 experiment. We show with synthetic experiments that given seismic energy scatter and attenuation comparable to that observed in the

  9. A 3D seismic tomography of the Lesser Antilles Subduction Zone offshore Dominica and Martinique islands

    NASA Astrophysics Data System (ADS)

    Evain, Mikaël.; Galve, Audrey; Charvis, Philippe; Laigle, Mireille; Flueh, Ernst; Weinzierl, Wolfgang

    2010-05-01

    Along the eastern border of the Caribbean plate the Lesser Antilles islands form an active volcanic arc above the Atlantic subducting lithosphere. The crustal structure of this convergent margin is presented here from first arrival tomographic inversion of a 3D wide-angle seismic dataset acquired offshore Dominica and Martinique islands by a network of 27 Ocean Bottom Seismometers (OBS). The resulting 3D velocity model shows good resolution from 7-8 km down to ~15 km depth in a 150 km x 150 km area. Though our study area is located at the northern termination of one of the world's largest accretionary prisms we still observe about 5 to 7 km of sediment (v< 4 km/s) in the southeastern corner of our model. Our network is centered on a remarkable bathymetric feature: the Arawak Basin, a 6 km deep basin trending NW-SE, filled with 3 km of sediment on average. The western side of the Arawak Basin is bordered at depth by a basement high, highlighted by the rise of the 6.0-6.5 km/s velocity contours up to 2 km below seafloor. To the east of the Arawak Basin, below the accretionary prism, SW-NE cross-sections show two successive rises of velocity contours from 4.0 to 6.0 km/s. The first one, also clearly seen on the MCS data, is coincident with the eastern border of the Arawak Basin, while the second one seems located ~30 km to the East, below the thick accretionary prism. We interpret these highs as basement uplifts associated with the subduction of the Tiburon ridge. We do not sample the interplate contact mainly due to high seismic attenuation in the accretionary wedge. More insight into the geometry of this contact may arise from the processing of a ~285 km long wide-angle refraction/reflection profile parallel to the convergence that cross our 3D velocity model in its middle and continues across the entire subduction complex. Preliminary tomographic results from this dataset recorded by 45 densely spaced OBS confirm the observations described above. This new 2D line

  10. Seismic detection of rigid zones at the top of the core.

    PubMed

    Rost, S; Revenaugh, J

    2001-11-30

    Data from earthquakes in the Tonga-Fiji region recorded at a seismic array in northern Australia show evidence for rigid zones at the top of the outer core. The ScP waveforms can be modeled by thin (0.12 to 0.18 kilometer) zones of molten iron mixed with solid material with a small, but positive, S-wave velocity (0.6 to 0.8 kilometer per second) that enables the propagation of S-waves in the outermost core. The zones may be topographic highs of the core-mantle boundary filled by light core sediments and might be important for variation of Earth's nutation and for convection of the outer core.

  11. Imaging the Seattle Fault Zone with high-resolution seismic tomography

    USGS Publications Warehouse

    Calvert, A.J.; Fisher, M.A.

    2001-01-01

    The Seattle fault, which trends east-west through the greater Seattle metropolitan area, is a thrust fault that, around 1100 years ago, produced a major earthquake believed to have had a magnitude greater than 7. We present the first high resolution image of the shallow P wave velocity variation across the fault zone obtained by tomographic inversion of first arrivals recorded on a seismic reflection profile shot through Puget Sound adjacent to Seattle. The velocity image shows that above 500 m depth the fault zone extending beneath Seattle comprises three distinct fault splays, the northernmost of which dips to the south at around 60??. The degree of uplift of Tertiary rocks within the fault zone suggests that the slip-rate along the northernmost splay during the Quaternary is 0.5 mm a-1, which is twice the average slip-rate of the Seattle fault over the last 40 Ma.

  12. Fault zone amplified waves as a possible seismic hazard along the Calaveras fault in central California

    USGS Publications Warehouse

    Spudich, P.; Olsen, K.B.

    2001-01-01

    The Calaveras fault lies within a low velocity zone (LVZ) 1-2 km wide near Gilroy, California. Accelerographs G06, located in the LVZ 1.2 km from the Calaveras fault, and G07, 4 km from G06, recorded both the M 6.2 1984 Morgan Hill and the M 6.9 1989 Loma Prieta earthquakes. Comparison of the ground motions shows that a large 0.6-1.0 Hz velocity pulse observed at G06 during the Morgan Hill event may be amplified by focussing caused by the LVZ. Such amplified waves might be a mappable seismic hazard, and the zone of increased hazard can extend as much as 1.2 km from the surface trace of the fault. Finite-difference simulations of ground motions in a simplified LVZ model show a zone of amplified motion similar to the observations.

  13. Evidences for higher nocturnal seismic activity at the Mt. Vesuvius

    NASA Astrophysics Data System (ADS)

    Mazzarella, Adriano; Scafetta, Nicola

    2016-07-01

    We analyze hourly seismic data measured at the Osservatorio Vesuviano Ovest (OVO, 1972-2014) and at the Bunker Est (BKE, 1999-2014) stations on the Mt. Vesuvius. The OVO record is complete for seismic events with magnitude M ≥ 1.9. We demonstrate that before 1996 this record presents a daily oscillation that nearly vanishes afterwards. To determine whether a daily oscillation exists in the seismic activity of the Mt. Vesuvius, we use the higher quality BKE record that is complete for seismic events with magnitude M ≥ 0.2. We demonstrate that BKE confirms that the seismic activity at the Mt. Vesuvius is higher during nighttime than during daytime. The amplitude of the daily oscillation is enhanced during summer and damped during winter. We speculate possible links with the cooling/warming diurnal cycle of the volcanic edifice, with external geomagnetic field and with magnetostriction, which stress the rocks. We find that the amplitude of the seismic daily cycle changes in time and has been increasing since 2008. Finally, we propose a seismic activity index to monitor the 24-hour oscillation that could be used to complement other methodologies currently adopted to determine the seismic status of the volcano to prevent the relative hazard.

  14. Continent-sized anomalous zones with low seismic velocity at the base of Earth's mantle

    NASA Astrophysics Data System (ADS)

    Garnero, Edward J.; McNamara, Allen K.; Shim, Sang-Heon

    2016-07-01

    Seismic images of Earth's interior reveal two massive anomalous zones at the base of the mantle, above the core, where seismic waves travel slowly. The mantle materials that surround these anomalous regions are thought to be composed of cooler rocks associated with downward advection of former oceanic tectonic plates. However, the origin and composition of the anomalous provinces is uncertain. These zones have long been depicted as warmer-than-average mantle materials related to convective upwelling. Yet, they may also be chemically distinct from the surrounding mantle, and potentially partly composed of subducted or primordial material, and have therefore been termed thermochemical piles. From seismic, geochemical and mineral physics data, the emerging view is that these thermochemical piles appear denser than the surrounding mantle materials, are dynamically stable and long-lived, and are shaped by larger-scale mantle flow. Whether remnants of a primordial layer or later accumulations of more-dense materials, the composition of the piles is modified over time by stirring and by chemical reactions with material from the surrounding mantle, underlying core and potentially from volatile elements transported into the deep Earth by subducted plates. Upwelling mantle plumes may originate from the thermochemical piles, so the unusual chemical composition of the piles could be the source of distinct trace-element signatures observed in hotspot lavas.

  15. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones

    USGS Publications Warehouse

    Marone, C.; Kilgore, B.

    1993-01-01

    THEORETICAL and experimentally based laws for seismic faulting contain a critical slip distance1-5, Dc, which is the slip over which strength breaks down during earthquake nucleation. On an earthquake-generating fault, this distance plays a key role in determining the rupture nucleation dimension6, the amount of premonitory and post-seismic slip7-10, and the maximum seismic ground acceleration1,11. In laboratory friction experiments, Dc has been related to the size of surface contact junctions2,5,12; thus, the discrepancy between laboratory measurements of Dc (??? 10-5 m) and values obtained from modelling earthquakes (??? 10-2 m) has been attributed to differences in roughness between laboratory surfaces and natural faults5. This interpretation predicts a dependence of Dc on the particle size of fault gouge 2 (breccia and wear material) but not on shear strain. Here we present experimental results showing that Dc scales with shear strain in simulated fault gouge. Our data suggest a new physical interpretation for the critical slip distance, in which Dc is controlled by the thickness of the zone of localized shear strain. As gouge zones of mature faults are commonly 102-103 m thick13-17, whereas laboratory gouge layers are 1-10 mm thick, our data offer an alternative interpretation of the discrepancy between laboratory and field-based estimates of Dc.

  16. Revised magnitude-bound relation for the Wabash Valley seismic zone of the central United States

    USGS Publications Warehouse

    Olson, S.M.; Green, R.A.; Obermeier, S.F.

    2005-01-01

    Seismic hazard assessment in the central United States, and in particular the Wabash Valley seismic zone of Indiana-Illinois, frequently relies on empirical estimates of paleoearthquake magnitudes (M). In large part these estimates have been made using the magnitude-bound method. Existing region-specific magnitude-bound relations rely heavily on only a few historical earthquakes in the central United States and eastern Canada that induced reported liquefaction features. Recent seismological studies have suggested smaller magnitudes than previously presumed for some of these earthquakes, however, and other studies have reinterpreted site-to-source distances to liquefaction features associated with some of these earthquakes. In this paper, we re-examine historical earthquakes (M > ???5) that occurred in the central and eastern United States and eastern Canada; some of these earthquakes triggered liquefaction and others did not. Based on our findings, we reinterpret the region-specific magnitude-bound relation for the Wabash Valley. Using this revised magnitude-bound relation, we present magnitude estimates for four prehistoric earthquakes that occurred in the Wabash Valley seismic zone during Holocene time.

  17. Fault segmentation, deep rift earthquakes and crustal rheology: Insights from the 2009 Karonga sequence and seismicity in the Rukwa-Malawi rift zone

    NASA Astrophysics Data System (ADS)

    Fagereng, Å.

    2013-08-01

    The Rukwa-Malawi rift zone has a record of seismic events down to depths in excess of 30 km, deep for a zone of active continental extension. This deep seismicity, as well as the presence of long (~ 100 km) border faults, has previously been explained by the long-term bulk rheology of intact, old, cold, anhydrous strong crust in east Africa, or the presence of mafic material in the lower crust. The Karonga sequence of 2009 showed a style of faulting different from continuous slip along long border faults, and is interpreted as segmented failure of hanging wall faults. Coulomb stress transfer in this sequence is calculated, and found to be consistent with segmented slip on a fault system synthetic to a nearby border fault and restricted to depths < 12 km. The inferred thermal structure of the Malawi rift indicates that slip at depths in excess of 30 km occurs at temperatures greater than the 350-450 °C commonly inferred at the base of the seismogenic zone. Crustal strength calculations indicate that long border faults and deep seismicity require the presence of a weak zone of localized deformation with increased strain rate (or fluid pressure), within a strong lower crust. A hypothesis is proposed where shallow, segmented frictional failure occurs in regions of relatively strong, intact crust (e.g. the Karonga sequence), whereas long border faults and deep earthquakes are representative of zones of weakness within strong crust. This hypothesis, if correct, implies that seismogenic thickness can vary within thick elastic lithosphere, such that localized weak zones of the crust enable nucleation of larger seismic events, whereas strong, intact crust favors smaller, segmented events and a shallower seismogenic zone.

  18. Coulomb Stress evolution and seismic hazard along the Xianshuihe-Xiaojiang Fault Zone of Western Sichuan, China

    NASA Astrophysics Data System (ADS)

    Shan, B.; Xiong, X.; Zheng, Y.

    2009-12-01

    The Xianshuihe-Xiaojiang fault system (XXFS) in southwestern China is a curved left-lateral strike-slip structure extending at least 1400 km in the eastern margin of the Tibetan Plateau. Fieldworks confirm that the XXFS, whose slip motion releases strain that is related to the convergence between the Indian and Eurasian plates, is one of the largest and most seismically active faults in China. The entire fault has experienced at least 35 earthquakes of M>6 since 1700, and almost all segments of the system have been the locus of major earthquakes within the historic record. Since the XXFS region is heavily populated (over 50 million people), understanding the distribution of large earthquakes in space and time in this region is crucial for improving forecasting and reducing catastrophic life and monetary losses. We investigated a sequence of twenty-five earthquakes (M≥6.5) that occurred along the XXFS since 1713, and the interaction between the historical earthquakes and the Mw7.9 Wenchuan earthquake occurred on the Longmenshan Fault last year. The layered model used in the study and relevant parameters were constrained by seismic studies. Fault rupture locations and geometries, as well as slip distributions of earthquakes were taken from field observations and seismic studies. Numerical results showed a good correlation between stress transfer, accumulation and earthquakes. Fourteen of the twenty-four earthquakes occurred after the 1713 Xundian were encouraged by the preceding earthquakes with positive stress loading. Three events occurred in the stress shadow induced by preceding events. And others occurred in the probable area with Coulomb stress increment. The triggering process on the fault zone may exist. According to our results, there are three visible earthquake gaps along the fault zone, which are consistent with the results of historical earthquake study. The seismic activity and tectonic motion on XXFS reduced the shear stress on the epicenter of M8

  19. Dense lower crust elevates long-term earthquake rates in the New Madrid seismic zone

    NASA Astrophysics Data System (ADS)

    Levandowski, Will; Boyd, Oliver S.; Ramirez-Guzmán, Leonardo

    2016-08-01

    Knowledge of the local state of stress is critical in appraising intraplate seismic hazard. Inverting earthquake moment tensors, we demonstrate that principal stress directions in the New Madrid seismic zone (NMSZ) differ significantly from those in the surrounding region. Faults in the NMSZ that are incompatible with slip in the regional stress field are favorably oriented relative to local stress. We jointly analyze seismic velocity, gravity, and topography to develop a 3-D crustal and upper mantle density model, revealing uniquely dense lower crust beneath the NMSZ. Finite element simulations then estimate the stress tensor due to gravitational body forces, which sums with regional stress. The anomalous lower crust both elevates gravity-derived stress at seismogenic depths in the NMSZ and rotates it to interfere more constructively with far-field stress, producing a regionally maximal deviatoric stress coincident with the highest concentration of modern seismicity. Moreover, predicted principal stress directions mirror variations (observed independently in moment tensors) at the NMSZ and across the region.

  20. Seismic anisotropy in mylonites: an example from the Mannin Thrust Zone, southwest Connemara, Ireland

    USGS Publications Warehouse

    Chroston, P.N.; Max, M.D.

    1988-01-01

    Mylonites associated with the Mannin Thrust zone of southwesternmost Connemara formed when the high-grade metamorphic rocks typical of most of the Connemara massif were thrust to the southeast over low metamorphic grade (low greenschist facies?) acid volcanics and volcaniclastic sediments, while being metamorphosed in the epidote-amphibolite facies. Triaxial and biaxial ultrasonic velocity measurements of mylonite specimens from a 240 m borehole have established that there is significant seismic anisotropy up to about 11% when comparing velocities perpendicular and parallel to the foliation. This would ultimately lead to a reflection coefficient of about 0.02 when comparing the mean "isotropic" seismic velocity with that perpendicular to the foliation. The finely striped, discontinunous mineral lithons that define mylonitic foliation, but which form no real and continuous surfaces, could interact with seismic energy to produce "reflections" that do not relate to lithological contacts within the rocks but to a tectonically induced, orientated acoustic impedance. However, the results support the work of others in suggesting that on its own the fabric would not produce the high amplitude reflections observed on deep seismic lines and other mechanisms need to be investigated. ?? 1988.

  1. Global seismic data reveal little water in the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Houser, C.

    2016-08-01

    Knowledge of the Earth's present water content is necessary to constrain the amount of water and other volatiles the Earth acquired during its formation and the amount that is cycled back into the interior from the surface. This study compares 410 and 660 km discontinuity depth with shear wave tomography within the mantle transition zone to identify regions with seismic signals consistent with water. The depth of the 410 and 660 km discontinuities is determined from a large updated dataset of SS-S410S and SS-S660S differential travel times, known as SS precursors. The discontinuity depths measured from binning and stacking the SS precursor data are then compared to the shear velocity model HMSL-S06 in the transition zone. Mapping all the possible combinations, very few locations match the predictions from mineral physics for the effects of water on discontinuity depth and shear velocity. The predictions, although not yet measured at actual transition zone temperatures and pressures, are a shallow 410 km discontinuity, a deep 660 km discontinuity, and a slow shear velocity. Only 8% of the bins with high-quality data are consistent with these predictions, and the calculated average water content within these bins is around 0.6 wt.%. A few isolated locations have patterns of velocity/topography that are consistent with water, while there are large regional-scale patterns consistent with cold/hot temperature anomalies. Combining this global analysis of long period seismic data and the current mineral physics predictions for water in transition zone minerals, I find that the mantle transition zone is generally dry, containing less than one Earth ocean of water. Although subduction zones could be locally hydrated, the combined discontinuity and velocity data show no evidence that wadsleyite or ringwoodite have been globally hydrated by subduction or initial Earth conditions.

  2. The Obsidian Creep Project: Seismic Imaging in the Brawley Seismic Zone and Salton Sea Geothermal Field, Imperial County, California

    NASA Astrophysics Data System (ADS)

    Catchings, R. D.; Rymer, M. J.; Goldman, M.; Lohman, R. B.; McGuire, J. J.

    2010-12-01

    In March 2010, we acquired medium- and high-resolution P- and S-wave seismic reflection and refraction data across faults in the Brawley seismic zone (BSZ) and across part of the Salton Sea Geothermal Field (SSGF), Imperial Valley, California. Our objectives were to determine the dip, possible structural complexities, and seismic velocities associated with the BSZ and SSGF. We acquired multiple seismic data sets along a north-south profile and a high-resolution P-wave profile along an east-west profile. The north-south profile included: 1) a 6.4-km-long P-wave (main) profile that was recorded on 320 Texan seismographs spaced at 20-m intervals, 2) a 1.2-km-long cabled, high-resolution profile along the northern end of the main profile, and 3) an approximately 1.2-km-long S-wave profile along the cabled profile. P-wave sources along the main profile were generated by 0.15- to 0.45-kg buried explosions spaced every 40 m, and P-wave sources along the cabled profile were generated by Betsy-Seisgun ‘shots’ spaced every 10 m. S-waves sources were generated by hammer impacts on the ends of an aluminum block. The east-west profile consisted of a 3.4-km-long high-resolution P-wave seismic profile with shots (Betsy-Seisgun) and geophones spaced every 10 m. Preliminary interpretation of shot gathers from blasts in the north-south profile suggests that the BSZ and SSGF are structurally complex, with abundant faults extending to or near the ground surface. Also, we observe relatively high-velocity material, apparent velocities of about 4.0 km/s in one direction and about 2.8 km/s in another relative to about 1.6 km/s for shallower material, that shallows beneath the SSGF. This may be due to high temperatures and resultant metamorphism of buried materials in the SSGF. From preliminary interpretation of shot gathers along the east-west profile we interpret a prominent fault that extends to the ground surface. This fault is on projection of the Kalin fault, from about 40 m to

  3. Lateral wave-field stacking of seismic Fresnel zones for the generalized-offset case

    NASA Astrophysics Data System (ADS)

    Tian, Nan; Fan, Ting-En; Wang, Zong-Jun; Cai, Wen-Tao

    2015-06-01

    To unify different seismic geometries, the concept of generalized offset is defined and the expressions for Fresnel zones of different order on a plane are presented. Based on wave theory, the equation of the lateral wave-field stacking for generalized-offset Fresnel zones is derived. For zero and nonzero offsets, the lateral stacking amplitude of diffraction bins of different sizes is analyzed by referring to the shape of the Fresnel zones of different order. The results suggest the following. First, the contribution of diffraction bins to wave-field stacking is related to the offset, surface relief, interface dip, the depth of the shot point to the reflection interface, the observational geometry, and the size of the interference stacking region. Second, the first-order Fresnel zone is the main constructive interference, and its contribution to the reflection amplitude is slightly smaller than half the contribution of all Fresnel zones. Finally, when the size of the diffraction bin is smaller than the first-order Fresnel zone, the larger the size of the diffraction bin, the larger is the amplitude of the receiver, even in the nonzero offset-case.

  4. Anatomy of a Complex Fault Zone: Land Seismic Reflection Imaging of the Tacoma Fault Zone, Washington State

    NASA Astrophysics Data System (ADS)

    Pape, K.; Liberty, L. M.; Pratt, T. L.

    2005-12-01

    Preliminary interpretations of new land-based seismic reflection images across the Tacoma fault zone in western Washington State document a complex pattern of faulting and folding. The Tacoma fault zone bounds gravity and aeromagnetic anomalies for 50 km across the central Puget Lowland west of the city of Tacoma, and tomography data suggest there is as much as 6 km of post-Eocene uplift of the hanging wall relative to Tacoma basin sediments to the south. We acquired four north-south seismic reflection profiles to define the character and tectonic history of the Tacoma fault zone. The 6-km long Powerline Road profile, located west of Case Inlet, perpendicularly crosses the 4-km-long Catfish Lake scarp discerned from Lidar data and trenching. The profile shows flat-lying strata on the south, but the north part of the profile is dominated by south-dipping Tertiary and older strata that appear to form the limb of an anticline. There appears to be at least one, and likely two faults in the Tertiary and older strata, although it is not clear these faults penetrate the shallowest Pleistocene strata. The 8.5-km long Carney Lake profile is located east of Case Inlet and spans two scarps imaged on Lidar data. This profile shows a similar geometry to the Powerline Road profile, folded and faulted Tertiary and older strata adjacent to flat-lying marine sediments of the Tacoma Basin. The 9-km long Bethel-Burley profile across the east portion of the Tacoma fault near Gig Harbor shows a significantly different reflector geometry than the profiles to the west. The Bethel-Burley profile is dominated by a strong, south-dipping reflection that becomes a prominent arch near the north end of the section. The strength of the reflector suggests that it marks the top of the Eocene basement rocks. South-dipping strata on this profile match those imaged on marine profiles from Carr Inlet. The new seismic reflection data support an interpretation in which the north edge of the Tacoma basin

  5. Water, oceanic fracture zones and the lubrication of subducting plate boundaries—insights from seismicity

    NASA Astrophysics Data System (ADS)

    Schlaphorst, David; Kendall, J.-Michael; Collier, Jenny S.; Verdon, James P.; Blundy, Jon; Baptie, Brian; Latchman, Joan L.; Massin, Frederic; Bouin, Marie-Paule

    2016-03-01

    We investigate the relationship between subduction processes and related seismicity for the Lesser Antilles Arc using the Gutenberg-Richter law. This power law describes the earthquake-magnitude distribution, with the gradient of the cumulative magnitude distribution being commonly known as the b-value. The Lesser Antilles Arc was chosen because of its along-strike variability in sediment subduction and the transition from subduction to strike-slip movement towards its northern and southern ends. The data are derived from the seismicity catalogues from the Seismic Research Centre of The University of the West Indies and the Observatoires Volcanologiques et Sismologiques of the Institut de Physique du Globe de Paris and consist of subcrustal events primarily from the slab interface. The b-value is found using a Kolmogorov-Smirnov test for a maximum-likelihood straight line-fitting routine. We investigate spatial variations in b-values using a grid-search with circular cells as well as an along-arc projection. Tests with different algorithms and the two independent earthquake cataloges provide confidence in the robustness of our results. We observe a strong spatial variability of the b-value that cannot be explained by the uncertainties. Rather than obtaining a simple north-south b-value distribution suggestive of the dominant control on earthquake triggering being water released from the sedimentary cover on the incoming American Plates, or a b-value distribution that correlates with on the obliquity of subduction, we obtain a series of discrete, high b-value `bull's-eyes' along strike. These bull's-eyes, which indicate stress release through a higher fraction of small earthquakes, coincide with the locations of known incoming oceanic fracture zones on the American Plates. We interpret the results in terms of water being delivered to the Lesser Antilles subduction zone in the vicinity of fracture zones providing lubrication and thus changing the character of the

  6. Fluid and mass transfer into the cold mantle wedge of subduction zones: budgets and seismic constraints

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Hacker, B. R.; Van Keken, P. E.; Nakajima, J.; Kita, S.

    2015-12-01

    Dehydration of subducting plates should hydrate the shallow overlying mantle wedge where mantle is cold. In the shallow mantle wedge hydrous phases, notably serpentines, chlorite, brucite and talc should be stable to form a significant reservoir for H2O. Beneath this cold nose thermal models suggest only limited slab dehydration occurs at depths less than ca. 80 km except in warm subduction zones, but fluids may flow updip from deeper within the subducting plate to hydrate the shallow mantle. We estimate the total water storage capacity in cold noses, at temperatures where hydrous phases are stable, to be roughly 2-3% the mass of the global ocean. At modern subduction flux rates its full hydration could be achieved in 50-100 Ma if all subducting water devolatilized in the upper 100 km flows into the wedge; these estimates have at least a factor of two uncertainty. To investigate the extent to which wedge hydration actually occurs we compile and generate seismic images of forearc mantle regions. The compilation includes P- and S-velocity images with good sampling below the Moho and above the downgoing slab in forearcs, from active-source imaging, local earthquake tomography and receiver functions, while avoiding areas of complex tectonics. Well-resolved images exist for Cascadia, Alaska, the Andes, Central America, North Island New Zealand, and Japan. We compare the observed velocities to those predicted from thermal-petrologic models. Among these forearcs, Cascadia stands out as having upper-mantle seismic velocities lower than overriding crust, consistent with high (>50%) hydration. Most other forearcs show Vp close to 8.0 km/s and Vp/Vs of 1.73-1.80. We compare these observations to velocities predicted from thermal-mineralogical models. Velocities are slightly slower than expected for dry peridotite and allow 10-20% hydration, but also could also be explained as relict accreted rock, or delaminated, relaminated, or offscraped crustal material mixed with mantle

  7. Strong ground motion synthesis along the Sanyi-Tungshih-Puli seismic zone using empirical Green`s functions

    SciTech Connect

    Hutchings, L.; Foxall, W.; Kasameyer, P.; Wu, F.T.; Rau, R.-J.; Jarpe, S.

    1997-01-01

    We synthesize strong ground motion from a M=7.25 earthquake along the NW-trending Sanyi-Tungshih-Puli seismic zone. This trend extends from Houlong to Taichung and forms a nearly continuous 78 km long seismic zone identified by the occurrence of M<5 events. It extends from a shallow depth all the way down to about 40 km. The entire length of the fault, if activated at one time, can lead to an event comparable to that the 1995 Kobe earthquake. With the improved digital CWBSN data now provided routinely by CWBSN, it becomes possible to use these data as empirical Green`s functions to synthesize potential ground motion for future large earthquakes. We developed a suite of 100 rupture scenarios for the earthquake and computed the commensurate strong ground motion time histories. We synthesized strong ground motion with physics-based solutions of earthquake rupture and applied physical bounds on rupture parameters. the synthesized ground motions obtained for a fixed magnitude and identifying the hazard to a site from the statistical distribution of engineering parameters, we have introduced a probabilistic component to the deterministic hazard calculation, The time histories suggested for engineering design are the ones that most closely match either the average or one standard deviation absolute acceleration response values.

  8. Preliminary results of characteristic seismic anisotropy beneath Sunda-Banda subduction-collision zone

    SciTech Connect

    Wiyono, Samsul H.; Nugraha, Andri Dian

    2015-04-24

    Determining of seismic anisotropy allowed us for understanding the deformation processes that occured in the past and present. In this study, we performed shear wave splitting to characterize seismic anisotropy beneath Sunda-Banda subduction-collision zone. For about 1,610 XKS waveforms from INATEWS-BMKG networks have been analyzed. From its measurements showed that fast polarization direction is consistent with trench-perpendicular orientation but several stations presented different orientation. We also compared between fast polarization direction with absolute plate motion in the no net rotation and hotspot frame. Its result showed that both absolute plate motion frame had strong correlation with fast polarization direction. Strong correlation between the fast polarization direction and the absolute plate motion can be interpreted as the possibility of dominant anisotropy is in the asthenosphere.

  9. Historical seismicity near Chagos - A complex deformation zone in the equatorial Indian Ocean

    NASA Technical Reports Server (NTRS)

    Wiens, D. A.

    1986-01-01

    The historical seismicity of the Chagos region of the Indian Ocean is analyzed, using earthquake relocation methods and a moment variance technique to determine the focal mechanisms of quakes occurring before 1964. Moment variance analysis showed a thrust faulting mechanism associated with the earthquake of 1944 near the Chagos-Laccadive Ridge; a strike-slip mechanism was associated with a smaller 1957 event occurring west of the Chagos Bank. The location of the 1944 event, one of the largest intraplate earthquakes known (1.4 x 10 to the 27th dyne/cm), would imply that the Chagos seismicity is due to a zone of tectonic deformation stretching across the equatorial Indian Ocean. The possibility of a slow diffuse boundary extending west of the Central Indian Ridge is also discussed. This boundary is confirmed by recent plate motion studies which suggest that it separates the Australian plate from a single Indo-Arabian plate.

  10. The upper crust of the Eastern Tennessee Seismic Zone: Insights from potential fields inversion

    NASA Astrophysics Data System (ADS)

    Brandmayr, Enrico; Vlahovic, Gordana

    2016-08-01

    The study investigates the crustal structure of the eastern Tennessee seismic zone (ETSZ) by means of potential field inversion through the located Euler deconvolution method. Inversion of magnetic field data shows that the top of the magnetic basement ranges between 6 and 12 km depth in the Valley and Ridge physiographic province while it is shallower (< 2 km depth) and locally outcropping in the Blue Ridge and Cumberland Plateau provinces. The estimated depth to the top of the magnetic basement is in general agreement with existing sedimentary cover maps of the broad study area. The inversion of gravity data is much more ambiguous, pointing to a generally deeper source, than magnetic data inversion. The findings support the interpretation of ETSZ seismicity as originating in basement structures not related to Appalachian orogeny and likely dating to Grenville age.

  11. SEISMIC STRUCTURE AND STRATIGRAPHY OF NORTHERN EDGE OF BAHAMAN-CUBAN COLLISION ZONE.

    USGS Publications Warehouse

    Ball, M.M.; Martin, R.G.; Bock, W.D.; Sylwester, R.E.; Bowles, R.M.; Taylor, D.; Coward, E.L.; Dodd, J.E.; Gilbert, L.

    1985-01-01

    Common-depth-point (CDP) seismic reflection data in the southwestern Bahamas reveal the northern edge of the tectonized zone that resulted from the late Mesozoic-early Cenozoic collision of Cuba and the Bahamas. Two seismic facies are present. A 10-km broad anticline occurs at the south end of Santaren Channel. Platform carbonates in the core of this structure overlie Early Cretaceous and older basinal carbonate deposits and are onlapped by Late Cretaceous and Cenozoic basinal facies. The structure is inferred to be a hanging-wall anticline at the northern limit of the Cuban fold-thrust belt formed in the Late Cretaceous. A deeper water embayment extended northward into the Straits of Florida, around northern Cay Sal Bank, and back into Santaren Channel during the Early Cretaceous.

  12. Characterization and application of microearthquake clusters to problems of scaling, fault zone dynamics, and seismic monitoring at Parkfield, California

    SciTech Connect

    Nadeau, R.M.

    1995-10-01

    This document contains information about the characterization and application of microearthquake clusters and fault zone dynamics. Topics discussed include: Seismological studies; fault-zone dynamics; periodic recurrence; scaling of microearthquakes to large earthquakes; implications of fault mechanics and seismic hazards; and wave propagation and temporal changes.

  13. Structure of the North Anatolian Fault Zone from the Autocorrelation of Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Taylor, George; Rost, Sebastian; Houseman, Gregory

    2016-04-01

    In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquakes or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct body wave images for the entire crust and the shallow upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using autocorrelations of the vertical component of ground motion, P-wave reflections can be retrieved from the wavefield to constrain crustal structure. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the northern branch of the fault zone, indicating that the NAFZ reaches the upper mantle as a narrow structure. The southern branch has a less clear effect on crustal structure. We also see evidence of several discontinuities in the mid-crust in addition to an upper mantle reflector that we interpret to represent the Hales discontinuity.

  14. Seismic Structure of the Northernmost Ryukyu Subduction Zone, Southward Offshore of Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Nishizawa, A.; Oikawa, M.; Kaneda, K.; Kasahara, J.

    2007-12-01

    The Philippine Sea plate subducts northwest beneath the Eurasian Plate along the Nankai Trough in the north and the Nansei-Shoto (Ryukyu) Trench in the south at a rate of about 50-60 mm/year. Magnitude 8-class earthquakes occurred repeatedly along the Nankai Trough in the northeastern neighborhood, while the largest earthquake ever recorded is at most 7.6 along the northernmost Ryukyu Trench in the southern neighborhood. We carried out five ocean bottom seismographic (OBS) and multi-channel seismic (MCS) profiles in the northernmost Ryukyu subduction zone and obtained seismic velocity structural models related to the characteristics of the earthquakes in this region. For each investigation in 2005 and 2006, we shot a tuned airgun array with a volume of 8,040 cubic inches at an interval of 200 m for the wide-angle seismic profiles and at 50 m for the MCS (480 channels, 60 folds) profiles. The OBSs were deployed at an average interval of 5 km, which provided us dense data of high quality. The OBS data were modeled by a tomographic inversion, two-dimensional ray tracing and synthetic seismograms. The obtained MCS records show distinct reflections from the subducting plate boundary beneath the landward slope of the Ryukyu Trench and low velocity (Vp < 4 km/s) and thick (~ 8 km) materials above and on the decollement zone are modeled from the OBS data. Both the MCS and OBS records give clear images of very rough sea bottom configuration of the northern extension of the Kyushu-Palau Ridge and Amami Plateau below the landward slope. Such strong undulations of the plate boundary may constrain the sizes and/or natures of the asperities in this region. In addition, the estimated position of the seismic asperity of 1968 Hyuga-nada earthquake (Mw 7.5) corresponds to high velocity materials ascending in our P-wave velocity model.

  15. Encouraging the use of seismic methods for the hydrogeophysical characterization of the critical zone

    NASA Astrophysics Data System (ADS)

    Pasquet, S.; Bodet, L.; Chalikakis, K.; Flipo, N.; Longuevergne, L.; Guérin, R.

    2015-12-01

    The characterization, study and monitoring of hydrosystems mainly rely on piezometric and log data, e.g. on local information. Fortunately, hydrogeophysics provide appropriate tools to interpolate boreholes information and to image heterogeneities in the critical zone. When electrical and electromagnetic methods predominate in such context, we recently suggested the use of classical seismic methods not only to provide a characterization of the subsurface geometry, but also to estimate the mechanical properties of the critical zone influenced by its water content. We tested, on two critical zone observatories with distinct hydrogeological characteristics, the simultaneous estimation of pressure (P-) and shear (S-) wave seismic velocities (VP and VS, respectively) from P-wave travel-time tomography and surface-wave dispersion inversion respectively. On both sites, e.g. a fractured environment with strong discontinuities and a continuous multi-layered hydrosystem, we were able to image spatial and/or temporal variations of VP/VS ratio, whose evolution was strongly associated to the water content observed locally.

  16. Estimation of earthquake effects associated with a great earthquake in the New Madrid seismic zone

    USGS Publications Warehouse

    Hopper, Margaret G.; Algermissen, Sylvester Theodore; Dobrovolny, Ernest E.

    1983-01-01

    Estimates have been made of the effects of a large Ms = 8.6, Io = XI earthquake hypothesed to occur anywhere in the New Madrid seismic zone. The estimates are based on the distributions of intensities associated with the earthquakes of 1811-12, 1843 and 1895 although the effects of other historical shocks are also considered. The resulting composite type intensity map for a maximum intensity XI is believed to represent the upper level of shaking likely to occur. Specific intensity maps have been developed for six cities near the epicentral region taking into account the most likely distribution of site response in each city. Intensities found are: IX for Carbondale, IL; VIII and IX for Evansville, IN; VI and VIII for Little Rock, AR; IX and X for Memphis, TN; VIII, IX, and X for Paducah, KY; and VIII and X for Poplar Bluff, MO. On a regional scale, intensities are found to attenuate from the New Madrid seismic zone most rapidly to the west and southwest sides of the zone, most slowly to the northwest along the Mississippi River, on the northeast along the Ohio River, and on the southeast toward Georgia and South Carolina. Intensities attenuate toward the north, east, and south in a more normal fashion. Known liquefaction effects are documented but much more research is needed to define the liquefaction potential.

  17. Microstructural study of the partition between seismic and aseismic deformation along the North Anatolian Fault zone, Turkey

    NASA Astrophysics Data System (ADS)

    Kaduri, M.; Gratier, J. P.; Renard, F.; Cakir, Z.; Lasserre, C.

    2014-12-01

    Along the North Anatolian Fault (Turkey), fault sliding is accommodated both by earthquakes and by aseismic creep. The creep processes develop either as transient (post-seismic or interseismic) sliding or as permanent sliding along zones localized on specific segments of the fault. Creep processes relax the stress and contribute to stress redistribution within the seismogenic zone. They participate to the deformation budget during the seismic cycle, sometimes delaying or on the contrary helping triggering the occurrence of large earthquakes. Identifying the mechanisms controlling creep and their evolution with time and space represents a major challenge for predicting the mechanical evolution of active faults. Our goal is to answer three main questions: How to identify at the outcrop scale permanent creep from transient creep? Is aseismic creep controlled by lithology? How does creep evolve before and after earthquakes? The challenge is to understand which key parameters control the shift from seismic to aseismic deformation, such as the effect of fabric, rock lithology, fault roughness, strain-rate, fluid pressure or stress.We collected samples from a dozen of fresh and well-preserved fault outcrops along creeping and locked segments of the North Anatolian Fault. We used various methods such as microscopic and geological observations, SEM, XRD analysis, strain measurements from image processing approaches in order to quantitatively characterize the amount of deformation and the mechanisms involved. Results show different relationships between lithology and mechanisms of deformation: (i) Along the locked segments of the North Anatolian Fault, in massive limestone, we found evidence of large earthquakes followed by pre- or post-seismic (i.e. afterslip) creep. (ii) Along some creeping segments, we observed gouges with weak clay (saponite) that could accommodate (or have accommodated in the past) large permanent creep. (iii) Along other creeping segments, we observed

  18. Structure and Deformation of the Hikurangi-Kermadec Subduction Zone - Transitions Revealed by Seismic Wide-angle Data

    NASA Astrophysics Data System (ADS)

    Scherwath, M.; Kopp, H.; Flueh, E. R.; Henrys, S. A.; Sutherland, R.

    2008-12-01

    The Hikurangi-Kermadec subduction zone northeast of New Zealand represents an ideal target to study lateral variations of subduction zone processes. The incoming Pacific plate changes from being a large igneous province, called the Hikurangi Plateau, in the south to normal oceanic plate north of the Rapuhia Scarp. The overriding Australian plate of continental character in the south, forming the North Island of New Zealand, and changes to an island arc in the north. Further lateral variability exists in changes in volcanic and hydro-thermal activity, transitions from accretion to subduction erosion, backarc spreading and rifting, and is accompanied by northward increasing seismicity. As part of the MANGO project (Marine Geoscientific Investigations on the Input and Output of the Kermadec Subduction Zone), four marine geophysical transects of largely seismic reflection and refraction data provide constraints on the upper lithospheric structures across the Hikurangi-Kermadec Trench between 29-38 deg S. On MANGO profile 1 in the south, the initially shallow subduction of the incoming plateau coincides with crustal underplating beneath the East Cape ridge. To the west lies the 100 km wide and over 10 km deep Raukumara Basin. Seismic velocities of the upper mantle of both plates are around 8 km/s and are considered normal. In contrast, on MANGO profile 4, about 1000 km to the north around the volcanically active Raoul Island, the incoming oceanic crust appears to bend considerably steeper and thus causes a 50 km narrower forearc with a smaller forearc basin. Furthermore, the upper mantle velocities in both plates are relatively low (7.4-7.7 km/s), likely indicating strong bending related deformation of the incoming plate and thermal activity within the arc possibly due to spreading. The central two transects MANGO 2 and 3, though without data coverage of the structure of the incoming plate, are more similar to MANGO 4. The arc regions appear to be strongly affected by

  19. Seismic hazard assessment of Syria using seismicity, DEM, slope, active tectonic and GIS

    NASA Astrophysics Data System (ADS)

    Ahmad, Raed; Adris, Ahmad; Singh, Ramesh

    2016-07-01

    In the present work, we discuss the use of an integrated remote sensing and Geographical Information System (GIS) techniques for evaluation of seismic hazard areas in Syria. The present study is the first time effort to create seismic hazard map with the help of GIS. In the proposed approach, we have used Aster satellite data, digital elevation data (30 m resolution), earthquake data, and active tectonic maps. Many important factors for evaluation of seismic hazard were identified and corresponding thematic data layers (past earthquake epicenters, active faults, digital elevation model, and slope) were generated. A numerical rating scheme has been developed for spatial data analysis using GIS to identify ranking of parameters to be included in the evaluation of seismic hazard. The resulting earthquake potential map delineates the area into different relative susceptibility classes: high, moderate, low and very low. The potential earthquake map was validated by correlating the obtained different classes with the local probability that produced using conventional analysis of observed earthquakes. Using earthquake data of Syria and the peak ground acceleration (PGA) data is introduced to the model to develop final seismic hazard map based on Gutenberg-Richter (a and b values) parameters and using the concepts of local probability and recurrence time. The application of the proposed technique in Syrian region indicates that this method provides good estimate of seismic hazard map compared to those developed from traditional techniques (Deterministic (DSHA) and probabilistic seismic hazard (PSHA). For the first time we have used numerous parameters using remote sensing and GIS in preparation of seismic hazard map which is found to be very realistic.

  20. Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Thurber, C. H.; Zhang, H.; Peng, Z.; Zhao, P.

    2011-12-01

    /relocation inversion. Through these efforts, we hope to refine the 3D tomographic image of seismic velocity structure and the complex geometry of the active fault strands near SAFOD and along the Parkfield rupture zone.

  1. Upper-mantle seismic discontinuities and the thermal structure of subduction zones

    USGS Publications Warehouse

    Vidale, J.E.; Benz, H.M.

    1992-01-01

    The precise depths at which seismic velocities change abruptly in the upper mantle are revealed by the analysis of data from hundreds of seismometers across the western United States. The boundary near 410 km depth is locally elevated, that near 660 km depressed. The depths of these boundaries, which mark phase transitions, provide an in situ thermometer in subduction zones: the observed temperature contrasts require at least moderate thickening of the subducting slab near 660 km depth. In addition, a reflector near 210 km depth may mark the bottom of the aesthenosphere.

  2. Studying geodesy and earthquake hazard in and around the New Madrid Seismic Zone

    USGS Publications Warehouse

    Boyd, Oliver Salz; Magistrale, Harold

    2011-01-01

    Workshop on New Madrid Geodesy and the Challenges of Understanding Intraplate Earthquakes; Norwood, Massachusetts, 4 March 2011 Twenty-six researchers gathered for a workshop sponsored by the U.S. Geological Survey (USGS) and FM Global to discuss geodesy in and around the New Madrid seismic zone (NMSZ) and its relation to earthquake hazards. The group addressed the challenge of reconciling current geodetic measurements, which show low present-day surface strain rates, with paleoseismic evidence of recent, relatively frequent, major earthquakes in the region. The workshop presentations and conclusions will be available in a forthcoming USGS open-file report (http://pubs.usgs.gov).

  3. Integration of P- and SH-wave high-resolution seismic reflection and micro-gravity techniques to improve interpretation of shallow subsurface structure: New Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Ravat, D.; Biswas, S.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.; Fillerup, M.A.; Tingey, B.E.; Wald, L.; Northcott, M.L.; South, J.V.; Okure, M.S.; Chandler, M.R.

    2006-01-01

    Shallow high-resolution seismic reflection surveys have traditionally been restricted to either compressional (P) or horizontally polarized shear (SH) waves in order to produce 2-D images of subsurface structure. The northernmost Mississippi embayment and coincident New Madrid seismic zone (NMSZ) provide an ideal laboratory to study the experimental use of integrating P- and SH-wave seismic profiles, integrated, where practicable, with micro-gravity data. In this area, the relation between "deeper" deformation of Paleozoic bedrock associated with the formation of the Reelfoot rift and NMSZ seismicity and "shallower" deformation of overlying sediments has remained elusive, but could be revealed using integrated P- and SH-wave reflection. Surface expressions of deformation are almost non-existent in this region, which makes seismic reflection surveying the only means of detecting structures that are possibly pertinent to seismic hazard assessment. Since P- and SH-waves respond differently to the rock and fluid properties and travel at dissimilar speeds, the resulting seismic profiles provide complementary views of the subsurface based on different levels of resolution and imaging capability. P-wave profiles acquired in southwestern Illinois and western Kentucky (USA) detect faulting of deep, Paleozoic bedrock and Cretaceous reflectors while coincident SH-wave surveys show that this deformation propagates higher into overlying Tertiary and Quaternary strata. Forward modeling of micro-gravity data acquired along one of the seismic profiles further supports an interpretation of faulting of bedrock and Cretaceous strata. The integration of the two seismic and the micro-gravity methods therefore increases the scope for investigating the relation between the older and younger deformation in an area of critical seismic hazard. ?? 2006 Elsevier B.V. All rights reserved.

  4. Improved characterization of fault zones by quantitative integration of seismic and production data

    NASA Astrophysics Data System (ADS)

    Ali, Aamir; Shahraini, Ali; Jakobsen, Morten

    2011-06-01

    This paper proposes a method for the parameterization and characterization of fault facies models including a fault core and a fault damage zone containing either fractures or deformation bands, typically associated with carbonate and sandstone reservoirs, respectively. We represent the faulted reservoir models with a relatively small number of parameters and focus on the inverse problem; that is, how to estimate transmissibility of the fault core and the parameters of the fractures or deformation bands that determine the effective stiffness and permeability tensors in the damage zone. Our workflow is based on a consistent stiffness-permeability model for the fractured or composite porous media in the damage zone, and a Bayesian (Monte Carlo Markov chain) method of inversion, which provides information about uncertainties as well as the most likely values of the model parameters. For simplicity, we have assumed that the damage zone consists of a single set of fractures or deformation bands that are parallel with the (vertical) fault core, but the forward modelling part of our workflow can easily be extended to deal with more complex situations involving multiple sets of fractures and/or deformation bands that are characterized by different shapes and orientations. The results of our numerical experiments suggest that one can indeed obtain an improved characterization of fault zones by quantitative integration of seismic AVAZ and production data using the workflow presented in this paper.

  5. A zone of very low seismicity in the vicinity of the Chang Thang Platform, Tibet

    NASA Astrophysics Data System (ADS)

    Gupta, Harsh K.; Froidevaux, Claude; Ansel, Valerie

    1989-11-01

    We note that the area of 'no Sn' transmission and 'no lid' of previous researchers in the central Chang Thang Platform of Tibet has low seismicity. Whereas the Kun Lun and Lhasa blocks, lying north and south of the Chang Thang Platform, are seismically active, an area bounded by the Nujiang Kun Lun Fault and Kokoxili Suture in the north, the Bangong-Nujiang Suture and Kang Ting Fault in the south, and longitudes 87 and 100 ° E, encompassing a large portion of the Chang Thang Platform in central Tibet, has low seismicity. We also note that portions of this area have a signature in topography as well: the elevations are higher by several hundred metres here than over the Lhasa and Kun Lun blocks. These observations and the reported extensive Quaternary volcanism in the Chang Thang Platform suggest upwelling of hot mantle material below this area as the most likely explanation.

  6. Seismotectonics of accretive versus erosive subduction zones - insights from analog seismic cycle simulation

    NASA Astrophysics Data System (ADS)

    Rosenau, M.; Bachmann, R.; Oncken, O.

    2007-12-01

    Accretive and erosive subduction zones differ both in their forearc structure and seismic release character. For instance the greatest historical megathrust earthquakes concentrated along accretive margins, tectonically characterized by forearc shortening (e.g. Sumatra, Southern Chile, Alaska), whereas erosive margins, tectonically characterized by forearc extension (e.g. Peru, Kuriles), have often been the locus of tsunami earthquakes (i.e. slow and shallow events). Here we investigate the implied link between internal forearc deformation and megathrust seismogenesis and its implications for seismic hazard in subduction zones. We interpret quasi two- dimensional plastoelastic (allowing deformation to localize, permanent shortening dominates) and elastoplastic (elastic deformation dominates, minor internal deformation) granular wedge models as analogs of accretive and erosive subduction forearcs, respectively, overlying a rate-state frictional plate interface which represents a seismogenic megathrust. Experimental observations support current hypotheses that internal forearc deformation is controlled by stress changes associated with the megathrust seismic cycle: Consistent with the theory of dynamic Coulomb wedges, coseismic compression at the updip limit of great earthquakes triggers shallow postseismic forearc deformation. Plastic shortening of the outer forearc wedge and shallow afterslip both are interpreted as transient postseismic relaxation mechanisms with the first being dominant in plastoelastic/accretive settings and the second being dominant in elastoplastic/erosive settings. Interseismically, permanent crustal shortening localizes in both settings above the downdip limit of great earthquakes and may lead to uplift of a coastal cordillera. Longterm coastal uplift rates at elastoplastic/erosive margins are about one order of magnitude lower than in plastoelastic/accretive settings, and associated with permanent crustal extension above the seismogenic

  7. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    NASA Astrophysics Data System (ADS)

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis

  8. Two-dimensional seismic attenuation images of Stromboli Island using active data

    NASA Astrophysics Data System (ADS)

    Prudencio, J.; Del Pezzo, E.; Ibáñez, J. M.; Giampiccolo, E.; Patané, D.

    2015-03-01

    In this work we present intrinsic and scattering seismic attenuation 2-D images of Stromboli Volcano. We used 21,953 waveforms from air gun shots fired by an oceanographic vessel and recorded at 33 inland and 10 ocean bottom seismometer seismic stations. Coda wave envelopes of the filtered seismic traces were fitted to the energy transport equation in the diffusion approximation, obtaining a couple of separate Qi and Qs in six frequency bands. Using numerically estimated sensitivity kernels for coda waves, separate images of each quality factor were produced. Results appear stable and robust. They show that scattering attenuation prevails over intrinsic attenuation. The scattering pattern shows a strong concordance with the tectonic lineaments in the area, while an area of high total attenuation coincides with the zone where most of the volcanic activity occurs. Our results provide evidence that the most important attenuation effects in volcanic areas are associated with the presence of geological heterogeneities.

  9. Earthquake-induced liquefaction features in the coastal setting of South Carolina and in the fluvial setting of the New Madrid seismic zone

    USGS Publications Warehouse

    Obermeier, S.F.; Jacobson, R.B.; Smoot, J.P.; Weems, R.E.; Gohn, G.S.; Monroe, J.E.; Powars, D.S.

    1990-01-01

    Many types of liquefaction-related features (sand blows, fissures, lateral spreads, dikes, and sills) have been induced by earthquakes in coastal South Carolina and in the New Madrid seismic zone in the Central United States. In addition, abundant features of unknown and nonseismic origin are present. Geologic criteria for interpreting an earthquake origin in these areas are illustrated in practical applications; these criteria can be used to determine the origin of liquefaction features in many other geographic and geologic settings. In both coastal South Carolina and the New Madrid seismic zone, the earthquake-induced liquefaction features generally originated in clean sand deposits that contain no or few intercalated silt or clay-rich strata. The local geologic setting is a major influence on both development and surface expression of sand blows. Major factors controlling sand-blow formation include the thickness and physical properties of the deposits above the source sands, and these relationships are illustrated by comparing sand blows found in coastal South Carolina (in marine deposits) with sand blows found in the New Madrid seismic zone (in fluvial deposits). In coastal South Carolina, the surface stratum is typically a thin (about 1 m) soil that is weakly cemented with humate, and the sand blows are expressed as craters surrounded by a thin sheet of sand; in the New Madrid seismic zone the surface stratum generally is a clay-rich deposit ranging in thickness from 2 to 10 m, in which case sand blows characteristically are expressed as sand mounded above the original ground surface. Recognition of the various features described in this paper, and identification of the most probable origin for each, provides a set of important tools for understanding paleoseismicity in areas such as the Central and Eastern United States where faults are not exposed for study and strong seismic activity is infrequent.

  10. Deep seismic survey images crustal structure of Tornquist Zone beneath southern Baltic Sea

    SciTech Connect

    Not Available

    1991-06-01

    The Tornquist Zone is Europe's longest tectonic lineament and bisects the continent in a NW-SE direction from the North Sea (off NW Denmark) to the Black Sea. New deep seismic reflection and coincident refraction data have been collected across its 50 km wide, intensely faulted and inverted NW part. The marine reflection profile in the area north of Bornholm Island shows a tilted block structure in the rigid upper crust, whereas the lower crust seems to be more gently uplifted. A complex transition from the highly reflective lower crust to the mantle is indicated by mantle reflections and a curious wide-angle event recorded by a landstation on Bornholm Island. The authors suggest that deep-reaching inversion tectonics, induced by Alpine and Carpathian orogeny, were responsible for the development of the gross crust-mantle structure of the Tornquist Zone in the study area, which seems to be similar to that in Poland.

  11. Seismic signature of intracrustal magmatic intrusions in the Eastern Betics (Internal Zone), SE Iberia

    NASA Astrophysics Data System (ADS)

    Julià, J.; Mancilla, F.; Morales, J.

    2005-08-01

    Receiver functions at three broad-band stations located in the most easterly Inner Betics have been analyzed to investigate the structure of its underlying crust and uppermost mantle. These stations are located within a geologically distinctive block bounded by the Palomares/Alhama de Murcia faults, which is characterized by high heat-flow values, widespread strike-slip faulting and Neogene volcanism. Our analysis shows that a low velocity zone pervades the uppermost mantle beneath the stations, and that the overlying crust has a high Vp/Vs ratio and a prominent intracrustal low velocity zone (i) between the Palomares and Alhama de Murcia faults and (ii) east of Murcia, perhaps thermally perturbing the upper crust north and east of Cartagena. Independent studies show that the seismic velocities of the intervening mantle lid are normal beneath the stations, and we suggest that our observations result from rapidly ascending magma diapirs ponding at intracrustal levels within the distinctive block.

  12. Characterizing fractures and shear zones in crystalline rock using seismic and GPR methods

    NASA Astrophysics Data System (ADS)

    Doetsch, Joseph; Jordi, Claudio; Laaksonlaita, Niko; Gischig, Valentin; Schmelzbach, Cedric; Maurer, Hansruedi

    2016-04-01

    Understanding the natural or artificially created hydraulic conductivity of a rock mass is critical for the successful exploitation of enhanced geothermal systems (EGS). The hydraulic response of fractured crystalline rock is largely governed by the spatial organization of permeable fractures. Defining the 3D geometry of these fractures and their connectivity is extremely challenging, because fractures can only be observed directly at their intersections with tunnels or boreholes. Borehole-based and tunnel-based ground-penetrating radar (GPR) and seismic measurements have the potential to image fractures and other heterogeneities between and around boreholes and tunnels, and to monitor subtle time-lapse changes in great detail. We present the analysis of data acquired in the Grimsel rock laboratory as part of the In-situ Stimulation and Circulation (ISC) experiment, in which a series of stimulation experiments have been and will be performed. The experiments in the granitic rock range from hydraulic fracturing to controlled fault-slip experiments. The aim is to obtain a better understanding of coupled seismo-hydro-mechanical processes associated with high-pressure fluid injections in crystalline rocks and their impact on permeability creation and enhancement. GPR and seismic data have been recorded to improve the geological model and characterize permeable fractures and shear zones. The acquired and processed data include reflection GPR profiles measured from tunnel walls, single-borehole GPR images, and borehole-to-borehole and tunnel-to-tunnel seismic and GPR tomograms. The reflection GPR data reveal the geometry of shear zones up to a distance of 30 m from the tunnels and boreholes, but the interpretation is complicated by the geometrical ambiguity around tunnels and boreholes and by spurious reflections from man-made structures such as boreholes. The GPR and seismic traveltime tomography results reveal brittle fractured rock between two ductile shear zones. The

  13. Velocity structure and the role of fluids in the West Bohemia Seismic Zone

    NASA Astrophysics Data System (ADS)

    Alexandrakis, C.; Calò, M.; Bouchaala, F.; Vavryčuk, V.

    2014-02-01

    In this study, we apply the double-difference tomography method to investigate the detailed 3-D structure within and around the Nový Kostel seismic zone, an area in the Czech Republic known for frequent occurrences of earthquake swarms. We use data from the extensively analyzed 2008 swarm, which has known focal mechanisms, principal faults, tectonic stress, source migration and other basic characteristics. We selected about 500 microearthquakes recorded at 22 local seismic stations of the West Bohemia Network (WEBNET). Applying double-difference tomography, combined with Weighted Average Model post-processing to correct for parameter dependence effects, we produce and interpret 3-D models of the Vp-to-Vs ratio (Vp/Vs) in and around the focal zone. The modeled Vp-to-Vs ratio shows several distinct structures, namely an area of high Vp-to-Vs ratio correlating with the microearthquakes, and a layer of low values directly above it. These structures may reflect changes in lithology and/or fluid concentration. The overlaying low Vp-to-Vs ratio layer coincides with high density metamorphic unit associated with the Fichtelgebirge (Smrčiny) granitic intrusion. It is possible that the base of the layer acts as a fluid trap, resulting in the observed periodic swarms.

  14. Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures

    PubMed Central

    Yao, Huajian; Shearer, Peter M.; Gerstoft, Peter

    2013-01-01

    Megathrust earthquakes rupture a broad zone of the subducting plate interface in both along-strike and along-dip directions. The along-dip rupture characteristics of megathrust events, e.g., their slip and energy radiation distribution, reflect depth-varying frictional properties of the slab interface. Here, we report high-resolution frequency-dependent seismic radiation of the four largest megathrust earthquakes in the past 10 y using a compressive-sensing (sparse source recovery) technique, resolving generally low-frequency radiation closer to the trench at shallower depths and high-frequency radiation farther from the trench at greater depths. Together with coseismic slip models and early aftershock locations, our results suggest depth-varying frictional properties at the subducting plate interfaces. The shallower portion of the slab interface (above ∼15 km) is frictionally stable or conditionally stable and is the source region for tsunami earthquakes with large coseismic slip, deficient high-frequency radiation, and few early aftershocks. The slab interface at intermediate depths (∼15–35 km) is the main unstable seismogenic zone for the nucleation of megathrust quakes, typically with large coseismic slip, abundant early aftershocks, and intermediate- to high-frequency radiation. The deeper portion of the slab interface (∼35–45 km) is seismically unstable, however with small coseismic slip, dominant high-frequency radiation, and relatively fewer aftershocks.

  15. Seismic activity of the San Francisco Bay region

    USGS Publications Warehouse

    Bakun, W.H.

    1999-01-01

    Moment magnitude M with objective confidence-level uncertainties are estimated for felt San Francisco Bay region earthquakes using Bakun and Wentworth's (1997) analysis strategy for seismic intensity observations. The frequency-magnitude distribution is well described for M ???5.5 events since 1850 by a Gutenberg-Richter relation with a b-value of 0.90. The seismic moment rate ??M0/yr since 1836 is 2.68 X 1018 N-m/yr (95% confidence range = 1.29 X 1018 N-m/yr to 4.07 X 1018 N-m/yr); the seismic moment rate since 1850 is nearly the same. ??M0/yr in the 56 years before 1906 is about 10 times that in the 70 years after 1906. In contrast, ??M0/yr since 1977 is about equal that in the 56 years before 1906. 80% (1?? = 14%) of the plate-motion moment accumulation rate is available for release in earthquakes. The historical ??M0/yr and the portion of the plate-motion moment accumulation rate available for release in earthquakes are used in a seismic cycle model to estimate the rate of seismic activity in the twenty-first century. High and low rates of future seismic activity are both permissible given the range of possible seismic-cycle recurrence times T and the uncertainties in the historical ??M0 and in the percentage of plate motion available for release in earthquakes. If the historical seismic moment rate is not greater than the estimated 2.68 X 1018 N-m/yr and the percentage of the plate-motion moment accumulation available for release in earthquakes is not less than the estimated 80%, then for all T, the rate of seismic moment release from now until the next 1906-sized shock will be comparable to the rate from 1836 to 1905 when M 6 1/2 shocks occurred every 15 to 20 years.

  16. Sinking mafic body in a reactivated lower crust: A mechanism for stress concentration at the New Madrid seismic zone

    USGS Publications Warehouse

    Pollitz, F.F.; Kellogg, L.; Burgmann, R.

    2001-01-01

    We propose a geodynamic model for stress concentration in the New Madrid seismic zone (NMSZ). The model postulates that a high-density (mafic) body situated in the deep crust directly beneath the most seismically active part of the NMSZ began sinking several thousands of years ago when the lower crust was suddenly weakened. Based on the fact that deformation rates in the NMSZ have accelerated over the past 9 k.y., we envision the source of this perturbation to be related to the last North American deglaciation. Excess mass of the mafic body exerts a downward pull on the elastic upper crust, leading to a cycle of primary thrust faulting with secondary strike-slip faulting, after which continued sinking of the mafic body reloads the upper crust and renews the process. This model is consistent with the youth of activity, the generation of a sequence of earthquakes, and the velocity evolution during interseismic periods, which depend upon the density contrast of the mafic body with respect to the surrounding crust, its volume, and the viscosity of the lower crust.

  17. Joint seismic, hydrogeological, and geomechanical investigations of a fracture zone in the Grimsel Rock Laboratory, Switzerland

    SciTech Connect

    Majer, E.L.; Myer, L.R.; Peterson, J.E. Jr.; Karasaki, K.; Long, J.C.S.; Martel, S.J. ); Bluemling, P.; Vomvoris, S. )

    1990-06-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geologic repository for nuclear waste. From 1987 to 1989 the United States Department of Energy (DOE) and the Swiss Cooperative for the Storage of Nuclear Waste (Nagra) participated in an agreement to carryout experiments for understanding the effect of fractures in the storage and disposal of nuclear waste. As part of this joint work field and laboratory experiments were conducted at a controlled site in the Nagra underground Grimsel test site in Switzerland. The primary goal of these experiments in this fractured granite was to determine the fundamental nature of the propagation of seismic waves in fractured media, and to relate the seismological parameters to the hydrological parameters. The work is ultimately aimed at the characterization and monitoring of subsurface sites for the storage of nuclear waste. The seismic experiments utilizes high frequency (1000 to 10,000 Hertz) signals in a cross-hole configuration at scales of several tens of meters. Two-, three-, and four-sided tomographic images of the fractures and geologic structure were produced from over 60,000 raypaths through a 10 by 21 meter region bounded by two nearly horizontal boreholes and two tunnels. Intersecting this region was a dominant fracture zone which was the target of the investigations. In addition to these controlled seismic imaging experiments, laboratory work using core from this region were studied for the relation between fracture content, saturation, and seismic velocity and attenuation. In-situ geomechanical and hydrologic tests were carried out to determine the mechanical stiffness and conductivity of the fractures. 20 refs., 90 figs., 6 tabs.

  18. Aspect Controls on Bedrock Fracturing and Seismic Velocity within the Boulder Creek Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Bandler, A.; Magill, C.; Hendricks, S.; Singha, K.

    2015-12-01

    We investigate the controls of slope aspect on groundwater flow and geomorphic weathering within the Boulder Creek Critical Zone Observatory by studying the orientation and density of bedrock fracturing. Based on a series of seismic refraction surveys, we compare the seismic velocities and anisotropy of the subsurface soil and regolith with the distribution of fractures observed in 7 geophysical borehole logs. Conflicting hypotheses exist as to whether bedrock fracturing, and thus hydraulic conductivity, is controlled more by the regional tectonic stress field or by slope aspect. We examine bedrock fracturing on north- and south-facing slopes via the relationship between fracture orientation and seismic velocity, and find that our south-facing slope demonstrates pronounced seismic anisotropy, with velocities of up to 2,000 m/s in the E-W direction, and approximately 1,000 m/s in the N-S direction. By contrast, the north-facing aspect demonstrates no significant anisotropy, with velocities ranging from approximately 800-1,500 m/s. Similarly, borehole logs show conjugate sets of fractures on south-facing slopes striking in a general E-W direction, while north-facing borehole data reveal a high density of fracturing with less pronounced directional dependence. Based on current models of hillslope weathering, we interpret the slower and more isotropic velocities of the north-facing slope to be a more random orientation of fractures, caused primarily by more intense weathering processes. On the south-facing slope, we interpret the conjugate fracture sets and pronounced anisotropy to be fracturing resulting from tectonic stress. Assuming that both slopes experience similar tectonic stress, results suggest that slope aspect controls weathering and groundwater flow, and north-facing slopes demonstrate a more advanced state of weathering.

  19. Crustal Deformation Styles Along the Reprocessed Deep Seismic Reflection Transect of the Central Iberian Zone (Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Ehsan, Siddique Akhtar; Carbonell, Ramon; Ayarza, Puy; Marti, David; Martinez-Poyatos, David; Simancas, Jose Fernando; Azor, Antonio; Marzan, Ignacio; Mansilla, Luis; Perez-Estaun, Andres

    2014-05-01

    The multichannel normal incidence deep seismic reflection profile ALCUDIA was acquired in summer 2007 and is 230 km long. This transect samples an intracontinental Variscan orogenic crust going across, from north to south, the major crustal domain (the Central Iberian Zone) and a suture zone with the Ossa-Morena Zone (the Central Unit) that build up the southwestern part of the Iberian Peninsula basement. The multichannel deep seismic high resolution (60-90 fold) profile images 20 s (TWTT), about 70 km depth. The reassessment of this data aims to provide better structural constraints on the shallow and deep structures. The ALCUDIA seismic image shows an upper crust c. 13 km thick decoupled from the comparatively reflective lower crust. The shallow reflectivity of the upper crust can be correlated with surface geological features mapped in the field whereas the deep reflectivity suggests imbricate thrust systems and listric extensional faults. The reflectivity of the mid-lower crust is relatively continuous, revealing high amplitude, and horizontal to arcuate reflection events delineating boudinage shaped geometries. A transpressional flower structure can be interpreted from the seismic image which involves a subcrustal mantle wedge. The ALCUDIA seismic image reveals a laminated c. 1.5 km thick, subhorizontal to flat Moho indicating an average crustal thickness of 31-33 km. The seismic signature of the Moho varies along the transect being highly reflective beneath the Central Iberian Zone (CIZ) and discontinuous and diffuse below the Ossa-Morena Zone (OMZ). The gravity response across the ALCUDIA transect suggests relatively high density bodies in the mid-lower crust of the southern half of the transect. The seismic results suggest two major horizontal limits/discontinuities, a horizontal discontinuity at c. 13-15 km (the Conrad discontinuity) and the Moho discontinuity located at a depth of c. 31 km.

  20. Results of trench perpendicular wide angle seismic transects across the Manila subduction zone offshore southern Taiwan

    NASA Astrophysics Data System (ADS)

    Eakin, D. H.; McIntosh, K. D.; Van Avendonk, H. J.

    2011-12-01

    Multi-channel seismic reflection and wide-angle seismic data collected in 2009 aboard the R/V Marcus Langseth as part of the TAIGER program delineate the crustal structure of the Manila subduction zone in the northern South China Sea. As part of that project, we recorded marine seismic data using a deployment of ocean-bottom-seismometers (OBS) from the U.S. instrument pool and National Taiwan Ocean University. The region between northern Luzon and southern Taiwan evolves from oceanic subduction to incipient arc-continent collision. This presentation focuses on results of 2 offshore transects across the Manila subduction zone offshore southern Taiwan. Our goal here is to document the transition from pure oceanic subuction in the south to incipient arc-continent collision in the north, an understanding of which is integral for future geodynamic modeling of the advanced arc-continent collision in the north. The northern transect, line T2 is located at 21.4° N and used 30 OBSs. Line T1 was located at 20.5° N and used 27 OBSs across the Manila subduction zone. Data quality is extremely variable due to the local geology and quality of seafloor coupling at each instrument. Preliminary travel-time tomography of transect T2 shows a 10-15 km thick Eurasian crust with crustal velocities of 5-7.5 km/sec entering the Manila trench suggesting thinned continental crust, serpentinized upper mantle, or both in this region. The model shows the accretionary prism to be cored by high velocity material (6-7 km/sec) that may be the result of accretion of crustal material from the subducting Eurasian slab. We also observe asymmetric crustal thickening beneath the Gagua Ridge that is potentially a result of failed subduction of the Philippine Sea Plate westward along the Gagua Ridge. The wide-angle data is complimented by MCS reflection data to constrain sediment thickness, top of the crystalline basement, and moho. Preliminary work is in progress with transect T1 which will be

  1. Tomographic Imaging of a New Seismic Zone in Northern Taiwan: Implications for Crustal Magnetism and Tectonic Inheritance

    NASA Astrophysics Data System (ADS)

    Cheng, Win-Bin; Chang, Gen-Sin; Hsu, Shu-Kun

    2016-04-01

    To the west of 121°E, we found that the northern South China Sea magnetic anomaly in central Taiwan is coincident with high seismic velocity zone derived from a joint analysis of gravity anomaly and seismic travel time data. To the east of 121°E, we found a new seismic zone which remains enigmatic because of its apparent relationship with both the emplacement of high magnetic anomaly and termination of Okinawa Trough. In order to understand the new seismic zone and breakup of the high magnetic anomaly, a joint analysis of gravity anomaly and seismic travel time data have been used to construct three-dimensional velocity structure for the study area. Earthquake data were collected by the Central Weather Bureau Seismological Network from 2000 to 2012. A modified velocity model obtained by previously local earthquake tomography, was used to construct an initial three-dimensional gravity model, using a linear velocity-density relationship. To derive a crustal velocity-density model that accounts for both types of observations, this study performed a sequential inversion of traveltime and gravity data. The main features of our three-dimensional velocity model are: (1) an uplifted zone with velocity greater than 6.5 km/s is observed in the lower crust, (2) the width and the shape of the uplifted zone is found strongly correlated with the high magnetic belt, (3) the trend of the high-velocity zone turns from NE to N in central Taiwan, where the feature of high magnetic was truncated. This study suggested that integration of seismic data with new perspectives on crustal magnetism will provide a better understanding of terrane accretion, rifting processes, and passive margin formation in the Taiwan region.

  2. Nonbarrier seismic process in the subduction zone and principles of monitoring

    NASA Astrophysics Data System (ADS)

    Gufel'd, I. L.; Novoselov, O. N.

    2015-10-01

    The physics of seismic process in subduction is discussed with the case study of Kamchatka region being considered. Seismic process is not attributed to either cracking or rupturing. Hydrogen degassing controls variations in voluminous-stress state of the geomedium and such parameters of boundary structures as amorphization, texturization, and destruction. Both rapid and slow dynamic processes are controlled by the medium structure and by the parameters of boundaries; these processes are induced by strain autowaves related to reversible structural transformations of the medium at ascending diffusion of hydrogen. Seismic processes are related to rapid or slow disturbance of accommodation of the medium elements relative to each other. Owing to the properties of boundaries, this process runs in a non-barrier manner and has superplasticity features. The monitoring methods for media with active inner energy sources are proposed. Difference equations of system state evolution are used; these equations are derived and corrected from the measurements of structurally sensitive parameters (saying in more precise, seismic wave velocities). Equation of system state evolution, being derived in these dimensions, reflects the effects of interaction between object and medium. As a result of the study, monitoring of phase state of the geomedium is proposed to predict small probability of the strongest earthquakes during the controlled period.

  3. Seismic velocity variations along the rupture zone of the 1989 Loma Prieta earthquake, California

    NASA Astrophysics Data System (ADS)

    Lin, G.; Thurber, C. H.

    2012-09-01

    We revisit the rupture zone of the 1989 Mw6.9 Loma Prieta earthquake, central California, by developing high-resolution three-dimensional (3-D)Vp and Vp/Vs models. We apply the simul2000 inversion method and algorithm to a set of "composite" events, which have greater number of picks per event and reduced random picking errors compared with traditional master events. Our final P-wave velocity model generally agrees with previous studies, showing a high velocity body of above 6.7 km/s in the southeast rupture zone of the main shock. The 3-DVp/Vs model, however, has different features, with low Vp/Vs in the upper crust and high Vp/Vs anomalies in deeper layers of the rupture zone. We interpret the low Vp/Vs at shallow depths to be granitic rocks, whereas at greater depths the areas of higher Vp/Vs(around 1.725-1.75) presumably are mafic rocks. The resulting 3-D velocity model was used to improve absolute locations for all local events between 1984 and 2010 in our study area. We then applied a similar event cluster analysis, waveform cross-correlation, and differential time relocation methods to improve relative event location accuracy. Over 88% of the seismicity falls into similar event clusters. A dramatic sharpening of seismicity patterns is obtained after using these methods. The medians of the relative location uncertainties calculated by using the bootstrap approach are 5 m for horizontal and 8 m for vertical. Differential times from cross-correlation are used to estimatein situnear-sourceVp/Vsratio within each event cluster. The high-resolutionVp/Vs method confirms the trend of the velocity variations from the tomographic results, although absolute values are slightly different.

  4. Quantitative analysis of seismic fault zone waves in the rupture zone of the 1992 Landers, California, earthquake: Evidence for a shallow trapping structure

    USGS Publications Warehouse

    Peng, Z.; Ben-Zion, Y.; Michael, A.J.; Zhu, L.

    2003-01-01

    We analyse quantitatively a waveform data set of 238 earthquakes recorded by a dense seismic array across and along the rupture zone of the 1992 Landers earthquake. A grid-search method with station delay corrections is used to locate events that do not have catalogue locations. The quality of fault zone trapped waves generated by each event is determined from the ratios of seismic energy in time windows corresponding to trapped waves and direct S waves at stations close to and off the fault zone. Approximately 70 per cent of the events with S-P times of less than 2 s, including many clearly off the fault, produce considerable trapped wave energy. This distribution is in marked contrast with previous claims that trapped waves are generated only by sources close to or inside the Landers rupture zone. The time difference between the S arrival and trapped waves group does not grow systematically with increasing hypocentral distance and depth. The dispersion measured from the trapped waves is weak. These results imply that the seismic trapping structure at the Landers rupture zone is shallow and does not extend continuously along-strike by more than a few kilometres. Synthetic waveform modelling indicates that the fault zone waveguide has depth of approximately 2-4 km, a width of approximately 200 m, an S-wave velocity reduction relative to the host rock of approximately 30-40 per cent and an S-wave attenuation coefficient of approximately 20-30. The fault zone waveguide north of the array appears to be shallower and weaker than that south of the array. The waveform modelling also indicates that the seismic trapping structure below the array is centred approximately 100 m east of the surface break.

  5. Seismic attenuation structure associated with episodic tremor and slip zone beneath Shikoku and the Kii peninsula, southwestern Japan, in the Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Kita, Saeko; Matsubara, Makoto

    2016-03-01

    The three-dimensional seismic attenuation structure (frequency-independent Q) beneath southwestern Japan was analyzed using t* estimated by applying the S coda wave spectral ratio method to the waveform data from a dense permanent seismic network. The seismic attenuation (Qp-1) structure is clearly imaged for the region beneath Shikoku, the Kii peninsula, and eastern Kyushu at depths down to approximately 50 km. At depths of 5 to 35 km, the seismic attenuation structure changes at the Median tectonic line and other geological boundaries beneath Shikoku and the southwestern Kii peninsula. High-Qp zones within the lower crust of the overlying plate are found just above the slip regions at the centers of the long-term slow-slip events (SSEs) beneath the Bungo and Kii channels and central Shikoku. Beneath central Shikoku, within the overlying plate, a high-Qp zone bounded by low-Qp zones is located from the land surface to the plate interface of the subducting plate. The high-Qp zone and low-Qp zones correspond to high-Vp and low-Vp zones of previous study, respectively. The boundaries of the high- and low-Qp zones are consistent with the segment boundaries of tremors (segment boundaries of short-term SSEs). These results indicated that the locations of the long- and short-term SSEs could be limited by the inhomogeneous distribution of the materials and/or condition of the overlying plate, which is formed due to geological and geographical process. The heterogeneity of materials and/or condition within the fore-arc crust possibly makes an effect on inhomogeneous rheological strength distribution on the interface.

  6. Seismicity near the slip maximum of the 1960 Mw 9.5 Valdivia earthquake (Chile): Plate interface lock and reactivation of the subducted Valdivia Fracture Zone

    NASA Astrophysics Data System (ADS)

    Dzierma, Yvonne; Thorwart, Martin; Rabbel, Wolfgang; Siegmund, Claudia; Comte, Diana; Bataille, Klaus; Iglesia, Paula; Prezzi, Claudia

    2012-06-01

    Understanding the processes behind subduction-related hazards is an important responsibility and major challenge for the Earth sciences. Few areas demonstrate this as clearly as south-central Chile, where some of the largest earthquakes in human history have occurred. We present the first observation of local seismicity in the Villarrica region (39°-40°S), based on a temporary local network of 55 stations installed from the Chilean coast into the Argentinian back-arc for one year. While consistent with the Chilean national catalog (SSN), our results allow us to observe smaller magnitudes with a completeness of about 2.0 and image the geometry of the Wadati-Benioff Zone from the Chile Trench down to 200 km. Offshore, a gap in interplate seismicity is observed in the region of the 1960 Valdivia earthquake slip. Above the interface, two offshore seismicity clusters possibly indicate ongoing stress relaxation. In the subducting Nazca Plate, we find a prominent seismicity cluster along the extrapolated trace of the oceanic Valdivia Fracture Zone (VFZ). The seismicity cluster is observed between 70 and 130 km depth and comprises mainly strike-slip events. It indicates weakening and reactivation of the major VFZ by dehydration of oceanic crust and mantle. Interpreting the subducted VFZ section as a localized reservoir of potential fluid release offers an explanation for the Villarrica volcanic complex that is located above the reactivated VFZ and shows the highest volcanic activity in South America. Crustal seismicity is observed near Puyehue volcano, which recently started to erupt (June 2011).

  7. Presynaptic active zones in invertebrates and vertebrates.

    PubMed

    Ackermann, Frauke; Waites, Clarissa L; Garner, Craig C

    2015-08-01

    The regulated release of neurotransmitter occurs via the fusion of synaptic vesicles (SVs) at specialized regions of the presynaptic membrane called active zones (AZs). These regions are defined by a cytoskeletal matrix assembled at AZs (CAZ), which functions to direct SVs toward docking and fusion sites and supports their maturation into the readily releasable pool. In addition, CAZ proteins localize voltage-gated Ca(2+) channels at SV release sites, bringing the fusion machinery in close proximity to the calcium source. Proteins of the CAZ therefore ensure that vesicle fusion is temporally and spatially organized, allowing for the precise and reliable release of neurotransmitter. Importantly, AZs are highly dynamic structures, supporting presynaptic remodeling, changes in neurotransmitter release efficacy, and thus presynaptic forms of plasticity. In this review, we discuss recent advances in the study of active zones, highlighting how the CAZ molecularly defines sites of neurotransmitter release, endocytic zones, and the integrity of synapses.

  8. Presynaptic active zones in invertebrates and vertebrates

    PubMed Central

    Ackermann, Frauke; Waites, Clarissa L; Garner, Craig C

    2015-01-01

    The regulated release of neurotransmitter occurs via the fusion of synaptic vesicles (SVs) at specialized regions of the presynaptic membrane called active zones (AZs). These regions are defined by a cytoskeletal matrix assembled at AZs (CAZ), which functions to direct SVs toward docking and fusion sites and supports their maturation into the readily releasable pool. In addition, CAZ proteins localize voltage-gated Ca2+ channels at SV release sites, bringing the fusion machinery in close proximity to the calcium source. Proteins of the CAZ therefore ensure that vesicle fusion is temporally and spatially organized, allowing for the precise and reliable release of neurotransmitter. Importantly, AZs are highly dynamic structures, supporting presynaptic remodeling, changes in neurotransmitter release efficacy, and thus presynaptic forms of plasticity. In this review, we discuss recent advances in the study of active zones, highlighting how the CAZ molecularly defines sites of neurotransmitter release, endocytic zones, and the integrity of synapses. PMID:26160654

  9. Double-Difference Tomography in the West Bohemia Seismic Zone: A Study of the 2011 Earthquake Swarm

    NASA Astrophysics Data System (ADS)

    Löberich, Eric; Alexandrakis, Catherine; Calo, Marco; Vavryčuk, Václav; Buske, Stefan

    2016-04-01

    Fluid migration, gas springs and particularly earthquake swarms are indications of ongoing geodynamic processes in the Bohemian Massif. This tectonically active region can be subdivided into several microplates, such as the Moldanubian and Saxothuringian and the block of the Teplá-Barrandian, which formed a complex sutured crust during the Variscian collision. Beyond this subdivision, the geological situation of the Bohemian Massif is further defined by the Eger Rift, the Cheb basin and the Smrčiny pluton. Moreover a thinned crust and lithosphere is typical for the region, whereby the seismic activity is controlled by the Mariánske Láznĕ Fault and the Počatky-Plesná Shear Zone. Former investigations have shown a relationship between the activated fault and the occurrence of swarm earthquakes. In this study, the analysis of the 2011 earthquake swarm was in the focus of the consideration, following previous findings from the 2008 earthquake swarm. Here, the aim is to improve the understanding between the mantle fluids and the generation of earthquake swarms in the West Bohemia Seismic Zone. Thereby double-difference tomography (tomoDD) was applied to the 2011 earthquake swarm data, leading to an enhanced location accuracy of the hypocenters and a sharper image of the fault system, which can be further controlled by hypoDD relocations. The rupture time series and clustering are also investigated. Additionally, a 3D velocity model for the P- and S-wave are derived and evaluated by considering the results of synthetic tests. The P- to S- wave velocity ratio, which is sensitive to the presence of fluids, is calculated directly from the P- and S-wave model and interpreted in relation to the potential presence of mantle fluids. In summary, this study combines the past knowledge about the fault systems and swarms, with the newly calculated velocity model, source migration pattern and cluster analysis. Moreover the earthquake characteristics are investigated in

  10. Toward a consistent model for strain accrual and release for the New Madrid Seismic Zone, central United States

    USGS Publications Warehouse

    Hough, S.E.; Page, M.

    2011-01-01

    At the heart of the conundrum of seismogenesis in the New Madrid Seismic Zone is the apparently substantial discrepancy between low strain rate and high recent seismic moment release. In this study we revisit the magnitudes of the four principal 1811–1812 earthquakes using intensity values determined from individual assessments from four experts. Using these values and the grid search method of Bakun and Wentworth (1997), we estimate magnitudes around 7.0 for all four events, values that are significantly lower than previously published magnitude estimates based on macroseismic intensities. We further show that the strain rate predicted from postglacial rebound is sufficient to produce a sequence with the moment release of one Mmax6.8 every 500 years, a rate that is much lower than previous estimates of late Holocene moment release. However, Mw6.8 is at the low end of the uncertainty range inferred from analysis of intensities for the largest 1811–1812 event. We show that Mw6.8 is also a reasonable value for the largest main shock given a plausible rupture scenario. One can also construct a range of consistent models that permit a somewhat higher Mmax, with a longer average recurrence rate. It is thus possible to reconcile predicted strain and seismic moment release rates with alternative models: one in which 1811–1812 sequences occur every 500 years, with the largest events being Mmax∼6.8, or one in which sequences occur, on average, less frequently, with Mmax of ∼7.0. Both models predict that the late Holocene rate of activity will continue for the next few to 10 thousand years.

  11. Toward a consistent model for strain accrual and release for the New Madrid Seismic Zone, central United States

    NASA Astrophysics Data System (ADS)

    Hough, Susan E.; Page, Morgan

    2011-03-01

    At the heart of the conundrum of seismogenesis in the New Madrid Seismic Zone is the apparently substantial discrepancy between low strain rate and high recent seismic moment release. In this study we revisit the magnitudes of the four principal 1811-1812 earthquakes using intensity values determined from individual assessments from four experts. Using these values and the grid search method of Bakun and Wentworth (1997), we estimate magnitudes around 7.0 for all four events, values that are significantly lower than previously published magnitude estimates based on macroseismic intensities. We further show that the strain rate predicted from postglacial rebound is sufficient to produce a sequence with the moment release of one Mmax6.8 every 500 years, a rate that is much lower than previous estimates of late Holocene moment release. However, Mw6.8 is at the low end of the uncertainty range inferred from analysis of intensities for the largest 1811-1812 event. We show that Mw6.8 is also a reasonable value for the largest main shock given a plausible rupture scenario. One can also construct a range of consistent models that permit a somewhat higher Mmax, with a longer average recurrence rate. It is thus possible to reconcile predicted strain and seismic moment release rates with alternative models: one in which 1811-1812 sequences occur every 500 years, with the largest events being Mmax˜6.8, or one in which sequences occur, on average, less frequently, with Mmax of ˜7.0. Both models predict that the late Holocene rate of activity will continue for the next few to 10 thousand years.

  12. Seismic refraction studies of volcanic crust in Costa Rica and of critical zones in the southern Sierra Nevada, California and Laramie Range, Wyoming

    NASA Astrophysics Data System (ADS)

    Hayes, Jorden L.

    This work demonstrates the utility of seismic refraction surveys to understanding geologic processes at a range of scales. Each chapter presents subsurface maps of seismic p-wave velocities, which vary due to contrasts in elastic material properties. In the following chapters we examine seismic p-wave velocity variations that result from volcanic and tectonic processes within Earth's crust and chemical and physical weathering processes within Earth's near-surface environment. Chapter one presents results from an across-arc wide-angle seismic refraction survey of the Costa Rican volcanic front. These results support the hypothesis that juvenile continental crust may form along volcanic island arcs if built upon relatively thick substrates (i.e., large igneous provinces). Comparisons of velocity-depth functions show that velocities within the active arc of Costa Rica are lower than other modern island arcs (i.e., volcanic arcs built upon oceanic crust) and within the high-velocity extreme of bulk continental crust. Chapter two shows that physical processes can dominate over chemical processes in generating porosity in the deep critical zone and outlines a new framework for interpreting subsurface chemical and physical weathering at the landscape scale. Direct measurements of saprolite from boreholes at the Southern Sierra Nevada Critical Zone Observatory show that, contrary to convention, saprolite may experience high levels of volumetric strain (>35%) and uniform mass loss in the upper 11 m. By combining observations from boreholes and seismic refraction surveys we create a map of volumetric strain across the landscape. Variations in inferred volumetric strain are consistent with opening-mode fracture patterns predicted by topographic and tectonic stress models. Chapter three is a characterization of fracture distribution in the deep critical zone from geophysical and borehole observations in the Laramie Mountains, Wyoming. Data from core and down-hole acoustic

  13. A strategy to address the task of seismic micro-zoning in landslide-prone areas

    NASA Astrophysics Data System (ADS)

    Vessia, G.; Parise, M.; Tromba, G.

    2013-06-01

    As concerns landslide prevention and mitigation policies at the urban scale, the ability of Geographical Information Systems (GIS) to combine multi-layered information with high precision enables technicians and researchers to devote efforts in managing multiple hazards, such as seismically induced instability in urbanized areas. As a matter of fact, many villages in the Italian Apennines, placed near high-energy seismic sources, are characterized by active sliding that are seasonally remobilized by rainfall. GIS tools can be useful whether accurate Digital Elevation Models (DEM) are available and detailed mechanical and hydraulic characterization of superficial deposits over significant portion of the urban territory is undertaken. Moreover, the classic methods for estimating the seismic-induced permanent displacements within natural slopes are drawn from the generalization of Newmark's method. Such method can be applied to planar sliding mechanism that can be considered still valid wherever shallow landslides are generated by an earthquake. The failure mechanism depends on the mechanical properties of the superficial deposits. In this paper, the town of Castelfranci (Campania, southern Italy) has been studied. This small town, hosting two thousand inhabitants, suffers from the seasonal reactivation of landslides in clayey soil deposits due to rainfall. Furthermore, the site is seismically classified by means of the peak ground acceleration (PGA) equal to 0.246 g with respect to a 475 yr return period. Several studies on the evolution of slopes have been undertaken at Castelfranci and maps have been drawn at the urban scale not taking into any account the seismic hazard. This paper shows possible seismically induced hazard scenarios within the Castelfranci municipal territory aimed at microzonation of level 2, by estimating the slope permanent displacements comparable to those caused by the strongest historical seismic event that hit this area: the 1980 Irpinia

  14. Crustal Structure across The Southwest Longmenshan Fault Zone from Seismic Wide Angle Reflection/Refraction Profile

    NASA Astrophysics Data System (ADS)

    Tian, Xiaofeng; Wang, Fuyun; Wang, Shuaijun; Duan, Yonghong

    2014-05-01

    The Lushan eathquake, which epicenter and focal depth were at 30.308° N, 102.888° E, and 14.0 km, is the latest intense earthquake occurring in the southwest section of the Longmenshan fault zone after the Ms 8.0 Wenchuan earthquake in 2008. According to the emergency field observations, the slip distribution of the Lushan earthquake was concentrated at the hypocenter, and did not rupture to the surface(Chen et al, 2013). The rupture history constrained by inverting waveforms showed that the causative fault plane of the Lushan event is apparently not a simple extension of either the Pengguan fault or the Beichuan fault that ruptured during the 2008 Mw 8.0 Wenchuan earthquake. The focal mechanism using the Cut and Paste algorithm showed this event occurred on a high dip-angle fault, but its dip angle is not steep enough to rupture the surface. All these research is not independent on the heterogeneous crust structure of the Longmenshan fault zone. A 450 km-long wide-angle reflection/refraction profile executed during September and October 2013. This experiment have provided the best opportunities to obtain better knowledge of seismic structure and properties of crust and uppermost mantle beneath the Southwest Longmenshan fault zone. This seismic profile extends from the west Sichuan Plain, through the Longmenshan Fault zone, and into the west Sichuan Plateau. We observed clear Pg, refraction Phase from the upper crust, Pi1/Pi2/Pi3, reflection/refraction Phase from intra-crust, PmP, reflection from the Moho boundary, and the Pn phase, refraction Phase from uppermost mantle. We present a hybrid tomographic and layered velocity model of the crust and uppermost mantle along the profile. The final velocity model reveals large variations both in structure and velocity, and is demonstrated that a particular model has minimum structure. The model shows the crustal thickness of the region is very variable. The Moho topography varies more than 10km in the southwest

  15. Comparing the Gibraltar and Calabrian subduction zones (central western Mediterranean) based on seismic tomography

    NASA Astrophysics Data System (ADS)

    Argnani, Andrea; Battista Cimini, Giovanni; Frugoni, Francesco; Monna, Stephen; Montuori, Caterina

    2016-04-01

    The Central Western Mediterranean (CWM) was shaped by a complex tectonic and geodynamic evolution. Deep seismicity and tomographic studies point to the existence, under the Alboran and Tyrrhenian Seas, of lithospheric slabs extending down to the bottom of the mantle transition zone, at 660 km depth. Two narrow arcs correspond to the two slabs, the Gibraltar and Calabrian Arcs (e.g., Monna et al., 2013; Montuori et al., 2007). Similarities in the tectonic and mantle structure of the two areas have been explained by a common subduction and roll-back mechanism for the opening of the CWM, in which the two arcs are symmetrical end products. In spite of this unifying model, a wide amount of literature from different disciplines shows that many aspects of the two areas are still controversial. We present a new 3-D tomographic model at mantle scale for the Calabrian Arc and compare it with a recently published 3-D tomographic model for the Gibraltar Arc by Monna et al (2013). The two models are based on non-linear inversion of teleseismic phase arrivals, and have scale and parametrization that allow for a direct comparison. Unlike previous studies the tomographic models here presented include Ocean Bottom Seismometer broadband data, which improved the resolution of the mantle structures in the marine areas surrounding the arcs. We focus on key features of the two models that constrain reconstructions of the geodynamic evolution of the CWM (e.g., Monna et al., 2015). At Tortonian time the opening of the Tyrrhenian basin was in its initial stage, and the Calabrian arc formed subsequently; on the contrary, the Gibraltar arc was almost completely defined. We hypothesize that the complexity of the continental margin approaching the subduction zone played a key role during the final stages of the arc formation. References Monna, S., G. B. Cimini, C. Montuori, L. Matias, W. H. Geissler, and P. Favali (2013), New insights from seismic tomography on the complex geodynamic evolution

  16. Strain accumulation in the New Madrid and Wabash Valley seismic zones from 14 years of continuous GPS observation

    NASA Astrophysics Data System (ADS)

    Craig, Timothy J.; Calais, Eric

    2014-12-01

    The mechanical behavior—and hence earthquake potential—of faults in continental interiors is an issue of critical importance for the resultant seismic hazard, but no consensus has yet been reached on this controversial topic. The debate has focused on the central and eastern United States, in particular, the New Madrid Seismic Zone, struck by four magnitude 7 or greater earthquakes in 1811-1812, and to a lesser extent the Wabash Valley Seismic Zone just to the north. A key aspect of this issue is the rate at which strain is currently accruing on those plate interior faults, a quantity that remains debated. Here we address this issue with an analysis of up to 14.6 years of continuous GPS data from a network of 200 sites in the central United States centered on the New Madrid and Wabash Valley seismic zones. We find that the high-quality sites in these regions show motions that are consistently within the 95% confidence limit of zero deformation. These results place an upper bound on strain accrual on faults of 0.2 mm/yr and 0.6 mm/yr in the New Madrid and Wabash Valley Seismic Zones, respectively. For the New Madrid region, where a paleoseismic record is available for the past ˜5000 years, we argue that strain accrual—if any—does not permit the 500-900 year repeat time of paleo-earthquakes observed in the Upper Mississippi Embayment. These results, together with increasing evidence for temporal clustering and spatial migration of earthquake sequences in continental interiors, indicate that either tectonic loading rates or fault properties vary with time in the New Madrid Seismic Zone and possibly plate wide.

  17. LiDAR Data Reveal New Details on Seismically Triggered Landslides in the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Williams, R. A.; Gold, R. D.; Jibson, R. W.

    2013-12-01

    Recently acquired LiDAR data along the bluffs east of the Mississippi River in western Tennessee illuminate new details about earthquake-induced landslides caused by the 1811-1812 New Madrid earthquake sequence. Earthquake-induced landslides along the Mississippi River bluffs extend about 300 km, from Kentucky to northern Mississippi, and were first described in the late 1800s. The new data, however, provide the clearest images yet of the ground surface through this densely forested region and reveal previously undetected landslides. The data also confirm previous landslide localities interpreted from air photos in the 1980s and provide new details about the structure and extent of these features. In one case a newly identified landslide (about 400 m wide by 150 m long) near the southern end of the Reelfoot fault appears to have diverted and might have temporarily dammed a prominent drainage. In another case the internal structure of a low-angle, multiple-block rotational slump is clearly imaged for the first time. Field checks of these interpretations are planned. These data, which were collected at four pulses per square meter and will soon be publicly available, were collected under guidance of the U.S. Geological Survey and with funds from the American Recovery and Reinvestment Act (ARRA). The new data will provide opportunities to study the landscape for clues about (1) prehistoric earthquakes in about 1450 and 900 A.D., (2) the Reelfoot fault and, (3) the potential impacts of landslides on roads and infrastructure in future large New Madrid seismic zone earthquakes.

  18. Seismic Attenuation in the Rupture Zone of the 2010 Maule, Chile, Earthquake: Two Spectral Ratio Methods

    NASA Astrophysics Data System (ADS)

    Torpey, M.; Russo, R. M.; Beck, S. L.; Meltzer, A.; Roecker, S. W.

    2013-12-01

    We used data from the IRIS CHAMP temporary seismic network, deployed for 6 months following the February 2010 Mw 8.8 Maule earthquake, to estimate differential attenuation of P and S waves in the Maule rupture zone, 33°S - 38°S. We used two complementary spectral ratio methods both of which assume identical source-to-station travel paths which allowed us to neglect the source-time function and instrument response of each P-S phase pair. The first method iteratively determines 400 individual Qs values and uncertainties for each phase pair and the second method stacks the spectra of each of the 400 measurements to yield a composite spectrum from which we derive a single Qs. Measurements are deemed acceptable when the two methods agree. We examined 235 local events yielding a total of 1083 Qs measurements.The majority of ray paths evaluated show low Qs values (100-400) with an average Qs over the entire rupture zone of 350 and an average standard deviation of +/- 569. We are evaluating spatial and temporal variability in Qs; however, from our preliminary measurements we do not observe a temporal variability in Qs throughout the rupture zone nor do we recognize any consistent spatial pattern in the measurements. Tomographic inversion of the Qs measurements made along ray paths spanning the upper mantle wedge and South American crust above the Maule rupture region will allow us to interpret the observed Qs variability.

  19. Mapping of crustal scale tectonic boundaries in the Ossa-Morena Zone using reprocessed IBERSEIS reflection seismic data

    NASA Astrophysics Data System (ADS)

    Kashubin, A. S.; Juhlin, C.

    2010-06-01

    The IBERSEIS deep seismic reflection profile imaged crustal scale structures in the SW Iberian Variscan belt, crossing the South Portuguese Zone, the Ossa-Morena Zone and the Central Iberian Zone in Spain. Two subsets of the profile, corresponding to the South Portuguese Zone-Ossa-Morena Zone and the Ossa-Morena Zone-Central Iberian Zone tectonic contacts, have been reprocessed with the aim of investigating the influence of cross-dip and to better image steeply dipping features. Alternative strategies for binning midpoints into common depth point (CDP) bins using different azimuths were examined for synthetic data. We show that the choice of the CDP-processing line and the bin azimuth orientation has a significant impact on the normal moveout and dip-moveout velocities and is crucial to optimizing the quality of the stacked seismic image along the crooked profile. Multi-azimuth binning, normal moveout/dip-moveout, and migration velocity analysis on synthetic and real data show the presence of clear sub-vertical upper crustal structures near the South Portuguese Zone-Ossa-Morena Zone suture, the Aroche fault. This sub-vertical reflectivity that was not imaged earlier, projects into a location in the lower crust with low reflectivity.

  20. Identification of a major segment boundary between two megathrust subduction zone earthquakes from aftershock seismicity

    NASA Astrophysics Data System (ADS)

    Sobiesiak, M.; Victor, P.; Eggert, S.

    2009-04-01

    Aftershock seismicity is commonly used to characterize the extent of rupture planes of megathrust earthquakes. From unique datasets, covering the two adjacent fault planes of the Mw 8.0, 1995, Antofagasta and the Mw 7.7, 2007, Tocopilla earthquakes, we were able to identify a segment boundary (SB), located beneath Mejillones Peninsula. This segment boundary hosted the onset of the Antofagasta rupture and constituted the end of the Tocopilla rupture plane. The data recorded during the mission of the German Task Force for Earthquakes after the 2007 Tocopilla earthquake is supporting our observations regarding the northern part of the SB. 34 seismological stations registered the aftershocks from November 2007 until May 2008. First hypocenter determinations show that the aftershock sequences of both events meet along this E-W oriented segment boundary. The segment boundary is furthermore conformed by the historic record of megathrust events. Evidence for long term persistency of this SB comes from geological observations as differential uplift rates across the boundary and different fault patterns. Geomorpholocical analysis defines a topographic anomaly ~ 20 km wide and oriented along strike the SB..The main shock hypocenter determinations (NEIC, local network, ISC) which are related to the start of the rupture are all located in this zone. The SB is further characterized by intermediate b-values derived from a spatial b-value study of the Antofagasta fault plane and hosts several elongated clusters of aftershock seismicity. A detailed study of the focal mechanism solutions in one of these clusters showed a number of aligned strike slip events with one E-W striking nodal plane having a strike angle which is similar to the angle of subduction obliquity of the oceanic Nazca plate in this area. In further investigations we will search for detailed information on the nature and dynamics of processes along such a segment boundary, their meaning for the initiation of large

  1. Shear-wave splitting in Quaternary sediments: Neotectonic implications in the central New Madrid seismic zone

    USGS Publications Warehouse

    Harris, J.B.

    1996-01-01

    Determining the extent and location of surface/near-surface structural deformation in the New Madrid seismic zone (NMSZ) is very important for evaluating earthquake hazards. A shallow shear-wave splitting experiment, located near the crest of the Lake County uplift (LCU) in the central NMSZ, shows the presence of near-surface azimuthal anisotropy believed to be associated with neotectonic deformation. A shallow fourcomponent data set, recorded using a hammer and mass source, displayed abundant shallow reflection energy on records made with orthogonal source-receiver orientations, an indicator of shear-wave splitting. Following rotation of the data matrix by 40??, the S1 and S2 sections (principal components of the data matrix) were aligned with the natural coordinate system at orientations of N35??W and N55??E, respectively. A dynamic mis-tie of 8 ms at a two-way traveltime of 375 ms produced an average azimuthal anisotropy of ???2% between the target reflector (top of Quaternary gravel at a depth of 35 m) and the surface. Based on the shear-wave polarization data, two explanations for the azimuthal anisotropy in the study area are (1) fractures/cracks aligned in response to near-surface tensional stress produced by uplift of the LCU, and (2) faults/fractures oriented parallel to the Kentucky Bend scarp, a recently identified surface deformation feature believed to be associated with contemporary seismicity in the central NMSZ. In addition to increased seismic resolution by the use of shear-wave methods in unconsolidated, water-saturated sediments, measurement of near-surface directional polarizations, produced by shear-wave splitting, may provide valuable information for identifying neotectonic deformation and evaluating associated earthquake hazards.

  2. Subduction of the Tehuantepec oceanic fracture zone and the relationship with a seismic gap in southern Mexico

    NASA Astrophysics Data System (ADS)

    Constantin Manea, Vlad; Manea, Marina; Taras, Gerya; Valenzuela, Raul W.

    2016-04-01

    It is accepted that key constraints on the size and recurrence time of large subduction earthquakes originate from the degree of locking between the subducting and overriding plates. Since the interseismic locking degree is influenced by the rheological properties of crustal and mantle rocks, any variations along strike will result in significant changes in seismic behavior due to a change in frictional stability. Additionally, recent seismic studies show that the subduction of hydrothermally altered oceanic fracture zones induces strong pore-fluid pressure variations that control the degree of interseismic locking. The Mexico Subduction Zone (MSZ) is characterized by major along-strike changes in subduction geometry, as well as important structural variations of the incoming oceanic plate. One of the main tectonic features of the Cocos plate is the Tehuantepec fracture zone (FZ) that is currently subducting beneath southern Mexico. The analysis of seismicity revealed that the area around where Tehuantepec fracture zone is currently subducting is conspicuously quiet and considered a seismic gap. Here, no significant quake (Ms ≥ 7.0) has occurred in more than 100 years, and the origin of Tehuantepec Seismic Gap (TSG) has not been elucidated yet. Based on the dimensions of the Tehuantepec gap (125 km length and 80 km width), an earthquake of Mw = 8.0 may be possible. This study aims to shed some light on the relationship between the TSG with the subduction of Tehuantepec oceanic fracture zone. Previous studies show that the uppermost oceanic lithosphere beneath the Tehuantepec FZ is partially serpentinized due to seawater infiltrations along faults. Using high-resolution three-dimensional coupled petrological-thermomechanical numerical simulations specifically tailored for the subduction of the Tehuantepec FZ at MSZ we show that the weakened serpentinized fracture zone is partially scraped out in the forearc region because of its low strength and positive buoyancy

  3. Fault zones ruptured during the early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquakes (January 26 and February 3, Mw 6.0) based on the associated co-seismic surface ruptures

    NASA Astrophysics Data System (ADS)

    Lekkas, Efthymios L.; Mavroulis, Spyridon D.

    2016-01-01

    The early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquake sequence comprised two main shocks with almost the same magnitude (moment magnitude (Mw) 6.0) occurring successively within a short time (January 26 and February 3) and space (Paliki peninsula in Western Cephalonia) interval. Εach earthquake was induced by the rupture of a different pre-existing onshore active fault zone and produced different co-seismic surface rupture zones. Co-seismic surface rupture structures were predominantly strike-slip-related structures including V-shaped conjugate surface ruptures, dextral and sinistral strike-slip surface ruptures, restraining and releasing bends, Riedel structures ( R, R', P, T), small-scale bookshelf faulting, and flower structures. An extensional component was present across surface rupture zones resulting in ground openings (sinkholes), small-scale grabens, and co-seismic dip-slip (normal) displacements. A compressional component was also present across surface rupture zones resulting in co-seismic dip-slip (reverse) displacements. From the comparison of our field geological observations with already published surface deformation measurements by DInSAR Interferometry, it is concluded that there is a strong correlation among the surface rupture zones, the ruptured active fault zones, and the detected displacement discontinuities in Paliki peninsula.

  4. Induced seismicity and CO2 leakage through fault zones during large-scale underground injection in a multilayered sedimentary system

    NASA Astrophysics Data System (ADS)

    Pio Rinaldi, Antonio; Rutqvist, Jonny; Jeanne, Pierre; Cappa, Frederic; Guglielmi, Yves

    2014-05-01

    Overpressure caused by the direct injection of CO2 into a deep sedimentary system may produce changes in the state of stress, as well as, have an impact on the sealing capabilities of the targeted system. The importance of geomechanics including the potential for reactivating faults associated with large-scale geologic carbon sequestration operations has recently become more widely recognized. However, not withstanding the potential for triggering notable (felt) seismic events, the potential for buoyancy-driven CO2 to reach potable groundwater and the ground surface is more important from safety and storage-efficiency perspectives. In this context, this work extends previous studies on the geomechanical modeling of fault responses during underground carbon dioxide injection, focusing on both short- and long-term integrity of the sealing caprock, and hence of potential leakage of either brine or CO2 to shallow groundwater aquifers during active injection. The first part of this work aims to study the fault responses during underground carbon dioxide injection, focusing on the short-term (5 years) integrity of the CO2 repository, and hence on the potential leakage of CO2 to shallow groundwater aquifers. Increased pore pressure can alter the stress distribution on a fault/fracture zone, which may produce changes in the permeability related to the elastic and/or plastic strain (or stress) during single (or multiple) shear ruptures. We account for stress/strain-dependent permeability and study the leakage through the fault zone as its permeability changes along with strain and stress variations. We analyze several scenarios related to the injected amount of CO2 (and hence related to potential overpressure) involving both involving minor and major faults, and analyze the profile risks of leakage for different stress/strain permeability coupling functions, as well as increasing the complexity of the system in terms of hydromechanical heterogeneities. We conclude that

  5. Crustal deformation in the New Madrid seismic zone and the role of postseismic processes

    USGS Publications Warehouse

    Boyd, Oliver; Robert Smalley, Jr; Zeng, Yuehua

    2015-01-01

    Global Navigation Satellite System data across the New Madrid seismic zone (NMSZ) in the central United States over the period from 2000 through 2014 are analyzed and modeled with several deformation mechanisms including the following: (1) creep on subsurface dislocations, (2) postseismic frictional afterslip and viscoelastic relaxation from the 1811–1812 and 1450 earthquakes in the NMSZ, and (3) regional strain. In agreement with previous studies, a dislocation creeping at about 4 mm/yr between 12 and 20 km depth along the downdip extension of the Reelfoot fault reproduces the observations well. We find that a dynamic model of postseismic frictional afterslip from the 1450 and February 1812 Reelfoot fault events can explain this creep. Kinematic and dynamic models involving the Cottonwood Grove fault provide minimal predictive power. This is likely due to the smaller size of the December 1811 event on the Cottonwood Grove fault and a distribution of stations better suited to constrain localized strain across the Reelfoot fault. Regional compressive strain across the NMSZ is found to be less than 3 × 10−9/yr. If much of the present-day surface deformation results from afterslip, it is likely that many of the earthquakes we see today in the NMSZ are aftershocks from the 1811–1812 New Madrid earthquakes. Despite this conclusion, our results are consistent with observations and models of intraplate earthquake clustering. Given this and the recent paleoseismic history of the region, we suggest that seismic hazard is likely to remain significant.

  6. Recordings from the deepest borehole in the New Madrid Seismic Zone

    USGS Publications Warehouse

    Wang, Z.; Woolery, E.W.

    2006-01-01

    The recordings at the deepest vertical strong-motion array (VSAS) from three small events, the 21 October 2004 Tiptonville, Tennessee, earthquake; the 10 February 2005 Arkansas earthquake; and the 2 June 2005 Ridgely, Tennessee, earthquake show some interesting wave-propagation phenomena through the soils: the S-wave is attenuated from 260 m to 30 m depth and amplified from 30 m to the surface. The S-wave arrival times from the three events yielded different shear-wave velocity estimates for the soils. These different estimates may be the result of different incident angles of the S-waves due to different epicentral distances. The epicentral distances are about 22 km, 110 km, and 47 km for the Tiptonville, Arkansas, and Ridgely earthquakes, respectively. These recordings show the usefulness of the borehole strong-motion array. The vertical strong-motion arrays operated by the University of Kentucky have started to accumulate recordings that will provide a database for scientists and engineers to study the effects of the near-surface soils on the strong ground motion in the New Madrid Seismic Zone. More information about the Kentucky Seismic and Strong-Motion Network can be found at www.uky.edu/KGS/geologichazards. The digital recordings are available at ftp://kgsweb.uky.edu.

  7. Crustal deformation in the New Madrid seismic zone and the role of postseismic processes

    NASA Astrophysics Data System (ADS)

    Boyd, Oliver S.; Smalley, Robert; Zeng, Yuehua

    2015-08-01

    Global Navigation Satellite System data across the New Madrid seismic zone (NMSZ) in the central United States over the period from 2000 through 2014 are analyzed and modeled with several deformation mechanisms including the following: (1) creep on subsurface dislocations, (2) postseismic frictional afterslip and viscoelastic relaxation from the 1811-1812 and 1450 earthquakes in the NMSZ, and (3) regional strain. In agreement with previous studies, a dislocation creeping at about 4 mm/yr between 12 and 20 km depth along the downdip extension of the Reelfoot fault reproduces the observations well. We find that a dynamic model of postseismic frictional afterslip from the 1450 and February 1812 Reelfoot fault events can explain this creep. Kinematic and dynamic models involving the Cottonwood Grove fault provide minimal predictive power. This is likely due to the smaller size of the December 1811 event on the Cottonwood Grove fault and a distribution of stations better suited to constrain localized strain across the Reelfoot fault. Regional compressive strain across the NMSZ is found to be less than 3 × 10-9/yr. If much of the present-day surface deformation results from afterslip, it is likely that many of the earthquakes we see today in the NMSZ are aftershocks from the 1811-1812 New Madrid earthquakes. Despite this conclusion, our results are consistent with observations and models of intraplate earthquake clustering. Given this and the recent paleoseismic history of the region, we suggest that seismic hazard is likely to remain significant.

  8. Deformation and seismicity associated with continental rift zones propagating toward continental margins

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, V.; Segev, A.; Schattner, U.; Weinberger, R.

    2012-01-01

    We study the propagation of a continental rift and its interaction with a continental margin utilizing a 3-D lithospheric model with a seismogenic crust governed by a damage rheology. A long-standing problem in rift-mechanics, known as thetectonic force paradox, is that the magnitude of the tectonic forces required for rifting are not large enough in the absence of basaltic magmatism. Our modeling results demonstrate that under moderate rift-driving tectonic forces the rift propagation is feasible even in the absence of magmatism. This is due to gradual weakening and "long-term memory" of fractured rocks that lead to a significantly lower yielding stress than that of the surrounding intact rocks. We show that the style, rate and the associated seismicity pattern of the rift zone formation in the continental lithosphere depend not only on the applied tectonic forces, but also on the rate of healing. Accounting for the memory effect provides a feasible solution for thetectonic force paradox. Our modeling results also demonstrate how the lithosphere structure affects the geometry of the propagating rift system toward a continental margin. Thinning of the crystalline crust leads to a decrease in the propagation rate and possibly to rift termination across the margin. In such a case, a new fault system is created perpendicular to the direction of the rift propagation. These results reveal that the local lithosphere structure is one of the key factors controlling the geometry of the evolving rift system and seismicity pattern.

  9. Geoarchaeological evidence of strong prehistoric earthquakes in the New Madrid (Missouri) seismic zone

    SciTech Connect

    Saucier, R.T. )

    1991-04-01

    Sand blows and fissures that cover >10,500 km{sup 2} in northeastern Arkansas and southeastern Missouri attest to the severity of the 1811-1812 earthquake series in the New Madrid seismic zone. However, except for one occurence near New Madrid, Missouri, the region has been devoid of any evidence of other major shocks for at least 1.3 ka prior to 1811 and possibly for >9 ka. Stratigraphic relations and radiocarbon dating at a recently excavated archaeological site near East Prairie, Missouri, have revealed liquifaction phenomena attributable to a shock dated to within about 100 yr prior to A.D. 539 and a probable second one dated between about A.D. 539 and 991.

  10. High-resolution seismic-reflection investigation of the northern Gulf of Mexico gas-hydrate-stability zone

    USGS Publications Warehouse

    Cooper, A. K.; Hart, P.E.

    2002-01-01

    We recorded high-resolution seismic-reflection data in the northern Gulf of Mexico to study gas and gas-hydrate distribution and their relation to seafloor slides. Gas hydrate is widely reported near the seafloor, but is described at only one deep drill site. Our data show high-reflectivity zones (HRZs) near faults, diapirs, and gas vents and interbedded within sedimentary sections at shallow depth (<1 km). The HRZs lie below the gas-hydrate-stability zone (GHSZ) as well as within the zone (less common), and they coincide with zones of shallow water-flows. Bottom simulating reflections are rare in the Gulf, and not documented in our data. We infer HRZs result largely from free gas in sandy beds, with gas hydrate within the GHSZ. Our estimates for the base BHSZ correlate reasonably with the top of HRZs in some thick well-layered basin sections, but poorly where shallow sediments are thin and strongly deformed. The equivocal correlation results from large natural variability of parameters that are used to calculate the base of the GHSZ. The HRZs may, however, be potential indicators of nearby gas hydrate. The HRZs also lie at the base of at least two large seafloor slides (e.g. up to 250 km2) that may be actively moving along decollement faults that sole within the GHSZ or close to the estimated base of the GHSZ. We suspect that water/gas flow along these and other faults such as 'chimney' features provide gas to permit crystallization of gas hydrate in the GHSZ. Such flows weaken sediment that slide down salt-oversteepened slopes when triggered by earthquakes. Published by Elsevier Science Ltd.

  11. Characterizing Seismic Anisotropy across the Peruvian Flat-Slab Subduction Zone: Shear Wave Splitting from PULSE

    NASA Astrophysics Data System (ADS)

    Eakin, C. M.; Long, M. D.; Beck, S. L.; Wagner, L. S.; Tavera, H.

    2013-12-01

    Although 10% of subduction zones worldwide today exhibit shallow or flat subduction, we are yet to fully understand how and why these slabs go flat. An excellent study location for such a problem is in Peru, where the largest region of flat-subduction currently exists, extending ~1500 km in length (from 3 °S to 15 °S) and ~300 km in width. Across this region we investigate the pattern of seismic anisotropy, an indicator for past and/or ongoing deformation in the upper mantle. To achieve this we conduct shear wave splitting analyzes at 40 broadband stations from the PULSE project (PerU Lithosphere and Slab Experiment). These stations were deployed for 2+ years across the southern half of the Peruvian flat-slab region. We present detailed shear wave splitting results for deep and teleseismic events, making use of a wide variety of available phases that sample the upper mantle directly beneath the stations (such as SKS, SKKS, PKS, sSKS, SKiKS, ScS and local/direct S). We analyze the variability of our results with respect to initial polarizations and ray paths, as well as spatial variability between stations as the underlying slab morphology changes. Preliminary results show predominately NW-SE fast polarizations (trench oblique to sub-parallel) over the flat-slab region east of Lima. These results are consistent with observations of more complex multi-layered anisotropy beneath a nearby permanent station (NNA). Further south, towards the transition to steeper subduction, the splitting pattern becomes increasingly dominated by null measurements. Over to the east however, beyond Cuzco, where the mantle wedge might begin to play a role, we record fast polarizations quasi-parallel to the local slab contours. We carefully evaluate the different possible source locations within the subduction zone for this seismic anisotropy and observe increasing evidence for distinct anisotropy within the slab as well as the sub-slab mantle.

  12. Collision tectonics of the Central Indian Suture zone as inferred from a deep seismic sounding study

    USGS Publications Warehouse

    Mall, D.M.; Reddy, P.R.; Mooney, W.D.

    2008-01-01

    The Central Indian Suture (CIS) is a mega-shear zone extending for hundreds of kilometers across central India. Reprocessing of deep seismic reflection data acquired across the CIS was carried out using workstation-based commercial software. The data distinctly indicate different reflectivity characteristics northwest and southeast of the CIS. Reflections northwest of the CIS predominantly dip southward, while the reflection horizons southeast of the CIS dip northward. We interpret these two adjacent seismic fabric domains, dipping towards each other, to represent a suture between two crustal blocks. The CIS itself is not imaged as a sharp boundary, probably due to the disturbed character of the crust in a 20 to 30-km-wide zone. The time sections also show the presence of strong bands of reflectors covering the entire crustal column in the first 65??km of the northwestern portion of the profile. These reflections predominantly dip northward creating a domal structure with the apex around 30??km northwest of the CIS. There are a very few reflections in the upper 2-2.5??s two-way time (TWT), but the reflectivity is good below 2.5??s TWT. The reflection Moho, taken as the depth to the deepest set of reflections, varies in depth from 41 to 46??km and is imaged sporadically across the profile with the largest amplitude occurring in the northwest. We interpret these data as recording the presence of a mid-Proterozoic collision between two micro-continents, with the Satpura Mobile Belt being thrust over the Bastar craton. ?? 2008.

  13. Modeling spatio-temporal variations of seismicity in the San Jacinto Fault Zone

    NASA Astrophysics Data System (ADS)

    Zöller, G.; Ben-Zion, Y.

    2012-04-01

    We investigate spatio-temporal properties of earthquake patterns in the San Jacinto fault zone (SJFZ), California, between Cajon Pass and the Superstition Hill Fault, using long records of simulated seismicity constrained by available data. The model provides an effective realization (e.g. Ben-Zion 1996; Zöller et al. 2007) of a large segmented strike-slip fault zone in 3D elastic half space, with heterogeneous distributions of static/kinetic friction and creep properties, and boundary conditions consisting of constant velocity motion around the fault. The computational section of the fault contains small brittle slip patches which fail during earthquakes and may undergo some creep deformation between events. The creep rates increase to the end points of the computational section and with depth. Two significant offsets of the SJFZ at San Jacinto Valley and Coyote Ridge are modeled by strength heterogeneities. The simulated catalogs are compared to the seismicity recorded at the SJFZ since 1932 and to recently reported results on paleoearthquakes at sites along the SJFZ at Hog Lake (HL) and Mystic Lake (ML) in the last 1500 years (e.g. Onderdonk et al., 2012; Rockwell et al., 2012). We address several questions including the following intriguing issue raised by the available paleoseismological data: are large earthquakes with signatures in ML and HL typically correlated? In particular: is a typical paleoevent in HL an incomplete rupture that is continued later in ML, and vice versa? The simulation results provide insights on the statistical significance of these and other patterns, and the ability of the SJFZ to produce large earthquakes which have not been observed in recent decades.

  14. Seismic Investigations of an Accommodation zone in the Northern Rio Grande Rift, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Baldridge, W. S.; Valdes, J.; Nedorub, O.; Phrampus, B.; Braile, L. W.; Ferguson, J. F.; Benage, M. C.; Litherland, M.

    2010-12-01

    Seismic reflection and refraction data acquired in the Rio Grande rift near Santa Fe, New Mexico, in 2009 and 2010 by the SAGE (Summer of Applied Geophysical Experience) program imaged the La Bajada fault (LBF) and strata offset across the associated, perpendicular Budagher fault (BF). The LBF is a major basin-bounding normal fault, offset down to the west; the smaller BF is an extensional fault that breaks the hanging wall ramp of the LBF. We chose this area because it is in a structurally complex region of the rift, comprising a small sub-basin and plunging relay ramps, where north-trending, en echelon basin-bounding faults (including the LBF) transfer crustal extension laterally between the larger Española (to north) and Albuquerque rift basins. Our data help determine the precise location and geometry of the poorly exposed LBF, which, near the survey location, offsets the rift margin vertically about 3,000 m. When integrated with industry reflection data and other SAGE seismic, gravity, and magnetotelluric surveys, we are able to map differences in offset and extension laterally (especially southward) along the fault. We interpret only about 200 m of normal offset across the BF. Our continuing work helps define multiple structural elements, partly buried by syn-rift basin-filling sedimentary rocks, of a complex intra-rift accommodation zone. We are also able to discriminate pre-Eocene (Laramide) from post-Miocene (rift) structures. Our data help determine the amount of vertical offset of pre-rift strata across structural elements of the accommodation zone, and depth and geometry of basin fill. A goal is to infer the kinematic development of this margin of the rift, linkages among faults, growth history, and possible pre-rift structural controls. This information will be potentially useful for evaluation of resources, including oil and/or gas in pre-rift strata and ground water in Late Miocene to Holocene rift-filling units.

  15. Unraveling faulting in a complex earthquake sequence in the South Iceland Seismic Zone.

    NASA Astrophysics Data System (ADS)

    Decriem, J.; Arnadottir, T.; Geirsson, H.; Keiding, M.; Ofeigsson, B. G.; Hreinsdottir, S.; Lafemina, P.; Hooper, A.; Sigmunsson, F.; Bennett, R.

    2008-12-01

    The South Iceland Seismic Zone (SISZ) is an E-W transform zone, where the relative spreading of the North American and Eurasian plates across southern Iceland is accommodated by motion on many parallel N-S right-lateral strike slip faults, rather than left-lateral motion on a single E-W through going fault. Historically, earthquake sequences with main shocks reaching M7 have occurred in the SISZ, many initiating in the eastern part of the zone with subsequent events further west. A magnitude 6.3 earthquake occurred in the western part of the SISZ on May29, 2008. Aftershock locations and global centroid-moment-tensor solutions indicate rupture on at least two parallel N-S faults. The rupture on the second fault, located about 4 km west of the initial event,appears to have initiated less than one second after the main shock,suggesting dynamic triggering. The May 2008 earthquakes are a continuation of the June 2000 sequence, when two Mw=6.5 events struck the eastern and central part of the SISZ. The June 2000 main shocks ruptured two parallel N-S faults, spaced about 17 km apart, occurring about 3 1/2 days apart. Here, we present a geodetic and seismic study of the May 2008 earthquakes based on continuous and annual GPS measurements, as well as InSAR and aftershock locations. The GPS network was surveyed in April, a month before the events and remeasured immediately after. Maximum coseismic displacements of about 15 cm (horizontal) were recorded at the closest continuous GPS stations on each side of the two faults. We also measured continuously at about 20 GPS benchmarks for more than a month after the event. A small transient (about 1 cm) was recorded during the first 10 days following the earthquake. This transient motion does not appear to be caused by poro-elastic rebound due to pressure changes in the ground water system, as was observed following the June 2000 earthquakes. The aftershocks lineate at least two N-S structures as well as an E-W conjugate fault

  16. b values and ω−γ seismic source models: Implications for tectonic stress variations along active crustal fault zones and the estimation of high-frequency strong ground motion

    USGS Publications Warehouse

    Hanks, Thomas C.

    1979-01-01

    In this study the tectonic stress along active crustal fault zones is taken to be of the form , where  is the average tectonic stress at depth y and Δσp(x, y) is a seismologically observable, essentially random function of both fault plane coordinates; the stress differences arising in the course of crustal faulting are derived from Δσp(x, y). Empirically known frequency of occurrence statistics, moment-magnitude relationships, and the constancy of earthquake stress drops may be used to infer that the number of earthquakes N of dimension ≥r is of the form N ∼ 1/r2 and that the spectral composition of Δσp(x, y) is of the form , where  is the two-dimensional Fourier transform of Δσp(x, y) expressed in radial wave number k. The γ = 2 model of the far-field shear wave displacement spectrum is consistent with the spectral composition , provided that the number of contributions to the spectral representation of the radiated field at frequency ƒ goes as (k/k0)2, consistent with the quasi-static frequency of occurrence relation N ∼ 1/r2;k0 is a reference wave number associated with the reciprocal source dimension. Separately, a variety of seismologic observations suggests that the γ = 2 model is the one generally, although certainly not always, applicable to the high-frequency spectral decay of the far-field radiation of earthquakes. In this framework, then, b values near 1, the general validity of the γ = 2 model, and the constancy of earthquake stress drops independent of size are all related to the average spectral composition of. Should one of these change as a result of premonitory effects leading to failure, as has been specifically proposed for b values, it seems likely that one or all of the other characteristics will change as well from their normative values. Irrespective of these associations, the far-field, high-frequency shear radiation for the γ = 2 model in the presence of anelastic attenuation may be interpreted as

  17. Characterizing a large shear-zone with seismic and magnetotelluric methods: The case of the Dead Sea Transform

    USGS Publications Warehouse

    Maercklin, N.; Bedrosian, P.A.; Haberland, C.; Ritter, O.; Ryberg, T.; Weber, M.; Weckmann, U.

    2005-01-01

    Seismic tomography, imaging of seismic scatterers, and magnetotelluric soundings reveal a sharp lithologic contrast along a ???10 km long segment of the Arava Fault (AF), a prominent fault of the southern Dead Sea Transform (DST) in the Middle East. Low seismic velocities and resistivities occur on its western side and higher values east of it, and the boundary between the two units coincides partly with a seismic scattering image. At 1-4 km depth the boundary is offset to the east of the AF surface trace, suggesting that at least two fault strands exist, and that slip occurred on multiple strands throughout the margin's history. A westward fault jump, possibly associated with straightening of a fault bend, explains both our observations and the narrow fault zone observed by others. Copyright 2005 by the American Geophysical Union.

  18. The energy release in earthquakes, and subduction zone seismicity and stress in slabs. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Vassiliou, M. S.

    1983-01-01

    Energy release in earthquakes is discussed. Dynamic energy from source time function, a simplified procedure for modeling deep focus events, static energy estimates, near source energy studies, and energy and magnitude are addressed. Subduction zone seismicity and stress in slabs are also discussed.

  19. Seismic constraints on the nature of lower crustal reflectors beneath the extending Southern Transition Zone of the Colorado Plateau, Arizona

    USGS Publications Warehouse

    Parsons, Thomas E.; Howie, John M.; Thompson, George A.

    1992-01-01

    We determine the reflection polarity and exploit variations in P and S wave reflectivity and P wave amplitude versus offset (AVO) to constrain the origin of lower crustal reflectivity observed on new three-component seismic data recorded across the structural transition of the Colorado Plateau. The near vertical incidence reflection data were collected by Stanford University in 1989 as part of the U.S. Geological Survey Pacific to Arizona Crustal Experiment that traversed the Arizona Transition Zone of the Colorado Plateau. The results of independent waveform modeling methods are consistent with much of the lower crustal reflectivity resulting from thin, high-impedance layers. The reflection polarity of the cleanest lower crustal events is positive, which implies that these reflections result from high-velocity contrasts, and the waveform character indicates that the reflectors are probably layers less than or approximately equal to 200 m thick. The lower crustal events are generally less reflective to incident S waves than to P waves, which agrees with the predicted behavior of high-velocity mafic layering. Analysis of the P wave AVO character of lower crustal reflections demonstrates that the events maintain a constant amplitude with offset, which is most consistent with a mafic-layering model. One exception is a high-amplitude (10 dB above background) event near the base of lower crustal reflectivity which abruptly decreases in amplitude at increasing offsets. The event has a pronounced S wave response, which along with its negative AVO trend is a possible indication of the presence of fluids in the lower crust. The Arizona Transition Zone is an active but weakly extended province, which causes us to discard models of lower crustal layering resulting from shearing because of the high degree of strain required to create such layers. Instead, we favor horizontal basaltic intrusions as the primary origin of high-impedance reflectors based on (1) The fact that

  20. Pacific Upper Mantle Seismic Anisotropy from the Active-Source Seismic Component of the NoMelt Experiment

    NASA Astrophysics Data System (ADS)

    Mark, H. F.; Lizarralde, D.; Gaherty, J. B.; Collins, J. A.; Hirth, G.; Evans, R. L.

    2014-12-01

    We will present a measurement of azimuthal seismic anisotropy of Pacific-plate upper mantle based on Pn travel times from the active-source seismic component of the NoMelt experiment. The NoMelt experiment was conducted in 2012 on ~70-m.y.-old lithosphere, in the center of the spreading segment between the Clarion and Clipperton fracture zones, with the goal of delineating the detailed seismic and electrical structure of "normal," mature oceanic lithosphere. The seismic component of the experiment consisted of a 600x400 km array of 27 broad-band (BB) ocean bottom seismometers (OBS); 31 short period (SP) OBS, spaced at 20 km, deployed along the long axis of the array (the main transect), oriented along a plate-kinematic flow line; and 3 SP OBS deployed along a line normal to the main transect, at 50 km spacing, extending to 200 km southeast of the center of the main transect. The SP OBS array was deployed to record airgun shots fired by the R/V M.G. Langseth's 36-element array. Airgun shots were fired along the two perpendicular lines and also along a semi-circular arc with a 75-km radius centered at the line intersection at the center of the main transect. Pn (upper mantle refraction) arrivals from shots fired along the semicircle and recorded by OBS within the semicircle's arc span 180 degrees of azimuth and an offset range of ~40-150 km. Preliminary analyses of these Pn arrival travel times indicate an azimuthal dependence of P-wave speeds, which range from ~8.6 km/s to ~7.6 km/s. These preliminary results suggest a pattern of azimuthal wave-speed dependence that requires depth-dependent seismic anisotropy and/or a dipping mantle fabric, with the latter being more likely given the limited range of source/receiver offsets spanned by the Pn arrivals used in this analysis. We will present results that include these observations as well as Pn arrivals from a much more comprehensive set of source/receiver pairs from the NoMelt experiment.

  1. The Crustal Structure of the Central Iberian Zone form the ALCUDIA Deep Seismic Reflection transect.

    NASA Astrophysics Data System (ADS)

    Martí, D.

    2009-04-01

    The ALCUDIA transect is a 250 km long, vertical incidence Vibroseis seismic reflection profile acquired in 2007. It extends IBERSEIS transect to the N and NE imaging from within the Ossa Morena Zone (OMZ) to the Central Iberian Zone (CIZ) from 20 km south of Fuenteovejuna in the S to Toledo in the N. The southern part of the transect samples the suture zone between the OMZ and the CIZ. It continues in a N-NE direction crossing the Pedroches batholith and a series of relatively long wavelength synclinal structures limited by sub-vertical and relatively narrow folds (e.g. the Almaden syncline, the Alcudia anticline). Lower Paleozoic quartzites and slates cover most of these synclynal structures. Farther to the N, the profile crosses several major faults system (e.g Santa Elena and Toledo) . The acquisition parameters, 35 m station spacing, 70 m VP spacing resulted in a 60-90 fold high resolution seismic reflection image. A 20 s long Vibroseis sweep with frequencies between 8-120 Hz was recorded by a 400 station recording cable a long a 14 km long split spread configuration. The new processing sequence significantly increased the signal-to-noise ratio. It includes: crooked line geometry, geometrical divergence corrections, elevation statics, surface-wave attenuation, surface consistent zero-phase spiking deconvolution, time-variant band pass filtering., refraction and residual static corrections velocity analysis, NMO, surface consistent amplitude balancing, CMP stacking F-X deconvolution. The seismic image reveals the geometry of the suture between the OMZ and the CIZ. This is a reworked transpression suture (the Badajoz-Cordoba Sherar zone) includes the Central Unit (CU) as a north dipping wedge structure limited by two bands of reflectors that reach the middle crust (5 s twtt). This CU includes amphibolites with some oceanic affinity, orthogneisses, paragneisses, schists and minor amounts of peridotites. To the north the upper crust shows a moderate reflectivity

  2. Seismic Activity at tres Virgenes Volcanic and Geothermal Field

    NASA Astrophysics Data System (ADS)

    Antayhua, Y. T.; Lermo, J.; Quintanar, L.; Campos-Enriquez, J. O.

    2013-05-01

    The volcanic and geothermal field Tres Virgenes is in the NE portion of Baja California Sur State, Mexico, between -112°20'and -112°40' longitudes, and 27°25' to 27°36' latitudes. Since 2003 Power Federal Commission and the Engineering Institute of the National Autonomous University of Mexico (UNAM) initiated a seismic monitoring program. The seismograph network installed inside and around the geothermal field consisted, at the beginning, of Kinemetrics K2 accelerometers; since 2009 the network is composed by Guralp CMG-6TD broadband seismometers. The seismic data used in this study covered the period from September 2003 - November 2011. We relocated 118 earthquakes with epicenter in the zone of study recorded in most of the seismic stations. The events analysed have shallow depths (≤10 km), coda Magnitude Mc≤2.4, with epicentral and hypocentral location errors <2 km. These events concentrated mainly below Tres Virgenes volcanoes, and the geothermal explotation zone where there is a system NW-SE, N-S and W-E of extensional faults. Also we obtained focal mechanisms for 38 events using the Focmec, Hash, and FPFIT methods. The results show normal mechanisms which correlate with La Virgen, El Azufre, El Cimarron and Bonfil fault systems, whereas inverse and strike-slip solutions correlate with Las Viboras fault. Additionally, the Qc value was obtained for 118 events. This value was calculated using the Single Back Scattering model, taking the coda-waves train with window lengths of 5 sec. Seismograms were filtered at 4 frequency bands centered at 2, 4, 8 and 16 Hz respectively. The estimates of Qc vary from 62 at 2 Hz, up to 220 at 16 Hz. The frequency-Qc relationship obtained is Qc=40±2f(0.62±0.02), representing the average attenuation characteristics of seismic waves at Tres Virgenes volcanic and geothermal field. This value correlated with those observed at other geothermal and volcanic fields.

  3. Quantifying and modeling Quaternary surface deformation in the New Madrid seismic zone, Central U.S

    NASA Astrophysics Data System (ADS)

    Magnani, M.; Boyd, O. S.

    2010-12-01

    Nearly a decade of geodetic monitoring in the New Madrid seismic zone (Central U.S.) indicates very low rates of surface deformation, which appear to be inconsistent with the return periods of large earthquakes in this region. To explore this apparent paradox, we quantify the Quaternary deformation associated with buried faults beneath the Mississippi embayment using high resolution seismic reflection data and model the geodetic data assuming post 1811-1812 earthquake effects and steady-state loading. Newly acquired marine reflection data across the Cottonwood Grove dextral strike-slip fault imaged two main vertical faults ~5 km apart displacing the unconsolidated sediments of the Mississippi Embayment, from the Paleozoic to the river deposits. At the two faults, the base of the Quaternary alluvium, which is Wisconsian in age in this region, is vertically displaced by 38 m and 30 m respectively, with an up-to-the-east sense of movement in both cases. Instrumental seismicity along the Cottonwood Grove fault ranges between depths of 5-25 km, and illuminates a single vertical plane extending into the upper and middle crust. Focal mechanisms along the fault indicate a predominantly horizontal sense of motion with a rake of about 5 degrees. This suggests that the vertical deformation observed along the seismic profile could imply a horizontal offset of almost 800 m, which leads to a slip rate of about 4.5 mm/yr. We model geodetic data assuming steady-state creep on lower crustal faults within the New Madrid seismic zone subject to various boundary conditions, including plate boundary stresses to the sides and from below. We also consider surface deformation resulting from viscoelastic relaxation in the lower crust/upper mantle after the 1811-1812 earthquakes. Our best fitting preliminary model, 1.5 mm/yr of slip imposed across a discontinuity along the downdip extension of the reverse-slip Reelfoot fault, can explain 43% of the variance in the geodetic observations. In

  4. Transient deformation indicating rheological variation in the South Iceland Seismic Zone.

    NASA Astrophysics Data System (ADS)

    Árnadóttir, Thóra; Hreinsdóttir, Sigrún; Michalczewska, Karolina; Geirsson, Halldór; Ófeigsson, Benedikt

    2013-04-01

    In June 2000 and May 2008, two sets of magnitude 6.5 and 6.0 main shocks struck the South Iceland Seismic Zone (SISZ) - a transform zone that accommodates E-W left lateral shear at depth by faulting on numerous N-S oriented faults in the brittle crust. Both earthquake episodes consisted of a pair of main shocks of similar size rupturing closely spaced faults, where static and dynamic stress changes generated by the first event triggered the second main shock further west. The June 2000 earthquakes occurred in the central part of the SISZ, and the May 2008 events in the western part, close to the Hengill triple junction. Since June 2000 we have performed annual GPS measurements in a geodetic network in South Iceland and a number of continuous GPS stations have been installed. The aim is to monitor crustal deformation caused by plate motion, earthquakes, post-seismic transients, and magma movement. GPS and InSAR observations revealed rapidly decaying deformation transients in the SISZ following the 2000 main shocks caused by poro-elastic rebound (~2 months) and a longer term signal lasting for about 4 years, explained by visco-elastic relaxation of the lower crust and upper mantle with viscosities of 1019 Pa s and 3×1018 Pa s, respectively. The geodetic studies also suggest that the seismic moment released in these earthquakes was at most half of the accumulated stress since the last major earthquake sequence in 1896-1912. Thus, we may expect magnitude 6-7 events in South Iceland in the near future. Here, we report pronounced GPS station velocity changes, in particular west of the 2008 epicentral area - still significant in 2012. This result is rather surprising as the 2008 main shocks were smaller (magnitude 6.0) than the 2000 events (magnitude 6.5). Rheological models obtained from studies of the post-seismic deformation following the June 2000 main shocks do not apply directly to the May 2008 events. The rapid transient (~ week) we observe in 2008 is inconsistent

  5. The Moho as a transition zone: A revisit from seismic and electrical properties of minerals and rocks

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Bagdassarov, Nickolai; Ji, Shaocheng

    2013-12-01

    , electrical and petrological Moho in different tectonic provinces highlights the Moho as an active transition zone in the crust-mantle system.

  6. Operational earthquake forecasting in the South Iceland Seismic Zone: improving the earthquake catalogue

    NASA Astrophysics Data System (ADS)

    Panzera, Francesco; Vogfjörd, Kristin; Zechar, J. Douglas; Eberhard, David

    2014-05-01

    A major earthquake sequence is ongoing in the South Iceland Seismic Zone (SISZ), where experts expect earthquakes of up to MW = 7.1 in the coming years to decades. The historical seismicity in this region is well known and many major faults here and on Reykjanes Peninsula (RP) have already been mapped. The faults are predominantly N-S with right-lateral strike-slip motion, while the overall motion in the SISZ is E-W oriented left-lateral motion. The area that we propose for operational earthquake forecasting(OEF) contains both the SISZ and the RP. The earthquake catalogue considered for OEF, called the SIL catalogue, spans the period from 1991 until September 2013 and contains more than 200,000 earthquakes. Some of these events have a large azimuthal gap between stations, and some have large horizontal and vertical uncertainties. We are interested in building seismicity models using high-quality data, so we filter the catalogue using the criteria proposed by Gomberg et al. (1990) and Bondar et al. (2004). The resulting filtered catalogue contains around 130,000 earthquakes. Magnitude estimates in the Iceland catalogue also require special attention. The SIL system uses two methods to estimate magnitude. The first method is based on an empirical local magnitude (ML) relationship. The other magnitude scale is a so-called "local moment magnitude" (MLW), originally constructed by Slunga et al. (1984) to agree with local magnitude scales in Sweden. In the SIL catalogue, there are two main problems with the magnitude estimates and consequently it is not immediately possible to convert MLW to moment magnitude (MW). These problems are: (i) immediate aftershocks of large events are assigned magnitudes that are too high; and (ii) the seismic moment of large earthquakes is underestimated. For this reason the magnitude values in the catalogue must be corrected before developing an OEF system. To obtain a reliable MW estimate, we calibrate a magnitude relationship based on

  7. Evidence for large prehistoric earthquakes in the northern New Madrid Seismic Zone, central United States

    USGS Publications Warehouse

    Li, Y.; Schweig, E.S.; Tuttle, M.P.; Ellis, M.A.

    1998-01-01

    We surveyed the area north of New Madris, Missouri, for prehistoric liquefaction deposits and uncovered two new sites with evidence of pre-1811 earthquakes. At one site, located about 20 km northeast of New Madrid, Missouri, radiocarbon dating indicates that an upper sand blow was probably deposited after A.D. 1510 and a lower sand blow was deposited prior to A.D. 1040. A sand blow at another site about 45 km northeast of New Madrid, Missouri, is dated as likely being deposited between A.D.55 and A.D. 1620 and represents the northernmost recognized expression of prehistoric liquefaction likely related to the New Madrid seismic zone. This study, taken together with other data, supports the occurrence of at least two earthquakes strong enough to indcue liquefaction or faulting before A.D. 1811, and after A.D. 400. One earthquake probably occurred around AD 900 and a second earthquake occurred around A.D. 1350. The data are not yet sufficient to estimate the magnitudes of the causative earthquakes for these liquefaction deposits although we conclude that all of the earthquakes are at least moment magnitude M ~6.8, the size of the 1895 Charleston, Missouri, earthquake. A more rigorous estimate of the number and sizes of prehistoric earthquakes in the New Madrid sesmic zone awaits evaluation of additional sites.

  8. Synaptic Vesicle Proteins and Active Zone Plasticity.

    PubMed

    Kittel, Robert J; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention.

  9. Synaptic Vesicle Proteins and Active Zone Plasticity

    PubMed Central

    Kittel, Robert J.; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention. PMID:27148040

  10. Reflected and mode-converted seismic waves within the shallow aleutian subduction zone, southern Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Stephens, C.D.; Page, R.A.; Lahr, J.C.

    1990-01-01

    Pronounced secondary phases observed in local recordings of quarry shots and earthquakes on the southern Kenai Peninsula are identified as reflected P and S and converted S-to-P phases originating within four depth ranges: in the upper few kilometers of the Cook Inlet Tertiary basin, at midcrustal depths within the overthrust North American plate, at about 35 km depth near the top of the Wadati-Benioff seismic zone in proximity to the inferred interplate megathrust, and at about 5-10 km below the megathrust in the subducted Pacific plate. The positions and origins of the mid-upper plate (MUP) discontinuity and similar reflectors are discussed. It appears the the MUP discontinuity is seismically inactive and does not represent a brittle-ductile transition zone within the upper plate. The two converted S-to-P phases generated near the top of the subducted plate could indicate a low velocity zone associated with subducted oceanic crust. -after Authors

  11. Finite-frequency wave propagation through outer rise fault zones and seismic measurements of upper mantle hydration

    USGS Publications Warehouse

    Miller, Nathaniel; Lizarralde, Daniel

    2016-01-01

    Effects of serpentine-filled fault zones on seismic wave propagation in the upper mantle at the outer rise of subduction zones are evaluated using acoustic wave propagation models. Modeled wave speeds depend on azimuth, with slowest speeds in the fault-normal direction. Propagation is fastest along faults, but, for fault widths on the order of the seismic wavelength, apparent wave speeds in this direction depend on frequency. For the 5–12 Hz Pn arrivals used in tomographic studies, joint-parallel wavefronts are slowed by joints. This delay can account for the slowing seen in tomographic images of the outer rise upper mantle. At the Middle America Trench, confining serpentine to fault zones, as opposed to a uniform distribution, reduces estimates of bulk upper mantle hydration from ~3.5 wt % to as low as 0.33 wt % H2O.

  12. Study of Seismic Activity at Ceboruco Volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Nunez-Cornu, F. J.; Escudero, C. R.; Rodríguez Ayala, N. A.; Suarez-Plascencia, C.

    2013-12-01

    Many societies and their economies endure the disastrous consequences of destructive volcanic eruptions. The Ceboruco stratovolcano (2,280 m.a.s.l.) is located in Nayarit, Mexico, at the west of the Mexican volcanic belt and towards the Sierra de San Pedro southeast, which is a key communication point for coast of Jalisco and Nayarit and the northwest of Mexico. It last eruptive activity was in 1875, and during the following five years it presents superficial activity such as vapor emissions, ash falls and riodacitic composition lava flows along the southeast side. Although surface activity has been restricted to fumaroles near the summit, Ceboruco exhibits regular seismic unrest characterized by both low frequency seismic events and volcano-tectonic earthquakes. From March 2003 until July 2008 a three-component short-period seismograph Marslite station with a Lennartz 3D (1Hz) was deployed in the south flank (CEBN) and within 2 km from the summit to monitoring the seismic activity at the volcano. The LF seismicity recorded was classified using waveform characteristics and digital analysis. We obtained four groups: impulsive arrivals, extended coda, bobbin form, and wave package amplitude modulation earthquakes. The extended coda is the group with more earthquakes and present durations of 50 seconds. Using the moving particle technique, we read the P and S wave arrival times and estimate azimuth arrivals. A P-wave velocity of 3.0 km/s was used to locate the earthquakes, most of the hypocenters are below the volcanic edifice within a circular perimeter of 5 km of radius and its depths are calculated relative to the CEBN elevation as follows. The impulsive arrivals earthquakes present hypocenters between 0 and 1 km while the other groups between 0 and 4 km. Results suggest fluid activity inside the volcanic building that could be related to fumes on the volcano. We conclude that the Ceboruco volcano is active. Therefore, it should be continuously monitored due to the

  13. Seismicity patterns along the Ecuadorian subduction zone: new constraints from earthquake location in a 3-D a priori velocity model

    NASA Astrophysics Data System (ADS)

    Font, Yvonne; Segovia, Monica; Vaca, Sandro; Theunissen, Thomas

    2013-04-01

    To improve earthquake location, we create a 3-D a priori P-wave velocity model (3-DVM) that approximates the large velocity variations of the Ecuadorian subduction system. The 3-DVM is constructed from the integration of geophysical and geological data that depend on the structural geometry and velocity properties of the crust and the upper mantle. In addition, specific station selection is carried out to compensate for the high station density on the Andean Chain. 3-D synthetic experiments are then designed to evaluate the network capacity to recover the event position using only P arrivals and the MAXI technique. Three synthetic earthquake location experiments are proposed: (1) noise-free and (2) noisy arrivals used in the 3-DVM, and (3) noise-free arrivals used in a 1-DVM. Synthetic results indicate that, under the best conditions (exact arrival data set and 3-DVM), the spatiotemporal configuration of the Ecuadorian network can accurately locate 70 per cent of events in the frontal part of the subduction zone (average azimuthal gap is 289° ± 44°). Noisy P arrivals (up to ± 0.3 s) can accurately located 50 per cent of earthquakes. Processing earthquake location within a 1-DVM almost never allows accurate hypocentre position for offshore earthquakes (15 per cent), which highlights the role of using a 3-DVM in subduction zone. For the application to real data, the seismicity distribution from the 3-D-MAXI catalogue is also compared to the determinations obtained in a 1-D-layered VM. In addition to good-quality location uncertainties, the clustering and the depth distribution confirm the 3-D-MAXI catalogue reliability. The pattern of the seismicity distribution (a 13 yr record during the inter-seismic period of the seismic cycle) is compared to the pattern of rupture zone and asperity of the Mw = 7.9 1942 and the Mw = 7.7 1958 events (the Mw = 8.8 1906 asperity patch is not defined). We observe that the nucleation of 1942, 1958 and 1906 events coincides with

  14. High-Resolution Seismic-Reflection and Marine Magnetic Data Along the Hosgri Fault Zone, Central California

    USGS Publications Warehouse

    Sliter, Ray W.; Triezenberg, Peter J.; Hart, Patrick E.; Watt, Janet T.; Johnson, Samuel Y.; Scheirer, Daniel S.

    2009-01-01

    The U.S. Geological Survey (USGS) collected high-resolution shallow seismic-reflection and marine magnetic data in June 2008 in the offshore areas between the towns of Cayucos and Pismo Beach, Calif., from the nearshore (~6-m depth) to just west of the Hosgri Fault Zone (~200-m depth). These data are in support of the California State Waters Mapping Program and the Cooperative Research and Development Agreement (CRADA) between the Pacific Gas & Electric Co. and the U.S. Geological Survey. Seismic-reflection and marine magnetic data were acquired aboard the R/V Parke Snavely, using a SIG 2Mille minisparker seismic source and a Geometrics G882 cesium-vapor marine magnetometer. More than 550 km of seismic and marine magnetic data was collected simultaneously along shore-perpendicular transects spaced 800 m apart, with an additional 220 km of marine magnetometer data collected across the Hosgri Fault Zone, resulting in spacing locally as smallas 400 m. This report includes maps of the seismic-survey sections, linked to Google Earth software, and digital data files showing images of each transect in SEG-Y, JPEG, and TIFF formats, as well as preliminary gridded marine-magnetic-anomaly and residual-magnetic-anomaly (shallow magnetic source) maps.

  15. [Molecular mechanism at the presynaptic active zone].

    PubMed

    Ohtsuka, Toshihisa

    2011-07-01

    Our higher brain functions such as learning and memory, emotion, and consciousness depend on the precise regulation of complicated neural networks in the brain. Neurons communicate with each other through the synapse, which comprise 3 regions: the presynapse, synaptic cleft, and postsynapse. The active zone (AZ) beneath the presynaptic membrane is the principal site for Ca2+ -dependent neurotransmitter release: AZ is involved in determining the site for docking and synaptic vesicle fusion. Presently, the full molecular composition of AZ is unclear, but it is known to contain several AZ-specific proteins, including cytomatrix of the active zone-associated protein (CAST)/ERC2, ELKS, RIM1, Munc13-1, Piccolo/Aczonin, and Bassoon. CAST and ELKS are novel active zone proteins that directly bind to Rab3-interacting molecules (RIMs), Bassoon, and Piccolo, and are thought to play a role in neurotransmitter release by binding these to AZ proteins. In this review, current advances in studies on AZ structure and function have been summarized, and the focus is mainly on protein-protein interactions among the AZ proteins.

  16. Offshore double-planed shallow seismic zone in the NE Japan forearc region revealed by sP depth phases recorded by regional networks

    USGS Publications Warehouse

    Gamage, S.S.N.; Umino, N.; Hasegawa, A.; Kirby, S.H.

    2009-01-01

    We detected the sP depth phase at small epicentral distances of about 150 km or more in the seismograms of shallow earthquakes in the NE Japan forearc region. The focal depths of 1078 M > 3 earthquakes that occurred from 2000 to 2006 were precisely determined using the time delay of the sP phase from the initial P-wave arrival. The distribution of relocated hypocentres clearly shows the configuration of a double-planed shallow seismic zone beneath the Pacific Ocean. The upper plane has a low dip angle near the Japan Trench, increasing gradually to ???30?? at approximately 100 km landward of the Japan Trench. The lower plane is approximately parallel to the upper plane, and appears to be the near-trench counterpart of the lower plane of the double-planed deep seismic zone beneath the land area. The distance between the upper and lower planes is 28-32 km, which is approximately the same as or slightly smaller than that of the double-planed deep seismic zone beneath the land area. Focal mechanism solutions of the relocated earthquakes are determined from P-wave initial motion data. Although P-wave initial motion data for these offshore events are not ideally distributed on the focal sphere, we found that the upper-plane events that occur near the Japan Trench are characterized by normal faulting, whereas lower-plane events are characterized by thrust faulting. This focal mechanism distribution is the opposite to that of the double-planed deep seismic zone beneath the land area. The characteristics of these focal mechanisms for the shallow and deep doubled-planed seismic zones can be explained by a bending-unbending model of the subducting Pacific plate. Some of relocated earthquakes took place in the source area of the 1933 Mw8.4 Sanriku earthquake at depths of 10-23 km. The available focal mechanisms for these events are characterized by normal faulting. Given that the 1933 event was a large normal-fault event that occurred along a fault plane dipping landward, the

  17. Offshore double-planed shallow seismic zone in the NE Japan forearc region revealed by sP depth phases recorded by regional networks

    NASA Astrophysics Data System (ADS)

    Gamage, Shantha S. N.; Umino, Norihito; Hasegawa, Akira; Kirby, Stephen H.

    2009-07-01

    We detected the sP depth phase at small epicentral distances of about 150 km or more in the seismograms of shallow earthquakes in the NE Japan forearc region. The focal depths of 1078 M > 3 earthquakes that occurred from 2000 to 2006 were precisely determined using the time delay of the sP phase from the initial P-wave arrival. The distribution of relocated hypocentres clearly shows the configuration of a double-planed shallow seismic zone beneath the Pacific Ocean. The upper plane has a low dip angle near the Japan Trench, increasing gradually to ~30° at approximately 100 km landward of the Japan Trench. The lower plane is approximately parallel to the upper plane, and appears to be the near-trench counterpart of the lower plane of the double-planed deep seismic zone beneath the land area. The distance between the upper and lower planes is 28-32 km, which is approximately the same as or slightly smaller than that of the double-planed deep seismic zone beneath the land area. Focal mechanism solutions of the relocated earthquakes are determined from P-wave initial motion data. Although P-wave initial motion data for these offshore events are not ideally distributed on the focal sphere, we found that the upper-plane events that occur near the Japan Trench are characterized by normal faulting, whereas lower-plane events are characterized by thrust faulting. This focal mechanism distribution is the opposite to that of the double-planed deep seismic zone beneath the land area. The characteristics of these focal mechanisms for the shallow and deep doubled-planed seismic zones can be explained by a bending-unbending model of the subducting Pacific plate. Some of relocated earthquakes took place in the source area of the 1933 Mw8.4 Sanriku earthquake at depths of 10-23 km. The available focal mechanisms for these events are characterized by normal faulting. Given that the 1933 event was a large normal-fault event that occurred along a fault plane dipping landward, the

  18. Slope-area and stream length index analysis in the eastern Tennessee seismic zone: evidence for differential uplift?

    NASA Astrophysics Data System (ADS)

    Stearns, C.; Arroucau, P.; Vlahovic, G.

    2013-12-01

    Previous studies have shown that Digital Elevation Model (DEM) analysis could be used to quantify surface deformation in tectonically active regions, including slowly deforming areas such as intraplate continental interiors. Here, we investigate slope/area relationships and determine stream length index (SLI) spatial variations in 287 watersheds located in the Valley and Ridge physiographic province of the southern Appalachians, in a region known as the eastern Tennessee seismic zone (ETSZ). The goal is to identify possible spatial variations in drainage network characteristics that could reveal different deformation rates and styles within the study area. The ETSZ, although seismically active, does not show any evidence of recent surface deformation that could be related to tectonic activity. The earthquakes mostly occur between 5 and 25 km depth and their epicenters form a SSW-NNE trending, 300 km long by 100 km wide, band of diffuse seismicity that aligns along the New York Alabama (NYAL) magnetic lineament, a linear magnetic feature attributed to a fault affecting the Precambrian basement but without signature at the surface. DEMs with a resolution of 30 meters and watershed boundaries of 287 drainage basins were obtained from the United States Geological Survey (USGS) National Elevation Dataset (NED) and National Hydrography Dataset (NHD), respectively. After determining the local slope and drainage area for each 30 m x 30 m cell, reference concavity and steepness index values were calculated for the entire region. Then, the steepness index of each watershed was determined using the obtained reference concavity index. SLI values were also determined along extracted river profiles and average values calculated for each watershed. A good correlation is observed between steepness index and SLI, with low to mid-range values found in the Valley and Ridge province and higher values in two specific areas: at the transition between the Valley and Ridge province and

  19. Fault zone identification in the eastern part of the Persian Gulf based on combined seismic attributes

    NASA Astrophysics Data System (ADS)

    Mirkamali, M. S.; Keshavarz FK, N.; Bakhtiari, M. R.

    2013-02-01

    Faults, as main pathways for fluids, play a critical role in creating regions of high porosity and permeability, in cutting cap rock and in the migration of hydrocarbons into the reservoir. Therefore, accurate identification of fault zones is very important in maximizing production from petroleum traps. Image processing and modern visualization techniques are provided for better mapping of objects of interest. In this study, the application of fault mapping in the identification of fault zones within the Mishan and Aghajari formations above the Guri base unconformity surface in the eastern part of Persian Gulf is investigated. Seismic single- and multi-trace attribute analyses are employed separately to determine faults in a vertical section, but different kinds of geological objects cannot be identified using individual attributes only. A mapping model is utilized to improve the identification of the faults, giving more accurate results. This method is based on combinations of all individual relevant attributes using a neural network system to create combined attributes, which gives an optimal view of the object of interest. Firstly, a set of relevant attributes were separately calculated on the vertical section. Then, at interpreted positions, some example training locations were manually selected in each fault and non-fault class by an interpreter. A neural network was trained on combinations of the attributes extracted at the example training locations to generate an optimized fault cube. Finally, the results of the fault and nonfault probability cube were estimated, which the neural network applied to the entire data set. The fault probability cube was obtained with higher mapping accuracy and greater contrast, and with fewer disturbances in comparison with individual attributes. The computed results of this study can support better understanding of the data, providing fault zone mapping with reliable results.

  20. Seismic activity triggered by water wells in the Paraná Basin, Brazil

    NASA Astrophysics Data System (ADS)

    AssumpçãO, Marcelo; Yamabe, Tereza H.; Barbosa, José Roberto; Hamza, Valiya; Lopes, Afonso E. V.; Balancin, Lucas; Bianchi, Marcelo B.

    2010-07-01

    Triggered seismicity is commonly associated with deep water reservoirs or injection wells where water is injected at high pressure into the reservoir rock. However, earth tremors related solely to the opening of groundwater wells are extremely rare. Here we present a clear case of seismicity induced by pore-pressure changes following the drilling of water wells that exploit a confined aquifer in the intracratonic Paraná Basin of southeastern Brazil. Since 2004, shallow seismic activity, with magnitudes up to 2.9 and intensities V MM, has been observed near deep wells (120-200 m) that were drilled in early 2003 near the town of Bebedouro. The wells were drilled for irrigation purposes, cross a sandstone layer about 60-80 m thick and extract water from a confined aquifer in fractured zones between basalt flow layers. Seismic activity, mainly event swarms, has occurred yearly since 2004, mostly during the rainy season when the wells are not pumped. During the dry season when the wells are pumped almost continuously, the activity is very low. A seismographic network, installed in March 2005, has located more than 2000 microearthquakes. The events are less than 1 km deep (mostly within the 0.5 km thick basalt layer) and cover an area roughly 1.5 km × 5 km across. The seismicity generally starts in a small area and expands to larger distances with an equivalent hydraulic diffusivity ranging from 0.06 to 0.6 m2/s. Geophysical and geothermal logging of several wells in the area showed that water from the shallow sandstone aquifer enters the well at the top and usually forms waterfalls. The waterfalls flow down the sides of the wells and feed the confined, fractured aquifer in the basalt layer at the bottom. Two seismic areas are observed: the main area surrounds several wells that are pumped continuously during the dry season, and a second area near another well (about 10 km from the first area) that is not used for irrigation and not pumped regularly. The main area

  1. Combined analysis of passive and active seismic measurements using additional geologic data for the determination of shallow subsurface structures

    NASA Astrophysics Data System (ADS)

    Horstmann, Tobias; Brüstle, Andrea; Spies, Thomas; Schlittenhardt, Jörg; Schmidt, Bernd

    2016-04-01

    A detailed knowledge of subsurface structure is essential for geotechnical projects and local seismic hazard analyses. Passive seismic methods like microtremor measurements are widely used in geotechnical practice, but limitations and developments are still in focus of scientific discussion. The presentation outlines microtremor measurements in the context of microzonation in the scale of districts or small communities. H/V measurements are used to identify zones with similar underground properties. Subsequently a shear wave velocity (Vs) depth profile for each zone is determined by array measurements at selected sites. To reduce possible uncertainties in dispersion curve analyses of passive array measurements and ambiguities within the inversion process, we conducted an additional active seismic experiment and included available geological information. The presented work is realized in the framework of the research project MAGS2 ("Microseismic Activity of Geothermal Systems") and deals with the determination of seismic hazard analysis at sites near deep geothermal power plants in Germany. The measurements were conducted in the Upper Rhine Graben (URG) and the Bavarian molasses, where geothermal power plants are in operation. The results of the H/V- and array-measurements in the region of Landau (URG) are presented and compared to known geological-tectonic structures. The H/V measurements show several zones with similar H/V-curves which indicate homogenous underground properties. Additionally to the passive seismic measurements an active refraction experiment was performed and evaluated using the MASW method („Multichannel Analysis of Surface Waves") to strengthen the determination of shear-wave-velocity depth profile. The dispersion curves for Rayleigh-waves of the active experiment support the Rayleigh-dispersion curves from passive measurements and therefore provide a valuable supplement. Furthermore, the Rayleigh-wave ellipticity was calculated to reduce

  2. Seismic activity in the transitional segment of Southern Andes after Maule 2010 megathrust earthquake

    NASA Astrophysics Data System (ADS)

    González, Diego; Lupi, Matteo; Bataille, Klaus

    2016-04-01

    It has been shown that after large magnitude earthquakes the region of volcanic arc affected by the megathrust slip is marked by an increase of volcanic activity in the following decades. The Mw = 8.8 Maule 2010 earthquake induced a rupture zone about 500 km long spanning from 33.5°S to 38.5°S. GPS and InSar data show that several volcanic edifices in the Southern Andes underwent a rapid subsidence (from days to months) after the Maule earthquake. To identify the post seismic deformation taking place in the volcanic arc after the Maule earthquake we deployed 20 seismic stations from November 2013 to March 2015 from 35°S to 39°S. We recorded ˜ 600 seismic events larger than Mw = 2.0, concentrated along the slab and beneath the volcanic chain. No events were detected at depths greater than 60 km beneath the volcanic arc. After a preliminary localization, the crustal events were relocated using an improved 1D velocity model. For the largest seismic events we inverted for moment tensor solutions. The moment tensor solution suggest a dominant N-NNE dextral strike-slip local stress field regime. This is in agreement with the direction of ancient geological structures inferred in the basement that were suggested to be reactivated by supra-lithostatic fluid pressures.

  3. Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins

    SciTech Connect

    Carmichael, Joshua D.; Joughin, Ian; Behn, Mark D.; Das, Sarah; King, Matt A.; Stevens, Laura; Lizarralde, Dan

    2015-06-25

    We analyzed geophone and GPS measurements collected within the ablation zone of the western Greenland Ice Sheet during a ~35 day period of the 2011 melt season to study changes in ice deformation before, during, and after a supraglacial lake drainage event. During rapid lake drainage, ice flow speeds increased to ~400% of winter values, and icequake activity peaked. At times >7 days after drainage, this seismicity developed variability over both diurnal and longer periods (~10 days), while coincident ice speeds fell to ~150% of winter values and showed nightly peaks in spatial variability. Approximately 95% of all detected seismicity in the lake basin and its immediate vicinity was triggered by fracture propagation within near-surface ice (<330 m deep) that generated Rayleigh waves. Icequakes occurring before and during drainage frequently were collocated with the down flow (west) end of the primary hydrofracture through which the lake drained but shifted farther west and outside the lake basin after the drainage. We interpret these results to reveal vertical hydrofracture opening and local uplift during the drainage, followed by enhanced seismicity and ice flow on the downstream side of the lake basin. This region collocates with interferometric synthetic aperture radar-measured speedup in previous years and could reflect the migration path of the meltwater supplied to the bed by the lake. The diurnal seismic signal can be associated with nightly reductions in surface melt input that increase effective basal pressure and traction, thereby promoting elevated strain in the surficial ice.

  4. Using thermodynamic data to reproduce main seismic features of transition zone

    NASA Astrophysics Data System (ADS)

    Fomin, Ilya; Saukko, Anna; Edwards, Paul; Schiffer, Christian

    2016-04-01

    Most of the seismic tomography studies nowadays are based on comprehensive models with optimization of lots of parameters. These models are able to resolve very subtle features of the Earth's mantle, but the influence of each specific parameter is not seen directly. In our research we try to minimize the number of processed parameters to produce simple synthetic cases. The main goals of our model are to see how water content influences the depth of the transition zone, and if melting at the transition zone is plausible. We also attempt to see how water content and the presence of melts influence the signal strength of the transition zone in receiver functions. Our MATLAB-code calculates phase assemblage according to specific temperature and pressure within 2D numerical domain (e.g. 300x700 km). Phase properties are calculated with database of Stixrude and Lithgow-Bertelloni [2011], with corrections for water impact on elastic constants according to Liu et al., [2012]. We use the mantle phase composition 55% garnet and 45% olivine-polymorph, soliduses by Ohtani et al. [2004] and melt properties by Sakamaki et al. [2006]. These data are used to calculate seismic velocities and, furthermore, receiver functions with standard routines (e.g.[Schiffer et al., 2012]). Model predicts Vs within 5 to 5.5 km/s and Vp around 9.5-10 km/s within transition zone (Vp/Vs = 1.84-1.87), which is close to standard values. The presence of water enlarges the wadsleyite region, but also dampens the peak of receiver functions down to background level. Increase in water content causes melting at much shallower depths. Using a normal thermal gradient, we can get up to 10% of melt at depths around 390 km with 80% of water saturation, shown by a negative anomaly on receiver functions. This result is similar to data obtained for Afar Plateau [Thompson et al., 2015]. With cratonic thermal gradient, the olivine-wadsleyite transition and corresponding melt layer appear at depths around 350 km

  5. Modeling mantle circulation and density distributions in subduction zones: Implications for seismic studies

    NASA Astrophysics Data System (ADS)

    Kincaid, C. R.; Druken, K. A.; Griffiths, R. W.; Long, M. D.; Behn, M. D.; Hirth, G.

    2009-12-01

    Subduction of ocean lithosphere drives plate tectonics, large-scale mantle circulation and thermal-chemical recycling processes through arcs. Seismologists have made important advances in our ability to map circulation patterns in subduction zones though anisotropy data/methods and in providing detailed images of mantle density fields. Increasingly, seismic and geodynamic disciplines are combining to extend our understanding of time varying subduction processes and associated vertical mass and energy fluxes. We use laboratory experiments to characterize three-dimensional flow fields in convergent margins for a range in plate forcing conditions and background, buoyancy-driven flow scenarios. Results reveal basic patterns in circulation, buoyant flow morphologies and density distributions that have implications for reconciling seismic data with mantle convection models. Models utilize a glucose working fluid with a temperature dependent viscosity to represent the upper 2000km of the mantle. Subducting lithosphere is modeled with a Phenolic plate and back-arc extension is produced using Mylar sheets. We recreate basic subduction styles observed in previous dynamic subduction models using simplified, kinematic forcing. Slab plate segments, driven by hydraulic pistons, move with various combinations of downdip, rollback and steepening motion. Neutral density finite strain markers are distributed throughout the fluid and used as proxies for tracking the evolution of olivine alignment through space and time in the evolving flow fields. Particle image velocimetry methods are also used to track time varying 3D velocity fields for use in directly calculating anisotropy patterns. Results show that complex plate motions (rollback, steepening, back-arc extension) in convergent margins produce relatively simple anisotropy patterns (e.g., trench-normal alignments) and underscore the importance of initial strain marker orientations on alignment patterns in the wedge. Results also

  6. Stress evolution and seismic hazard on the Maqin-Maqu segment of East Kunlun Fault zone from co-, post- and interseismic stress changes

    NASA Astrophysics Data System (ADS)

    Shan, Bin; Xiong, Xiong; Wang, Rongjiang; Zheng, Yong; Yadav, R. B. S.

    2015-01-01

    The East Kunlun Fault zone, striking E-W to WNW-ESE, has been recognized as one of the largest and most active left-lateral strike-slip faults in the China continent. Presently, the Maqin-Maqu segment (MMS) is recognized as a seismic gap on the East Kunlun Fault. Since several highly populated counties are close to this region, understanding stress transfer and accumulation along this segment is important for hazard assessment along the MMS. In this study, we calculated the stress evolution along the MMS of the East Kunlun Fault zone during 1879-2008 by integrating coseismic effects, viscoelastic relaxation and tectonic loading. It is observed that the stress accumulation on the western part of the Maqin segment has been effected by the 1937 Tuosuo Lake earthquake, the stress on the eastern part of the Maqin segment. Also, the western part of the Maqu segment was relaxed by the 1947 Dari earthquake, and the stress loading on the eastern part of Maqu segment was increased by both the 1879 Wudu and 2008 Wenchuan earthquakes. It is observed that, compared to coseismic static stress changes, the post-seismic viscoelastic relaxation process has played a more important role on stress accumulation in the Maqu segment. The increased stress on the Maqin and Maqu segment is consistent with tectonic loading over 160 and 250 yr, respectively, which we expect will lead to future earthquakes and associated seismic hazard on these segments.

  7. New data about seismicity and crustal velocity structure of the "continent-ocean" transition zone of the Barents-Kara region in the Arctic

    NASA Astrophysics Data System (ADS)

    Morozov, Alexey N.; Vaganova, Natalya V.; Konechnaya, Yana V.; Asming, Vladimir E.

    2015-01-01

    The recent (2011) installation of seismic station Zemlya Franca-Iocifa (ZFI) on Alexander Island in the Franz Josef Land Archipelago allows new seismic monitoring of the "continent-ocean" transition zone of the Barents-Kara Sea region. The region is seismically active, and we hypothesize that the prevailing geodynamic factor responsible for the occurrence of weak earthquakes is isostatic compensation of avalanche sedimentation in the "continent-ocean" transition zone. The crustal velocity structure beneath ZFI was determined using receiver functions. Crustal thickness is 30 km, based on an observed Moho discontinuity with underlying mantle velocities being Vp = 8.15 km/s and Vs = 4.5 km/s The model indicates a mid-crustal boundary at a depth of about 17 km with a velocity contrast between the upper ( Vp = 6.1 km/s, Vs = 3.6 km/s) and lower ( Vp = 6.8 km/s, Vs = 3.9 km/s) layers. In addition, the upper crustal sedimentary layer is about 4 km thick with Vp = 4.3 km/s and Vs = 2.36 km/s.

  8. High-Resolution Seismicity Image of the Shallow Part of the Subduction Zone Beneath Mejillones in Northern Chile

    NASA Astrophysics Data System (ADS)

    Kummerow, Jörn; Bloch, Wasja; Salazar, Pablo; Wigger, Peter; Asch, Günter; Shapiro, Serge A.

    2015-04-01

    We analyze slab-related seismicity which has been recorded by a recently (June 2013) installed local seismic monitoring system on the Mejillones peninsula in the forearc region of Northern Chile. The monitoring system consists of 20 seismic stations and is complemented by components of the permanent IPOC (Integrated Plate Boundary Obervatory Chile) seismic network, providing a singular on-shore possibility to study in detail the relatively shallow seismicity of the subducting Nazca slab. To date, about thousand local seismic events have been identified. Precise earthquake relocation involving a local 2.5D velocity model and improved arrival time picks from an iterative cross-correlation based technique allows to trace sharply the slab interface between 25km and 40km depth. Furthermore, we observe distinct and continuous seismic activity on a near-vertical structure which transects the subducting oceanic crust from 40km to 50km depth. Location, orientation and size of this plane correspond to the rupture fault of the MW6.8 Michilla intraslab earthquake which occurred weeks after the MW7.7 Tocopilla earthquake of November 2007. We discuss here particularly the results from cluster analysis and the spatio-temporal signatures of the recorded seismicity.

  9. Deformation of "stable" continental interiors by mantle convection: Implications for intraplate stress in the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Forte, A. M.; Moucha, R.; Simmons, N. A.; Grand, S. P.; Mitrovica, J. X.

    2011-12-01

    The enigmatic origin of large-magnitude earthquakes far from active plate boundaries, especially those occurring in so-called "stable" continental interiors, is a source of continuing controversy that has eluded a satisfactory explanation using past geophysical models of intraplate deformation and faulting. One outstanding case of such major intraplate earthquakes is the 1811-1812 series of events in the New Madrid Seismic Zone (NMSZ). We contend that the origin of some of these enigmatic intraplate events is due to regional variations in the pattern of tectonic stress generated by mantle convective flow acting on the overlying lithosphere and crust. Mantle convection affects the entire surface of the planet, irrespective of the current configuration of surface plate boundaries. In addition, it must be appreciated that plate tectonics is not a 2-D process, because the convective flow that drives the observed horizontal motions of the tectonic plates also drives vertical displacements of the crust across distances as great as 2 to 3 km. This dynamic topography is directly correlated with convection-driven stress field variations in the crust and lithosphere and these stresses can be locally focussed if the mantle rheology below the lithosphere is characterised by sufficiently low viscosities. We have developed global models of convection-driven mantle flow [Forte et al. 2009,2010] that are based on recent high-resolution 3-D tomography models derived from joint inversions of seismic, geodynamic and mineral physics data [Simmons et al. 2007,2008,2010]. These tomography-based mantle convection models also include a full suite of surface geodynamic (postglacial rebound and convection) constraints on the depth-dependent average viscosity of the mantle [Mitrovica & Forte 2004]. Our latest tomography-based and geodynamically-constrained convection calculations reveal that mantle flow under the central US are driven by density anomalies within the lower mantle associated

  10. Defining the southwestern end of the Blytheville Arch, northeastern Arkansas: delimiting a seismic source zone in the New Madrid region

    USGS Publications Warehouse

    Crone, A.J.

    1998-01-01

    Vibroseis seismic-reflection profiles around the southwestern end of the Blytheville arch document the southwesternly extent of the arch and refine the length of a fault zone that coincides with the arch. The 74.3 km of newly interpreted profiles and previously described profiles form a network of lines across and around the southern end of the arch. The southwestern terminus of the arch is defined by the absence of significantly upwarped or extensively disrupted reflectors, which are diagnostic traits of the arch where it is well developed. The arch is 134 km long as documented here, which is only slightly longer than the length reported by previous studies. Differing opinions about the magnitude of the 1811-1812 New Madrid earthquakes could be partly explained by substantially longer seismic source zones, but this minor increase in source zone length does not reconcile the large differences in magnitude estimates of the events. If future earthquake ruptures associated with the arch are confined to areas of extensive deformation, then this well documented southwestern termination precludes a rupture substantially longer than ~134 km along the zone of seismicity that coincides with the axis of the Reelfoot rift.

  11. Coulomb Stress Change and Seismic Hazard of Rift Zones in Southern Tibet after the 2015 Mw7.8 Nepal Earthquake and Its Mw7.3 Aftershock

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Zha, X.; Lu, Z.

    2015-12-01

    In southern Tibet (30~34N, 80~95E), many north-trending rifts, such as Yadong-Gulu and Lunggar rifts, are characterized by internally drained graben or half-graben basins bounded by active normal faults. Some developed rifts have become a portion of important transportation lines in Tibet, China. Since 1976, eighty-seven >Mw5.0 earthquakes have happened in the rift regions, and fifty-five events have normal faulting focal mechanisms according to the GCMT catalog. These rifts and normal faults are associated with both the EW-trending extension of the southern Tibet and the convergence between Indian and Tibet. The 2015 Mw7.8 Nepal great earthquake and its Mw7.3 aftershock occurred at the main Himalayan Thrust zone and caused tremendous damages in Kathmandu region. Those earthquakes will lead to significant viscoelastic deformation and stress changes in the southern Tibet in the future. To evaluate the seismic hazard in the active rift regions in southern Tibet, we modeled the slip distribution of the 2015 Nepal great earthquakes using the InSAR displacement field from the ALOS-2 satellite SAR data, and calculated the Coulomb failure stress (CFS) on these active normal faults in the rift zones. Because the estimated CFS depends on the geometrical parameters of receiver faults, it is necessary to get the accurate fault parameters in the rift zones. Some historical earthquakes have been studied using the field data, teleseismic data and InSAR observations, but results are in not agreement with each other. In this study, we revaluated the geometrical parameters of seismogenic faults occurred in the rift zones using some high-quality coseismic InSAR observations and teleseismic body-wave data. Finally, we will evaluate the seismic hazard in the rift zones according to the value of the estimated CFS and aftershock distribution.

  12. Instrumental networks for monitoring short-period tectonic motions in seismic zones

    NASA Astrophysics Data System (ADS)

    Bender, P. L.

    1981-01-01

    For some years the monitoring of crustal movements in seismic zones has consisted mainly of periodic resurvey measurements using triangulation, trilateration, leveling, and gravity measurements. The frequency of remeasurements has been limited by the costs. Some fixed instruments have contributed also, such as creepmeters, tidegages, and devices for measuring tilts in lake levels. A number of inexpensive, shallow-borehole tiltmeters were installed recently in the U.S.A., but so far the noise level due to local ground motions appears to be fairly high for many instruments. Volumetric strainmeters are being used in several countries. 700 meter long laser strainmeters and a superconducting gravimeter have been in operation for several years at one site in California. Other simpler strainmeters and tiltmeters exist at a number of locations in seismic zones. Recently there has been increased interest both in trying to obtain frequent observations with fixed instruments and in reducing the noise level. Long-baseline liquid tiltmeters, deep-borehole tiltmeters, superconducting gravimeters, multi-wavelength laser distance-measuring devices, and laser strainmeters are capable of improved accuracy. However, they are more expensive than most previously used instruments. An additional future possibility is to use signals from the Global Positioning System (GPS) satellites to monitor networks of points. The accuracy would be limited almost completely by uncertainty in the water-vapor corrections along the various satellite-to-ground propagation paths. It seems possible that 1 cm accuracy for detecting baseline changes with very low false alarm rates can be achieved by using water-vapor radiometers at many of the sites, provided that sufficient accuracy can be achieved with the radiometers. Highly mobile instruments are being constructed in the U.S.A. which will use the spread-spectrum GPS signals as noise sources for long baseline radio interferometry. Initial tests using the

  13. Reflection seismic imaging of a hydraulically conductive fracture zone in a high noise area, Forsmark, Sweden

    NASA Astrophysics Data System (ADS)

    Juhlin, C.; Stephens, M. B.; Cosma, C.

    2007-05-01

    High resolution reflection seismic methods have proven to be useful tools for locating fracture zones in crystalline rock. Siting of potential high-level nuclear waste repositories is a particularly important application of these methods. By using small explosive sources (15-75 grams), high resolution images of the sub-surface have been obtained in the depth range 100 m to 2 km in Sweden, Canada and elsewhere. Although ambient noise conditions in areas such as the Fennoscandian and Canadian shields are generally low, industrial noise can be high in some areas, particularly at potential sites suitable for repositories, since these are often close to existing infrastructure. In addition, the presence of this infrastructure limits the choice of sources available to the geophysicist. Forsmark, located about 140 km north of Stockholm, is one such potential site where reflection seismics have been carried out. Existing infrastructure includes nuclear reactors for power generation and a low- level waste repository. In the vicinity of the reactors, it was not possible to use an explosive source due to permitting restrictions. Instead, a VIBSIST system consisting of a tractor mounted hydraulic hammer was used in the vicinity of the reactors. By repeatedly hitting the pavement, without breaking it, at predefined sweeps and then stacking the signals, shot records comparable to explosive data could be generated. These shot records were then processed using standard methods to produce stacked sections along 3 profiles within the reactor area. Clear reflections are seen in the uppermost 600 m along 3 of these profiles. Correlation of crossing profiles shows that the strongest reflection (B8) is generated by a gently east-southeast dipping interface. Prior to construction of the reactors, several boreholes were drilled to investigate the bedrock in the area. One of these boreholes was located close to where two of the profiles cross. Projection of the B8 reflection into the

  14. Imaging melt and thermal structure in subduction zones: what does seismic attenuation tell us?

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Fischer, K. M.; Hirth, G.; Holtzman, B. K.; McCarthy, C.; Plank, T. A.; Wiens, D. A.

    2013-12-01

    Subduction zones provide opportunities for observation of the mantle melting region not easily available elsewhere. Earthquakes within subducting plates can be recorded in the overlying plate. These paths sample the volumes where melting occurs with high resolution and short ray paths, and produce simple signals with much higher frequency content than available elsewhere. Also, arc volcanoes provide a direct sample of mantle melting products, and magmas record H2O concentrations, temperature, and pressure in their geochemical compositions. Beneath both volcanic arcs and back-arc basins, seismic waves exhibit very high attenuation (1/Q) for both P and S waves. Several recent field experiments have shown that the region of high 1/Q is localized and more than an order of magnitude more attenuating than adjacent regions in the forearc or slab. We have systematically re-analyzed data from two sets of these experiments, from Central America and the Marianas, where 1/Q anomalies are well defined and where arc or backarc lavas provide independent constraints on mantle properties. These analyses show strong attenuation anomalies, with Qs at 1 Hz no lower than 60-80 beneath Costa Rica but lower beneath other arcs and back-arc basins, to Qs<40. The systematic decrease in Qs (increase in attenuation) correlates well with temperature from geothermometers based on major-element chemistry. However, these Qs values are a factor of 2-4 lower than predicted from temperature by current laboratory-based calibrations in olivine-dominated rocks, at relevant conditions. We refine the Qs predictions using a grain size evolution model and estimates of mantle water content from olivine-hosted melt inclusions, effects which decrease but do not eliminate the discrepancy. We conclude that melt must have a significant impact on Q, bigger than predicted by models of grain-boundary dissipation with equilibrium grain geometries. One possibility is that in these very high 1/Q regions additional

  15. A Bayesian approach for Inter-seismic Inter-plate Coupling Probabilities for the Central Andes Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ortega Culaciati, F. H.; Simons, M.

    2009-12-01

    We aim to characterize the apparent extent of plate coupling on subduction zone megathrusts with the eventual goal of understanding spatial variations of fault zone rheology. In this study we approach the problem from a Bayesian perspective, where we ask not for a single optimum model, but rather for a posteriori estimates of the range of allowable models, exploiting the full potential of Bayesian methods to completely characterize the model parameter space. Adopting a simple kinematic back-slip model and a 3D geometry of the inter-plate contact zone, we use the Bayesian approach to provide the inter-seismic inter-plate coupling probabilities that are consistent with physically plausible a-priori information and available geodetic measurements. We highlight the importance of using the vertical component of the velocity field to properly constrain the downdip limit of the coupled zone, and also we show how the chosen parameterization of the model plays an important role along with the a-priori, and a-posteriori information on the model parameters. We apply this methodology in the Chilean-Peruvian subduction zone (12S - 24S) with the desire to understand the state of inter-seismic coupling on that margin. We obtain patch like features for the probability of 100% apparent inter-seismic coupling with higher values located between 15km and 60km depth. The larger of these features are located in the regions associated with the rupture process of the 2001 (Mw 8.4) Arequipa and the 2007 (Mw 8.0) Pisco Earthquakes, both occurred after the time period where the measurements take place; and the region identified as the Arica bend seismic gap, which has not experienced a large earthquake since 1877.

  16. Seismic images of the mantle transition zone beneath Northeast China and the Sino-Korean craton from P-wave receiver functions

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiqing; Gao, Zhanyong; Wu, Qingju; Xie, Zhenxing; Zhang, Guangcheng

    2016-04-01

    Seismic data from northeast (NE) China and the Sino-Korean craton were combined to image the upper mantle discontinuities at 410 and 660 km. Fine-scale topographic variations on these two discontinuities provide important clues for both delineating geometry of the subducting Pacific slab particularly at arc-arc junction and interpreting regional Cenozoic intraplate volcanism. We used over 90,000 receiver functions from 1916 teleseismic earthquakes recorded by 584 broadband seismic stations, primary those of temporary seismic arrays. We found the average depths of the two discontinuities to be 410 km and 672 km, respectively, beneath the study area. Results show that the 660-km discontinuity is strongly depressed by about 20-30 km in a narrow region beneath and around the Changbaishan volcano, consistent with the results of previous receiver function studies. In contrast, much of the Sino-Korean craton exhibits typical transition zone thickness (~ 260 km) and thus offers no evidence of a stagnated Pacific slab. Our results also reveal an elevated 660-km discontinuity and a thinner transition zone both to the west of the observed depression region and beneath the Kuril-Japan arc junction. This feature is most likely due to a tearing of the descending Pacific plate at both its leading and junction edges. An additional elevated 660-km discontinuity together with a thinner transition zone appears in the vicinity of the Dariganga lava field, supporting interpretations of a deep-rooted mantle plume. Our observations of an elevated 410-km discontinuity and a thicker transition zone correlate spatially with the diffuse distribution of volcanism around Hannuoba, Aershan and Wudalianchi. This correlation may suggest lithospheric removal as a mechanism for these magmatic activities.

  17. 3D Anisotropic Velocity Structure beneath the Kii Peninsula from P-wave Traveltime Tomography: Diagnostics of Seismic Anisotropy in a Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ishise, M.; Koketsu, K.; Miyake, H.

    2008-12-01

    Seismic anisotropy is one of key elements to understand geodynamics such as mantle convection, plate tectonics, and evolutional process of the crust. Thus, it is crucial to investigate seismic anisotropy in the subduction zone where various phenomena are attributed to dynamic processes caused by interaction among adjacent plates. Actually, recent studies of seismic anisotropy show that the determination of a 3D seismic anisotropy structure can be potential diagnostics of a geological lineament structure inside the crust, and probe earthquake rupture areas and rupture nucleation points. In this study, we have evaluated the three-dimensional (3D) P-wave anisotropic velocity structure in the Kii Peninsula, southwest Japan, as well as the isotropic velocity structure by P-wave travel times tomography. The study area lies on the Eurasian (Amulian) plate above the subducting Philippine Sea Plate. This belongs to an accretionary prism, which is being developed at the margin of the Asian Continent, and is characterized by E-W trending metamorphic belts including a segment of the active faults zone called the Median Tectonic Line (MTL). Additionally, the Kii Peninsula region is presumed to be source regions of megathrust earthquakes along the Nankai trough. The resultant images of both the isotropic and anisotropic tomography show that the upper crust is characterized by E-W trending structure similar to that of the geological structure over the peninsula region. Because deformation of the crust such as preferred mineral alignment and recrystallization associated with planar structures produces significant seismic anisotropy, the plausible factor of the crustal feature is interpreted as E-W orientation of the regional metamorphic belt. Furthermore, in the resultant tomographic image, the E-W trending pattern is found within the deeper crust. This fact indicates that the lineament structure is sustained in the deeper crust. Since our tomography has good resolution in the

  18. Exhumed analogues of seismically active carbonate-bearing thrusts: fault architecture and deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Tesei, T.; Collettini, C.; Viti, C.; Barchi, M. R.

    2012-12-01

    In May 2012 a M = 5.9 earthquake followed by a long aftershock sequence struck the Northern Italy. The sequence occurred at 4-10 km depth within the active front of Northern Apennines Prism and the major events nucleate within, or propagate through, a thick sequence of carbonates. In an inner sector of the Northern Apennines, ancient carbonate-bearing thrusts exposed at the surface, represent exhumed analogues of structures generating seismicity in the active front. Here we document fault architecture and deformation mechanisms of three regional carbonate bearing thrusts with displacement of several kilometers and exhumation in the range of 1-4 km. Fault zone structure and deformation mechanisms are controlled by the lithology of the faulted rocks. In layered limestones and marly-limestones the fault zone is up to 200 m thick and is characterized by intense pressure solution. In massive limestones the deformation generally occurs along thin and sharp slip planes that are in contact with fault portions affected by either cataclasis or pressure solution. SEM and TEM observations show that pressure solution surfaces, made of smectite lamellae, with time tend to form an interconnected network affected by frictional sliding. Sharp slipping planes along massive limestones show localization along Y shear planes that separate an extremely comminuted cataclasites from an almost undeformed protolith. The comparison of the three shear zones depicts a fault zone structure extremely heterogeneous as the result of protolith lithology, geometrical complexities and the presence of inherited structures. We observe the competition between brittle (cataclasis, distributed frictional sliding along phyllosilicates and extremely localized slip within carbonates) and pressure solution processes, that suggest a multi-mode of slip behaviour. Extreme localization along carbonate-bearing Y shear planes is our favorite fault zone feature representing past seismic ruptures along the studied

  19. Seismic Evidence of Localized Distribution of Fluids or Melts in the Mantle Transition Zone

    NASA Astrophysics Data System (ADS)

    Tajima, F.; Nakagawa, T.

    2009-04-01

    Seismic tomography models have shown flattened broad high velocity anomaly (HVA), i.e., the image of a subducted slab (stagnant slab) trapped in the upper mantle transition zone (MTZ) associated with the northwestern Pacific subduction zones. Our body waveform analysis in a relatively high frequency band (approximately 0.03 to 1 Hz) has determined a fairly broad region of HVA's where the structure can be delineated largely with layered models but the typical wavelength of HVA is shorter than that in tomography models. The HVA's are accompanied by a depression of the "660 km" discontinuity depth (model M3.11) or not (model M2.0), indicating a possible variation of geochemical properties at the bottom of the upper mantle. A hypothes