Science.gov

Sample records for active semiconductor devices

  1. Unitary lens semiconductor device

    DOEpatents

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  2. Unitary lens semiconductor device

    DOEpatents

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  3. Interconnected semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  4. New unorthodox semiconductor devices

    NASA Astrophysics Data System (ADS)

    Board, K.

    1985-12-01

    A range of new semiconductor devices, including a number of structures which rely entirely upon new phenomena, are discussed. Unipolar two-terminal devices, including impurity-controlled barriers and graded composition barriers, are considered, as are new transistor structures, including the hot-electron camel transistor, the planar-doped barrier transistor, the thermionic emission transistor, and the permeable base transistor. Regenerative switching devices are addressed, including the metal-tunnel insulator-semiconductor switch, the polysilicon switch, MIS, and MISIM switching structures, and the triangular-barrier switch. Heterostructure devices are covered, including the heterojunction bipolar transistor, the selectively doped heterojunction transistor, heterojunction lasers, and quantum-well structures.

  5. Stretchable Organic Semiconductor Devices.

    PubMed

    Qian, Yan; Zhang, Xinwen; Xie, Linghai; Qi, Dianpeng; Chandran, Bevita K; Chen, Xiaodong; Huang, Wei

    2016-11-01

    Stretchable electronics are essential for the development of intensely packed collapsible and portable electronics, wearable electronics, epidermal and bioimplanted electronics, 3D surface compliable devices, bionics, prosthesis, and robotics. However, most stretchable devices are currently based on inorganic electronics, whose high cost of fabrication and limited processing area make it difficult to produce inexpensive, large-area devices. Therefore, organic stretchable electronics are highly attractive due to many advantages over their inorganic counterparts, such as their light weight, flexibility, low cost and large-area solution-processing, the reproducible semiconductor resources, and the easy tuning of their properties via molecular tailoring. Among them, stretchable organic semiconductor devices have become a hot and fast-growing research field, in which great advances have been made in recent years. These fantastic advances are summarized here, focusing on stretchable organic field-effect transistors, light-emitting devices, solar cells, and memory devices.

  6. Survey of cryogenic semiconductor devices

    SciTech Connect

    Talarico, L.J.; McKeever, J.W.

    1996-04-01

    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  7. Active devices based on organic semiconductors for wearable applications.

    PubMed

    Barbaro, Massimo; Caboni, Alessandra; Cosseddu, Piero; Mattana, Giorgio; Bonfiglio, Annalisa

    2010-05-01

    Plastic electronics is an enabling technology for obtaining active (transistor based) electronic circuits on flexible and/or nonplanar surfaces. For these reasons, it appears as a perfect candidate to promote future developments of wearable electronics toward the concept of fabrics and garments made by functional (in this case, active electronic) yarns. In this paper, a panoramic view of recent achievements and future perspectives is given.

  8. Field-induced activation of metal oxide semiconductor for low temperature flexible transparent electronic device applications

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony; Haglund, Amada; Ward, Thomas Zac; Mandrus, David; Rack, Philip

    Amorphous metal-oxide semiconductors have been extensively studied as an active channel material in thin film transistors due to their high carrier mobility, and excellent large-area uniformity. Here, we report the athermal activation of amorphous indium gallium zinc oxide semiconductor channels by an electric field-induced oxygen migration via gating through an ionic liquid. Using field-induced activation, a transparent flexible thin film transistor is demonstrated on a polyamide substrate with transistor characteristics having a current ON-OFF ratio exceeding 108, and saturation field effect mobility of 8.32 cm2/(V.s) without a post-deposition thermal treatment. This study demonstrates the potential of field-induced activation as an athermal alternative to traditional post-deposition thermal annealing for metal oxide electronic devices suitable for transparent and flexible polymer substrates. Materials Science and Technology Division, ORBL, Oak Ridge, TN 37831, USA.

  9. Semiconductor metafilms devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Brongersma, Mark L.

    2016-09-01

    Many conventional optoelectronic devices consist of thin, stacked films of metals and semiconductors. In this presentation, I will demonstrate how one can improve the performance of such devices by nano-structuring the constituent layers at length scales below the wavelength of light. The resulting metafilms and metasurfaces offer opportunities to dramatically modify the optical transmission, absorption, reflection, and refraction properties of device layers. This is accomplished by encoding the optical response of nanoscale resonant building blocks into the effective properties of the films and surfaces. To illustrate these points, I will show how nanopatterned metal and semiconductor layers may be used to enhance the performance of solar cells, photodetectors, and enable new imaging technologies. I will also demonstrate how the use of active nanoscale building blocks can facilitate the creation of active metafilm devices.

  10. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    DOE PAGES

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less

  11. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    SciTech Connect

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; Ovchinnikova, Olga S.; Haglund, Amanda V.; Dai, Sheng; Ward, Thomas Zac; Mandrus, David; Rack, Philip D.

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistor can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.

  12. New Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Balestra, F.

    2008-11-01

    A review of recently emerging semiconductor devices for nanoelectronic applications is given. For the end of the international technology roadmap for semiconductors, very innovative materials, technologies and nanodevice architectures will be needed. Silicon on insulator-based devices seem to be the best candidates for the ultimate integration of integrated circuits on silicon. The flexibility of the silicon on insulator-based structure and the possibility to realize new device architectures allow to obtain optimum electrical properties for low power and high performance circuits. These transistors are also very interesting for high frequency and memory applications. The performance and physical mechanisms are addressed in single- and multi-gate thin film Si, SiGe and Ge metal-oxide-semiconductor field-effect-transistors. The impact of tensile or compressive uniaxial and biaxial strains in the channel, of high k materials and metal gates as well as metallic Schottky source-drain architectures are discussed. Finally, the interest of advanced beyond-CMOS (complementary MOS) nanodevices for long term applications, based on nanowires, carbon electronics or small slope switch structures are presented.

  13. Microwave semiconductor devices

    NASA Astrophysics Data System (ADS)

    Sitch, J. E.

    1985-03-01

    The state of the art of microwave semiconductor design is reviewed, with emphasis on developments of the past 10-12 years. Consideration is given to: varistor diodes; varactor diodes; and transit time negative diodes. The design principles of bipolar and unipolar transistors are discussed, with reference to power FETs, traveling-wave FETs, and camel or planar-doped barrier transistors. Recent innovations in the field of fabrication technology are also considered, including: crystal growth; doping; and packaging. Several schematic drawings and photographs of the different devices are provided.

  14. Active photonic devices based on colloidal semiconductor nanocrystals and organometallic halide perovskites

    NASA Astrophysics Data System (ADS)

    Suárez Alvarez, Isaac

    2016-10-01

    Semiconductor nanocrystals have arisen as outstanding materials to develop a new generation of optoelectronic devices. Their fabrication under simple and low cost colloidal chemistry methods results in cheap nanostructures able to provide a wide range of optical functionalities. Their attractive optical properties include a high absorption cross section below the band gap, a high quantum yield emission at room temperature, or the capability of tuning the band-gap with the size or the base material. In addition, their solution process nature enables an easy integration on several substrates and photonic structures. As a consequence, these nanoparticles have been extensively proposed to develop several photonic applications, such as detection of light, optical gain, generation of light or sensing. This manuscript reviews the great effort undertaken by the scientific community to construct active photonic devices based on these nanoparticles. The conditions to demonstrate stimulated emission are carefully studied by comparing the dependence of the optical properties of the nanocrystals with their size, shape and composition. In addition, this paper describes the design of different photonic architectures (waveguides and cavities) to enhance the generation of photoluminescence, and hence to reduce the threshold of optical gain. Finally, semiconductor nanocrystals are compared to organometallic halide perovskites, as this novel material has emerged as an alternative to colloidal nanoparticles.

  15. Advanced Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Shur, Michael S.; Maki, Paul A.; Kolodzey, James

    2007-06-01

    I. Wide band gap devices. Wide-Bandgap Semiconductor devices for automotive applications / M. Sugimoto ... [et al.]. A GaN on SiC HFET device technology for wireless infrastructure applications / B. Green ... [et al.]. Drift velocity limitation in GaN HEMT channels / A. Matulionis. Simulations of field-plated and recessed gate gallium nitride-based heterojunction field-effect transistors / V. O. Turin, M. S. Shur and D. B. Veksler. Low temperature electroluminescence of green and deep green GaInN/GaN light emitting diodes / Y. Li ... [et al.]. Spatial spectral analysis in high brightness GaInN/GaN light emitting diodes / T. Detchprohm ... [et al.]. Self-induced surface texturing of Al2O3 by means of inductively coupled plasma reactive ion etching in Cl2 chemistry / P. Batoni ... [et al.]. Field and termionic field transport in aluminium gallium arsenide heterojunction barriers / D. V. Morgan and A. Porch. Electrical characteristics and carrier lifetime measurements in high voltage 4H-SiC PiN diodes / P. A. Losee ... [et al.]. Geometry and short channel effects on enhancement-mode n-Channel GaN MOSFETs on p and n- GaN/sapphire substrates / W. Huang, T. Khan and T. P. Chow. 4H-SiC Vertical RESURF Schottky Rectifiers and MOSFETs / Y. Wang, P. A. Losee and T. P. Chow. Present status and future Directions of SiGe HBT technology / M. H. Khater ... [et al.]Optical properties of GaInN/GaN multi-quantum Wells structure and light emitting diode grown by metalorganic chemical vapor phase epitaxy / J. Senawiratne ... [et al.]. Electrical comparison of Ta/Ti/Al/Mo/Au and Ti/Al/Mo/Au Ohmic contacts on undoped GaN HEMTs structure with AlN interlayer / Y. Sun and L. F. Eastman. Above 2 A/mm drain current density of GaN HEMTs grown on sapphire / F. Medjdoub ... [et al.]. Focused thermal beam direct patterning on InGaN during molecular beam epitaxy / X. Chen, W. J. Schaff and L. F. Eastman -- II. Terahertz and millimeter wave devices. Temperature-dependent microwave performance of

  16. Quantum Transport in Semiconductor Devices

    DTIC Science & Technology

    1994-06-30

    TITLE AND SUBTITLE S. FUNDING NUMBERS " Quantum Transport in Semiconductor Devices" 6. AUTHOR(S) ,DftftLo3-91-6-oo 7 David K. Ferry 7. PERFORMING...OF ABSTRACT UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL NZIN 1540-01-280-5500 Standard Form 298 (Rev 2-89) PrinCrlt>• oy ANSI SIC Z39-18 QUANTUM ... TRANSPORT IN SEMICONDUCTOR DEVICES Final Report on DAAL03-91-G-0067 (28461-EL) David K. Ferry, Principal Investigator Department of Electrical Engineering

  17. Mechanical scriber for semiconductor devices

    DOEpatents

    Lin, P.T.

    1985-03-05

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer. 5 figs.

  18. Mechanical scriber for semiconductor devices

    DOEpatents

    Lin, Peter T.

    1985-01-01

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer.

  19. Complex-envelope alternating-direction-implicit FDTD method for simulating active photonic devices with semiconductor/solid-state media.

    PubMed

    Singh, Gurpreet; Ravi, Koustuban; Wang, Qian; Ho, Seng-Tiong

    2012-06-15

    A complex-envelope (CE) alternating-direction-implicit (ADI) finite-difference time-domain (FDTD) approach to treat light-matter interaction self-consistently with electromagnetic field evolution for efficient simulations of active photonic devices is presented for the first time (to our best knowledge). The active medium (AM) is modeled using an efficient multilevel system of carrier rate equations to yield the correct carrier distributions, suitable for modeling semiconductor/solid-state media accurately. To include the AM in the CE-ADI-FDTD method, a first-order differential system involving CE fields in the AM is first set up. The system matrix that includes AM parameters is then split into two time-dependent submatrices that are then used in an efficient ADI splitting formula. The proposed CE-ADI-FDTD approach with AM takes 22% of the time as the approach of the corresponding explicit FDTD, as validated by semiconductor microdisk laser simulations.

  20. SEMICONDUCTOR DEVICE CONCEPTS.

    DTIC Science & Technology

    Injection electroluminescence has been observed in Cu2S-ZnS and Cu2Se -ZnSe heterojunctions. The light emission occurs through hole injection from the...p-type Cu chalogenide into n-type ZnS or ZnSe. At room temperature the light emission from the Cu2S-ZnS and the Cu2Se -ZnSe junctions originates at...the Cu or self-activated lumines cence centers. At 77K edge emission peaking at 2.68 eV has been observed from the Cu2Se -ZnSe diodes with 2V dc

  1. Semiconductor devices having a recessed electrode structure

    DOEpatents

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2015-05-26

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  2. Silicon Carbide Semiconductor Device Fabrication and Characterization

    DTIC Science & Technology

    1990-02-08

    SPACE ADMINISTRATION For Grant NAG 3-782 S- 1 entitled SILICON CARBIDE SEMICONDUCTOR DEVICE FABRICATION AND CHARACTERIZATION For the Period 10 February...NUMBERS Silicon Carbide ..Semiconductor Device Fabrication and PR# 335820 Characterization __________________________________________________ APP# 505-62-01...also been demonstrated. _________ 14. SUBJECT TERMS 15. NuMBER OF PACiES -~- Silicon carbide , Ysemiconductor devices, ion implantation aseeI4i

  3. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations.

    PubMed

    Mao, Ling-Feng; Ning, H; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-04-22

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter.

  4. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations

    PubMed Central

    Mao, Ling-Feng; Ning, H.; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-01-01

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter. PMID:27103586

  5. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations

    NASA Astrophysics Data System (ADS)

    Mao, Ling-Feng; Ning, H.; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-04-01

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter.

  6. Method for fabricating semiconductor devices

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Grunthaner, Frank J. (Inventor); Hecht, Michael H. (Inventor); Bell, Lloyd D. (Inventor)

    1995-01-01

    A process for fabricating gold/gallium arsenide structures, in situ, on molecular beam epitaxially grown gallium arsenide. The resulting interface proves to be Ohmic, an unexpected result which is interpreted in terms of increased electrode interdiffusion. More importantly, the present invention surprisingly permits the fabrication of Ohmic contacts in a III-V semiconductor material at room temperature. Although it may be desireable to heat the Ohmic contact to a temperature of, for example, 200 degrees Centigrade if one wishes to further decrease the resistance of the contact, such low temperature annealing is much less likely to have any deleterious affect on the underlying substrate. The use of the term in situ herein, contemplates continuously maintaining an ultra-high vacuum, that is a vacuum which is at least 10.sup.-8 Torr, until after the metallization has been completed. An alternative embodiment of the present invention comprising an additional step, namely the termination of the gallium arsenide by a two monolayer thickness of epitaxial aluminum arsenide as a diffusion barrier, enables the recovery of Schottky barrier behavior, namely a rectified I-V characteristic. The present invention provides a significant breakthrough in the fabrication of III-V semiconductor devices wherein excellent Ohmic contact and Schottky barrier interfaces to such devices can be achieved simply and inexpensively and without requiring the high temperature processing of the prior art and also without requiring the use of exotic high temperature refractory materials as substitutes for those preferred contact metals such as gold, aluminum and the like.

  7. Heating device for semiconductor wafers

    DOEpatents

    Vosen, Steven R.

    1999-01-01

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

  8. Heating device for semiconductor wafers

    DOEpatents

    Vosen, S.R.

    1999-07-27

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

  9. Improved Thermoelectric Devices: Advanced Semiconductor Materials for Thermoelectric Devices

    SciTech Connect

    2009-12-11

    Broad Funding Opportunity Announcement Project: Phononic Devices is working to recapture waste heat and convert it into usable electric power. To do this, the company is using thermoelectric devices, which are made from advanced semiconductor materials that convert heat into electricity or actively remove heat for refrigeration and cooling purposes. Thermoelectric devices resemble computer chips, and they manage heat by manipulating the direction of electrons at the nanoscale. These devices aren’t new, but they are currently too inefficient and expensive for widespread use. Phononic Devices is using a high-performance, cost-effective thermoelectric design that will improve the device’s efficiency and enable electronics manufacturers to more easily integrate them into their products.

  10. Continuous Monitoring of Electrical Activity of Pancreatic β-Cells Using Semiconductor-Based Biosensing Devices

    NASA Astrophysics Data System (ADS)

    Sakata, Toshiya; Sugimoto, Haruyo

    2011-02-01

    The electrical activity of rat pancreatic β-cells caused by introduction of glucose was directly and noninvasively detected using a cell-based field-effect transistor (FET). Rat pancreatic β-cells were adhered to the gate sensing surface of the cell-based FET. The principle of cell-based FETs is based on the detection of charge density changes such as pH variation at the interface between the cell membrane and the gate surface. The gate surface potential of pancreatic β-cell-based FET increased continuously after introduction of glucose at a high concentration of 10 mg/ml. This result indicates that the electrical activity of β-cells was successfully monitored on the basis of pH changes, i.e., increase in the concentration of hydrogen ions, at the cell/gate interface using the pancreatic β-cell-based FET. We assume that the pH variation based on hydrogen ion accumulation at the cell/gate interface was induced by activation of respiration accompanied by insulin secretion process following glucose addition. The platform based on the field-effect devices is suitable for application in a real-time, noninvasive, and label-free detection system for cell functional analyses.

  11. Real-time and noninvasive monitoring of respiration activity of fertilized ova using semiconductor-based biosensing devices.

    PubMed

    Sakata, Toshiya; Makino, Izumi; Kita, Sayaka

    2011-05-01

    In this report, we propose a novel evaluation method of embryo activity, describing the real-time and noninvasive electrical monitoring of embryo activity, caused by fertilization of the sea urchin, using a biologically-coupled field-effect transistor (bio-FET) comprised of semiconductor-based biosensing devices. The detection principle of bio-FET is based on the potentiometric detection of charge density change at the gate insulator, which includes changes of hydrogen ion concentration corresponding to pH variation. The surface potential at the gate surface of the bio-FET increased after the introduction of sperms into the ova, resulting in fertilization on the gate sensing area. The positive shift of surface potential indicates the increase of positive charges of hydrogen ions generated by dissolved carbon dioxide in artificial sea water based on respiration activity of the embryo. Moreover, the electrical signal of embryo activity is suppressed due to the inhibition of cytokinesis by introduction of cytochalasin B. The platform based on the bio-FET is expected to be a real-time, label-free and noninvasive detection system, not only in fundamental studies of embryo activity but also in the evaluation of embryo quality for in vitro fertilization.

  12. Radiation-Hardness Data For Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Nichols, D. K.; Brown, S. F.; Gauthier, M. K.; Martin, K. E.

    1984-01-01

    Document presents data on and analysis of radiation hardness of various semiconductor devices. Data specifies total-dose radiation tolerance of devices. Volume 1 of report covers diodes, bipolar transistors, field effect transistors, silicon controlled rectifiers and optical devices. Volume 2 covers integrated circuits. Volume 3 provides detailed analysis of data in volumes 1 and 2.

  13. Library Analog Semiconductor Devices SPICE Simulators

    SciTech Connect

    Deveney, Michael F.; Archer, Wendel; Bogdan, Carolyn W.

    1996-07-23

    SPICE-SANDIA.LIB is a library of parameter sets and macromodels of semiconductor devices. They are used with Spice-based (SPICE is a program for electronic circuit analysis) simulators to simulate electronic circuits.

  14. Modeling of ferromagnetic semiconductor devices for spintronics

    NASA Astrophysics Data System (ADS)

    Lebedeva, N.; Kuivalainen, P.

    2003-06-01

    We develop physical models for magnetic semiconductor devices, where a part of the device structure consists of a ferromagnetic semiconductor layer. First we calculate the effect of the exchange interaction between the charge carrier spins and the spins of the localized magnetic electrons on the electronic states, recombination processes, and charge transport in ferromagnetic semiconductors such as (Ga,Mn)As. Taking into account, e.g., the splitting of the conduction and valence bands due to the exchange interaction, we model the electrical characteristics of the basic magnetic semiconductor devices such as Schottky diodes consisting of a nonmagnetic metal/ferromagnetic semiconductor interface, pn diodes consisting of a ferromagnetic/nonmagnetic junction and bipolar transistors having a ferromagnetic emitter. The models predict that at temperatures close to the Curie temperature TC the electrical properties of the magnetic semiconductor devices become strongly dependent on the average spin polarization of the magnetic atoms. A feature in the models is that many device parameters such as diffusion lengths or potential barriers become spin dependent in magnetic semiconductor devices. In a ferromagnetic Schottky diode the sensitivity of the device current I to the external magnetic field may be as large as (∂I/∂B)I-1≈1/T at temperatures close to TC. In a ferromagnetic pn diode both the ideal and recombination currents become magnetic field dependent. In a ferromagnetic bipolar transistor the current gain shows the same sensitivity to the spin polarization as the dc current in the ferromagnetic pn diodes. According to our model calculations optimal structures showing the largest magnetization dependence of the electrical characteristics in III-V ferromagnetic semiconductor devices would be those where the magnetic side of the junction is of n type.

  15. Device Technologies for Semiconductor Spintronic Circuits

    DTIC Science & Technology

    2012-04-20

    Technical Report 3. DATES COVERED (From - To) 15 Apr 08-30 Dec 11 4. TITLE AND SUBTITLE Device Technologies for Semiconductor Spintronic ...shallow impurity traps. These results helped to significantly improve the understanding of spin transport in silicon. 15. SUBJECT TERMS Spintronics ...Include area code) (302)831-1164 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std Z39.18 Device Technologies for Semiconductor Spintronic

  16. SPM system for semiconductor device applications.

    PubMed

    Itoh, Hiroshi; Odaka, Takahiro; Niitsuma, Junichi

    2014-11-01

    Recently, scanning probe microscopy (SPM) is widely used for development of semiconductor devices. One of the important functions of SPM is high resolution topography, such as shape of the nanoscale devices and surface roughness of the films. Additionally, SPM can measure the electronic structure of the nanoscale-devices. SPM system for thin films was developed to characterize the thin films for device applications.First, SPM system which can be apply short pulses to the sample holder is constructed to evaluate the electronic response of the thin film without using complex patterning on the Si wafer as shown in Fig. 1. Current design rule of the semiconductor devices is around 20 nm. The dimension of the devices are close to the probe radius of conductive SPM probes. The instrument was designed to characterize not only the static properties of nanoscale devices, but also the dynamic electronic properties. Shortest pulses which can be applied to the sample without destroying waveform were less than 50 nS. Time response of the current amplifier is ranging from 50 nS to 200 nS depending on the trans-impedance gains. The conditions (time and dimension) are similar to the active devices on the chip in the circuit. Thus, dynamic electronic properties of the thin films can be tested on a film without fabricating to the nanoscale devices. It is very helpful to optimizing the depositing conditions, such as sputtering parameters, of the thin film for semiconductor devices. For example, the system is used to optimize the film qualities for resistive memories [1].jmicro;63/suppl_1/i13-a/DFU091F1F1DFU091F1Fig. 1.Conductive probe microscopy, which is compatible to the pulse signals ranging to 50nS. The second function of the SPM system is the reproducible roughness measurement. Roughness of the film is also important for optimizing the depositing conditions of the thin film. Virtual reference probe method was developed for removing the variations of the SPM probes [2]. One of

  17. Laser Assisted Semiconductor Device Processing

    DTIC Science & Technology

    1980-11-30

    In strongly absorbing semiconductors, the dominant absorption mechanism at frequencies higher than the bandgap frequency is interband transitions. The...current). The solution for miconductors. In strongly absorbing semiconductors, the n(x,t ) is a closed-form expression consisting of complemen- dominant 0...representative profles are shown in Fis. $-12. o -- For Nd: YAG in silicon. E, _0.99hv and the profiks are therefore and-gap recombination dominated

  18. Efficient semiconductor light-emitting device and method

    DOEpatents

    Choquette, Kent D.; Lear, Kevin L.; Schneider, Jr., Richard P.

    1996-01-01

    A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).

  19. Efficient semiconductor light-emitting device and method

    DOEpatents

    Choquette, K.D.; Lear, K.L.; Schneider, R.P. Jr.

    1996-02-20

    A semiconductor light-emitting device and method are disclosed. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL). 12 figs.

  20. Optical processing for semiconductor device fabrication

    NASA Technical Reports Server (NTRS)

    Sopori, Bhushan L.

    1994-01-01

    A new technique for semiconductor device processing is described that uses optical energy to produce local heating/melting in the vicinity of a preselected interface of the device. This process, called optical processing, invokes assistance of photons to enhance interface reactions such as diffusion and melting, as compared to the use of thermal heating alone. Optical processing is performed in a 'cold wall' furnace, and requires considerably lower energies than furnace or rapid thermal annealing. This technique can produce some device structures with unique properties that cannot be produced by conventional thermal processing. Some applications of optical processing involving semiconductor-metal interfaces are described.

  1. Methods for dry etching semiconductor devices

    DOEpatents

    Bauer, Todd; Gross, Andrew John; Clews, Peggy J.; Olsson, Roy H.

    2016-11-01

    The present invention provides methods for etching semiconductor devices, such aluminum nitride resonators. The methods herein allow for devices having improved etch profiles, such that nearly vertical sidewalls can be obtained. In some examples, the method employs a dry etch step with a primary etchant gas that omits BCl.sub.3, a common additive.

  2. Conductive Container for Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Rice, J. T.

    1986-01-01

    Container for semiconductor components not only protects them against mechanical damage but ensures they are not harmed by electrostatic discharges. Container holds components in fixed positions so they can be serialized and identified from their locations. Suitable for holding components during both storing and shipping. Originally developed for microwave diodes, container concept readily adaptable to transistors and integrated circuits.

  3. Optical devices featuring nonpolar textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua

    2013-11-26

    A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.

  4. Nanoscale Semiconductor Devices as New Biomaterials

    PubMed Central

    Zimmerman, John; Parameswaran, Ramya; Tian, Bozhi

    2016-01-01

    Research on nanoscale semiconductor devices will elicit a novel understanding of biological systems. First, we discuss why it is necessary to build interfaces between cells and semiconductor nanoelectronics. Second, we describe some recent molecular biophysics studies with nanowire field effect transistor sensors. Third, we present the use of nanowire transistors as electrical recording devices that can be integrated into synthetic tissues and targeted intra- or extracellularly to study single cells. Lastly, we discuss future directions and challenges in further developing this area of research, which will advance biology and medicine. PMID:27213041

  5. Nanoscale Semiconductor Devices as New Biomaterials.

    PubMed

    Zimmerman, John; Parameswaran, Ramya; Tian, Bozhi

    2014-05-01

    Research on nanoscale semiconductor devices will elicit a novel understanding of biological systems. First, we discuss why it is necessary to build interfaces between cells and semiconductor nanoelectronics. Second, we describe some recent molecular biophysics studies with nanowire field effect transistor sensors. Third, we present the use of nanowire transistors as electrical recording devices that can be integrated into synthetic tissues and targeted intra- or extracellularly to study single cells. Lastly, we discuss future directions and challenges in further developing this area of research, which will advance biology and medicine.

  6. Architectures for Improved Organic Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Beck, Jonathan H.

    Advancements in the microelectronics industry have brought increasing performance and decreasing prices to a wide range of users. Conventional silicon-based electronics have followed Moore's law to provide an ever-increasing integrated circuit transistor density, which drives processing power, solid-state memory density, and sensor technologies. As shrinking conventional integrated circuits became more challenging, researchers began exploring electronics with the potential to penetrate new applications with a low price of entry: "Electronics everywhere." The new generation of electronics is thin, light, flexible, and inexpensive. Organic electronics are part of the new generation of thin-film electronics, relying on the synthetic flexibility of carbon molecules to create organic semiconductors, absorbers, and emitters which perform useful tasks. Organic electronics can be fabricated with low energy input on a variety of novel substrates, including inexpensive plastic sheets. The potential ease of synthesis and fabrication of organic-based devices means that organic electronics can be made at very low cost. Successfully demonstrated organic semiconductor devices include photovoltaics, photodetectors, transistors, and light emitting diodes. Several challenges that face organic semiconductor devices are low performance relative to conventional devices, long-term device stability, and development of new organic-compatible processes and materials. While the absorption and emission performance of organic materials in photovoltaics and light emitting diodes is extraordinarily high for thin films, the charge conduction mobilities are generally low. Building highly efficient devices with low-mobility materials is one challenge. Many organic semiconductor films are unstable during fabrication, storage, and operation due to reactions with water, oxygen and hydroxide. A final challenge facing organic electronics is the need for new processes and materials for electrodes

  7. Thermovoltaic semiconductor device including a plasma filter

    DOEpatents

    Baldasaro, Paul F.

    1999-01-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  8. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

    SciTech Connect

    Sopori, Bhushan; Rangappan, Anikara

    2014-11-25

    Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

  9. General Electronics Technician: Semiconductor Devices and Circuits.

    ERIC Educational Resources Information Center

    Hilley, Robert

    These instructional materials include a teacher's guide designed to assist instructors in organizing and presenting an introductory course in general electronics focusing on semiconductor devices and circuits and a student guide. The materials are based on the curriculum-alignment concept of first stating the objectives, developing instructional…

  10. Semiconductors: In Situ Processing of Photovoltaic Devices

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    1998-01-01

    The possible processing of semiconductor photovoltaic devices is discussed. The requirements for lunar PV cells is reviewed, and the key challenges involved in their manufacturing are investigated. A schematic diagram of a passivated emitter and rear cell (PERC) is presented. The possible fabrication of large photovoltaic arrays in space from lunar materials is also discussed.

  11. Microwave Semiconductor Materials and Devices

    DTIC Science & Technology

    1981-01-01

    characterization. The first is the development of an accurate characterization of the local microscopic fluctuations which create the noise. The second is a...of these steps. 4.2 Work Done During the Past Year. There are four main microscopic noise sources in transit-time devices. These are avalanche noise...very important in TUNNETTs. Since this noise is caused by the scattering induced microscopic fluctuations in the carrier velocity, it is possible to

  12. Electrical Characterization of Semiconductor Materials and Devices

    NASA Astrophysics Data System (ADS)

    Deen, M.; Pascal, Fabien

    Semiconductor materials and devices continue to occupy a preeminent technological position due to their importance when building integrated electronic systems used in a wide range of applications from computers, cell-phones, personal digital assistants, digital cameras and electronic entertainment systems, to electronic instrumentation for medical diagnositics and environmental monitoring. Key ingredients of this technological dominance have been the rapid advances made in the quality and processing of materials - semiconductors, conductors and dielectrics - which have given metal oxide semiconductor device technology its important characteristics of negligible standby power dissipation, good input-output isolation, surface potential control and reliable operation. However, when assessing material quality and device reliability, it is important to have fast, nondestructive, accurate and easy-to-use electrical characterization techniques available, so that important parameters such as carrier doping density, type and mobility of carriers, interface quality, oxide trap density, semiconductor bulk defect density, contact and other parasitic resistances and oxide electrical integrity can be determined. This chapter describes some of the more widely employed and popular techniques that are used to determine these important parameters. The techniques presented in this chapter range in both complexity and test structure requirements from simple current-voltage measurements to more sophisticated low-frequency noise, charge pumping and deep-level transient spectroscopy techniques.

  13. Methods and devices for fabricating and assembling printable semiconductor elements

    DOEpatents

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2013-05-14

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  14. Methods and devices for fabricating and assembling printable semiconductor elements

    DOEpatents

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2011-07-19

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  15. Methods and devices for fabricating and assembling printable semiconductor elements

    DOEpatents

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2014-03-04

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  16. Methods and devices for fabricating and assembling printable semiconductor elements

    DOEpatents

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2009-11-24

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  17. Quality Control On Strained Semiconductor Devices

    SciTech Connect

    Dommann, Alex; Neels, Antonia

    2010-11-24

    New semiconductor devices are based very often on strained silicon which promises to squeeze more device performance out of current devices. With strained silicon it is possible to get the same device performance using less power. The technique is using strain as a 'design element' for silicon to improve the device performance and has become a hot topic in semiconductor research in the past years. However in the same time topics like 'System in Package'(SiP) on thin wafers are getting more and more important. The chips of thin wafers in advanced packaging are extremely sensitive to induced stresses due to packaging issues. If we are using now strain as a design element for improving device performance we increase the sensitivity again and therefore also the risk of aging of such SiP's. High Resolution X-ray diffraction (HRXRD) techniques such as Rocking Curves (RC's) and Reciprocal Space Mapping (RSM) are therefore very powerful tools to study the stresses in packaged devices.

  18. EDITORIAL: Frontiers in semiconductor-based devices Frontiers in semiconductor-based devices

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay; Phillips, Jamie; Ghosh, Siddhartha; Ma, Jack; Sabarinanthan, Jayshri; Stiff-Roberts, Adrienne; Xu, Jian; Zhou, Weidong

    2009-12-01

    This special cluster of Journal of Physics D: Applied Physics reports proceedings from the Frontiers in Semiconductor-Based Devices Symposium, held in honor of the 60th birthday of Professor Pallab Bhattacharya by his former doctoral students. The symposium took place at the University of Michigan, Ann Arbor on 6-7 December 2009. Pallab Bhattacharya has served on the faculty of the Electrical Engineering and Computer Science Department at the University of Michigan, Ann Arbor for 25 years. During this time, he has made pioneering contributions to semiconductor epitaxy, characterization of strained heterostructures, self-organized quantum dots, quantum-dot optoelectronic devices, and integrated optoelectronics. Professor Bhattacharya has been recognized for his accomplishments by membership of the National Academy of Engineering, by chaired professorships (Charles M Vest Distinguished University Professor and James R Mellor Professor of Engineering), and by selection as a Fellow of the IEEE, among numerous other honors and awards. Professor Bhattacharya has also made remarkable contributions in education, including authorship of the textbook Semiconductor Optoelectronic Devices (Prentice Hall, 2nd edition) and the production of 60 PhD students (and counting). In fact, this development of critical human resources is one of the biggest impacts of Professor Bhattacharya's career. His guidance and dedication have shaped the varied professional paths of his students, many of whom currently enjoy successful careers in academia, industry, and government around the world. This special cluster acknowledges the importance of Professor Bhattacharya's influence as all of the contributions are from his former doctoral students. The symposium reflects the significant impact of Professor Bhattacharya's research in that the topics span diverse, critical research areas, including: semiconductor lasers and modulators, nanoscale quantum structure-based devices, flexible CMOS

  19. Molecular engineering of semiconductor surfaces and devices.

    PubMed

    Ashkenasy, Gonen; Cahen, David; Cohen, Rami; Shanzer, Abraham; Vilan, Ayelet

    2002-02-01

    Grafting organic molecules onto solid surfaces can transfer molecular properties to the solid. We describe how modifications of semiconductor or metal surfaces by molecules with systematically varying properties can lead to corresponding trends in the (electronic) properties of the resulting hybrid (molecule + solid) materials and devices made with them. Examples include molecule-controlled diodes and sensors, where the electrons need not to go through the molecules (action at a distance), suggesting a new approach to molecule-based electronics.

  20. Compound Semiconductor Materials, Devices and Circuits

    DTIC Science & Technology

    1988-06-01

    Semiconductors", L.A. Coldren, J.G. Mendoza - Alvarez and R.H. Yan, Aopl. Phys. Lett., 51, 792-794 (1987). JSEP PUBLICATIONS AND PRESENTATIONS 1. "Room...self-consistent Monte Carlo transport formulation and its applicat... to small graded heterostructure devices; (e) optical modulation based on the...L.F. Eastman 1 0 TASK 3 FUNDAMENTAL PHENOMENON IN ULTRASHORT DEVICES E.D. Wolf, L.F. Eastman and P.J. Tasker 1 9 TASK 4 ENSEMBLE MONTE CARLO

  1. Semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  2. High voltage semiconductor devices and methods of making the devices

    DOEpatents

    Matocha, Kevin; Chatty, Kiran; Banerjee, Sujit

    2017-02-28

    A multi-cell MOSFET device including a MOSFET cell with an integrated Schottky diode is provided. The MOSFET includes n-type source regions formed in p-type well regions which are formed in an n-type drift layer. A p-type body contact region is formed on the periphery of the MOSFET. The source metallization of the device forms a Schottky contact with an n-type semiconductor region adjacent the p-type body contact region of the device. Vias can be formed through a dielectric material covering the source ohmic contacts and/or Schottky region of the device and the source metallization can be formed in the vias. The n-type semiconductor region forming the Schottky contact and/or the n-type source regions can be a single continuous region or a plurality of discontinuous regions alternating with discontinuous p-type body contact regions. The device can be a SiC device. Methods of making the device are also provided.

  3. Thin films in silicon carbide semiconductor devices

    NASA Astrophysics Data System (ADS)

    Ostling, Mikael; Koo, Sang-Mo; Lee, Sang-Kwon; Zetterling, Carl-Mikael; Grishin, Alexander

    2004-12-01

    Silicon carbide (SiC) semiconductor devices have been established during the last decade as very useful high power, high speed and high temperature devices because of their inherent outstanding semiconductor materials properties. Due to its large band gap, SiC possesses a very high breakdown field and low intrinsic carrier concentration, which accordingly makes high voltage and high temperature operation possible. SiC is also suitable for high frequency device applications, because of the high saturation drift velocity and low permittivity. Thin film technology for various functions in the devices has been heavily researched. Suitable thin film technologies for Ohmic and low-resistive contact formation, passivation and new functionality utilizing ferroelectric materials have been developed. In ferroelectrics, the spontaneous polarization can be switched by an externally applied electric field, and thus are attractive for non-volatile memory and sensor applications. A novel integration of Junction-MOSFETs (JMOSFETs) and Nonvolatile FETs (NVFETs) on a single 4H-SiC substrate is realized. SiC JMOSFET controls the drain current effectively from the buried junction gate thereby allowing for a constant current level at elevated temperatures. SiC NVFET has similar functions with non-volatile memory capability due to ferroelectric gate stack, which operated up to 300°C with memory function retained up to 200°C.

  4. Real time in vivo imaging and measurement of serine protease activity in the mouse hippocampus using a dedicated complementary metal-oxide semiconductor imaging device.

    PubMed

    Ng, David C; Tamura, Hideki; Tokuda, Takashi; Yamamoto, Akio; Matsuo, Masamichi; Nunoshita, Masahiro; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun

    2006-09-30

    The aim of the present study is to demonstrate the application of complementary metal-oxide semiconductor (CMOS) imaging technology for studying the mouse brain. By using a dedicated CMOS image sensor, we have successfully imaged and measured brain serine protease activity in vivo, in real-time, and for an extended period of time. We have developed a biofluorescence imaging device by packaging the CMOS image sensor which enabled on-chip imaging configuration. In this configuration, no optics are required whereby an excitation filter is applied onto the sensor to replace the filter cube block found in conventional fluorescence microscopes. The fully packaged device measures 350 microm thick x 2.7 mm wide, consists of an array of 176 x 144 pixels, and is small enough for measurement inside a single hemisphere of the mouse brain, while still providing sufficient imaging resolution. In the experiment, intraperitoneally injected kainic acid induced upregulation of serine protease activity in the brain. These events were captured in real time by imaging and measuring the fluorescence from a fluorogenic substrate that detected this activity. The entire device, which weighs less than 1% of the body weight of the mouse, holds promise for studying freely moving animals.

  5. Semiconductor devices incorporating multilayer interference regions

    DOEpatents

    Biefeld, R.M.; Drummond, T.J.; Gourley, P.L.; Zipperian, T.E.

    1987-08-31

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration. 8 figs.

  6. Semiconductor devices incorporating multilayer interference regions

    DOEpatents

    Biefeld, Robert M.; Drummond, Timothy J.; Gourley, Paul L.; Zipperian, Thomas E.

    1990-01-01

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration.

  7. Method for fabricating an interconnected array of semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1989-10-10

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  8. Coated semiconductor devices for neutron detection

    DOEpatents

    Klann, Raymond T.; McGregor, Douglas S.

    2002-01-01

    A device for detecting neutrons includes a semi-insulated bulk semiconductor substrate having opposed polished surfaces. A blocking Schottky contact comprised of a series of metals such as Ti, Pt, Au, Ge, Pd, and Ni is formed on a first polished surface of the semiconductor substrate, while a low resistivity ("ohmic") contact comprised of metals such as Au, Ge, and Ni is formed on a second, opposed polished surface of the substrate. In one embodiment, n-type low resistivity pinout contacts comprised of an Au/Ge based eutectic alloy or multi-layered Pd/Ge/Ti/Au are also formed on the opposed polished surfaces and in contact with the Schottky and ohmic contacts. Disposed on the Schottky contact is a neutron reactive film, or coating, for detecting neutrons. The coating is comprised of a hydrogen rich polymer, such as a polyolefin or paraffin; lithium or lithium fluoride; or a heavy metal fissionable material. By varying the coating thickness and electrical settings, neutrons at specific energies can be detected. The coated neutron detector is capable of performing real-time neutron radiography in high gamma fields, digital fast neutron radiography, fissile material identification, and basic neutron detection particularly in high radiation fields.

  9. Silicon Metal-Oxide-Semiconductor Quantum Devices

    NASA Astrophysics Data System (ADS)

    Nordberg, Eric

    This thesis presents stable quantum dots in a double gated silicon metal-oxide-semiconductor (MOS) system with an open-lateral geometry. In recent years, semiconductor lateral quantum dots have emerged as an appealing approach to quantum computing. Silicon offers the potential for very long electron spin decoherence times in these dots. Several important steps toward a functioning silicon-based electron spin qubit are presented, including stable Coulomb blockade within a quantum dot, a tunable double quantum dot, and integrated charge sensing. A fabrication process has been created to make low-disorder constrictions on relatively high mobility Si-MOS material and to facilitate essentially arbitrary gate geometries. Within this process, changes in mobility and charge defect densities are measured for critical process steps. This data was used to guide the fabrication of devices culminating, in this work, with a clean, stable quantum dot in a double-gated MOS system. Stable Coulomb-blockade behavior showing single-period conductance oscillations was observed in MOS quantum dots. Measured capacitances within each device and capacitances calculated via modeling are compared, showing that the measured Coulomb-blockade is consistent with a lithographically defined quantum dot, as opposed to a disorder dot within a single constriction. A tunable double dot is also observed. Laterally coupled charge sensing of quantum dots is highly desirable because it enables measurement even when conduction through the quantum dot itself is suppressed. Such charge sensing is demonstrated in this system. The current through a point contact constriction located near a quantum dot shows sharp 2% changes corresponding to charge transitions between the dot and a nearby lead. The coupling capacitance between the charge sensor and the quantum dot is extracted and agrees well with a capacitance model of the integrated sensor and quantum dot system.

  10. Neutron hardness of silicon-based semiconductor devices

    SciTech Connect

    Baratta, A.J.; Kenney, E.S.

    1988-01-01

    The effects of radiation on silicon-based semiconductor devices have been the subject of research for many years. In an effort to understand these effects, a series of experiments was conducted on gamma-hardened MOSFETs. Experiments concentrated on MOSFETs in rad-hard form and on off-the-shelf items. Because of the need to maintain bias voltages at set levels to enhance damage and because of concerns over possible rapid annealing, active testing during irradiation was performed. In general, MOSFETs are expected to perform well in fast neutron environments. With the advances in rad-hard technologies, exposures to several-megarad gamma rays can be tolerated. In nuclear systems, the normal concurrent neutron fluence can reach over 10{sup 16} n/cm{sup 2}. At these levels, current research indicates that the devices fail. Such failure is not altogether unexpected, although the degree of induced structural disorder in the semiconductor's crystalline makeup is still small. However, the damage done appears to carry the silicon back to a nearly intrinsic state. Knowing that each primary knock-on atom causes 10 to 6000 secondary atomic dislocations, the fluences of 10{sup 16}/cm{sup 2} are clearly at a level able to markedly change semiconductor dopant-induced behavior. Thus, one can conclude that for current devices, the gamma dose in a mixed neutron gamma field may no longer be limiting.

  11. Graphene-semiconductor heterojunctions and devices

    NASA Astrophysics Data System (ADS)

    Ou, Tzu-Min

    on a semiconductor, resulting in a depletion region inside the semiconductor that induces a complementary charge in the graphene. Changing the reverse bias across the graphene-semiconductor junction modulates the depletion region width and thereby changes the total charge in graphene. The charge density of the graphene is also modulated by the doping density of the semiconductor substrate. The GJFET structure provides a solution for Dirac voltage tuning and back gate isolation by location-specific doping on a single device wafer. A detailed understanding of the device is obtained through the design, fabrication, and analysis of GJFETs with atmospheric pressure chemical-vapor deposited graphene on n-type Si and 4H-SiC substrates of various doping densities. A variable depletion width model is built to numerically simulate the performance. A representative n-Si (4.5x10 15 cm-3) GJFET exhibits an on-off ratio of 3.8, an intrinsic hole density of 8x1011 cm-2, and a Dirac voltage of 14.1 V. Fitting the transfer characteristic of the Si GJFET with our device model yields an electron and hole mobility of 300 and 1300 cm2/Vs respectively. The tunability of the threshold voltage by varying the substrate doping density is also demonstrated. With an increasing substrate doping from 8x1014 to 2x10 16 cm-3, the threshold of the Si GJFET decreases from 24.9 V to 3.8 V. With even higher doping density (5x1018 cm-3) in n+4H-SiC, the Dirac voltage of the GJFET is further reduced to 1.5 V. These results also demonstrate the feasibility of integrating GJFET with semiconductor substrates other than Si, widening their potential for use in high-frequency electronics.

  12. Zinc Alloys for the Fabrication of Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Ryu, Yungryel; Lee, Tae S.

    2009-01-01

    ZnBeO and ZnCdSeO alloys have been disclosed as materials for the improvement in performance, function, and capability of semiconductor devices. The alloys can be used alone or in combination to form active photonic layers that can emit over a range of wavelength values. Materials with both larger and smaller band gaps would allow for the fabrication of semiconductor heterostructures that have increased function in the ultraviolet (UV) region of the spectrum. ZnO is a wide band-gap material possessing good radiation-resistance properties. It is desirable to modify the energy band gap of ZnO to smaller values than that for ZnO and to larger values than that for ZnO for use in semiconductor devices. A material with band gap energy larger than that of ZnO would allow for the emission at shorter wavelengths for LED (light emitting diode) and LD (laser diode) devices, while a material with band gap energy smaller than that of ZnO would allow for emission at longer wavelengths for LED and LD devices. The amount of Be in the ZnBeO alloy system can be varied to increase the energy bandgap of ZnO to values larger than that of ZnO. The amount of Cd and Se in the ZnCdSeO alloy system can be varied to decrease the energy band gap of ZnO to values smaller than that of ZnO. Each alloy formed can be undoped or can be p-type doped using selected dopant elements, or can be n-type doped using selected dopant elements. The layers and structures formed with both the ZnBeO and ZnCdSeO semiconductor alloys - including undoped, p-type-doped, and n-type-doped types - can be used for fabricating photonic and electronic semiconductor devices for use in photonic and electronic applications. These devices can be used in LEDs, LDs, FETs (field effect transistors), PN junctions, PIN junctions, Schottky barrier diodes, UV detectors and transmitters, and transistors and transparent transistors. They also can be used in applications for lightemitting display, backlighting for displays, UV and

  13. Semiconductor device modeling on a workstation

    SciTech Connect

    Diegert, C.

    1985-09-01

    We choose to move from large mainframe computers to workstations to gain the interactive graphics we need to prepare and to analyze semiconductor device modeling problems. Given this much on a workstation, it is convenient to attempt to solve the entire problem there. We find that a top-of-the-line Apollo 660 workstation, with bit-slice processor, pipelined arithmetic processor, and 4 megabytes of real memory, is surprisingly effective in finding solutions when running the Pisces II device modeling code. In our experiment we find where the workstation bogs down when running these problems. We both analyze the Pisces CPU time log and we sample the executing program to accumulate a histogram of execution time as distributed over the source code. Results suggest how Pisces could be adapted to solve somewhat larger problems entirely on the workstation. Evolution of a trusted derivative of Pisces, to be used on supercomputers without interactivity, is suggested to complement our success with Pisces on workstations. 4 refs.

  14. Optoelectronic semiconductor device and method of fabrication

    SciTech Connect

    Cui, Yi; Zhu, Jia; Hsu, Ching-Mei; Fan, Shanhui; Yu, Zongfu

    2014-11-25

    An optoelectronic device comprising an optically active layer that includes a plurality of domes is presented. The plurality of domes is arrayed in two dimensions having a periodicity in each dimension that is less than or comparable with the shortest wavelength in a spectral range of interest. By virtue of the plurality of domes, the optoelectronic device achieves high performance. A solar cell having high energy-conversion efficiency, improved absorption over the spectral range of interest, and an improved acceptance angle is presented as an exemplary device.

  15. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1972-01-01

    Activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices are described. Topics investigated include: measurements of transistor delay time; application of the infrared response technique to the study of radiation-damaged, lithium-drifted silicon detectors; and identification of a condition that minimizes wire flexure and reduces the failure rate of wire bonds in transistors and integrated circuits under slow thermal cycling conditions. Supplementary data concerning staff, standards committee activities, technical services, and publications are included as appendixes.

  16. Investigations of semiconductor devices using SIMS; diffusion, contamination, process control

    NASA Astrophysics Data System (ADS)

    Lee, Jae Cheol; Won, Jeongyeon; Chung, Youngsu; Lee, Hyungik; Lee, Eunha; Kang, Donghun; Kim, Changjung; Choi, Jinhak; Kim, Jeomsik

    2008-12-01

    We have surveyed 22,155 analyses issues to know the portion of surface analysis at the total analyses activities. According to the survey result, the contribution of SIMS in the total analyses issues was about 7%. The portions of semiconductor process control, composition and contamination in the SIMS analyses issues are 25%, 29% and 16%, respectively. In this article, some examples of the semiconductor device process control, identification of contaminants, and failure analyses have been reviewed. The behavior of H, O, and Ti at the Pt/Ti/GaInZnO interfaces and their influences on the electrical property of thin film transistor are demonstrated. Also discolor issues including organic material contamination problem on Au pad are discussed in detail.

  17. Photovoltaic healing of non-uniformities in semiconductor devices

    DOEpatents

    Karpov, Victor G.; Roussillon, Yann; Shvydka, Diana; Compaan, Alvin D.; Giolando, Dean M.

    2006-08-29

    A method of making a photovoltaic device using light energy and a solution to normalize electric potential variations in the device. A semiconductor layer having nonuniformities comprising areas of aberrant electric potential deviating from the electric potential of the top surface of the semiconductor is deposited onto a substrate layer. A solution containing an electrolyte, at least one bonding material, and positive and negative ions is applied over the top surface of the semiconductor. Light energy is applied to generate photovoltage in the semiconductor, causing a redistribution of the ions and the bonding material to the areas of aberrant electric potential. The bonding material selectively bonds to the nonuniformities in a manner such that the electric potential of the nonuniformities is normalized relative to the electric potential of the top surface of the semiconductor layer. A conductive electrode layer is then deposited over the top surface of the semiconductor layer.

  18. Iterative solution of the semiconductor device equations

    SciTech Connect

    Bova, S.W.; Carey, G.F.

    1996-12-31

    Most semiconductor device models can be described by a nonlinear Poisson equation for the electrostatic potential coupled to a system of convection-reaction-diffusion equations for the transport of charge and energy. These equations are typically solved in a decoupled fashion and e.g. Newton`s method is used to obtain the resulting sequences of linear systems. The Poisson problem leads to a symmetric, positive definite system which we solve iteratively using conjugate gradient. The transport equations lead to nonsymmetric, indefinite systems, thereby complicating the selection of an appropriate iterative method. Moreover, their solutions exhibit steep layers and are subject to numerical oscillations and instabilities if standard Galerkin-type discretization strategies are used. In the present study, we use an upwind finite element technique for the transport equations. We also evaluate the performance of different iterative methods for the transport equations and investigate various preconditioners for a few generalized gradient methods. Numerical examples are given for a representative two-dimensional depletion MOSFET.

  19. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2012-08-07

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  20. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2011-10-11

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  1. SPICE-SANDIA.LIB. Library Analog Semiconductor Devices SPICE Simulators

    SciTech Connect

    Deveney, M.F.; Archer, W.; Bogdan, C.

    1996-06-06

    SPICE-SANDIA.LIB is a library of parameter sets and macromodels of semiconductor devices. They are used with Spice-based (SPICE is a program for electronic circuit analysis) simulators to simulate electronic circuits.

  2. Separating semiconductor devices from substrate by etching graded composition release layer disposed between semiconductor devices and substrate including forming protuberances that reduce stiction

    DOEpatents

    Tauke-Pedretti, Anna; Nielson, Gregory N; Cederberg, Jeffrey G; Cruz-Campa, Jose Luis

    2015-05-12

    A method includes etching a release layer that is coupled between a plurality of semiconductor devices and a substrate with an etch. The etching includes etching the release layer between the semiconductor devices and the substrate until the semiconductor devices are at least substantially released from the substrate. The etching also includes etching a protuberance in the release layer between each of the semiconductor devices and the substrate. The etch is stopped while the protuberances remain between each of the semiconductor devices and the substrate. The method also includes separating the semiconductor devices from the substrate. Other methods and apparatus are also disclosed.

  3. 77 FR 19032 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same Notice of Receipt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... Certain Semiconductor Integrated Circuit Devices and Products Containing Same, DN 2888; the Commission is... importation of certain semiconductor integrated circuit devices and products containing same. The complaint...] [FR Doc No: 2012-7567] INTERNATIONAL TRADE COMMISSION [DN 2888] Certain Semiconductor...

  4. Simulation of neutron radiation damage in silicon semiconductor devices.

    SciTech Connect

    Shadid, John Nicolas; Hoekstra, Robert John; Hennigan, Gary Lee; Castro, Joseph Pete Jr.; Fixel, Deborah A.

    2007-10-01

    A code, Charon, is described which simulates the effects that neutron damage has on silicon semiconductor devices. The code uses a stabilized, finite-element discretization of the semiconductor drift-diffusion equations. The mathematical model used to simulate semiconductor devices in both normal and radiation environments will be described. Modeling of defect complexes is accomplished by adding an additional drift-diffusion equation for each of the defect species. Additionally, details are given describing how Charon can efficiently solve very large problems using modern parallel computers. Comparison between Charon and experiment will be given, as well as comparison with results from commercially-available TCAD codes.

  5. Apparatus for measuring semiconductor device resistance

    NASA Technical Reports Server (NTRS)

    Matzen, W. J. (Inventor)

    1980-01-01

    A test structure is described for enabling the accurate measurement of the resistance characteristics of a semiconductor material and includes one or more pairs of electrical terminals disposed on the surface of the material to enable measurements of the resistance encountered by currents passed between the terminals. A pair of terminals includes a first terminal extending in a closed path, such as a circle, around a second terminal, so that all currents flowing between the terminals flow along a region of known width and length. Two or more pairs of concentric terminals can be utilized, wherein the ratio of radii of each pair of terminals is the same as the ratio for all other pairs of terminals, to facilitate the calculation of the contact resistance between each terminal and the semiconductor surface, as well as the calculation of the resistance of the semiconductor material apart from the effect of the terminal to semiconductor contact resistances.

  6. Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance.

    PubMed

    Huang, Lizhen; Hu, Xiaorong; Chi, Lifeng

    2015-09-15

    Increased interest in wearable and smart electronics is driving numerous research works on organic electronics. The control of film growth and patterning is of great importance when targeting high-performance organic semiconductor devices. In this Feature Article, we summarize our recent work focusing on the growth, crystallization, and device operation of organic semiconductors intermediated by ultrathin organic films (in most cases, only a monolayer). The site-selective growth, modified crystallization and morphology, and improved device performance of organic semiconductor films are demonstrated with the help of the inducing layers, including patterned and uniform Langmuir-Blodgett monolayers, crystalline ultrathin organic films, and self-assembled polymer brush films. The introduction of the inducing layers could dramatically change the diffusion of the organic semiconductors on the surface and the interactions between the active layer with the inducing layer, leading to improved aggregation/crystallization behavior and device performance.

  7. Method for fabricating an interconnected array of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Grimmer, Derrick P. (Inventor)

    1995-01-01

    A method of forming an array of interconnected solar cells. A flexible substrate carrying semiconductor and conductive layers is divided into individual devices by slitting the substrate along the web length. The individual devices are then connected with one another in series by laminating the substrate onto an insulating backing and by depositing conducting interconnection layers which join the lower conductor of one device with the top conductor of the adjoining device.

  8. The use of semiconductors in nonreciprocal devices for submillimeter wavelengths.

    NASA Technical Reports Server (NTRS)

    Hayes, R. E.; May, W. G.

    1971-01-01

    This paper reviews the use of anisotropic effects in a passive semiconductor magnetoplasma for the development of submillimeter isolators and circulators. The emphasis is on two schemes that are applicable over the far infrared portion of the spectrum. The theory of transmission devices depending on Faraday rotation is described, and experiments are discussed. At far infrared wavelengths it is not necessary to cool the semiconductor in order to achieve low forward loss. Some experimental results are available in this frequency range, and a theoretical evaluation of device performance is given. Reflection devices in which the desired signal does not propagate through the semiconductor, but is reflected off of its surface, are also discussed. Experimental results show that these devices can have a low forward loss; a variety of novel geometrical arrangements are able to improve isolator performance. Theoretical results indicating satisfactory performance for a far infrared isolator using InSb at room temperature are presented.

  9. Tapered rib fiber coupler for semiconductor optical devices

    DOEpatents

    Vawter, Gregory A.; Smith, Robert Edward

    2001-01-01

    A monolithic tapered rib waveguide for transformation of the spot size of light between a semiconductor optical device and an optical fiber or from the fiber into the optical device. The tapered rib waveguide is integrated into the guiding rib atop a cutoff mesa type semiconductor device such as an expanded mode optical modulator or and expanded mode laser. The tapered rib acts to force the guided light down into the mesa structure of the semiconductor optical device instead of being bound to the interface between the bottom of the guiding rib and the top of the cutoff mesa. The single mode light leaving or entering the output face of the mesa structure then can couple to the optical fiber at coupling losses of 1.0 dB or less.

  10. A Thermal and Electrical Analysis of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Vafai, Kambiz

    1997-01-01

    The state-of-art power semiconductor devices require a thorough understanding of the thermal behavior for these devices. Traditional thermal analysis have (1) failed to account for the thermo-electrical interaction which is significant for power semiconductor devices operating at high temperature, and (2) failed to account for the thermal interactions among all the levels involved in, from the entire device to the gate micro-structure. Furthermore there is a lack of quantitative studies of the thermal breakdown phenomenon which is one of the major failure mechanisms for power electronics. This research work is directed towards addressing. Using a coupled thermal and electrical simulation, in which the drift-diffusion equations for the semiconductor and the energy equation for temperature are solved simultaneously, the thermo-electrical interactions at the micron scale of various junction structures are thoroughly investigated. The optimization of gate structure designs and doping designs is then addressed. An iterative numerical procedure which incorporates the thermal analysis at the device, chip and junction levels of the power device is proposed for the first time and utilized in a BJT power semiconductor device. In this procedure, interactions of different levels are fully considered. The thermal stability issue is studied both analytically and numerically in this research work in order to understand the mechanism for thermal breakdown.

  11. Fabrication of optically reflecting ohmic contacts for semiconductor devices

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    A method is provided to produce a low-resistivity ohmic contact having high optical reflectivity on one side of a semiconductor device. The contact is formed by coating the semiconductor substrate with a thin metal film on the back reflecting side and then optically processing the wafer by illuminating it with electromagnetic radiation of a predetermined wavelength and energy level through the front side of the wafer for a predetermined period of time. This method produces a thin epitaxial alloy layer between the semiconductor substrate and the metal layer when a crystalline substrate is used. The alloy layer provides both a low-resistivity ohmic contact and high optical reflectance.

  12. Fabrication of optically reflecting ohmic contacts for semiconductor devices

    DOEpatents

    Sopori, B.L.

    1995-07-04

    A method is provided to produce a low-resistivity ohmic contact having high optical reflectivity on one side of a semiconductor device. The contact is formed by coating the semiconductor substrate with a thin metal film on the back reflecting side and then optically processing the wafer by illuminating it with electromagnetic radiation of a predetermined wavelength and energy level through the front side of the wafer for a predetermined period of time. This method produces a thin epitaxial alloy layer between the semiconductor substrate and the metal layer when a crystalline substrate is used. The alloy layer provides both a low-resistivity ohmic contact and high optical reflectance. 5 figs.

  13. Method of producing strained-layer semiconductor devices via subsurface-patterning

    DOEpatents

    Dodson, Brian W.

    1993-01-01

    A method is described for patterning subsurface features in a semiconductor device, wherein the semiconductor device includes an internal strained layer. The method comprises creating a pattern of semiconductor material over the semiconductor device, the semiconductor material having a predetermined thickness which stabilizes areas of the strained semiconductor layer that lie beneath the pattern. Subsequently, a heating step is applied to the semiconductor device to cause a relaxation in areas of the strained layer which do not lie beneath the semiconductor material pattern, whereby dislocations result in the relaxed areas and impair electrical transport therethrough.

  14. Quantum Mechanical Balance Equation Approach to Semiconductor Device Simulation

    DTIC Science & Technology

    2007-11-02

    inexpensive way to analyze and design the semiconductor devices before expensive device processing. Since traditional equivalent circuit models and...are described, along with representative simulation results for various devices, such as Si- MESFET , Si-MOSFET and GaAs- MESFET . ^CQTJM^1^^0^ 8... determined by how accurately carrier transport is described. Generally, the more sophisticated the approach, the heavier the computational burden

  15. Silicon superlattices: Theory and application to semiconductor devices

    NASA Technical Reports Server (NTRS)

    Moriarty, J. A.

    1981-01-01

    Silicon superlattices and their applicability to improved semiconductor devices were studied. The device application potential of the atomic like dimension of III-V semiconductor superlattices fabricated in the form of ultrathin periodically layered heterostructures was examined. Whether this leads to quantum size effects and creates the possibility to alter familiar transport and optical properties over broad physical ranges was studied. Applications to improved semiconductor lasers and electrondevices were achieved. Possible application of silicon sperlattices to faster high speed computing devices was examined. It was found that the silicon lattices show features of smaller fundamental energyband gaps and reduced effective masses. The effects correlate strongly with both the chemical and geometrical nature of the superlattice.

  16. III-V semiconductor devices integrated with silicon III-V semiconductor devices integrated with silicon

    NASA Astrophysics Data System (ADS)

    Hopkinson, Mark; Martin, Trevor; Smowton, Peter

    2013-09-01

    The integration of III-V semiconductor devices with silicon is one of the most topical challenges in current electronic materials research. The combination has the potential to exploit the unique optical and electronic functionality of III-V technology with the signal processing capabilities and advanced low-cost volume production techniques associated with silicon. Key industrial drivers include the use of high mobility III-V channel materials (InGaAs, InAs, InSb) to extend the performance of Si CMOS, the unification of electronics and photonics by combining photonic components (GaAs, InP) with a silicon platform for next-generation optical interconnects and the exploitation of large-area silicon substrates and high-volume Si processing capabilities to meet the challenges of low-cost production, a challenge which is particularly important for GaN-based devices in both power management and lighting applications. The diverse nature of the III-V and Si device approaches, materials technologies and the distinct differences between industrial Si and III-V processing have provided a major barrier to integration in the past. However, advances over the last decade in areas such as die transfer, wafer fusion and epitaxial growth have promoted widespread renewed interest. It is now timely to bring some of these topics together in a special issue covering a range of approaches and materials providing a snapshot of recent progress across the field. The issue opens a paper describing a strategy for the epitaxial integration of photonic devices where Kataria et al describe progress in the lateral overgrowth of InP/Si. As an alternative, Benjoucef and Reithmaier report on the potential of InAs quantum dots grown direct onto Si surfaces whilst Sandall et al describe the properties of similar InAs quantum dots as an optical modulator device. As an alternative to epitaxial integration approaches, Yokoyama et al describe a wafer bonding approach using a buried oxide concept, Corbett

  17. Excitons and the lifetime of organic semiconductor devices

    PubMed Central

    Forrest, Stephen R.

    2015-01-01

    While excitons are responsible for the many beneficial optical properties of organic semiconductors, their non-radiative recombination within the material can result in material degradation due to the dumping of energy onto localized molecular bonds. This presents a challenge in developing strategies to exploit the benefits of excitons without negatively impacting the device operational stability. Here, we will briefly review the fundamental mechanisms leading to excitonic energy-driven device ageing in two example devices: blue emitting electrophosphorescent organic light emitting devices (PHOLEDs) and organic photovoltaic (OPV) cells. We describe strategies used to minimize or even eliminate this fundamental device degradation pathway. PMID:25987572

  18. Excitons and the lifetime of organic semiconductor devices.

    PubMed

    Forrest, Stephen R

    2015-06-28

    While excitons are responsible for the many beneficial optical properties of organic semiconductors, their non-radiative recombination within the material can result in material degradation due to the dumping of energy onto localized molecular bonds. This presents a challenge in developing strategies to exploit the benefits of excitons without negatively impacting the device operational stability. Here, we will briefly review the fundamental mechanisms leading to excitonic energy-driven device ageing in two example devices: blue emitting electrophosphorescent organic light emitting devices (PHOLEDs) and organic photovoltaic (OPV) cells. We describe strategies used to minimize or even eliminate this fundamental device degradation pathway.

  19. Anodic bonded 2D semiconductors: from synthesis to device fabrication.

    PubMed

    Chen, Zhesheng; Gacem, Karim; Boukhicha, Mohamed; Biscaras, Johan; Shukla, Abhay

    2013-10-18

    Two-dimensional semiconductors are increasingly relevant for emergent applications and devices, notably for hybrid heterostructures with graphene. We fabricate few-layer, large-area (a few tens of microns across) samples of the III-VI semiconductors GaS, GaSe and InSe using the anodic bonding method and characterize them by simultaneous use of optical microscopy, atomic force microscopy and Raman spectroscopy. Two-terminal devices with a gate are constructed to show the feasibility of applications based on these.

  20. Anodic bonded 2D semiconductors: from synthesis to device fabrication

    NASA Astrophysics Data System (ADS)

    Chen, Zhesheng; Gacem, Karim; Boukhicha, Mohamed; Biscaras, Johan; Shukla, Abhay

    2013-10-01

    Two-dimensional semiconductors are increasingly relevant for emergent applications and devices, notably for hybrid heterostructures with graphene. We fabricate few-layer, large-area (a few tens of microns across) samples of the III-VI semiconductors GaS, GaSe and InSe using the anodic bonding method and characterize them by simultaneous use of optical microscopy, atomic force microscopy and Raman spectroscopy. Two-terminal devices with a gate are constructed to show the feasibility of applications based on these.

  1. Deep impurity trapping concepts for power semiconductor devices

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.

    1982-01-01

    High voltage semiconductor switches using deep impurity doped silicon now appear feasible for high voltage (1-100 kV), high power (10 Kw) switching and protection functions for future space power applications. Recent discoveries have demonstrated several practical ways of gating deep impurity doped silicon devices in planar configurations and of electrically controlling their characteristics, leading to a vast array of possible circuit applications. A new family of semiconductor switching devices and transducers are possible based on this technology. New deep impurity devices could be simpler than conventional p-n junction devices and yet use the same basic materials and processing techniques. In addition, multiple functions may be possible on a single device as well as increased ratings.

  2. Methods of forming semiconductor devices and devices formed using such methods

    DOEpatents

    Fox, Robert V; Rodriguez, Rene G; Pak, Joshua

    2013-05-21

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  3. Neutron activation for semiconductor materials characterization at Eastman Kodak Company

    SciTech Connect

    Hossain, T.Z.

    1988-01-01

    Several neutron activation analysis (NAA) procedures have been used to establish process parameters in the manufacture of semiconductor devices. In addition to instrumental NAA (INAA), techniques such as neutron depth profiling and neutron-activated accelerator mass spectrometry have been used to obtain depth distribution of elements of interest.

  4. Porous silicon carbide (SiC) semiconductor device

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1994-01-01

    A semiconductor device employs at least one layer of semiconducting porous silicon carbide (SiC). The porous SiC layer has a monocrystalline structure wherein the pore sizes, shapes, and spacing are determined by the processing conditions. In one embodiment, the semiconductor device is a p-n junction diode in which a layer of n-type SiC is positioned on a p-type layer of SiC, with the p-type layer positioned on a layer of silicon dioxide. Because of the UV luminescent properties of the semiconducting porous SiC layer, it may also be utilized for other devices such as LEDs and optoelectronic devices.

  5. The Quantum Hydrodynamic Model for Semiconductor Devices: Theory and Computations

    DTIC Science & Technology

    2007-11-02

    Quantum transport effects including electron or hole tunneling through potential barriers and buildup in quantum wells are important in predicting...semiconductor device. A new extension of the classical hydrodynamic model to include quantum transport effects was derived. This "smooth" quantum

  6. Multilevel metallization method for fabricating a metal oxide semiconductor device

    NASA Technical Reports Server (NTRS)

    Hollis, B. R., Jr.; Feltner, W. R.; Bouldin, D. L.; Routh, D. E. (Inventor)

    1978-01-01

    An improved method is described of constructing a metal oxide semiconductor device having multiple layers of metal deposited by dc magnetron sputtering at low dc voltages and low substrate temperatures. The method provides multilevel interconnections and cross over between individual circuit elements in integrated circuits without significantly reducing the reliability or seriously affecting the yield.

  7. Release strategies for making transferable semiconductor structures, devices and device components

    SciTech Connect

    Rogers, John A.; Nuzzo, Ralph G.; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J.

    2016-05-24

    Provided are methods for making a device or device component by providing a multi layer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  8. Release strategies for making transferable semiconductor structures, devices and device components

    DOEpatents

    Rogers, John A; Nuzzo, Ralph G; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J

    2014-11-25

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  9. Release strategies for making transferable semiconductor structures, devices and device components

    DOEpatents

    Rogers, John A.; Nuzzo, Ralph G.; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J.

    2011-04-26

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  10. Implanted contacts for diamond semiconductor devices

    NASA Astrophysics Data System (ADS)

    Tan, Soo-Hee; Beetz, C. P., Jr.

    1992-01-01

    The key to future diamond semiconductor development are ohmic and Schottky contacts that are stable at high temperatures. Wide bandgap materials, such as diamond (5.5 eV), pose special problems and demand ingenious solutions. Prior to our work, recent research into stable ohmic and Schottky contacts had been primarily limited to e-beam evaporation of carbide forming metals such as Ti, Ta, and Mo. These approaches have been relatively successful at decreasing the specific contact resistivity to as low as 10(exp -5) ohm sq cm on natural semiconducting diamond with about 10(exp 16) boron atoms/cubic cm. In our Phase 1 SBIR program we investigated metal systems coupled with a shallow Si implant that would form low resistivity, high temperature stable metal silicides. We showed in our Phase 1 results that the barrier height of metals such as Pt, Ti and Mo were reduced when deposited on shallow Si implants and given a heat treatment at 500 C. The barrier height of Pt on diamond was reduced from 1.89 to 0.97 eV by annealing of a sputtered Pt contact on a Si implanted dose of 10(exp 15) cm(exp -2) sq A into the diamond surface. Using the same approach, the barrier height of Ti on diamond was reduced from 2.00 to 1.29 eV.

  11. Optoelectronic Devices Based on Novel Semiconductor Structures

    DTIC Science & Technology

    2006-06-14

    Force. 15. SUBJECT TERMS Terahertz devices, spectrometers, and systems; nanostructures and nanodevices 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...Y. J. Ding and I. B. Zotova, "Coherent and tunable terahertz oscillators, generators, and amplifiers," J. Nonlinear Opt. Phys. & Mats. 11, 75-97...GaSe crystal," Opt. Left. 27, 1454-1456 (2002). 2. W. Shi and Y. J. Ding, "Continuously tunable and coherent terahertz radiation by means of phase

  12. Amphoteric oxide semiconductors for energy conversion devices: a tutorial review.

    PubMed

    Singh, Kalpana; Nowotny, Janusz; Thangadurai, Venkataraman

    2013-03-07

    In this tutorial review, we discuss the defect chemistry of selected amphoteric oxide semiconductors in conjunction with their significant impact on the development of renewable and sustainable solid state energy conversion devices. The effect of electronic defect disorders in semiconductors appears to control the overall performance of several solid-state ionic devices that include oxide ion conducting solid oxide fuel cells (O-SOFCs), proton conducting solid oxide fuel cells (H-SOFCs), batteries, solar cells, and chemical (gas) sensors. Thus, the present study aims to assess the advances made in typical n- and p-type metal oxide semiconductors with respect to their use in ionic devices. The present paper briefly outlines the key challenges in the development of n- and p-type materials for various applications and also tries to present the state-of-the-art of defect disorders in technologically related semiconductors such as TiO(2), and perovskite-like and fluorite-type structure metal oxides.

  13. Electromagnetic radiation screening of semiconductor devices for long life applications

    NASA Technical Reports Server (NTRS)

    Hall, T. C.; Brammer, W. G.

    1972-01-01

    A review is presented of the mechanism of interaction of electromagnetic radiation in various spectral ranges, with various semiconductor device defects. Previous work conducted in this area was analyzed as to its pertinence to the current problem. The task was studied of implementing electromagnetic screening methods in the wavelength region determined to be most effective. Both scanning and flooding type stimulation techniques are discussed. While the scanning technique offers a considerably higher yield of useful information, a preliminary investigation utilizing the flooding approach is first recommended because of the ease of implementation, lower cost and ability to provide go-no-go information in semiconductor screening.

  14. Silicon carbide semiconductor device fabrication and characterization

    NASA Technical Reports Server (NTRS)

    Davis, R. F.; Das, K.

    1990-01-01

    A number of basic building blocks i.e., rectifying and ohmic contacts, implanted junctions, MOS capacitors, pnpn diodes and devices, such as, MESFETs on both alpha and beta SiC films were fabricated and characterized. Gold forms a rectifying contact on beta SiC. Since Au contacts degrade at high temperatures, these are not considered to be suitable for high temperature device applications. However, it was possible to utilize Au contact diodes for electrically characterizing SiC films. Preliminary work indicates that sputtered Pt or Pt/Si contacts on beta SiC films are someways superior to Au contacts. Sputtered Pt layers on alpha SiC films form excellent rectifying contacts, whereas Ni layers following anneal at approximately 1050 C provide an ohmic contact. It has demonstrated that ion implantation of Al in substrates held at 550 C can be successfully employed for the fabrication of rectifying junction diodes. Feasibility of fabricating pnpn diodes and platinum gated MESFETs on alpha SiC films was also demonstrated.

  15. Screenable contact structure and method for semiconductor devices

    DOEpatents

    Ross, Bernd

    1980-08-26

    An ink composition for deposition upon the surface of a semiconductor device to provide a contact area for connection to external circuitry is disclosed, the composition comprising an ink system containing a metal powder, a binder and vehicle, and a metal frit. The ink is screened onto the semiconductor surface in the desired pattern and is heated to a temperature sufficient to cause the metal frit to become liquid. The metal frit dissolves some of the metal powder and densifies the structure by transporting the dissolved metal powder in a liquid sintering process. The sintering process typically may be carried out in any type of atmosphere. A small amount of dopant or semiconductor material may be added to the ink systems to achieve particular results if desired.

  16. Semiconductor optoelectronic devices for free-space optical communications

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1983-01-01

    The properties of individual injection lasers are reviewed, and devices of greater complexity are described. These either include or are relevant to monolithic integration configurations of the lasers with their electronic driving circuitry, power combining methods of semiconductor lasers, and electronic methods of steering the radiation patterns of semiconductor lasers and laser arrays. The potential of AlGaAs laser technology for free-space optical communications systems is demonstrated. These solid-state components, which can generate and modulate light, combine the power of a number of sources and perform at least part of the beam pointing functions. Methods are proposed for overcoming the main drawback of semiconductor lasers, that is, their inability to emit the needed amount of optical power in a single-mode operation.

  17. A Framework to Simulate Semiconductor Devices Using Parallel Computer Architecture

    NASA Astrophysics Data System (ADS)

    Kumar, Gaurav; Singh, Mandeep; Bulusu, Anand; Trivedi, Gaurav

    2016-10-01

    Device simulations have become an integral part of semiconductor technology to address many issues (short channel effects, narrow width effects, hot-electron effect) as it goes into nano regime, helping us to continue further with the Moore's Law. TCAD provides a simulation environment to design and develop novel devices, thus a leap forward to study their electrical behaviour in advance. In this paper, a parallel 2D simulator for semiconductor devices using Discontinuous Galerkin Finite Element Method (DG-FEM) is presented. Discontinuous Galerkin (DG) method is used to discretize essential device equations and later these equations are analyzed by using a suitable methodology to find the solution. DG method is characterized to provide more accurate solution as it efficiently conserve the flux and easily handles complex geometries. OpenMP is used to parallelize solution of device equations on manycore processors and a speed of 1.4x is achieved during assembly process of discretization. This study is important for more accurate analysis of novel devices (such as FinFET, GAAFET etc.) on a parallel computing platform and will help us to develop a parallel device simulator which will be able to address this issue efficiently. A case study of PN junction diode is presented to show the effectiveness of proposed approach.

  18. Porous silicon carbide (SIC) semiconductor device

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  19. Microwave impedance imaging on semiconductor memory devices

    NASA Astrophysics Data System (ADS)

    Kundhikanjana, Worasom; Lai, Keji; Yang, Yongliang; Kelly, Michael; Shen, Zhi-Xun

    2011-03-01

    Microwave impedance microscopy (MIM) maps out the real and imaginary components of the tip-sample impedance, from which the local conductivity and dielectric constant distribution can be derived. The stray field contribution is minimized in our shielded cantilever design, enabling quantitative analysis of nano-materials and device structures. We demonstrate here that the MIM can spatially resolve the conductivity variation in a dynamic random access memory (DRAM) sample. With DC or low-frequency AC bias applied to the tip, contrast between n-doped and p-doped regions in the dC/dV images is observed, and p-n junctions are highlighted in the dR/dV images. The results can be directly compared with data taken by scanning capacitance microscope (SCM), which uses unshielded cantilevers and resonant electronics, and the MIM reveals more information of the local dopant concentration than SCM.

  20. Nanostructured Semiconductor Device Design in Solar Cells

    NASA Astrophysics Data System (ADS)

    Dang, Hongmei

    We demonstrate the use of embedded CdS nanowires in improving spectral transmission loss and the low mechanical and electrical robustness of planar CdS window layer and thus enhancing the quantum efficiency and the reliability of the CdS-CdTe solar cells. CdS nanowire window layer enables light transmission gain at 300nm-550nm. A nearly ideal spectral response of quantum efficiency at a wide spectrum range provides an evidence for improving light transmission in the window layer and enhancing absorption and carrier generation in absorber. Nanowire CdS/CdTe solar cells with Cu/graphite/silver paste as back contacts, on SnO2/ITO-soda lime glass substrates, yield the highest efficiency of 12% in nanostructured CdS-CdTe solar cells. Reliability is improved by approximately 3 times over the cells with the traditional planar CdS counterpart. Junction transport mechanisms are delineated for advancing the basic understanding of device physics at the interface. Our results prove the efficacy of this nanowire approach for enhancing the quantum efficiency and the reliability in windowabsorber type solar cells (CdS-CdTe, CdS-CIGS and CdS-CZTSSe etc) and other optoelectronic devices. We further introduce MoO3-x as a transparent, low barrier back contact. We design nanowire CdS-CdTe solar cells on flexible foils of metals in a superstrate device structure, which makes low-cost roll-to-roll manufacturing process feasible and greatly reduces the complexity of fabrication. The MoO3 layer reduces the valence band offset relative to the CdTe, and creates improved cell performance. Annealing as-deposited MoO3 in N 2 reduces series resistance from 9.98 O/cm2 to 7.72 O/cm2, and hence efficiency of the nanowire solar cell is improved from 9.9% to 11%, which efficiency comparable to efficiency of planar counterparts. When the nanowire solar cell is illuminated from MoO 3-x /Au side, it yields an efficiency of 8.7%. This reduction in efficiency is attributed to decrease in Jsc from 25.5m

  1. Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device.

    PubMed

    Sanctis, Shawn; Hoffmann, Rudolf C; Eiben, Sabine; Schneider, Jörg J

    2015-01-01

    Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO) nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS), transmission electron microscopy (TEM), grazing incidence X-ray diffractometry (GI-XRD) and atomic force microscopy (AFM). TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.

  2. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1972-01-01

    Significant accomplishments include development of a procedure to correct for the substantial differences of transistor delay time as measured with different instruments or with the same instrument at different frequencies; association of infrared response spectra of poor quality germanium gamma ray detectors with spectra of detectors fabricated from portions of a good crystal that had been degraded in known ways; and confirmation of the excellent quality and cosmetic appearance of ultrasonic bonds made with aluminum ribbon wire. Work is continuing on measurement of resistivity of semiconductor crystals; study of gold-doped silicon, development of the infrared response technique; evaluation of wire bonds and die attachment; and measurement of thermal properties of semiconductor devices, delay time and related carrier transport properties in junction devices, and noise properties of microwave diodes.

  3. Selective etchant for oxide sacrificial material in semiconductor device fabrication

    SciTech Connect

    Clews, Peggy J.; Mani, Seethambal S.

    2005-05-17

    An etching composition and method is disclosed for removing an oxide sacrificial material during manufacture of semiconductor devices including micromechanical, microelectromechanical or microfluidic devices. The etching composition and method are based on the combination of hydrofluoric acid (HF) and sulfuric acid (H.sub.2 SO.sub.4). These acids can be used in the ratio of 1:3 to 3:1 HF:H.sub.2 SO.sub.4 to remove all or part of the oxide sacrificial material while providing a high etch selectivity for non-oxide materials including polysilicon, silicon nitride and metals comprising aluminum. Both the HF and H.sub.2 SO.sub.4 can be provided as "semiconductor grade" acids in concentrations of generally 40-50% by weight HF, and at least 90% by weight H.sub.2 SO.sub.4.

  4. Strategies for Radiation Hardness Testing of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Soltis, James V. (Technical Monitor); Patton, Martin O.; Harris, Richard D.; Rohal, Robert G.; Blue, Thomas E.; Kauffman, Andrew C.; Frasca, Albert J.

    2005-01-01

    Plans on the drawing board for future space missions call for much larger power systems than have been flown in the past. These systems would employ much higher voltages and currents to enable more powerful electric propulsion engines and other improvements on what will also be much larger spacecraft. Long term human outposts on the moon and planets would also require high voltage, high current and long life power sources. Only hundreds of watts are produced and controlled on a typical robotic exploration spacecraft today. Megawatt systems are required for tomorrow. Semiconductor devices used to control and convert electrical energy in large space power systems will be exposed to electromagnetic and particle radiation of many types, depending on the trajectory and duration of the mission and on the power source. It is necessary to understand the often very different effects of the radiations on the control and conversion systems. Power semiconductor test strategies that we have developed and employed will be presented, along with selected results. The early results that we have obtained in testing large power semiconductor devices give a good indication of the degradation in electrical performance that can be expected in response to a given dose. We are also able to highlight differences in radiation hardness that may be device or material specific.

  5. Patterned semiconductor inverted quantum dot photonic devices

    NASA Astrophysics Data System (ADS)

    Coleman, J. J.

    2016-03-01

    A novel inverted quantum dot structure is presented, which consists of an InGaAs quantum well that has been periodically perforated and then filled with the higher bandgap GaAs barrier material. This structure exhibits a unique quantized energy structure something like a planar atomic bond structure and formation of allowed and forbidden energy bands instead of highly localized, fully discrete states. We describe the growth, processing and characteristics of inverted quantum dot structures and outline interesting and potentially important effects arising from the introduction of nanoscale features (<50 nm) in the active medium.

  6. Better Ohmic Contacts For InP Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1995-01-01

    Four design modifications enable fabrication of improved ohmic contacts on InP-based semiconductor devices. First modification consists of insertion of layer of gold phosphide between n-doped InP and metal or other overlayer of contact material. Second, includes first modification plus use of particular metal overlayer to achieve very low contact resistivities. Third, also involves deposition of Au(2)P(3) interlayer; in addition, refractory metal (W or Ta) deposited to form contact overlayer. In fourth, contact layer of Auln alloy deposited directly on InP. Improved contacts exhibit low electrical resistances and fabricated without exposing devices to destructive predeposition or postdeposition treatments.

  7. Simulating charge transport in organic semiconductors and devices: a review

    NASA Astrophysics Data System (ADS)

    Groves, C.

    2017-02-01

    Charge transport simulation can be a valuable tool to better understand, optimise and design organic transistors (OTFTs), photovoltaics (OPVs), and light-emitting diodes (OLEDs). This review presents an overview of common charge transport and device models; namely drift-diffusion, master equation, mesoscale kinetic Monte Carlo and quantum chemical Monte Carlo, and a discussion of the relative merits of each. This is followed by a review of the application of these models as applied to charge transport in organic semiconductors and devices, highlighting in particular the insights made possible by modelling. The review concludes with an outlook for charge transport modelling in organic electronics.

  8. Method of making high breakdown voltage semiconductor device

    DOEpatents

    Arthur, Stephen D.; Temple, Victor A. K.

    1990-01-01

    A semiconductor device having at least one P-N junction and a multiple-zone junction termination extension (JTE) region which uniformly merges with the reverse blocking junction is disclosed. The blocking junction is graded into multiple zones of lower concentration dopant adjacent termination to facilitate merging of the JTE to the blocking junction and placing of the JTE at or near the high field point of the blocking junction. Preferably, the JTE region substantially overlaps the graded blocking junction region. A novel device fabrication method is also provided which eliminates the prior art step of separately diffusing the JTE region.

  9. Molecular detection via hybrid peptide-semiconductor photonic devices

    NASA Astrophysics Data System (ADS)

    Estephan, E.; Saab, M.-b.; Martin, M.; Cloitre, T.; Larroque, C.; Cuisinier, F. J. G.; Malvezzi, A. M.; Gergely, C.

    2011-03-01

    The aim of this work was to investigate the possibilities to support device functionality that includes strongly confined and localized light emission and detection processes within nano/micro-structured semiconductors for biosensing applications. The interface between biological molecules and semiconductor surfaces, yet still under-explored is a key issue for improving biomolecular recognition in devices. We report on the use of adhesion peptides, elaborated via combinatorial phage-display libraries for controlled placement of biomolecules, leading to user-tailored hybrid photonic systems for molecular detection. An M13 bacteriophage library has been used to screen 1010 different peptides against various semiconductors to finally isolate specific peptides presenting a high binding capacity for the target surfaces. When used to functionalize porous silicon microcavities (PSiM) and GaAs/AlGaAs photonic crystals, we observe the formation of extremely thin (<1nm) peptide layers, hereby preserving the nanostructuration of the crystals. This is important to assure the photonic response of these tiny structures when they are functionalized by a biotinylated peptide layer and then used to capture streptavidin. Molecular detection was monitored via both linear and nonlinear optical measurements. Our linear reflectance spectra demonstrate an enhanced detection resolution via PSiM devices, when functionalized with the Si-specific peptide. Molecular capture at even lower concentrations (femtomols) is possible via the second harmonic generation of GaAs/AlGaAs photonic crystals when functionalized with GaAs-specific peptides. Our work demonstrates the outstanding value of adhesion peptides as interface linkers between semiconductors and biological molecules. They assure an enhanced molecular detection via both linear and nonlinear answers of photonic crystals.

  10. 77 FR 25747 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... COMMISSION Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Institution of... the sale within the United States after importation of certain semiconductor integrated circuit... semiconductor integrated circuit devices and products containing same that infringe one or more of claims 1,...

  11. Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates

    SciTech Connect

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110}<100> textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  12. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  13. Hybrid magnetic/semiconductor spintronic materials and devices

    NASA Astrophysics Data System (ADS)

    Xu, Y. B.; Ahmad, E.; Claydon, J. S.; Lu, Y. X.; Hassan, S. S. A.; Will, I. G.; Cantor, B.

    2006-09-01

    We report our experimental studies of different kinds of magnetic/semiconductor hybrid materials and devices highly promising for the next generation spintronics. The epitaxial Fe films on three III-V Semiconductor surfaces, In xGa 1-xAs(1 0 0), x=0, 1, 0.2, show a uniaxial magnetic anisotropy in the ultrathin region. This suggests that both interface bonding and the magnetoelastic effect control magnetic anisotropy. We demonstrate the epitaxial growth of new hybrid spintronic structures, namely, Fe 3O 4/GaAs and Fe 3O 4/MgO/GaAs, where the magnetic oxide has both high Curie temperature and high spin polarisation. Both the magnetisation loops and magneto-resistance curves of Fe 3O 4/GaAs were found to be dominated by a strong uniaxial magnetic anisotropy. We have also fabricated a novel vertical hybrid spin device, i.e. Co(15 ML)/GaAs(50 nm, n-type)/Al 0.3Ga 0.7As(200 nm, n-type)/FeNi(30 nm) and observed for the first time a change of the magneto-resistance up to 12% by direct transport measurements, which demonstrated large spin injection and the feasibility to fabricate the spin-transistors capable of operating at room temperatures by using magnetic/semiconductor hybrid materials.

  14. Semiconductor ferroelectric compositions and their use in photovoltaic devices

    DOEpatents

    Rappe, Andrew M; Davies, Peter K; Spanier, Jonathan E; Grinberg, Ilya; West, Don Vincent

    2016-11-01

    Disclosed herein are ferroelectric perovskites characterized as having a band gap, Egap, of less than 2.5 eV. Also disclosed are compounds comprising a solid solution of KNbO3 and BaNi1/2Nb1/2O3-delta, wherein delta is in the range of from 0 to about 1. The specification also discloses photovoltaic devices comprising one or more solar absorbing layers, wherein at least one of the solar absorbing layers comprises a semiconducting ferroelectric layer. Finally, this patent application provides solar cell, comprising: a heterojunction of n- and p-type semiconductors characterized as comprising an interface layer disposed between the n- and p-type semiconductors, the interface layer comprising a semiconducting ferroelectric absorber layer capable of enhancing light absorption and carrier separation.

  15. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  16. 77 FR 39510 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Determination Not...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Determination Not... the sale within the United States after importation of certain semiconductor integrated...

  17. Radiation hardening of metal-oxide semi-conductor (MOS) devices by boron

    NASA Technical Reports Server (NTRS)

    Danchenko, V.

    1974-01-01

    Technique using boron effectively protects metal-oxide semiconductor devices from ionizing radiation without using shielding materials. Boron is introduced into insulating gate oxide layer at semiconductor-insulator interface.

  18. Memory effect in semiconductor gas discharge electronic devices

    NASA Astrophysics Data System (ADS)

    Sadiq, Y.; Kurt, H.; Salamov, B. G. Yücel

    2008-11-01

    The memory effect in the planar semiconductor gas discharge system at different pressures (15-760 Torr) and interelectrode distances (60-445 µm) was experimentally studied. The study was performed on the basis of current-voltage characteristic (CVC) measurements with a time lag of several hours of afterglow periods. The influence of the active space charge remaining from the previous discharge on the breakdown voltage (UB) has been analysed using the CVC method for different conductivities of semiconductor GaAs photocathode. CVC showed that even a measurement taken 96 h after the first breakdown was influenced by accumulated active particles deposited from the previous discharge. Such phenomena based on metastable atoms surviving from the previous discharge and recombined on the cathode to create initial electrons in the avalanche mechanism are shown to be fully consistent with CVC data for both pre-breakdown and post-breakdown regions. However, in the post-breakdown region pronounced negative differential conductivity was observed. Such nonlinear electrical property of GaAs is attributed to the existence of deep electronic defect called EL2 in the semiconductor cathode material. On the other hand, the CVC data for subsequent dates present a correlation of memory effect and hysteresis behaviour. The explanation for such a relation is based on the influence of long lived active charges on the electronic transport mechanism of semiconductor material.

  19. Physics and performance of nanoscale semiconductor devices at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Balestra, F.; Ghibaudo, G.

    2017-02-01

    The physics and performance of various advanced semiconductor devices, which are the most promising for the end of the ITRS roadmap, are investigated in a wide temperature range down to 20 K. The transport parameters in front and/or back channels in fully depleted ultrathin film SOI devices, Trigate, FinFET, Omega-gate nanowire FET and 3D-stacked SiGe nanowire FETs, fabricated with high-k dielectrics/metal gate, elevated source/drain, different channel orientations, shapes and strains, are addressed. The impacts of the gate length, Si film and wire diameter down to 10 nm, are also shown. The variations of the phonon, Coulomb, neutral defects and surface roughness scattering as a function of temperature and device architecture are highlighted. An overview of the influence of temperature on other main electrical parameters of MOSFETs, nanowires FETs and tunnel FETs, such as threshold voltage, subthreshold swing, leakage and driving currents is also given.

  20. Contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication

    DOEpatents

    Sopori, Bhushan

    2014-05-27

    Methods for contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication are provided. In one embodiment, a method for fabricating an electrical semiconductor device comprises: a first step that includes gettering of impurities from a semiconductor wafer and forming a backsurface field; and a second step that includes forming a front contact for the semiconductor wafer, wherein the second step is performed after completion of the first step.

  1. Interface study of insertion layers in organic semiconductor devices

    NASA Astrophysics Data System (ADS)

    Ding, Huanjun; Irfan, "; So, Franky; Gao, Yongli

    2009-08-01

    Inserting an ultra-thin interlayer has been an important means in modifying the performance of organic semiconductor devices. Using photoemission and inverse photoemission spectroscopy (UPS, XPS and IPES), we have investigated the electronic structure of a number of insertion layers widely used in organic semiconductor devices. We found that inserting alkali metal compound thin layers such as LiF between the electron transport layer (ETL) and the cathode can induce energy level shift in the ETL that reduces the electron injection barrier. The reduction is attributed to the release of the alkali metal that n-doped the ETL, and as such it depends on the cathode material deposited on top of the insertion layer. For thin metal oxide insertion layers, such as MoO3, between the anode and the hole transport layer (HTL), reduction of the hole injection barrier is also observed. This reduction, however, is due to the large workfunction of the oxide that subsequently moves the highest occupied molecular orbital (HOMO) toward the anode Fermi level. Effects of other insertion layers, such as metal insertion layer in organic bistable device (OBD) and organic insertion layer in bipolar organic thin film transistors (OTFT) will also be discussed.

  2. Accelerated Neutron Testing of Semiconductor Devices at the LANSCE

    NASA Astrophysics Data System (ADS)

    Wender, S. A.; Bateman, F. B.; Haight, R. C.; Ullmann, J. L.

    1998-04-01

    The high-energy neutron source at the Los Alamos Neutron Science Center (LANSCE) produces beams of neutrons for accelerated testing of integrated circuit devices. Neutrons produced in the atmosphere by cosmic-rays are thought to be a significant threat to integrated circuits both at aircraft altitudes as well as at lower elevations. Neutrons have been shown to cause single event upsets, multiple event upsets, latchup and burnout in semiconductor devices. Neutrons are produced at LANSCE via spallation reactions with the 800 MeV pulsed proton beam. Proton beam currents of about 2 microamperes strike a tungsten target and produce a spectrum of neutrons whose energy and intensity can be precisely measured by time-of-flight techniques. The neutron spectrum produced in this manner has energies up to approximately 600 MeV and is very similar in shape to the atmospheric neutron spectrum at 40,000 ft. A flight path located at 20 m from the neutron production target is dedicated to accelerated testing of semiconductor devices. The integrated neutron flux above 1 MeV is about 10^6 n/cm^2/sec over an area about 10 cm in diameter. This intensity is about 10^5 (10^7) times greater than the cosmic-ray neutron flux at 40,000 ft (sea level).

  3. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1971-01-01

    The development of methods of measurement for semiconductor materials, process control, and devices is discussed. The following subjects are also presented: (1) demonstration of the high sensitivity of the infrared response technique by the identification of gold in a germanium diode, (2) verification that transient thermal response is significantly more sensitive to the presence of voids in die attachment than steady-state thermal resistance, and (3) development of equipment for determining susceptibility of transistors to hot spot formation by the current-gain technique.

  4. Semiconductor laser devices having lateral refractive index tailoring

    DOEpatents

    Ashby, Carol I. H.; Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1990-01-01

    A broad-area semiconductor laser diode includes an active lasing region interposed between an upper and a lower cladding layer, the laser diode further comprising structure for controllably varying a lateral refractive index profile of the diode to substantially compensate for an effect of junction heating during operation. In embodiments disclosed the controlling structure comprises resistive heating strips or non-radiative linear junctions disposed parallel to the active region. Another embodiment discloses a multi-layered upper cladding region selectively disordered by implanted or diffused dopant impurities. Still another embodiment discloses an upper cladding layer of variable thickness that is convex in shape and symmetrically disposed about a central axis of the active region. The teaching of the invention is also shown to be applicable to arrays of semiconductor laser diodes.

  5. Development of silicon carbide semiconductor devices for high temperature applications

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony; Petit, Jeremy B.

    1991-01-01

    The semiconducting properties of electronic grade silicon carbide crystals, such as wide energy bandgap, make it particularly attractive for high temperature applications. Applications for high temperature electronic devices include instrumentation for engines under development, engine control and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Discrete prototype SiC devices were fabricated and tested at elevated temperatures. Grown p-n junction diodes demonstrated very good rectification characteristics at 870 K. A depletion-mode metal-oxide-semiconductor field-effect transistor was also successfully fabricated and tested at 770 K. While optimization of SiC fabrication processes remain, it is believed that SiC is an enabling high temperature electronic technology.

  6. Comparison of Non-Parabolic Hydrodynamic Simulations for Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Smith, A. W.; Brennan, K. F.

    1996-01-01

    Parabolic drift-diffusion simulators are common engineering level design tools for semiconductor devices. Hydrodynamic simulators, based on the parabolic band approximation, are becoming more prevalent as device dimensions shrink and energy transport effects begin to dominate device characteristic. However, band structure effects present in state-of-the-art devices necessitate relaxing the parabolic band approximation. This paper presents simulations of ballistic diodes, a benchmark device, of Si and GaAs using two different non-parabolic hydrodynamic formulations. The first formulation uses the Kane dispersion relationship in the derivation of the conservation equations. The second model uses a power law dispersion relation {(hk)(exp 2)/2m = xW(exp Y)}. Current-voltage relations show that for the ballistic diodes considered. the non-parabolic formulations predict less current than the parabolic case. Explanations of this will be provided by examination of velocity and energy profiles. At low bias, the simulations based on the Kane formulation predict greater current flow than the power law formulation. As the bias is increased this trend changes and the power law predicts greater current than the Kane formulation. It will be shown that the non-parabolicity and energy range of the hydrodynamic model based on the Kane dispersion relation are limited due to the binomial approximation which was utilized in the derivation.

  7. Contributive research in compound semiconductor material and related devices

    NASA Astrophysics Data System (ADS)

    Twist, James R.

    1988-05-01

    The objective of this program was to provide the Electronic Device Branch (AFWAL/AADR) with the support needed to perform state of the art electronic device research. In the process of managing and performing on the project, UES has provided a wide variety of scientific and engineering talent who worked in-house for the Avionics Laboratory. These personnel worked on many different types of research programs from gas phase microwave driven lasers, CVD and MOCVD of electronic materials to Electronic Device Technology for new devices. The fields of research included MBE and theoretical research in this novel growth technique. Much of the work was slanted towards the rapidly developing technology of GaAs and the general thrust of the research that these tasks started has remained constant. This work was started because the Avionics Laboratory saw a chance to advance the knowledge and level of the current device technology by working in the compounds semiconductor field. UES is pleased to have had the opportunity to perform on this program and is looking forward to future efforts with the Avionics Laboratory.

  8. Simulations of Plasma Sources for Semiconductor Device Manufacturing

    NASA Astrophysics Data System (ADS)

    Ventzek, Peter

    2012-10-01

    First being applied to etching [1] and deposition [2] more than four decades ago, plasma unit processes are now ubiquitous in the semiconductor industry. However, in many cases the use of plasma discharges for semiconductor process development has far outpaced our fundamental understanding of plasma unit processes. Fortunately, state-of-the-art modeling and simulation is now applied both in the capitol equipment and device manufacturing sectors fortified by close relationships with academic institutions and national laboratories globally. The simulation tableau, modeling and simulation for semiconductor device manufacturing community may be broken into the following categories: new concept development, new process development, equipment physics and equipment engineering. This presentation will focus on simulation modalities that highlight how the physics of production equipment result in beneficial processes. Two classes of examples with be provided. [3] The first will illustrate the behavior of microwave plasma source; the second will explore the electron kinetics associated of capacitively coupled plasma sources. The common thread linking these topics is the importance of the frequency dependence of the electron energy distribution function (eedf) to the fidelity of the simulation results. With respect to the microwave driven plasma sources, in addition to comparing predictions of different modeling approaches to experimental data, the relationship between the microwave network and the plasma dynamics in addition will be highlighted. While the criticality of the eedf to all of capacitively coupled systems will be discussed, particular focus is paid to dc augmented capacitively coupled sources where management of how the ballistic electron population reaches the substrate is critical to process results. Fluid, test particle and full particle-in-cell Monte Carlo simulations will be used to illustrate different discharge behavior.[4pt] [1] H. Abe et al. Jpn. J. Appl

  9. Flexible non-volatile memory devices based on organic semiconductors

    NASA Astrophysics Data System (ADS)

    Cosseddu, Piero; Casula, Giulia; Lai, Stefano; Bonfiglio, Annalisa

    2015-09-01

    The possibility of developing fully organic electronic circuits is critically dependent on the ability to realize a full set of electronic functionalities based on organic devices. In order to complete the scene, a fundamental element is still missing, i.e. reliable data storage. Over the past few years, a considerable effort has been spent on the development and optimization of organic polymer based memory elements. Among several possible solutions, transistor-based memories and resistive switching-based memories are attracting a great interest in the scientific community. In this paper, a route for the fabrication of organic semiconductor-based memory devices with performances beyond the state of the art is reported. Both the families of organic memories will be considered. A flexible resistive memory based on a novel combination of materials is presented. In particular, high retention time in ambient conditions are reported. Complementary, a low voltage transistor-based memory is presented. Low voltage operation is allowed by an hybrid, nano-sized dielectric, which is also responsible for the memory effect in the device. Thanks to the possibility of reproducibly fabricating such device on ultra-thin substrates, high mechanical stability is reported.

  10. Accelerator-based electron beam technologies for modification of bipolar semiconductor devices

    NASA Astrophysics Data System (ADS)

    Pavlov, Y. S.; Surma, A. M.; Lagov, P. B.; Fomenko, Y. L.; Geifman, E. M.

    2016-09-01

    Radiation processing technologies for static and dynamic parameters modification of silicon bipolar semiconductor devices implemented. Devices of different classes with wide range of operating currents (from a few mA to tens kA) and voltages (from a few volts to 8 kV) were processed in large scale including power diodes and thyristors, high-frequency bipolar and IGBT transistors, fast recovery diodes, pulsed switching diodes, precise temperature- compensated Zener diodes (in general more than fifty 50 device types), produced by different enterprises. The necessary changes in electrical parameters and characteristics of devices caused by formation in the device structures of electrically active and stable in the operating temperature range sub-nanoscale recombination centres. Technologies implemented in the air with high efficiency and controllability, and are an alternative to diffusion doping of Au or Pt, γ-ray, proton and low-Z ion irradiation.

  11. Trace explosive sensor devices based on semiconductor nanomaterials

    NASA Astrophysics Data System (ADS)

    Wang, Danling

    This dissertation discusses an explosive sensing device based on semiconductor nanomaterials. Here, we mainly focus on two kinds of materials: titanium dioxide nanowires and silicon nanowires to detect explosive trace vapor. Herein, methods for the synthesis, fabrication, design of nanostructured sensing materials using low-cost hydrothermal process are present. In addition, the nanomaterials have been systemically tested on different explosive. The first part of dissertation is focused on the fabrication of TiO2(B) dominant nanowires and testing the response to explosives. It was found that the high porous TiO2(B) nanowires when mixed anatase TiO2, exhibit a very fast and highly sensitive response to nitro-containing explosives. The second part of dissertation has studied the basic sensing mechanism of TiO2(B) nanowire sensor to detect explosives. It shows the specific surface characteristics of TiO2 responsible for the nitro-containing explosives. This information is then used to propose a method using UV illumination to reduce the effect of water vapor on TiO2(B) nanowires. The third part discussed an explosive sensor based on silicon nanowires. We analyzed the mechanism of silicon nanowires to detect nitro-related explosive compounds. In order to further investigate the sensing mechanism of TiO2, the fourth part of dissertation studies the effect on sensor performance by using different crystal phases of TiO2, different microstructure of TiO2, surface modification of TiO2, and different kinds of nanostructured semiconductors such as ZnO nanowires, TiO2 coated ZnO nanowires, V2O5 nanowires, and CdS nanowires to detect explosives. It is found that only TiO2 related semiconductor shows good response to explosives.

  12. Semiconductor devices for entangled photon pair generation: a review.

    PubMed

    Orieux, Adeline; Versteegh, Marijn A M; Jöns, Klaus; Ducci, Sara

    2017-03-27

    Entanglement is one of the most fascinating properties of quantum mechanical systems; when two particles are entangled the measurement of the properties of one of the two allows to instantaneously know the properties of the other, whatever the distance separating them. In parallel with fundamental research on the foundations of quantum mechanics performed on complex experimental set-ups, we assist today to a bourgeoning of quantum information technologies bound to exploit entanglement for a large variety of applications such as secure communications, metrology and computation. Among the different physical systems under investigation, those involving photonic components are likely to play a central role and in this context semiconductor materials exhibit a huge potential in terms of integration of several quantum components in miniature chips. In this article we review the recent progress in the development of semiconductor devices emitting entangled photons. We will present the physical processes allowing to generate entanglement and the tools to characterize it; we will give an overview of major recent results of the last years and highlight perspectives for future developments.

  13. Interfaces of electrical contacts in organic semiconductor devices

    NASA Astrophysics Data System (ADS)

    Demirkan, Korhan

    Progress in organic semiconductor devices relies on better understanding of interfaces as well as material development. The engineering of interfaces that exhibit low resistance, low operating voltage and long-term stability to minimize device degradation is one of the crucial requirements. Photoelectron spectroscopy is a powerful technique to study the metal-semiconductor interfaces, allowing: (i) elucidation of the energy levels of the semiconductor and the contacts that determine Schottky barrier height, (ii) inspection of electrical interactions (such as charge transfer, dipole formation, formation of induced density of states or formation of polaron/bi-polaron states) that effect the energy level alignment, (iii) determination of interfacial chemistry, and (iv) estimation of interface morphology. In this thesis, we have used photoelectron spectroscopy extensively for detailed analysis of the metal organic semiconductor interfaces. In this study, we demonstrate the use of photoelectron spectroscopy for construction of energy level diagrams and display some results related to chemical tailoring of materials for engineering interfaces with lowered Schottky barriers. Following our work on the energy level alignment of poly(p-phenyene vinylene) based organic semiconductors on various substrates [Au, indium tin oxide, Si (with native oxide) and Al (with native oxide)], we tested controlling the energy level alignment by using polar self assembled molecules (SAMs). Photoelectron spectroscopy showed that, by introducing SAMs on the Au surface, we successfully changed the effective work function of Au surface. We found that in this case, the change in the effective work function of the metal surface was not reflected as a shift in the energy levels of the organic semiconductor, as opposed to the results achieved with different substrate materials. To investigate the chemical interactions at the metal/organic interface, we studied the metallization of poly(2-methoxy-5

  14. Low-temperature optical processing of semiconductor devices using photon effects

    SciTech Connect

    Sopori, B.L.; Cudzinovic, M.; Symko, M.

    1995-08-01

    In an RTA process the primary purpose of the optical energy incident on the semiconductor sample is to increase its temperature rapidly. The activation of reactions involved in processes such as the formation of junctions, metal contacts, deposition of oxides or nitrides, takes place purely by the temperature effects. We describe the observation of a number of new photonic effects that take place within the bulk and at the interfaces of a semiconductor when a semiconductor device is illuminated with a spectrally broad-band light. Such effects include changes in the diffusion properties of impurities in the semiconductor, increased diffusivity of impurities across interfaces, and generation of electric fields that can alter physical and chemical properties of the interface. These phenomena lead to certain unique effects in an RTA process that do not occur during conventional furnace annealing under the same temperature conditions. Of particular interest are observations of low-temperature alloying of Si-Al interfaces, enhanced activation of phosphorus in Si during drive-in, low-temperature oxidation of Si, and gettering of impurities at low-temperatures under optical illumination. These optically induced effects, in general, diminish with an increase in the temperature, thus allowing thermally activated reaction rates to dominate at higher temperatures.

  15. Subbanding, Charge Transport and Related Applications in Semiconductor Devices.

    DTIC Science & Technology

    1977-10-01

    These devices use a p-n homo -junction to confine the free electronic charge in the semiconductor to conducting regions so narrow as to exhibit...27.172 Table 6A ~0 ENERGY IN MILLI-ELECTRON VOLTS WC IN ANGSTROMS WC EC(6) ECC 7) EC(8) EC(9) ECC 10) 1.2 3669047 432.986 499.951 566.937 633.941 1.5...VC IN ANGSTROMS (6 ECC ) ECC7) EC(s) EC(9) ECCIS) 3t 236.132 279.167 322.269 365.257 418.319 1,’ 235;907 275;922 321� 364;976 408.013 I. 235,;635

  16. Conductance matrix of multiterminal semiconductor devices with edge channels

    SciTech Connect

    Danilovskii, E. Yu. Bagraev, N. T.

    2014-12-15

    A method for determining the conductance matrix of multiterminal semiconductor structures with edge channels is proposed. The method is based on the solution of a system of linear algebraic equations based on Kirchhoff equations, made up of potential differences U{sub ij} measured at stabilized currents I{sub kl}, where i, j, k, l are terminal numbers. The matrix obtained by solving the system of equations completely describes the structure under study, reflecting its configuration and homogeneity. This method can find wide application when using the known Landauer-Buttiker formalism to analyze carrier transport in the quantum Hall effect and quantum spin Hall effect modes. Within the proposed method, the contribution of the contact area resistances R{sub c} to the formation of conductance matrix elements is taken into account. The possibilities of practical application of the results obtained in developing analog cryptographic devices are considered.

  17. Semiconductor Devices Inspired By and Integrated With Biology

    SciTech Connect

    Rogers, John

    2012-04-25

    Biology is curved, soft and elastic; silicon wafers are not. Semiconductor technologies that can bridge this gap in form and mechanics will create new opportunities in devices that adopt biologically inspired designs or require intimate integration with the human body. This talk describes the development of ideas for electronics that offer the performance of state-of-the-art, wafer- based systems but with the mechanical properties of a rubber band. We explain the underlying materials science and mechanics of these approaches, and illustrate their use in (1) bio- integrated, ‘tissue-like’ electronics with unique capabilities for mapping cardiac and neural electrophysiology, and (2) bio-inspired, ‘eyeball’ cameras with exceptional imaging properties enabled by curvilinear, Petzval designs.

  18. Amorphous metallizations for high-temperature semiconductor device applications

    NASA Technical Reports Server (NTRS)

    Wiley, J. D.; Perepezko, J. H.; Nordman, J. E.; Kang-Jin, G.

    1981-01-01

    The initial results of work on a class of semiconductor metallizations which appear to hold promise as primary metallizations and diffusion barriers for high temperature device applications are presented. These metallizations consist of sputter-deposited films of high T sub g amorphous-metal alloys which (primarily because of the absence of grain boundaries) exhibit exceptionally good corrosion-resistance and low diffusion coefficients. Amorphous films of the alloys Ni-Nb, Ni-Mo, W-Si, and Mo-Si were deposited on Si, GaAs, GaP, and various insulating substrates. The films adhere extremely well to the substrates and remain amorphous during thermal cycling to at least 500 C. Rutherford backscattering and Auger electron spectroscopy measurements indicate atomic diffussivities in the 10 to the -19th power sq cm/S range at 450 C.

  19. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOEpatents

    Sopori, Bhushan L.; Allen, Larry C.; Marshall, Craig; Murphy, Robert C.; Marshall, Todd

    1998-01-01

    A method and apparatus for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby.

  20. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOEpatents

    Sopori, B.L.; Allen, L.C.; Marshall, C.; Murphy, R.C.; Marshall, T.

    1998-05-26

    A method and apparatus are disclosed for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby. 44 figs.

  1. Visible scintillation photodetector device incorporating chalcopyrite semiconductor crystals

    DOEpatents

    Stowe, Ashley C.; Burger, Arnold

    2017-04-04

    A photodetector device, including: a scintillator material operable for receiving incident radiation and emitting photons in response; a photodetector material coupled to the scintillator material operable for receiving the photons emitted by the scintillator material and generating a current in response, wherein the photodetector material includes a chalcopyrite semiconductor crystal; and a circuit coupled to the photodetector material operable for characterizing the incident radiation based on the current generated by the photodetector material. Optionally, the scintillator material includes a gamma scintillator material and the incident radiation received includes gamma rays. Optionally, the photodetector material is further operable for receiving thermal neutrons and generating a current in response. The circuit is further operable for characterizing the thermal neutrons based on the current generated by the photodetector material.

  2. Materials Science and Device Physics of 2-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Fang, Hui

    Materials and device innovations are the keys to future technology revolution. For MOSFET scaling in particular, semiconductors with ultra-thin thickness on insulator platform is currently of great interest, due to the potential of integrating excellent channel materials with the industrially mature Si processing. Meanwhile, ultra-thin thickness also induces strong quantum confinement which in turn affect most of the material properties of these 2-dimensional (2-D) semiconductors, providing unprecedented opportunities for emerging technologies. In this thesis, multiple novel 2-D material systems are explored. Chapter one introduces the present challenges faced by MOSFET scaling. Chapter two covers the integration of ultrathin III V membranes with Si. Free standing ultrathin III-V is studied to enable high performance III-V on Si MOSFETs with strain engineering and alloying. Chapter three studies the light absorption in 2-D membranes. Experimental results and theoretical analysis reveal that light absorption in the 2-D quantum membranes is quantized into a fundamental physical constant, where we call it the quantum unit of light absorption, irrelevant of most of the material dependent parameters. Chapter four starts to focus on another 2-D system, atomic thin layered chalcogenides. Single and few layered chalcogenides are first explored as channel materials, with focuses in engineering the contacts for high performance MOSFETs. Contact treatment by molecular doping methods reveals that many layered chalcogenides other than MoS2 exhibit good transport properties at single layer limit. Finally, Chapter five investigated 2-D van der Waals heterostructures built from different single layer chalcogenides. The investigation in a WSe2/MoS2 hetero-bilayer shows a large Stokes like shift between photoluminescence peak and lowest absorption peak, as well as strong photoluminescence intensity, consistent with spatially indirect transition in a type II band alignment in this

  3. 77 FR 60721 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... COMMISSION Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Notice of... importation, and the sale within the United States after importation of certain semiconductor integrated circuit devices and products containing same by reason of infringement of certain claims of U.S....

  4. Oxide semiconductors for organic opto-electronic devices

    NASA Astrophysics Data System (ADS)

    Sigdel, Ajaya K.

    In this dissertation, I have introduced various concepts on the modulations of various surface, interface and bulk opto-electronic properties of ZnO based semiconductor for charge transport, charge selectivity and optimal device performance. I have categorized transparent semiconductors into two sub groups depending upon their role in a device. Electrodes, usually 200 to 500 nm thick, optimized for good transparency and transporting the charges to the external circuit. Here, the electrical conductivity in parallel direction to thin film, i.e bulk conductivity is important. And contacts, usually 5 to 50 nm thick, are optimized in case of solar cells for providing charge selectivity and asymmetry to manipulate the built in field inside the device for charge separation and collection. Whereas in Organic LEDs (OLEDs), contacts provide optimum energy level alignment at organic oxide interface for improved charge injections. For an optimal solar cell performance, transparent electrodes are designed with maximum transparency in the region of interest to maximize the light to pass through to the absorber layer for photo-generation, plus they are designed for minimum sheet resistance for efficient charge collection and transport. As such there is need for material with high conductivity and transparency. Doping ZnO with some common elements such as B, Al, Ga, In, Ge, Si, and F result in n-type doping with increase in carriers resulting in high conductivity electrode, with better or comparable opto-electronic properties compared to current industry-standard indium tin oxide (ITO). Furthermore, improvement in mobility due to improvement on crystallographic structure also provide alternative path for high conductivity ZnO TCOs. Implementing these two aspects, various studies were done on gallium doped zinc oxide (GZO) transparent electrode, a very promising indium free electrode. The dynamics of the superimposed RF and DC power sputtering was utilized to improve the

  5. III-V aresenide-nitride semiconductor materials and devices

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    1997-01-01

    III-V arsenide-nitride semiconductor crystals, methods for producing such crystals and devices employing such crystals. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  6. Variations in semiconductor device response in a medium-energy x-ray dose-enhancing environment

    SciTech Connect

    Beutler, D.E.; Fleetwood, D.M.; Beezhold, W.; Knott, D.; Lorence, L.J. Jr.; Draper, B.L.

    1987-01-01

    A series of experiments was performed to investigate the response of semiconductor devices to medium-energy x-ray irradiation under conditions in which dose-enhancement effects are very important. The response of MOS capacitors to ''dose-enhanced'' radiation can depend on incident radiation spectra, temperature of the device, and oxide electric field. Indeed, the amount of enhanced response can vary by as much as a factor of 10 as these conditions are changed. In such cases, it appears that changes in electron-hole recombination and hole trapping as a function of radiation energy are very important to the interpretation of the results. Therefore, coupled electron/photon transport codes such as the Monte Carlo integrated TIGER series (ITS), which consider only changes in the dose deposited in the device active region, are inadequate, at least in some cases, for predictions of dose-enhancement effects in semiconductor devices. In addition, the response of semiconductor diodes to dose-enhanced radiation appears to be qualitatively different from that of capacitors, and differs markedly in value from code predictions. Hence, an understanding of the modification of incident radiation by its interactions with dose-enhancing materials alone is insufficient to predict the response of semiconductor devices. The dependence of the device response on radiation spectra, electron-hole recombination, and hole transport and trapping, must also be included to assure good simulation fidelity of tests for devices to be used in dose-enhancing environments.

  7. Activation of molecular catalysts using semiconductor quantum dots

    DOEpatents

    Meyer, Thomas J [Chapel Hill, NC; Sykora, Milan [Los Alamos, NM; Klimov, Victor I [Los Alamos, NM

    2011-10-04

    Photocatalytic materials based on coupling of semiconductor nanocrystalline quantum dots (NQD) and molecular catalysts. These materials have capability to drive or catalyze non-spontaneous chemical reactions in the presence of visible radiation, ultraviolet radiation, or both. The NQD functions in these materials as a light absorber and charge generator. Following light absorption, the NQD activates a molecular catalyst adsorbed on the surface of the NQD via transfer of one or more charges (either electrons or electron-holes) from the NQD to the molecular catalyst. The activated molecular catalyst can then drive a chemical reaction. A photoelectrolytic device that includes such photocatalytic materials is also described.

  8. An investigation of corrosion in semiconductor bridge explosive devices.

    SciTech Connect

    Klassen, Sandra Ellen; Sorensen, Neil Robert

    2007-05-01

    In the course of a failure investigation, corrosion of the lands was occasionally found in developmental lots of semiconductor bridge (SCB) detonators and igniters. Evidence was found in both detonators and igniters of the gold layer being deposited on top of a corroded aluminum layer, but inspection of additional dies from the same wafer did not reveal any more corroded parts. In some detonators, evidence was found that corrosion of the aluminum layer also happened after the gold was deposited. Moisture and chloride must both be present for aluminum to corrode. A likely source for chloride is the adhesive used to bond the die to the header. Inspection of other SCB devices, both recently manufactured and manufactured about ten years ago, found no evidence for corrosion even in devices that contained SCBs with aluminum lands and no gold. Several manufacturing defects were noted such as stains, gouges in the gold layer due to tooling, and porosity of the gold layer. Results of atmospheric corrosion experiments confirmed that devices with a porous gold layer over the aluminum layer are susceptible to extensive corrosion when both moisture and chlorine are present. The extent of corrosion depends on the level of chlorine contamination, and corrosion did not occur when only moisture was present. Elimination of the gold plating on the lands eliminated corrosion of the lands in these experiments. Some questions remain unanswered, but enough information was gathered to recommend changes to materials and procedures. A second lot of detonators was successfully built using aluminum SCBs, limiting the use of Ablebond{trademark} adhesive, increasing the rigor in controlling exposure to moisture, and adding inspection steps.

  9. Atomically Flat Surfaces Developed for Improved Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony

    2001-01-01

    New wide bandgap semiconductor materials are being developed to meet the diverse high temperature, -power, and -frequency demands of the aerospace industry. Two of the most promising emerging materials are silicon carbide (SiC) for high-temperature and high power applications and gallium nitride (GaN) for high-frequency and optical (blue-light-emitting diodes and lasers) applications. This past year Glenn scientists implemented a NASA-patented crystal growth process for producing arrays of device-size mesas whose tops are atomically flat (i.e., step-free). It is expected that these mesas can be used for fabricating SiC and GaN devices with major improvements in performance and lifetime. The promising new SiC and GaN devices are fabricated in thin-crystal films (known as epi films) that are grown on commercial single-crystal SiC wafers. At this time, no commercial GaN wafers exist. Crystal defects, known as screw defects and micropipes, that are present in the commercial SiC wafers propagate into the epi films and degrade the performance and lifetime of subsequently fabricated devices. The new technology isolates the screw defects in a small percentage of small device-size mesas on the surface of commercial SiC wafers. This enables atomically flat surfaces to be grown on the remaining defect-free mesas. We believe that the atomically flat mesas can also be used to grow GaN epi films with a much lower defect density than in the GaN epi films currently being grown. Much improved devices are expected from these improved low-defect epi films. Surface-sensitive SiC devices such as Schottky diodes and field effect transistors should benefit from atomically flat substrates. Also, we believe that the atomically flat SiC surface will be an ideal surface on which to fabricate nanoscale sensors and devices. The process for achieving atomically flat surfaces is illustrated. The surface steps present on the "as-received" commercial SiC wafer is also illustrated. because of the

  10. Raman Imaging in Semiconductor Physics: Applications to Microelectronic Materials and Devices

    NASA Astrophysics Data System (ADS)

    Tiberj, Antoine; Camassel, Jean

    The unique versatility of micro-Raman spectroscopy (\\upmu RS) in semiconductor physics remains in Raman imaging. Numerous applications cover the whole development of modern electronic and optoelectronic devices: from semiconductor growth to advanced device inspection tools. In this chapter, a wide variety of semiconductors (SiC, graphene, GaN, GaAs, SiGe, strained Si, sSOI, SGOI) and devices (FETs, lasers, MEMS) are addressed. First, it will be shown how Raman mapping enables to check the crystalline quality, the composition, the doping, and the uniformity of as-grown semiconductors. Then, we will focus on the most popular application in microelectronics: strain measurements either at the device or at the full wafer scale. Finally, we will show how \\upmu RS imaging can be used for final device inspection through the temperature mapping of operating devices (FETs, lasers, actuators).

  11. Electrical and Optical Characterization of Nanowire based Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Ayvazian, Talin

    This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand and optimize the electrical and optical properties of two types of nanoscale devices; in first type lithographically patterned nanowire electrodeposition (LPNE) method has been utilized to fabricate nanowire field effect transistors (NWFET) and second type involved the development of light emitting semiconductor nanowire arrays (NWLED). Field effect transistors (NWFETs) have been prepared from arrays of polycrystalline cadmium selenide (pc-CdSe) nanowires using a back gate configuration. pc-CdSe nanowires were fabricated using the lithographically patterned nanowire electrode- position (LPNE) process on SiO2 /Si substrates. After electrodeposition, pc-CdSe nanowires were thermally annealed at 300 °C x 4 h either with or without exposure to CdCl 2 in methanol a grain growth promoter. The influence of CdCl2 treatment was to increase the mean grain diameter as determined by X-ray diffraction pattern and to convert the crystal structure from cubic to wurtzite. Transfer characteristics showed an increase of the field effect mobility (mu eff) by an order of magnitude and increase of the Ion/I off ratio by a factor of 3-4. Light emitting devices (NW-LED) based on lithographically patterned pc-CdSe nanowire arrays have been investigated. Electroluminescence (EL) spectra of CdSe nanowires under various biases exhibited broad emission spectra centered at 750 nm close to the band gap of CdSe (1.7eV). To enhance the intensity of the emitted light and the external quantum efficiency (EQE), the distance between the contacts were reduced from 5 mum to less than 1 mum which increased the efficiency by an order of magnitude. Also, increasing the annealing temperature of nanowires from 300 °C x4 h to 450 This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand

  12. Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices

    DOEpatents

    Alivisatos, A. Paul; Colvin, Vickie

    1996-01-01

    An electroluminescent device is described, as well as a method of making same, wherein the device is characterized by a semiconductor nanocrystal electron transport layer capable of emitting visible light in response to a voltage applied to the device. The wavelength of the light emitted by the device may be changed by changing either the size or the type of semiconductor nanocrystals used in forming the electron transport layer. In a preferred embodiment the device is further characterized by the capability of emitting visible light of varying wavelengths in response to changes in the voltage applied to the device. The device comprises a hole processing structure capable of injecting and transporting holes, and usually comprising a hole injecting layer and a hole transporting layer; an electron transport layer in contact with the hole processing structure and comprising one or more layers of semiconductor nanocrystals; and an electron injecting layer in contact with the electron transport layer for injecting electrons into the electron transport layer. The capability of emitting visible light of various wavelengths is principally based on the variations in voltage applied thereto, but the type of semiconductor nanocrystals used and the size of the semiconductor nanocrystals in the layers of semiconductor nanometer crystals may also play a role in color change, in combination with the change in voltage.

  13. Modeling of Electronic Properties in Organic Semiconductor Device Structures

    NASA Astrophysics Data System (ADS)

    Chang, Hsiu-Chuang

    Organic semiconductors (OSCs) have recently become viable for a wide range of electronic devices, some of which have already been commercialized. With the mechanical flexibility of organic materials and promising performance of organic field effect transistors (OFETs) and organic bulk heterojunction devices, OSCs have been demonstrated in applications such as radio frequency identification tags, flexible displays, and photovoltaic cells. Transient phenomena play decisive roles in the performance of electronic devices and OFETs in particular. The dynamics of the establishment and depletion of the conducting channel in OFETs are investigated theoretically. The device structures explored resemble typical organic thin-film transistors with one of the channel contacts removed. By calculating the displacement current associated with charging and discharging of the channel in these capacitors, transient effects on the carrier transport in OSCs may be studied. In terms of the relevant models it is shown that the non-linearity of the process plays a key role. The non-linearity arises in the simplest case from the fact that channel resistance varies during the charging and discharging phases. Traps can be introduced into the models and their effects examined in some detail. When carriers are injected into the device, a conducting channel is established with traps that are initially empty. Gradual filling of the traps then modifies the transport characteristics of the injected charge carriers. In contrast, dc measurements as they are typically performed to characterize the transport properties of organic semiconductor channels investigate a steady state with traps partially filled. Numerical and approximate analytical models of the formation of the conducting channel and the resulting displacement currents are presented. For the process of transient carrier extraction, it is shown that if the channel capacitance is partially or completely discharged through the channel

  14. Advanced numerical methods and software approaches for semiconductor device simulation

    SciTech Connect

    CAREY,GRAHAM F.; PARDHANANI,A.L.; BOVA,STEVEN W.

    2000-03-23

    In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.

  15. Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation

    DOE PAGES

    Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.

    2000-01-01

    In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less

  16. Low-dimensional electron transport in mesoscopic semiconductor devices

    NASA Astrophysics Data System (ADS)

    Martin, Theodore Peyton

    Recent advances in solid state materials engineering have led to mesoscopic devices with feature sizes that approach the fundamental quantum wavelength of charge carriers in the solid, allowing for the experimental observation of quantum interference. By confining carriers to a single quantum state in one or more dimensions, the degrees of freedom for charge transport can be reduced to achieve new device functionality. This dissertation focuses on mesoscopic electron billiards that combine the aspects of zero, one, and two-dimensional transport into one system. Low-temperature measurement of billiards fabricated within a relatively defect-free semiconductor heterostructure results in ballistic transport, where the electron waves follow classical trajectories and the confining walls play a major role in determining the electron interference. Billiards have been traditionally formed by applying a bias to patterned surface gates atop an AlGaAs/GaAs heterostructure. Within this system, fractal fluctuations in the billiard conductance are observed as a function of an applied external magnetic field. These fluctuations are tied to quantum interference via an empirical parameter that describes the resolution of energy levels within the billiard. To investigate whether fractal fluctuations are a robust phenomenon intrinsic to billiard-like structures, this study centers on billiards defined by etching walls into a GaInAs/InP heterostructure, departing from the traditional system in both the type of confinement and material system used. It is expected that etched walls will provide a steeper confinement profile leading to well-defined device shapes. Conductance measurements through the one-dimensional leads that couple electrons into the billiard are utilized in combination with a self-consistent Schrodinger/Poisson solution to demonstrate a steeper confinement potential. Experiments are also carried out to determine whether fractal fluctuations persist when billiards are

  17. Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices

    NASA Astrophysics Data System (ADS)

    Fujita, Shizuo; Oda, Masaya; Kaneko, Kentaro; Hitora, Toshimi

    2016-12-01

    The recent progress and development of corundum-structured III-oxide semiconductors are reviewed. They allow bandgap engineering from 3.7 to ∼9 eV and function engineering, leading to highly durable electronic devices and deep ultraviolet optical devices as well as multifunctional devices. Mist chemical vapor deposition can be a simple and safe growth technology and is advantageous for reducing energy and cost for the growth. This is favorable for the wide commercial use of devices at low cost. The III-oxide semiconductors are promising candidates for new devices contributing to sustainable social, economic, and technological development for the future.

  18. Atomic origin of high-temperature electron trapping in metal-oxide-semiconductor devices

    SciTech Connect

    Shen, Xiao; Dhar, Sarit; Pantelides, Sokrates T.

    2015-04-06

    MOSFETs based on wide-band-gap semiconductors are suitable for operation at high temperature, at which additional atomic-scale processes that are benign at lower temperatures can get activated, resulting in device degradation. Recently, significant enhancement of electron trapping was observed under positive bias in SiC MOSFETs at temperatures higher than 150 °C. Here, we report first-principles calculations showing that the enhanced electron trapping is associated with thermally activated capturing of a second electron by an oxygen vacancy in SiO{sub 2} by which the vacancy transforms into a structure that comprises one Si dangling bond and a bond between a five-fold and a four-fold Si atoms. The results suggest a key role of oxygen vacancies and their structural reconfigurations in the reliability of high-temperature MOS devices.

  19. Electrical contacts for a thin-film semiconductor device

    DOEpatents

    Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.

    1989-08-08

    A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.

  20. Resonant activation in bistable semiconductor lasers

    SciTech Connect

    Lepri, Stefano; Giacomelli, Giovanni

    2007-08-15

    We theoretically investigate the possibility of observing resonant activation in the hopping dynamics of two-mode semiconductor lasers. We present a series of simulations of a rate-equation model under random and periodic modulation of the bias current. In both cases, for an optimal choice of the modulation time scale, the hopping times between the stable lasing modes attain a minimum. The simulation data are understood by means of an effective one-dimensional Langevin equation with multiplicative fluctuations. Our conclusions apply to both edge-emitting and vertical cavity lasers, thus opening the way to several experimental tests in such optical systems.

  1. All optical logic operations using semiconductor optical amplifier based devices

    NASA Astrophysics Data System (ADS)

    Wang, Qiang

    High-speed optical processing technologies are essential for the construction of all-optical networks in the information era. In this Ph. D. thesis dissertation, essential mechanisms related to the semiconductor optical amplifier (SOA) based device such as the gain and phase dynamics when a short pulse in propagating inside SOA, and, all-optical Boolean function, XOR, AND and OR have been studied. In order to realize the all-optical logic using SOA, the nonlinear gain and phase dynamics in SOA need to be studied first. The experimental results of 10--90% gain recovery curve have been presented. The recovery time is related to the carrier lifetime of the SOA and it varies with gain compression and bias current. For pulse width of a few picosecond, intraband effects need to be considered. In the SOA, phase change is also induced when a short pulse is propagating inside SOA. Unlike the conventional way of estimating the phase shift using alpha factor, the maximum phase shift is obtained first, then the effective alpha factor is calculated. The experimental results of all optical Boolean function XOR and OR at 80 Gb/s are presented using SOA-MZI-DI and SOA-DI respectively. These are the highest operating speed that has been reported. The all optical AND operation at 40 Gb/s using SOA-MZI have also been reported here. The numerical simulation shows that the performance of these all-optical Boolean operations is limited by the carrier lifetime of the SOA. The Boolean functions are the first step towards all optical circuits. The designs of a parity checker and a pseudo-random binary sequence (PRBS) generator are demonstrated. The error analysis using quality factor and eye-diagram is also presented.

  2. Production of films and powders for semiconductor device applications

    DOEpatents

    Bhattacharya, Raghu Nath; Noufi, Rommel; Wang, Li

    1998-01-01

    A process for chemical bath deposition of selenide and sulfide salts as films and powders employable as precursors for the fabrication of solar cell devices. The films and powders include (1) Cu.sub.x Se.sub.n, wherein x=1-2 and n=1-3; (2) Cu.sub.x Ga.sub.y Se.sub.n, wherein x=1-2, y=0-1 and n=1-3; (3) Cu.sub.x In.sub.y Se.sub.n, wherein x=1-2.27, y=0.72-2 and n=1-3; (4) Cu.sub.x (InGa).sub.y Se.sub.n, wherein x=1-2.17, y=0.96-2 and n=1-3; (5) In.sub.y Se.sub.n, wherein y=1-2.3 and n=1-3; (6) Cu.sub.x S.sub.n, wherein x=1-2 and n=1-3; and (7) Cu.sub.x (InGa).sub.y (SeS).sub.n, wherein x=1-2, y=0.07-2 and n=0.663-3. A reaction vessel containing therein a substrate upon which will form one or more layers of semiconductor material is provided, and relevant solution mixtures are introduced in a sufficient quantity for a sufficient time and under favorable conditions into the vessel to react with each other to produce the resultant salt being prepared and deposited as one or more layers on the substrate and as a powder on the floor of the vessel. Hydrazine is present during all reaction processes producing non-gallium containing products and optionally present during reaction processes producing gallium-containing products to function as a strong reducing agent and thereby enhance reaction processes.

  3. Production of films and powders for semiconductor device applications

    DOEpatents

    Bhattacharya, R.N.; Noufi, R.; Li Wang

    1998-03-24

    A process is described for chemical bath deposition of selenide and sulfide salts as films and powders employable as precursors for the fabrication of solar cell devices. The films and powders include (1) Cu{sub x}Se{sub n}, wherein x=1--2 and n=1--3; (2) Cu{sub x}Ga{sub y}Se{sub n}, wherein x=1--2, y=0--1 and n=1--3; (3) Cu{sub x}In{sub y}Se{sub n}, wherein x=1--2.27, y=0.72--2 and n=1--3; (4) Cu{sub x}(InGa){sub y}Se{sub n}, wherein x=1--2.17, y=0.96--2 and n=1--3; (5) In{sub y}Se{sub n}, wherein y=1--2.3 and n=1--3; (6) Cu{sub x}S{sub n}, wherein x=1--2 and n=1--3; and (7) Cu{sub x}(InGa){sub y}(SeS){sub n}, wherein x=1--2, y=0.07--2 and n=0.663--3. A reaction vessel containing therein a substrate upon which will form one or more layers of semiconductor material is provided, and relevant solution mixtures are introduced in a sufficient quantity for a sufficient time and under favorable conditions into the vessel to react with each other to produce the resultant salt being prepared and deposited as one or more layers on the substrate and as a powder on the floor of the vessel. Hydrazine is present during all reaction processes producing non-gallium containing products and optionally present during reaction processes producing gallium-containing products to function as a strong reducing agent and thereby enhance reaction processes. 4 figs.

  4. Design-Dependent Variability of Pulse Hardness of Types of Discrete Semiconductor Devices (Intervendor Variations).

    DTIC Science & Technology

    1982-12-01

    7 D-125 776 DESIGN-DEPENDENT VARIABILITY OF PULSE HARDNESS OF TYPES 1/1 OF DISCRETE SEMICONDUCTOR DEVICES (INTERVENDOR YARIATIONS)(U) HARRY DIAMOND...TYPE OF REPORT & PERIOD COVERED Design-Dependent Variability of Pulse Hardness of Technical Report Types of Discrete Semiconductor Devices (Intervendor...Identify by block number) Transistor design variations Nuclear survivability EMP analysis Pulse damage to transistors 2N1613 2N4237 JAN2N 1613 JAN2N2222

  5. Determination of Surface Recombination Velocities at Contacts in Organic Semiconductor Devices Using Injected Carrier Reservoirs

    NASA Astrophysics Data System (ADS)

    Sandberg, Oskar J.; Sandén, Simon; Sundqvist, Anton; Smâtt, Jan-Henrik; Österbacka, Ronald

    2017-02-01

    A method to determine surface recombination velocities at collecting contacts in interface-limited organic semiconductor devices, based on the extraction of injected carrier reservoirs in a single-carrier sandwich-type structure, is presented. The analytical framework is derived and verified with drift-diffusion simulations. The method is demonstrated on solution-processed organic semiconductor devices with hole-blocking TiO2/organic and SiO2/organic interfaces, relevant for solar cell and transistor applications, respectively.

  6. Fabrication and performance of pressure-sensing device consisting of electret film and organic semiconductor

    NASA Astrophysics Data System (ADS)

    Kodzasa, Takehito; Nobeshima, Daiki; Kuribara, Kazunori; Uemura, Sei; Yoshida, Manabu

    2017-04-01

    We propose a new concept of a pressure-sensitive device that consists of an organic electret film and an organic semiconductor. This device exhibits high sensitivity and selectivity against various types of pressure. The sensing mechanism of this device originates from a modulation of the electric conductivity of the organic semiconductor film induced by the interaction between the semiconductor film and the charged electret film placed face to face. It is expected that a complicated sensor array will be fabricated by using a roll-to-roll manufacturing system, because this device can be prepared by an all-printing and simple lamination process without high-level positional adjustment for printing processes. This also shows that this device with a simple structure is suitable for application to a highly flexible device array sheet for an Internet of Things (IoT) or wearable sensing system.

  7. Controlled assembly and electronics in semiconductor nanocrystal-based devices

    NASA Astrophysics Data System (ADS)

    Drndic, Marija

    2006-03-01

    I will discuss the assembly of semiconductor nanocrystals (CdSe and PbSe) into electronic devices and the basic mechanisms of charge transport in nanocrystal arrays [1-4]. Spherical CdSe nanocrystals show robust memory effects that can be exploited for memory applications [1]. Nanocrystal memory can be erased electrically or optically and is rewritable. In PbSe nanocrystal arrays, as the interdot coupling is increased, the system evolves from an insulating regime dominated by Coulomb blockade to a semiconducting regime, where hopping conduction is the dominant transport mechanism [2]. Two-dimensional CdSe nanorod arrays show striking and anomalous transport properties, including strong and reproducible non-linearities and current oscillations with dc-voltage [4]. I will also discuss imaging of the charge transport in nanocrystal-based electronic devices. Nanocrystal arrays were investigated using electrostatic force microscopy (EFM) and transmission electron microscopy (TEM) [3]. Changes in lattice and transport properties upon annealing in vacuum were revealed. Local charge transport was directly imaged by EFM and correlated to nanopatterns observed with TEM. This work shows how charge transport in complex nanocrystal networks can be identified with nm resolution [3]. This work was supported by the ONR grant N000140410489, the NSF grants DMR-0449553 and MRSEC DMR00-79909, and the ACS PRF grant 41256-G10. References:1) Fischbein M. D. and Drndic M., ``CdSe nanocrystal quantum-dot memory,'' Applied Physics Letters, 86 (19), 193106, 2005.2) H. E. Romero and Drndic M., ``Coulomb blockade and hopping conduction in PbSe quantum dots,'' Physical Review Letters 95, 156801, 2005.3) Hu Z., Fischbein M. D. and Drndic M., ``Local charge transport in two-dimensional PbSe nanocrystal arrays studied by electrostatic force microscopy",'' Nano Letters 5 (7), 1463, 2005.4) Romero H.E., Calusine G. and Drndic M., ``Current oscillations, switching and hysteresis in CdSe nanorod

  8. EDITORIAL: Semiconductor nanotechnology: novel materials and devices for electronics, photonics and renewable energy applications Semiconductor nanotechnology: novel materials and devices for electronics, photonics and renewable energy applications

    NASA Astrophysics Data System (ADS)

    Goodnick, Stephen; Korkin, Anatoli; Krstic, Predrag; Mascher, Peter; Preston, John; Zaslavsky, Alex

    2010-04-01

    -14 August, Hamilton, Ontario, Canada) and the scope was expanded to include renewable energy research and development. This special issue of Nanotechnology is devoted to a better understanding of the function and design of semiconductor devices that are relevant to information technology (both electronics and photonics based) and renewable energy applications. The papers contained in this special issue are selected from the NGC/CSTC2009 symposium. Among them is a report by Ray LaPierre from McMaster University and colleagues at the University of Waterloo in Canada on the ability to manipulate single spins in nanowire quantum bits. The paper also reports the development of a testbed of a few qubits for general quantum information processing tasks [1]. Lower cost and greater energy conversion efficiency compared with thin film devices have led to a high level of activity in nanowire research related to photovoltaic applications. This special issue also contains results from an impedance spectroscopy study of core-shell GaAs nanowires to throw light on the transport and recombination mechanisms relevant to solar cell research [2]. Information technology research and renewable energy sources are research areas of enormous public interest. This special issue addresses both theoretical and experimental achievements and provides a stimulating outlook for technological developments in these highly topical fields of research. References [1] Caram J, Sandoval C, Tirado M, Comedi D, Czaban J, Thompson D A and LaPierre R R 2101 Nanotechnology 21 134007 [2] Baugh J, Fung J S and LaPierre RR 2010 Nanotechnology 21 134018

  9. Thin Semiconductor/Metal Films For Infrared Devices

    NASA Technical Reports Server (NTRS)

    Lamb, James L.; Nagendra, Channamallappa L.

    1995-01-01

    Spectral responses of absorbers and reflectors tailored. Thin cermet films composites of metals and semiconductors undergoing development for use as broadband infrared reflectors and absorbers. Development extends concepts of semiconductor and dielectric films used as interference filters for infrared light and visible light. Composite films offer advantages over semiconductor films. Addition of metal particles contributes additional thermal conductivity, reducing thermal gradients and associated thermal stresses, with resultant enhancements of thermal stability. Because values of n in composite films made large, same optical effects achieved with lesser thicknesses. By decreasing thicknesses of films, one not only decreases weights but also contributes further to reductions of thermal stresses.

  10. Temperature control of power semiconductor devices in traction applications

    NASA Astrophysics Data System (ADS)

    Pugachev, A. A.; Strekalov, N. N.

    2017-02-01

    The peculiarity of thermal management of traction frequency converters of a railway rolling stock is highlighted. The topology and the operation principle of the automatic temperature control system of power semiconductor modules of the traction frequency converter are designed and discussed. The features of semiconductors as an object of temperature control are considered; the equivalent circuit of thermal processes in the semiconductors is suggested, the power losses in the two-level voltage source inverters are evaluated and analyzed. The dynamic properties and characteristics of the cooling fan induction motor electric drive with the scalar control are presented. The results of simulation in Matlab are shown for the steady state of thermal processes.

  11. {100}<100> or 45.degree.-rotated {100}<100>, semiconductor-based, large-area, flexible, electronic devices

    SciTech Connect

    Goyal, Amit

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100}<100> or 45.degree.-rotated {100}<100> oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  12. Biasing, operation and parasitic current limitation in single device equivalent to CMOS, and other semiconductor systems

    DOEpatents

    Welch, James D.

    2003-09-23

    Disclosed are semiconductor devices including at least one junction which is rectifying whether the semiconductor is caused to be N or P-type, by the presence of applied gate voltage field induced carriers in essentially intrinsic, essentially homogeneously simultaneously containing both N and P-type metallurgical dopants at substantially equal doping levels, essentially homogeneously simultaneously containing both N and P-type metallurgical dopants at different doping levels, and containing a single metallurgical doping type, and functional combinations thereof. In particular, inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to conventional multiple device CMOS systems, which can be operated as modulators, are disclosed as are a non-latching SCR and an approach to blocking parasitic currents utilizing material(s) which form rectifying junctions with both N and P-type semiconductor whether metallurigically or field induced.

  13. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    SciTech Connect

    Harrison, Richard Karl; Howell, Stephen Wayne; Martin, Jeffrey B.; Hamilton, Allister B.

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  14. Silicon active photonic devices

    NASA Astrophysics Data System (ADS)

    Dimitropoulos, Dimitrios

    Active photonic devices utilizing the optical nonlinearities of silicon have emerged in the last 5 years and the effort for commercial photonic devices in the material that has been the workhorse of electronics has been building up since. This dissertation presents the theory for some of these devices. We are concerned herein with CW lasers, amplifiers and wavelength converters that are based on the Raman effect. There have already been cursory experimental demonstrations of these devices and some of their limitations are already apparent. Most of the limitations observed are because of the appearance of effects that are competing with stimulated Raman scattering. Under the high optical powers that are necessary for the Raman effect (tens to hundrends of mW's) the process of optical two-photon (TPA) absorption occurs. The absorption of optical power that it causes itself is weak but in the process electrons and holes are generated which can further absorb light through the free-carrier absorption effect (FCA). The effective "lifetime" that these carriers have determines the magnitude of the FCA loss. We present a model for the carrier lifetime in Silicon-On-Insulator (SOI) waveguides and numerical simulations to understand how this critical parameter varies and how it can be controlled. A p-i-n junction built along SOI waveguides can help achieve lifetime of the order of 20--100 ps but the price one has to pay is on-chip electrical power consumption on the order of 100's of mWs. We model CW Raman lasers and we find that the carrier lifetime reduces the output power. If the carrier lifetime exceeds a certain "critical" value optical losses become overwhelming and lasing is impossible. As we show, in amplifiers, the nonlinear loss does not only result in diminished gain, but also in a higher noise figure. Finally the effect of Coherent anti-Stokes Raman scattering (CARS) is examined. The effect is important because with a pump frequency at 1434nm coherent power

  15. Accelerated Aging System for Prognostics of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Vashchenko, Vladislav; Wysocki, Philip; Saha, Sankalita

    2010-01-01

    Prognostics is an engineering discipline that focuses on estimation of the health state of a component and the prediction of its remaining useful life (RUL) before failure. Health state estimation is based on actual conditions and it is fundamental for the prediction of RUL under anticipated future usage. Failure of electronic devices is of great concern as future aircraft will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. Therefore, development of prognostics solutions for electronics is of key importance. This paper presents an accelerated aging system for gate-controlled power transistors. This system allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure which are essential in the development of physics-based degradation models and RUL prediction. In particular, this system isolates electrical overstress from thermal overstress. Also, this system allows for a precise control of internal temperatures, enabling the exploration of intrinsic failure mechanisms not related to the device packaging. By controlling the temperature within safe operation levels of the device, accelerated aging is induced by electrical overstress only, avoiding the generation of thermal cycles. The temperature is controlled by active thermal-electric units. Several electrical and thermal signals are measured in-situ and recorded for further analysis in the identification of leading indicators of failures. This system, therefore, provides a unique capability in the exploration of different failure mechanisms and the identification of precursors of failure that can be used to provide a health management solution for electronic devices.

  16. Hybrid method of making an amorphous silicon P-I-N semiconductor device

    DOEpatents

    Moustakas, Theodore D.; Morel, Don L.; Abeles, Benjamin

    1983-10-04

    The invention is directed to a hydrogenated amorphous silicon PIN semiconductor device of hybrid glow discharge/reactive sputtering fabrication. The hybrid fabrication method is of advantage in providing an ability to control the optical band gap of the P and N layers, resulting in increased photogeneration of charge carriers and device output.

  17. Sputtered pin amorphous silicon semi-conductor device and method therefor

    DOEpatents

    Moustakas, Theodore D.; Friedman, Robert A.

    1983-11-22

    A high efficiency amorphous silicon PIN semi-conductor device is constructed by the sequential sputtering of N, I and P layers of amorphous silicon and at least one semi-transparent ohmic electrode. A method of construction produces a PIN device, exhibiting enhanced physical integrity and facilitates ease of construction in a singular vacuum system and vacuum pump down procedure.

  18. Semiconductor Devices and Applications. Electronics Module 5. Instructor's Guide.

    ERIC Educational Resources Information Center

    Chappell, John; And Others

    This module is the fifth of 10 modules in the competency-based electronics series. Introductory materials include a listing of competencies addressed in the module, a parts/equipment list, and a cross-reference table of instructional materials. Sixteen instructional units cover: semiconductor materials; diodes; diode applications and…

  19. High Temperature Superconductor/Semiconductor Hybrid Microwave Devices and Circuits

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Miranda, Felix A.

    1999-01-01

    Contents include following: film deposition technique; laser ablation; magnetron sputtering; sequential evaporation; microwave substrates; film characterization at microwave frequencies; complex conductivity; magnetic penetration depth; surface impedance; planar single-mode filters; small antennas; antenna arrays phase noise; tunable oscillations; hybrid superconductor/semiconductor receiver front ends; and noise modeling.

  20. Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication

    DOEpatents

    Ashby, C.I.H.; Myers, D.R.; Vook, F.L.

    1988-06-16

    An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.

  1. Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication

    DOEpatents

    Ashby, Carol I. H.; Myers, David R.; Vook, Frederick L.

    1989-01-01

    An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.

  2. Advanced semiconductor quantum well devices for infrared applications

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Vladimir V.

    High performance mid-wavelength infrared (MWIR) light emitting diodes (LEDs) are needed for chemical sensing, analysis and medical imaging. Efficient long wavelength infrared (LWIR) photodetectors are highly desirable for remote sensing and space exploration. The goal of this work is to investigate new mid-infrared LEDs and to optimize existing LWIR quantum well infrared photodetectors (QWIPs). Type-II "W" InAs/InGaSb/AlGaAsSb quantum wells were incorporated as optically active layers in MWIR LEDs. Influence of MBE crystal growth conditions on the density of Shockley-Read-Hall centers in the "W" quantum wells was studied and the optimal growth conditions were identified. A qualitative physical model was developed to describe relative importance of the radiative and non-radiative processes for various temperature ranges. MWIR LED structures lattice-matched to InAs and GaSb substrates were grown. Devices on InAs substrates were found to be at least twice as efficient as devices grown on GaSb. LEDs on InAs had 4.5 mum emission wavelength and 26.5 muW/A external efficiency. Possibility to operate GaAs/AIGaAs QWIP under normal-to-surface light incidence was studied. Metal nano-particle surface coating was developed and processes responsible for, light coupling into the QWIP were investigated. QWIP structure itself was optimized to eliminate Si-diffusion-assisted dark current enhancement by employing a new doping profile in the quantum wells. Devices with the new doping profile had an order of magnitude lower dark current and 20% higher photoresponse than commercially available QWIPs.

  3. Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates

    DOEpatents

    Norman, Andrew G; Ptak, Aaron J

    2013-08-13

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a substrate having a crystalline surface with a known lattice parameter (a). The method further includes growing a crystalline semiconductor layer on the crystalline substrate surface by coincident site lattice matched epitaxy, without any buffer layer between the crystalline semiconductor layer and the crystalline surface of the substrate. The crystalline semiconductor layer will be prepared to have a lattice parameter (a') that is related to the substrate lattice parameter (a). The lattice parameter (a') maybe related to the lattice parameter (a) by a scaling factor derived from a geometric relationship between the respective crystal lattices.

  4. Investigation of quantum confinement in silicon and germanium semiconductor nanocrystals and their application in photonic devices

    NASA Astrophysics Data System (ADS)

    Delgado, Gildardo Rios

    1997-09-01

    A series of coordinated optical experiments were instrumental in developing a fundamental understanding of the optical and electronic properties of indirect energy gap nanocrystals. This dissertation points out critical interpretations in this new field. Nanocrystals represent a novel form of crystalline materials which have captured much attention due to their enhanced optical and electronic properties. Most commonly used semiconductors have band gap energies in the infrared to near infrared regions which make them undesirable for many optoelectronic devices. However, in nanocrystals theoretical models confirm that quantum confinement effects provide energy levels which allow for visible photoluminescence (PL). Quantum confinement effects enable indirect band gap semiconductors to become efficient visible light emitters. Optical results presented in this dissertation indicate that in the case of Si and Ge nanocrystals when the structures are on the order of 2 and 2-10 nanometers respectively, quantum confined energy levels become available that allow for efficient blue luminescence. Furthermore, results on nanocrystalline Si and Ge and comparison with theoretical models clearly demonstrate that efficient photoluminescence (PL) results from quantum confinement effects where the critical features are the size and the shape of nanostructures, and the surface termination. Silicon and germanium nanocrystals enable many advanced optoelectronic devices such as flat panel displays and optical memories. In this dissertation, I will discuss how Si and Ge nanocrystals were used to fabricate low-cost and easily processed blue electroluminescent devices. The active EL material consists of Si or Ge nanocrystals embedded in various host matrices such as polyvinylcarbazole (PVK) and other organic polymers. Major advantages of this composite material system are the ease of producing high quality, thin, conformal EL films. Several device configurations were used that rely on

  5. Device Concepts Based on Spin-dependent Transmission in Semiconductor Heterostructures

    NASA Technical Reports Server (NTRS)

    Ting, David Z. - Y.; Cartoixa, X.

    2004-01-01

    We examine zero-magnetic-field spin-dependent transmission in nonmagnetic semiconductor heterostructures with structural inversion asymmetry (SIA) and bulk inversion asymmetry (BIA), and report spin devices concepts that exploit their properties. Our modeling results show that several design strategies could be used to achieve high spin filtering efficiencies. The current spin polarization of these devices is electrically controllable, and potentially amenable to highspeed spin modulation, and could be integrated in optoelectronic devices for added functionality.

  6. Simulation of Electronic Transport in Semiconductor Heterolayer Devices

    DTIC Science & Technology

    1992-10-01

    Mesoscopic Systems With Open Boundaries Using the Multidimensional Time - Dependent Schr • dinger Equation ," J. Appl. Phys. 69 (10), pp. 7153-7158 (1991...Conference on Computational Physics, University of Colorado at Boulder, Boulder, Colorado, June 11-15, 1990. " Approaches to Transport in Semiconductor...Work in the three years of the grant was aimed at both improving and generalizing the full band Monte Carlo approach and at developing numerical

  7. Nonlinear fibre-optic devices pumped by semiconductor disk lasers

    SciTech Connect

    Chamorovskiy, A Yu; Okhotnikov, Oleg G

    2012-11-30

    Semiconductor disk lasers offer a unique combination of characteristics that are particularly attractive for pumping Raman lasers and amplifiers. The advantages of disk lasers include a low relative noise intensity (-150 dB Hz{sup -1}), scalable (on the order of several watts) output power, and nearly diffraction-limited beam quality resulting in a high ({approx}70 % - 90 %) coupling efficiency into a single-mode fibre. Using this technology, low-noise fibre Raman amplifiers operating at 1.3 {mu}m in co-propagation configuration are developed. A hybrid Raman-bismuth doped fibre amplifier is proposed to further increase the pump conversion efficiency. The possibility of fabricating mode-locked picosecond fibre lasers operating under both normal and anomalous dispersion is shown experimentally. We demonstrate the operation of 1.38-{mu}m and 1.6-{mu}m passively mode-locked Raman fibre lasers pumped by 1.29-{mu}m and 1.48-{mu}m semiconductor disk lasers and producing 1.97- and 2.7-ps pulses, respectively. Using a picosecond semiconductor disk laser amplified with an ytterbium-erbium fibre amplifier, the supercontinuum generation spanning from 1.35 {mu}m to 2 {mu}m is achieved with an average power of 3.5 W. (invited paper)

  8. Device processing of wide bandgap semiconductors - challenges and directions

    SciTech Connect

    Pearton, S.J.; Shul, R.J.; Zolper, J.C.

    1997-10-01

    The wide gap materials SiC, GaN and to a lesser extent diamond are attracting great interest for high power/high temperature electronics. There are a host of device processing challenges presented by these materials because of their physical and chemical stability, including difficulty in achieving stable, low contact resistances, especially for one conductivity type, absence of convenient wet etch recipes, generally slow dry etch rates, the high temperatures needed for implant activation, control of suitable gate dielectrics and the lack of cheap, large diameter conducting and semi-insulating substrates. The relatively deep ionization levels of some of the common dopants (Mg, in GaN; B, Al in SiC; P in diamond) means that carrier densities may be low at room temperature even if the impurity is electrically active - this problem will be reduced at elevated temperature, and thus contact resistances will be greatly improved provided the metallization is stable and reliable. Some recent work with CoSi{sub x} on SiC and W-alloys on GaN show promise for improved ohmic contacts. The issue of unintentional hydrogen passivation of dopants will also be covered - this leads to strong increases in resistivity of p-SiC and GaN, but to large decreases in resistivity of diamond. Recent work on development of wet etches has found recipes for AlN (KOH), while photochemical etching of SiC and GaN has been reported. In the latter cases p-type materials is not etched, which can be a major liability in some devices. The dry etch results obtained with various novel reactors, including ICP, ECR and LE4 will be compared - the high ion densities in the former techniques produce the highest etch rates for strongly-bonded materials, but can lead to preferential loss of N from the nitrides and therefore to a highly conducting surface. This is potentially a major problem for fabrication of dry etched, recessed gate FET structures.

  9. Modeling of Quantum Transport in Semiconductor Devices (The Physics and Operation of Ultra-Submicron Length Semiconductor Devices).

    DTIC Science & Technology

    1994-05-01

    folded into Landau orbits, in which the essentially one-dimensional transport along the orbit hinders the scattering process." Only those trajectories...tunneling, which can also occur in semiconductors under very high electric fields (where it is often referred to as Zener tunneling) has been worked out over...quantum mechanical effect is the dynamic change of the den- sity of states, such as in Landau quantization, and this can be incorporated within (1) by

  10. Charge transport in nanoscale vertical organic semiconductor pillar devices

    PubMed Central

    Wilbers, Janine G. E.; Xu, Bojian; Bobbert, Peter A.; de Jong, Michel P.; van der Wiel, Wilfred G.

    2017-01-01

    We report charge transport measurements in nanoscale vertical pillar structures incorporating ultrathin layers of the organic semiconductor poly(3-hexylthiophene) (P3HT). P3HT layers with thickness down to 5 nm are gently top-contacted using wedging transfer, yielding highly reproducible, robust nanoscale junctions carrying high current densities (up to 106 A/m2). Current-voltage data modeling demonstrates excellent hole injection. This work opens up the pathway towards nanoscale, ultrashort-channel organic transistors for high-frequency and high-current-density operation. PMID:28117371

  11. Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition.

    PubMed

    Ryckman, Judson D; Hallman, Kent A; Marvel, Robert E; Haglund, Richard F; Weiss, Sharon M

    2013-05-06

    Vanadium dioxide (VO(2)) is a promising reconfigurable optical material and has long been a focus of condensed matter research owing to its distinctive semiconductor-to-metal phase transition (SMT), a feature that has stimulated recent development of thermally reconfigurable photonic, plasmonic, and metamaterial structures. Here, we integrate VO(2) onto silicon photonic devices and demonstrate all-optical switching and reconfiguration of ultra-compact broadband Si-VO(2) absorption modulators (L < 1 μm) and ring-resonators (R ~ λ(0)). Optically inducing the SMT in a small, ~0.275 μm(2), active area of polycrystalline VO(2) enables Si-VO(2) structures to achieve record values of absorption modulation, ~4 dB μm(-1), and intracavity phase modulation, ~π/5 rad μm(-1). This in turn yields large, tunable changes to resonant wavelength, |Δλ(SMT)| ~ 3 nm, approximately 60 times larger than Si-only control devices, and enables reconfigurable filtering and optical modulation in excess of 7 dB from modest Q-factor (~10(3)), high-bandwidth ring resonators (>100 GHz). All-optical integrated Si-VO(2) devices thus constitute platforms for reconfigurable photonics, bringing new opportunities to realize dynamic on-chip networks and ultrafast optical shutters and modulators.

  12. Dynamic detection of electron spin accumulation in ferromagnet–semiconductor devices by ferromagnetic resonance

    PubMed Central

    Liu, Changjiang; Patel, Sahil J.; Peterson, Timothy A.; Geppert, Chad C.; Christie, Kevin D.; Stecklein, Gordon; Palmstrøm, Chris J.; Crowell, Paul A.

    2016-01-01

    A distinguishing feature of spin accumulation in ferromagnet–semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this approach enables a measurement of short spin lifetimes (<100 ps), a regime that is not accessible in semiconductors using traditional Hanle techniques. PMID:26777243

  13. Interface Design Principles for High-Performance Organic Semiconductor Devices.

    PubMed

    Nie, Wanyi; Gupta, Gautam; Crone, Brian K; Liu, Feilong; Smith, Darryl L; Ruden, P Paul; Kuo, Cheng-Yu; Tsai, Hsinhan; Wang, Hsing-Lin; Li, Hao; Tretiak, Sergei; Mohite, Aditya D

    2015-06-01

    Precise manipulation of organic donor-acceptor interfaces using spacer layers is demonstrated to suppress interface recombination in an organic photo-voltaic device. These strategies lead to a dramatic improvement in a model bilayer system and bulk-heterojunction system. These interface strategies are applicable to a wide variety of donor-acceptor systems, making them both fundamentally interesting and technologically relevant for achieving high efficiency organic electronic devices.

  14. Functionalization of Semiconductor Nanomaterials for Optoelectronic Devices And Components

    DTIC Science & Technology

    2015-03-04

    alternative for single quarter wavelength coating . Previous investigations on Ta2O5 include corrosion protection coating , electrochromic devices...conversion efficiency of InAs quantum dot solar cell by using a single layer anatase TiO2 anti-reflection coating ,” R. Vasan, Y. F. Makableh, J. C...Sarker, and M. O. Manasreh, IEEE Electron Device Letters. (Submitted). 2. “Broadband Nanostructured Antireflection Coating for Enhancing InAs/GaAs

  15. Characterization of organic and inorganic optoelectronic semiconductor devices using advanced spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Schroeder, Raoul

    In this thesis, advanced spectroscopy methods are discussed and applied to gain understanding of the physical properties of organic conjugated molecules, II-VI thin film semiconductors, and vertical cavity surface emitting lasers (VCSEL). Experiments include single photon and two-photon excitation with lasers, with subsequent measurements of the absorption and photoluminescence, as well as photocurrent measurements using tungsten and xenon lamps, measuring the direct current and the alternating current of the devices. The materials are investigated in dissolved form (conjugated polymers), thin films (polymers, II-VI semiconductors), and complex layer structures (hybrid device, VCSEL). The experiments are analyzed and interpreted by newly developed or applied theories for two-photon saturation processes in semiconductors, bandgap shrinkage due to optically induced electron hole pairs, and the principle of detailed balance to describe the photoluminescence in thin film cadmium sulfide.

  16. Center for Semiconductor Materials and Device Modeling: expanding collaborative research opportunities between government, academia, and industry

    NASA Astrophysics Data System (ADS)

    Perconti, Philip; Bedair, Sarah S.; Bajaj, Jagmohan; Schuster, Jonathan; Reed, Meredith

    2016-09-01

    To increase Soldier readiness and enhance situational understanding in ever-changing and complex environments, there is a need for rapid development and deployment of Army technologies utilizing sensors, photonics, and electronics. Fundamental aspects of these technologies include the research and development of semiconductor materials and devices which are ubiquitous in numerous applications. Since many Army technologies are considered niche, there is a lack of significant industry investment in the fundamental research and understanding of semiconductor technologies relevant to the Army. To address this issue, the US Army Research Laboratory is establishing a Center for Semiconductor Materials and Device Modeling and seeks to leverage expertise and resources across academia, government and industry. Several key research areas—highlighted and addressed in this paper—have been identified by ARL and external partners and will be pursued in a collaborative fashion by this Center. This paper will also address the mechanisms by which the Center is being established and will operate.

  17. Total-dose radiation effects data for semiconductor devices (1989 supplement)

    NASA Technical Reports Server (NTRS)

    Martin, Keith E.; Coss, James R.; Goben, Charles A.; Shaw, David C.; Farmanesh, Sam; Davarpanah, Michael M.; Craft, Leroy H.; Price, William E.

    1990-01-01

    Steady state, total dose radiation test data are provided for electronic designers and other personnel using semiconductor devices in a radiation environment. The data are presented in graphic and narrative formats. Two primary radiation source types were used: Cobalt-60 gamma rays and a Dynamitron electron accelerator capable of delivering 2.5 MeV electrons at a steady rate.

  18. Optoelectronic device simulation: Optical modeling for semiconductor optical amplifiers and solid state lighting

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Xue (Michael)

    2006-07-01

    transparency carrier densities; the differential gain is assumed constant accordingly. This assumption is only valid for wavelengths close to the gain peak wavelength. As a result, high accuracy for wideband wavelength conversion is not guaranteed. We proposed a steady state numerical model of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers. In this model, a new model of the gain coefficient developed by Connelly was applied, which also includes the internal loss variation with the electron carrier density. Each physical variable, such as the carrier density, gain coefficient, differential gain, and internal loss, spatially varies across the SOA cavity and is numerically calculated throughout the device. This model can predicts wavelength-dependent characteristics of a wavelength converter of the SOA in both large and small signal regimes. Some key performance factors of SOA wavelength converters, such as selection of pump and probe wavelengths and power, length of SOA cavities, conversion efficiency and bandwidth, system performance difference between up and down conversions can be modeled and optimized using this numerical model. Most LED modeling techniques are based on optical ray tracing to predict the light extraction efficiency, and the light extraction efficiency is a critical parameter to evaluate LEDs. Here, we proposed a hybrid method to simulate the lighting efficiency of LED chips, where both guided wave theory and geometric optical ray tracing are applied. Guided wave optics is used to identify guided modes and leakage modes inside the LED active layer, and its device structure can be optimized to increase leakage modes so that the lighting extraction efficiency is improved. On the other hand, Monte Carlo optical ray tracing is used to quantitatively determine optical extraction efficiency. Moreover, this method can model the light distribution and far-field illumination pattern. Both single wavelength LEDs and dual

  19. Wide-Bandgap Semiconductor Devices for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Sugimoto, M.; Ueda, H.; Uesugi, T.; Kachi, T.

    2007-06-01

    In this paper, we discuss requirements of power devices for automotive applications, especially hybrid vehicles and the development of GaN power devices at Toyota. We fabricated AlGaN/GaN HEMTs and measured their characteristics. The maximum breakdown voltage was over 600V. The drain current with a gate width of 31mm was over 8A. A thermograph image of the HEMT under high current operation shows the AlGaN/GaN HEMT operated at more than 300°C. And we confirmed the operation of a vertical GaN device. All the results of the GaN HEMTs are really promising to realize high performance and small size inverters for future automobiles.

  20. Crystal Phases in Hybrid Metal-Semiconductor Nanowire Devices.

    PubMed

    David, J; Rossella, F; Rocci, M; Ercolani, D; Sorba, L; Beltram, F; Gemmi, M; Roddaro, S

    2017-04-12

    We investigate the metallic phases observed in hybrid metal-GaAs nanowire devices obtained by controlled thermal annealing of Ni/Au electrodes. Devices are fabricated onto a SiN membrane compatible with transmission electron microscopy studies. Energy dispersive X-ray spectroscopy allows us to show that the nanowire body includes two Ni-rich phases that thanks to an innovative use of electron diffraction tomography can be unambiguously identified as Ni3GaAs and Ni5As2 crystals. The mechanisms of Ni incorporation leading to the observed phenomenology are discussed.

  1. Novel compound semiconductor devices based on III-V nitrides

    SciTech Connect

    Pearton, S.J.; Abernathy, C.R.; Ren, F.

    1995-10-01

    New developments in dry and wet etching, ohmic contacts and epitaxial growth of Ill-V nitrides are reported. These make possible devices such as microdisk laser structures and GaAs/AlGaAs heterojunction bipolar transistors with improved InN ohmic contacts.

  2. Charge transport and device physics of layered-crystalline organic semiconductors (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tatsuo

    2015-10-01

    Here we present and discuss our recent investigations into the understanding of microscopic charge transport, novel film processing technologies, and a development of layered-crystalline organic semiconductors for high performance OTFTs. We first discuss the microscopic charge transport in the OTFTs, as investigated by field-induced electron spin resonance spectroscopy. The technique can detect signals due to tiny amount of field-induced carriers, accumulated at the semiconductor-insulator interfaces. Following aspects are presented and discussed; 1) Carrier motion within the crystalline domains can be understood in terms of the trap-and-release transport, 2) charge trap states are spatially extended over several sites depending on the trap levels, and 3) the intra- and inter-domain transport can be discriminated by anisotropic electron spin resonance measurements. Next we discuss novel print production technologies for organic semiconductors showing high layered crystallinity. The concept of "printed electronics" is now regarded as a realistic paradigm to manufacture light-weight, thin, and impact-resistant electronics devices, although production of highly crystalline semiconductor films may be incompatible with conventional printing process. We here present printing techniques for manufacturing high performance OTFTs; 1) double-shot inkjet printing for small-molecule-based semiconductors, and 2) push-coating for semiconducting polymers. We demonstrate that both processes are useful to manufacture high quality semiconductor layers with the high layered crystallinity.

  3. System for characterizing semiconductor materials and photovoltaic device

    DOEpatents

    Sopori, B.L.

    1996-12-03

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline material in a manner that distinguishes dislocation pits from grain boundaries includes a first laser of a first wavelength for illuminating a wide spot on the surface of the material, a second laser of a second relatively shorter wavelength for illuminating a relatively narrower spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate raster mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. A reflectance measurement of the piece of material is obtained by adding together the signals from the optical detection devices. In the case where the piece of material includes a photovoltaic device, the current induced in the device by the illuminating light can be measured with a current sensing amplifier after the light integrating sphere is moved away from the device. 22 figs.

  4. System for characterizing semiconductor materials and photovoltaic device

    DOEpatents

    Sopori, Bhushan L.

    1996-01-01

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline material in a manner that distinguishes dislocation pits from grain boundaries includes a first laser of a first wavelength for illuminating a wide spot on the surface of the material, a second laser of a second relatively shorter wavelength for illuminating a relatively narrower spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate raster mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. A reflectance measurement of the piece of material is obtained by adding together the signals from the optical detection devices. In the case where the piece of material includes a photovoltaic device, the current induced in the device by the illuminating light can be measured with a current sensing amplifier after the light integrating sphere is moved away from the device.

  5. Transport properties in semiconductor-gas discharge electronic devices

    NASA Astrophysics Data System (ADS)

    Sadiq, Y.; (Yücel) Kurt, H.; Albarzanji, A. O.; Alekperov, S. D.; Salamov, B. G.

    2009-09-01

    Nonlinear electrical transport of semi-insulating (SI) GaAs detector in semiconductor-gas discharge IR image converter (SGDIC) are studied experimentally for a wide range of the gas pressures ( p = 28-55 Torr), interelectrode distances ( d = 445-525 μm) and inner electrode diameters ( D = 12-22 mm) of photocathode. The destabilization of homogeneous state observed in a planar dc-driven structure is due to nonlinear transport properties of GaAs photocathode. Experimental investigation of electrical instability in SGDIC structure was analyzed using hysteresis, N-shaped negative differential conductivity (NDC) current voltage characteristics (CVC) and dynamic behavior of current in a wide range of feeding voltage ( U = 590-1000 V) under different IR light intensities incident on cathode material. It is established that hysteresis are related to electron capture and emission from EL2 deep center on the detector substrate. We have experimentally investigated domain velocity and electron mobility based on well-understood transferred electron effect (TEE) for abovementioned nonlinear electrical characteristics of SI GaAs. The experimental findings are in good agreement with estimated results reported by other independent authors.

  6. Characteristics of III-V Semiconductor Devices at High Temperature

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Young, Paul G.; Taub, Susan R.; Alterovitz, Samuel A.

    1994-01-01

    This paper presents the development of III-V based pseudomorphic high electron mobility transistors (PHEMT's) designed to operate over the temperature range 77 to 473 K (-196 to 200 C). These devices have a pseudomorphic undoped InGaAs channel that is sandwiched between an AlGaAs spacer and a buffer layer; gate widths of 200, 400, 1600, and 3200 micrometers; and a gate length of 2 micrometers. Measurements were performed at both room temperature and 473 K (200 C) and show that the drain current decreases by 30 percent and the gate current increases to about 9 microns A (at a reverse bias of -1.5 V) at the higher temperature. These devices have a maximum DC power dissipation of about 4.5 W and a breakdown voltage of about 16 V.

  7. Antimonide-Based Compound Semiconductors for Electronic Devices: A Review

    DTIC Science & Technology

    2005-04-01

    currents, apparently due to exten- sive interface recombination [137]. Dodd et al. fabricated npn InAs bipolar transistors on InP in an attempt to achieve...Demonstration of npn InAs bipolar transistors with inverted base doping. IEEE Electron Dev Lett 1996;17(4):166–8. [139] Moran PD, Chow D, Hunter A, Kuech TF...based electronic devices: high electron mobility transistors (HEMTs), resonant tunneling diodes (RTDs), and heterojunction bipolar transistors (HBTs

  8. Ferroelectric HfO2 for Emerging Ferroelectric Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Florent, Karine

    The spontaneous polarization in ferroelectrics (FE) makes them particularly attractive for non-volatile memory and logic applications. Non-volatile FRAM memories using perovskite structure materials, such as Lead Zirconate Titanate (PZT) and Strontium Bismuth Tantalate (SBT) have been studied for many years. However, because of their scaling limit and incompatibility with CMOS beyond 130 nm node, floating gate Flash memory technology has been preferred for manufacturing. The recent discovery of ferroelectricity in doped HfO2 in 2011 has opened the door for new ferroelectric based devices compatible with CMOS technology, such as Ferroelectric Field Effect Transistor (FeFET) and Ferroelectric Tunnel Junctions (FTJ). This work began with developing ferroelectric hysteresis characterization capabilities at RIT. Initially reactively sputtered aluminum doped HfO 2 films were investigated. It was observed that the composition control using co-sputtering was not achievable within the existing capabilities. During the course of this study, collaboration was established with the NaMLab group in Germany to investigate Si doped HfO2 deposited by Atomic Layer Deposition (ALD). Metal Ferroelectric Metal (MFM) devices were fabricated using TiN as the top and bottom electrode with Si:HfO2 thickness ranging from 6.4 nm to 22.9 nm. The devices were electrically tested for P-E, C-V and I-V characteristics. Structural characterizations included TEM, EELS, XRR, XRD and XPS/Auger spectroscopy. Higher remanant polarization (Pr) was observed for films of 9.3 nm and 13.1 nm thickness. Thicker film (22.9 nm) showed smaller Pr. Devices with 6.4 nm thick films exhibit tunneling behavior showing a memristor like I-V characteristics. The tunnel current and ferroelectricity showed decrease with cycling indicating a possible change in either the structure or the domain configurations. Theoretical simulations using the improved FE model were carried out to model the ferroelectric behavior of

  9. Passivation of III-V Compound Semiconductor Based Devices

    DTIC Science & Technology

    1993-11-29

    approximately 60 A/s. The AES, Rutherford Backscattering, FIIR and stress measurements were also carried out. This work was done in collaboration with Dr ...begun to collaborate with us on the project. A brief description of these projects are listed below: 8 a) HP Research Laboratory ( Drs . S. Camnitz, K. L...DC characterization of devices. b) University of California. Santa Barbara ( Drs . B. Young, L. A. Coldren and V. Malhotra): Passivation of GaAs-based

  10. Scalable Iterative Solvers Applied to 3D Parallel Simulation of Advanced Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    García-Loureiro, A. J.; Aldegunde, M.; Seoane, N.

    2009-08-01

    We have studied the performance of a preconditioned iterative solver to speed up a 3D semiconductor device simulator. Since 3D simulations necessitate large computing resources, the choice of algorithms and their parameters become of utmost importance. This code uses a density gradient drift-diffusion semiconductor transport model based on the finite element method which is one of the most general and complex discretisation techniques. It has been implemented for a distributed memory multiprocessor environment using the Message Passing Interface (MPI) library. We have applied this simulator to a 67 nm effective gate length Si MOSFET.

  11. Using Deep Level Transient Spectroscopy (DLTS) to characterize defects in semiconductor devices

    NASA Astrophysics Data System (ADS)

    Lang, David

    2012-02-01

    Deep Level Transient Spectroscopy (DLTS) is a member of the class of instrumentation methods that utilizes the detection of trapped electronic charge to characterize defects in solids. Such methods detect this charge either directly, e.g. via capacitance measurements, or indirectly, e.g. via the current associated with the release of trapped charge. These types of instrumentation have been widely used since the dawn of solid-state physics, particularly for nonradiative defects in semiconductors and insulators. In the case of semiconductor devices, the highly sensitive capacitive detection of trapped charge in the junction depletion layer makes these methods particularly powerful. The DLTS method introduced the concept of time-domain filtering (the so-called ``rate window'') to create a defect spectrum from the transient response of the device versus temperature. This talk will give an overview of DLTS, with particular emphasis on the correlation between defects and device performance.

  12. ZnO wide bandgap semiconductors preparation for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Ramelan, A. H.; Wahyuningsih, S.; Munawaroh, H.; Narayan, R.

    2017-02-01

    ZnO nanoparticles were successfully synthesized by sol-gel method. According to unique structural and optical properties of ZnO semiconductor material, there are many potential important applications based on that material, including as an anti-reflection coating (ARC) in solar cells. Antireflective coatings (ARC) made of ZnO on top to improve the optical properties of the coating. TiO2 layer have been coated on a ZnO nanoparticle layer. ZnO nanoparticle was characterized by X-ray diffraction (XRD), Scanning electron Microscopy (SEM) and UV-Vis spectroscopy. ZnO annealed at a temperature of 600 °C have the greatest crystalinity and crystal size than that at a temperature of 400 °C and 500 °C. SEM images of ZnO shown agglomeration and grain size increases with increasing annealed temperature. While, the optical properties of ZnO increase with increasing annealed temperature. The optical transmittance spectra of the ZnO are shown that the increasing annealing temperature had effectively improved the optical transmittance of the films. While, reflectance (%R) properties shows that, the higher annealing temperature of ZnO preparations can decrease of %R value of ZnO thin layer. The difference properties of ZnO are due to differences of light scattering resulting from the crystal size effect. The ZnO prepared by annealed at 600 °C gain a good performance of the lowest reflectance value and highest size crystal. By the addition of ARC ZnO 600 °C we have been capable improve cell performance so that that cells achieve an efficiency of 0.27%.

  13. High conductance ohmic junction for monolithic semiconductor devices

    NASA Technical Reports Server (NTRS)

    Lewis, Carol R. (Inventor)

    1988-01-01

    In order to increase the efficiency of solar cells, a monolithic stacked device is constructed comprising a plurality of solar sub-cells adjusted for different bands of radiation. The interconnection between these sub-cells has been a significant technical problem. The invention provides an interconnection which is a thin layer of high ohmic conductance material formed between the sub-cells. Such a layer tends to form beads which serve as a shorting interconnect while passing a large fraction of the radiation to the lower sub-cells and permitting lattice-matching between the sub-cells to be preserved.

  14. Wide Bandgap Semiconductor Nanowires for Electronic, Photonic and Sensing Devices

    DTIC Science & Technology

    2012-01-05

    variety of wide bandgap nanowires using GaN and ZnO and made functional devices from them for sensing,electronics and photonics.These included a very...showed highly stable operation.This effort grew out of the work on ZnO nanowires ,where we noticed severe segregation effects when we tried to grow...AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS GaN, ZnO , nanowires S.Pearton

  15. Degradation, Reliability, and Failure of Semiconductor Electronic Devices

    DTIC Science & Technology

    2006-11-01

    determines its ability to conduct heat away that is generated by the operation of the device and therefore its operating temperature. The temperature...an AlN cap heated to (a) 1650ºC or (b) 1700ºC for 30 min. Though we are now able to anneal the implanted SiC up to temperatures as high as...outweighed the negative effects of th stent defects. Thus, as shown in Fig. 12b, the regio anted near the junctions was implanted with 1019 cm Al, while

  16. Method of making suspended thin-film semiconductor piezoelectric devices

    DOEpatents

    Casalnuovo, Stephen A.; Frye-Mason, Gregory C.

    2001-01-01

    A process for forming a very thin suspended layer of piezoelectric material of thickness less than 10 microns. The device is made from a combination of GaAs and AlGaAs layers to form either a sensor or an electronic filter. Onto a GaAs substrate is epitaxially deposited a thin (1-5 micron) sacrificial AlGaAs layer, followed by a thin GaAs top layer. In one embodiment the substrate is selectively etched away from below until the AlGaAs layer is reached. Then a second selective etch removes the sacrificial AlGaAs layer, that has acted here as an etch stop, leaving the thin suspended layer of piezoelectric GaAs. In another embodiment, a pattern of small openings is etched through the thin layer of GaAs on top of the device to expose the sacrificial AlGaAs layer. A second selective etch is done through these openings to remove the sacrificial AlGaAs layer, leaving the top GaAs layer suspended over the GaAs substrate. A novel etchant solution containing a surface tension reducing agent is utilized to remove the AlGaAs while preventing buildup of gas bubbles that would otherwise break the thin GaAs layer.

  17. ZnCdMgSe-Based Semiconductors for Intersubband Devices

    SciTech Connect

    Tamargo, Maria C.

    2008-11-13

    This paper presents a review of recent results on the application of ZnCdMgSe-based wide bandgap II-VI compounds to intersubband devices such as quantum cascade lasers and quantum well infrared photodetectors operating in the mid-infrared region. The conduction band offset of ZnCdSe/ZnCdMgSe quantum well structures was determined from contactless electroreflectance measurements to be as high as 1.12 eV. FT-IR was used to measure intersubband absorption in multi-quantum well structures in the mid-IR range. Electroluminescence at 4.8 {mu}m was observed from a quantum cascade emitter structure made from these materials. Preliminary results are also presented on self assembled quantum dots of CdSe on ZnCdMgSe, and novel quantum well structures with metastable binary MgSe barriers.

  18. Separating Positive and Negative Magnetoresistance in Organic Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Bloom, F. L.; Wagemans, W.; Kemerink, M.; Koopmans, B.

    2007-12-01

    We study the transition between positive and negative organic magnetoresistance (OMAR) in tris-(8 hydroxyquinoline) aluminium (Alq3), in order to identify the elementary mechanisms governing this phenomenon. We show how the sign of OMAR changes as function of the applied voltage and temperature. The transition from negative to positive magnetoresistance (MR) is found to be accompanied by an increase in slope of log⁡(I) versus log⁡(V). ac admittance measurements show this transition coincides with the onset of minority charge (hole) injection in the device. All these observations are consistent with two simultaneous contributions with opposite sign of MR, which may be assigned to holes and electrons having different magnetic field responses.

  19. Dynamic detection of spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.

    2016-10-01

    A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (< 100 psec), a regime that is not accessible in semiconductors using traditional Hanle techniques. The measurements were carried out on epitaxial Heusler alloy (Co2FeSi or Co2MnSi)/n-GaAs heterostructures. Lateral spin valve devices were fabricated by electron beam and photolithography. We compare measurements carried out by the new FMR-based technique with traditional non-local and three-terminal Hanle measurements. A full model appropriate for the measurements will be introduced, and a broader discussion in the context of spin pumping experimenments will be included in the talk. The new technique provides a simple and powerful means for detecting spin accumulation at high temperatures. Reference: C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296

  20. Theoretical discovery of stable structures of group III-V monolayers: The materials for semiconductor devices

    SciTech Connect

    Suzuki, Tatsuo

    2015-11-23

    Group III-V compounds are very important as the materials of semiconductor devices. Stable structures of the monolayers of group III-V binary compounds have been discovered by using first-principles calculations. The primitive unit cell of the discovered structures is a rectangle, which includes four group-III atoms and four group-V atoms. A group-III atom and its three nearest-neighbor group-V atoms are placed on the same plane; however, these connections are not the sp{sup 2} hybridization. The bond angles around the group-V atoms are less than the bond angle of sp{sup 3} hybridization. The discovered structure of GaP is an indirect transition semiconductor, while the discovered structures of GaAs, InP, and InAs are direct transition semiconductors. Therefore, the discovered structures of these compounds have the potential of the materials for semiconductor devices, for example, water splitting photocatalysts. The discovered structures may become the most stable structures of monolayers which consist of other materials.

  1. Proceedings of defect engineering in semiconductor growth, processing and device technology

    SciTech Connect

    Ashok, S.; Chevallier, J.; Sumino, K.; Weber, E.

    1992-01-01

    This volume results from a symposium that was part of the 1992 Spring Meeting of the Materials Research Society, held in San Francisco from April 26 to May 1, 1992. The symposium, entitled Defect Engineering in Semiconductor Growth, Processing and Device Technology, was the first of its kind at MRS and brought together academic and industrial researchers with varying perspectives on defects in semiconductors. Its aim was to go beyond defect control, and focus instead on deliberate and controlled introduction and manipulation of defects in order to engineer some desired properties in semiconductor materials and devices. While the concept of defect engineering has at least a vague perception in techniques such as impurity/defect gettering and the use of the EL2 level in GaAs, more extensive as well as subtle uses of defects are emerging to augment the field. This symposium was intended principally to encourage creative new applications of defects in all aspects of semiconductor technology. The organization of this proceedings volume closely follows the topics around which the sessions were built. The papers on grown-in defects in bulk crystals deal with overviews of intrinsic and impurity-related defects, their influence on electrical, optical and mechanical properties, as well as the use of impurities to arrest certain types of defects during growth and defects to control growth. The issues addressed by the papers on defects in thin films include impurity and stoichiometry control, defects created by plasmas and the use of electron/ion irradiation for doping control.

  2. Intersubband transitions in III-V semiconductors for novel infrared optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammed Imrul

    Intersubband transitions (ISBTs) in the conduction band (CB) of semiconductor multiple quantum wells (QW) have led to devices, like quantum-well infrared photodetectors and quantum cascade lasers (QCL). Due to the complexities related to the valence band (VB), hole ISBTs have not been explored as intensively as their electronic counterparts. Absorption and photoluminescence due to ISBT in the VB have been reported for p-type Si-SiGe QWs but this material system suffers from significant challenges associated with the built-in strain of these lattice mismatched materials. The GaAs/AlGaAs material system is virtually strain-free and quite mature. We are investigating the properties of bound-to-bound inter-valence subband transitions in GaAs QWs with high Al composition barriers for mid-infrared emitters. Hole ISBTs are interesting because the polarization of the light emitted in heavy-to-light hole transitions is not restricted to the perpendicular of the quantum wells (unlike electron ISBTs in the CB due to selection rules), therefore surface emitting QCLs and ultimately vertical-cavity surface emitting devices are possible using these transitions. Moreover the valence-band offset for pure GaAs and AlAs is comparable with the conduction-band offset in the traditional InGaAs/InAlAs lattice matched to InP system. Very recently we have observed strong heavy to light hole absorption and heavy to heavy hole electroluminescence from ridge waveguide structures in the mid infra-red range. We are also investigating dual wavelength mid infra-red QCLs in the InGaAs/InAlAs system lattice matched to InP. This device may be useful in applications like differential absorption lidar where light has to be evaluated and compared at two different frequencies for environmental sensing application. Most approaches to multi-wavelength QCL operation involve the use of heterogeneous cascades. Our design involves a single type of active region, emitting at two widely different wavelengths in

  3. Gate tunneling current and quantum capacitance in metal-oxide-semiconductor devices with graphene gate electrodes

    NASA Astrophysics Data System (ADS)

    An, Yanbin; Shekhawat, Aniruddh; Behnam, Ashkan; Pop, Eric; Ural, Ant

    2016-11-01

    Metal-oxide-semiconductor (MOS) devices with graphene as the metal gate electrode, silicon dioxide with thicknesses ranging from 5 to 20 nm as the dielectric, and p-type silicon as the semiconductor are fabricated and characterized. It is found that Fowler-Nordheim (F-N) tunneling dominates the gate tunneling current in these devices for oxide thicknesses of 10 nm and larger, whereas for devices with 5 nm oxide, direct tunneling starts to play a role in determining the total gate current. Furthermore, the temperature dependences of the F-N tunneling current for the 10 nm devices are characterized in the temperature range 77-300 K. The F-N coefficients and the effective tunneling barrier height are extracted as a function of temperature. It is found that the effective barrier height decreases with increasing temperature, which is in agreement with the results previously reported for conventional MOS devices with polysilicon or metal gate electrodes. In addition, high frequency capacitance-voltage measurements of these MOS devices are performed, which depict a local capacitance minimum under accumulation for thin oxides. By analyzing the data using numerical calculations based on the modified density of states of graphene in the presence of charged impurities, it is shown that this local minimum is due to the contribution of the quantum capacitance of graphene. Finally, the workfunction of the graphene gate electrode is extracted by determining the flat-band voltage as a function of oxide thickness. These results show that graphene is a promising candidate as the gate electrode in metal-oxide-semiconductor devices.

  4. Energy Models for One-Carrier Transport in Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Jerome, Joseph W.; Shu, Chi-Wang

    1991-01-01

    Moment models of carrier transport, derived from the Boltzmann equation, made possible the simulation of certain key effects through such realistic assumptions as energy dependent mobility functions. This type of global dependence permits the observation of velocity overshoot in the vicinity of device junctions, not discerned via classical drift-diffusion models, which are primarily local in nature. It was found that a critical role is played in the hydrodynamic model by the heat conduction term. When ignored, the overshoot is inappropriately damped. When the standard choice of the Wiedemann-Franz law is made for the conductivity, spurious overshoot is observed. Agreement with Monte-Carlo simulation in this regime required empirical modification of this law, or nonstandard choices. Simulations of the hydrodynamic model in one and two dimensions, as well as simulations of a newly developed energy model, the RT model, are presented. The RT model, intermediate between the hydrodynamic and drift-diffusion model, was developed to eliminate the parabolic energy band and Maxwellian distribution assumptions, and to reduce the spurious overshoot with physically consistent assumptions. The algorithms employed for both models are the essentially non-oscillatory shock capturing algorithms. Some mathematical results are presented and contrasted with the highly developed state of the drift-diffusion model.

  5. Direct Nanoscale Sensing of the Internal Electric Field in Operating Semiconductor Devices Using Single Electron Spins.

    PubMed

    Iwasaki, Takayuki; Naruki, Wataru; Tahara, Kosuke; Makino, Toshiharu; Kato, Hiromitsu; Ogura, Masahiko; Takeuchi, Daisuke; Yamasaki, Satoshi; Hatano, Mutsuko

    2017-02-28

    The electric field inside semiconductor devices is a key physical parameter that determines the properties of the devices. However, techniques based on scanning probe microscopy are limited to sensing at the surface only. Here, we demonstrate the direct sensing of the internal electric field in diamond power devices using single nitrogen-vacancy (NV) centers. The NV center embedded inside the device acts as a nanoscale electric field sensor. We fabricated vertical diamond p-i-n diodes containing the single NV centers. By performing optically detected magnetic resonance measurements under reverse-biased conditions with an applied voltage of up to 150 V, we found a large splitting in the magnetic resonance frequencies. This indicated that the NV center senses the transverse electric field in the space-charge region formed in the i-layer. The experimentally obtained electric field values are in good agreement with those calculated by a device simulator. Furthermore, we demonstrate the sensing of the electric field in different directions by utilizing NV centers with different N-V axes. This direct and quantitative sensing method using an electron spin in a wide-band-gap material provides a way to monitor the electric field in operating semiconductor devices.

  6. Design of Contact Electrodes for Semiconductor Nanowire Solar Energy Harvesting Devices.

    PubMed

    Lin, Tzuging; Ramadurgam, Sarath; Yang, Chen

    2017-04-12

    Transparent, low-resistive contacts are critical for efficient solar energy harvesting devices. It is important to reconsider the material choices and electrode design as devices move from 2D films to 1D nanostructures. In this paper, we study the effectiveness of indium tin oxide (ITO) and metals, such as Ag and Cu, as contacts in 2D and 1D systems. Although ITO has been studied extensively and developed into an effective transparent contact for 2D devices, our results show that effectiveness does not translate to 1D systems. Particularly with consideration of resistance requirement, nanowires with metal shells as contacts enable better absorption within the semiconductor as compared to ITO. Furthermore, there is a strong dependence of contact performance on the semiconductor band gap and diameter of nanowires. We found that metal contacts outperform ITO for nanowire devices, regardless of the sheet resistance constraint, in the regime of diameters less than 100 nm and band-gaps greater than 1 eV. These metal shells optimized for best absorption are significantly thinner than ITO, which enables for the design of devices with high nanowire number density and consequently higher device efficiencies.

  7. Development of molecular beam epitaxy technology for III–V compound semiconductor heterostructure devices

    SciTech Connect

    Cheng, K. Y.

    2013-09-15

    Molecular beam epitaxy (MBE) is a versatile ultrahigh vacuum technique for growing multiple epitaxial layers of semiconductor crystals with high precision. The extreme control of the MBE technique over composition variation, interface sharpness, impurity doping profiles, and epitaxial layer thickness to the atomic level makes it possible to demonstrate a wide variety of novel semiconductor structures. Since its invention nearly 40 years ago, the MBE technique has evolved from a laboratory apparatus for exploring new materials and novel devices to a favored tool for the mass production of III–V high-speed devices. This paper will review some of the past developments in this technology and propose an outlook of future developments.

  8. Exact solution of three-dimensional transport problems using one-dimensional models. [in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Misiakos, K.; Lindholm, F. A.

    1986-01-01

    Several parameters of certain three-dimensional semiconductor devices including diodes, transistors, and solar cells can be determined without solving the actual boundary-value problem. The recombination current, transit time, and open-circuit voltage of planar diodes are emphasized here. The resulting analytical expressions enable determination of the surface recombination velocity of shallow planar diodes. The method involves introducing corresponding one-dimensional models having the same values of these parameters.

  9. Challenges of Electrical Measurements of Advanced Gate Dielectrics in Metal-Oxide-Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Vogel, Eric M.; Brown, George A.

    2003-09-01

    Experimental measurements and simulations are used to provide an overview of key issues with the electrical characterization of metal-oxide-semiconductor (MOS) devices with ultra-thin oxide and alternate gate dielectrics. Experimental issues associated with the most common electrical characterization method, capacitance-voltage (C-V), are first described. Issues associated with equivalent oxide thickness extraction and comparison, interface state measurement, extrinsic defects, and defect generation are then overviewed.

  10. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.

    1985-01-01

    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.

  11. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same

    DOEpatents

    Guha, Subhendu; Ovshinsky, Stanford R.

    1988-10-04

    An n-type microcrystalline semiconductor alloy material including a band gap widening element; a method of fabricating p-type microcrystalline semiconductor alloy material including a band gap widening element; and electronic and photovoltaic devices incorporating said n-type and p-type materials.

  12. Gene Detection in Complex Biological Media Using Semiconductor Nanorods within an Integrated Microfluidic Device.

    PubMed

    Bi, Xinyan; Adriani, Giulia; Xu, Yang; Chakrabortty, Sabyasachi; Pastorin, Giorgia; Ho, Han Kiat; Ang, Wee Han; Chan, Yinthai

    2015-10-20

    The salient optical properties of highly luminescent semiconductor nanocrystals render them ideal fluorophores for clinical diagnostics, therapeutics, and highly sensitive biochip applications. Microfluidic systems allow miniaturization and integration of multiple biochemical processes in a single device and do not require sophisticated diagnostic tools. Herein, we describe a microfluidic system that integrates RNA extraction, reverse transcription to cDNA, amplification and detection within one integrated device to detect histidine decarboxylase (HDC) gene directly from human white blood cells samples. When anisotropic semiconductor nanorods (NRs) were used as the fluorescent probes, the detection limit was found to be 0.4 ng of total RNA, which was much lower than that obtained using spherical quantum dots (QDs) or organic dyes. This was attributed to the large action cross-section of NRs and their high probability of target capture in a pull-down detection scheme. The combination of large scale integrated microfluidics with highly fluorescent semiconductor NRs may find widespread utility in point-of-care devices and multitarget diagnostics.

  13. Semiconductor-free hot carrier devices for energy harvesting and photodetection

    NASA Astrophysics Data System (ADS)

    Gong, Tao; Munday, Jeremy

    The maximum efficiency for a single-junction solar cell is around 30% by the Shockley-Queisser (SQ) limit. The energy loss is typically through a thermalization process between the excited high-energy carriers, e.g. hot carriers, and the lattice. Therefore, the collection of the hot carriers before thermalization would allow for reduced power loss. Recently, photodetectors based on metal-semiconductor Schottky junctions have been exploiting hot electron effects to allow sub-bandgap absorption and hence show promise as near IR wavelength detectors. Here we present a simple, semiconductor-free hot carrier device based on transparent conducting oxides (TCO) electrodes. We experimentally demonstrate the hot carrier generation and extraction under monochromatic and broadband light illumination of normal and oblique incidence. Under optimized conditions, a power conversion efficiency >10% is predicted for high-energy photon excitation. The performance of the device shows further improvement by employing nanostructures, which couple the incident light into surface plasmons, leading to absorption enhancement. This semiconductor-free device provides an alternative way of energy harvesting and photodetection.

  14. Semiconductor heterostructure

    NASA Technical Reports Server (NTRS)

    Hovel, Harold John (Inventor); Woodall, Jerry MacPherson (Inventor)

    1978-01-01

    A technique for fabricating a semiconductor heterostructure by growth of a ternary semiconductor on a binary semiconductor substrate from a melt of the ternary semiconductor containing less than saturation of at least one common ingredient of both the binary and ternary semiconductors wherein in a single temperature step the binary semiconductor substrate is etched, a p-n junction with specific device characteristics is produced in the binary semiconductor substrate by diffusion of a dopant from the melt and a region of the ternary semiconductor of precise conductivity type and thickness is grown by virtue of a change in the melt characteristics when the etched binary semiconductor enters the melt.

  15. Semiconductor structure

    NASA Technical Reports Server (NTRS)

    Hovel, Harold J. (Inventor); Woodall, Jerry M. (Inventor)

    1979-01-01

    A technique for fabricating a semiconductor heterostructure by growth of a ternary semiconductor on a binary semiconductor substrate from a melt of the ternary semiconductor containing less than saturation of at least one common ingredient of both the binary and ternary semiconductors wherein in a single temperature step the binary semiconductor substrate is etched, a p-n junction with specific device characteristics is produced in the binary semiconductor substrate by diffusion of a dopant from the melt and a region of the ternary semiconductor of precise conductivity type and thickness is grown by virtue of a change in the melt characteristics when the etched binary semiconductor enters the melt.

  16. Procedure for pressure contact on high-power semiconductor devices free of thermal fatigue

    NASA Technical Reports Server (NTRS)

    Knobloch, J.

    1979-01-01

    To eliminate thermal fatigue, a procedure for manufacturing semiconductor power devices with pure pressure contact without solid binding was developed. Pressure contact without the use of a solid binding to avoid a limitation of the maximum surface in the contact was examined. A silicon wafer covered with a relatively thick metal layer is imbedded with the aid of a soft silver foil between two identically sized hard contact discs (molybdenum or tungsten) which are rotationally symmetrical. The advantages of this concept are shown for large diameters. The pressure contact was tested successfully in many devices in a large variety of applications.

  17. Mercuric iodide (HgI/sub 2/) semiconductor devices as charged-particle detectors

    SciTech Connect

    Becchetti, F.D.; Raymond, R.S.; Ristinen, R.A.; Schnepple, W.F.; Ortale, C.

    1981-01-01

    The properties of HgI/sub 2/ semiconductor devices as charged particle detectors have been investigated. Nearly linear energy response with FWHM resolution of 5 to 15% is observed for /sup 1/ /sup 2/H and /sup 3/ /sup 4/He ions, E < 40 MeV. Fast proton damage is observed for > 10/sup 10/ protons/cm/sup 2/. However, based on measurements with two HgI/sub 2/ detectors, little fast neutron damage is apparent at fluences up to 10/sup 15/ neutrons/cm/sup 2/. This suggests considerably greater resistance to radiation damage than is observed for Si and other solid state devices.

  18. Demonstration of Y1Ba2Cu3O(7-delta) and complementary metal-oxide-semiconductor device fabrication on the same sapphire substrate

    NASA Technical Reports Server (NTRS)

    Burns, M. J.; De La Houssaye, P. R.; Russell, S. D.; Garcia, G. A.; Clayton, S. R.; Ruby, W. S.; Lee, L. P.

    1993-01-01

    We report the first fabrication of active semiconductor and high-temperature superconducting devices on the same substrate. Test structures of complementary MOS transistors were fabricated on the same sapphire substrate as test structures of Y1Ba2Cu3O(7-delta) flux-flow transistors, and separately, Y1Ba2Cu3O(7-delta) superconducting quantum interference devices utilizing both biepitaxial and step-edge Josephson junctions. Both semiconductor and superconductor devices were operated at 77 K. The cofabrication of devices using these disparate yet complementary electronic technologies on the same substrate opens the door for the fabrication of true semiconductive/superconductive hybrid integrated circuits capable of exploiting the best features of each of these technologies.

  19. Semiconductor technology program. Progress briefs

    NASA Technical Reports Server (NTRS)

    Bullis, W. M.

    1980-01-01

    Measurement technology for semiconductor materials, process control, and devices is reviewed. Activities include: optical linewidth and thermal resistance measurements; device modeling; dopant density profiles; resonance ionization spectroscopy; and deep level measurements. Standardized oxide charge terminology is also described.

  20. Spin polarized state filter based on semiconductor–dielectric–iron–semiconductor multi-nanolayer device

    SciTech Connect

    Makarov, Vladimir I.; Khmelinskii, Igor

    2015-04-15

    Highlights: • Development of a new spintronics device. • Development of quantum spin polarized filters. • Development of theory of quantum spin polarized filter. - Abstract: Presently we report spin-polarized state transport in semiconductor–dielectric–iron–semiconductor (SDIS) four-nanolayer sandwich devices. The exchange-resonance spectra in such devices are quite specific, differing also from spectra observed earlier in other three-nanolayer devices. The theoretical model developed earlier is extended and used to interpret the available experimental results. A detailed ab initio analysis of the magnetic-field dependence of the output magnetic moment is also performed. The model predicts an exchange spectrum comprising a series of peaks, with the spectral structure determined by several factors, discussed in the paper.

  1. 2D Semiconductor Device Simulations by WENO-Boltzmann Schemes: Efficiency, Boundary Conditions and Comparison to Monte Carlo Methods

    DTIC Science & Technology

    2006-01-01

    choice is asymptotically equivalent to have fixed V on the MESFET gate region depending on Vgate and the oxide thickness δ in such a way that ∆y = κ̃ δ...the Poisson equation modeling semiconductor devices such as the MESFET and MOSFET. We compare the simulation results with those obtained by a direct...Essentially Non-Oscillatory (WENO) schemes; Boltzmann Tran- sport Equation (BTE); semiconductor device simulation; MESFET ; MOSFET; Direct Sim

  2. Theory of Current Transients in Planar Semiconductor Devices: Insights and Applications to Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Hawks, Steven A.; Finck, Benjamin Y.; Schwartz, Benjamin J.

    2015-04-01

    Time-domain current measurements are widely used to characterize semiconductor material properties, such as carrier mobility, doping concentration, carrier lifetime, and the static dielectric constant. It is therefore critical that these measurements be theoretically understood if they are to be successfully applied to assess the properties of materials and devices. In this paper, we derive generalized relations for describing current-density transients in planar semiconductor devices at uniform temperature. By spatially averaging the charge densities inside the semiconductor, we are able to provide a rigorous, straightforward, and experimentally relevant way to interpret these measurements. The formalism details several subtle aspects of current transients, including how the electrode charge relates to applied bias and internal space charge, how the displacement current can alter the apparent free-carrier current, and how to understand the integral of a charge-extraction transient. We also demonstrate how the formalism can be employed to derive the current transients arising from simple physical models, like those used to describe charge extraction by linearly increasing voltage (CELIV) and time-of-flight experiments. In doing so, we find that there is a nonintuitive factor-of-2 reduction in the apparent free-carrier concentration that can be easily missed, for example, in the application of charge-extraction models. Finally, to validate our theory and better understand the different current contributions, we perform a full time-domain drift-diffusion simulation of a CELIV trace and compare the results to our formalism. As expected, our analytic equations match precisely with the numerical solutions to the drift-diffusion, Poisson, and continuity equations. Thus, overall, our formalism provides a straightforward and general way to think about how the internal space-charge distribution, the electrode charge, and the externally applied bias translate into a measured

  3. Developing high mobility emissive organic semiconductors towards integrated optoelectronic devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Huanli; Hu, Wenping; Heeger, Alan J.

    2016-09-01

    The achievement of organic semiconductors with both high mobility and strong fluorescence emission remains a challenge. High mobility requires molecules which pack densely and periodically, while serious fluorescence quenching typically occurs when fluorescent materials begin to aggregate (aggregation-induced quenching (AIQ)). Indeed, classical materials with strong fluorescent emission always exhibit low mobility, for example, tris(8-hydroxyquinoline) aluminium (ALQ) and phenylenevinylene-based polymers with mobility only 10-6-10-5 cm2V-1s-1, and benchmark organic semiconductors with high mobility demonstrate very weak emission, for example, rubrene exhibits a quantum yield 1% in crystalline state and pentacene shows very weak fluorescence in the solid state. However, organic semiconductors with high mobility and strong fluorescence are necessary for the achievement of high efficiency organic light-emitting transistors (OLETs) and electrically pumped organic lasers. Therefore, it is necessary for developing high mobility emissive organic/polymeric semiconductors towards a fast mover for the organic optoelectronic integrated devices and circuits.

  4. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    SciTech Connect

    Kim, Chang-Hwan

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  5. Novel planarization and passivation in the integration of III-V semiconductor devices

    NASA Astrophysics Data System (ADS)

    Zheng, Jun-Fei; Hanberg, Peter J.; Demir, Hilmi V.; Sabnis, Vijit A.; Fidaner, Onur; Harris, James S., Jr.; Miller, David A. B.

    2004-06-01

    III-V semiconductor devices typically use structures grown layer-by-layer and require passivation of sidewalls by vertical etching to reduce leakage current. The passivation is conventionally achieved by sealing the sidewalls using polymer and the polymer needs to be planarized by polymer etch-back method to device top for metal interconnection. It is very challenging to achieve perfect planarization needed for sidewalls of all the device layers including the top layer to be completely sealed. We introduce a novel hard-mask-assisted self-aligned planarization process that allows the polymer in 1-3 μm vicinity of the devices to be planarized perfectly to the top of devices. The hard-mask-assisted process also allows self-aligned via formation for metal interconnection to device top of μm size. The hard mask is removed to expose a very clean device top surface for depositing metals for low ohmic contact resistance metal interconnection. The process is robust because it is insensitive to device height difference, spin-on polymer thickness variation, and polymer etch non-uniformity. We have demonstrated high yield fabrication of monolithically integrated optical switch arrays with mesa diodes and waveguide electroabsorption modulators on InP substrate with yield > 90%, high breakdown voltage of > 15 Volts, and low ohmic contact resistance of 10-20 Ω.

  6. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  7. Total-dose radiation effects data for semiconductor devices: 1985 supplement, volume 1

    NASA Technical Reports Server (NTRS)

    Martin, K. E.; Gauthier, M. K.; Coss, J. R.; Dantas, A. R. V.; Price, W. E.

    1985-01-01

    Steady-state, total-dose radiation test data are provided, in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. The document is in two volumes: Volume 1 provides data on diodes, bipolar transistors, field effect transistors, and miscellaneous semiconductor types, and Volume 2 provides total-dose radiation test data on integrated circuits. Volume 1 of this 1985 Supplement contains new total-dose radiation test data generated since the August 1, 1981 release date of the original Volume 1. Publication of Volume 2 of the 1985 Supplement will follow that of Volume 1 by approximately three months.

  8. H+-type and OH- -type biological protonic semiconductors and complementary devices.

    PubMed

    Deng, Yingxin; Josberger, Erik; Jin, Jungho; Roudsari, Anita Fadavi; Rousdari, Anita Fadavi; Helms, Brett A; Zhong, Chao; Anantram, M P; Rolandi, Marco

    2013-10-03

    Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H(+) hop along chains of hydrogen bonds between water molecules and hydrophilic residues - proton wires. These wires also support the transport of OH(-) as proton holes. Discriminating between H(+) and OH(-) transport has been elusive. Here, H(+) and OH(-) transport is achieved in polysaccharide- based proton wires and devices. A H(+)- OH(-) junction with rectifying behaviour and H(+)-type and OH(-)-type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H(+) and OH(-) to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems.

  9. Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy

    SciTech Connect

    Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

    2007-11-01

    We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity.

  10. Inhibiting device degradation induced by surface damages during top-down fabrication of semiconductor devices with micro/nano-scale pillars and holes

    NASA Astrophysics Data System (ADS)

    Mayet, Ahmed S.; Cansizoglu, Hilal; Gao, Yang; Kaya, Ahmet; Ghandiparsi, Soroush; Yamada, Toshishige; Wang, Shih-Yuan; Islam, M. Saif

    2016-09-01

    High-aspect ratio semiconductor pillar- and hole-based structures are being investigated for photovoltaics, energy harvesting devices, transistors, and sensors. The fabrication of pillars and holes frequently involves top-down fabrication (such as dry etching) of semiconductors. Such a process contributes to different types of crystalline defects including vacancies, interstitials, dislocations, stacking faults, surface roughness, impurities, and charging effects. These defects contribute to degraded device characteristics impacting detection sensitivity, energy conversion efficiency, etc. In this presentation, we review dry-etched semiconductor devices and demonstrate several possible methods to inhibit device degradation induced by surface damage. These methods include hydrogen passivation, the growth of oxide passivating thin films using wet furnace growth, and low-ion energy etching. These methods contributed to a leakage current reduction by as much as four orders of magnitude.

  11. An alternative treatment of heat flow for charge transport in semiconductor devices

    SciTech Connect

    Grupen, Matt

    2009-12-15

    A unique thermodynamic model of Fermi gases suitable for semiconductor device simulation is presented. Like other models, such as drift diffusion and hydrodynamics, it employs moments of the Boltzmann transport equation derived using the Fermi-Dirac distribution function. However, unlike other approaches, it replaces the concept of an electron thermal conductivity with the heat capacity of an ideal Fermi gas to determine heat flow. The model is used to simulate a field-effect transistor and show that the external current-voltage characteristics are strong functions of the state space available to the heated Fermi distribution.

  12. Optimal convolution SOR acceleration of waveform relaxation with application to semiconductor device simulation

    NASA Technical Reports Server (NTRS)

    Reichelt, Mark

    1993-01-01

    In this paper we describe a novel generalized SOR (successive overrelaxation) algorithm for accelerating the convergence of the dynamic iteration method known as waveform relaxation. A new convolution SOR algorithm is presented, along with a theorem for determining the optimal convolution SOR parameter. Both analytic and experimental results are given to demonstrate that the convergence of the convolution SOR algorithm is substantially faster than that of the more obvious frequency-independent waveform SOR algorithm. Finally, to demonstrate the general applicability of this new method, it is used to solve the differential-algebraic system generated by spatial discretization of the time-dependent semiconductor device equations.

  13. Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices

    SciTech Connect

    Prakash, A. P. Gnana; Pushpa, N.; Praveen, K. C.; Naik, P. S.; Revannasiddaiah, D.

    2012-06-05

    In this paper we present the comprehensive results on the effects of different radiation on the electrical characteristics of different semiconductor devices like Si BJT, n-channel MOSFETs, 50 GHz and 200 GHz silicon-germanium heterojunction bipolar transistor (SiGe HBTs). The total dose effects of different radiation are compared in the same total dose ranging from 100 krad to 100 Mrad. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

  14. Wide-band-gap, alkaline-earth-oxide semiconductor and devices utilizing same

    DOEpatents

    Abraham, Marvin M.; Chen, Yok; Kernohan, Robert H.

    1981-01-01

    This invention relates to novel and comparatively inexpensive semiconductor devices utilizing semiconducting alkaline-earth-oxide crystals doped with alkali metal. The semiconducting crystals are produced by a simple and relatively inexpensive process. As a specific example, a high-purity lithium-doped MgO crystal is grown by conventional techniques. The crystal then is heated in an oxygen-containing atmosphere to form many [Li].degree. defects therein, and the resulting defect-rich hot crystal is promptly quenched to render the defects stable at room temperature and temperatures well above the same. Quenching can be effected conveniently by contacting the hot crystal with room-temperature air.

  15. Excitability in optically injected semiconductor lasers: Contrasting quantum- well- and quantum-dot-based devices

    NASA Astrophysics Data System (ADS)

    Kelleher, B.; Bonatto, C.; Huyet, G.; Hegarty, S. P.

    2011-02-01

    Excitability is a generic prediction for an optically injected semiconductor laser. However, the details of the phenomenon differ depending on the type of device in question. For quantum-well lasers very complicated multipulse trajectories can be found, while for quantum-dot lasers the situation is much simpler. Experimental observations show the marked differences in the pulse shapes while theoretical considerations reveal the underlying mechanism responsible for the contrast, identifying the increased stability of quantum-dot lasers to perturbations as the root.

  16. Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices.

    PubMed

    Kelleher, B; Bonatto, C; Huyet, G; Hegarty, S P

    2011-02-01

    Excitability is a generic prediction for an optically injected semiconductor laser. However, the details of the phenomenon differ depending on the type of device in question. For quantum-well lasers very complicated multipulse trajectories can be found, while for quantum-dot lasers the situation is much simpler. Experimental observations show the marked differences in the pulse shapes while theoretical considerations reveal the underlying mechanism responsible for the contrast, identifying the increased stability of quantum-dot lasers to perturbations as the root.

  17. Non-parabolic hydrodynamic formulations for the simulation of inhomogeneous semiconductor devices

    NASA Technical Reports Server (NTRS)

    Smith, Arlynn W.; Brennan, Kevin F.

    1995-01-01

    Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models can not fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations of the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship (hk)(exp 2)/2m = W(1 + alpha(W)). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(sup y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships: parabolic, Kane dispersion, and power low dispersion.

  18. Non-Parabolic Hydrodynamic Formulations for the Simulation of Inhomogeneous Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Smith, A. W.; Brennan, K. F.

    1996-01-01

    Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models cannot fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations or the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship ((hk)(exp 2)/2m = W(1 + alphaW). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(exp y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships; parabolic, Kane dispersion and power law dispersion.

  19. Lorentz factor determination for local electric fields in semiconductor devices utilizing hyper-thin dielectrics

    SciTech Connect

    McPherson, J. W.

    2015-11-28

    The local electric field (the field that distorts, polarizes, and weakens polar molecular bonds in dielectrics) has been investigated for hyper-thin dielectrics. Hyper-thin dielectrics are currently required for advanced semiconductor devices. In the work presented, it is shown that the common practice of using a Lorentz factor of L = 1/3, to describe the local electric field in a dielectric layer, remains valid for hyper-thin dielectrics. However, at the very edge of device structures, a rise in the macroscopic/Maxwell electric field E{sub diel} occurs and this causes a sharp rise in the effective Lorentz factor L{sub eff}. At capacitor and transistor edges, L{sub eff} is found to increase to a value 2/3 < L{sub eff} < 1. The increase in L{sub eff} results in a local electric field, at device edge, that is 50%–100% greater than in the bulk of the dielectric. This increase in local electric field serves to weaken polar bonds thus making them more susceptible to breakage by standard Boltzmann and/or current-driven processes. This has important time-dependent dielectric breakdown (TDDB) implications for all electronic devices utilizing polar materials, including GaN devices that suffer from device-edge TDDB.

  20. Microscopy needs for next generation devices characterization in the semiconductor industry

    NASA Astrophysics Data System (ADS)

    Clement, L.; Borowiak, C.; Galand, R.; Lepinay, K.; Lorut, F.; Pantel, R.; Servanton, G.; Thomas, R.; Vannier, P.; Bicais, N.

    2011-11-01

    In this paper we present the different imaging based techniques used in the semiconductor industry to support both manufacturing and R&D platforms at STMicroelectronics. Focus is on fully processed devices characterization from large structure (3DI, Imager sensors) to advanced MOS technologies (28-20 nm). Classical SEM and TEM (mainly EFTEM) based techniques are now commonly used to characterize each step of the semiconductor devices' process flow in terms of morphology and chemical analysis. However to address specific issues, dedicated imaging techniques are currently being investigated. With the "High-k Metal Gate" stack involved in the more advanced MOS devices (28-20 nm), new challenges occur and therefore advanced characterization is mandatory. Some relevant examples are pointed out through (STEM) EELS and EDX experiments. Analysis of stressors mainly used to improve carrier mobility in next generation devices, is also presented with different approaches (NBD, CBED and Dark-field holography). Advanced STEM and AFM based techniques applied to characterize dopants and junction in MOS devices and also in more relaxed structure such as imager sensors is discussed too. Concerning back-end (interconnects) and 3D integration (3DI) issues, focus is on nano-characterization of defects by classical techniques (EFTEM, STEM EELS-EDX) and with dedicated ones still in development. To illustrate this topic some 3D FD3/SEM and E-beam tomography experiments are presented. Examples of microstructure and texture determination in poly-crystalline materials such as copper line by coupling SEM/EBSD and TEM techniques are also shown.

  1. Design and fabrication of 6.1-.ANG. family semiconductor devices using semi-insulating A1Sb substrate

    DOEpatents

    Sherohman, John W.; Coombs, III, Arthur W.; Yee, Jick Hong; Wu, Kuang Jen J.

    2007-05-29

    For the first time, an aluminum antimonide (AlSb) single crystal substrate is utilized to lattice-match to overlying semiconductor layers. The AlSb substrate establishes a new design and fabrication approach to construct high-speed, low-power electronic devices while establishing inter-device isolation. Such lattice matching between the substrate and overlying semiconductor layers minimizes the formation of defects, such as threaded dislocations, which can decrease the production yield and operational life-time of 6.1-.ANG. family heterostructure devices.

  2. Energetic semiconductor bridge device incorporating Al/MoOx multilayer nanofilms and negative temperature coefficient thermistor chip

    NASA Astrophysics Data System (ADS)

    Zhu, Peng; Jiao, Jianshe; Shen, Ruiqi; Ye, Yinghua; Fu, Shuai; Li, Dongle

    2014-05-01

    The design, fabrication, and characterization of an energetic semiconductor bridge device are presented. The device consists of a semiconductor bridge heating element, which has been selectively coated with Al/MoOx multilayer nanofilms to enhance ignition of a conventional pyrotechnics. Integrated negative temperature coefficient thermistor chip provides protection against electromagnetic and electrostatic discharge events. The device was specifically configured to allow ease of interconnection by wire bonds and silver-filled conductive epoxy. Extensive design validation testing was performed. The device has demonstrated low, predictable firing energy and insensitivity. Al/MoOx multilayer nanofilms have no distinct influence on the electrical properties of semiconductor bridge. Nanothermite reaction provides reliable ignition by being able to ignite across a gap.

  3. Optical devices combining an organic semiconductor crystal with a two-dimensional inorganic diffraction grating

    SciTech Connect

    Kitazawa, Takenori; Yamao, Takeshi Hotta, Shu

    2016-02-01

    We have fabricated optical devices using an organic semiconductor crystal as an emission layer in combination with a two-dimensional (2D) inorganic diffraction grating used as an optical cavity. We formed the inorganic diffraction grating by wet etching of aluminum-doped zinc oxide (AZO) under a 2D cyclic olefin copolymer (COC) diffraction grating used as a mask. The COC diffraction grating was fabricated by nanoimprint lithography. The AZO diffraction grating was composed of convex prominences arranged in a triangular lattice. The organic crystal placed on the AZO diffraction grating indicated narrowed peaks in its emission spectrum under ultraviolet light excitation. These are detected parallel to the crystal plane. The peaks were shifted by rotating the optical devices around the normal to the crystal plane, which reflected the rotational symmetries of the triangular lattice through 60°.

  4. Practical photoluminescence and photoreflectance spectroscopic system for optical characterization of semiconductor devices.

    PubMed

    Ho, Ching-Hwa; Huang, Kuo-Wei; Lin, Yu-Shyan; Lin, Der-Yuh

    2005-05-30

    We present a practical experimental design for performing photoluminescence (PL) and photoreflectance (PR) measurements of semiconductors with only one PL spectroscopic system. The measurement setup is more cost efficient than typical PL-plus-PR systems. The design of the experimental setup of the PL-PR system is described in detail. Measurements of two actual device structures, a high-electron-mobility transistor (HEMT) and a double heterojunction-bipolar transistor (DHBT), are carried out by using this design. The experimental PL and PR spectra of the HEMT device, as well as polarized-photoreflectance (PPR) spectra of the DHBT structure, are analyzed in detailed and discussed. The experimental analyses demonstrate the well-behaved performance of this PL-PR design.

  5. Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation

    DOE PAGES

    Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; ...

    1995-01-01

    In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less

  6. Ultraviolet random lasing from asymmetrically contacted MgZnO metal-semiconductor-metal device

    SciTech Connect

    Morshed, Muhammad M.; Suja, Mohammad; Zuo, Zheng; Liu, Jianlin

    2014-11-24

    Nitrogen-doped Mg{sub 0.12}Zn{sub 0.88}O nanocrystalline thin film was grown on c-plane sapphire substrate. Asymmetric Ni/Au and Ti/Au Schottky contacts and symmetric Ni/Au contacts were deposited on the thin film to form metal-semiconductor-metal (MSM) laser devices. Current-voltage, photocurrent, and electroluminescence characterizations were performed. Evident random lasing with a threshold current of ∼36 mA is demonstrated only from the asymmetric MSM device. Random lasing peaks are mostly distributed between 340 and 360 nm and an output power of 15 nW is measured at 43 mA injection current. The electron affinity difference between the contact metal and Mg{sub 0.12}Zn{sub 0.88}O:N layer plays an important role for electron and hole injection and subsequent stimulated random lasing.

  7. Quantum-corrected drift-diffusion models for transport in semiconductor devices

    SciTech Connect

    De Falco, Carlo; Gatti, Emilio; Lacaita, Andrea L.; Sacco, Riccardo . E-mail: riccardo.sacco@mate.polimi.it

    2005-04-10

    In this paper, we propose a unified framework for Quantum-corrected drift-diffusion (QCDD) models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical drift-diffusion (DD) system, each particular model being identified by the constitutive relation for the quantum-correction to the electric potential. We examine two special, and relevant, examples of QCDD models; the first one is the modified DD model named Schroedinger-Poisson-drift-diffusion, and the second one is the quantum-drift-diffusion (QDD) model. For the decoupled solution of the two models, we introduce a functional iteration technique that extends the classical Gummel algorithm widely used in the iterative solution of the DD system. We discuss the finite element discretization of the various differential subsystems, with special emphasis on their stability properties, and illustrate the performance of the proposed algorithms and models on the numerical simulation of nanoscale devices in two spatial dimensions.

  8. The world's first high voltage GaN-on-Diamond power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Baltynov, Turar; Unni, Vineet; Narayanan, E. M. Sankara

    2016-11-01

    This paper presents the detailed fabrication method and extensive electrical characterisation results of the first-ever demonstrated high voltage GaN power semiconductor devices on CVD Diamond substrate. Fabricated circular GaN-on-Diamond HEMTs with gate-to-drain drift length of 17 μm and source field plate length of 3 μm show an off-state breakdown voltage of ∼1100 V. Temperature characterisation of capacitance-voltage characteristics and on-state characteristics provides insight on the temperature dependence of key parameters such as threshold voltage, 2DEG sheet carrier concentration, specific on-state resistance, and drain saturation current in the fabricated devices.

  9. Characterization of an oxygen plasma process for cleaning packaged semiconductor devices. Final report

    SciTech Connect

    Adams, B.E.

    1996-11-01

    The purpose of this research was to experimentally determine the operating {open_quotes}window{close_quotes} for an oxygen plasma cleaning process to be used on microelectronics components just prior to wire bonding. The process was being developed to replace one that used vapor degreasing with trichlorotrifluoroethane, an ozone-depleting substance. A Box-Behnken experimental design was used to generate data from which the oxygen plasma cleaning process could be characterized. Auger electron spectrophotometry was used to measure the contamination thickness on the dice after cleaning. An empirical equation correlating the contamination thickness on the die surface with the operating parameters of the plasma system was developed from the collected Auger data, and optimum settings for cleaning semiconductor devices were determined. Devices were also tested for undesirable changes in electrical parameters resulting from cleaning in the plasma system. An increase in leakage current occurred for bipolar transistors and diodes after exposure to the oxygen plasma. Although an increase in leakage current occurred, each device`s parameter remained well below the acceptable specification limit. Based upon the experimental results, the optimum settings for the plasma cleaning process were determined to be 200 watts of power applied for five minutes in an enclosure maintained at 0.7 torr. At these settings, all measurable contamination was removed without compromising the reliability of the devices.

  10. Technology development of high-quality semiconductor devices using solution-processed crystallization of pentacene

    NASA Astrophysics Data System (ADS)

    Liu, Hung-Wei

    Organic electronic materials and processing techniques have attracted considerable attention for developing organic thin-film transistors (OTFTs), since they may be patterned on flexible substrates which may be bent into a variety of shapes for applications such as displays, smart cards, solar devices and sensors Various fabrication methods for building pentacene-based OTFTs have been demonstrated. Traditional vacuum deposition and vapor deposition methods have been studied for deposition on plastic and paper, but these are unlikely to scale well to large area printing. Researchers have developed methods for processing OTFTs from solution because of the potential for low-cost and large area device manufacturing, such as through inkjet or offset printing. Most methods require the use of precursors which are used to make pentacene soluble, and these methods have typically produced much lower carrier mobility than the best vacuum deposited devices. We have investigated devices built from solution-processed pentacene that is locally crystallized at room temperature on the polymer substrates. Pentacene crystals grown in this manner are highly localized at pre-determined sites, have good crystallinity and show good carrier mobility, making this an attractive method for large area manufacturing of semiconductor devices.

  11. Superlattice of stress domains in nanometer-size semiconductor devices predicted from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Ebbsjö, Ingvar; Kalia, Rajiv K.; Kodiyalam, Sanjay; Madhukar, Anupam; Nakano, Aiichiro; Omeltchenko, Andrey; Walsh, Phillip; Vashishta, Priya

    2001-03-01

    Semiconductor industry association estimates pixel sizes in next generation devices to be on the order of 70 nm by the year of 2008. Although recent measurements of local strain distributions2 and strain relaxation in nano wires have reached 100-nm spatial resolution, experimental tools for determining stresses for sub 100 nm, feature sizes are still to be developed4. On the other hand, recent developments in efficient simulation algorithms on state-of-the-art parallel computers5 enable us to gain valuable information on interface structure and atomic level stresses in nanopixels of < 100 nm size. Here, we present results for a 27.5-million atom molecular-dynamics simulations of a 70 nm x 70 nm crystalline silicon nanopixel covered with amorphous silicon nitride and placed on a 140 nm x 140 nm crystalline silicon substrate. The stresses parallel to the silicon/silicon nitride interface exhibit a hexagonal superlattice of stress domains with a lattice constant of 12.8 (±1.8) nm. From our analysis of the 70 nm x 70 nm pixel and on comparing with a smaller 25 nm x 25 nm nanopixel, we conclude that for square pixels the superlattice constant is independent of the pixel size and is entirely determined by the mismatch between silicon and silicon nitride. Such stress inhomogeneity with values of up to ±2 GPa will have a significant impact on the performance of semiconductor devices with sub 100 nm features.

  12. Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources

    NASA Astrophysics Data System (ADS)

    Acharyya, Aritra; Banerjee, J. P.

    2014-01-01

    In this paper the potentiality of impact avalanche transit time (IMPATT) devices based on different semiconductor materials such as GaAs, Si, InP, 4H-SiC and Wurtzite-GaN (Wz-GaN) has been explored for operation at terahertz frequencies. Drift-diffusion model is used to design double-drift region (DDR) IMPATTs based on different materials at millimeter-wave (mm-wave) and terahertz (THz) frequencies. The performance limitations of these devices are studied from the avalanche response times at different mm-wave and THz frequencies. Results show that the upper cut-off frequency limits of GaAs and Si DDR IMPATTs are 220 GHz and 0.5 THz, respectively, whereas the same for InP and 4H-SiC DDR IMPATTs is 1.0 THz. Wz-GaN DDR IMPATTs are found to be excellent candidate for generation of RF power at THz frequencies of the order of 5.0 THz with appreciable DC to RF conversion efficiency. Further, it is observed that up to 1.0 THz, 4H-SiC DDR IMPATTs excel Wz-GaN DDR IMPATTs as regards their RF power outputs. Thus, the wide bandgap semiconductors such as Wz-GaN and 4H-SiC are highly suitable materials for DDR IMPATTs at both mm-wave and THz frequency ranges.

  13. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    DOE PAGES

    Vittone, Ettore; Pastuovic, Zeljko; Breese, Mark B. H.; ...

    2016-02-08

    This study investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and themore » charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.« less

  14. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    SciTech Connect

    Vittone, Ettore; Pastuovic, Zeljko; Breese, Mark B. H.; Lopez, Javier Garicia; Jaksic, Milko; Raisanen, Jyrki; Siegele, Rainer; Simon, Aliz; Vizkelethy, Gyorgy

    2016-02-08

    This study investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and the charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.

  15. Ultrafast laser trimming for reduced device leakage in high performance OTFT semiconductors for flexible displays

    NASA Astrophysics Data System (ADS)

    Karnakis, Dimitris; Cooke, Michael D.; Chan, Y. F.; Ogier, Simon D.

    2013-03-01

    Organic semiconductors (OSC) are solution processable synthetic materials with high carrier mobility that promise to revolutionise flexible electronics manufacturing due to their low cost, lightweight and high volume low temperature printing in reel-to-reel (R2R) [1] for applications such as flexible display backplanes (Fig.1), RFID tags, and logic/memory devices. Despite several recent technological advances, organic thin film transistor (OTFT) printing is still not production-ready due to limitations mainly with printing resolution on dimensionally unstable substrates and device leakage that reduces dramatically electrical performance. OTFTs have the source-drain in ohmic contact with the OSC material to lower contact resistance. If they are unpatterned, a leakage pathway from source to drain develops which results in non-optimum on/off currents and not controllable device uniformity (Fig.2). DPSS lasers offer several key advantages for OTFT patterning including maskless, non-contact, dry patterning, scalable large area operation with precision registration, well-suited to R2R manufacturing at overall μm size resolutions. But the thermal management of laser processing is very important as the devices are very sensitive to heat and thermomechanical damage [2]. This paper discusses 343nm picosecond laser ablation trimming of 50nm thick PTAA, TIPS pentacene and other semiconductor compounds on thin 50nm thick metal gold electrodes in a top gate configuration. It is shown that with careful optimisation, a suitable process window exists resulting in clean laser structuring without damage to the underlying layers while also containing laser debris. Several order of magnitude improvements were recorded in on/off currents up to 106 with OSC mobilities of 1 cm2/Vsec, albeit at slightly higher than optimum threshold voltages which support demanding flexible display backplane applications.

  16. Device fabrication, characterization, and thermal neutron detection response of LiZnP and LiZnAs semiconductor devices

    NASA Astrophysics Data System (ADS)

    Montag, Benjamin W.; Ugorowski, Philip B.; Nelson, Kyle A.; Edwards, Nathaniel S.; McGregor, Douglas S.

    2016-11-01

    Nowotny-Juza compounds continue to be explored as candidates for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q-value of 4.78 MeV, larger than 10B, an energy easily identified above background radiations. Hence, devices fabricated from semiconductor compounds having either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The raw synthesized material indicated the presence high impurity levels (material and electrical property characterizations). A static vacuum sublimation in quartz was performed to help purify the synthesized material [2,3]. Bulk crystalline samples were grown from the purified material [4,5]. Samples were cut using a diamond wire saw, and processed into devices. Bulk resistivity was determined from I-V curve measurements, ranging from 106-1011 Ω cm. Devices were characterized for sensitivity to 5.48 MeV alpha particles, 337 nm laser light, and neutron sensitivity in a thermal neutron diffracted beam at the Kansas State University TRIGA Mark II nuclear reactor. Thermal neutron reaction product charge induction was measured with a LiZnP device, and the reaction product spectral response was observed.

  17. Metal insulator semiconductor solar cell devices based on a Cu{sub 2}O substrate utilizing h-BN as an insulating and passivating layer

    SciTech Connect

    Ergen, Onur; Gibb, Ashley; Vazquez-Mena, Oscar; Zettl, Alex; Regan, William Raymond

    2015-03-09

    We demonstrate cuprous oxide (Cu{sub 2}O) based metal insulator semiconductor Schottky (MIS-Schottky) solar cells with efficiency exceeding 3%. A unique direct growth technique is employed in the fabrication, and hexagonal boron nitride (h-BN) serves simultaneously as a passivation and insulation layer on the active Cu{sub 2}O layer. The devices are the most efficient of any Cu{sub 2}O based MIS-Schottky solar cells reported to date.

  18. SEMICONDUCTOR DEVICES: Off-state avalanche breakdown induced degradation in 20 V NLDMOS devices

    NASA Astrophysics Data System (ADS)

    Shifeng, Zhang; Koubao, Ding; Yan, Han; Chenggong, Han; Jiaxian, Hu; Bin, Zhang

    2010-09-01

    Degradation behaviors of 20 V NLDMOS operated under off-state avalanche breakdown conditions are presented. A constant current pulse stressing test is applied to the device. Two different degradation mechanisms are identified by analysis of electrical data, technology computer-aided design (TCAD) simulations and charge pumping measurements. The first mechanism is attributed to positive oxide-trapped charges in the N-type drift region, and the second one is due to decreased electron mobility upon interface state formation in the drift region. Both of the mechanisms are enhanced with increasing avalanche breakdown current.

  19. III-antimonide/nitride based semiconductors for optoelectronic materials and device studies : LDRD 26518 final report.

    SciTech Connect

    Kurtz, Steven Ross; Hargett, Terry W.; Serkland, Darwin Keith; Waldrip, Karen Elizabeth; Modine, Normand Arthur; Klem, John Frederick; Jones, Eric Daniel; Cich, Michael Joseph; Allerman, Andrew Alan; Peake, Gregory Merwin

    2003-12-01

    The goal of this LDRD was to investigate III-antimonide/nitride based materials for unique semiconductor properties and applications. Previous to this study, lack of basic information concerning these alloys restricted their use in semiconductor devices. Long wavelength emission on GaAs substrates is of critical importance to telecommunication applications for cost reduction and integration into microsystems. Currently InGaAsN, on a GaAs substrate, is being commercially pursued for the important 1.3 micrometer dispersion minima of silica-glass optical fiber; due, in large part, to previous research at Sandia National Laboratories. However, InGaAsN has not shown great promise for 1.55 micrometer emission which is the low-loss window of single mode optical fiber used in transatlantic fiber. Other important applications for the antimonide/nitride based materials include the base junction of an HBT to reduce the operating voltage which is important for wireless communication links, and for improving the efficiency of a multijunction solar cell. We have undertaken the first comprehensive theoretical, experimental and device study of this material with promising results. Theoretical modeling has identified GaAsSbN to be a similar or potentially superior candidate to InGaAsN for long wavelength emission on GaAs. We have confirmed these predictions by producing emission out to 1.66 micrometers and have achieved edge emitting and VCSEL electroluminescence at 1.3 micrometers. We have also done the first study of the transport properties of this material including mobility, electron/hole mass, and exciton reduced mass. This study has increased the understanding of the III-antimonide/nitride materials enough to warrant consideration for all of the target device applications.

  20. Pulsed Laser System to Simulate Effects of Cosmic Rays in Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Adell, Philippe C.; Allen, Gregory R.; Guertin, Steven M.; McClure, Steven S.

    2011-01-01

    Spaceflight system electronic devices must survive a wide range of radiation environments with various particle types including energetic protons, electrons, gamma rays, x-rays, and heavy ions. High-energy charged particles such as heavy ions can pass straight through a semiconductor material and interact with a charge-sensitive region, generating a significant amount of charge (electron-hole pairs) along their tracks. These excess charges can damage the device, and the response can range from temporary perturbations to permanent changes in the state or performance. These phenomena are called single event effects (SEE). Before application in flight systems, electronic parts need to be qualified and tested for performance and radiation sensitivity. Typically, their susceptibility to SEE is tested by exposure to an ion beam from a particle accelerator. At such facilities, the device under test (DUT) is irradiated with large beams so there is no fine resolution to investigate particular regions of sensitivity on the parts. While it is the most reliable approach for radiation qualification, these evaluations are time consuming and costly. There is always a need for new cost-efficient strategies to complement accelerator testing: pulsed lasers provide such a solution. Pulsed laser light can be utilized to simulate heavy ion effects with the advantage of being able to localize the sensitive region of an integrated circuit. Generally, a focused laser beam of approximately picosecond pulse duration is used to generate carrier density in the semiconductor device. During irradiation, the laser pulse is absorbed by the electronic medium with a wavelength selected accordingly by the user, and the laser energy can ionize and simulate SEE as would occur in space. With a tightly focused near infrared (NIR) laser beam, the beam waist of about a micrometer can be achieved, and additional scanning techniques are able to yield submicron resolution. This feature allows mapping of all

  1. Quantum filter of spin polarized states: Metal–dielectric–ferromagnetic/semiconductor device

    SciTech Connect

    Makarov, Vladimir I.; Khmelinskii, Igor

    2014-02-01

    Highlights: • Development of a new spintronics device. • Development of quantum spin polarized filters. • Development of theory of quantum spin polarized filter. - Abstract: Recently we proposed a model for the Quantum Spin-Polarized State Filter (QSPSF). The magnetic moments are transported selectively in this model, detached from the electric charge carriers. Thus, transfer of a spin-polarized state between two conductors was predicted in a system of two levels coupled by exchange interaction. The strength of the exchange interaction between the two conductive layers depends on the thickness of the dielectric layer separating them. External magnetic fields modulate spin-polarized state transfer, due to Zeeman level shift. Therefore, a linearly growing magnetic field generates a series of current peaks in a nearby coil. Thus, our spin-state filter should contain as least three nanolayers: (1) conductive or ferromagnetic; (2) dielectric; and (3) conductive or semiconductive. The spectrum of spin-polarized states generated by the filter device consists of a series of resonance peaks. In a simple case the number of lines equals S, the total spin angular momentum of discrete states in one of the coupled nanolayers. Presently we report spin-polarized state transport in metal–dielectric–ferromagnetic (MDF) and metal–dielectric–semiconductor (MDS) three-layer sandwich devices. The exchange-resonance spectra in such devices are quite specific, differing also from spectra observed earlier in other three-layer devices. The theoretical model is used to interpret the available experimental results. A detailed ab initio analysis of the magnetic-field dependence of the output magnetic moment averaged over the surface of the device was carried out. The model predicts the resonance structure of the signal, although at its present accuracy it cannot predict the positions of the spectral peaks.

  2. 78 FR 68814 - Subzone 183B; Authorization of Production Activity; Samsung Austin Semiconductor, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Foreign-Trade Zones Board Subzone 183B; Authorization of Production Activity; Samsung Austin Semiconductor, LLC (Semiconductors); Austin, Texas On June 26, 2013, Samsung Austin Semiconductor, LLC submitted a... within Subzone 183B, in Austin, Texas. The notification was processed in accordance with the...

  3. Hydrogen-Bonded Organic Semiconductor Micro- And Nanocrystals: From Colloidal Syntheses to (Opto-)Electronic Devices

    PubMed Central

    2014-01-01

    Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the near-infrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution processing of (opto)electronic devices. As examples, phthalocyanine nanowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants. PMID:25253644

  4. Total-dose radiation effects data for semiconductor devices. 1985 Supplement. Volume 2, part B

    NASA Technical Reports Server (NTRS)

    Martin, K. E.; Gauthier, M. K.; Coss, J. R.; Dantas, A. R. V.; Price, W. E.

    1986-01-01

    Steady-state, total-dose radiation test data are provided in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. The document is in two volumes: Volume 1 provides data on diodes, bipolar transistors, field effect transistors, and miscellaneous semiconductor types, and Volume 2 (Parts A and B) provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done steady-state 2.5-MeV electron beam. However, some radiation exposures were made with a Cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose. All data were generated in support of NASA space programs by the JPL Radiation Effects and Testing Group (514).

  5. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device.

    PubMed

    Heywood, Sarah L; Glavin, Boris A; Beardsley, Ryan P; Akimov, Andrey V; Carr, Michael W; Norman, James; Norton, Philip C; Prime, Brian; Priestley, Nigel; Kent, Anthony J

    2016-08-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1-12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies.

  6. Total-dose radiation effects data for semiconductor devices. 1985 supplement. Volume 2, part A

    NASA Technical Reports Server (NTRS)

    Martin, K. E.; Gauthier, M. K.; Coss, J. R.; Dantas, A. R. V.; Price, W. E.

    1986-01-01

    Steady-state, total-dose radiation test data, are provided in graphic format for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. This volume provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done using the JPL or Boeing electron accelerator (Dynamitron) which provides a steady-state 2.5 MeV electron beam. However, some radiation exposures were made with a Cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose.

  7. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    PubMed Central

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.

    2015-01-01

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field. PMID:25892711

  8. Semiconductor devices as track detectors in high energy colliding beam experiments

    SciTech Connect

    Ludlam, T

    1980-01-01

    In considering the design of experiments for high energy colliding beam facilities one quickly sees the need for better detectors. The full exploitation of machines like ISABELLE will call for detector capabilities beyond what can be expected from refinements of the conventional approaches to particle detection in high energy physics experiments. Over the past year or so there has been a general realization that semiconductor device technology offers the possibility of position sensing detectors having resolution elements with dimensions of the order of 10 microns or smaller. Such a detector could offer enormous advantages in the design of experiments, and the purpose of this paper is to discuss some of the possibilities and some of the problems.

  9. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device

    PubMed Central

    Heywood, Sarah L.; Glavin, Boris A.; Beardsley, Ryan P.; Akimov, Andrey V.; Carr, Michael W.; Norman, James; Norton, Philip C.; Prime, Brian; Priestley, Nigel; Kent, Anthony J.

    2016-01-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1–12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies. PMID:27477841

  10. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device

    NASA Astrophysics Data System (ADS)

    Heywood, Sarah L.; Glavin, Boris A.; Beardsley, Ryan P.; Akimov, Andrey V.; Carr, Michael W.; Norman, James; Norton, Philip C.; Prime, Brian; Priestley, Nigel; Kent, Anthony J.

    2016-08-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1–12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies.

  11. Fabrication and characterization of compound semiconductor devices and their electrical and thermal simulation

    NASA Astrophysics Data System (ADS)

    Mehandru, Rishabh

    Scandium Oxide (Sc2O3) and Magnesium Oxide (MgO) were demonstrated as promising gate dielectrics for GaN-based Metal Oxide Semiconductor High Electron Mobility Transistors (MOSHEMTs) and Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) along with being very good passivation layers for GaN/AlGaN HEMTs. I-V and C-V, G-V measurements were used to characterize the interface between oxide and GaN. Interface state density and breakdown field were extracted from these measurements (experimental data). These results of MOS diodes led to the first demonstration of GaN/AlGaN MOSHEMT using Sc2O3 as gate dielectric. The MOSHEMTs showed ˜40% more saturation drain-source current than that of HEMTs and gate of MOSHEMTs can be biased to +6 V as compared to max +2 V for HEMT. Use of Sc2O3 and MgO as surface passivation layer enhanced RF and microwave performance of these devices. Temperature simulations on bulk GaN power diodes were performed using Finite Element analysis to compare the junction temperature of power diodes packaged with conventional wire bonding and flip-chip bonding technology. Superior heat dissipation was obtained for the flip chip bonded device. Finite difference thermal analysis of 850 nm VCSELs was carried out by writing a code in MATLAB. Thermal characteristics of 1550 nm VCSEL were also studied by using finite element analysis software called FlexPDE. W-based Schottky contacts on GaN are attractive for applications requiring long-term thermal stability, such as combustion gas monitoring. The effect of deposition conditions on the electrical properties of W/Pt/Au Schottky contacts on n-GaN was studied.

  12. Transmission line pulse system for avalanche characterization of high power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Riccio, Michele; Ascione, Giovanni; De Falco, Giuseppe; Maresca, Luca; De Laurentis, Martina; Irace, Andrea; Breglio, Giovanni

    2013-05-01

    Because of the increasing in power density of electronic devices for medium and high power application, reliabilty of these devices is of great interest. Understanding the avalanche behaviour of a power device has become very important in these last years because it gives an indication of the maximum energy ratings which can be seen as an index of the device ruggedness. A good description of this behaviour is given by the static IV blocking characteristc. In order to avoid self heating, very relevant in high power devices, very short pulses of current have to be used, whose value can change from few milliamps up to tens of amps. The most used method to generate short pulses is the TLP (Transmission Line Pulse) test, which is based on charging the equivalent capacitance of a transmission line to high value of voltage and subsequently discharging it onto a load. This circuit let to obtain very short square pulses but it is mostly used for evaluate the ESD capability of semiconductor and, in this environment, it generates pulses of low amplitude which are not high enough to characterize the avalanche behaviour of high power devices . Advanced TLP circuit able to generate high current are usually very expensive and often suffer of distorption of the output pulse. In this article is proposed a simple, low cost circuit, based on a boosted-TLP configuration, which is capable to produce very square pulses of about one hundreds of nanosecond with amplitude up to some tens of amps. A prototype is implemented which can produce pulses up to 20A of amplitude with 200 ns of duration which can characterize power devices up to 1600V of breakdown voltage. Usage of microcontroller based logic make the circuit very flexible. Results of SPICE simulation are provided, together with experimental results. To prove the effectiveness of the circuit, the I-V blocking characteristics of two commercial devices, namely a 600V PowerMOS and a 1200V Trench-IGBT, are measured at different

  13. Active MMI devices: concept, proof, and recent progress

    NASA Astrophysics Data System (ADS)

    Hamamoto, Kiichi; Jiang, Haisong

    2015-09-01

    Multi-mode interference (MMI) couplers (waveguides) are widely studied and developed as key components of photonic integrated circuits, including power coupler/dividers, and others. Furthermore, another possibility utilizing MMI has been investigated on active devices so far. Owing to the wider area of the multi-mode waveguide section compared with that of the regular single-mode waveguide, MMI may result in higher performance (high power, low power consumption, and others) rather than conventional active devices while maintaining regular single-mode output. Thus, active multi-mode interferometer (active-MMI) devices, including laser diodes (LDs), super-luminescent light emitting diodes (SLEDs), and semiconductor optical amplifiers (SOAs) have been studied. Moreover, they have been also exploited to bi-stable LDs and single wavelength emitters, and others using the interference inside the MMI section. In this paper, we review and summarize the recent progress in active MMI devices. We provide proof of MMI phenomena in active waveguides and discuss the results.

  14. Substrate-emitting semiconductor laser with a trapezoidal active region

    SciTech Connect

    Dikareva, N V; Nekorkin, S M; Karzanova, M V; Zvonkov, B N; Aleshkin, V Ya; Dubinov, A A; Afonenko, A A

    2014-04-28

    Semiconductor lasers with a narrow (∼2°) directional pattern in the planes both parallel and perpendicular to the p–n junction are fabricated. To achieve a low radiation divergence in the p–n junction plane, the active region in this plane was designed in the form of a trapezium. The narrow directional pattern in the plane perpendicular to the p–n junction was ensured by the use of a leaky mode, through which more than 90% of laser power was coupled out. (lasers)

  15. Empirical study of the metal-nitride-oxide-semiconductor device characteristics deduced from a microscopic model of memory traps

    SciTech Connect

    Ngai, K.L.; Hsia, Y.

    1982-07-15

    A graded-nitride gate dielectric metal-nitride-oxide-semiconductor (MNOS) memory transistor exhibiting superior device characteristics is presented and analyzed based on a qualitative microscopic model of the memory traps. The model is further reviewed to interpret some generic properties of the MNOS memory transistors including memory window, erase-write speed, and the retention-endurance characteristic features.

  16. Empirical study of the metal-nitride-oxide-semiconductor device characteristics deduced from a microscopic model of memory traps

    NASA Astrophysics Data System (ADS)

    Ngai, Kia L.; Hsia, Yukun

    1982-07-01

    A graded-nitride gate dielectric metal-nitride-oxide-semiconductor (MNOS) memory transistor exhibiting superior device characteristics is presented and analyzed based on a qualitative microscopic model of the memory traps. The model is further reviewed to interpret some generic properties of the MNOS memory transistors including memory window, erase-write speed, and the retention-endurance characteristic features.

  17. Development of a Handmade Conductivity Measurement Device for a Thin-Film Semiconductor and Its Application to Polypyrrole

    ERIC Educational Resources Information Center

    Seng, Set; Shinpei, Tomita; Yoshihiko, Inada; Masakazu, Kita

    2014-01-01

    The precise measurement of conductivity of a semiconductor film such as polypyrrole (Ppy) should be carried out by the four-point probe method; however, this is difficult for classroom application. This article describes the development of a new, convenient, handmade conductivity device from inexpensive materials that can measure the conductivity…

  18. Method for sputtering a PIN amorphous silicon semi-conductor device having partially crystallized P and N-layers

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-07-09

    A high efficiency amorphous silicon PIN semiconductor device having partially crystallized (microcrystalline) P and N layers is constructed by the sequential sputtering of N, I and P layers and at least one semi-transparent ohmic electrode. The method of construction produces a PIN device, exhibiting enhanced electrical and optical properties, improved physical integrity, and facilitates the preparation in a singular vacuum system and vacuum pump down procedure.

  19. Probing a Device's Active Atoms.

    PubMed

    Studniarek, Michał; Halisdemir, Ufuk; Schleicher, Filip; Taudul, Beata; Urbain, Etienne; Boukari, Samy; Hervé, Marie; Lambert, Charles-Henri; Hamadeh, Abbass; Petit-Watelot, Sebastien; Zill, Olivia; Lacour, Daniel; Joly, Loïc; Scheurer, Fabrice; Schmerber, Guy; Da Costa, Victor; Dixit, Anant; Guitard, Pierre André; Acosta, Manuel; Leduc, Florian; Choueikani, Fadi; Otero, Edwige; Wulfhekel, Wulf; Montaigne, François; Monteblanco, Elmer Nahuel; Arabski, Jacek; Ohresser, Philippe; Beaurepaire, Eric; Weber, Wolfgang; Alouani, Mébarek; Hehn, Michel; Bowen, Martin

    2017-03-13

    Materials science and device studies have, when implemented jointly as "operando" studies, better revealed the causal link between the properties of the device's materials and its operation, with applications ranging from gas sensing to information and energy technologies. Here, as a further step that maximizes this causal link, the paper focuses on the electronic properties of those atoms that drive a device's operation by using it to read out the materials property. It is demonstrated how this method can reveal insight into the operation of a macroscale, industrial-grade microelectronic device on the atomic level. A magnetic tunnel junction's (MTJ's) current, which involves charge transport across different atomic species and interfaces, is measured while these atoms absorb soft X-rays with synchrotron-grade brilliance. X-ray absorption is found to affect magnetotransport when the photon energy and linear polarization are tuned to excite FeO bonds parallel to the MTJ's interfaces. This explicit link between the device's spintronic performance and these FeO bonds, although predicted, challenges conventional wisdom on their detrimental spintronic impact. The technique opens interdisciplinary possibilities to directly probe the role of different atomic species on device operation, and shall considerably simplify the materials science iterations within device research.

  20. Analytical study of acoustically perturbed Brillouin active magnetized semiconductor plasma

    SciTech Connect

    Shukla, Arun; Jat, K. L.

    2015-07-31

    An analytical study of acoustically perturbed Brillouin active magnetized semiconductor plasma has been reported. In the present analytical investigation, the lattice displacement, acousto-optical polarization, susceptibility, acousto-optical gain constant arising due to the induced nonlinear current density and acousto-optical process are deduced in an acoustically perturbed Brillouin active magnetized semiconductor plasma using the hydrodynamical model of plasma and coupled mode scheme. The influence of wave number and magnetic field has been explored. The analysis has been applied to centrosymmetric crystal. Numerical estimates are made for n-type InSb crystal duly irradiated by a frequency doubled 10.6 µm CO{sub 2} laser. It is found that lattice displacement, susceptibility and acousto-optical gain increase linearly with incident wave number and applied dc magnetic field, while decrease with scattering angle. The gain also increases with electric amplitude of incident laser beam. Results are found to be well in agreement with available literature.

  1. Multifunctional semiconductor micro-Hall devices for magnetic, electric, and photo-detection

    SciTech Connect

    Gilbertson, A. M.; Cohen, L. F.; Sadeghi, Hatef; Lambert, C. J.; Panchal, V.; Kazakova, O.; Solin, S. A.

    2015-12-07

    We report the real-space voltage response of InSb/AlInSb micro-Hall devices to local photo-excitation, electric, and magnetic fields at room temperature using scanning probe microscopy. We show that the ultrafast generation of localised photocarriers results in conductance perturbations analogous to those produced by local electric fields. Experimental results are in good agreement with tight-binding transport calculations in the diffusive regime. The magnetic, photo, and charge sensitivity of a 2 μm wide probe are evaluated at a 10 μA bias current in the Johnson noise limit (valid at measurement frequencies > 10 kHz) to be, respectively, 500 nT/√Hz; 20 pW/√Hz (λ = 635 nm) comparable to commercial photoconductive detectors; and 0.05 e/√Hz comparable to that of single electron transistors. These results demonstrate the remarkably versatile sensing attributes of simple semiconductor micro-Hall devices that can be applied to a host of imaging and sensing applications.

  2. Analysis of Interface Charge Densities for High-k Dielectric Materials based Metal Oxide Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Maity, N. P.; Thakur, R. R.; Maity, Reshmi; Thapa, R. K.; Baishya, S.

    2016-10-01

    In this paper, the interface charge densities (Dit) are studied and analyzed for ultra thin dielectric metal oxide semiconductor (MOS) devices using different high-k dielectric materials such as Al2O3, ZrO2 and HfO2. The Dit have been calculated by a new approach using conductance method and it indicates that by reducing the thickness of the oxide, the Dit increases and similar increase is also found by replacing SiO2 with high-k. For the same oxide thickness, SiO2 has the lowest Dit and found to be the order of 1011cm-2eV-1. Linear increase in Dit has been observed as the dielectric constant of the oxide increases. The Dit is found to be in good agreement with published fabrication results at p-type doping level of 1×1017cm-3. Numerical calculations and solutions are performed by MATLAB and device simulation is done by ATLAS.

  3. Multifunctional semiconductor micro-Hall devices for magnetic, electric, and photo-detection

    NASA Astrophysics Data System (ADS)

    Gilbertson, A. M.; Sadeghi, Hatef; Panchal, V.; Kazakova, O.; Lambert, C. J.; Solin, S. A.; Cohen, L. F.

    2015-12-01

    We report the real-space voltage response of InSb/AlInSb micro-Hall devices to local photo-excitation, electric, and magnetic fields at room temperature using scanning probe microscopy. We show that the ultrafast generation of localised photocarriers results in conductance perturbations analogous to those produced by local electric fields. Experimental results are in good agreement with tight-binding transport calculations in the diffusive regime. The magnetic, photo, and charge sensitivity of a 2 μm wide probe are evaluated at a 10 μA bias current in the Johnson noise limit (valid at measurement frequencies > 10 kHz) to be, respectively, 500 nT/√Hz; 20 pW/√Hz (λ = 635 nm) comparable to commercial photoconductive detectors; and 0.05 e/√Hz comparable to that of single electron transistors. These results demonstrate the remarkably versatile sensing attributes of simple semiconductor micro-Hall devices that can be applied to a host of imaging and sensing applications.

  4. Growth and Characterization of III-V Semiconductors for Device Applications

    NASA Technical Reports Server (NTRS)

    Williams, Michael D.

    2000-01-01

    The research goal was to achieve a fundamental understanding of the physical processes occurring at the surfaces and interfaces of epitaxially grown InGaAs/GaAs (100) heterostructures. This will facilitate the development of quantum well devices for infrared optical applications and provide quantitative descriptions of key phenomena which impact their performance. Devices impacted include high-speed laser diodes and modulators for fiber optic communications at 1.55 micron wavelengths and intersub-band lasers for longer infrared wavelengths. The phenomenon of interest studied was the migration of indium in InGaAs structures. This work centered on the molecular beam epitaxy reactor and characterization apparatus donated to CAU by AT&T Bell Laboratories. The material characterization tool employed was secondary ion mass spectrometry. The training of graduate and undergraduate students was an integral part of this program. The graduate students received a thorough exposure to state-of-the-art techniques and equipment for semiconductor materials analysis as part of the Master''s degree requirement in physics. The undergraduates were exposed to a minority scientist who has an excellent track record in this area. They also had the opportunity to explore surface physics as a career option. The results of the scientific work was published in a refereed journal and several talks were presented professional conferences and academic seminars.

  5. George E. Pake Prize: A Few Challenges in the Evolution of Semiconductor Device/Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Doering, Robert

    In the early 1980s, the semiconductor industry faced the related challenges of ``scaling through the one-micron barrier'' and converting single-level-metal NMOS integrated circuits to multi-level-metal CMOS. Multiple advances in lithography technology and device materials/process integration led the way toward the deep-sub-micron transistors and interconnects that characterize today's electronic chips. In the 1990s, CMOS scaling advanced at an accelerated pace enabled by rapid advances in many aspects of optical lithography. However, the industry also needed to continue the progress in manufacturing on ever-larger silicon wafers to maintain economy-of-scale trends. Simultaneously, the increasing complexity and absolute-precision requirements of manufacturing compounded the necessity for new processes, tools, and control methodologies. This talk presents a personal perspective on some of the approaches that addressed the aforementioned challenges. In particular, early work on integrating silicides, lightly-doped-drain FETs, shallow recessed isolation, and double-level metal will be discussed. In addition, some pioneering efforts in deep-UV lithography and single-wafer processing will be covered. The latter will be mainly based on results from the MMST Program - a 100 M +, 5-year R&D effort, funded by DARPA, the U.S. Air Force, and Texas Instruments, that developed a wide range of new technologies for advanced semiconductor manufacturing. The major highlight of the program was the demonstration of sub-3-day cycle time for manufacturing 350-nm CMOS integrated circuits in 1993. This was principally enabled by the development of: (1) 100% single-wafer processing, including rapid-thermal processing (RTP), and (2) computer-integrated-manufacturing (CIM), including real-time, in-situ process control.

  6. Variations in semiconductor device response in a medium-energy x-ray dose-enhancing environment

    SciTech Connect

    Beutler, D.E.; Fleetwood, D.M.; Beezhold, W.; Knott, D.; Lorence, L.J. Jr.; Draper, B.L.

    1987-12-01

    The authors performed a series of experiments to investigate the response of semiconductor devices to medium-energy x-ray irradiation under conditions in which dose-enhancement effects are very important. They find that the response of MOS capacitors to the same ''dose-enhanced'' radiation depends not only on the increased dose, but also on the incident radiation spectra, device temperature and processing, and/or oxide thickness and electric field. In many cases, these dependencies cannot be explained simply in terms of existing knowledge of basic mechanisms of radiation effects on MOS devices (for example, electron-hole recombination and hole transport and trapping), or by present Monte Carlo electron/photon transport codes such as the Integrated Tiger Series (ITS). In addition, the response of semiconductor diodes to the ''dose-enhanced'' radiation appears to be qualitatively different from that of MOS capacitors, and differs markedly in value from the ITS code predictions. These results demonstrate that an improved understanding of semiconductor device response to ''enhanced'' radiation is needed to assure simulation fidelity of tests of devices to be used in dose-enhancing environments.

  7. Field-effect and frequency dependent transport in semiconductor-enriched single-wall carbon nanotube network device.

    PubMed

    Jaiswal, Manu; Sangeeth, C S Suchand; Wang, Wei; Sun, Ya-Ping; Menon, Reghu

    2009-11-01

    The electrical and optical response of a field-effect device comprising a network of semiconductor-enriched single-wall carbon nanotubes, gated with sodium chloride solution is investigated. Field-effect is demonstrated in a device that uses facile fabrication techniques along with a small-ion as the gate electrolyte-and this is accomplished as a result of the semiconductor enhancement of the tubes. The optical transparency and electrical resistance of the device are modulated with gate voltage. A time-response study of the modulation of optical transparency and electrical resistance upon application of gate voltage suggests the percolative charge transport in the network. Also the ac response in the network is investigated as a function of frequency and temperature down to 5 K. An empirical relation between onset frequency and temperature is determined.

  8. Method to determine the position-dependant metal correction factor for dose-rate equivalent laser testing of semiconductor devices

    DOEpatents

    Horn, Kevin M.

    2013-07-09

    A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.

  9. Effects of oxide traps, interface traps, and border traps'' on metal-oxide-semiconductor devices

    SciTech Connect

    Fleetwood, D.M.; Winokur, P.S.; Reber, R.A. Jr.; Meisenheimer, T.L.; Schwank, J.R.; Shaneyfelt, M.R.; Riewe, L.C. )

    1993-05-15

    We have identified several features of the 1/[ital f] noise and radiation response of metal-oxide-semiconductor (MOS) devices that are difficult to explain with standard defect models. To address this issue, and in response to ambiguities in the literature, we have developed a revised nomenclature for defects in MOS devices that clearly distinguishes the language used to describe the physical location of defects from that used to describe their electrical response. In this nomenclature, oxide traps'' are simply defects in the SiO[sub 2] layer of the MOS structure, and interface traps'' are defects at the Si/SiO[sub 2] interface. Nothing is presumed about how either type of defect communicates with the underlying Si. Electrically, fixed states'' are defined as trap levels that do not communicate with the Si on the time scale of the measurements, but switching states'' can exchange charge with the Si. Fixed states presumably are oxide traps in most types of measurements, but switching states can either be interface traps or near-interfacial oxide traps that can communicate with the Si, i.e., border traps'' [D. M. Fleetwood, IEEE Trans. Nucl. Sci. [bold NS]-[bold 39], 269 (1992)]. The effective density of border traps depends on the time scale and bias conditions of the measurements. We show the revised nomenclature can provide focus to discussions of the buildup and annealing of radiation-induced charge in non-radiation-hardened MOS transistors, and to changes in the 1/[ital f] noise of MOS devices through irradiation and elevated-temperature annealing.

  10. Optical activity of semiconductor nanocrystals with ionic impurities

    NASA Astrophysics Data System (ADS)

    Tepliakov, N. V.; Baimuratov, A. S.; Gun'ko, Yu. K.; Baranov, A. V.; Fedorov, A. V.; Rukhlenko, I. D.

    2017-01-01

    The strength of the enantioselective interaction of chiral semiconductor nanocrystals with circularly polarized light can be varied over a wide range, which finds a series of important applications in modern nanophotonics. As a rule, this interaction is relatively weak, because the dimension of nanocrystals is much smaller than the wavelength of the optical radiation, and the optical activity of nanocrystals is rather low. In this work, we show theoretically that, by applying ion doping, one can significantly enhance the optical activity of nanocrystals and to vary its magnitude over a wide range of values and over a wide range of frequencies. We show that, by precisely arranging impurities inside nanocrystals, one can optimize the rotatory strengths of intraband transitions, making them 100 times stronger than typical rotatory strengths of small chiral molecules.

  11. Magnetic field effect in non-magnetic organic semiconductor thin film devices and its applications

    NASA Astrophysics Data System (ADS)

    Mermer, Omer

    Organic pi-conjugated materials have been used to manufacture devices such as organic light-emitting diodes (OLEDs), photovoltaic cells and field-effect transistors. Recently there has been growing interest in spin and magnetic field effects in these materials. In this thesis, I report on the discovery and experimental characterization of a large and intriguing magnetoresistance effect, which we dubbed organic magnetoresistance (OMAR), in various pi-conjugated polymer and small molecular OLEDs. OMAR may find application in magnetic field sensors in OLED interactive displays (patent pending). We discovered OMAR originally in devices made from the pi-conjugated polymer polyfluorene. We found ≈ 10% magnetoresistance at 10 mT fields at room temperature. The effect is independent of the field direction, and is only weakly temperature dependent. We show that OMAR is a bulk effect related to the majority carrier transport. Studying polymer films with different amount of disorder we found that low disorder/large mobility is not a necessary prerequisite for large OMAR response. We also studied a possible interrelation between spin-orbit coupling and the OMAR effect in platinum-containing polymers. We found that spin-orbit coupling has apparently little effect on OMAR. A large OMAR effect was also observed in devices made from the prototypical small molecule, Alq3 that is similar in size to that in the polyfluorene devices. Our study shows that the basic properties are equivalent to polymer devices. To the best of our knowledge, OMAR is not adequately described by any of the magnetoresistance mechanisms known to date. A future explanation for this effect may lead to a breakthrough in the scientific understanding of organic semiconductors. In a largely unrelated effort, we also modelled spin-dependent exciton formation in OLEDs. Our work leads to the following picture of exciton formation: Since the triplet exciton states lie lower in energy than singlets, more phonons must

  12. Laser-based irradiation apparatus and method to measure the functional dose-rate response of semiconductor devices

    DOEpatents

    Horn, Kevin M.

    2008-05-20

    A broad-beam laser irradiation apparatus can measure the parametric or functional response of a semiconductor device to exposure to dose-rate equivalent infrared laser light. Comparisons of dose-rate response from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems can determine if aging has affected the device's overall functionality. The dependence of these changes on equivalent dose-rate pulse intensity and/or duration can be measured with the apparatus. The synchronized introduction of external electrical transients into the device under test can be used to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure while exposing the device to dose-rate equivalent infrared laser light.

  13. Platelet actively cooled thermal management devices

    NASA Astrophysics Data System (ADS)

    Mueggenburg, H. H.; Hidahl, J. W.; Kessler, E. L.; Rousar, D. C.

    1992-07-01

    An overview of 28 years of actively-cooled platelet thermal management devices design and development history is presented. Platelet devices are created by bonding together thin metal sheets (platelets) which contain chemically-etched coolant pasages. The bonding process produces an intricate and precise matrix of coolant passages and structural walls contained within a monolithic structure. Thirteen specific applications for platelet thermal management devices are described. These devices are cooled using convective, film, and transpiration cooling techniques. Platelet thermal management devices have been fabricated from a variety of metals, cooled with a variety of fluids, and operated at heat fluxes up to 200 Btu/sq in.-sec.

  14. Nonlinear current-voltage characteristics based on semiconductor nanowire networks enable a new concept in thermoelectric device optimization

    NASA Astrophysics Data System (ADS)

    Diaz Leon, Juan J.; Norris, Kate J.; Hartnett, Ryan J.; Garrett, Matthew P.; Tompa, Gary S.; Kobayashi, Nobuhiko P.

    2016-08-01

    Thermoelectric (TE) devices that produce electric power from heat are driven by a temperature gradient (Δ T = T_{{hot}} - T_{{cold}}, T hot: hot side temperature, T cold: cold side temperature) with respect to the average temperature ( T). While the resistance of TE devices changes as Δ T and/or T change, the current-voltage ( I- V) characteristics have consistently been shown to remain linear, which clips generated electric power ( P gen) within the given open-circuit voltage ( V OC) and short-circuit current ( I SC). This P gen clipping is altered when an appropriate nonlinearity is introduced to the I- V characteristics—increasing P gen. By analogy, photovoltaic cells with a large fill factor exhibit nonlinear I- V characteristics. In this paper, the concept of a unique TE device with nonlinear I- V characteristics is proposed and experimentally demonstrated. A single TE device with nonlinear I- V characteristics is fabricated by combining indium phosphide (InP) and silicon (Si) semiconductor nanowire networks. These TE devices show P gen that is more than 25 times larger than those of comparable devices with linear I- V characteristics. The plausible causes of the nonlinear I- V characteristics are discussed. The demonstrated concept suggests that there exists a new pathway to increase P gen of TE devices made of semiconductors.

  15. High resolution infrared ``vision'' of dynamic electron processes in semiconductor devices (abstract)

    NASA Astrophysics Data System (ADS)

    Malyutenko, V. K.

    2003-01-01

    Infrared cameras have been traditionally used in semiconductor industry for noncontact measurements of printed circuit boards (PCBs) local overheating. While an effective way to prevent defective PCB application in a "find-problems-before-your-customer-do" manner, this conventional static (25-50 frames/s) and small spatial resolution (>100 μm) approach is incapable, in principle, of explaining the physical reason for the PCB failure. What follows in this report is the demonstration of an IR camera based new approach in high-resolution dynamic study of electron processes responsible for single device performance. More specifically, time resolved two-dimensional visualization of current carrier drift and diffusion processes across the device base that happen in microsecond scale is of prime concern in the work. Thus, contrary to the conventional visualization-through-heating measurements, objective is mapping of electron processes in a device base through negative and positive luminescence (provoked by band-to-band electron transitions) and nonequilibrium thermal emission (provoked by intraband electron transitions) studies inside the region in which current flows. Therefore, the parameters of interest are not only a device thermal mass and thermal conductance, but also free carrier lifetime, surface recombination velocity, diffusion length, and contact properties. The micro-mapping system developed consists of reflective type IR microscope coaxially attached to calibrated scanning IR thermal imaging cameras (3-5 and 8-12 μm spectral ranges, HgCdTe cooled photodetectors, scene spatial resolution of some 20 μm, minimum time resolved interval of 10 μs, and temperature resolution of about 0.5 °C at 30 °C). Data acquisition and image processing (emissivity equalization, noise reduction by image averaging, and external triggering) are computer controlled. Parallel video channel equipped with a CCD camera permits easy positioning and focusing of <1×1 mm2 object

  16. A review of recent advances in the spherical harmonics expansion method for semiconductor device simulation.

    PubMed

    Rupp, K; Jungemann, C; Hong, S-M; Bina, M; Grasser, T; Jüngel, A

    The Boltzmann transport equation is commonly considered to be the best semi-classical description of carrier transport in semiconductors, providing precise information about the distribution of carriers with respect to time (one dimension), location (three dimensions), and momentum (three dimensions). However, numerical solutions for the seven-dimensional carrier distribution functions are very demanding. The most common solution approach is the stochastic Monte Carlo method, because the gigabytes of memory requirements of deterministic direct solution approaches has not been available until recently. As a remedy, the higher accuracy provided by solutions of the Boltzmann transport equation is often exchanged for lower computational expense by using simpler models based on macroscopic quantities such as carrier density and mean carrier velocity. Recent developments for the deterministic spherical harmonics expansion method have reduced the computational cost for solving the Boltzmann transport equation, enabling the computation of carrier distribution functions even for spatially three-dimensional device simulations within minutes to hours. We summarize recent progress for the spherical harmonics expansion method and show that small currents, reasonable execution times, and rare events such as low-frequency noise, which are all hard or even impossible to simulate with the established Monte Carlo method, can be handled in a straight-forward manner. The applicability of the method for important practical applications is demonstrated for noise simulation, small-signal analysis, hot-carrier degradation, and avalanche breakdown.

  17. Local lattice strain measurements in semiconductor devices by using convergent-beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Toda, Akio; Ikarashi, Nobuyuki; Ono, Haruhiko

    2000-03-01

    We examined the lattice strain distribution around local oxidation of silicon (LOCOS) in a semiconductor device by using highly accurate (1.8×10 -4 standard deviation) convergent-beam electron diffraction (CBED) at a nanometer-scale spatial resolution (10 nm in diameter). The nanometer-scale measurement was done by reducing the elastic relaxation using a thick (about 600 nm) sample and by removing the inelastically scattered electrons by means of an electron energy filter. A highly accurate measurement was achieved through the analysis of higher-order Laue zone (HOLZ) patterns using the least-squares fitting of HOLZ line intersection distances between the observations and calculations. Our examination showed that the LOCOS structure gave singularities in strain distributions at the field edge. That is, compressive strain exists in both the vertical and horizontal directions of the substrate, and the shear strain increased there. Most notably, two-dimensional measurements revealed that the singularity of the normal strain in the horizontal direction of the substrate generated at the field edge propagated into the substrate.

  18. Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling

    NASA Astrophysics Data System (ADS)

    Lin, Paul T.; Shadid, John N.; Sala, Marzio; Tuminaro, Raymond S.; Hennigan, Gary L.; Hoekstra, Robert J.

    2009-09-01

    In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system is obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 108 unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system.

  19. Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices.

    PubMed

    Li, H; Xu, Y; Xiang, J; Li, X F; Zhang, C Y; Tie, S L; Lan, S

    2016-12-07

    The interaction of silicon (Si) nanospheres (NSs) with a thin metal film is investigated numerically and experimentally by characterizing their forward scattering properties. A sharp resonant mode and a zero-scattering dip are found to be introduced in the forward scattering spectrum of a Si NS by putting it on a 50-nm-thick gold film. It is revealed that the sharp resonant mode arises from a new magnetic dipole induced by the electric dipole and its mirror image while the zero-scattering dip originates from the destructive interference between the new magnetic dipole and the original one together with its mirror image. A significant enhancement in both electric and magnetic fields is achieved at the contact point between the Si NS and the metal film. More interestingly, the use of a thin silver film can lead to vivid scattering light with different color indices. It is demonstrated that a small change in the surrounding environment of Si NSs results in the broadening of the resonant mode and the disappearance of the zero-scattering dip. Our findings indicate that dielectric-metal hybrid systems composed of semiconductor NSs and thin metal films act as attractive platforms on which novel nanoscale plasmonic devices can be realized.

  20. Measurement of Radiation Induced Damages in Semiconductor Materials Useful as Photovoltaic and Nuclear Detection Devices

    NASA Astrophysics Data System (ADS)

    Gul, Rubi; Keeter, Kara; Rodriguez, Rene

    2007-05-01

    Radiation interactions with materials cause a change in electronic and physical properties of the material, which affect the performance of the devices. It is a key issue in the employment of these materials in medical, space, security and other scientific applications. In our research we have determined the defects and their generation rate induced by gamma rays of energy 0.11-22 MeV, in CuInS2. We have used a simple model consisting of classical physics principles and Monte Carlo simulation software. The simulation results are in agreement with other published results done for other semiconductor materials. Our collaborators at INL will investigate different techniques for fabrication of thin films of CdZnTe and CuInS2 by using Radiofrequency Pulsed Plasma Enhanced Chemical Vapor Deposition and Pressurized Solvent techniques. Next, defects will be induced in the thin-film samples by exposure to a bremsstrahlung gamma-ray beam. The radiation dose will range from 5 to 25 kGy. Qualitative and quantitative measurements of the defects in the crystals will be done by gamma-ray spectroscopy and PICTS (Photo induced current transient spectroscopy). To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.C1.5

  1. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    DOE PAGES

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; ...

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biologicalmore » functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.« less

  2. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    SciTech Connect

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

  3. Enabling Earth-Abundant Pyrite (FeS2) Semiconductor Nanostructures for High Performance Photovoltaic Devices

    SciTech Connect

    Jin, Song

    2014-11-18

    This project seeks to develop nanostructures of iron pyrite, an earth-abundant semiconductor, to enable their applications in high-performance photovoltaic (PV) devices. Growth of high purity iron pyrite nanostructures (nanowires, nanorods, and nanoplates), as well as iron pyrite thin films and single crystals, has been developed and their structures characterized. These structures have been fundamentally investigated to understand the origin of the low solar energy conversion efficiency of iron pyrite and various passivation strategies and doping approaches have been explored in order to improve it. By taking advantage of the high surface-to-bulk ratio in nanostructures and effective electrolyte gating, we fully characterized both the surface inversion and bulk electrical transport properties for the first time through electrolyte-gated Hall measurements of pyrite nanoplate devices and show that pyrite is n-type in the bulk and p-type near the surface due to strong inversion, which has important consequences to using nanocrystalline pyrite for efficient solar energy conversion. Furthermore, through a comprehensive investigation on n-type iron pyrite single crystals, we found the ionization of high-density bulk deep donor states, likely resulting from bulk sulfur vacancies, creates a non-constant charge distribution and a very narrow surface space charge region that limits the total barrier height, thus satisfactorily explains the limited photovoltage and poor photoconversion efficiency of iron pyrite single crystals. These findings suggest new ideas on how to improve single crystal pyrite and nanocrystalline or polycrystalline pyrite films to enable them for high performance solar applications.

  4. Nonvolatile Memory Effect in Indium Gallium Arsenide-Based Metal-Oxide-Semiconductor Devices Using II-VI Tunnel Insulators

    NASA Astrophysics Data System (ADS)

    Chan, P.-Y.; Gogna, M.; Suarez, E.; Karmakar, S.; Al-Amoody, F.; Miller, B. I.; Jain, F. C.

    2011-08-01

    This paper reports the successful use of ZnSe/ZnS/ZnMgS/ZnS/ZnSe as a gate insulator stack for an InGaAs-based metal-oxide-semiconductor (MOS) device, and demonstrates the threshold voltage shift required in nonvolatile memory devices using a floating gate quantum dot layer. An InGaAs-based nonvolatile memory MOS device was fabricated using a high- κ II-VI tunnel insulator stack and self-assembled GeO x -cladded Ge quantum dots as the charge storage units. A Si3N4 layer was used as the control gate insulator. Capacitance-voltage data showed that, after applying a positive voltage to the gate of a MOS device, charges were being stored in the quantum dots. This was shown by the shift in the flat-band/threshold voltage, simulating the write process of a nonvolatile memory device.

  5. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    NASA Technical Reports Server (NTRS)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  6. Investigation of Surface Breakdown on Semiconductor Devices Using Optical Probing Techniques.

    DTIC Science & Technology

    1990-01-01

    18] L. Bovino , T. Burke, R. Youmans, M. Weiner, and J. Car, r, "Recent Advances in Optically C’ntrolled Bulk Semiconductor Switches," Digest of...Comp. Simul. 5 (3), 175 (1988). [321 M. Weiner, L. Bovino , R. Youmans, and T. Burke, "Modeling of the Optically Conrolled Semiconductor Switch," J

  7. Method for manufacturing electrical contacts for a thin-film semiconductor device

    DOEpatents

    Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.

    1988-11-08

    A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.

  8. Enhanced quality thin film Cu(In,Ga)Se.sub.2 for semiconductor device applications by vapor-phase recrystallization

    DOEpatents

    Tuttle, John R.; Contreras, Miguel A.; Noufi, Rommel; Albin, David S.

    1994-01-01

    Enhanced quality thin films of Cu.sub.w (In,Ga.sub.y)Se.sub.z for semiconductor device applications are fabricated by initially forming a Cu-rich, phase-separated compound mixture comprising Cu(In,Ga):Cu.sub.x Se on a substrate to form a large-grain precursor and then converting the excess Cu.sub.x Se to Cu(In,Ga)Se.sub.2 by exposing it to an activity of In and/or Ga, either in vapor In and/or Ga form or in solid (In,Ga).sub.y Se.sub.z. Alternatively, the conversion can be made by sequential deposition of In and/or Ga and Se onto the phase-separated precursor. The conversion process is preferably performed in the temperature range of about 300.degree.-600.degree. C., where the Cu(In,Ga)Se.sub.2 remains solid, while the excess Cu.sub.x Se is in a liquid flux. The characteristic of the resulting Cu.sub.w (In,Ga).sub.y Se.sub.z can be controlled by the temperature. Higher temperatures, such as 500.degree.-600.degree. C., result in a nearly stoichiometric Cu(In,Ga)Se.sub.2, whereas lower temperatures, such as 300.degree.-400.degree. C., result in a more Cu-poor compound, such as the Cu.sub.z (In,Ga).sub.4 Se.sub.7 phase.

  9. Enhanced quality thin film Cu(In,Ga)Se[sub 2] for semiconductor device applications by vapor-phase recrystallization

    DOEpatents

    Tuttle, J.R.; Contreras, M.A.; Noufi, R.; Albin, D.S.

    1994-10-18

    Enhanced quality thin films of Cu[sub w](In,Ga[sub y])Se[sub z] for semiconductor device applications are fabricated by initially forming a Cu-rich, phase-separated compound mixture comprising Cu(In,Ga):Cu[sub x]Se on a substrate to form a large-grain precursor and then converting the excess Cu[sub x]Se to Cu(In,Ga)Se[sub 2] by exposing it to an activity of In and/or Ga, either in vapor In and/or Ga form or in solid (In,Ga)[sub y]Se[sub z]. Alternatively, the conversion can be made by sequential deposition of In and/or Ga and Se onto the phase-separated precursor. The conversion process is preferably performed in the temperature range of about 300--600 C, where the Cu(In,Ga)Se[sub 2] remains solid, while the excess Cu[sub x]Se is in a liquid flux. The characteristic of the resulting Cu[sub w](In,Ga)[sub y]Se[sub z] can be controlled by the temperature. Higher temperatures, such as 500--600 C, result in a nearly stoichiometric Cu(In,Ga)Se[sub 2], whereas lower temperatures, such as 300--400 C, result in a more Cu-poor compound, such as the Cu[sub z](In,Ga)[sub 4]Se[sub 7] phase. 7 figs.

  10. Crystal growth of hexaferrite architecture for magnetoelectrically tunable microwave semiconductor integrated devices

    NASA Astrophysics Data System (ADS)

    Hu, Bolin

    Hexaferrites (i.e., hexagonal ferrites), discovered in 1950s, exist as any one of six crystallographic structural variants (i.e., M-, X-, Y-, W-, U-, and Z-type). Over the past six decades, the hexaferrites have received much attention owing to their important properties that lend use as permanent magnets, magnetic data storage materials, as well as components in electrical devices, particularly those operating at RF frequencies. Moreover, there has been increasing interest in hexaferrites for new fundamental and emerging applications. Among those, electronic components for mobile and wireless communications especially incorporated with semiconductor integrated circuits at microwave frequencies, electromagnetic wave absorbers for electromagnetic compatibility, random-access memory (RAM) and low observable technology, and as composite materials having low dimensions. However, of particular interest is the magnetoelectric (ME) effect discovered recently in the hexaferrites such as SrScxFe12-xO19 (SrScM), Ba2--xSrxZn 2Fe12O22 (Zn2Y), Sr4Co2Fe 36O60 (Co2U) and Sr3Co2Fe 24O41 (Co2Z), demonstrating ferroelectricity induced by the complex internal alignment of magnetic moments. Further, both Co 2Z and Co2U have revealed observable magnetoelectric effects at room temperature, representing a step toward practical applications using the ME effect. These materials hold great potential for applications, since strong magnetoelectric coupling allows switching of the FE polarization with a magnetic field (H) and vice versa. These features could lead to a new type of storage devices, such as an electric field-controlled magnetic memory. A nanoscale-driven crystal growth of magnetic hexaferrites was successfully demonstrated at low growth temperatures (25--40% lower than the temperatures required often for crystal growth). This outcome exhibits thermodynamic processes of crystal growth, allowing ease in fabrication of advanced multifunctional materials. Most importantly, the

  11. A novel measuring method of clamping force for electrostatic chuck in semiconductor devices

    NASA Astrophysics Data System (ADS)

    Kesheng, Wang; Jia, Cheng; Yin, Zhong; Linhong, Ji

    2016-04-01

    Electrostatic chucks are one of the core components of semiconductor devices. As a key index of electrostatic chucks, the clamping force must be controlled within a reasonable range. Therefore, it is essential to accurately measure the clamping force. To reduce the negative factors influencing measurement precision and repeatability, this article presents a novel method to measure the clamping force and we elaborate both the principle and the key procedure. A micro-force probe component is introduced to monitor, adjust, and eliminate the gap between the wafer and the electrostatic chuck. The contact force between the ruby probe and the wafer is selected as an important parameter to characterize de-chucking, and we have found that the moment of de-chucking can be exactly judged. Moreover, this article derives the formula calibrating equivalent action area of backside gas pressure under real working conditions, which can effectively connect the backside gas pressure at the moment of de-chucking and the clamping force. The experiments were then performed on a self-designed measuring platform. The de-chucking mechanism is discussed in light of our analysis of the experimental data. Determination criteria for de-chucking point are summed up. It is found that the relationship between de-chucking pressure and applied voltage conforms well to quadratic equation. Meanwhile, the result reveals that actual de-chucking behavior is much more complicated than the description given in the classical empirical formula. Project supported by No. 02 National Science and Technology Major Project of China (No. 2011ZX02403-004).

  12. Orientation and morphology of self-assembled oligothiophene semiconductors and development of hybrid nanostructures for photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Tevis, Ian David

    This dissertation examines the self-assembly of electronically active small molecules for heterojunction photovoltaic devices and the synthesis of nanoscale hybrid materials with a focus on orientation and morphology. A hairpin-shaped self-assembling molecule featuring two semiconducting sexithiophene arms connected through a diamidocyclohexane linker was found to form p-type semiconducting nanowires through H-aggregation as well as J-aggregated bundles. This molecule was incorporated into heterojunction photovoltaics with phenyl-(C61/C71)-butyric acid methyl ester through spin-coating. The sexithiophene assembled during drying to form a percolating network of nanowires and fullerenes. Thermal annealing enhanced efficiencies by increasing domain sizes and organizing the fullerenes into the groves of the nanofibers to produce 0.48% efficient devices. A p-type quarterthiophene derivative was designed and synthesized to assemble through pi-pi stacking and hydrogen bonding and its assembly was explored. Solutions of the quarterthiophene drop-cast on poly(tetrafluoroethylene) dried quickly to form bundled fibers parallel to the substrate. Slower drying and higher concentrations led to the formation of rhombohedra and randomly oriented hexagonal prisms, respectively. Liquid-liquid interfacial precipitation was used with a porous aluminum oxide membrane between a solution of quarterthiophene and toluene to orient the hexagonal prisms perpendicular to the membrane. Depositing the molecule from solution onto a UV/Ozone treated transparent conducting oxide subtrated affored prisms and sheets with perpendicular pi-pi stacking was anisotropy observed by 2D-GISAXS. This perpendicular pi-pi stacking orientation and sheet formation on a planar electrode shortens charge transport distances and minimizes film defects, which could lead to improved photovoltaic devices. Interpenetrating donor and acceptor hybrid materials with perpendicular orientation for enhanced morphological

  13. Characterization of the electronic properties of magnetic and semiconductor devices using scanning probe techniques

    NASA Astrophysics Data System (ADS)

    Schaadt, Daniel Maria

    In the first part of this dissertation, scanning probe techniques are used in the study of localized charge deposition and subsequent transport in Co nanoclusters embedded in a SiO2 matrix are presented, and the application of this material in a hybrid magneto-electronic device for magnetic field sensing is described. Co nanoclusters are charged by applying a bias voltage pulse between a conductive tip and the sample, and electrostatic force microscopy is used to image charged areas. An exponential decay in the peak charge density is observed with decay times dependent on the nominal Co film thickness and on the sign of the deposited charge. The results are interpreted as a consequence of Coulomb-blockade effects. This study leads to the design of a hybrid magneto-electronic device, in which Co nanoclusters embedded in SiO2 are incorporated into the gate of a Si metal-oxide-semiconductor field-effect transistor. Current flow through the Co nanoclusters leads to a buildup of electronic charge within the gate, and consequently to a transistor threshold voltage shift that varies with applied external magnetic field. The shift in threshold voltage results in an exponential change in subthreshold current and a quadratic change in saturation current. A detailed analysis of the device operation is presented. The second part of this dissertation focuses on the characterization of electronic properties of GaN-based heterostructure devices. Scanning capacitance microscopy (SCM) and spectroscopy (SCS) are used to investigate lateral variations in the transistor threshold voltage and the frequency-dependent response of surface charges and of charge in the two-dimensional electron gas (2DEG). The technique is described in detail, electrostatic simulations performed to study the influence of the probe tip geometry on the measured dC/dV spectra are presented, and the limitations of the SCS technique in a variety of applications are evaluated. Features in SCM images and maps of

  14. Density-Gradient Theory: A Macroscopic Approach to Quantum Confinement and Tunneling in Semiconductor Devices

    DTIC Science & Technology

    2011-01-01

    flow of electrons and holes in Germanium and other semiconductors. Bell Syst. Tech. J. 29, 560 (1950) 4. Maxwell, J.C.: On stresses in rarefied gases...especially by the phenomena of quantum confinement and quantum tunneling. The various mathematical descriptions of electron flow in biased semiconductors...patently inappropriate. 1.2 Quantum transport The three main “quantum” behaviors of an electron gas in a semiconductor—all of course well known—that

  15. 2D Crystal Semiconductors New Materials for GHz-THz Devices

    DTIC Science & Technology

    2015-10-02

    frequency operation. 4) Identify methods to improve carrier transport in 2D Crystal semiconductors. 5) Compare FETs made from naturally occuring and... chemically synthesized 2D Crystal semic???ductors. 6) Elucidate the effect of contact resistance, and gauge the challenges for GHz-THz electronics by... chemical doping, which involved replac- ing a small number of atoms of the 3-D semiconductor by those with higher or lower valence. The next advance

  16. Nonpolar Nitride Semiconductor Optoelectronic Devices: A Disruptive Technology for Next Generation Army Applications

    DTIC Science & Technology

    2008-12-01

    emission from SF-free m- GaN . 3. THZ EMISSION FROM NONPOLAR NITRIDE SEMICONDUCTORS Terahertz (THz) radiation from semiconductors illuminated...defects are studied. High quality InGaN quantum wells grown on bulk stacking fault (SF) -free GaN substrates show larger PL intensity and shorter PL...visible light emitters. We have also demonstrated enhanced THz emission from nonpolar GaN due to carrier transport in internal in-plane electric fields

  17. Extension of the characteristic potential method for noise calculation and its application to shot noise in semiconductor devices

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Min; Min, Hong S.; Park, Chan H.; Park, Young J.

    2004-05-01

    Characteristic potential method (CPM) for noise calculation has been developed for multi-terminal semiconductor devices under the drift-diffusion scheme. Merit of the CPM is that clear cut definitions of the terminal thermal noise currents and the terminal excess noise currents can be made for unipolar devices and homogeneous resistors. We prove that the terminal thermal noise currents and the terminal excess noise currents are uncorrelated for unipolar devices even when they come from the same local noise sources. We also suggest a way to define thermal noise and excess noise in bipolar devices using the derived formulas from the CPM. As applications of the CPM, we show that the high frequency excess noise observed in homogenous semiconductor resistors is really shot noise whose noise generating mechanism is just the same as that of vacuum diodes. We also show that the dominant high frequency noise in long-channel MOSFETs is thermal noise in the linear region, but the excess noise is getting more significant as the drain bias increases, and is important in the saturation region. The excess noise in the saturation region of the long-channel MOSFETs is shown to be shot noise. Finally, we try to explain the shot noise-like behaviors observed in forward-biased pn junction diodes by the conventional corpuscular theory of shot noise even though the impedance field method confirms that the shot noise behaviors are caused by the local noise sources in the neutral regions, not in the depletion regions.

  18. Single-crystal cubic silicon carbide: an in vivo biocompatible semiconductor for brain machine interface devices.

    PubMed

    Frewin, Christopher L; Locke, Christopher; Saddow, Stephen E; Weeber, Edwin J

    2011-01-01

    Single crystal silicon carbide (SiC) is a wide band-gap semiconductor which has shown both bio- and hemo-compatibility [1-5]. Although single crystalline SiC has appealing bio-sensing potential, the material has not been extensively characterized. Cubic silicon carbide (3C-SiC) has superior in vitro biocompatibility compared to its hexagonal counterparts [3, 5]. Brain machine interface (BMI) systems using implantable neuronal prosthetics offer the possibility of bi-directional signaling, which allow sensory feedback and closed loop control. Existing implantable neural interfaces have limited long-term reliability, and 3C-SiC may be a material that may improve that reliability. In the present study, we investigated in vivo 3C-SiC biocompatibility in the CNS of C56BL/6 mice. 3C-SiC was compared against the known immunoreactive response of silicon (Si) at 5, 10, and 35 days. The material was examined to detect CD45, a protein tyrosine phosphatase (PTP) expressed by activated microglia and macrophages. The 3C-SiC surface revealed limited immunoresponse and significantly reduced microglia compared to Si substrate.

  19. Three-dimensional integration (3DI) of semiconductor circuit layers: New devices and fabrication process

    NASA Astrophysics Data System (ADS)

    Sehari, Babak E.

    1998-12-01

    The device density of Integrated Circuits (ICs) manufactured by current VLSI technology is reaching its theoretical limit. Nevertheless, the demand for integration of more devices per chip is growing. To accommodate this need three main possibilities can be explored: Wafer Scale Integration (WSI), Ultra Large Scale Integration (ULSI), and Three Dimensional Integration (3DI). A brief review of these techniques along with their comparative advantages and disadvantages is presented. It has been concluded that 3DI technology is superior to others. Therefore, an attempt is made to develop a viable fabrication process for this technology. This is done by first reviewing the current technologies that are utilized for fabrication of Integrated Circuits (ICs) and their compatibility with 3DI stringent requirements. Based on this review, a set of fabrication procedure for realization of 3DI technology, are presented in chapter 3. In Chapter 1 the compatibility of the currently used devices, such as BJTs and FETs, with 3DI technology is examined. Moreover, a new active device is developed for 3DI technology to replace BJTs and FETs in circuits. This new device is more compatible to the constrains of 3DI technology. Chapter 2 is devoted to solving the overall problems of 3DI circuits. The problem of heat and power dispassion and signal coupling (Cross-Talk) between the layers are reviewed, and an inter-layer shield is proposed to overcome these problems. The effectiveness of such a thin shield is considered theoretically. In Chapter 3 a fabrication process for 3DI technology is proposed. This is done after a short analysis of previous attempts in developing 3DI technologies. Chapter 4 focuses on analog extension of 3DI technology. Moreover, in this chapter microwave 3DI circuits or 3DI MMIC is investigated. Practical considerations in choice of material for the proposed device is the subject of study in Chapter 5. Low temperature ohmic contact and utilization of metal

  20. Reliability study of opto-coupled semiconductor devices and Light Emitting Diodes (LED)

    NASA Technical Reports Server (NTRS)

    Maurer, R. C.; Weissflug, V. A.; Sisul, E. V.

    1977-01-01

    Opto-coupler and light emitting diode (LED) failure mechanisms and associated activation energies were determind from the results of environmental and accelerated lift tests of over 2,400 devices. The evaluation program included LED phototransistor opto-couplers from three sources, LED photoamplifier opto-couplers from a single source, and discrete infrared emitting LEDs from two sources. Environmental tests to evaluate device mechanical integrity included power cycling (10,000 cycles), temperature cycling (500 cycles) and a sequence of monitored shock, monitored vibration and constant acceleration. Multiple temperature operating life tests were conducted at ambient temperatures between 25 C and 200 C. Opto-couplers were operated in both the 'on' and 'off' states during life testing.

  1. Intravital fluorescence imaging of mouse brain using implantable semiconductor devices and epi-illumination of biological tissue.

    PubMed

    Takehara, Hiroaki; Ohta, Yasumi; Motoyama, Mayumi; Haruta, Makito; Nagasaki, Mizuki; Takehara, Hironari; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2015-05-01

    The application of the fluorescence imaging method to living animals, together with the use of genetically engineered animals and synthesized photo-responsive compounds, is a powerful method for investigating brain functions. Here, we report a fluorescence imaging method for the brain surface and deep brain tissue that uses compact and mass-producible semiconductor imaging devices based on complementary metal-oxide semiconductor (CMOS) technology. An image sensor chip was designed to be inserted into brain tissue, and its size was 1500 × 450 μm. Sample illumination is also a key issue for intravital fluorescence imaging. Hence, for the uniform illumination of the imaging area, we propose a new method involving the epi-illumination of living biological tissues, and we performed investigations using optical simulations and experimental evaluation.

  2. Intravital fluorescence imaging of mouse brain using implantable semiconductor devices and epi-illumination of biological tissue

    PubMed Central

    Takehara, Hiroaki; Ohta, Yasumi; Motoyama, Mayumi; Haruta, Makito; Nagasaki, Mizuki; Takehara, Hironari; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2015-01-01

    The application of the fluorescence imaging method to living animals, together with the use of genetically engineered animals and synthesized photo-responsive compounds, is a powerful method for investigating brain functions. Here, we report a fluorescence imaging method for the brain surface and deep brain tissue that uses compact and mass-producible semiconductor imaging devices based on complementary metal-oxide semiconductor (CMOS) technology. An image sensor chip was designed to be inserted into brain tissue, and its size was 1500 × 450 μm. Sample illumination is also a key issue for intravital fluorescence imaging. Hence, for the uniform illumination of the imaging area, we propose a new method involving the epi-illumination of living biological tissues, and we performed investigations using optical simulations and experimental evaluation. PMID:26137364

  3. Analytical procedure for experimental quantification of carrier concentration in semiconductor devices by using electric scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Fujita, Takaya; Matsumura, Koji; Itoh, Hiroshi; Fujita, Daisuke

    2014-04-01

    Scanning capacitance microscopy (SCM) is based on a contact-mode variant of atomic force microscopy, which is used for imaging two-dimensional carrier (electrons and holes) distributions in semiconductor devices. We introduced a method of quantification of the carrier concentration by experimentally deduced calibration curves, which were prepared for semiconductor materials such as silicon and silicon carbide. The analytical procedure was circulated to research organizations in a round-robin test. The effectiveness of the method was confirmed for practical analysis and for what is expected for industrial pre-standardization from the viewpoint of comparability among users. It was also applied to other electric scanning probe microscopy techniques such as scanning spreading resistance microscopy and scanning nonlinear dielectric microscopy. Their depth profiles of carrier concentration were found to be in good agreement with those characterized by SCM. These results suggest that our proposed method will be compatible with future next-generation microscopy.

  4. Tungsten polyoxometalate molecules as active nodes for dynamic carrier exchange in hybrid molecular/semiconductor capacitors

    SciTech Connect

    Balliou, A.; Douvas, A. M.; Normand, P.; Argitis, P.; Glezos, N.; Tsikritzis, D.; Kennou, S.

    2014-10-14

    In this work we study the utilization of molecular transition metal oxides known as polyoxometalates (POMs), in particular the Keggin structure anions of the formula PW₁₂O₄₀³⁻, as active nodes for potential switching and/or fast writing memory applications. The active molecules are being integrated in hybrid Metal-Insulator/POM molecules-Semiconductor capacitors, which serve as prototypes allowing investigation of critical performance characteristics towards the design of more sophisticated devices. The charging ability as well as the electronic structure of the molecular layer is probed by means of electrical characterization, namely, capacitance-voltage and current-voltage measurements, as well as transient capacitance measurements, C (t), under step voltage polarization. It is argued that the transient current peaks observed are manifestations of dynamic carrier exchange between the gate electrode and specific molecular levels, while the transient C (t) curves under conditions of molecular charging can supply information for the rate of change of the charge that is being trapped and de-trapped within the molecular layer. Structural characterization via surface and cross sectional scanning electron microscopy as well as atomic force microscopy, spectroscopic ellipsometry, UV and Fourier-transform IR spectroscopies, UPS, and XPS contribute to the extraction of accurate electronic structure characteristics and open the path for the design of new devices with on-demand tuning of their interfacial properties via the controlled preparation of the POM layer.

  5. Neutronics activities for next generation devices

    SciTech Connect

    Gohar, Y.

    1985-01-01

    Neutronic activities for the next generation devices are the subject of this paper. The main activities include TFCX and FPD blanket/shield studies, neutronic aspects of ETR/INTOR critical issues, and neutronics computational modules for the tokamak system code and tandem mirror reactor system code. Trade-off analyses, optimization studies, design problem investigations and computational models development for reactor parametric studies carried out for these activities are summarized.

  6. Semiconductor technology program: Progress briefs

    NASA Technical Reports Server (NTRS)

    Galloway, K. F.; Scace, R. I.; Walters, E. J.

    1981-01-01

    Measurement technology for semiconductor materials, process control, and devices, is discussed. Silicon and silicon based devices are emphasized. Highlighted activities include semiinsulating GaAs characterization, an automatic scanning spectroscopic ellipsometer, linewidth measurement and coherence, bandgap narrowing effects in silicon, the evaluation of electrical linewidth uniformity, and arsenicomplanted profiles in silicon.

  7. Group III nitride semiconductors for short wavelength light-emitting devices

    NASA Astrophysics Data System (ADS)

    Orton, J. W.; Foxon, C. T.

    1998-01-01

    The group III nitrides (AlN, GaN and InN) represent an important trio of semiconductors because of their direct band gaps which span the range 1.95-6.2 eV, including the whole of the visible region and extending well out into the ultraviolet (UV) range. They form a complete series of ternary alloys which, in principle, makes available any band gap within this range and the fact that they also generate efficient luminescence has been the main driving force for their recent technological development. High brightness visible light-emitting diodes (LEDs) are now commercially available, a development which has transformed the market for LED-based full colour displays and which has opened the way to many other applications, such as in traffic lights and efficient low voltage, flat panel white light sources. Continuously operating UV laser diodes have also been demonstrated in the laboratory, exciting tremendous interest for high-density optical storage systems, UV lithography and projection displays. In a remarkably short space of time, the nitrides have therefore caught up with and, in some ways, surpassed the wide band gap II-VI compounds (ZnCdSSe) as materials for short wavelength optoelectronic devices. The purpose of this paper is to review these developments and to provide essential background material in the form of the structural, electronic and optical properties of the nitrides, relevant to these applications. We have been guided by the fact that the devices so far available are based on the binary compound GaN (which is relatively well developed at the present time), together with the ternary alloys AlGaN and InGaN, containing modest amounts of Al or In. We therefore concentrate, to a considerable extent, on the properties of GaN, then introduce those of the alloys as appropriate, emphasizing their use in the formation of the heterostructures employed in devices. The nitrides crystallize preferentially in the hexagonal wurtzite structure and devices have so

  8. Full-band structure modeling of the radiative and non-radiative properties of semiconductor materials and devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bellotti, Enrico; Wen, Hanqing; Pinkie, Benjamin; Matsubara, Masahiko; Bertazzi, Francesco

    2015-08-01

    Understanding the radiative and non-radiative properties of semiconductor materials is a prerequisite for optimizing the performance of existing light emitters and detectors and for developing new device architectures based on novel materials. Due to the ever increasing complexity of novel semiconductor systems and their relative technological immaturity, it is essential to have design tools and simulation strategies that include the details of the microscopic physics and their dependence on the macroscopic (continuum) variables in the macroscopic device models. Towards this end, we have developed a robust full-band structure based approach that can be used to study the intrinsic material radiative and non-radiative properties and evaluate the same characteristics of low-dimensional device structures. A parallel effort is being carried out to model the effect of substrate driven stress/strain and material quality (dislocations and defects) on microscopic quantities such as non-radiative recombination rate. Using this modeling approach, we have extensively studied the radiative and non-radiative properties of both elemental (Si and Ge) and compound semiconductors (HgCdTe, InGaAs, InAsSb and InGaN). In this work we outline the details of the modelling approach, specifically the challenges and advantages related to the use of the full-band description of the material electronic structure. We will present a detailed comparison of the radiative and Auger recombination rates as a function of temperature and doping for HgCdTe and InAsSb that are two important materials for infrared detectors and emitters. Furthermore we will discuss the role of non-radiatiave Auger recombination processes in explaining the performance of light emitter diodes. Finally we will present the extension of the model to low dimensional structures employed in a number of light emitter and detector structures.

  9. Label-free detection of rheumatoid factor using YbYxOy electrolyte-insulator-semiconductor devices.

    PubMed

    Pan, Tung-Ming; Lin, Ting-Wei; Chen, Ching-Yi

    2015-09-03

    In this study, we investigated the effect of yttrium content on the structural properties and sensing characteristics of YbYxOy sensing membranes for electrolyte-insulator-semiconductor (EIS) sensors to detect the rheumatoid factor (RF). The YbYxOy EIS device prepared at the 60 W plasma condition exhibited a higher sensitivity of 65.77 mV/pH, a lower hysteresis voltage of ∼1 mV, and a smaller drift rate of 0.14 mV/h than did those prepared at the other conditions. We attribute this behavior to the optimal yttrium content in the YbYxOy film forming a smooth surface. Furthermore, we used a novel YbTixOy EIS biosensor to measure the RF antigen in human serum because of its rapid and label-free detection. Two different techniques were used for the immobilization of RF antibody onto the surface of an YbTixOy EIS sensor. The RF antibody was directly immobilized on the EIS surface modified with 3-aminopropyltriethoxysilane (APTES) followed by glutaraldehyde (GA). In contrast, a mixture of 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS) solution was used to functionalize the carboxyl groups at the tail of RF antibodies. RF antibodies functionalized with the active NHS esters were covalently immobilized on the APTES-modified YbTixOy surface. The immobilized RF antibodies on the EIS that are functionalized with the EDC and NHS exhibit higher (41.11mV/pCRF) for detection of serum RF antigen in the range 10(-7) to 10(-3) M, compared to traditional antibody immobilization technique via APTES and GA linkage. The YbTixOy EIS biosensor is a promising analytical tool for RF antigen monitoring due to its good sensitivity, stability and repeatability.

  10. Influence of material quality and process-induced defects on semiconductor device performance and yield

    NASA Technical Reports Server (NTRS)

    Porter, W. A.; Mckee, W. R.

    1974-01-01

    An overview of major causes of device yield degradation is presented. The relationships of device types to critical processes and typical defects are discussed, and the influence of the defect on device yield and performance is demonstrated. Various defect characterization techniques are described and applied. A correlation of device failure, defect type, and cause of defect is presented in tabular form with accompanying illustrations.

  11. Air-gating and chemical-gating in transistors and sensing devices made from hollow TiO2 semiconductor nanotubes.

    PubMed

    Alivov, Yahya; Funke, Hans; Nagpal, Prashant

    2015-07-24

    Rapid miniaturization of electronic devices down to the nanoscale, according to Moore's law, has led to some undesirable effects like high leakage current in transistors, which can offset additional benefits from scaling down. Development of three-dimensional transistors, by spatial extension in the third dimension, has allowed higher contact area with a gate electrode and better control over conductivity in the semiconductor channel. However, these devices do not utilize the large surface area and interfaces for new electronic functionality. Here, we demonstrate air gating and chemical gating in hollow semiconductor nanotube devices and highlight the potential for development of novel transistors that can be modulated using channel bias, gate voltage, chemical composition, and concentration. Using chemical gating, we reversibly altered the conductivity of nanoscaled semiconductor nanotubes (10-500 nm TiO2 nanotubes) by six orders of magnitude, with a tunable rectification factor (ON/OFF ratio) ranging from 1-10(6). While demonstrated air- and chemical-gating speeds were slow here (∼seconds) due to the mechanical-evacuation rate and size of our chamber, the small nanoscale volume of these hollow semiconductors can enable much higher switching speeds, limited by the rate of adsorption/desorption of molecules at semiconductor interfaces. These chemical-gating effects are completely reversible, additive between different chemical compositions, and can enable semiconductor nanoelectronic devices for 'chemical transistors', 'chemical diodes', and very high-efficiency sensing applications.

  12. Wet Oxidation of High-Al-Content III-V Semiconductors: Important Materials Considerations for Device Applications

    SciTech Connect

    Ashby, Carol I.H.

    1999-05-19

    Wet oxidation of high-Al-content AIGaAs semiconductor layers in vertical cavity surface emitting lasers (VCSELS) has produced devices with record low threshold currents and voltages and with wall-plug efficiencies greater than 50%. Wet oxidation of buried AlGaAs layers has been employed to reduce the problems associated with substrate current leakage in GaAs-on- insulator (GOI) MESFETS. Wet oxidation of high-Al-content AlGaAs semiconductor layers in vertical cavity surface emitting lasers (VCSELS) has produced devices with record low threshold currents and voltages and with wall-plug efficiencies greater than 50%. Wet oxidation of buried AlGaAs layers has been employed to reduce the problems associated with substrate current leakage in GaAs-on- insulator (GOI) MESFETS. Wet oxidation has also been considered as a route to the long-sought goal of a IH-V MIS technology. To continue improving device designs for even higher performance and to establish a truly manufacturable technology based on wet oxidation, the effect of oxidation of a given layer on the properties of the entire device structure must be understood. The oxidation of a given layer can strongly affect the electrical and chemical properties of adjacent layers. Many of these effects are derived from the production of large amounts of elemental As during the oxidation reaction, the resultant generation of point defects, and the diffusion of these defects into adjacent regions. This can modify the chemical and electrical properties of these regions in ways that can impact device design, fabrication, and performance. Current understanding of the problem is discussed here.

  13. [Batteries Used in Active Implantable Medical Devices].

    PubMed

    Ma, Bozhi; Hao, Hongwei; Li, Luming

    2015-03-01

    In recent years active implantable medical devices(AIMD) are being developed rapidly. Many battery systems have been developed for different AIMD applications. These batteries have the same requirements which include high safety, reliability, energy density and long service life, discharge indication. History, present and future of batteries used in AIMD are introduced in the article.

  14. Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors

    NASA Astrophysics Data System (ADS)

    Kraczek, Brent; Kanp, Jaroslaw

    Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.

  15. Optical logic and signal processing using a semiconductor laser diode-based optical bistability device

    NASA Astrophysics Data System (ADS)

    Zhang, Yuancheng; Song, Qian; He, Shaowei

    1995-02-01

    Using an optical fibre-coupled semiconductor laser diode OBD with output feedback pumping operation in 5 modes (differential gain, bistability, zero-bias, inverted differential gain, and inverted bistability) has been realized respectively, and 5 elementary optical logic functions (AND, OR, NOT, NAND, and NOR) and some optical signal processing such as limiting, reshaping, and triggering have been implemented.

  16. Semiconductor nanowire thermoelectric materials and devices, and processes for producing same

    DOEpatents

    Lagally, Max G.; Evans, Paul G.; Ritz, Clark S.

    2015-11-17

    The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic compositional longitudinal modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or "nanomembranes."

  17. Semiconductor nanowire thermoelectric materials and devices, and processes for producing same

    DOEpatents

    Lagally, Max G [Madison, WI; Evans, Paul G [Madison, WI; Ritz, Clark S [Middleton, WI

    2011-02-15

    The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic longitudinal modulation, which may be a compositional modulation or a strain-induced modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or "nanomembranes."

  18. Semiconductor nanowire thermoelectric materials and devices, and processes for producing same

    DOEpatents

    Lagally, Max G; Evans, Paul G; Ritz, Clark S

    2013-09-17

    The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic compositional longitudinal modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or "nanomembranes."

  19. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies.

    PubMed

    Giannini, Vincenzo; Berrier, Audrey; Maier, Stefan A; Sánchez-Gil, José Antonio; Rivas, Jaime Gómez

    2010-02-01

    Terahertz plasmonic resonances in semiconductor (indium antimonide, InSb) dimer antennas are investigated theoretically. The antennas are formed by two rods separated by a small gap. We demonstrate that, with an appropriate choice of the shape and dimension of the semiconductor antennas, it is possible to obtain large electromagnetic field enhancement inside the gap. Unlike metallic antennas, the enhancement around the semiconductor plasmonics antenna can be easily adjusted by varying the concentration of free carriers, which can be achieved by optical or thermal excitation of carriers or electrical carrier injection. Such active plasmonic antennas are interesting structures for THz applications such as modulators and sensors.

  20. A comprehensive study of charge trapping in organic field-effect devices with promising semiconductors and different contact metals by displacement current measurements

    NASA Astrophysics Data System (ADS)

    Bisoyi, Sibani; Rödel, Reinhold; Zschieschang, Ute; Kang, Myeong Jin; Takimiya, Kazuo; Klauk, Hagen; Tiwari, Shree Prakash

    2016-02-01

    A systematic and comprehensive study on the charge-carrier injection and trapping behavior was performed using displacement current measurements in long-channel capacitors based on four promising small-molecule organic semiconductors (pentacene, DNTT, C10-DNTT and DPh-DNTT). In thin-film transistors, these semiconductors showed charge-carrier mobilities ranging from 1.0 to 7.8 cm2 V-1 s-1. The number of charges injected into and extracted from the semiconductor and the density of charges trapped in the device during each measurement were calculated from the displacement current characteristics and it was found that the density of trapped charges is very similar in all devices and of the order 1012 cm-2, despite the fact that the four semiconductors show significantly different charge-carrier mobilities. The choice of the contact metal (Au, Ag, Cu, Pd) was also found to have no significant effect on the trapping behavior.

  1. Semiconductor nanowires for future electronics: Growth, characterization, device fabrication, and integration

    NASA Astrophysics Data System (ADS)

    Dayeh, Shadi A.

    This dissertation concerns with fundamental aspects of organo-metallic vapor phase epitaxy (OMVPE) of III-V semiconductor nanowires (NWs), and their structural and electrical properties inferred from a variety of device schemes. An historical perspective on the NW growth techniques and mechanisms, and an overview of demonstrated NW devices and their performance is summarized in chapter 1. In part I of the dissertation, OMVPE synthesis of InAs NWs on SiO 2/Si and InAs (111)B surfaces is discussed and their growth mechanism is resolved. Nucleation, evolution, and the role of Au nanoparticles in the growth of InAs NWs on SiO2/Si surfaces are presented in chapter 2. Our results indicate that In droplets can lead to InAs NW growth and that Au nanoparticles are necessary for efficient AsH3 pyrolysis. Chapter 3 discusses the key thermodynamic and kinetic processes that contribute to the InAs NW growth on InAs (111)B surfaces. Controversy in the interpretation of III-V NW growth is overviewed. Experimental evidence on the nucleation of InAs NWs from In droplets as well as the catalytic effect of Au nanoparticles on the InAs (111)B surfaces are described. NW cessation at high growth temperatures or at increased input molar V/III ratios is explained via a switch-over from vapor-liquid-solid (VLS) NW growth to vapor-solid thin film growth, in contrast to previous interpretation of vapor-solid-solid growth of III-V NWs. The substrate-NW adatom exchange is also treated, and experimental distinction of two NW growth regimes depending on this exchange is demonstrated for the first time. Our results indicate that when growing extremely uniform InAs NWs, solid-phase diffusion of In adatoms on the NW sidewalls is the dominant material incorporation process with surface diffusion lengths of ˜ 1 mum. This understanding was further utilized for the growth of axial and radial InAs-InP heterostructure NWs. Polymorphism in III-V NW crystal structure is also discussed and growth

  2. Ultraviolet-visible electroluminescence from metal-oxide-semiconductor devices with CeO{sub 2} films on silicon

    SciTech Connect

    Lv, Chunyan; Zhu, Chen; Wang, Canxing; Li, Dongsheng; Ma, Xiangyang Yang, Deren

    2015-03-15

    We report on ultraviolet-visible (UV-Vis) electroluminescence (EL) from metal-oxide-semiconductor (MOS) devices with the CeO{sub 2} films annealed at low temperatures. At the same injection current, the UV-Vis EL from the MOS device with the 550 °C-annealed CeO{sub 2} film is much stronger than that from the counterpart with the 450 °C-annealed CeO{sub 2} film. This is due to that the 550 °C-annealed CeO{sub 2} film contains more Ce{sup 3+} ions and oxygen vacancies. It is tentatively proposed that the recombination of the electrons in multiple oxygen-vacancy–related energy levels with the holes in Ce 4f{sup 1} energy band pertaining to Ce{sup 3+} ions leads to the UV-Vis EL.

  3. Capability of tip-enhanced Raman spectroscopy about nanoscale analysis of strained silicon for semiconductor devices production

    NASA Astrophysics Data System (ADS)

    Lucia, Arianna; Cacioppo, Onofrio Antonino; Iulianella, Enrico; Latessa, Luca; Moccia, Giuseppe; Passeri, Daniele; Rossi, Marco

    2017-03-01

    Localized strained silicon was observed with a suitable resolution in a real semiconductor device by tip-enhanced Raman spectroscopy (TERS). The device was made via a standard industrial process and its silicon trench isolation structures were used for the silicon strain analysis obtaining results according to finite element method-based simulation data. We have achieved a reliable and repeatable enhancement factor obtaining a trace of strained silicon along the structure with suitable nanometer spatial resolution compatible with IC industry requirements. We demonstrate that the complexity to analyze a real 3D structure, directly from the production lines and not ad hoc realized, entails the challenges to individuate the optimal tip shape, tip contact angle, tip composition, tip positioning system, laser power, and wavelength to achieve an appropriate plasmon resonance inducing a relevant signal to noise ratio. This work gives the base to address the development in TERS optimization for real industrial applications.

  4. The Application of Iii-V Semiconductor Heterojunction Structures Grown by Molecular Beam Epitaxy to Microwave Devices

    NASA Astrophysics Data System (ADS)

    Schaff, William Joseph

    Semiconductor devices capable of higher speeds and higher frequency operation have been a subject of great interest for many years. New fabrication techniques have provided the tools for pushing conventional device performance to new limits. These new techniques have also made possible entirely new clases of devices such as inverted High Electron Mobility Transistors and AlGaAs buffered GaAs MESFETs. The production of such state of the art devices invariably leads to a discovery of materials and process limitations that need to be eliminated. The requirement for achieving changes in composition in semiconductor materials within a single atomic layer is central to the above devices as well as many proposed devices. Molecular Beam Epitaxy has already produced materials with atomic monolayer abruptness in some structures. There are however, some desirable structures that have not been successfully produced by this technique. The fundamental problem is that good quality AlGaAs/GaAs interfaces for GaAs on AlGaAs have not been obtained when the thickness of the AlGaAs is comparable to that needed for inverted High Electron Mobility Transistors or AlGaAs buffered power Field Effect Transistors. It has been found that impurity contamination of GaAs grown on top of AlGaAs can be a severe problem. The purpose of this work is to understand the difficulties which occur and demonstrate the successful application of some techniques which minimize, or eliminate, some of the limitations on current and anticipated device performance. The concept of impurity gettering by an interface and a form of strained layer superlattice effected lattice matching are explored for GaAs and AlGaAs structures. A GaAs MESFET has been fabricated on a superlattice buffer for the first time. It has superior performance to devices with simpler structures. The improved material properties obtained by substitution of a superlattice buffer for the homogeneous GaAs buffer are measured, as a final test, by

  5. ZnCdMgSe as a Materials Platform for Advanced Photonic Devices: Broadband Quantum Cascade Detectors and Green Semiconductor Disk Lasers

    NASA Astrophysics Data System (ADS)

    De Jesus, Joel

    The ZnCdMgSe family of II-VI materials has unique and promising characteristics that may be useful in practical applications. For example they can be grown lattice matched to InP substrates with lattice matched bandgaps that span from 2.1 to 3.5 eV, they can be successfully doped n-type, have a large conduction band offset (CBO) with no intervalley scattering present when strained, they have lower average phonon energies, and the InP lattice constant lies in the middle of the ZnSe and CdSe binaries compounds giving room to experiment with tensile and compressive stress. However they have not been studied in detail for use in practical devices. Here we have identified two types of devices that are being currently developed that benefit from the ZnCdMgSe-based material properties. These are the intersubband (ISB) quantum cascade (QC) detectors and optically pumped semiconductor lasers that emit in the visible range. The paucity for semiconductor lasers operating in the green-orange portion of the visible spectrum can be easily overcome with the ZnCdMgSe materials system developed in our research. The non-strain limited, large CBO available allows to expand the operating wavelength of ISB devices providing shorter and longer wavelengths than the currently commercially available devices. This property can also be exploited to develop broadband room temperature operation ISB detectors. The work presented here focused first on using the ZnCdMgSe-based material properties and parameter to understand and predict the interband and intersubband transitions of its heterostructures. We did this by studying an active region of a QC device by contactless electroreflectance, photoluminescence, FTIR transmittance and correlating the measurements to the quantum well structure by transfer matrix modeling. Then we worked on optimizing the ZnCdMgSe material heterostructures quality by studying the effects of growth interruptions on their optical and optoelectronic properties of

  6. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    PubMed Central

    Vander Wal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems. PMID:22408484

  7. Performance of an MPI-only semiconductor device simulator on a quad socket/quad core InfiniBand platform.

    SciTech Connect

    Shadid, John Nicolas; Lin, Paul Tinphone

    2009-01-01

    This preliminary study considers the scaling and performance of a finite element (FE) semiconductor device simulator on a capacity cluster with 272 compute nodes based on a homogeneous multicore node architecture utilizing 16 cores. The inter-node communication backbone for this Tri-Lab Linux Capacity Cluster (TLCC) machine is comprised of an InfiniBand interconnect. The nonuniform memory access (NUMA) nodes consist of 2.2 GHz quad socket/quad core AMD Opteron processors. The performance results for this study are obtained with a FE semiconductor device simulation code (Charon) that is based on a fully-coupled Newton-Krylov solver with domain decomposition and multilevel preconditioners. Scaling and multicore performance results are presented for large-scale problems of 100+ million unknowns on up to 4096 cores. A parallel scaling comparison is also presented with the Cray XT3/4 Red Storm capability platform. The results indicate that an MPI-only programming model for utilizing the multicore nodes is reasonably efficient on all 16 cores per compute node. However, the results also indicated that the multilevel preconditioner, which is critical for large-scale capability type simulations, scales better on the Red Storm machine than the TLCC machine.

  8. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    SciTech Connect

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

    2014-11-11

    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  9. Device Processing of II-VI Semiconductor Films and Quantum Well Structures

    DTIC Science & Technology

    1991-03-07

    The objectives of this program is to develop a device processing technology necessary for proper utilization of Hg-based heterostructures and...superlattices in device applications. The specific focus or long term goal guiding the direction of the program is to develop the devices and processing ... technology required for an IR focal plane integrated with on-board signal processing electronics.

  10. The 1.7 kilogram microchip: energy and material use in the production of semiconductor devices.

    PubMed

    Williams, Eric D; Ayres, Robert U; Heller, Miriam

    2002-12-15

    The scale of environmental impacts associated with the manufacture of microchips is characterized through analysis of material and energy inputs into processes in the production chain. The total weight of secondary fossil fuel and chemical inputs to produce and use a single 2-gram 32MB DRAM chip are estimated at 1600 g and 72 g, respectively. Use of water and elemental gases (mainly N2) in the fabrication stage are 32,000 and 700 g per chip, respectively. The production chain yielding silicon wafers from quartz uses 160 times the energy required for typical silicon, indicating that purification to semiconductor grade materials is energy intensive. Due to its extremely low-entropy, organized structure, the materials intensity of a microchip is orders of magnitude higher than that of "traditional" goods. Future analysis of semiconductor and other low entropy high-tech goods needs to include the use of secondary materials, especially for purification.

  11. Methods of producing strain in a semiconductor waveguide and related devices

    DOEpatents

    Cox, Johathan Albert; Rakich, Peter Thomas

    2016-02-16

    Quasi-phase matched (QPM), semiconductor photonic waveguides include periodically-poled alternating first and second sections. The first sections exhibit a high degree of optical coupling (abbreviated "X.sup.2"), while the second sections have a low X.sup.2. The alternating first and second sections may comprise high-strain and low-strain sections made of different material states (such as crystalline and amorphous material states) that exhibit high and low X.sup.2 properties when formed on a particular substrate, and/or strained corrugated sections of different widths. The QPM semiconductor waveguides may be implemented as silicon-on-insulator (SOI), or germanium-on-silicon structures compatible with standard CMOS processes, or as silicon-on-sapphire (SOS) structures.

  12. Active superconducting devices formed of thin films

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1991-05-28

    Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

  13. Methods and devices for optimizing the operation of a semiconductor optical modulator

    DOEpatents

    Zortman, William A.

    2015-07-14

    A semiconductor-based optical modulator includes a control loop to control and optimize the modulator's operation for relatively high data rates (above 1 GHz) and/or relatively high voltage levels. Both the amplitude of the modulator's driving voltage and the bias of the driving voltage may be adjusted using the control loop. Such adjustments help to optimize the operation of the modulator by reducing the number of errors present in a modulated data stream.

  14. Analytical investigation of the junction space-charge region properties of heterojunction semiconductor devices: Application to n-AlzGa1 - zAs/p-GaAs system

    NASA Astrophysics Data System (ADS)

    Mohammad, S. Noor

    1988-06-01

    An analytical investigation of the space-charge region junction properties of heterojunction semiconductor devices from heavily doped and degenerate semiconductors has been carried out. On the basis of a new formula for Fermi-Dirac integral of order (1)/(2) theoretical formulas for junction boundary conditions, minority-carrier concentrations at the edges of space-charge region and excess minority-carrier concentrations at the edges of space-charge region have been derived. All of these formulas take the spatial dependence of band structures, carrier degeneracy, and band-gap narrowing into account. Under special conditions the formulas reduce to the well-known standard formulas for homojunction devices from both degenerate and nondegenerate semiconductors. The new relation for Fermi-Dirac integral is very highly accurate. Numerical calculations performed on an n-AlzGa1-zAs/p-GaAs (z=0.1) diode indicate that all these parameters significantly influence the junction properties of heterojunction semiconductor devices, and without which theoretical modeling of heterojunction devices with spatially dependent and heavily doped semiconductor regions are likely to involve errors.

  15. Active Optical Devices and Applications. Volume 228

    DTIC Science & Technology

    1980-04-01

    obscuration, 5-cm-thick solid, segmented (6 petals) Zerodur . Mirror A is near the limit of what can be fabricated with current technology. The honeycomb...DEW Descriptors, Keywords: Active Optical Device Application Large Optics Adaptive Technology Wavefront Sensor Deformable Mirror Performance...Cuneo, Jr., U.S. Air Force, NASA Headquarters 228-01 Wavefront sensors and deformable mirrors for visible wavelengths 4 Noah Bareket, Lockheed

  16. Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells

    NASA Astrophysics Data System (ADS)

    Minemoto, Takashi; Murata, Masashi

    2014-08-01

    Device modeling of CH3NH3PbI3-xCl3 perovskite-based solar cells was performed. The perovskite solar cells employ a similar structure with inorganic semiconductor solar cells, such as Cu(In,Ga)Se2, and the exciton in the perovskite is Wannier-type. We, therefore, applied one-dimensional device simulator widely used in the Cu(In,Ga)Se2 solar cells. A high open-circuit voltage of 1.0 V reported experimentally was successfully reproduced in the simulation, and also other solar cell parameters well consistent with real devices were obtained. In addition, the effect of carrier diffusion length of the absorber and interface defect densities at front and back sides and the optimum thickness of the absorber were analyzed. The results revealed that the diffusion length experimentally reported is long enough for high efficiency, and the defect density at the front interface is critical for high efficiency. Also, the optimum absorber thickness well consistent with the thickness range of real devices was derived.

  17. Defect state passivation at III-V oxide interfaces for complementary metal–oxide–semiconductor devices

    SciTech Connect

    Robertson, J.; Guo, Y.; Lin, L.

    2015-03-21

    The paper describes the reasons for the greater difficulty in the passivation of interface defects of III–V semiconductors like GaAs. These include the more complex reconstructions of the starting surface which already possess defect configurations, the possibility of injecting As antisites into the substrate which give rise to gap states, and the need to avoid As-As bonds and As dangling bonds which give rise to gap states. The nature of likely defect configurations in terms of their electronic structure is described. The benefits of diffusion barriers and surface nitridation are discussed.

  18. Gated Hall effect of nanoplate devices reveals surface-state-induced surface inversion in iron pyrite semiconductor.

    PubMed

    Liang, Dong; Cabán-Acevedo, Miguel; Kaiser, Nicholas S; Jin, Song

    2014-12-10

    Understanding semiconductor surface states is critical for their applications, but fully characterizing surface electrical properties is challenging. Such a challenge is especially crippling for semiconducting iron pyrite (FeS2), whose potential for solar energy conversion has been suggested to be held back by rich surface states. Here, by taking advantage of the high surface-to-bulk ratio in nanostructures and effective electrolyte gating, we develop a general method to fully characterize both the surface inversion and bulk electrical transport properties for the first time through electrolyte-gated Hall measurements of pyrite nanoplate devices. Our study shows that pyrite is n-type in the bulk and p-type near the surface due to strong inversion and yields the concentrations and mobilities of both bulk electrons and surface holes. Further, solutions of the Poisson equation reveal a high-density of surface holes accumulated in a 1.3 nm thick strong inversion layer and an upward band bending of 0.9-1.0 eV. This work presents a general methodology for using transport measurements of nanostructures to study both bulk and surface transport properties of semiconductors. It also suggests that high-density of surface states are present on surface of pyrite, which partially explains the universal p-type conductivity and lack of photovoltage in polycrystalline pyrite.

  19. Processing and packaging of semiconductor lasers and optoelectronic devices; Proceedings of the Meeting, Los Angeles, CA, Jan. 20, 21, 1993

    NASA Astrophysics Data System (ADS)

    Temkin, Henryk

    1993-06-01

    Various papers on processing and packaging of semiconductor laser and optoelectronic devices are presented. Individual topics addressed include: buried heterostructure lasers based on InGaAsP/InP, fabrication processes for GaAs-based high-power diode lasers, fast and reliable processing of high-performance InGaAs 0.98 micron laser diodes, 1.3 micron InGaAsP/InP buried-crescent lasers with narrow spread of threshold currents, Si-based laser subassembly for telecommunications, inexpensive packaging techniques of fiber pigtailed laser diodes, high-performance packaging of gigabit data communication optical modules, applications of diamond made by chemical-vapor deposition for semiconductor laser submounts. Also discussed are: packaging of optical interconnect arrays for optical signal processing and computing, coupling 4 W cw from a diode-pumped Nd:YAG laser through a 5-micron-core single-mode fiber, microoptic and microelectronic infrared packaging of vertical-cavity laser arrays, vertical-cavity surface-emitting laser technology, direct contact-type image sensor unit.

  20. Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices

    SciTech Connect

    Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A.

    2015-06-21

    A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the “CVBs interaction” that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices.

  1. CdSe Nanowire-Based Flexible Devices: Schottky Diodes, Metal-Semiconductor Field-Effect Transistors, and Inverters.

    PubMed

    Jin, Weifeng; Zhang, Kun; Gao, Zhiwei; Li, Yanping; Yao, Li; Wang, Yilun; Dai, Lun

    2015-06-24

    Novel CdSe nanowire (NW)-based flexible devices, including Schottky diodes, metal-semiconductor field-effect transistors (MESFETs), and inverters, have been fabricated and investigated. The turn-on voltage of a typical Schottky diode is about 0.7 V, and the rectification ratio is larger than 1 × 10(7). The threshold voltage, on/off current ratio, subthreshold swing, and peak transconductance of a typical MESFET are about -0.3 V, 4 × 10(5), 78 mV/dec, and 2.7 μS, respectively. The inverter, constructed with two MESFETs, exhibits clear inverting behavior with the gain to be about 28, 34, and 38, at the supply voltages (V(DD)) of 3, 5, and 7 V, respectively. The inverter also shows good dynamic behavior. The rising and falling times of the output signals are about 0.18 and 0.09 ms, respectively, under 1000 Hz square wave signals input. The performances of the flexible devices are stable and reliable under different bending conditions. Our work demonstrates these flexible NW-based Schottky diodes, MESFETs, and inverters are promising candidate components for future portable transparent nanoelectronic devices.

  2. Characterization of solution structure and its importance in thin film ordering of conjugated block copolymers for organic semiconductor devices

    NASA Astrophysics Data System (ADS)

    Brady, Michael; Ku, Sung-Yu; Cochran, Justin; Wang, Cheng; Hawker, Craig; Kramer, Edward; Chabinyc, Michael

    2014-03-01

    Fully conjugated diblock copolymers (CBCPs) form intriguing materials alternatives to polymer-small molecule blends for their control of mesoscopic order in low-cost organic semiconductor devices. In both bulk heterojunction (BHJ) photovoltaics, consisting of an interpenetrating network with high donor-acceptor interfacial area, and ambipolar transistors, the transport of charge carriers through continuous p- and n-type paths in thin films is a controlling factor in device performance. AFM, GIWAXS, NEXAFS spectroscopy, and RSoXS are used to probe the structure of films of CBCPs with a p-type P3HT block and an n-type DPP block. Thermal annealing in the P3HT melt after casting creates ordered domains with ~ 50 nm in-plane lamellar spacings, as confirmed with GISAXS and RSoXS. GIWAXS diffraction from the (h00) alkyl-stacking and (010) pi-stacking planes shows primarily edge-on orientation for crystals of both P3HT and DPP blocks. In addition, temperature-dependent solution SAXS and UV-Vis spectroscopy are used to probe the size and conformation of casting solution aggregates. Fibrillar DPP aggregates direct the crystallization of P3HT- b-DPP following film casting and enable the formation of wormlike domains after annealing and thus ideal morphologies for transport in organic devices.

  3. Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO{sub 2} films on silicon

    SciTech Connect

    Lv, Chunyan; Zhu, Chen; Wang, Canxing; Gao, Yuhan; Ma, Xiangyang Yang, Deren

    2015-04-06

    We report on erbium (Er)-related electroluminescence (EL) in the visible and near-infrared (NIR) from metal-oxide-semiconductor (MOS) devices with Er-doped CeO{sub 2} (CeO{sub 2}:Er) films on silicon. The onset voltage of such EL under either forward or reverse bias is smaller than 10 V. Moreover, the EL quenching can be avoidable for the CeO{sub 2}:Er-based MOS devices. Analysis on the current-voltage characteristic of the device indicates that the electron transportation at the EL-enabling voltages under either forward or reverse bias is dominated by trap-assisted tunneling mechanism. Namely, electrons in n{sup +}-Si/ITO can tunnel into the conduction band of CeO{sub 2} host via defect states at sufficiently high forward/reverse bias voltages. Then, a fraction of such electrons are accelerated by electric field to become hot electrons, which impact-excite the Er{sup 3+} ions, thus leading to characteristic emissions. It is believed that this work has laid the foundation for developing viable silicon-based emitters using CeO{sub 2}:Er films.

  4. Irradiate-anneal screening of total dose effects in semiconductor devices. [radiation hardening of spacecraft components of Mariner spacecraft

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Price, W. E.

    1976-01-01

    An extensive investigation of irradiate-anneal (IRAN) screening against total dose radiation effects was carried out as part of a program to harden the Mariner Jupiter/Saturn 1977 (MJS'77) spacecraft to survive the Jupiter radiation belts. The method consists of irradiating semiconductor devices with Cobalt-60 to a suitable total dose under representative bias conditions and of separating the parts in the undesired tail of the distribution from the bulk of the parts by means of a predetermined acceptance limit. The acceptable devices are then restored close to their preirradiation condition by annealing them at an elevated temperature. IRAN was used when lot screen methods were impracticable due to lack of time, and when members of a lot showed a diversity of radiation response. The feasibility of the technique was determined by testing of a number of types of linear bipolar integrated circuits, analog switches, n-channel JFETS and bipolar transistors. Based on the results of these experiments a number of device types were selected for IRAN of flight parts in the MJS'77 spacecraft systems. The part types, screening doses, acceptance criteria, number of parts tested and rejected as well as the program steps are detailed.

  5. Development and fabrication of improved power transistor switches. [fabrication and manufacturing of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Hower, P. L.; Chu, C. K.

    1976-01-01

    A new class of high-voltage power transistors has been achieved by adapting present interdigitated thyristor processing techniques to the fabrication of NPN Si transistors. Present devices are 2.3 cm in diameter. The electrical performance obtained is consistent with the predictions of an optimum design theory specifically developed for power switching transistors. The forward safe operating area of the experimental transistors shows a significant improvement over commercially available devices. The report describes device design, wafer processing, and various measurements which include dc characteristics, forward and reverse second breakdown limits, and switching times.

  6. A bio-inspired memory device based on interfacing Physarum polycephalum with an organic semiconductor

    SciTech Connect

    Romeo, Agostino; Dimonte, Alice; Tarabella, Giuseppe; D’Angelo, Pasquale E-mail: iannotta@imem.cnr.it; Erokhin, Victor; Iannotta, Salvatore E-mail: iannotta@imem.cnr.it

    2015-01-01

    The development of devices able to detect and record ion fluxes is a crucial point in order to understand the mechanisms that regulate communication and life of organisms. Here, we take advantage of the combined electronic and ionic conduction properties of a conducting polymer to develop a hybrid organic/living device with a three-terminal configuration, using the Physarum polycephalum Cell (PPC) slime mould as a living bio-electrolyte. An over-oxidation process induces a conductivity switch in the polymer, due to the ionic flux taking place at the PPC/polymer interface. This behaviour endows a current-depending memory effect to the device.

  7. Nano-/microstructure improved photocatalytic activities of semiconductors.

    PubMed

    Zhao, Tianyi; Zhao, Yong; Jiang, Lei

    2013-10-13

    Photocatalysis has emerged as a promising technique owing to its valuable applications in environmental purification. With the demand of building effective photocatalyst materials, semiconductor investigation experienced a developing process from simple chemical modification to complicated morphology design. In this review, the general relationship between morphology structures and photocatalytic properties is mainly discussed. Various nano-/microsized structures from zero- to three-dimensional are discussed, and the photocatalytic efficiency correspon- ding to the structures is analysed. The results showed that simple structures can be easily obtained and can facilitate chemical modification, whereas one- or three-dimensional structures can provide structure-enhanced properties such as surface area increase, multiple reflections of UV light, etc. Those principles of structure-related photocatalytic properties will afford basic ideology in designing new photocatalytic materials with more effective catalytic properties.

  8. Potentiometric Dye Imaging for Pheochromocytoma and Cortical Neurons with a Novel Measurement System Using an Integrated Complementary Metal-Oxide-Semiconductor Imaging Device

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takuma; Tagawa, Ayato; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Hatanaka, Yumiko; Tamura, Hideki; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun

    2010-11-01

    The combination of optical imaging with voltage-sensitive dyes is a powerful tool for studying the spatiotemporal patterns of neural activity and understanding the neural networks of the brain. To visualize the potential status of multiple neurons simultaneously using a compact instrument with high density and a wide range, we present a novel measurement system using an implantable biomedical photonic LSI device with a red absorptive light filter for voltage-sensitive dye imaging (BpLSI-red). The BpLSI-red was developed for sensing fluorescence by the on-chip LSI, which was designed by using complementary metal-oxide-semiconductor (CMOS) technology. A micro-electro-mechanical system (MEMS) microfabrication technique was used to postprocess the CMOS sensor chip; light-emitting diodes (LEDs) were integrated for illumination and to enable long-term cell culture. Using the device, we succeeded in visualizing the membrane potential of 2000-3000 cells and the process of depolarization of pheochromocytoma cells (PC12 cells) and mouse cerebral cortical neurons in a primary culture with cellular resolution. Therefore, our measurement application enables the detection of multiple neural activities simultaneously.

  9. Characterization of structural and electronic properties of nanoscale semiconductor device structures using cross-sectional scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Rosenthal, Paul Arthur

    Scanning probe microscopy (SPM) offers numerous advantages over metrology tools traditionally used for semiconductor materials and device characterization including high lateral spatial resolution, and relative ease of use. Cross-sectional SPM allows material and device measurements including layer thickness metrology and p-n junction delineation on actual nanoscale device structures. Site-specific SPM allows measurements to be performed on modern devices with real, non-arbitrary geometries including deep-submicron Si device structures. In Chapter II we present theoretical analysis and experimental results of capacitive force microscopy studies of AlxGa1-xAs/GaAs heterojunction bipolar transistor structures. The contrast obtained yields clear delineation of individual device layers based on doping, and enables a precise determination of the difference in basewidth between the two HBT samples examined. We experimentally determine a charged surface state density on the GaAs {110} surface that is consistent with published values. In Chapter III we present cross-sectional scanning capacitance microscopy (SCM) of nanoscale group IV Si device structures. Sample preparation techniques are discussed in context with recent experimental results from the literature. We then presented a theoretical calculation of the flat-band and threshold voltage of Si-MOSFETs as a function of doping including error analysis due to oxide thickness variations. Application to nanoscale FIB implanted Si is presented. The SCM contrast evolves as a function of applied bias as expected based on theoretical modeling of the tip-sample system as an MOS-capacitor. In Chapter IV we apply cross-sectional SCM to directly measure the electronic properties of a 120 nm gate length p-MOSFET including super-halo implants. Bias-dependent SCM images allow us to delineate the individual device regions and image the n+ super-halo implants. We have demonstrated the specific SCM bias conditions necessary for

  10. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  11. Influence of the microstructure on the charge transport in semiconductor gas discharge electronic devices

    NASA Astrophysics Data System (ADS)

    Sadiq, Y.; Aktas, K.; Acar, S.; Salamov, B. G.

    2010-06-01

    Experimental results with nonlinear features and hysteresis characteristics in the pre-breakdown Townsend discharge regime is studied experimentally for a planar microstructure with a GaAs photocathode, an interelectrode gap thickness of 445 μm and gas pressure in the range 28-66 Torr. An investigation of the effect of the voltage amplitude on the dynamics of transient processes in the semiconductor gas discharge microstructure was made to explain the mechanism of the current decay. A linearly increasing voltage (i.e. 3 V s and 5 V s voltage rate) was applied to the system to study current instability. The nonlinear transport mechanism of carriers through the cross-section of the discharge gap i.e. the appearance of the spatio-temporal self-organization of a nonlinear dissipative system, non-equilibrium electron motion and autocatalytic effect of carrier accumulation in the gas layer attributed to decrease of current with the increase of applied voltage. It is established that the pre-breakdown current decreases anomalously with increase of the feeding voltage and illumination intensity on the photocathode. The current density change through the cross-section of the discharge gap, i.e. the appearance of the spatio-temporal self-organization of nonlinear dissipative systems, causes these observed effects. On the other hand, the oscillatory current with non-monotonic N-shaped and hysteresis peculiarities in post-breakdown region is known to be related to a nonlinear mechanism of carrier transport in the semiconductor material caused by EL2 defect centres.

  12. Physics of Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Brütting, Wolfgang

    2004-05-01

    Organic semiconductors are of steadily growing interest as active components in electronics and optoelectronics. Due to their flexibility, low cost and ease-of-production they represent a valid alternative to conventional inorganic semiconductor technology in a number of applications, such as flat panel displays and illumination, plastic integrated circuits or solar energy conversion. Although first commercial applications of this technology are being realized nowadays, there is still the need for a deeper scientific understanding in order to achieve optimum device performance.This special issue of physica status solidi (a) tries to give an overview of our present-day knowledge of the physics behind organic semiconductor devices. Contributions from 17 international research groups cover various aspects of this field ranging from the growth of organic layers and crystals, their electronic properties at interfaces, their photophysics and electrical transport properties to the application of these materials in different devices like organic field-effect transistors, photovoltaic cells and organic light-emitting diodes.Putting together such a special issue one soon realizes that it is simply impossible to fully cover the whole area of organic semiconductors. Nevertheless, we hope that the reader will find the collection of topics in this issue useful for getting an up-to-date review of a field which is still developing very dynamically.

  13. Synthesis and Characterization of Novel Magnetic Heusler Semiconductors for Device and Materials Applications

    NASA Astrophysics Data System (ADS)

    Jamer, Michelle E.

    Spintronic devices for magnetic memory applications control the magnetic properties of the materials by manipulating the spin and magnetic moment of the electrons. Present devices use ferromagnetic materials that have magnetic fringing fields that interfere with other components of the device. The main focus of this research is investigating low-moment ferrimagnetic inverse Heusler materials that could be used in spintronic devices thereby eliminating the external fringing magnetic field. The challenge of this research is that while hundreds of inverse Heusler materials have been predicted for possible uses in devices, many of these compounds have a positive formation energy indicating that they are not likely to form and will decompose into other compounds. The magnetic and structural properties of several inverse Heusler systems were studied. X-ray diffraction was used to determine the phase and ordering of the crystal structure. SQUID magnetometry and X-ray magnetic circular dichroism determined the bulk magnetic properties and the atom-specific magnetic moments. This thesis outlines the first synthesis of Heusler-type V3Al, which was discovered to be an antiferromagnet. Cr2CoAl was found to exist in a Heusler phase with antiferromagnetically coupled Cr and Co atomic moments. In addition, Mn2CoAl, Cr2CoGa, and Mn3Al were grown as thin films on desorbed GaAs substrates by molecular beam epitaxy. This thesis demonstrated the successful synthesis and characterization of several Heusler compounds that could be used in future devices. These are the seminal results of inverse Heusler synthesis, which are proposed in devices such as spin-FETs and nonvolatile magnetic memory.

  14. Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-04-02

    A silicon PIN microcrystalline/amorphous silicon semiconductor device is constructed by the sputtering of N, and P layers of silicon from silicon doped targets and the I layer from an undoped target, and at least one semi-transparent ohmic electrode.

  15. JESD57 Test Standard, Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation Revision Update

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie

    2016-01-01

    The JEDEC JESD57 test standard, Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation, is undergoing its first revision since 1996. This presentation will provide an overview of some of the key proposed updates to the document.

  16. Investigations of quantum effect semiconductor devices: The tunnel switch diode and the velocity modulation transistor

    NASA Astrophysics Data System (ADS)

    Daniel, Erik Stephen

    In this thesis we present the results of experimental and theoretical studies of two quantum effect devices--the Tunnel Switch Diode (TSD) and the Velocity Modulation Transistor (VMT). We show that TSD devices can be fabricated such that they behave (semi-quantitatively) as predicted by simple analytical models and more advanced drift-diffusion simulations. These devices possess characteristics, such as on-state currents which range over nearly five orders of magnitude, and on/off current ratios which are even larger, which may allow for a practical implementation of a very dense transistorless SRAM architecture and possibly other novel circuit designs. We demonstrate that many TSD properties can be explained by analogy to a thyristor. In particular, we show that the thin oxide layer in the TSD plays a critical role, and that this can be understood in terms of current injection through the oxide, analogous to transport through the "current limiting" layer in a thyristor. As this oxide layer can be subjected to extreme stress during device operation, we have studied the effect of this stress on device behavior. We demonstrate many significant stress-dependent effects, and identify structures and operation modes which minimize these effects. We propose an InAs/GaSb/AlSb VMT which may allow for larger conductance modulation and higher temperature operation than has been demonstrated in similar GaAs/AlAs structures. Fundamental differences in device operation in the two materials systems and unusual transport mechanisms in the InAs/GaSb/AlSb system are identified as a result of the band lineups in the two systems. Boltzmann transport simulations are developed and presented, allowing a qualitative description of the transport in the InAs/GaSb/AlSb structure. Band structure calculations are carried out, allowing for device design. While no working VMT devices were produced, this is believed to be due to processing and crystal growth problems. We present methods used to

  17. Theoretical Analyses of Oxide-Bypassed Superjunction Power Metal Oxide Semiconductor Field Effect Transistor Devices

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Liang, Yung C.; Samudra, Ganesh S.

    2005-02-01

    The performance merit of silicon unipolar power devices is best described by a trade-off relationship between specific on-state resistance (Ron,sp) and breakdown voltage (Vbr), which leads to the establishment of an ideal unipolar limit on device performance. Recently, engineering the electric field in the device drift region to break this unipolar silicon limit for superior performance has become an important research topic. The superjunction (SJ) structure achieves this by paralleling precisely matched higher doping alternate p--n layers to replace the typically low doping drift region. Alternatively, for fabrication simplicity in an oxide-bypassed (OB) structure, an oxide layer of predetermined thickness together with a polycontact is used to replace the p-column of the SJ structure to modulate the electric field. The further improved gradient OB (GOB) structure with slanted oxide sidewalls delivers a performance similar to ideal SJ devices. In this paper, detailed theoretical analyses in closed-form equations on OB and GOB devices are made for the first time to model the performance in various operating regions. The theoretical analyses were also carefully verified through two-dimensional numerical simulations.

  18. Single event upset (SEU) of semiconductor devices - A summary of JPL test data

    NASA Technical Reports Server (NTRS)

    Nichols, D. K.; Price, W. E.; Malone, C. J.

    1983-01-01

    The data summarized describe single event upset (bit-flips) for 60 device types having data storage elements. The data are from 15 acceleration tests with both protons and heavier ions. Tables are included summarizing the upset threshold data and listing the devices tested for heavy ion induced bit-flip and the devices tested with protons. With regard to the proton data, it is noted that the data are often limited to one proton energy, since the tests were usually motivated by the engineering requirement of comparing similar candidate devices for a system. It is noted that many of the devices exhibited no upset for the given test conditions (the maximum fluence and the maximum proton energy Ep are given for these cases). It is believed, however, that some possibility of upset usually exists because there is a slight chance that the recoil atom may receive up to 10 to 20 MeV of recoil energy (with more energy at higher Ep).

  19. Device applications and structural and optical properties of Indigo - A biodegradable, low-cost organic semiconductor

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjun; Pisane, Kelly L.; Sierros, Konstantinos; Seehra, Mohindar S.; Korakakis, Dimitris

    2015-03-01

    Currently, memory devices based on organic materials are attracting great attention due to their simplicity in device structure, mechanical flexibility, potential for scalability, low-cost potential, low-power operation, and large capacity for data storage. In a recent paper from our group, Indigo-based nonvolatile organic write-once-read-many-times (WORM) memory device, consisting of a 100nm layer of indigo sandwiched between an indium tin oxide (ITO) cathode and an Al anode, has been reported. This device is found to be at its low resistance state (ON state) and can be switched to high resistance state (OFF state) by applying a positive bias with ON/OFF current ratio of the device being up to 1.02 × e6. A summary of these results along with the structural and optical properties of indigo powder will be reported. Analysis of x-ray diffraction shows a monoclinic structure with lattice parameters a(b)[c] = 0.924(0.577)[0.1222]nm and β =117° . Optical absorption shows a band edge at 1.70 eV with peak of absorption occurring at 1.90 eV. These results will be interpreted in terms of the HOMO-LUMO bands of Indigo.

  20. Determination of the Unstable States of the Solid State Plasma in Semiconductor Devices

    DTIC Science & Technology

    1988-05-01

    electrical stress applied to the device. By the early iSBOs it was clear that second breakdown was the precursor of device failure. However, no model was... Barkhausen [353 had detected these waves as early as World War I and coined the term by which they are pre- sently called: whistlers. In 192 Alfv~n [36...notation ((xB)B x a ’BBk> B 47r 4~<~ 7r I ark~ (87r 6,k) The Mlaxwell stress tensor is defined in Jackson 168] as T k E, L’ -13 B k k ( 47r C89) 103

  1. Improvement of process control using wafer geometry for enhanced manufacturability of advanced semiconductor devices

    NASA Astrophysics Data System (ADS)

    Lee, Honggoo; Lee, Jongsu; Kim, Sang Min; Lee, Changhwan; Han, Sangjun; Kim, Myoungsoo; Kwon, Wontaik; Park, Sung-Ki; Vukkadala, Pradeep; Awasthi, Amartya; Kim, J. H.; Veeraraghavan, Sathish; Choi, DongSub; Huang, Kevin; Dighe, Prasanna; Lee, Cheouljung; Byeon, Jungho; Dey, Soham; Sinha, Jaydeep

    2015-03-01

    Aggressive advancements in semiconductor technology have resulted in integrated chip (IC) manufacturing capability at sub-20nm half-pitch nodes. With this, lithography overlay error budgets are becoming increasingly stringent. The delay in EUV lithography readiness for high volume manufacturing (HVM) and the need for multiple-patterning lithography with 193i technology has further amplified the overlay issue. Thus there exists a need for technologies that can improve overlay errors in HVM. The traditional method for reducing overlay errors predominantly focused on improving lithography scanner printability performance. However, processes outside of the lithography sector known as processinduced overlay errors can contribute significantly to the total overlay at the current requirements. Monitoring and characterizing process-induced overlay has become critical for advanced node patterning. Recently a relatively new technique for overlay control that uses high-resolution wafer geometry measurements has gained significance. In this work we present the implementation of this technique in an IC fabrication environment to monitor wafer geometry changes induced across several points in the process flow, of multiple product layers with critical overlay performance requirement. Several production wafer lots were measured and analyzed on a patterned wafer geometry tool. Changes induced in wafer geometry as a result of wafer processing were related to down-stream overlay error contribution using the analytical in-plane distortion (IPD) calculation model. Through this segmentation, process steps that are major contributors to down-stream overlay were identified. Subsequent process optimization was then isolated to those process steps where maximum benefit might be realized. Root-cause for the within-wafer, wafer-to-wafer, tool-to-tool, and station-to-station variations observed were further investigated using local shape curvature changes - which is directly related to

  2. Semiconductor diode laser material and devices with emission in visible region of the spectrum

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Kressel, H.

    1975-01-01

    Two alloy systems, (AlGa)As and (InGa)P, were studied for their properties relevant to obtaining laser diode operation in the visible region of the spectrum. (AlGa)As was prepared by liquid-phase epitaxy (LPE) and (InGa)P was prepared both by vapor-phase epitaxy and by liquid-phase epitaxy. Various schemes for LPE growth were applied to (InGa)P, one of which was found to be capable of producing device material. All the InGaP device work was done using vapor-phase epitaxy. The most successful devices were fabricated in (AlGa)As using heterojunction structures. At room temperature, the large optical cavity design yielded devices lasing in the red (7000 A). Because of the relatively high threshold due to the basic band structure limitation in this alloy, practical laser diode operation is presently limited to about 7300 A. At liquid-nitrogen temperature, practical continuous-wave operation was obtained at a wavelength of 6500 to 6600 A, with power emission in excess of 50 mW. The lowest pulsed lasing wavelength is 6280 A. At 223 K, lasing was obtained at 6770 A, but with high threshold currents. The work dealing with CW operation at room temperature was successful with practical operation having been achieved to about 7800 A.

  3. Total-dose radiation effects data for semiconductor devices, volume 3

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.

    1982-01-01

    Volume 3 of this three-volume set provides a detailed analysis of the data in Volumes 1 and 2, most of which was generated for the Galileo Orbiter Program in support of NASA space programs. Volume 1 includes total ionizing dose radiation test data on diodes, bipolar transistors, field effect transistors, and miscellaneous discrete solid-state devices. Volume 2 includes similar data on integrated circuits and a few large-scale integrated circuits. The data of Volumes 1 and 2 are combined in graphic format in Volume 3 to provide a comparison of radiation sensitivities of devices of a given type and different manufacturer, a comparison of multiple tests for a single data code, a comparison of multiple tests for a single lot, and a comparison of radiation sensitivities vs time (date codes). All data were generated using a steady-state 2.5-MeV electron source (Dynamitron) or a Cobalt-60 gamma ray source. The data that compose Volume 3 represent 26 different device types, 224 tests, and a total of 1040 devices. A comparison of the effects of steady-state electrons and Cobat-60 gamma rays is also presented.

  4. Semiconductor photoelectrochemistry

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.

    1983-01-01

    Semiconductor photoelectrochemical reactions are investigated. A model of the charge transport processes in the semiconductor, based on semiconductor device theory, is presented. It incorporates the nonlinear processes characterizing the diffusion and reaction of charge carriers in the semiconductor. The model is used to study conditions limiting useful energy conversion, specifically the saturation of current flow due to high light intensity. Numerical results describing charge distributions in the semiconductor and its effects on the electrolyte are obtained. Experimental results include: an estimate rate at which a semiconductor photoelectrode is capable of converting electromagnetic energy into chemical energy; the effect of cell temperature on the efficiency; a method for determining the point of zero zeta potential for macroscopic semiconductor samples; a technique using platinized titanium dioxide powders and ultraviolet radiation to produce chlorine, bromine, and iodine from solutions containing their respective ions; the photoelectrochemical properties of a class of layered compounds called transition metal thiophosphates; and a technique used to produce high conversion efficiency from laser radiation to chemical energy.

  5. Screening of inorganic wide-bandgap p-type semiconductors for high performance hole transport layers in organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ginley, David; Zakutayev, Andriy; Garcia, Andreas; Widjonarko, Nicodemus; Ndione, Paul; Sigdel, Ajaya; Parilla, Phillip; Olson, Dana; Perkins, John; Berry, Joseph

    2011-03-01

    We will report on the development of novel inorganic hole transport layers (HTL) for organic photovoltaics (OPV). All the studied materials belong to the general class of wide-bandgap p-type oxide semiconductors. Potential candidates suitable for HTL applications include SnO, NiO, Cu2O (and related CuAlO2, CuCrO2, SrCu2O4 etc) and Co3O4 (and related ZnCo2O4, NiCo2O4, MgCo2O4 etc.). Materials have been optimized by high-throughput combinatorial approaches. The thin films were deposited by RF sputtering and pulsed laser deposition at ambient and elevated temperatures. Performance of the inorganic HTLs and that of the reference organic PEDOT:PSS HTL were compared by measuring the power conversion efficiencies and spectral responses of the P3HT/PCBM- and PCDTBT/PCBM-based OPV devices. Preliminary results indicate that Co3O4-based HTLs have performance comparable to that of our previously reported NiOs and PEDOT:PSS HTLs, leading to a power conversion efficiency of about 4 percent. The effect of composition and work function of the ternary materials on their performance in OPV devices is under investigation.

  6. Stress-induced Effects Caused by 3D IC TSV Packaging in Advanced Semiconductor Device Performance

    NASA Astrophysics Data System (ADS)

    Sukharev, V.; Kteyan, A.; Choy, J.-H.; Hovsepyan, H.; Markosian, A.; Zschech, E.; Huebner, R.

    2011-11-01

    Potential challenges with managing mechanical stress and the consequent effects on device performance for advanced 3D through-silicon-via (TSV) based technologies are outlined. The paper addresses the growing need in a simulation-based design verification flow capable to analyze a design of 3D IC stacks and to determine across-die out-of-spec variations in device electrical characteristics caused by the layout and through-silicon-via (TSV)/package-induced mechanical stress. The limited characterization/measurement capabilities for 3D IC stacks and a strict "good die" requirement make this type of analysis critical for the achievement of an acceptable level of functional and parametric yield and reliability. The paper focuses on the development of a design-for-manufacturability (DFM) type of methodology for managing mechanical stresses during a sequence of designs of 3D TSV-based dies, stacks and packages. A set of physics-based compact models for a multi-scale simulation to assess the mechanical stress across the device layers in silicon chips stacked and packaged with the 3D TSV technology is proposed. A calibration technique based on fitting to measured stress components and electrical characteristics of the test-chip devices is presented. A strategy for generation of a simulation feeding data and respective materials characterization approach are proposed, with the goal to generate a database for multi-scale material parameters of wafer-level and package-level structures. For model validation, high-resolution strain measurements in Si channels of the test-chip devices are needed. At the nanoscale, the transmission electron microscopy (TEM) is the only technique available for sub-10 nm strain measurements so far.

  7. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  8. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  9. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  10. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  11. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  12. Nanoscale-driven crystal growth of hexaferrite heterostructures for magnetoelectric tuning of microwave semiconductor integrated devices.

    PubMed

    Hu, Bolin; Chen, Zhaohui; Su, Zhijuan; Wang, Xian; Daigle, Andrew; Andalib, Parisa; Wolf, Jason; McHenry, Michael E; Chen, Yajie; Harris, Vincent G

    2014-11-25

    A nanoscale-driven crystal growth of magnetic hexaferrites was successfully demonstrated at low growth temperatures (25-40% lower than the temperatures required often for crystal growth). This outcome exhibits thermodynamic processes of crystal growth, allowing ease in fabrication of advanced multifunctional materials. Most importantly, the crystal growth technique is considered theoretically and experimentally to be universal and suitable for the growth of a wide range of diverse crystals. In the present experiment, the conical spin structure of Co2Y ferrite crystals was found to give rise to an intrinsic magnetoelectric effect. Our experiment reveals a remarkable increase in the conical phase transition temperature by ∼150 K for Co2Y ferrite, compared to 5-10 K of Zn2Y ferrites recently reported. The high quality Co2Y ferrite crystals, having low microwave loss and magnetoelectricity, were successfully grown on a wide bandgap semiconductor GaN. The demonstration of the nanostructure materials-based "system on a wafer" architecture is a critical milestone to next generation microwave integrated systems. It is also practical that future microwave integrated systems and their magnetic performances could be tuned by an electric field because of the magnetoelectricity of hexaferrites.

  13. Reactively-sputtered zinc semiconductor films of high conductivity for heterojunction devices

    NASA Technical Reports Server (NTRS)

    Stirn, Richard J. (Inventor)

    1986-01-01

    A high conductivity, n-doped semiconductor film is produced from zinc, or Zn and Cd, and group VI elements selected from Se, S and Te in a reactive magnetron sputtering system having a chamber with one or two targets, a substrate holder, means for heating the substrate holder, and an electric field for ionizing gases in the chamber. Zinc or a compound of Zn and Cd is placed in the position of one of the two targets and doping material in the position of the other of the two targets. Zn and Cd may be placed in separate targets while a dopant is placed in the third target. Another possibility is to place an alloy of Zn and dopant, or Zn, Cd and dopant in one target, thus using only one target. A flow of the inert gas is ionized and directed toward said targets, while a flow of a reactant gas consisting of hydrides of the group VI elements is directed toward a substrate on the holder. The targets are biased to attract negatively ionized inert gas. The desired stochiometry for high conductivity is achieved by controlling the temperature of the substrate, and partial pressures of the gases, and the target power and total pressure of the gases in the chamber.

  14. Kelvin Force Microscopy and corona charging for semiconductor material and device characterization

    NASA Astrophysics Data System (ADS)

    Marinskiy, Dmitriy; Edelman, Piotr; Lagowski, Jacek; Loy, Thye Chong; Almeida, Carlos; Savtchouk, Alexandre

    2016-11-01

    Novel developments in this review relate to μcorona-Kelvin, realized by miniaturization of corona charging spot and adaptation of Kelvin Force Microscopy, KFM. Resolution improvement has opened possibilities of non-contact characterization of miniature scribe line test sites on processed semiconductor wafers. Surface diffusion of corona ions can be quantified with μcorona-KFM leading to the development of the kinetic C-V method. The quantified decrease of charge due to diffusion creates a "charge-bias sweep". Application examples illustrate the determination of dielectric capacitance; flatband voltage; and effective gate metal work function indicators. Applications to SiC demonstrate doping density determination with kinetic CV. Non-Visible Defect, NVD, inspection benefits from micro-resolution characterization in two ways: 1) defects revealed by whole wafer mapping can now be examined in high resolution; illustrated using an example of Na contamination; and 2) detailed characterization can be performed within small defective areas providing a means for better understanding of a specific NVD.

  15. Gate-control efficiency and interface state density evaluated from capacitance-frequency-temperature mapping for GaN-based metal-insulator-semiconductor devices

    SciTech Connect

    Shih, Hong-An; Kudo, Masahiro; Suzuki, Toshi-kazu

    2014-11-14

    We present an analysis method for GaN-based metal-insulator-semiconductor (MIS) devices by using capacitance-frequency-temperature (C-f-T) mapping to evaluate the gate-control efficiency and the interface state density, both exhibiting correlations with the linear-region intrinsic transconductance. The effectiveness of the method was exemplified by application to AlN/AlGaN/GaN MIS devices to elucidate the properties of AlN-AlGaN interfaces depending on their formation processes. Using the C-f-T mapping, we extract the gate-bias-dependent activation energy with its derivative giving the gate-control efficiency, from which we evaluate the AlN-AlGaN interface state density through the Lehovec equivalent circuit in the DC limit. It is shown that the gate-control efficiency and the interface state density have correlations with the linear-region intrinsic transconductance, all depending on the interface formation processes. In addition, we give characterization of the AlN-AlGaN interfaces by using X-ray photoelectron spectroscopy, in relation with the results of the analysis.

  16. Low-frequency noise in AlN/AlGaN/GaN metal-insulator-semiconductor devices: A comparison with Schottky devices

    SciTech Connect

    Le, Son Phuong; Nguyen, Tuan Quy; Shih, Hong-An; Kudo, Masahiro; Suzuki, Toshi-kazu

    2014-08-07

    We have systematically investigated low-frequency noise (LFN) in AlN/AlGaN/GaN metal-insulator-semiconductor (MIS) devices, where the AlN gate insulator layer was sputtering-deposited on the AlGaN surface, in comparison with LFN in AlGaN/GaN Schottky devices. By measuring LFN in ungated two-terminal devices and heterojunction field-effect transistors (HFETs), we extracted LFN characteristics in the intrinsic gated region of the HFETs. Although there is a bias regime of the Schottky-HFETs in which LFN is dominated by the gate leakage current, LFN in the MIS-HFETs is always dominated by only the channel current. Analyzing the channel-current-dominated LFN, we obtained Hooge parameters α for the gated region as a function of the sheet electron concentration n{sub s} under the gate. In a regime of small n{sub s}, both the MIS- and Schottky-HFETs exhibit α∝n{sub s}{sup −1}. On the other hand, in a middle n{sub s} regime of the MIS-HFETs, α decreases rapidly like n{sub s}{sup −ξ} with ξ ∼ 2-3, which is not observed for the Schottky-HFETs. In addition, we observe strong increase in α∝n{sub s}{sup 3} in a large n{sub s} regime for both the MIS- and Schottky-HFETs.

  17. Graphene active plasmonics for terahertz device applications

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Dubinov, Alexander; Ryzhii, Maxim; Boubanga Tombet, Stephane; Satou, Akira; Mitin, Vladimir; Shur, Michael S.; Ryzhii, Victor

    2015-05-01

    This paper reviews recent advances in the double-graphene-layer (DGL) active plasmonic heterostructures for the terahertz (THz) device applications. The DGL consists of a core shell in which a thin tunnel barrier layer is sandwiched by the two GLs being independently connected with the side contacts and outer gate stack layers at both sides. The DGL core shell works as a nano-capacitor, exhibiting inter-GL resonant tunneling (RT) when the band offset between the two GLs is aligned. The RT produces a strong nonlinearity with a negative differential conductance in the DGL current-voltage characteristics. The excitation of the graphene plasmons by the THz radiation resonantly modulates the tunneling currentvoltage characteristics. When the band offset is aligned to the THz photon energy, the DGL structure can mediate photonassisted RT, resulting in resonant emission or detection of the THz radiation. The cooperative double-resonant excitation with structure-sensitive graphene plasmons gives rise to various functionalities such as rectification (detection), photomixing, higher harmonic generation, and self-oscillation, in the THz device implementations.

  18. A feasibility study of a single event spectrometer based on semiconductor devices.

    PubMed

    Agosteo, S; Castoldi, A; Castellani, L; Colautti, P; D'Angelo, G; De Nardo, L; Favalli, A; Lippi, I; Martinelli, R; Tornielli, G; Zotto, P

    2002-01-01

    The electronics employed around particle accelerators can be disturbed or damaged because of single event effects (SEE). The most likely effect is the single event upset (SEU) which may affect all memory devices. In the case of high energy accelerators, SEUs are mostly produced by secondary charged particles generated by neutron interactions. The measurement of the energy and the lineal energy distribution of these neutron-induced charged particles was proposed. As a first approach, a commercial p-i-n photodiode was employed. This device was irradiated with thermal and monoenergetic fast neutrons. Some effects limiting the use of such a detector as a SEE spectrometer were observed, giving guidelines for the design of an application specific integrated circuit (ASIC). The possibility of creating a solid state microdosemeter by coupling the ASIC with a tissue-equivalent radiator is discussed. Moreover, the p-i-n photodiode covered with a hydrogenated plastic radiator may be employed as a proton-recoil spectrometer.

  19. Heavy ion induced Single Event Phenomena (SEP) data for semiconductor devices from engineering testing

    NASA Technical Reports Server (NTRS)

    Nichols, Donald K.; Huebner, Mark A.; Price, William E.; Smith, L. S.; Coss, James R.

    1988-01-01

    The accumulation of JPL data on Single Event Phenomena (SEP), from 1979 to August 1986, is presented in full report format. It is expected that every two years a supplement report will be issued for the follow-on period. This data for 135 devices expands on the abbreviated test data presented as part of Refs. (1) and (3) by including figures of Single Event Upset (SEU) cross sections as a function of beam Linear Energy Transfer (LET) when available. It also includes some of the data complied in the JPL computer in RADATA and the SPACERAD data bank. This volume encompasses bipolar and MOS (CMOS and MHNOS) device data as two broad categories for both upsets (bit-flips) and latchup. It also includes comments on less well known phenomena, such as transient upsets and permanent damage modes.

  20. The Effects of Thermal Cycling on Gallium Nitride and Silicon Carbide Semiconductor Devices for Aerospace Use

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These Include radiation, extreme temperatures, thermal cycling, to name a few. Preliminary data obtained on new Gallium Nitride and Silicon Carbide power devices under exposure to radiation followed by long term thermal cycling are presented. This work was done in collaboration with GSFC and JPL in support of the NASA Electronic Parts and Packaging (NEPP) Program

  1. Molecular-beam heteroepitaxial growth and characterization of wide-band-gap semiconductor films and devices

    NASA Astrophysics Data System (ADS)

    Piquette, Eric Charles

    The thesis consists of two parts. Part I describes work on the molecular beam epitaxial (MBE) growth of GaN, AlN, and AlxGa 1-xN alloys, as well as efforts in the initial technical development and demonstration of nitride-based high power electronic devices. The major issues pertaining to MBE growth are discussed, including special requirements of the growth system, substrates, film nucleation, n - and p-type doping, and the dependence of film quality on growth parameters. The GaN films were characterized by a variety of methods, including high resolution x-ray diffraction, photoluminescence, and Hall effect measurement. It is found that the film polarity and extended defect density as well as quality of photoluminescence and electrical transport properties depend crucially on how the nitride layer is nucleated on the substrate and how the subsequent film surface morphology evolves, which can be controlled by the growth conditions. A technique is proposed and demonstrated that utilizes the control of morphology evolution to reduce defect density and improve the structural quality of MBE GaN films. In addition to growth, the design and processing of high voltage GaN Schottky diodes is presented, as well as an experimental study of sputter-deposited ohmic and rectifying metal contacts to GaN. Simple models for high power devices, based on materials properties such as minority carrier diffusion length and critical electric breakdown field, are used to estimate the voltage standoff capability, current carrying capacity, and maximum operating frequency of unipolar and bipolar GaN power devices. The materials and transport properties of GaN pertinent to high power device design were measured experimentally. High voltage Schottky rectifiers were fabricated which verify the impressive electric breakdown field of GaN (2--5 MV/cm). Electron beam induced current (EBIC) experiments were also conducted to measure the minority carrier diffusion length for both electrons and

  2. Active terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong

    2009-01-01

    We demonstrate planar terahertz metamaterial devices enabling actively controllable transmission amplitude, phase, or frequency at room temperature via carrier depletion or photoexcitation in the semiconductor substrate or in semiconductor materials incorporated into the metamaterial structure.

  3. Antifungal activity of antimicrobial-impregnated devices.

    PubMed

    Darouiche, R O; Mansouri, M D; Kojic, E M

    2006-04-01

    The in-vitro and in-vivo efficacy against Candida albicans and Candida krusei of devices impregnated with chlorhexidine and chloroxylenol was examined. The impregnated devices produced large zones of inhibition against both organisms (mean size, 39 mm and 38 mm, respectively). In a rabbit model in which segments of silicone catheters were placed percutaneously, non-impregnated devices were twice as likely as impregnated devices to become colonised with either C. albicans or C. krusei. Impregnated devices also had significantly lower colony counts of C. albicans (58 vs. 1361 CFU; p 0.008) and C. krusei (19 vs. 764 CFU; p 0.008).

  4. Recipient luminophoric mediums having narrow spectrum luminescent materials and related semiconductor light emitting devices and methods

    DOEpatents

    LeToquin, Ronan P; Tong, Tao; Glass, Robert C

    2014-12-30

    Light emitting devices include a light emitting diode ("LED") and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. In some embodiments, the recipient luminophoric medium includes a first broad-spectrum luminescent material and a narrow-spectrum luminescent material. The broad-spectrum luminescent material may down-convert radiation emitted by the LED to radiation having a peak wavelength in the red color range. The narrow-spectrum luminescent material may also down-convert radiation emitted by the LED into the cyan, green or red color range.

  5. Method of making a high conductance ohmic junction for monolithic semiconductor devices

    NASA Technical Reports Server (NTRS)

    Lewis, Carol R. (Inventor)

    1988-01-01

    In order to increase the efficiency of solar cells, a monolithic stacked device is constructed comprising a plurality of solar sub-cells adjusted for different bands of radiation. The interconnection between these sub-cells has been a significant technical problem. The invention provides an interconnection which is a thin layer of high ohmic conductance material formed between the sub-cells. Such a layer tends to form beads which serve as a shorting interconnect while passing a large fraction of the radiation to the lower sub-cells and permitting lattice-matching between the sub-cells to be preserved.

  6. Damage correlations in semiconductor devices exposed to gamma and high energy swift heavy ions

    NASA Astrophysics Data System (ADS)

    Pushpa, N.; Prakash, A. P. Gnana

    2015-05-01

    NPN rf power transistors and N-channel depletion MOSFETs are irradiated by different high energy swift heavy ions and 60Co gamma radiation in the dose range of 100 krad to 100 Mrad. The damage created by different heavy ions and 60Co gamma radiation in NPN rf power transistors and N-channel depletion MOSFETs have been correlated and studied in the same dose range. The recoveries in the electrical characteristics of different swift heavy ions and 60Co gamma irradiated devices have been studied after annihilation.

  7. Damage correlations in semiconductor devices exposed to gamma and high energy swift heavy ions

    SciTech Connect

    Pushpa, N.; Prakash, A. P. Gnana

    2015-05-15

    NPN rf power transistors and N-channel depletion MOSFETs are irradiated by different high energy swift heavy ions and {sup 60}Co gamma radiation in the dose range of 100 krad to 100 Mrad. The damage created by different heavy ions and {sup 60}Co gamma radiation in NPN rf power transistors and N-channel depletion MOSFETs have been correlated and studied in the same dose range. The recoveries in the electrical characteristics of different swift heavy ions and {sup 60}Co gamma irradiated devices have been studied after annihilation.

  8. Effects of Activation Energy to Transient Response of Semiconductor Gas Sensor

    NASA Astrophysics Data System (ADS)

    Fujimoto, Akira; Ohtani, Tatsuki

    The smell classifiable gas sensor will be desired for many applications such as gas detection alarms, process controls for food production and so on. We have tried to realize the sensor using transient responses of semiconductor gas sensor consisting of tin dioxide and pointed out that the sensor gave us different transient responses for kinds of gas. Results of model calculation showed the activation energy of chemical reaction on the sensor surface strongly depended on the transient response. We tried to estimate the activation energies by molecular orbital calculation with SnO2 Cluster. The results show that there is a liner relationship between the gradient of the transient responses and activation energies for carboxylic and alcoholic gases. Transient response will be predicted from activation energy in the same kind of gas and the smell discrimination by single semiconductor gas sensor will be realized by this relationship.

  9. a Study of Electron Transport in Small Semiconductor Devices: the Monte Carlo Trajectory Integral Method

    NASA Astrophysics Data System (ADS)

    Socha, John Bronn

    The first part of this thesis contains a historical perspective on the last five years of research in hot-electron transport in semiconductors. This perspective serves two purposes. First, it provides a motivation for the second part of this thesis, which deals with calculating the full velocity distribution function of hot electrons. And second, it points out many of the unsolved theoretical problems that might be solved with the techniques developed in the second part. The second part of this thesis contains a derivation of a new method for calculating velocity distribution functions. This method, the Monte Carlo trajectory integral, is well suited for calculating the time evolution of a distribution function in the presence of complicated scattering mechanisms, like scattering with acoustic and optical phonons, inter-valley scattering, Bragg reflections, and even electron-electron scattering. This method uses many of the techniques develped for Monte Carlo transport calculations, but unlike other Monte Carlo methods, the Monte Carlo trajectory integral has very good control over the variance of the calculated distribution function across the entire distribution function. Since the Monte Carlo trajectory integral only needs information on the distribution function at previous times, it is well suited to electron-electron scattering where the distribution function must be known before the scattering rate can be calculated. Finally, this thesis ends with an application of the Monte Carlo trajectory integral to electron transport in SiO(,2) in the presence of electric fields up to 12 MV/cm, and it includes a number of suggestions for applying the Monte Carlo trajectory integral to other experiments in both SiO(,2) and GaAs. The Monte Carlo trajectory integral should be of special interest when super-computers are more common since then there will be the computing resources to include electron-electron scattering. The high-field distribution functions calculated when

  10. Hydrogen in ferromagnetic semiconductors for planar spintronics

    NASA Astrophysics Data System (ADS)

    Farshchi, Rouin

    This dissertation documents the use of hydrogen for controlling electrical and magnetic properties of ferromagnetic semiconductors, particularly GaMnAs. With minimal structural perturbation, hydrogen forms complexes with Mn acceptors and renders them neutral, thereby substantially increasing electrical resistivity and removing ferromagnetism. A major finding presented herein is that laser annealing can be used to controllably dissociate the Mn-H complexes and restore ferromagnetism. Structural, electrical, and magnetic effects of the laser activation process are thoroughly explored through experiments and numerical modeling. Local laser activation with tightly-focused ultra-short laser pulses allows for high-resolution direct-writing of ferromagnetic patterns in semiconductors, introducing a new paradigm for device design. Prospects for laser formation of high-temperature phases in ferromagnetic semiconductors are investigated. Finally, several device concepts incorporating the laser activation process are discussed as building blocks towards planar all-semiconductor spintronics.

  11. Physical understanding and technological control of carrier lifetimes in semiconductor materials and devices: A critique of conceptual development, state of the art and applications

    NASA Astrophysics Data System (ADS)

    Khanna, Vinod Kumar

    This paper surveys the current understanding of the diverse types of carrier lifetime in semiconductor physics, a fundamental physical parameter determining different terminal properties of semiconductor devices and a vital performance index of the degree of cleanliness of a semiconductor material or fabrication line. According as a recombination or generation mechanism is involved, two primary categories of carrier lifetime have been distinguished, namely, recombination and generation lifetimes. Depending on the recombination process, the recombination lifetime has been sub classified as phonon-assisted Shockley-Read-Hall recombination lifetime, photon-assisted radiative recombination lifetime and Auger recombination lifetime. Further from the viewpoint of injection level, lifetime has been divided into low-level and high-level types. Also, a demarcation has been made between lifetime in bulk semiconductor and lifetime in a region of semiconductor device. Both recombination and generation lifetimes or any of their classes, has been associated with a surface recombination/generation velocity and hence a surface lifetime; the measured lifetime value is the combined effect of the bulk and surface components. Quantum-mechanical theories of lifetime have been reviewed. After introduction of the Shockley-Read-Hall (SRH) theory of recombination-generation statistics, the Dhariwal-Kothari-Jain modification, Dhariwal-Landsberg generalization and Landsberg's extension of SRH theory have been dealt with. Landsberg-Kousik model of dependence of carrier lifetime on doping concentration has been outlined. Beattie-Landsberg Auger recombination lifetime theory has been briefly treated followed by Auger recombination theory for non-interacting free-particle approximation and then Coulomb-enhanced Auger recombination theory based on the Hangleiter and Häcker quantum-mechanical approach. The correlation of lifetime with device properties such as the current gain of bipolar

  12. Large-signal characterizations of DDR IMPATT devices based on group III-V semiconductors at millimeter-wave and terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Acharyya, Aritra; Mallik, Aliva; Banerjee, Debopriya; Ganguli, Suman; Das, Arindam; Dasgupta, Sudeepto; Banerjee, J. P.

    2014-08-01

    Large-signal (L-S) characterizations of double-drift region (DDR) impact avalanche transit time (IMPATT) devices based on group III-V semiconductors such as wurtzite (Wz) GaN, GaAs and InP have been carried out at both millimeter-wave (mm-wave) and terahertz (THz) frequency bands. A L-S simulation technique based on a non-sinusoidal voltage excitation (NSVE) model developed by the authors has been used to obtain the high frequency properties of the above mentioned devices. The effect of band-to-band tunneling on the L-S properties of the device at different mm-wave and THz frequencies are also investigated. Similar studies are also carried out for DDR IMPATTs based on the most popular semiconductor material, i.e. Si, for the sake of comparison. A comparative study of the devices based on conventional semiconductor materials (i.e. GaAs, InP and Si) with those based on Wz-GaN shows significantly better performance capabilities of the latter at both mm-wave and THz frequencies.

  13. 25th anniversary article: materials for high-performance biodegradable semiconductor devices.

    PubMed

    Hwang, Suk-Won; Park, Gayoung; Cheng, Huanyu; Song, Jun-Kyul; Kang, Seung-Kyun; Yin, Lan; Kim, Jae-Hwan; Omenetto, Fiorenzo G; Huang, Yonggang; Lee, Kyung-Mi; Rogers, John A

    2014-04-02

    We review recent progress in a class of silicon-based electronics that is capable of complete, controlled dissolution when immersed in water or bio-fluids. This type of technology, referred to in a broader sense as transient electronics, has potential applications in resorbable biomedical devices, eco-friendly electronics, environmental sensors, secure hardware systems and others. New results reported here include studies of the kinetics of hydrolysis of nanomembranes of single crystalline silicon in bio-fluids and aqueous solutions at various pH levels and temperatures. Evaluations of toxicity using live animal models and test coupons of transient electronic materials provide some evidence of their biocompatibility, thereby suggesting potential for use in bioresorbable electronic implants.

  14. Optical wafer metrology sensors for process-robust CD and overlay control in semiconductor device manufacturing

    NASA Astrophysics Data System (ADS)

    den Boef, Arie J.

    2016-06-01

    This paper presents three optical wafer metrology sensors that are used in lithography for robustly measuring the shape and position of wafers and device patterns on these wafers. The first two sensors are a level sensor and an alignment sensor that measure, respectively, a wafer height map and a wafer position before a new pattern is printed on the wafer. The third sensor is an optical scatterometer that measures critical dimension-variations and overlay after the resist has been exposed and developed. These sensors have different optical concepts but they share the same challenge that sub-nm precision is required at high throughput on a large variety of processed wafers and in the presence of unknown wafer processing variations. It is the purpose of this paper to explain these challenges in more detail and give an overview of the various solutions that have been introduced over the years to come to process-robust optical wafer metrology.

  15. Semiconductor quantum well lasers and related optoelectronic devices on silicon, III-V

    NASA Astrophysics Data System (ADS)

    Holonyak, N., Jr.; Hsieh, K. C.; Stillman, G. E.

    1989-06-01

    Although an ultimate goal of this work is to achieve long term reliable laser operation of Al(x)Ga(1-x)As-GaAs quantum well heterostructures (QWH's), or similar III-V QWH's, grown on Si, this has proven to be a formidable enough problem that to the best of our knowledge no one has exceeded the results we reported in 1987 and 1988. This problem is of such dimensions that it may not be solved for as much as 10 years, or even more. All we know so far is that continuous (CW) 300 K Al(x)Ga(1-x)As-GaAs QWH lasers can be grown on Si, and that, indeed, the heat sinking of an Al(x)Ga(1-x)As-GaAs QWH laser on Si is better than a similar laser on a GaAs substrate. Nevertheless, the problem of growing better versions of these devices (i.e., long-lived high performance CW 300 K lasers on Si) has run into the fundamental issue of the large GaAs-Si lattice and thermal expansion mismatch, and hence the built-in difficulty in reducing the defects guaranteed by mismatch. Accordingly, and as much as we have worked further on the problem of Al(x)Ga(1-x)As-GaAs QWH lasers on Si, we have worked as hard on other QWH laser problems, as well as a impurity-induced layer disordering (or layer intermixing, IILD) and its application in laser devices. We briefly describe this work below and append the titles and abstracts of the papers we have published on laser studies and IILD.

  16. Semiconductor light-emitting devices having concave microstructures providing improved light extraction efficiency and method for producing same

    DOEpatents

    Tansu, Nelson; Gilchrist, James F; Ee, Yik-Khoon; Kumnorkaew, Pisist

    2013-11-19

    A conventional semiconductor LED is modified to include a microlens layer over its light-emitting surface. The LED may have an active layer including at least one quantum well layer of InGaN and GaN. The microlens layer includes a plurality of concave microstructures that cause light rays emanating from the LED to diffuse outwardly, leading to an increase in the light extraction efficiency of the LED. The concave microstructures may be arranged in a substantially uniform array, such as a close-packed hexagonal array. The microlens layer is preferably constructed of curable material, such as polydimethylsiloxane (PDMS), and is formed by soft-lithography imprinting by contacting fluid material of the microlens layer with a template bearing a monolayer of homogeneous microsphere crystals, to cause concave impressions, and then curing the material to fix the concave microstructures in the microlens layer and provide relatively uniform surface roughness.

  17. Real-time and on-site γ-ray radiation response testing system for semiconductor devices and its applications

    NASA Astrophysics Data System (ADS)

    Mu, Yifei; Zhao, Ce Zhou; Qi, Yanfei; Lam, Sang; Zhao, Chun; Lu, Qifeng; Cai, Yutao; Mitrovic, Ivona Z.; Taylor, Stephen; Chalker, Paul R.

    2016-04-01

    The construction of a turnkey real-time and on-site radiation response testing system for semiconductor devices is reported. Components of an on-site radiation response probe station, which contains a 1.11 GBq Cs137 gamma (γ)-ray source, and equipment of a real-time measurement system are described in detail for the construction of the whole system. The real-time measurement system includes a conventional capacitance-voltage (C-V) and stress module, a pulse C-V and stress module, a conventional current-voltage (I-V) and stress module, a pulse I-V and stress module, a DC on-the-fly (OTF) module and a pulse OTF module. Electrical characteristics of MOS capacitors or MOSFET devices are measured by each module integrated in the probe station under continuous γ-ray exposure and the measurement results are presented. The dose rates of different gate dielectrics are calculated by a novel calculation model based on the Cs137 γ-ray source placed in the probe station. For the sake of operators' safety, an equivalent dose rate of 70 nSv/h at a given operation distance is indicated by a dose attenuation model in the experimental environment. HfO2 thin films formed by atomic layer deposition are employed to investigate the radiation response of the high-κ material by using the conventional C-V and pulse C-V modules. The irradiation exposure of the sample is carried out with a dose rate of 0.175 rad/s and ±1 V bias in the radiation response testing system. Analysis of flat-band voltage shifts (ΔVFB) of the MOS capacitors suggests that the on-site and real-time/pulse measurements detect more serious degradation of the HfO2 thin films compared with the off-site irradiation and conventional measurement techniques.

  18. Optically detected carrier transport in III/V semiconductor QW structures: experiments, model calculations and applications in fast 1.55 µm laser devices

    NASA Astrophysics Data System (ADS)

    Hillmer, H.; Marcinkevičius, S.

    1998-01-01

    This paper reviews optically detected carrier dynamics in III/V semiconductor quantum well (QW) heterostructures perpendicular to the interfaces. Photoluminescence emissions originating from different semiconductor layers are recorded in a time-resolved way to monitor the carrier dynamics between these layers. The experimental methods presented provide a very high spatial and temporal resolution, partly even in the nanometer and sub-picosecond ranges, respectively. Model calculations based on a self-consistent solution of the continuity equation, the Poisson equation and rate-equation(s) are used to evaluate the experimental data. It will be demonstrated that experiments using several specially tailored semiconductor heterostructures enable the following individual dynamic effects to be studied and separated: transport in extended unquantized layers, capture into the QWs, relaxation in the QWs, tunneling between the QWs and thermal re-emission from the QWs. It will be shown that several basic physical effects have to be studied and understood before modern high-speed semiconductor laser devices can be designed and implemented. By adding levels of increasing complexity, this review starts from simple basic structures to finally approach real laser structures in a sequence of consecutive steps. AlGaInAs and GaInAsP heterostructures are compared with respect to interwell transfer efficiencies and problems in technological implementation. This review proceeds from basic research on carrier dynamics to applications in high-speed laser devices. Throughout the review an overview of the experimental and theoretical literature is given.

  19. Strain-engineered novel III-N electronic devices with high quality dielectric/semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Khan, M. Asif; Shur, M. S.; Simin, G.

    2003-11-01

    Since the early demonstration of 2D-electron gas [M. A. Khan et al., Appl. Phys. Lett. 60, 3027 (1992)] and a heterojunction field effect transistor (HFET) [M. Asif Khan et al., Appl. Phys. Lett. 63, 1214 (1993)] in III-N materials, rapid progress has been made to improve the DC and RF performance of GaN-AlGaN based HFETs. Stable and impressive microwave powers as high as 4-8 W/mm have been reported for device operation frequencies from 10 to 35 GHz. The key reason for these high performance numbers is an extremely large sheet carrier densities (>1 × 1013 cm-2) that can be induced at the interfaces in III-N hetereojunction [A. Bykhovsk et al., J. Appl. Phys. 74, 6734 (1993); M. Asif Khan et al., Appl. Phys. Lett. 75, 2806 (1999)]. These are instrumental in screening the channel dislocations thereby retaining large room temperature carrier mobilities (>1500 cm2/Vs) and sheet resistance as low as 300 /sq. These numbers and the high breakdown voltages of the large bandgap III-N material system thus enable rf-power approximately 5-10 times of that possible with GaAs and other competitor's technologies. We have recently introduced a unique pulsed atomic layer epitaxy approach to deposit AlN buffer layers and AlN/AlGaN superlattices [J. Zhang et al., Appl. Phys. Lett. 79, 925 (2001); J. P. Zhang et al., Appl. Phys. Lett. 80, 3542 (2002)] to manage strain and decrease the dislocation densities in high Al-content III-N layers. This has enabled us to significantly improve GaN/AlGaN hetereojunctions and the device isolation. The resulting low defect layers are not only key to improving the electronic but also deep ultraviolet light-emitting diode devices. For deep UV LED's they enabled us to obtain peak optical powers as high as 10 mW and 3 mW for wavelengths as short as 320 nm and 278 nm. Building on our past work [M. Asif Khan et al., Appl. Phys. Lett. 77, 1339 (2000); X. Hu et al., Appl. Phys. Lett. 79, 2832 (2001)] we have now deposited high quality SiO2/Si3N4 films

  20. Detection of ferromagnetic domain wall pinning and depinning with a semiconductor device

    SciTech Connect

    Malec, Chris E.; Bennett, Brian R.; Johnson, Mark B.

    2015-12-21

    We demonstrate the detection of a ferromagnetic domain wall using a nanoscale Hall cross. A narrow permalloy wire is defined lithographically on top of a Hall cross fabricated from an InAs quantum well. The width of the Hall cross (500 nm–1 μm) is similar to the width of the ferromagnetic wire (200–500 nm), and a geometric pinning site is fabricated in the ferromagnetic wire to trap a domain wall within the area of the Hall cross. The devices provide a signal that is often the same order of magnitude as the offset Hall voltage when a domain wall is located above the Hall cross, and may be useful for memory applications. Different geometries for the Hall cross and ferromagnetic wire are tested, and radiofrequency pulses are sent into the wire to demonstrate current driven domain wall motion. Further changes to the Hall bar geometry with respect to the wire geometry are investigated by numerical computation. A large gain in signal is seen for Hall bars only slightly wider than the ferromagnetic wires as compared to those twice as wide, as well as a larger sensitivity to the exact position of the domain wall with respect to the center of the Hall cross.

  1. van der Waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices.

    PubMed

    Wang, Qisheng; Xu, Kai; Wang, Zhenxing; Wang, Feng; Huang, Yun; Safdar, Muhammad; Zhan, Xueying; Wang, Fengmei; Cheng, Zhongzhou; He, Jun

    2015-02-11

    Despite great progress in synthesis and application of graphene-like materials, it remains a considerable challenge to prepare two-dimensional (2D) nanostructures of nonlayered materials that may bring us surprising physical and chemical properties. Here, we propose a general strategy for the growth of 2D nonlayered materials by van der Waals epitaxy (vdWE) growth with two conditions: (1) the nonlayered materials satisfy 2D anisotropic growth and (2) the growth is implemented on the van der Waals substrates. Large-scale ultrathin 2D Pb(1-x)Sn(x)Se nanoplates (∼15-45 nm) have been produced on mica sheets by applying this strategy. Benefiting from the 2D geometry of Pb(1-x)Sn(x)Se nanoplates and the flexibility of mica sheet, flexible photodetectors that exhibit fast, reversible, and stable photoresponse and broad spectra detection ranging from UV to infrared light (375, 473, 632, 800, and 980 nm) are in situ fabricated based on Pb(1-x)Sn(x)Se nanoplates. We anticipate that more nonlayered materials will be developed into 2D nanostructures through vdWE, enabling the exploitation of novel electronic and optoelectronic devices.

  2. Method of making compound semiconductor films and making related electronic devices

    DOEpatents

    Basol, Bulent M.; Kapur, Vijay K.; Halani, Arvind T.; Leidholm, Craig R.; Roe, Robert A.

    1999-01-01

    A method of forming a compound film includes the steps of preparing a source material, depositing the source material on a base to form a precursor film, and heating the precursor film in a suitable atmosphere to form a film. The source material includes Group IB-IIIA alloy-containing particles having at least one Group IB-IIIA alloy phase, with Group IB-IIIA alloys constituting greater than about 50 molar percent of the Group IB elements and greater than about 50 molar percent of the Group IIIA elements in the source material. The film, then, includes a Group IB-IIIA-VIA compound. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.80 and less than about 1.0, or substantially greater than 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.80 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The alloy phase may include a dopant. Compound films including a Group IIB-IVA-VA compound or a Group IB-VA-VIA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.

  3. Metal-nitride-oxide-semiconductor light-emitting devices for general lighting.

    PubMed

    Berencén, Y; Carreras, Josep; Jambois, O; Ramírez, J M; Rodríguez, J A; Domínguez, C; Hunt, Charles E; Garrido, B

    2011-05-09

    The potential for application of silicon nitride-based light sources to general lighting is reported. The mechanism of current injection and transport in silicon nitride layers and silicon oxide tunnel layers is determined by electro-optical characterization of both bi- and tri-layers. It is shown that red luminescence is due to bipolar injection by direct tunneling, whereas Poole-Frenkel ionization is responsible for blue-green emission. The emission appears warm white to the eye, and the technology has potential for large-area lighting devices. A photometric study, including color rendering, color quality and luminous efficacy of radiation, measured under various AC excitation conditions, is given for a spectrum deemed promising for lighting. A correlated color temperature of 4800K was obtained using a 35% duty cycle of the AC excitation signal. Under these conditions, values for general color rendering index of 93 and luminous efficacy of radiation of 112 lm/W are demonstrated. This proof of concept demonstrates that mature silicon technology, which is extendable to low-cost, large-area lamps, can be used for general lighting purposes. Once the external quantum efficiency is improved to exceed 10%, this technique could be competitive with other energy-efficient solid-state lighting options.

  4. Device Model for Organic Semiconductor Light-Emitting Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Smith, Darryl; Ruden, P. Paul

    2007-03-01

    Recent experiments demonstrate ambipolar channel conduction and light generation in polymer field effect transistors (FETs).^1,2 In the ambipolar mode of operation, the gate potential lies between those of the source and drain contacts, hence electrons are injected from one of these contacts and holes from the other. The carriers recombine in channel regions where both types of carriers are present, and the location of the resulting light emission is controlled by the voltages applied to the terminals. We describe a device model for ambipolar organic FETs based on the gradual channel approximation. Trapping of injected carriers in localized states within the polymer energy gap is shown to be important. A non-linear differential equation for the channel potential is derived and solved numerically. Carrier density and recombination profiles are determined. The calculations are in good agreement with experimental data^1,2. 1) J.S. Swensen, C. Soci, and A.J. Heeger, Appl. Phys. Lett. 87, 253511 (2005). 2) J. Zaumseil, R.H. Friend, and H. Sirringhaus, Nature Materials 5, 69 (2006).

  5. INSERTION DEVICE ACTIVITIES FOR NSLS-II.

    SciTech Connect

    TANABE,T.; HARDER, D.A.; HULBERT, S.; RAKOWSKI, G.; SKARITKA, J.

    2007-06-25

    National Synchrotron Light Source-II (NSLS-II) will be a medium energy storage ring of 3GeV electron beam energy with sub-nm.rad horizontal emittance and top-off capability at 500mA. Damping wigglers will be used not only to reduce the beam emittance but also used as broadband sources for users. Cryo-Permanent Magnet Undulators (CPMUs) are considered for hard X-ray linear device, and permanent magnet based elliptically polarized undulators (EPUs) for variable polarization devices for soft X-ray. 6T superconducting wiggler with minimal fan angle will be installed in the second phase as well as quasi-periodic EPU for VUV and possibly high-temperature superconducting undulator. R&D plans have been established to pursue the performance enhancement of the baseline devices and to design new types of insertion devices. A new insertion device development laboratory will also be established.

  6. Oxide-based method of making compound semiconductor films and making related electronic devices

    DOEpatents

    Kapur, Vijay K.; Basol, Bulent M.; Leidholm, Craig R.; Roe, Robert A.

    2000-01-01

    A method for forming a compound film includes the steps of preparing a source material, depositing the source material on a base and forming a preparatory film from the source material, heating the preparatory film in a suitable atmosphere to form a precursor film, and providing suitable material to said precursor film to form the compound film. The source material includes oxide-containing particles including Group IB and IIIA elements. The precursor film includes non-oxide Group IB and IIIA elements. The compound film includes a Group IB-IIIA-VIA compound. The oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the source material. Similarly, non-oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the precursor film. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.6 and less than about 1.0, or substantially greater that 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.6 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The oxide-containing particles may include a dopant, as may the compound film. Compound films including a Group IIB-IVA-VA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.

  7. WOCSDICE 94 - European Workshop on Compound Semiconductor Devices and Integrated Circuits (18th) Held in Kinsale, Ireland on 29 May-1 June 1994

    DTIC Science & Technology

    1994-06-01

    industrial laboratories to perform the optimization and the development of power PMHFETs. They can also be useful for approach simulations such as quasi two...10-1 IHorinosato-Wakamiya, Atsugi 243-01, Japan ABSTRACT The role of high speed devices in semiconductor industry is changing very rapidly during these...fUr Mikroelektronik, Universitt Linz A-4040 Linz, Austria The trend to higher operating frequencies in commercial and industrial millimeter-wave

  8. Infra red active modes due to coupling of cyclotron excitation and LO phonons in polar semiconductor

    NASA Astrophysics Data System (ADS)

    Agrawal, Ratna; Dubey, Swati; Ghosh, S.

    2013-06-01

    Effects of free carrier concentration, external magnetic field and Callen effective charge on infra red active modes in a polar semiconductor have been analytically investigated using simple harmonic oscillator model. Callen effective charge considerably enhances reflectivity and shifts minima towards lower values of energy. Presence of magnetic field leads towards the coupling of collective cyclotron excitations with LO phonon giving rise to maximum reflectivity whereas cyclotron resonance absorption results into minimum reflectivity.

  9. Studies of High Power Density, Pico-Second Rise-Time Light Activated Semiconductor Switch

    DTIC Science & Technology

    1988-12-31

    34 Proceedings of the IEEE, vol.55, pp.2192-2193, 1967. 3. McKay, K., K. McAfee, "Electron Multiplication in Silicon and Germanium ," Physical Review...Conwell, E., "Properties of Silicon and Germanium : II," Proceedings of the Institute of Radio Engineers. vol.46, pp.1281-1300, 1958. 6. Zucker, 0...light activated semiconductor switches made of silicon junction diode have been demonstrated. A novel optical delay line has been designed in sampling

  10. Surface properties and photocatalytic activity of KTaO3, CdS, MoS2 semiconductors and their binary and ternary semiconductor composites.

    PubMed

    Bajorowicz, Beata; Cybula, Anna; Winiarski, Michał J; Klimczuk, Tomasz; Zaleska, Adriana

    2014-09-24

    Single semiconductors such as KTaO3, CdS MoS2 or their precursor solutions were combined to form novel binary and ternary semiconductor nanocomposites by the calcination or by the hydro/solvothermal mixed solutions methods, respectively. The aim of this work was to study the influence of preparation method as well as type and amount of the composite components on the surface properties and photocatalytic activity of the new semiconducting photoactive materials. We presented different binary and ternary combinations of the above semiconductors for phenol and toluene photocatalytic degradation and characterized by X-ray powder diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area and porosity. The results showed that loading MoS2 onto CdS as well as loading CdS onto KTaO3 significantly enhanced absorption properties as compared with single semiconductors. The highest photocatalytic activity in phenol degradation reaction under both UV-Vis and visible light irradiation and very good stability in toluene removal was observed for ternary hybrid obtained by calcination of KTaO3, CdS, MoS2 powders at the 10:5:1 molar ratio. Enhanced photoactivity could be related to the two-photon excitation in KTaO3-CdS-MoS2 composite under UV-Vis and/or to additional presence of CdMoO4 working as co-catalyst.

  11. Cognitive Inference Device for Activity Supervision in the Elderly

    PubMed Central

    2014-01-01

    Human activity, life span, and quality of life are enhanced by innovations in science and technology. Aging individual needs to take advantage of these developments to lead a self-regulated life. However, maintaining a self-regulated life at old age involves a high degree of risk, and the elderly often fail at this goal. Thus, the objective of our study is to investigate the feasibility of implementing a cognitive inference device (CI-device) for effective activity supervision in the elderly. To frame the CI-device, we propose a device design framework along with an inference algorithm and implement the designs through an artificial neural model with different configurations, mapping the CI-device's functions to minimise the device's prediction error. An analysis and discussion are then provided to validate the feasibility of CI-device implementation for activity supervision in the elderly. PMID:25405211

  12. Condition for the negative capacitance effect in metal-ferroelectric-insulator-semiconductor devices.

    PubMed

    Rusu, Alexandru; Saeidi, Ali; Ionescu, Adrian M

    2016-03-18

    In this paper, we report a detailed study of the negative capacitance field effect transistor (NCFET). We present the condition for the stabilization of the negative capacitance to achieve the voltage amplification across the active layer. The theory is based on Landau's theory of ferroelectrics combined with the surface potential model in all regimes of operation. We demonstrate the validity of the presented theory on experimental NCFETs using a gate stack made of P(VDF-TrFE) and SiO2. The proposed analytical modeling shows good agreement with experimental data.

  13. Reaction-diffusion optoelectronics based on dispersed semiconductors

    NASA Astrophysics Data System (ADS)

    Gradov, O. V.; Gradova, M. A.

    2015-11-01

    Since many dispersed semiconductors are capable of light energy conversion and possess photocatalytic and luminescent properties, and any discreet light-sensitive medium can be applied for the positional-sensitive light flux registration (similar to pixels and voxels in semiconductor-based image recording), the use of chemically active dispersed semiconductors allows to perform a direct signal / image registration based on light-sensitive reaction-diffusion redox systems without conventional CCD / CMOS devices. The image capturing in this case will correspond to the formation of the metastable dissipative structures in the active medium, with their morphological properties determined by the flux gradient and provided by the corresponding dispersed semiconductor medium sensitivity.

  14. Electron spectroscopic analysis of the SiO2/Si system and correlation with metal-oxide-semiconductor device characteristics

    NASA Astrophysics Data System (ADS)

    Iwata, Seiichi; Ishizaka, Akitoshi

    1996-05-01

    ESCA (electron spectroscopy for chemical analysis) measurement results on thin SiO2/Si samples are examined comprehensively, critically, and in detail to show that it is possible to correlate these results with MOS (metal-oxide-semiconductor) device characteristics such as flatband (threshold) voltage, oxide breakdown field, mobile-ion density, hole and electron trap density, and hot-carrier lifetime. Up to now, much effort has been made to detect SiOx phases at SiO2/Si interfaces since they are thought to have a significant effect on MOS device characteristics. However, correlating the SiOx phases with device characteristics is difficult and involves overcoming two problems. First, the chemical state is difficult to determine exactly due to x-ray irradiation effects. Second, the amount of defects and impurities which influence device characteristics is usually below the ESCA detection limit (1012-1013 cm-2) in device-quality SiO2/Si samples. Investigation of the first problem led to the conclusion that it is possible to correct for these effects from the x-ray intensity or oxide thickness dependence of the chemical shift. However, accurate (better than ±0.2 eV) chemical state determination is not easy. It is therefore necessary to approach this detection problem from a different viewpoint. Our first attempt involves measuring the ESCA thickness, which decreases when oxide defects like unoxidized Si or uneven thickness (or pinholes) are present, resulting in breakdown field degradation. Our second attempt started while we were studying how to interpret the measured chemical shift. The photoelectron peaks of the SiO2 and the Si can be observed to shift due to small amounts of charged defects and impurities, although they cannot be detected as peaks. This method is considered to be especially useful for characterizing ultrathin (a few nm thick) SiO2/Si samples which are difficult to characterize using conventional C-V (capacitance-voltage) measurements because of

  15. Strain mapping with nm-scale resolution for the silicon-on-insulator generation of semiconductor devices by advanced electron microscopy

    SciTech Connect

    Cooper, David; Denneulin, Thibaud; Barnes, Jean-Paul; Hartmann, Jean-Michel; Hutin, Louis; Le Royer, Cyrille; Beche, Armand; Rouviere, Jean-Luc

    2012-12-15

    Strain engineering in the conduction channel is a cost effective method of boosting the performance in state-of-the-art semiconductor devices. However, given the small dimensions of these devices, it is difficult to quantitatively measure the strain with the required spatial resolution. Three different transmission electron microscopy techniques, high-angle annular dark field scanning transmission electron microscopy, dark field electron holography, and nanobeam electron diffraction have been applied to measure the strain in simple bulk and SOI calibration specimens. These techniques are then applied to different gate length SiGe SOI pFET devices in order to measure the strain in the conduction channel. For these devices, improved spatial resolution is required, and strain maps with spatial resolutions as good as 1 nm have been achieved. Finally, we discuss the relative advantages and disadvantages of using these three different techniques when used for strain measurement.

  16. Recrystallization method to selenization of thin-film Cu(In,Ga)Se.sub.2 for semiconductor device applications

    DOEpatents

    Albin, David S.; Carapella, Jeffrey J.; Tuttle, John R.; Contreras, Miguel A.; Gabor, Andrew M.; Noufi, Rommel; Tennant, Andrew L.

    1995-07-25

    A process for fabricating slightly Cu-poor thin-films of Cu(In,Ga)Se.sub.2 on a substrate for semiconductor device applications includes the steps of forming initially a slightly Cu-rich, phase separated, mixture of Cu(In,Ga)Se.sub.2 :Cu.sub.x Se on the substrate in solid form followed by exposure of the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture to an overpressure of Se vapor and (In,Ga) vapor for deposition on the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture while simultaneously increasing the temperature of the solid mixture toward a recrystallization temperature (about 550.degree. C.) at which Cu(In,Ga)Se.sub.2 is solid and Cu.sub.x Se is liquid. The (In,Ga) flux is terminated while the Se overpressure flux and the recrystallization temperature are maintained to recrystallize the Cu.sub.x Se with the (In, Ga) that was deposited during the temperature transition and with the Se vapor to form the thin-film of slightly Cu-poor Cu.sub.x (In,Ga).sub.y Se.sub.z. The initial Cu-rich, phase separated large grain mixture of Cu(In,Ga)Se.sub.2 :Cu.sub.x Se can be made by sequentially depositing or co-depositing the metal precursors, Cu and (In, Ga), on the substrate at room temperature, ramping up the thin-film temperature in the presence of Se overpressure to a moderate anneal temperature (about 450.degree. C.) and holding that temperature and the Se overpressure for an annealing period. A nonselenizing, low temperature anneal at about 100.degree. C. can also be used to homogenize the precursors on the substrates before the selenizing, moderate temperature anneal.

  17. Monolithic integrated high-T.sub.c superconductor-semiconductor structure

    NASA Technical Reports Server (NTRS)

    Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Garcia, Graham A. (Inventor); Russell, Stephen D. (Inventor); Clayton, Stanley R. (Inventor); Barfknecht, Andrew T. (Inventor)

    2000-01-01

    A method for the fabrication of active semiconductor and high-temperature superconducting device of the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.

  18. Method for making a monolithic integrated high-T.sub.c superconductor-semiconductor structure

    NASA Technical Reports Server (NTRS)

    Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Garcia, Graham A. (Inventor); Russell, Stephen D. (Inventor); Clayton, Stanley R. (Inventor); Barfknecht, Andrew T. (Inventor)

    2000-01-01

    A method for the fabrication of active semiconductor and high-temperature perconducting devices on the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.

  19. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  20. Real-time two-dimensional imaging of potassium ion distribution using an ion semiconductor sensor with charged coupled device technology.

    PubMed

    Hattori, Toshiaki; Masaki, Yoshitomo; Atsumi, Kazuya; Kato, Ryo; Sawada, Kazuaki

    2010-01-01

    Two-dimensional real-time observation of potassium ion distributions was achieved using an ion imaging device based on charge-coupled device (CCD) and metal-oxide semiconductor technologies, and an ion selective membrane. The CCD potassium ion image sensor was equipped with an array of 32 × 32 pixels (1024 pixels). It could record five frames per second with an area of 4.16 × 4.16 mm(2). Potassium ion images were produced instantly. The leaching of potassium ion from a 3.3 M KCl Ag/AgCl reference electrode was dynamically monitored in aqueous solution. The potassium ion selective membrane on the semiconductor consisted of plasticized poly(vinyl chloride) (PVC) with bis(benzo-15-crown-5). The addition of a polyhedral oligomeric silsesquioxane to the plasticized PVC membrane greatly improved adhesion of the membrane onto Si(3)N(4) of the semiconductor surface, and the potential response was stabilized. The potential response was linear from 10(-2) to 10(-5) M logarithmic concentration of potassium ion. The selectivity coefficients were K(K(+),Li(+))(pot) = 10(-2.85), K(K(+),Na(+))(pot) = 10(-2.30), K(K(+),Rb(+))(pot) =10(-1.16), and K(K(+),Cs(+))(pot) = 10(-2.05).

  1. A splitting scheme based on the space-time CE/SE method for solving multi-dimensional hydrodynamical models of semiconductor devices

    NASA Astrophysics Data System (ADS)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    2016-08-01

    Numerical solutions of the hydrodynamical model of semiconductor devices are presented in one and two-space dimension. The model describes the charge transport in semiconductor devices. Mathematically, the models can be written as a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the conservation element and solution element (CE/SE) method for hyperbolic step, and a semi-implicit scheme for the relaxation step. The numerical results of the suggested scheme are compared with the splitting scheme based on Nessyahu-Tadmor (NT) central scheme for convection step and the same semi-implicit scheme for the relaxation step. The effects of various parameters such as low field mobility, device length, lattice temperature and voltages for one-space dimensional hydrodynamic model are explored to further validate the generic applicability of the CE/SE method for the current model equations. A two dimensional simulation is also performed by CE/SE method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  2. Semiconductor Device Synthesis

    DTIC Science & Technology

    2006-12-15

    symmetry quantum well structure obtained by modifying the structure. Figure 3.2: Band -edge potential profiles and the corresponding absorption peak...conduction and valence band edge profiles for a 6 quantum well AIGaAs/GaAs electro-absorption modulator grown in a PIN layer structure. Figure 4.2...laser. Figure 4.6: Measured absorption as a function of Vbias at 1530 nm wavelength for InGaAsP step-well. Figure 4.7: Conduction and valence band

  3. Semiconductor laser device

    SciTech Connect

    Namizaki, H.; Susaki, W.; Takamiya, S.; Tanaka, T.

    1981-07-07

    A first N-AlGaAs and a second N-GaAs layer are successively grown on an I-GaAs substrate. A third N-AlGaAs, a fourth P-AlGaAs and a fifth N-GaAs layer superpose one another on the second layer except for one lateral portion. Those portions of the five layers remote from the exposed second layer portion are changed into a P+ type and surrounded by a P zone. A positive and a negative electrode are located on the fifth layer and the exposed second layer portion, respectively. The negative electrode is nearest to a laser region located in the second layer and can be secured to a heat sink.

  4. Antimicrobial activity of antiseptic-coated orthopaedic devices.

    PubMed

    Darouiche, R O; Green, G; Mansouri, M D

    1998-04-01

    Antimicrobial coating of medical devices, including fracture fixation devices, has evolved as a potentially effective method for preventing device-related infections. We examined the in vitro antimicrobial activity of titanium cylinders coated with the antiseptic combination of chlorhexidine and chloroxylenol. The coated devices provided zones of inhibition against Staphylococcus epidermidis, S. aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans, at baseline and up to 8 weeks after incubation of the coated cylinders in human serum at 37 degrees C. This durable antimicrobial activity was attributed to the relatively slow leaching of chlorhexidine and chloroxylenol from the coated cylinders as measured by high-performance liquid chromatography. These results suggest that antiseptic-coated orthopaedic devices may provide broad-spectrum and durable antimicrobial protection against device-related infection.

  5. Photovoltaic performance of block copolymer devices is independent of the crystalline texture in the active layer

    DOE PAGES

    Guo, Changhe; Lee, Youngmin; Lin, Yen -Hao; ...

    2016-06-15

    The electronic properties of organic semiconductors are strongly influenced by intermolecular packing. When cast as thin films, crystalline π-conjugated molecules are strongly textured, potentially leading to anisotropic charge transport. Consequently, it is hypothesized that the orientation of crystallites in the active layer plays an important role in charge extraction and organic photovoltaic device performance. Here we demonstrate orientation control of molecular packing from mostly face-on to edge-on configurations in the active layer of P3HT-b-PFTBT block copolymer photovoltaics using 1-chloronaphthalene as a solvent additive. The effect of molecular orientations in P3HT crystals on charge transport and solar cell performance is examined.more » We find that optimized photovoltaic device performance is independent of the crystalline texture of P3HT. Our observations provide further insights into the molecular organization required for efficient charge transport and overall device efficiencies. That is, the dominant crystal orientation, whether face-on or edge-on, is not critical to organic solar cells. Furthermore, a broad distribution of crystallite orientations ensures pathways for charge transport in any direction and enables efficient charge extraction in photovoltaic devices.« less

  6. Photovoltaic performance of block copolymer devices is independent of the crystalline texture in the active layer

    SciTech Connect

    Guo, Changhe; Lee, Youngmin; Lin, Yen -Hao; Strzalka, Joseph; Wang, Cheng; Hexemer, Alexander; Jaye, Cherno; Fischer, Daniel A.; Verduzco, Rafael; Wang, Qing; Gomez, Enrique D.

    2016-06-15

    The electronic properties of organic semiconductors are strongly influenced by intermolecular packing. When cast as thin films, crystalline π-conjugated molecules are strongly textured, potentially leading to anisotropic charge transport. Consequently, it is hypothesized that the orientation of crystallites in the active layer plays an important role in charge extraction and organic photovoltaic device performance. Here we demonstrate orientation control of molecular packing from mostly face-on to edge-on configurations in the active layer of P3HT-b-PFTBT block copolymer photovoltaics using 1-chloronaphthalene as a solvent additive. The effect of molecular orientations in P3HT crystals on charge transport and solar cell performance is examined. We find that optimized photovoltaic device performance is independent of the crystalline texture of P3HT. Our observations provide further insights into the molecular organization required for efficient charge transport and overall device efficiencies. That is, the dominant crystal orientation, whether face-on or edge-on, is not critical to organic solar cells. Furthermore, a broad distribution of crystallite orientations ensures pathways for charge transport in any direction and enables efficient charge extraction in photovoltaic devices.

  7. Production of 35S for a Liquid Semiconductor Betavoltaic

    SciTech Connect

    Meier, David E.; Garnov, A. Y.; Robertson, J. D.; Kwon, J. W.; Wacharasindhu, T.

    2009-10-01

    The specific energy density from radioactive decay is five to six orders of magnitude greater than the specific energy density in conventional chemical battery and fuel cell technologies. We are currently investigating the use of liquid semiconductor based betavoltaics as a way to directly convert the energy of radioactive decay into electrical power and potentially avoid the radiation damage that occurs in solid state semiconductor devices due to non-ionizing energy loss. Sulfur-35 was selected as the isotope for the liquid semiconductor demonstrations because it can be produced in high specific activity and it is chemically compatible with known liquid semiconductor media.

  8. Device and Circuit Codesign Strategy for Application to Low-Noise Amplifier Based on Silicon Nanowire Metal-Oxide-Semiconductor Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Seongjae Cho,; Hee-Sauk Jhon,; Jung Hoon Lee,; Se Hwan Park,; Hyungcheol Shin,; Byung-Gook Park,

    2010-04-01

    In this study, a full-range approach from device level to circuit level design is performed for RF application of silicon nanowire (SNW) metal-oxide-semiconductor field effect transistors (MOSFETs). Both DC and AC analyses have been conducted to confirm the advantages of an SNW MOSFET over the conventional planar (CPL) MOSFET device having dimensional equivalence. Besides the intrinsic characteristic parameters, the extrinsic resistance and capacitance caused by wiring components are extracted from each device. On the basis of these intrinsic and extrinsic parameters, a multi-fingered 5.8 GHz low-noise amplifier (LNA) design adopting SNW MOSFETs has been achieved, which shows an improved gain of 17.5 dB and a noise figure of 3.1 dB over a CPL MOSFET LNA.

  9. MMIC devices for active phased array antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.

    1985-01-01

    Considerable progress has been made in the calculation and measurement of the scattering parameters of printed circuit discontinuities. These discontinuities occur in a variety of structures, such as transitions between rectangular waveguide and printed circuits, junctions between circuits of different dielectric constants, and filters and impedance matching circuits. Because of the variety of devices in which these discontinuities occur, it is very useful to understand them in as great a detail as possible. Both theoretical and experimental studies of discontinuities were considered. The theoretical studies have focused on finding ways to predict the scattering from discontinuities. The experimental studies have concentrated on developing measurement techniques for determining the scattering parameters of these discontinuities.

  10. Open active cloaking and illusion devices for the Laplace equation

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Yang, Fan; Jin, Tian Yu; Lei Mei, Zhong; Cui, Tie Jun

    2016-04-01

    We propose open active cloaking and illusion devices for the Laplace equation. Compared with the closed configurations of active cloaking and illusion devices, we focus on improving the distribution schemes for the controlled sources, which do not have to surround the protected object strictly. Instead, the controlled sources can be placed in several small discrete clusters, and produce the desired voltages along the controlled boundary, to actively hide or disguise the protected object. Numerical simulations are performed with satisfactory results, which are further validated by experimental measurements. The open cloaking and illusion devices have many advantages over the closed configurations in various potential applications.

  11. Microelectromechanical System (MEMS) Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Beach, Duane E.

    2003-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.

  12. Measurement techniques for high-power semiconductor materials and devices. Annual report, October 1, 1980-December 31, 1981. [For calculating excess-carrier lifetime in silicon

    SciTech Connect

    Thurber, W R; Phillips, W E; Larrabee, R D

    1982-08-01

    This annual report describes results of NBS research directed toward the development of measurement methods for semiconductor materials and devices which will lead to more effective use of high-power semiconductor devices in applications for energy generation, transmission, conversion, and conservation. Emphasis is on the development of measurement methods for power-device-grade silicon. Major accomplishments during this reporting period were : (1) characterizing by deep level transient spectroscopy (DLTS) the energy levels in silicon power rectifier diodes, (2) writing of a computer program to predict lifetime-related parameters using as input the measured properties of the deep energy levels, (3) developing a novel method to detect nonexponential transients using a conventional double-boxcar DLTS system, (4) analyzing transient capacitance measurements to extend the techniques to nonexponential decays, (5) using a platinum resistance thermometer to calibrate temperature sensing diodes to obtain the precision needed for careful isothermal capacitance measurements, and (6) utilizing trap changing time as a technique to resolve overlapping DLTS peaks in sulfur-doped silicon.

  13. MEMS Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  14. Correlation of Photocatalytic Activity with Band Structure of Low-dimensional Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Meng, Fanke

    Photocatalytic hydrogen generation by water splitting is a promising technique to produce clean and renewable solar fuel. The development of effective semiconductor photocatalysts to obtain efficient photocatalytic activity is the key objective. However, two critical reasons prevent wide applications of semiconductor photocatalysts: low light usage efficiency and high rates of charge recombination. In this dissertation, several low-dimensional semiconductors were synthesized with hydrothermal, hydrolysis, and chemical impregnation methods. The band structures of the low-dimensional semiconductor materials were engineered to overcome the above mentioned two shortcomings. In addition, the correlation between the photocatalytic activity of the low-dimensional semiconductor materials and their band structures were studied. First, we studied the effect of oxygen vacancies on the photocatalytic activity of one-dimensional anatase TiO2 nanobelts. Given that the oxygen vacancy plays a significant role in band structure and photocatalytic performance of semiconductors, oxygen vacancies were introduced into the anatase TiO2 nanobelts during reduction in H2 at high temperature. The oxygen vacancies of the TiO2 nanobelts boosted visible-light-responsive photocatalytic activity but weakened ultraviolet-light-responsive photocatalytic activity. As oxygen vacancies are commonly introduced by dopants, these results give insight into why doping is not always beneficial to the overall photocatalytic performance despite increases in absorption. Second, we improved the photocatalytic performance of two-dimensional lanthanum titanate (La2Ti2 O7) nanosheets, which are widely studied as an efficient photocatalyst due to the unique layered crystal structure. Nitrogen was doped into the La2Ti2O7 nanosheets and then Pt nanoparticles were loaded onto the La2Ti2O7 nanosheets. Doping nitrogen narrowed the band gap of the La2Ti 2O7 nanosheets by introducing a continuum of states by the valence

  15. Test Standard Revision Update: JESD57, "Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation"

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie

    2015-01-01

    The JEDEC JESD57 test standard, Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation, is undergoing its first revision since 1996. In this talk, we place this test standard into context with other relevant radiation test standards to show its importance for single-event effect radiation testing for space applications. We show the range of industry, government, and end-user party involvement in the revision. Finally, we highlight some of the key changes being made and discuss the trade-space in which setting standards must be made to be both useful and broadly adopted.

  16. Experimental findings on self-recovery and improvement of representative parameters of some semiconductor devices as irradiated in fast neutron flux

    NASA Astrophysics Data System (ADS)

    Hammer, W.; Sterlinski, Sl.; Nazarov, V. M.; Bober, Z.

    Semiconductor devices (Si-Li detectors, diodes, transistors and integrated circuits) were irradiated at a nuclear reactor up to 2.8 x 10(exp14)n x cm(sup -2)(E sub n greater than 0.5 MeV) anda 14 MeV neutron generator up to 10(exp 13) n x cm(sup -2). While testing radiation damage it was seen that some Si-Li detectors and integrated circuits showed the effects of self-recovery and improvement of electrical characteristics.

  17. Quantum functional devices for advanced electronics

    NASA Astrophysics Data System (ADS)

    Yokoyama, N.; Muto, S.; Imamura, K.; Takatsu, M.; Mori, T.; Sugiyama, Y.; Sakuma, Y.; Nakao, H.; Adachihara, T.

    Recent research in semiconductor device technology seems to be focused on reducing the cost and power dissipation of traditional Si CMOS integrated circuits, rather than developing new and advanced semiconductor devices. We believe however, that devices enter the nanometer-scale regime in the next century, where quantum mechanical effects play an important role in the device's function; therefore, it is important to continue basic research into the physics and technology of nanometer scale structures and device applications in order to cultivate "nanoelectronics". This paper reviews our research activities on quantum functional devices and discusses our future research direction.

  18. Microscopic studies of the fate of charges in organic semiconductors: Scanning Kelvin probe measurements of charge trapping, transport, and electric fields in p- and n-type devices

    NASA Astrophysics Data System (ADS)

    Smieska, Louisa Marion

    Organic semiconductors could have wide-ranging applications in lightweight, efficient electronic circuits. However, several fundamental questions regarding organic electronic device behavior have not yet been fully addressed, including the nature of chemical charge traps, and robust models for injection and transport. Many studies focus on engineering devices through bulk transport measurements, but it is not always possible to infer the microscopic behavior leading to the observed measurements. In this thesis, we present scanning-probe microscope studies of organic semiconductor devices in an effort to connect local properties with local device behavior. First, we study the chemistry of charge trapping in pentacene transistors. Working devices are doped with known pentacene impurities and the extent of charge trap formation is mapped across the transistor channel. Trap-clearing spectroscopy is employed to measure an excitation of the pentacene charge trap species, enabling identification of the degradationrelated chemical trap in pentacene. Second, we examine transport and trapping in peryelene diimide (PDI) transistors. Local mobilities are extracted from surface potential profiles across a transistor channel, and charge injection kinetics are found to be highly sensitive to electrode cleanliness. Trap-clearing spectra generally resemble PDI absorption spectra, but one derivative yields evidence indicating variation in trap-clearing mechanisms for different surface chemistries. Trap formation rates are measured and found to be independent of surface chemistry, contradicting a proposed silanol trapping mechanism. Finally, we develop a variation of scanning Kelvin probe microscopy that enables measurement of electric fields through a position modulation. This method avoids taking a numeric derivative of potential, which can introduce high-frequency noise into the electric field signal. Preliminary data is presented, and the theoretical basis for electric field

  19. Reliability Assessment and Activation Energy Study of Au and Pd-Coated Cu Wires Post High Temperature Aging in Nanoscale Semiconductor Packaging.

    PubMed

    Gan, C L; Hashim, U

    2013-06-01

    Wearout reliability and high temperature storage life (HTSL) activation energy of Au and Pd-coated Cu (PdCu) ball bonds are useful technical information for Cu wire deployment in nanoscale semiconductor device packaging. This paper discusses the influence of wire type on the wearout reliability performance of Au and PdCu wire used in fine pitch BGA package after HTSL stress at various aging temperatures. Failure analysis has been conducted to identify the failure mechanism after HTSL wearout conditions for Au and PdCu ball bonds. Apparent activation energies (Eaa) of both wire types are investigated after HTSL test at 150 °C, 175 °C and 200 °C aging temperatures. Arrhenius plot has been plotted for each ball bond types and the calculated Eaa of PdCu ball bond is 0.85 eV and 1.10 eV for Au ball bond in 110 nm semiconductor device. Obviously Au ball bond is identified with faster IMC formation rate with IMC Kirkendall voiding while PdCu wire exhibits equivalent wearout and or better wearout reliability margin compare to conventional Au wirebond. Lognormal plots have been established and its mean to failure (t50) have been discussed in this paper.

  20. Longevity improvement of optically activated, high gain GaAs photoconductive semiconductor switches

    SciTech Connect

    MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; O'MALLEY,MARTIN W.; HELGESON,WESLEY D.; BROWN,DARWIN JAMES; HJALMARSON,HAROLD P.; BACA,ALBERT G.

    2000-03-02

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses at 23A, and over 100 pulses at 1kA. This is achieved by improving the ohmic contacts by doping the semi-insulating GaAs underneath the metal, and by achieving a more uniform distribution of contact wear across the entire switch by distributing the trigger light to form multiple filaments. This paper will compare various approaches to doping the contacts, including ion implantation, thermal diffusion, and epitaxial growth. The device characterization also includes examination of the filament behavior using open-shutter, infra-red imaging during high gain switching. These techniques provide information on the filament carrier densities as well as the influence that the different contact structures and trigger light distributions have on the distribution of the current in the devices. This information is guiding the continuing refinement of contact structures and geometries for further improvements in switch longevity.