Science.gov

Sample records for active sensing techniques

  1. Characterization of Deep Tunneling Activity through Remote-Sensing Techniques

    SciTech Connect

    R. G. Best, P. J. Etzler, and J. D. Bloom

    1997-10-01

    This work is a case study demonstrating the uses of multispectral and multi-temporal imagery to characterize deep tunneling activity. A drainage tunnel excavation in Quincy, MA is the case locality. Data used are aerial photographs (digitized) and Daedalus 3600 MSS image data that were collected in July and October of 1994. Analysis of the data includes thermal characterization, spectral characterization, multi-temporal analysis, and volume estimation using digital DEM generation. The results demonstrate the type of information that could be generated by multispectral, multi-temporal data if the study locality were a clandestine excavation site with restricted surface access.

  2. Head-mounted active noise control system with virtual sensing technique

    NASA Astrophysics Data System (ADS)

    Miyazaki, Nobuhiro; Kajikawa, Yoshinobu

    2015-03-01

    In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.

  3. Remote hydrogen sensing techniques

    NASA Technical Reports Server (NTRS)

    Perry, Cortes L.

    1992-01-01

    The objective of this project is to evaluate remote hydrogen sensing methodologies utilizing metal oxide semi-conductor field effect transistors (MOS-FET) and mass spectrometric (MS) technologies and combinations thereof.

  4. A preliminary study of air-pollution measurement by active remote-sensing techniques

    NASA Technical Reports Server (NTRS)

    Wright, M. L.; Proctor, E. K.; Gasiorek, L. S.; Liston, E. M.

    1975-01-01

    Air pollutants are identified, and the needs for their measurement from satellites and aircraft are discussed. An assessment is made of the properties of these pollutants and of the normal atmosphere, including interactions with light of various wavelengths and the resulting effects on transmission and scattering of optical signals. The possible methods for active remote measurement are described; the relative performance capabilities of double-ended and single-ended systems are compared qualitatively; and the capabilities of the several single-ended or backscattering techniques are compared quantitatively. The differential-absorption lidar (DIAL) technique is shown to be superior to the other backscattering techniques. The lidar system parameters and their relationships to the environmental factors and the properties of pollutants are examined in detail. A computer program that models both the atmosphere (including pollutants) and the lidar system is described. The performance capabilities of present and future lidar components are assessed, and projections are made of prospective measurement capabilities for future lidar systems. Following a discussion of some important operational factors that affect both the design and measurement capabilities of airborne and satellite-based lidar systems, the extensive analytical results obtained through more than 1000 individual cases analyzed with the aid of the computer program are summarized and discussed. The conclusions are presented. Recommendations are also made for additional studies to investigate cases that could not be explored adequately during this study.

  5. Vision sensing techniques in aeronautics and astronautics

    NASA Technical Reports Server (NTRS)

    Hall, E. L.

    1988-01-01

    The close relationship between sensing and other tasks in orbital space, and the integral role of vision sensing in practical aerospace applications, are illustrated. Typical space mission-vision tasks encompass the docking of space vehicles, the detection of unexpected objects, the diagnosis of spacecraft damage, and the inspection of critical spacecraft components. Attention is presently given to image functions, the 'windowing' of a view, the number of cameras required for inspection tasks, the choice of incoherent or coherent (laser) illumination, three-dimensional-to-two-dimensional model-matching, edge- and region-segmentation techniques, and motion analysis for tracking.

  6. Remote sensing as a mineral prospecting technique

    NASA Technical Reports Server (NTRS)

    Meneses, P. R. (Principal Investigator)

    1984-01-01

    Remote sensing and its application as an alternative technique to mineral resource exploration are reviewed. Emphasis is given here to the analysis of the three basic attributes of remote sensing, i.e., spatial attributes related to regional structural mapping, spectral attributes related to rock discrimination and seasonal attributes related to geobotanic anomalies mapping, all of which are employed in mineral exploration. Special emphasis is given to new developments of the Thematic Mapper of the LANDSAT-5, principally with reference to the application of the bands 1.6 and 2.2 microns to map hydrothermally altered rocks and the band of red and blue shift to geobotanical anomalies mapping.

  7. Introduction to the physics and techniques of remote sensing

    NASA Technical Reports Server (NTRS)

    Elachi, Charles

    1987-01-01

    This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.

  8. Computational intelligence techniques for tactile sensing systems.

    PubMed

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-06-19

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach.

  9. Synergy of tectonic geomorphology, applied geophysics and remote sensing techniques reveals new data for active extensional tectonism in NW Peloponnese (Greece)

    NASA Astrophysics Data System (ADS)

    Fountoulis, Ioannis; Vassilakis, Emmanuel; Mavroulis, Spyridon; Alexopoulos, John; Dilalos, Spyridon; Erkeki, Athanasia

    2015-05-01

    In tectonically active areas, such as in the northwest Peloponnese of western Greece, geomorphic processes are strongly influenced by active faulting; in many cases such faults cannot be easily identified. In this paper we apply multidisciplinary analysis (morphotectonic indices, neotectonic mapping, geophysical surveys and remote sensing techniques) to map the recently-recognized east-west trending Pineios River normal fault zone with a high degree of accuracy, and to better understand its contribution to the evolution of the ancient region of Elis during Holocene time. Fault activity seems to be related to frequent changes in river flow patterns and to displacements of the nearby shoreline. We argue that fault activity is the main reason for migration of Pineios river mouth as documented for several time periods during historical time. Quantitative constraints on deformation caused by the faulting were applied through the application of the morphotectonic indices proposed in this paper, including drainage network asymmetry and sinuosity, and mountain front sinuosity, all of which indicate that this is a highly active structure. Slip rates calculated to be as high as 0.48 mm/yr for the last 209 ka (based on previously published dating) were verified by applied geophysical methods. The fault surface discontinuity was identified at depth using vertical electrical resistivity measurements and depositional layers of different resistivity were found to be clearly offset. Displacement increases toward the west, reaching an observed maximum of 110 m. The most spectacular landform alteration due to surface deformation is the north-south migration of the river estuary into completely different open sea areas during the late Quaternary, mainly during the Holocene. The sediment transport path has been altered several times due to these changes in river geometry with and the most recent seeming to have occurred almost 2000 years ago. The river estuary migrated to its

  10. Fluorescence sensing techniques for vegetation assessment.

    PubMed

    Corp, Lawrence A; Middleton, Elizabeth M; McMurtrey, James E; Campbell, Petya K Entcheva; Butcher, L Maryn

    2006-02-10

    Active fluorescence (F) sensing systems have long been suggested as a means to identify species composition and determine physiological status of plants. Passive F systems for large-scale remote assessment of vegetation will undoubtedly rely on solar-induced F (SIF), and this information could potentially be obtained from the Fraunhofer line depth (FLD) principle. However, understanding the relationships between the information and knowledge gained from active and passive systems remains to be addressed. Here we present an approach in which actively induced F spectral data are used to simulate and project the magnitude of SIF that can be expected from near-ground observations within selected solar Fraunhofer line regions. Comparisons among vegetative species and nitrogen (N) supply treatments were made with three F approaches: the passive FLD principle applied to telluric oxygen (O2) bands from field-acquired canopy reflectance spectra, simulated SIF from actively induced laboratory emission spectra of leaves at a series of solar Fraunhofer lines ranging from 422 to 758 nm, and examination of two dual-F excitation algorithms developed from laboratory data. From these analyses we infer that SIF from whole-plant canopies can be simulated by use of laboratory data from active systems on individual leaves and that SIF has application for the large-scale assessment of vegetation.

  11. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  12. Bibliography of Remote Sensing Techniques Used in Wetland Research.

    DTIC Science & Technology

    1993-01-01

    remote sensing technology for detecting changes in wetland environments. This report documents a bibliographic search conducted as part of that work unit on applications of remote sensing techniques in wetland research. Results were used to guide research efforts on the use of remote sensing technology for wetland change detection and assessment. The citations are presented in three appendixes, organized by wetland type, sensor type, and author.... Change detection, Wetland assessment, Remote sensing ,

  13. Wind Predictability and Remote Sensing Techniques,

    DTIC Science & Technology

    The report presents the unclassified findings from the Investigation of Airborne Wind Sensing Systems conducted under AIRTASK A30303/323/70F17311002. Included is a summary of the current accuracy of wind speed and direction forecasts, a list of possible methods for remote sensing meteorological data, a list of areas of application of the given methods and a list of contacts made for information relevant to this evaluation. (Author)

  14. A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body

    PubMed Central

    Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo

    2016-01-01

    Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body—because human tissues exhibit some conductivity at these frequencies—resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard. PMID:27918416

  15. A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body.

    PubMed

    Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo

    2016-12-02

    Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body-because human tissues exhibit some conductivity at these frequencies-resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard.

  16. Using of Remote Sensing Techniques for Monitoring the Earthquakes Activities Along the Northern Part of the Syrian Rift System (LEFT-LATERAL),SYRIA

    NASA Astrophysics Data System (ADS)

    Dalati, Moutaz

    Earthquake mitigation can be achieved with a better knowledge of a region's infra-and substructures. High resolution Remote Sensing data can play a significant role to implement Geological mapping and it is essential to learn about the tectonic setting of a region. It is an effective method to identify active faults from different sources of Remote Sensing and compare the capability of some satellite sensors in active faults survey. In this paper, it was discussed a few digital image processing approaches to be used for enhancement and feature extraction related to faults. Those methods include band ratio, filtering and texture statistics . The experimental results show that multi-spectral images have great potentials in large scale active faults investigation. It has also got satisfied results when deal with invisible faults. Active Faults have distinct features in satellite images. Usually, there are obvious straight lines, circular structures and other distinct patterns along the faults locations. Remotely Sensed imagery Landsat ETM and SPOT XS /PAN are often used in active faults mapping. Moderate and high resolution satellite images are the best choice, because in low resolution images, the faults features may not be visible in most cases. The area under study is located Northwest of Syria that is part of one of the very active deformation belt on the Earth today. This area and the western part of Syria are located along the great rift system (Left-Lateral or African- Syrian Rift System). Those areas are tectonically active and caused a lot of seismically events. The AL-Ghab graben complex is situated within this wide area of Cenozoic deformation. The system formed, initially, as a result of the break up of the Arabian plate from the African plate. This action indicates that these sites are active and in a continual movement. In addition to that, the statistic analysis of Thematic Mapper data and the features from a digital elevation model ( DEM )produced from

  17. Whisking mechanics and active sensing.

    PubMed

    Bush, Nicholas E; Solla, Sara A; Hartmann, Mitra Jz

    2016-10-01

    We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem ('where' is an object) and the feature extraction problem ('what' is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the 'windowed sampling' hypothesis for active sensing: that rats can estimate an object's spatial features by integrating mechanical information across whiskers during brief (25-60ms) windows of 'haptic enclosure' with the whiskers, a motion that resembles a hand grasp.

  18. A comparison of force sensing techniques for planetary manipulation

    NASA Technical Reports Server (NTRS)

    Helmick, Daniel; Okon, Avi; DiCicco, Matt

    2006-01-01

    Five techniques for sensing forces with a manipulator are compared analytically and experimentally. The techniques compared are: a six-axis wrist force/torque sensor, joint torque sensors, link strain gauges, motor current sensors, and flexibility modeling. The accuracy and repeatability fo each technique is quantified and compared.

  19. Evaluation of reforestation using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Filho, P. H.; Shimabukuro, Y. E.; Dossantos, J. R.

    1982-01-01

    The utilization of remotely sensed orbital data for forestry inventory. The study area (approximately 491,100 ha) encompasses the municipalities of Ribeirao Preto, Altinopolis, Cravinhos, Serra Azul, Luis Antonio, Sao Simao, Sant Rita do Passa Quatro and Santa Rosa do Viterbo (Sao Paulo State). Materials used were LANDSAT data from channels 5 and 7 (scale 1:250,000) and CCT's. Visual interpretation of the imagery showed that for 1977 a total of 37,766.00 ha and for 1979 38,003.75 ha were reforested with Pinus and Eucalyptus within the area under study. The results obtained show that LANDSAT data can be used efficiently in forestry inventory studies.

  20. Integration of multianalyte sensing functions on a capillary-assembled microchip: simultaneous determination of ion concentrations and enzymatic activities by a "drop-and-sip" technique.

    PubMed

    Henares, Terence G; Takaishi, Masayuki; Yoshida, Naoya; Terabe, Shigeru; Mizutani, Fumio; Sekizawa, Ryuichi; Hisamoto, Hideaki

    2007-02-01

    A general and simple implementation of simultaneous multiparametric sensing in a single microchip is presented by using a capillary-assembled microchip (CAs-CHIP) integrated with the plural different reagent-release capillaries (RRCs), acting as various biochemical sensors. A novel "drop-and-sip" technique of fluid handling is performed with a microliter droplet of a model sample solution containing proteases (trypsin, chymotrypsin, thrombin, elastase) and divalent cations (Ca2+, Zn2+, Mg2+) that passes through the microchannel with the aid of a micropipette as a vacuum pump, concurrently filling each RRC via capillary force. To avert the evaporation of the nanoliter sample volume in each capillary, PDMS oil is dropped on the outlet hole of the CAs-CHIP exploiting the capillary force that results in spontaneous sealing of all the RRCs. In addition, this high-speed sample introduction alleviates the possibility of protein adsorption and capillary cross-contamination, allowing a reliable and multianalyte determination of a sample containing many different proteases and divalent cations by using the fluorescence image analysis. Presented results suggested the possible application of this microchip in the field of drug discovery and systems biology.

  1. Layered classification techniques for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Swain, P. H.; Wu, C. L.; Landgrebe, D. A.; Hauska, H.

    1975-01-01

    The single-stage method of pattern classification utilizes all available features in a single test which assigns the unknown to a category according to a specific decision strategy (such as the maximum likelihood strategy). The layered classifier classifies the unknown through a sequence of tests, each of which may be dependent on the outcome of previous tests. Although the layered classifier was originally investigated as a means of improving classification accuracy and efficiency, it was found that in the context of remote sensing data analysis, other advantages also accrue due to many of the special characteristics of both the data and the applications pursued. The layered classifier method and several of the diverse applications of this approach are discussed.

  2. Brazil's remote sensing activities in the Eighties

    NASA Technical Reports Server (NTRS)

    Raupp, M. A.; Pereiradacunha, R.; Novaes, R. A.

    1985-01-01

    Most of the remote sensing activities in Brazil have been conducted by the Institute for Space Research (INPE). This report describes briefly INPE's activities in remote sensing in the last years. INPE has been engaged in research (e.g., radiance studies), development (e.g., CCD-scanners, image processing devices) and applications (e.g., crop survey, land use, mineral resources, etc.) of remote sensing. INPE is also responsible for the operation (data reception and processing) of the LANDSATs and meteorological satellites. Data acquisition activities include the development of CCD-Camera to be deployed on board the space shuttle and the construction of a remote sensing satellite.

  3. Radial velocity data analysis with compressed sensing techniques

    NASA Astrophysics Data System (ADS)

    Hara, Nathan C.; Boué, G.; Laskar, J.; Correia, A. C. M.

    2017-01-01

    We present a novel approach for analysing radial velocity data that combines two features: all the planets are searched at once and the algorithm is fast. This is achieved by utilizing compressed sensing techniques, which are modified to be compatible with the Gaussian process framework. The resulting tool can be used like a Lomb-Scargle periodogram and has the same aspect but with much fewer peaks due to aliasing. The method is applied to five systems with published radial velocity data sets: HD 69830, HD 10180, 55 Cnc, GJ 876 and a simulated very active star. The results are fully compatible with previous analysis, though obtained more straightforwardly. We further show that 55 Cnc e and f could have been respectively detected and suspected in early measurements from the Lick Observatory and Hobby-Eberly Telescope available in 2004, and that frequencies due to dynamical interactions in GJ 876 can be seen.

  4. Active and Passive Remote Sensing of Ice.

    DTIC Science & Technology

    1985-01-01

    This is a report on the progress that has been made in the study of active and passive remote sensing of ice during the period of August 1, 1984...active and passive microwave remote sensing , (2) used the strong fluctuation theory and the fluctuation-dissipation theorem to calculate the brightness

  5. Offshore winds using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Peña, Alfredo; Bay Hasager, Charlotte; Gryning, Sven-Erik; Courtney, Michael; Antoniou, Ioannis; Mikkelsen, Torben; Sørensen, Paul

    2007-07-01

    Ground-based remote sensing instruments can observe winds at different levels in the atmosphere where the wind characteristics change with height: the range of heights where modern turbine rotors are operating. A six-month wind assessment campaign has been made with a LiDAR (Light Detection And Ranging) and a SoDAR (Sound Detection and Ranging) on the transformer/platform of the world's largest offshore wind farm located at the West coast of Denmark to evaluate their ability to observe offshore winds. The high homogeneity and low turbulence levels registered allow the comparison of LiDAR and SoDAR with measurements from cups on masts surrounding the wind farm showing good agreement for both the mean wind speed and the longitudinal component of turbulence. An extension of mean wind speed profiles from cup measurements on masts with LiDAR observations results in a good match for the free sectors at different wind speeds. The log-linear profile is fitted to the extended profiles (averaged over all stabilities and roughness lengths) and the deviations are small. Extended profiles of turbulence intensity are also shown for different wind speeds up to 161 m. Friction velocities and roughness lengths calculated from the fitted log-linear profile are compared with the Charnock model which seems to overestimate the sea roughness for the free sectors.

  6. Evaluation of a Temperature Remote Sensing Technique.

    DTIC Science & Technology

    1987-07-01

    concnional Raman for the technique is to monitor temperature in a super- spectroscopy , shich rCqttircs the ncastrement of rela- somio acrod,,namic test...where atomic col- spread of the absorption line. It is normalized such that lisions are infrequent, the Doppler effect determines the width of the...ex- Note: Only the intense modes were recorded cellent tool for high-resolution spectroscopy . at each temperature Coarse frequency tuning of the laser

  7. Monitoring marine pollution by airborne remote sensing techniques

    SciTech Connect

    Yuanfu, S.; Quanan, Z.

    1982-06-01

    In order to monitor marine pollution by airborne remote sensing techniques, some comprehensive test of airborne remote sensing, involving monitoring marine oil pollution, were performed at several bay areas of China. This paper presents some typical results of monitoring marine oil pollution. The features associated with the EM spectrum (visible, thermal infrared, and microwave) response of marine oil spills is briefly analyzed. It has been verified that the airborne oil surveillance systems manifested their advantages for monitoring the oil pollution of bay environments.

  8. Millimeter-wave/THz FMCW radar techniques for sensing applications

    NASA Astrophysics Data System (ADS)

    Mirando, D. Amal; Higgins, Michael D.; Wang, Fenggui; Petkie, Douglas T.

    2016-10-01

    Millimeter-wave and terahertz continuous-wave radar systems have been used to measure physiological signatures for biometric applications and for a variety of non-destructive evaluation applications, such as the detection of defects in materials. Sensing strategies for the simplest homodyne systems, such as a Michelson Interferometer, can be enhanced by using Frequency Modulated Continuous Wave (FMCW) techniques. This allows multiple objects or surfaces to be range resolved while monitoring the phase of the signal in a particular range bin. We will discuss the latest developments in several studies aimed at demonstrating how FMCW techniques can enhance mmW/THz sensing applications.

  9. Active and Passive Remote Sensing of Ice.

    DTIC Science & Technology

    1984-09-01

    This is a report on the progress that has been made in the study of active and passive remote sensing of ice during the period of February 1, 1984...the emissivities as functions of viewing angles and polarizations. They are used to interpret the passive microwave remote sensing data from

  10. Boundary Layer Remote Sensing with Combined Active and Passive Techniques: GPS Radio Occultation and High-Resolution Stereo Imaging (WindCam) Small Satellite Concept

    NASA Technical Reports Server (NTRS)

    Mannucci, A.J.; Wu, D.L.; Teixeira, J.; Ao, C.O.; Xie, F.; Diner, D.J.; Wood, R.; Turk, Joe

    2012-01-01

    Objective: significant progress in understanding low-cloud boundary layer processes. This is the Single largest uncertainty in climate projections. Radio occultation has unique features suited to boundary layer remote sensing (1) Cloud penetrating (2) Very high vertical resolution (approximately 50m-100m) (3) Sensitivity to thermodynamic variables

  11. Natural resource inventory for urban planning utilizing remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Foster, K. E.; Mackey, P. F.; Bonham, C. D.

    1972-01-01

    Remote sensing techniques were applied to the lower Pantano Wash area to acquire data for planning an ecological balance between the expanding Tucson metropolitan area and its environment. The types and distribution of vegetation are discussed along with the hydrologic aspects of the Wash.

  12. Active and Passive Remote Sensing of Ice

    DTIC Science & Technology

    1993-01-26

    92 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Active and Passive Remote Sensing of Ice NO0014-89-J-l 107 6. AUTHOR(S) 425f023-08 Prof. J.A. Kong 7... REMOTE SENSING OF ICE Sponsored by: Department of the Navy Office of Naval Research Contract number: N00014-89-J-1107 Research Organization: Center for...J. A. Kong Period covered: October 1, 1988 - November 30, 1992 St ACTIVE AND PASSIVE REMOTE SENSING OF ICE FINAL REPORT This annual report covers

  13. Detection of southern corn leaf blight by remote sensing techniques.

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Swain, P. H.; Mroczynski, R. P.; Anuta, P. E.; Macdonald, R. B.

    1971-01-01

    Multispectral photographic and scanner data were collected over western Indiana in August and September 1970, to determine the detectability of southern corn leaf blight by remote sensing. Measurements were made at altitudes of 3000 to 7000 ft. Color, color IR, and multiband black and white photography were collected at altitudes from 3000 to 60,000 ft. Six levels of infection based on the amount of leaf damage were identified in the fields. Three levels of infection were detected with color IR photography by standard photo-interpretive techniques. Up to five levels of infection were distinguished by applying automatic pattern recognition techniques to the multispectral scanner data. The results illustrate the potential of remote sensing techniques in the detection of crop diseases.

  14. Indicators of international remote sensing activities

    NASA Technical Reports Server (NTRS)

    Spann, G. W.

    1977-01-01

    The extent of worldwide remote sensing activities, including the use of satellite and high/medium altitude aircraft data was studied. Data were obtained from numerous individuals and organizations with international remote sensing responsibilities. Indicators were selected to evaluate the nature and scope of remote sensing activities in each country. These indicators ranged from attendance at remote sensing workshops and training courses to the establishment of earth resources satellite ground stations and plans for the launch of earth resources satellites. Results indicate that this technology constitutes a rapidly increasing component of environmental, land use, and natural resources investigations in many countries, and most of these countries rely on the LANDSAT satellites for a major portion of their data.

  15. Techniques for active passivation

    SciTech Connect

    Roscioli, Joseph R.; Herndon, Scott C.; Nelson, Jr., David D.

    2016-12-20

    In one embodiment, active (continuous or intermittent) passivation may be employed to prevent interaction of sticky molecules with interfaces inside of an instrument (e.g., an infrared absorption spectrometer) and thereby improve response time. A passivation species may be continuously or intermittently applied to an inlet of the instrument while a sample gas stream is being applied. The passivation species may have a highly polar functional group that strongly binds to either water or polar groups of the interfaces, and once bound presents a non-polar group to the gas phase in order to prevent further binding of polar molecules. The instrument may be actively used to detect the sticky molecules while the passivation species is being applied.

  16. Development of carbon fiber-based piezoresistive linear sensing technique

    NASA Astrophysics Data System (ADS)

    Yang, Caiqian; Wu, Zhishen; Huang, Huang

    2009-03-01

    In this paper, the development of carbon fiber-based piezoresistive linear sensing technique and its application in civil engineering structures is studied and summarized. The sensing mechanism is based on the electrical conductivity and piezoresistivity of different types of carbon fibers. Firstly, the influences of values of signal currents and temperature on the sensing properties are studied to decide the suitable sensing current. Then, the linear temperature and strain sensing feasibility of different types of carbon fibers is addressed and discussed. Finally, the application of this kind of sensors is studied in monitoring the health of reinforced concrete (RC) and prestressed concrete (PC) structures. A good linearity of fractional change in electrical resistance (ER) (ΔR/R0)-strain and &DeltaR/R0-temperature is demonstrated. The &DeltaR/R0-strain and &DeltaR/R0-temperature curves of CFRP/HCFRP sensors can be well fitted with a line with a correlation coefficient larger than 0.978. All these reveal that carbon fibers reinforced polymer (CFRP) can be used as both piezoresistive linear strain and temperature sensors.

  17. Adaptive remote sensing techniques implementing swarms of mobile agents

    NASA Astrophysics Data System (ADS)

    Cameron, Stewart M.; Loubriel, Guillermo M.; Robinett, Rush D., III; Stantz, Keith M.; Trahan, Michael W.; Wagner, John S.

    1999-07-01

    Measurement and signal intelligence of the battlespace has created new requirements in information management, communication and interoperability as they effect surveillance and situational awareness. In many situations, stand-off remote-sensing and hazard-interdiction techniques over realistic operational areas are often impractical and difficult to characterize. An alternative approach is to implement adaptive remote-sensing techniques with swarms of mobile agents employing collective behavior for optimization of mapping signatures and positional orientation (registration). We have expanded intelligent control theory using physics-based collective behavior models and genetic algorithms to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and niter-operative global optimization for sensor fusion and mission oversight. By using a layered hierarchical control architecture to orchestrate adaptive reconfiguration of semi-autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecking.

  18. Integration of remote sensing and geophysical techniques for coastal monitoring

    NASA Astrophysics Data System (ADS)

    Simoniello, T.; Carone, M. T.; Loperte, A.; Satriani, A.; Imbrenda, V.; D'Emilio, M.; Guariglia, A.

    2009-04-01

    Coastal areas are of great environmental, economic, social, cultural and recreational relevance; therefore, the implementation of suitable monitoring and protection actions is fundamental for their preservation and for assuring future use of this resource. Such actions have to be based on an ecosystem perspective for preserving coastal environment integrity and functioning and for planning sustainable resource management of both the marine and terrestrial components (ICZM-EU initiative). We implemented an integrated study based on remote sensing and geophysical techniques for monitoring a coastal area located along the Ionian side of Basilicata region (Southern Italy). This area, between the Bradano and Basento river mouths, is mainly characterized by a narrow shore (10-30 m) of fine sandy formations and by a pine forest planted in the first decade of 50's in order to preserve the coast and the inland cultivated areas. Due to drought and fire events and saltwater intrusion phenomena, such a forest is affected by a strong decline with consequent environmental problems. Multispectral satellite data were adopted for evaluating the spatio-temporal features of coastal vegetation and the structure of forested patterns. The increase or decrease in vegetation activity was analyzed from trends estimated on a time series of NDVI (Normalized Difference Vegetation Index) maps. The fragmentation/connection levels of vegetated patterns was assessed form a set of landscape ecology metrics elaborated at different structure scales (patch, class and landscape) on satellite cover classifications. Information on shoreline changes were derived form a multi-source data set (satellite data, field-GPS surveys and Aerial Laser Scanner acquisitions) by taking also into account tidal effects. Geophysical campaigns were performed for characterizing soil features and limits of salty water infiltrations. Form vertical resistivity soundings (VES), soil resistivity maps at different a deeps (0

  19. Rapid Damage Assessment Using High-resolution Remote Sensing Imagery: Tools and Techniques

    SciTech Connect

    Vatsavai, Raju; Tuttle, Mark A; Bhaduri, Budhendra L; Bright, Eddie A; Cheriyadat, Anil M; Chandola, Varun; Graesser, Jordan B

    2011-01-01

    Accurate damage assessment caused by major natural and anthropogenic disasters is becoming critical due to increases in human and economic loss. This increase in loss of life and severe damages can be attributed to growing population, as well as human migration to disaster prone regions of the world. Rapid damage assessment and dissemination of accurate information is critical for creating an effective emergency response. Remote sensing and geographic information systems (GIS) based techniques and tools are important in disaster damage assessment and reporting activities. In this review, we will look into the state of the art techniques in damage assessment using remote sensing and GIS.

  20. Sensing Human Activity: GPS Tracking

    PubMed Central

    van der Spek, Stefan; van Schaick, Jeroen; de Bois, Peter; de Haan, Remco

    2009-01-01

    The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for collecting data on pedestrian movement in three European city centres, Norwich, Rouen and Koblenz, and in another experiment for collecting activity data of 13 families in Almere (The Netherlands) for one week. The question posed in this paper is: what is the value of GPS as ‘sensor technology’ measuring activities of people? The conclusion is that GPS offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in different settings adding new layers of knowledge to urban studies, but the use of GPS-technology and deployment of GPS-devices still offers significant challenges for future research. PMID:22574061

  1. Hybrid Architecture Active Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Hyde, Tupper

    2010-01-01

    A method was developed for performing relatively high-speed wavefront sensing and control to overcome thermal instabilities in a segmented primary mirror telescope [e.g., James Webb Space Telescope (JWST) at L2], by using the onboard fine guidance sensor (FGS) to minimize expense and complexity. This FGS performs centroiding on a bright star to feed the information to the pointing and control system. The proposed concept is to beam split the image of the guide star (or use a single defocused guide star image) to perform wavefront sensing using phase retrieval techniques. Using the fine guidance sensor star image for guiding and fine phasing eliminates the need for other, more complex ways of achieving very accurate sensing and control that is needed for UV-optical applications. The phase retrieval occurs nearly constantly, so passive thermal stability over fourteen days is not required. Using the FGS as the sensor, one can feed segment update information to actuators on the primary mirror that can update the primary mirror segment fine phasing with this frequency. Because the thermal time constants of the primary mirror are very slow compared to this duration, the mirror will appear extremely stable during observations (to the level of accuracy of the sensing and control). The sensing can use the same phase retrieval techniques as the JWST by employing an additional beam splitter, and having each channel go through a weak lens (one positive and one negative). The channels can use common or separate detectors. Phase retrieval can be performed onboard. The actuation scheme would include a coarse stage able to achieve initial alignment of several millimeters of range (similar to JWST and can use a JWST heritage sensing approach in the science camera) and a fine stage capable of continual updates.

  2. Symbol Sense Behavior in Digital Activities

    ERIC Educational Resources Information Center

    Bokhove, Christian; Drijvers, Paul

    2010-01-01

    The algebraic expertise that mathematics education is aiming for includes both procedural skills and conceptual understanding. To capture the latter, notions such as symbol sense, gestalt view and visual salience have been developed. We wonder if digital activities can be designed that not only require procedural algebraic skills, but also invite…

  3. Remote Sensing Simulation Activities for Earthlings

    ERIC Educational Resources Information Center

    Krockover, Gerald H.; Odden, Thomas D.

    1977-01-01

    Suggested are activities using a Polaroid camera to illustrate the capabilities of remote sensing. Reading materials from the National Aeronautics and Space Administration (NASA) are suggested. Methods for (1) finding a camera's focal length, (2) calculating ground dimension photograph simulation, and (3) limiting size using film resolution are…

  4. A satellite remote sensing technique for geological structure horizon mapping

    SciTech Connect

    Fraser, A.; Huggins, P.; Rees, J.

    1996-08-01

    A Satellite Remote Sensing Technique is demonstrated for generating near surface geological structure data. This technique enables the screening of large areas and targeting of seismic acquisition during hydrocarbon exploration. This is of particular advantage in terrains where surveying is logistically difficult. Landsat Thematic Mapper (TM) data and a high resolution Digital Elevation Model (DEM), are used to identify and map outcropping horizons. These are used to reconstruct the near surface structure. The technique is applied in Central Yemen which is characterised by a {open_quote}layer-cake{close_quote} geological and low dipping terrain. The results are validated using 2D seismic data. The near surface map images faults and structure not apparent in the raw data. Comparison with the structure map generated from a 2D seismic data indicates very good structural and fault correlation. The near surface map successfully highlights areas of potential closure at reservoir depths.

  5. Investigation of remote sensing techniques of measuring soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Blanchard, A. J.; Nieber, J. L.; Lascano, R.; Tsang, L.; Vanbavel, C. H. M.

    1981-01-01

    Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models.

  6. Development of techniques required for the application of a laser to three dimensional visual sensing

    NASA Technical Reports Server (NTRS)

    Ryan, Arthur M.; Gerhardt, Lester A.

    1991-01-01

    The ongoing vision research at the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) is directed toward identifying and addressing the relevant issues involved in applying visual sensing to space assembly tasks. A considerable amount of effort has been devoted to passive sensing techniques such as using multiple cameras to identify objects in a scene. To compliment the capabilities of the passive visual system in the CIRSSE robotics testbed, research is being conducted in active sensing techniques. This report is description of the research associated with the testbed's laser scanner and its application as an active sensing device. The report is comprised of five major topics. First is a brief description of the CIRSSE visual system and a summary of the active sensing research that has been conducted up to this point. Second, some of the methods currently used to calibrate CIRSSE's laser scanner are described as well as an appraisal of the effectiveness of these methods. Third, is a discussion of how the laser scanner can be employed in concert with a camera to provide a three dimensional point estimation capability. Fourth, there is a description of methods that can be used to detect the presence of the laser beam in a cluttered camera image. Finally, there is a summary of the current state of this research and a description of research planned for the future.

  7. LIFES: Laser Induced Fluorescence and Environmental Sensing. [remote sensing technique for marine environment

    NASA Technical Reports Server (NTRS)

    Houston, W. R.; Stephenson, D. G.; Measures, R. M.

    1975-01-01

    A laboratory investigation has been conducted to evaluate the detection and identification capabilities of laser induced fluorescence as a remote sensing technique for the marine environment. The relative merits of fluorescence parameters including emission and excitation profiles, intensity and lifetime measurements are discussed in relation to the identification of specific targets of the marine environment including crude oils, refined petroleum products, fish oils and algae. Temporal profiles displaying the variation of lifetime with emission wavelength have proven to add a new dimension of specificity and simplicity to the technique.

  8. Self-sensing active magnetic levitation

    SciTech Connect

    Vischer, D.; Bleuler, H. )

    1993-03-01

    Magnetic bearing technology is now rapidly being introduced to industrial applications. The most popular configuration applied is the classical' one of gap sensor, current control, current-amplifier and magnetic coil. Here the authors present a magnetic levitation method which combines all the known advantages of active magnetic bearing in a self-sensing configuration. The novel method realizes stable and well damped levitation without any sensor hardware at the rotor. This is achieved by using the coil voltage of the magnetic bearing as system input (voltage instead of current amplifiers) and the current as system output. It is demonstrated that the resulting system is observable and controllable in the sense of control theory, allowing a magnetic bearing to be stabilized with a simple linear controller using current measurements alone. Several self-sensing bearings have been constructed. Their performance is comparable to systems with sensors, but hardware requirements and costs are substantially reduced. Experimental results are included.

  9. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers.

    PubMed

    López, Yuri Álvarez; Lorenzo, José Ángel Martínez

    2017-01-15

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated.

  10. Magnetic sensing techniques for humanitarian ordnance detection and discrimination

    NASA Astrophysics Data System (ADS)

    Keranen, Joe; Billings, Steve; Schultz, Gregory; Miller, Jonathan

    2011-06-01

    Detection and discrimination of unexploded ordnance (UXO) in areas of prior conflict is of high importance to the international community and the United States government. For humanitarian applications, sensors and processing methods need to be robust, reliable, and easy to train and implement using indigenous UXO removal personnel. This paper focuses on magnetometer sensing techniques, processing, and operation for UXO detection and discrimination applications. Specifically, we discuss the collection, processing, and discrimination of data collected using the PACMAG man-portable system consisting of arrays of sensitive total-field magnetometers, global positioning (GPS) combined with digital odometers, and a data acquisition system. We outline preliminary standard operating procedures for optimal collection of UXO-induced magnetic fields and associated position data using either a GPS, or odometer when surveying in GPS-denied areas. Processing techniques such as gridding and filtering, target picking, and discrimination lead to estimates of target size and location. Emphasis is placed on simplifying the production of magnetometer hardware and software for use by minimally-trained personnel with no advanced knowledge of magnetic sensing and geophysics.

  11. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers

    PubMed Central

    Álvarez López, Yuri; Martínez Lorenzo, José Ángel

    2017-01-01

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated. PMID:28098841

  12. An integrated sensing technique for smart monitoring of water pipelines

    NASA Astrophysics Data System (ADS)

    Bernini, Romeo; Catapano, Ilaria; Soldovieri, Francesco; Crocco, Lorenzo

    2014-05-01

    Lowering the rate of water leakage from the network of underground pipes is one of the requirements that "smart" cities have to comply with. In fact, losses in the water supply infrastructure have a remarkable social, environmental and economic impact, which obviously conflicts with the expected efficiency and sustainability of a smart city. As a consequence, there is a huge interest in developing prevention policies based on state-of-art sensing techniques and possibly their integration, as well as in envisaging ad hoc technical solutions designed for the application at hand. As a contribution to this framework, in this communication we present an approach aimed to pursue a thorough non-invasive monitoring of water pipelines, with both high spatial and temporal resolution. This goal is necessary to guarantee that maintenance operations are performed timely, so to reduce the extent of the leakage and its possible side effects, and precisely, so to minimize the cost and the discomfort resulting from operating on the water supply network. The proposed approach integrates two sensing techniques that work at different spatial and temporal scales. The first one is meant to provide a continuous (in both space and time) monitoring of the pipeline and exploits a distributed optic fiber sensor based on the Brillouin scattering phenomenon. This technique provides the "low" spatial resolution information (at meter scale) needed to reveal the presence of a leak and call for interventions [1]. The second technique is based on the use of Ground Penetrating Radar (GPR) and is meant to provide detailed images of area where the damage has been detected. GPR systems equipped with suitable data processing strategies [2,3] are indeed capable of providing images of the shallow underground, where the pipes would be buried, characterized by a spatial resolution in the order of a few centimeters. This capability is crucial to address in the most proper way maintenance operations, by for

  13. Tunnel-Site Selection by Remote Sensing Techniques

    DTIC Science & Technology

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  14. Estimation of Insulator Contaminations by Means of Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Han, Ge; Gong, Wei; Cui, Xiaohui; Zhang, Miao; Chen, Jun

    2016-06-01

    The accurate estimation of deposits adhering on insulators is critical to prevent pollution flashovers which cause huge costs worldwide. The traditional evaluation method of insulator contaminations (IC) is based sparse manual in-situ measurements, resulting in insufficient spatial representativeness and poor timeliness. Filling that gap, we proposed a novel evaluation framework of IC based on remote sensing and data mining. Varieties of products derived from satellite data, such as aerosol optical depth (AOD), digital elevation model (DEM), land use and land cover and normalized difference vegetation index were obtained to estimate the severity of IC along with the necessary field investigation inventory (pollution sources, ambient atmosphere and meteorological data). Rough set theory was utilized to minimize input sets under the prerequisite that the resultant set is equivalent to the full sets in terms of the decision ability to distinguish severity levels of IC. We found that AOD, the strength of pollution source and the precipitation are the top 3 decisive factors to estimate insulator contaminations. On that basis, different classification algorithm such as mahalanobis minimum distance, support vector machine (SVM) and maximum likelihood method were utilized to estimate severity levels of IC. 10-fold cross-validation was carried out to evaluate the performances of different methods. SVM yielded the best overall accuracy among three algorithms. An overall accuracy of more than 70% was witnessed, suggesting a promising application of remote sensing in power maintenance. To our knowledge, this is the first trial to introduce remote sensing and relevant data analysis technique into the estimation of electrical insulator contaminations.

  15. Integration of geological remote-sensing techniques in subsurface analysis

    USGS Publications Warehouse

    Taranik, James V.; Trautwein, Charles M.

    1976-01-01

    Geological remote sensing is defined as the study of the Earth utilizing electromagnetic radiation which is either reflected or emitted from its surface in wavelengths ranging from 0.3 micrometre to 3 metres. The natural surface of the Earth is composed of a diversified combination of surface cover types, and geologists must understand the characteristics of surface cover types to successfully evaluate remotely-sensed data. In some areas landscape surface cover changes throughout the year, and analysis of imagery acquired at different times of year can yield additional geological information. Integration of different scales of analysis allows landscape features to be effectively interpreted. Interpretation of the static elements displayed on imagery is referred to as an image interpretation. Image interpretation is dependent upon: (1) the geologist's understanding of the fundamental aspects of image formation, and (2.) his ability to detect, delineate, and classify image radiometric data; recognize radiometric patterns; and identify landscape surface characteristics as expressed on imagery. A geologic interpretation integrates surface characteristics of the landscape with subsurface geologic relationships. Development of a geologic interpretation from imagery is dependent upon: (1) the geologist's ability to interpret geomorphic processes from their static surface expression as landscape characteristics on imagery, (2) his ability to conceptualize the dynamic processes responsible for the evolution 6f interpreted geologic relationships (his ability to develop geologic models). The integration of geologic remote-sensing techniques in subsurface analysis is illustrated by development of an exploration model for ground water in the Tucson area of Arizona, and by the development of an exploration model for mineralization in southwest Idaho.

  16. Multivariate image processing technique for noninvasive glucose sensing

    NASA Astrophysics Data System (ADS)

    Webb, Anthony J.; Cameron, Brent D.

    2010-02-01

    A potential noninvasive glucose sensing technique was investigated for application towards in vivo glucose monitoring for individuals afflicted with diabetes mellitus. Three dimensional ray tracing simulations using a realistic iris pattern integrated into an advanced human eye model are reported for physiological glucose concentrations ranging between 0 to 500 mg/dL. The anterior chamber of the human eye contains a clear fluid known as the aqueous humor. The optical refractive index of the aqueous humor varies on the order of 1.5x10-4 for a change in glucose concentration of 100 mg/dL. The simulation data was analyzed with a developed multivariate chemometrics procedure that utilizes iris-based images to form a calibration model. Results from these simulations show considerable potential for use of the developed method in the prediction of glucose. For further demonstration, an in vitro eye model was developed to validate the computer based modeling technique. In these experiments, a realistic iris pattern was placed in an analog eye model in which the glucose concentration within the fluid representing the aqueous humor was varied. A series of high resolution digital images were acquired using an optical imaging system. These images were then used to form an in vitro calibration model utilizing the same multivariate chemometric technique demonstrated in the 3-D optical simulations. In general, the developed method exhibits considerable applicability towards its use as an in vivo platform for the noninvasive monitoring of physiological glucose concentration.

  17. Active-Passive Microwave Remote Sensing of Martian Permafrost and Subsurface Water

    NASA Technical Reports Server (NTRS)

    Raizer, V.; Linkin, V. M.; Ozorovich, Y. R.; Smythe, W. D.; Zoubkov, B.; Babkin, F.

    2000-01-01

    The investigation of permafrost formation global distribution and their appearance in h less than or equal 1 m thick subsurface layer would be investigated successfully by employment of active-passive microwave remote sensing techniques.

  18. Remote sensing image denoising by using discrete multiwavelet transform techniques

    NASA Astrophysics Data System (ADS)

    Wang, Haihui; Wang, Jun; Zhang, Jian

    2006-01-01

    We present a new method by using GHM discrete multiwavelet transform in image denoising on this paper. The developments in wavelet theory have given rise to the wavelet thresholding method, for extracting a signal from noisy data. The method of signal denoising via wavelet thresholding was popularized. Multiwavelets have recently been introduced and they offer simultaneous orthogonality, symmetry and short support. This property makes multiwavelets more suitable for various image processing applications, especially denoising. It is based on thresholding of multiwavelet coefficients arising from the standard scalar orthogonal wavelet transform. It takes into account the covariance structure of the transform. Denoising of images via thresholding of the multiwavelet coefficients result from preprocessing and the discrete multiwavelet transform can be carried out by treating the output in this paper. The form of the threshold is carefully formulated and is the key to the excellent results obtained in the extensive numerical simulations of image denoising. We apply the multiwavelet-based to remote sensing image denoising. Multiwavelet transform technique is rather a new method, and it has a big advantage over the other techniques that it less distorts spectral characteristics of the image denoising. The experimental results show that multiwavelet based image denoising schemes outperform wavelet based method both subjectively and objectively.

  19. River flow forecasting in mountainous areas using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Ikweiri, Fathi Saleh

    The objective of this research is to develop a simple semi-distributed, physically based hydrologic model (SDPB_HM) for mountainous watershed areas. Most of the required watershed parameters in this developed model were acquired using remotely sensed imagery and digital terrain data. A modified technique to involve the use of the land cover properties in the Morton (1983) evapotranspiration model was proposed in this research. This new modified technique was proposed to overcome one of the major disadvantages of the Morton's evapotranspiration model for not having any allowances for the properties of different land cover types (Kite, 1997). The suitability of estimation the evapotranspiration using this modified technique was judged in this research by comparing its results with other average daily evapotranspiration data for an adjacent basin; Cross River Basin in the Rocky Mountain in British Columbia, Canada during year 1987. A new modified procedure for estimating maximum storage capacity in a basin that could estimate the retained rain or snowmelt water within the watershed area related to sink pixels on DTED was presented in this research. A simplified procedure for performing the geometric correction to satellite images based on the Oguro et al. (2001) technique that is used to register these images by utilizing a simulated shaded DTED overlaid with simulated streamlines network image was proposed in this work. A complete three-stage computer classifier (EBPANN) was built in this research that was aimed at minimizing the negative affect of overlapping spectral signatures. This developed computer classifier model was written in C computer program language and utilized in its procedures the error back-propagation neural network this proposed classifier technique was applied to classify a large part from Kananaskis Country area in the Rocky Mountains, Alberta, Canada. An enhanced method was employed in this work for dividing the watershed areas. This new

  20. Close-Range Sensing Techniques in Alpine Terrain

    NASA Astrophysics Data System (ADS)

    Rutzinger, M.; Höfle, B.; Lindenbergh, R.; Oude Elberink, S.; Pirotti, F.; Sailer, R.; Scaioni, M.; Stötter, J.; Wujanz, D.

    2016-06-01

    Early career researchers such as PhD students are a main driving force of scientific research and are for a large part responsible for research innovation. They work on specialized topics within focused research groups that have a limited number of members, but might also have limited capacity in terms of lab equipment. This poses a serious challenge for educating such students as it is difficult to group a sufficient number of them to enable efficient knowledge transfer. To overcome this problem, the Innsbruck Summer School of Alpine Research 2015 on close-range sensing techniques in Alpine terrain was organized in Obergurgl, Austria, by an international team from several universities and research centres. Of the applicants a group of 40 early career researchers were selected with interest in about ten types of specialized surveying tools, i.e. laser scanners, a remotely piloted aircraft system, a thermal camera, a backpack mobile mapping system and different grade photogrammetric equipment. During the one-week summer school, students were grouped according to their personal preference to work with one such type of equipment under guidance of an expert lecturer. All students were required to capture and process field data on a mountain-related theme like landslides or rock glaciers. The work on the assignments lasted the whole week but was interspersed with lectures on selected topics by invited experts. The final task of the summer school participants was to present and defend their results to their peers, lecturers and other colleagues in a symposium-like setting. Here we present the framework and content of this summer school which brought together scientists from close-range sensing and environmental and geosciences.

  1. Hyperspectral remote sensing techniques for early detection of plant diseases

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications in Earth observation. Nowadays spectral remote sensing techniques allow presymptomatic monitoring of changes in the physiological state of plants with high spectral resolution. Hyperspectral leaf reflectance and chlorophyll fluorescence proved to be highly suitable for identification of growth anomalies of cultural plants that result from the environmental changes and different stress factors. Hyperspectral technologies can find place in many scientific areas, as well as for monitoring of plants status and functioning to help in making timely management decisions. This research aimed to detect a presence of viral infection in young pepper plants (Capsicum annuum L.) caused by Cucumber Mosaic Virus (CMV) by using hyperspectral reflectance and fluorescence data and to assess the effect of some growth regulators on the development of the disease. In Bulgaria CMV is one of the widest spread pathogens, causing the biggest economical losses in crop vegetable production. Leaf spectral reflectance and fluorescence data were collected by a portable fibre-optics spectrometer in the spectral ranges 450÷850 nm and 600-900 nm. Greenhouse experiment with pepper plants of two cultivars, Sivria (sensitive to CMV) and Ostrion (resistant to CMV) were used. The plants were divided into six groups. The first group consisted of healthy (control) plants. At growth stage 4-6 expanded leaf, the second group was inoculated with CMV. The other four groups were treated with growth regulators: Spermine, MEIA (beta-monomethyl ester of itaconic acid), ВТН (benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester) and Phytoxin. On the next day, the pepper plants of these four groups were inoculated with CMV. The viral concentrations in the plants were determined by the serological method DAS-ELISA. Statistical, first derivative and cluster analysis were applied and several vegetation indices were

  2. Water Vapor Remote Sensing Techniques: Radiometry and Solar Spectrometry

    NASA Astrophysics Data System (ADS)

    Somieski, A.; Buerki, B.; Cocard, M.; Geiger, A.; Kahle, H.-G.

    The high variability of atmospheric water vapor content plays an important role in space geodesy, climatology and meteorology. Water vapor has a strong influence on transatmospheric satellite signals, the Earth's climate and thus the weather forecasting. Several remote sensing techniques have been developed for the determination of inte- grated precipitable water vapor (IPWV). The Geodesy and Geodynamics Lab (GGL) utilizes the methods of Water Vapor Radiometry and Solar Spectrometry to quantify the amount of tropospheric water vapor and its temporal variations. The Water Vapor Radiometer (WVR) measures the radiation intensity of the atmosphere in a frequency band ranging from 20 to 32 GHz. The Solar Atmospheric MOnitoring Spectrome- ter (SAMOS) of GGL is designed for high-resolution measurements of water vapor absorption lines using solar radiation. In the framework of the ESCOMPTE (ExpÊrience sur Site pour COntraindre les Mod- Éles de Pollution atmosphÊrique et de Transport d'Emissions) field campaign these instruments have been operated near Marseille in 2001. They have aquired a long time series of integrated precipitable water vapor content (IPWV). The accuracy of IPWV measured by WVR and SAMOS is 1 kg/m2. Furthermore meteorological data from radiosondes were used to calculate the IPWV in order to provide comparisons with the results of WVR and SAMOS. The methods of Water Vapor Radiometry and So- lar Spectrometry will be discussed and first preliminary results retrieved from WVR, SAMOS and radiosondes during the ESCOMPTE field campaign will be presented.

  3. Remote sensing of environmental impact of land use activities

    NASA Technical Reports Server (NTRS)

    Paul, C. K.

    1977-01-01

    The capability to monitor land cover, associated in the past with aerial film cameras and radar systems, was discussed in regard to aircraft and spacecraft multispectral scanning sensors. A proposed thematic mapper with greater spectral and spatial resolutions for the fourth LANDSAT is expected to usher in new environmental monitoring capability. In addition, continuing improvements in image classification by supervised and unsupervised computer techniques are being operationally verified for discriminating environmental impacts of human activities on the land. The benefits of employing remote sensing for this discrimination was shown to far outweigh the incremental costs of converting to an aircraft-satellite multistage system.

  4. Estimation of ambient BVOC emissions using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Nichol, Janet; Wong, Man Sing

    2011-06-01

    The contribution of Biogenic Volatile Organic Compounds (BVOCs) to local air quality modelling is often ignored due to the difficulty of obtaining accurate spatial estimates of emissions. Yet their role in the formation of secondary aerosols and photochemical smog is thought to be significant, especially in hot tropical cities such as Hong Kong, which are situated downwind from dense forests. This paper evaluates Guenther et al.'s [Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T.E., Harley, P., Klinger, L., Lerdau, M., McKay, W.A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., Zimmerman, P., 1995. A global model of natural volatile organic compound emissions. Journal of Geophysical Research 100, 8873-8892] global model of BVOC emissions, for application at a spatially detailed level to Hong Kong's tropical forested landscape using high resolution remote sensing and ground data. The emission estimates are based on a landscape approach which assigns emission rates directly to ecosystem types not to individual species, since unlike in temperate regions where one or two single species may dominate over large regions, Hong Kong's vegetation is extremely diverse with up to 300 different species in one hectare. The resulting BVOC emission maps are suitable for direct input to regional and local air quality models giving 10 m raster output on an hourly basis over the whole of the Hong Kong territory, an area of 1100 km 2. Due to the spatially detailed mapping of isoprene emissions over the study area, it was possible to validate the model output using field data collected at a precise time and place by replicating those conditions in the model. The field measurement of emissions used for validating the model was based on a canister sampling technique, undertaken under different climatic conditions for Hong Kong's main ecosystem types in both urban and rural areas. The model-derived BVOC flux distributions appeared to be

  5. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications.

    USGS Publications Warehouse

    Clark, R.N.; Roush, T.L.

    1984-01-01

    Several methods for the analysis of remotely sensed reflectance data are compared, including empirical methods and scattering theories, both of which are important for solving remote sensing problems. The concept of the photon mean path length and the implications for use in modeling reflectance spectra are presented.-from Authors

  6. Kinetic activation-relaxation technique.

    PubMed

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  7. Kinetic activation-relaxation technique

    NASA Astrophysics Data System (ADS)

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  8. RF switching network: a novel technique for IR sensing

    NASA Astrophysics Data System (ADS)

    Mechtel, Deborah M.; Jenkins, R. Brian; Joyce, Peter J.; Nelson, Charles L.

    2016-05-01

    Rapid sensing of near infrared (IR) energy on a composite structure would provide information that could mitigate damage to composite structures. This paper describes a novel technique that implements photoconductive sensors in a radio frequency (RF) switching network designed to locate in real time the position and intensity of IR radiation incident on a composite structure. In the implementation described here, photoconductive sensors act as rapid response switches in a two layer RF network embedded in an FR-4 laminate. To detect radiation, phosphorous doped silicon photoconductive sensors are inserted in GHz range RF transmission lines. Photoconductive sensors use semiconductor materials that are optically sensitive at material dependent wavelengths. Incident radiation at the appropriate wavelength produces hole-electron pairs, so that the semiconductor becomes a conductor. By permitting signal propagation only when a sensor is illuminated, the RF signals are selectively routed from the lower layer transmission lines to the upper layer lines, thereby pinpointing the location and strength of incident radiation on a structure. Simulations based on a high frequency 3D planar electromagnetics model are presented and compared to experimental results. Experimental results are described for GHz range RF signal control for 300 mW and 180 mW incident energy from 975 nm and 1060 nm wavelength lasers respectively, where upon illumination, RF transmission line signal output power doubled when compared to non-illuminated results. Experimental results are reported for 100 W incident energy from a 1060 nm laser. Test results illustrate that real-time signal processing would permit a structure or vehicle to be controlled in response to incident radiation

  9. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    SciTech Connect

    Cameron, S.M.; Loubriel, G.M.; Rbinett, R.D. III; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1999-04-01

    This paper focuses on our recent work at Sandia National Laboratories toward engineering a physics-based swarm of mobile vehicles for distributed sensing applications. Our goal is to coordinate a sensor array that optimizes sensor coverage and multivariate signal analysis by implementing artificial intelligence and evolutionary computational techniques. These intelligent control systems integrate both globally operating decision-making systems and locally cooperative information-sharing modes using genetically-trained neural networks. Once trained, neural networks have the ability to enhance real-time operational responses to dynamical environments, such as obstacle avoidance, responding to prevailing wind patterns, and overcoming other natural obscurants or interferences (jammers). The swarm realizes a collective set of sensor neurons with simple properties incorporating interactions based on basic community rules (potential fields) and complex interconnecting functions based on various neural network architectures, Therefore, the swarm is capable of redundant heterogeneous measurements which furnishes an additional degree of robustness and fault tolerance not afforded by conventional systems, while accomplishing such cognitive tasks as generalization, error correction, pattern recognition, and sensor fission. The robotic platforms could be equipped with specialized sensor devices including transmit/receive dipole antennas, chemical or biological sniffers in combination with recognition analysis tools, communication modulators, and laser diodes. Our group has been studying the collective behavior of an autonomous, multi-agent system applied to emerging threat applications. To accomplish such tasks, research in the fields of robotics, sensor technology, and swarms are being conducted within an integrated program. Mission scenarios under consideration include ground penetrating impulse radar (GPR) for detection of under-ground structures, airborne systems, and plume

  10. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    SciTech Connect

    Asher, R.B.; Cameron, S.M.; Loubriel, G.M.; Robinett, R.D.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-25

    In many situations, stand-off remote-sensing and hazard-interdiction techniques over realistic operational areas are often impractical "and difficult to characterize. An alternative approach is to implement an adap- tively deployable array of sensitive agent-specific devices. Our group has been studying the collective be- havior of an autonomous, multi-agent system applied to chedbio detection and related emerging threat applications, The current physics-based models we are using coordinate a sensor array for mukivanate sig- nal optimization and coverage as re,alized by a swarm of robots or mobile vehicles. These intelligent control systems integrate'glob"ally operating decision-making systems and locally cooperative learning neural net- works to enhance re+-timp operational responses to dynarnical environments examples of which include obstacle avoidance, res~onding to prevailing wind patterns, and overcoming other natural obscurants or in- terferences. Collectively',tkensor nefirons with simple properties, interacting according to basic community rules, can accomplish complex interconnecting functions such as generalization, error correction, pattern recognition, sensor fusion, and localization. Neural nets provide a greater degree of robusmess and fault tolerance than conventional systems in that minor variations or imperfections do not impair performance. The robotic platforms would be equipped with sensor devices that perform opticaI detection of biologicais in combination with multivariate chemical analysis tools based on genetic and neural network algorithms, laser-diode LIDAR analysis, ultra-wideband short-pulsed transmitting and receiving antennas, thermal im- a:ing sensors, and optical Communication technology providing robust data throughput pathways. Mission scenarios under consideration include ground penetrating radar (GPR) for detection of underground struc- tures, airborne systems, and plume migration and mitigation. We will describe our research in

  11. An overview of the development of remote sensing techniques for the screwworm eradication program

    NASA Technical Reports Server (NTRS)

    Barnes, C. M.; Forsberg, F. C.

    1975-01-01

    The current status of remote sensing techniques developed for the screwworm eradication program of the Mexican-American Screwworm Eradication Commission was reported. A review of the type of data and equipment used in the program is presented. Future applications of remote sensing techniques are considered.

  12. Remote sensing and GIS techniques for selecting a sustainable scenario for Lake Koronia, Greece.

    PubMed

    Alexandridis, Thomas K; Takavakoglou, Vasileios; Crisman, Thomas L; Zalidis, George C

    2007-02-01

    During recent decades, Lake Koronia has undergone severe degradation as a result of human activities around the lake and throughout the basin. Surface and groundwater abstraction and pollution from agricultural, industrial, and municipal sources are the major sources of degradation. Planning a restoration project was hampered by lack of sufficient data, with gaps evident in both spatial and temporal dimensions. This study emphasized various remote sensing and geographic information system techniques, such as digital image processing and geographic overlay, to fill gaps using satellite imagery and other spatial environmental, hydrological, and hydrogeological data in the process of planning the restoration of Lake Koronia, following Ramsar guidelines. Current and historical remote sensing data were used to assess the current status and level of degradation, set constraints and define the ideotype for the restoration, and, finally, define and select the best restoration scenario.

  13. The definition of hydrologic model parameters using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Ragan, R. M.; Salomonson, V. V.

    1978-01-01

    The reported investigation is concerned with the use of Landsat remote sensing to define input parameters for an array of hydrologic models which are used to synthesize streamflow and water quality parameters in the planning or management process. The ground truth sampling and problems involved in translating the remotely sensed information into hydrologic model parameters are discussed. Questions related to the modification of existing models for compatibility with remote sensing capabilities are also examined. It is shown that the input parameters of many models are presently overdefined in terms of the sensitivity and accuracy of the model. When this overdefinition is recognized many of the models currently considered to be incompatible with remote sensing capabilities can be modified to make possible use with sensors having rather low resolutions.

  14. National activities in remote sensing: a Canadian perspective

    NASA Astrophysics Data System (ADS)

    Howe, Bruce

    A brief review of the federal government's role in developing remote sensing activities in Canada over the years is given. The struggle to map a large country, together with an interest in space, brought about the Canadian remote sensing program. In particular, the paper focuses on the role of Energy, Mines and Resources Canada in coordinating research activities by all levels of government in remote sensing, thus fostering the growth of the remote sensing industry in Canada. An overview is given of the expanding remote sensing market. In addition, the paper looks at the present applications of remote sensing to agriculture, forestry and the study of ice caps and fresh water, for example, as well as its use in assessing and preventing environmental disasters. The paper concludes by stressing the importance of remote sensing in meeting the "Challenge of the 90's"—making sustainable development a way of life.

  15. Soft Active Materials for Actuation, Sensing, and Electronics

    NASA Astrophysics Data System (ADS)

    Kramer, Rebecca Krone

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components increases, the challenges for functionality revert to basic questions of fabrication, materials, and design - whereas such aspects are far more developed for traditional rigid-bodied systems. This thesis will highlight preliminary materials and designs that address the need for soft actuators and sensors, as well as emerging fabrication techniques for manufacturing stretchable circuits and devices based on liquid-embedded elastomers.

  16. Techniques for sensing methanol concentration in aqueous environments

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Valdez, Thomas I. (Inventor)

    2001-01-01

    An analyte concentration sensor that is capable of fast and reliable sensing of analyte concentration in aqueous environments with high concentrations of the analyte. Preferably, the present invention is a methanol concentration sensor device coupled to a fuel metering control system for use in a liquid direct-feed fuel cell.

  17. An unsupervised classification technique for multispectral remote sensing data.

    NASA Technical Reports Server (NTRS)

    Su, M. Y.; Cummings, R. E.

    1973-01-01

    Description of a two-part clustering technique consisting of (a) a sequential statistical clustering, which is essentially a sequential variance analysis, and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by traditional supervised maximum-likelihood classification techniques.

  18. Modeling Chemical Detection Sensitivities of Active and Passive Remote Sensing Systems

    SciTech Connect

    Scharlemann, E T

    2003-07-28

    During nearly a decade of remote sensing programs under the auspices of the U. S. Department of Energy (DOE), LLNL has developed a set of performance modeling codes--called APRS--for both Active and Passive Remote Sensing systems. These codes emphasize chemical detection sensitivity in the form of minimum detectable quantities with and without background spectral clutter and in the possible presence of other interfering chemicals. The codes have been benchmarked against data acquired in both active and passive remote sensing programs at LLNL and Los Alamos National Laboratory (LANL). The codes include, as an integral part of the performance modeling, many of the data analysis techniques developed in the DOE's active and passive remote sensing programs (e.g., ''band normalization'' for an active system, principal component analysis for a passive system).

  19. A forestry application simulation of man-machine techniques for analyzing remotely sensed data

    NASA Technical Reports Server (NTRS)

    Berkebile, J.; Russell, J.; Lube, B.

    1976-01-01

    The typical steps in the analysis of remotely sensed data for a forestry applications example are simulated. The example uses numerically-oriented pattern recognition techniques and emphasizes man-machine interaction.

  20. An integrated study of earth resources in the state of California using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    1973-01-01

    University of California investigations to determine the usefulness of modern remote sensing techniques have concentrated on the water resources of the state. The studies consider in detail the supply, demand, and impact relationships.

  1. Non-Invasive UWB Sensing of Astronauts' Breathing Activity

    PubMed Central

    Baldi, Marco; Cerri, Graziano; Chiaraluce, Franco; Eusebi, Lorenzo; Russo, Paola

    2015-01-01

    The use of a UWB system for sensing breathing activity of astronauts must account for many critical issues specific to the space environment. The aim of this paper is twofold. The first concerns the definition of design constraints about the pulse amplitude and waveform to transmit, as well as the immunity requirements of the receiver. The second issue concerns the assessment of the procedures and the characteristics of the algorithms to use for signal processing to retrieve the breathing frequency and respiration waveform. The algorithm has to work correctly in the presence of surrounding electromagnetic noise due to other sources in the environment. The highly reflecting walls increase the difficulty of the problem and the hostile scenario has to be accurately characterized. Examples of signal processing techniques able to recover breathing frequency in significant and realistic situations are shown and discussed. PMID:25558995

  2. Non-invasive UWB sensing of astronauts' breathing activity.

    PubMed

    Baldi, Marco; Cerri, Graziano; Chiaraluce, Franco; Eusebi, Lorenzo; Russo, Paola

    2014-12-30

    The use of a UWB system for sensing breathing activity of astronauts must account for many critical issues specific to the space environment. The aim of this paper is twofold. The first concerns the definition of design constraints about the pulse amplitude and waveform to transmit, as well as the immunity requirements of the receiver. The second issue concerns the assessment of the procedures and the characteristics of the algorithms to use for signal processing to retrieve the breathing frequency and respiration waveform. The algorithm has to work correctly in the presence of surrounding electromagnetic noise due to other sources in the environment. The highly reflecting walls increase the difficulty of the problem and the hostile scenario has to be accurately characterized. Examples of signal processing techniques able to recover breathing frequency in significant and realistic situations are shown and discussed.

  3. Needs, Feedback, and the Future: Need Sensing Activities in 2001.

    ERIC Educational Resources Information Center

    Lewis, Morgan V.

    A needs sensing project was conducted to identify the general needs of the field of career and technical education (CTE), dissemination activities, and major forces in the environment judged likely to influence education in the foreseeable future. The need sensing took place with networks developed in regions assigned to the five primary partner…

  4. Active microwave remote sensing of oceans, chapter 3

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A rationale is developed for the use of active microwave sensing in future aerospace applications programs for the remote sensing of the world's oceans, lakes, and polar regions. Summaries pertaining to applications, local phenomena, and large-scale phenomena are given along with a discussion of orbital errors.

  5. Comprehensive studies of the dynamics of geosystems with the use of remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Vasilev, L. N.; Kaczyński, R.; Ney, B. I.

    The described research programme for comprehensive studies of changes occuring within geosystems is a part of scientific activity of INTERKOSMOS, which will be executed mainly with the use of remote sensing methods and techniques. The main aim of the programme is to get an insight into the seasonal rithm of environmental changes on both regional and global level. The work will consist of gathering systematized information concerning quantitative and qualitative relations between various components of the environment. The application of remote sensing methods enables the acquisition of such environmental data in dynamic setting. Research will be conducted for areas comprising distinct geosystems and will lead to the detection of diurnal, seasonal and yearly dynamics of geosystems as well as long-term trends. Except cognitive, the programme will also serve the methodological purpose. The first aim will be realized with respect to individual geosystems; the resulting sets of data will consist of matrixes of statistical data characterizing relations between various components of geosystems. The methodological aim will be achieved through the process of practical verification of the preliminary assumptions. Information will be collected from different data acquisition levels namely from satellite and aerial platforms and through ground measurements. Different types of data, such as multispectral photography (SALYUT, KOSMOS), multispectral scanner images (LANDSAT THEMATIC MAPPER, SPOT), infrared photography, radar imagery and spectrometric measurements will be gathered during simultaneous data acquisition projects. All types of observations will be timed in accordance with the natural rithm of the observed phenomena. The paper contains the description of geosystems under anthropogenic stress based on the previous research of the authors. The presented multifactor characteristics of soil and crops is a part of completed studies on agricultural geosystems. The results of

  6. Remote Sensing Techniques as a Tool for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Faisal, K.; AlAhmad, M.; Shaker, A.

    2012-07-01

    The disposal of the solid wastes in landfill sites should be properly monitored by analyzing samples from soil, water, and landfill gases within the landfill site. Nevertheless, ground monitoring systems require intensive efforts and cost. Furthermore, ground monitoring may be difficult to be achieved in large geographic extent. Remote sensing technology has been introduced for waste disposal management and monitoring effects of the landfill sites on the environment. In this paper, two case studies are presented in the Trail Road landfill, Ottawa, Canada and the Al-Jleeb landfill, Al-Farwanyah, Kuwait to evaluate the use of multi-temporal remote sensing images to monitor the landfill sites. The work objectives are: 1) to study the usability of multi-temporal Landsat images for landfill site monitoring by studying the land surface temperature (LST) in the Trail Road landfill, 2) to investigate the relationship between the LST and the amount of the landfill gas emitted in the Trail Road landfill, and 3) to use the multi-temporal LST images to detect the suspicious dumping areas within the Al-Jleeb landfill site. Free archive of multi-temporal Landsat images are obtained from the USGS EarthExplorer. The Landsat images are then atmospherically corrected and the LST images are derived from the thermal band of the corrected Landsat images. In the Trail Road landfill, the results reveal that the LST of the landfill site is always higher than the air temperature by 10°C in average as well as the surroundings. A correlation is also observed between the recorded emitted methane (CH4) from the ground monitoring stations and the LST derived from the Landsat images. Based on the findings in the Al-Jleeb landfill, five locations are identified as suspicious dumping areas by overlaying the highest LST contours generated from the multi-temporal LST images. The study demonstrates that the use of multi-temporal remote sensing images can provide supplementary information for

  7. The application of remote sensing techniques: Technical and methodological issues

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.; Wagner, T. W.

    1974-01-01

    Capabilities and limitations of modern imaging electromagnetic sensor systems are outlined, and the products of such systems are compared with those of the traditional aerial photographic system. Focus is given to the interface between the rapidly developing remote sensing technology and the information needs of operational agencies, and communication gaps are shown to retard early adoption of the technology by these agencies. An assessment is made of the current status of imaging remote sensors and their potential for the future. Public sources of remote sensor data and several cost comparisons are included.

  8. Unified microwave moisture sensing technique for grain and seed

    NASA Astrophysics Data System (ADS)

    Trabelsi, Samir; Nelson, Stuart O.

    2007-04-01

    A unified method for moisture sensing in cereal grain and oilseed from a single calibration equation, which is obtained from measurement of dielectric properties at a single microwave frequency, is presented. The method is based on a complex permittivity calibration function that is independent of both bulk density and kind of material. Performance of the method was tested for soybeans, corn, wheat, sorghum, barley and oats at 7 GHz and about 23 °C. The standard error of calibration for moisture prediction from complex permittivity measurements was 0.8%.

  9. The application of remote sensing techniques to selected inter and intra urban data acquisition problems

    NASA Technical Reports Server (NTRS)

    Horton, F. E.

    1970-01-01

    The utility of remote sensing techniques to urban data acquisition problems in several distinct areas was identified. This endeavor included a comparison of remote sensing systems for urban data collection, the extraction of housing quality data from aerial photography, utilization of photographic sensors in urban transportation studies, urban change detection, space photography utilization, and an application of remote sensing techniques to the acquisition of data concerning intra-urban commercial centers. The systematic evaluation of variable extraction for urban modeling and planning at several different scales, and the model derivation for identifying and predicting economic growth and change within a regional system of cities are also studied.

  10. Remote sensing techniques for monitoring and managing irrigated lands

    NASA Astrophysics Data System (ADS)

    Allan, J. A.

    Agriculture in semi-arid tracts of the world depends on water to sustain its irrigation systems. Such agricultural systems either derive from government investments in the control of surface flow or they have been developed through the exploitation of groundwater sometimes by a large community of unsupervised individuals seeking to maximise their own advantage without concern for the resource upon which they depend in the medium and long term. In both cases government agencies need data on the area irrigated and the volume of water used. In countries with highly developed scientific and agricultural institutions the contribution of remote sensing, though significant, may only provide between five and ten per cent of the data required to guide regional and national managers. In countries without such institutions the proportion contributed by remote sensing can be very much higher, as shown in a recent study in North Africa. The paper will emphasise the importance of carefully structured sampling procedures, both to improve the areal estimates from satellite imagery and the estimates of water use based upon them. The role of satellite imagery in providing information on the status of water resources, on trends in water use and in the implementation of policies to extend or diminish irrigated land are discussed.

  11. An integrated active sensing system for damage identifcation and prognosis

    SciTech Connect

    Wait, J. R.; Park, G. H.; Sohn, H.; Farrar, C. R.

    2004-01-01

    This paper illustrates an integrated approach for identifying structural damage. Two damage identification techniques, Lamb wave propagation and impedance-based methods, are investigated utilizing piezoelectric (PZT) actuators/sensors. The Lamb wave propagation and the impedance methods operate in high frequency ranges (typically > 30 kHz) at which there are measurable changes in structural responses even for incipient damage such as small cracks, debonding, delamination, and loose connections. In Lamb wave propagation, one PZT is used to launch an elastic wave through the structure, and responses are measured by an array of sensors. The technique used for the Lamb wave propagation method looks for the possibility of damage by tracking changes in transmission velocity and wave attenuation/reflections. Experimental results show that this method works well for surface anomalies. The impedance method monitors the variations in structural mechanical impedance, which is coupled with the electrical impedance of the PZT. Through monitoring the measured electrical impedance and comparing it to a baseline measurement, a decision can be made about whether or not structural damage has occurred or is imminent. In addition, significant advances have been made recently by incorporating advanced statistic-based signal processing techniques into the impedance methods. To date, several sets of experiments have been conducted on a cantilevered aluminum plate and composite plate to demonstrate the feasibility of this combined active sensing technology.

  12. Wave Propagation Through Inhomogeneities With Applications to Novel Sensing Techniques

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Tokars, R.; Varga, D.; Floyd B.

    2008-01-01

    The paper describes phenomena observed as a result of laser pencil beam interactions with abrupt interfaces including aerodynamic shocks. Based on these phenomena, a novel flow visualization technique based on a laser scanning pencil beam is introduced. The technique reveals properties of light interaction with interfaces including aerodynamic shocks that are not seen using conventional visualization. Various configurations of scanning beam devices including those with no moving parts, as well as results of "proof-of-concept" tests, are included.

  13. A tactile vision substitution system for the study of active sensing.

    PubMed

    Hsu, Brian; Hsieh, Cheng-Han; Yu, Sung-Nien; Ahissar, Ehud; Arieli, Amos; Zilbershtain-Kra, Yael

    2013-01-01

    This paper presents a tactile vision substitution system (TVSS) for the study of active sensing. Two algorithms, namely image processing and trajectory tracking, were developed to enhance the capability of conventional TVSS. Image processing techniques were applied to reduce the artifacts and extract important features from the active camera and effectively converted the information into tactile stimuli with much lower resolution. A fixed camera was used to record the movement of the active camera. A trajectory tracking algorithm was developed to analyze the active sensing strategy of the TVSS users to explore the environment. The image processing subsystem showed advantageous improvement in extracting object's features for superior recognition. The trajectory tracking subsystem, on the other hand, enabled accurately locating the portion of the scene pointed by the active camera and providing profound information for the study of active sensing strategy applied by TVSS users.

  14. Microwave remote sensing: Active and passive. Volume 3 - From theory to applications

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1986-01-01

    Aspects of volume scattering and emission theory are discussed, taking into account a weakly scattering medium, the Born approximation, first-order renormalization, the radiative transfer method, and the matrix-doubling method. Other topics explored are related to scatterometers and probing systems, the passive microwave sensing of the atmosphere, the passive microwave sensing of the ocean, the passive microwave sensing of land, the active microwave sensing of land, and radar remote sensing applications. Attention is given to inversion techniques, atmospheric attenuation and emission, a temperature profile retrieval from ground-based observations, mapping rainfall rates, the apparent temperature of the sea, the emission behavior of bare soil surfaces, the emission behavior of vegetation canopies, the emission behavior of snow, wind-vector radar scatterometry, radar measurements of sea ice, and the back-scattering behavior of cultural vegetation canopies.

  15. California nearshore surface currents. [monitoring by remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Pirie, D. M.; Murphy, M. J.; Edmisten, J. R.

    1975-01-01

    During the oceanic period from July to November, the southward flowing California current dominates the nearshore current patterns. Commencing about the middle of November and extending to mid-February, the Davidson current, a northward moving countercurrent, is the dominant inshore transporter of water and suspensates. The phenomenon of upwelling is prevalent during the period from the middle of February to the end of July. Thus, every year along the coast of California, there are three successive current seasons: the oceanic, the Davidson, and the upwelling. This paper is a discussion of the nature of these nearshore currents. In addition, the capabilities of various remote sensing platforms and systems for providing methods of monitoring the coastal processes associated with the current seasons of California are demonstrated herein.

  16. Active Sensing System with In Situ Adjustable Sensor Morphology

    PubMed Central

    Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094

  17. Detection of asphalt pavement cracks using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Mettas, Christodoulos; Agapiou, Athos; Themistocleous, Kyriacos; Neocleous, Kyriacos; Hadjimitsis, Diofantos G.

    2016-10-01

    Deterioration of asphalt road pavements is inevitable throughout its life cycle. There are several types of deterioration that take place on these surfaces, like surface defects and deformations. One of the most common asphalt defects is cracking. Fatigue, transverse, longitudinal, reflective, edge, block and slippage are types of cracking that can be observed anywhere in the world. Monitoring and preventative/periodic maintenance of these types of wears are two very important actions that have to take place to avoid "costly" solutions. This paper aims to introduce the spectral characteristics of uncracked (healthy) and cracked asphalt surfaces which can give a new asphalt crack index. This is performed through remote sensing applications in the area of asphalt pavements. Multispectral images can be elaborated using the index to enhance crack marks on asphalt surfaces. Ground spectral signatures were acquired from both uncracked and cracked asphalted areas of Cyprus (Limassol). Evaluation separability indices can be used to identify the optimum wavelength regions that can distinguish better the uncracked and cracked asphalt surfaces. The results revealed that the spectral sensitivity for the enhancement of cracked asphalt was detected using the Euclidean, Mahalanobis and Cosine Distance Indices in the Vis range (approximately at 450 nm) and in the SWIR 1 range (approximately at 1750 nm).

  18. The value of remote sensing techniques in supporting effective extrapolation across multiple marine spatial scales.

    PubMed

    Strong, James Asa; Elliott, Michael

    2017-03-15

    The reporting of ecological phenomena and environmental status routinely required point observations, collected with traditional sampling approaches to be extrapolated to larger reporting scales. This process encompasses difficulties that can quickly entrain significant errors. Remote sensing techniques offer insights and exceptional spatial coverage for observing the marine environment. This review provides guidance on (i) the structures and discontinuities inherent within the extrapolative process, (ii) how to extrapolate effectively across multiple spatial scales, and (iii) remote sensing techniques and data sets that can facilitate this process. This evaluation illustrates that remote sensing techniques are a critical component in extrapolation and likely to underpin the production of high-quality assessments of ecological phenomena and the regional reporting of environmental status. Ultimately, is it hoped that this guidance will aid the production of robust and consistent extrapolations that also make full use of the techniques and data sets that expedite this process.

  19. Noninvasive in vivo glucose sensing using an iris based technique

    NASA Astrophysics Data System (ADS)

    Webb, Anthony J.; Cameron, Brent D.

    2011-03-01

    Physiological glucose monitoring is important aspect in the treatment of individuals afflicted with diabetes mellitus. Although invasive techniques for glucose monitoring are widely available, it would be very beneficial to make such measurements in a noninvasive manner. In this study, a New Zealand White (NZW) rabbit animal model was utilized to evaluate a developed iris-based imaging technique for the in vivo measurement of physiological glucose concentration. The animals were anesthetized with isoflurane and an insulin/dextrose protocol was used to control blood glucose concentration. To further help restrict eye movement, a developed ocular fixation device was used. During the experimental time frame, near infrared illuminated iris images were acquired along with corresponding discrete blood glucose measurements taken with a handheld glucometer. Calibration was performed using an image based Partial Least Squares (PLS) technique. Independent validation was also performed to assess model performance along with Clarke Error Grid Analysis (CEGA). Initial validation results were promising and show that a high percentage of the predicted glucose concentrations are within 20% of the reference values.

  20. Laboratory insights into the detection of surface biosignatures by remote-sensing techniques

    NASA Astrophysics Data System (ADS)

    Poch, O.; Pommerol, A.; Jost, B.; Roditi, I.; Frey, J.; Thomas, N.

    2014-03-01

    With the progress of direct imaging techniques, it will be possible in the short or long-term future to retrieve more efficiently the information on the physical properties of the light reflected by rocky exoplanets (Traub et al., 2010). The search for visible-infrared absorption bands of peculiar gases (O2, CH4 etc.) in this light could give clues for the presence of life (Kaltenegger and Selsis, 2007). Even more uplifting would be the direct detection of life itself, on the surface of an exoplanet. Considering this latter possibility, what is the potential of optical remote-sensing methods to detect surface biosignatures? Reflected light from the surface of the Earth exhibits a strong surface biosignature in the form of an abrupt change of reflectance between the visible and infrared range of the spectrum (Seager et al., 2005). This spectral feature called "vegetation red-edge" is possibly the consequence of biological evolution selecting the right chemical structures enabling the plants to absorb the visible energy, while preventing them from overheating by reflecting more efficiently the infrared. Such red-edge is also found in primitive photosynthetic bacteria, cyanobacteria, that colonized the surface of the Earth ocean and continents billions of years before multicellular plants (Knacke, 2003). If life ever arose on an Earth-like exoplanet, one could hypothesize that some form of its surface-life evolves into similar photo-active organisms, also exhibiting a red-edge. In this paper, we will present our plan and preliminary results of a laboratory study aiming at precising the potentiality of remote sensing techniques in detecting such surface biosignatures. Using equipment that has been developed in our team for surface photometry studies (Pommerol 2011, Jost 2013, Pommerol 2013), we will investigate the reflectance spectra and bidirectional reflectance function of soils containing bacteria such as cyanobacteria, in various environmental conditions. We will

  1. Remote sensing application to regional activities

    NASA Technical Reports Server (NTRS)

    Shahrokhi, F.; Jones, N. L.; Sharber, L. A.

    1976-01-01

    Two agencies within the State of Tennessee were identified whereby the transfer of aerospace technology, namely remote sensing, could be applied to their stated problem areas. Their stated problem areas are wetland and land classification and strip mining studies. In both studies, LANDSAT data was analyzed with the UTSI video-input analog/digital automatic analysis and classification facility. In the West Tennessee area three land-use classifications could be distinguished; cropland, wetland, and forest. In the East Tennessee study area, measurements were submitted to statistical tests which verified the significant differences due to natural terrain, stripped areas, various stages of reclamation, water, etc. Classifications for both studies were output in the form of maps of symbols and varying shades of gray.

  2. Monitoring by Control Technique - Activated Carbon Adsorber

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Activated Carbon Adsorber control techniques used to reduce pollutant emissions.

  3. Remote sensing techniques for conservation and management of natural vegetation ecosystems

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Verdesio, J. J.; Dossantos, J. R.

    1981-01-01

    The importance of using remote sensing techniques, in the visible and near-infrared ranges, for mapping, inventory, conservation and management of natural ecosystems is discussed. Some examples realized in Brazil or other countries are given to evaluate the products from orbital platform (MSS and RBV imagery of LANDSAT) and aerial level (photography) for ecosystems study. The maximum quantitative and qualitative information which can be obtained from each sensor, at different level, are discussed. Based on the developed experiments it is concluded that the remote sensing technique is a useful tool in mapping vegetation units, estimating biomass, forecasting and evaluation of fire damage, disease detection, deforestation mapping and change detection in land-use. In addition, remote sensing techniques can be used in controling implantation and planning natural/artificial regeneration.

  4. Educational activities of remote sensing archaeology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasilki; Themistocleous, Kyriacos; Cuca, Branka; Nisantzi, Argyro; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2016-10-01

    Remote sensing science is increasingly being used to support archaeological and cultural heritage research in various ways. Satellite sensors either passive or active are currently used in a systematic basis to detect buried archaeological remains and to systematic monitor tangible heritage. In addition, airborne and low altitude systems are being used for documentation purposes. Ground surveys using remote sensing tools such as spectroradiometers and ground penetrating radars can detect variations of vegetation and soil respectively, which are linked to the presence of underground archaeological features. Education activities and training of remote sensing archaeology to young people is characterized of highly importance. Specific remote sensing tools relevant for archaeological research can be developed including web tools, small libraries, interactive learning games etc. These tools can be then combined and aligned with archaeology and cultural heritage. This can be achieved by presenting historical and pre-historical records, excavated sites or even artifacts under a "remote sensing" approach. Using such non-form educational approach, the students can be involved, ask, read, and seek to learn more about remote sensing and of course to learn about history. The paper aims to present a modern didactical concept and some examples of practical implementation of remote sensing archaeology in secondary schools in Cyprus. The idea was built upon an ongoing project (ATHENA) focused on the sue of remote sensing for archaeological research in Cyprus. Through H2020 ATHENA project, the Remote Sensing Science and Geo-Environment Research Laboratory at the Cyprus University of Technology (CUT), with the support of the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR) aims to enhance its performance in all these new technologies.

  5. Improved Battery State Estimation Using Novel Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Abdul Samad, Nassim

    Lithium-ion batteries have been considered a great complement or substitute for gasoline engines due to their high energy and power density capabilities among other advantages. However, these types of energy storage devices are still yet not widespread, mainly because of their relatively high cost and safety issues, especially at elevated temperatures. This thesis extends existing methods of estimating critical battery states using model-based techniques augmented by real-time measurements from novel temperature and force sensors. Typically, temperature sensors are located near the edge of the battery, and away from the hottest core cell regions, which leads to slower response times and increased errors in the prediction of core temperatures. New sensor technology allows for flexible sensor placement at the cell surface between cells in a pack. This raises questions about the optimal locations of these sensors for best observability and temperature estimation. Using a validated model, which is developed and verified using experiments in laboratory fixtures that replicate vehicle pack conditions, it is shown that optimal sensor placement can lead to better and faster temperature estimation. Another equally important state is the state of health or the capacity fading of the cell. This thesis introduces a novel method of using force measurements for capacity fade estimation. Monitoring capacity is important for defining the range of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Current capacity estimation techniques require a full discharge to monitor capacity. The proposed method can complement or replace current methods because it only requires a shallow discharge, which is especially useful in EVs and PHEVs. Using the accurate state estimation accomplished earlier, a method for downsizing a battery pack is shown to effectively reduce the number of cells in a pack without compromising safety. The influence on the battery performance (e

  6. Radio frequency switching network: a technique for infrared sensing

    NASA Astrophysics Data System (ADS)

    Mechtel, Deborah M.; Jenkins, R. Brian; Joyce, Peter J.; Nelson, Charles L.

    2016-10-01

    This paper describes a unique technique that implements photoconductive sensors in a radio frequency (RF) switching network designed to locate in real-time the position and intensity of IR radiation incident on a composite structure. In the implementation described here, photoconductive sensors act as rapid response switches in a two-layer RF network embedded in an FR-4 laminate. To detect radiation, phosphorous-doped silicon photoconductive sensors are inserted in GHz range RF transmission lines. By permitting signal propagation only when a sensor is illuminated, the RF signals are selectively routed from lower layer transmission lines to upper layer lines, thereby pinpointing the location and strength of incident radiation. Simulations based on a high frequency three-dimensional planar electromagnetics model are presented and compared to the experimental results. The experimental results are described for GHz range RF signal control for 300- and 180-mW incident energy from 975- to 1060-nm wavelength lasers, respectively, where upon illumination, RF transmission line signal output power doubled when compared to nonilluminated results. The experimental results are also reported for 100-W incident energy from a 1060-nm laser. Test results illustrate real-time signal processing would permit a structure to be controlled in response to incident radiation.

  7. Remote sensing of stress using electro-optics imaging technique

    NASA Astrophysics Data System (ADS)

    Chen, Tong; Yuen, Peter; Hong, Kan; Tsitiridis, Aristeidis; Kam, Firmin; Jackman, James; James, David; Richardson, Mark; Oxford, William; Piper, Jonathan; Thomas, Francis; Lightman, Stafford

    2009-09-01

    Emotional or physical stresses induce a surge of adrenaline in the blood stream under the command of the sympathetic nerve system, which, cannot be suppressed by training. The onset of this alleviated level of adrenaline triggers a number of physiological chain reactions in the body, such as dilation of pupil and an increased feed of blood to muscles etc. This paper reports for the first time how Electro-Optics (EO) technologies such as hyperspectral [1,2] and thermal imaging[3] methods can be used for the detection of stress remotely. Preliminary result using hyperspectral imaging technique has shown a positive identification of stress through an elevation of haemoglobin oxygenation saturation level in the facial region, and the effect is seen more prominently for the physical stressor than the emotional one. However, all results presented so far in this work have been interpreted together with the base line information as the reference point, and that really has limited the overall usefulness of the developing technology. The present result has highlighted this drawback and it prompts for the need of a quantitative assessment of the oxygenation saturation and to correlate it directly with the stress level as the top priority of the next stage of research.

  8. Introduction to This Special Issue on Geostatistics and Geospatial Techniques in Remote Sensing

    NASA Technical Reports Server (NTRS)

    Atkinson, Peter; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    The germination of this special Computers & Geosciences (C&G) issue began at the Royal Geographical Society (with the Institute of British Geographers) (RGS-IBG) annual meeting in January 1997 held at the University of Exeter, UK. The snow and cold of the English winter were tempered greatly by warm and cordial discussion of how to stimulate and enhance cooperation on geostatistical and geospatial research in remote sensing 'across the big pond' between UK and US researchers. It was decided that one way forward would be to hold parallel sessions in 1998 on geostatistical and geospatial research in remote sensing at appropriate venues in both the UK and the US. Selected papers given at these sessions would be published as special issues of C&G on the UK side and Photogrammetric Engineering and Remote Sensing (PE&RS) on the US side. These issues would highlight the commonality in research on geostatistical and geospatial research in remote sensing on both sides of the Atlantic Ocean. As a consequence, a session on "Geostatistics and Geospatial Techniques for Remote Sensing of Land Surface Processes" was held at the RGS-IBG annual meeting in Guildford, Surrey, UK in January 1998, organized by the Modeling and Advanced Techniques Special Interest Group (MAT SIG) of the Remote Sensing Society (RSS). A similar session was held at the Association of American Geographers (AAG) annual meeting in Boston, Massachusetts in March 1998, sponsored by the AAG's Remote Sensing Specialty Group (RSSG). The 10 papers that make up this issue of C&G, comprise 7 papers from the UK and 3 papers from the LIS. We are both co-editors of each of the journal special issues, with the lead editor of each journal issue being from their respective side of the Atlantic. The special issue of PE&RS (vol. 65) that constitutes the other half of this co-edited journal series was published in early 1999, comprising 6 papers by US authors. We are indebted to the International Association for Mathematical

  9. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  10. Quorum Sensing Inhibiting Activity of Streptomyces coelicoflavus Isolated from Soil

    PubMed Central

    Hassan, Ramadan; Shaaban, Mona I.; Abdel Bar, Fatma M.; El-Mahdy, Areej M.; Shokralla, Shadi

    2016-01-01

    Quorum sensing (QS) systems communicate bacterial population and stimulate microbial pathogenesis through signaling molecules. Inhibition of QS signals potentially suppresses microbial infections. Antimicrobial properties of Streptomyces have been extensively studied, however, less is known about quorum sensing inhibitory (QSI) activities of Streptomyces. This study explored the QSI potential of Streptomyces isolated from soil. Sixty-five bacterial isolates were purified from soil samples with morphological characteristics of Streptomyces. The three isolates: S6, S12, and S17, exhibited QSI effect by screening with the reporter, Chromobacterium violaceum. Isolate S17 was identified as Streptomyces coelicoflavus by sequencing of the hypervariable regions (V1–V6) of 16S rRNA and was assigned gene bank number KJ855087. The QSI effect of the cell-free supernatant of isolate S17 was not abolished by proteinase K indicating the non-enzymatic activity of QSI components of S17. Three major compounds were isolated and identified, using spectroscopic techniques (1D, 2D NMR, and Mass spectrometry), as behenic acid (docosanoic acid), borrelidin, and 1H-pyrrole-2-carboxylic acid. 1H-pyrrole-2-carboxylic acid inhibited QS and related virulence factors of Pseudomonas aeruginosa PAO1 including; elastase, protease, and pyocyanin without affecting Pseudomonas viability. At the molecular level, 1H-pyrrole-2-carboxylic acid suppressed the expression of QS genes (lasI, lasR, lasA, lasB, rhlI, rhlR, pqsA, and pqsR). Moreover, QSI activity of S17 was assessed under different growth conditions and ISP2 medium supplemented with glucose 0.4% w/v and adjusted at pH 7, showed the highest QSI action. In conclusion, 1H-pyrrole-2-carboxylic acid, one of the major metabolites of Streptomyces isolate S17, inhibited QS and virulence determinants of P. aeruginosa PAO1. The findings of the study open the scope to exploit the in vivo efficacy of this active molecule as anti-pathogenic and anti

  11. Making Sense of Multiple Physical Activity Recommendations.

    ERIC Educational Resources Information Center

    Corbin, Charles B.; LeMasurier, Guy; Franks, B. Don

    2002-01-01

    This digest provides basic information designed to help people determine which of the many physical activity guidelines are most appropriate for use in specific situations. After an introduction, the digest focuses on: "Factors to Consider in Selecting Appropriate Physical Activity Guidelines" (group credibility and purpose, benefits to…

  12. Novel sensing techniques for industrial scale bio-digesters

    NASA Astrophysics Data System (ADS)

    Rallis, Ilias; Deakin, Anthony; Spencer, J. W.; Jones, G. R.

    2005-05-01

    The monitoring of a complex industrial scale process is a challenging task, particularly when such a process is a large (100m3) industrial organic waste anaerobic digestion (AD) system. This paper describes the deployment of fibre optic based sensors for monitoring an AD process. To enable this complex process to proceed, a number of critical conditions must be set (e.g. temperature, pH etc.).Two novel fibre optic sensors have been developed for monitoring temperature and pH. These operate in a zone zero environment (highly explosive) and need to withstand vibrations and microbial activity and to operate over extended periods of time (months) with no or little servicing.

  13. Universal and efficient compressed sensing by spread spectrum and application to realistic Fourier imaging techniques

    NASA Astrophysics Data System (ADS)

    Puy, Gilles; Vandergheynst, Pierre; Gribonval, Rémi; Wiaux, Yves

    2012-12-01

    We advocate a compressed sensing strategy that consists of multiplying the signal of interest by a wide bandwidth modulation before projection onto randomly selected vectors of an orthonormal basis. First, in a digital setting with random modulation, considering a whole class of sensing bases including the Fourier basis, we prove that the technique is universal in the sense that the required number of measurements for accurate recovery is optimal and independent of the sparsity basis. This universality stems from a drastic decrease of coherence between the sparsity and the sensing bases, which for a Fourier sensing basis relates to a spread of the original signal spectrum by the modulation (hence the name "spread spectrum"). The approach is also efficient as sensing matrices with fast matrix multiplication algorithms can be used, in particular in the case of Fourier measurements. Second, these results are confirmed by a numerical analysis of the phase transition of the ℓ1-minimization problem. Finally, we show that the spread spectrum technique remains effective in an analog setting with chirp modulation for application to realistic Fourier imaging. We illustrate these findings in the context of radio interferometry and magnetic resonance imaging.

  14. Successful integration of remote sensing and ground based exploration techniques in an arid environment

    SciTech Connect

    Jones, R.F.E. ); Oehlers, M. )

    1995-03-06

    Twenty years ago, remote sensing promised to revolutionize exploration; unfortunately, many of the early promises made were unfulfilled and remote sensing tended to drop out of mainstream exploration. Both these extremes are unrealistic, and projects undertaken by Clyde in Yemen illustrate some of the ways remote sensing can become a successful and cost-effective part of an exploration program. Firstly, the remote sensed data, integrated with a minimum of ground control work, provided maps to use in subsequent fieldwork, a surface geology map, and a digital elevation model with its derived topographic contour maps. Secondly, the remote sensed data enabled the authors to create a structural contour map of a near surface horizon at a very low cost per square kilometer. Thirdly, the remote sensed data became a crucial planning tool for seismic operations to optimize data quality and minimize acquisition cost without having to resort to costly and time-consuming swath shooting or similar high-effort techniques. Finally, the surface geological map derived from the image interpretation enabled them to create geological cross sections along the shot seismic lines in a matter of hours without having a field geologist mapping along the lines. Remote sensing can provide highly cost-effective benefits to an exploration program in an arid region, and many of the applications can also be developed for use in areas with vegetation cover.

  15. Surveillance of Arthropod Vector-Borne Infectious Diseases Using Remote Sensing Techniques: A Review

    PubMed Central

    Kalluri, Satya; Gilruth, Peter; Rogers, David; Szczur, Martha

    2007-01-01

    Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed. PMID:17967056

  16. Optical technique for photovoltaic spatial current response measurements using compressive sensing and random binary projections

    NASA Astrophysics Data System (ADS)

    Cashmore, Matt. T.; Koutsourakis, George; Gottschalg, Ralph; Hall, Simon. R. G.

    2016-04-01

    Compressive sensing has been widely used in image compression and signal recovery techniques in recent years; however, it has received limited attention in the field of optical measurement. This paper describes the use of compressive sensing for measurements of photovoltaic (PV) solar cells, using fully random sensing matrices, rather than mapping an orthogonal basis set directly. Existing compressive sensing systems optically image the surface of the object under test, this contrasts with the method described, where illumination patterns defined by precalculated sensing matrices, probe PV devices. We discuss the use of spatially modulated light fields to probe a PV sample to produce a photocurrent map of the optical response. This allows for faster measurements than would be possible using traditional translational laser beam induced current techniques. Results produced to a 90% correlation to raster scanned measurements, which can be achieved with under 25% of the conventionally required number of data points. In addition, both crack and spot type defects are detected at resolutions comparable to electroluminescence techniques, with 50% of the number of measurements required for a conventional scan.

  17. Observations of the global structure of the stratosphere and mesosphere with sounding rockets and with remote sensing techniques from satellites

    NASA Technical Reports Server (NTRS)

    Heath, D. F.; Hilsenrath, E.; Krueger, A. J.; Nordberg, W.; Prabhakara, C.; Theon, J. S.

    1972-01-01

    Brief descriptions are given of the techniques involved in determining the global structure of the mesosphere and stratosphere based on sounding rocket observations and satellite remotely sensed measurements.

  18. A self-sensing active magnetic bearing based on a direct current measurement approach.

    PubMed

    Niemann, Andries C; van Schoor, George; du Rand, Carel P

    2013-09-11

    Active magnetic bearings (AMBs) have become a key technology in various industrial applications. Self-sensing AMBs provide an integrated sensorless solution for position estimation, consolidating the sensing and actuating functions into a single electromagnetic transducer. The approach aims to reduce possible hardware failure points, production costs, and system complexity. Despite these advantages, self-sensing methods must address various technical challenges to maximize the performance thereof. This paper presents the direct current measurement (DCM) approach for self-sensing AMBs, denoting the direct measurement of the current ripple component. In AMB systems, switching power amplifiers (PAs) modulate the rotor position information onto the current waveform. Demodulation self-sensing techniques then use bandpass and lowpass filters to estimate the rotor position from the voltage and current signals. However, the additional phase-shift introduced by these filters results in lower stability margins. The DCM approach utilizes a novel PA switching method that directly measures the current ripple to obtain duty-cycle invariant position estimates. Demodulation filters are largely excluded to minimize additional phase-shift in the position estimates. Basic functionality and performance of the proposed self-sensing approach are demonstrated via a transient simulation model as well as a high current (10 A) experimental system. A digital implementation of amplitude modulation self-sensing serves as a comparative estimator.

  19. The application of remote sensing techniques to the study of ophiolites

    NASA Astrophysics Data System (ADS)

    Khan, Shuhab D.; Mahmood, Khalid

    2008-08-01

    Satellite remote sensing methods are a powerful tool for detailed geologic analysis, especially in inaccessible regions of the earth's surface. Short-wave infrared (SWIR) bands are shown to provide spectral information bearing on the lithologic, structural, and geochemical character of rock bodies such as ophiolites, allowing for a more comprehensive assessment of the lithologies present, their stratigraphic relationships, and geochemical character. Most remote sensing data are widely available for little or no cost, along with user-friendly software for non-specialists. In this paper we review common remote sensing systems and methods that allow for the discrimination of solid rock (lithologic) components of ophiolite complexes and their structural relationships. Ophiolites are enigmatic rock bodies which associated with most, if not all, plate collision sutures. Ophiolites are ideal for remote sensing given their widely recognized diversity of lithologic types and structural relationships. Accordingly, as a basis for demonstrating the utility of remote sensing techniques, we briefly review typical ophiolites in the Tethyan tectonic belt. As a case study, we apply integrated remote sensing studies of a well-studied example, the Muslim Bagh ophiolite, located in Balochistan, western Pakistan. On this basis, we attempt to demonstrate how remote sensing data can validate and reconcile existing information obtained from field studies. The lithologic and geochemical diversity of Muslim Bagh are representative of Tethyan ophiolites. Despite it's remote location it has been extensively mapped and characterized by structural and geochemical studies, and is virtually free of vegetative cover. Moreover, integrating the remote sensing data with 'ground truth' information thus offers the potential of an improved template for interpreting remote sensing data sets of other ophiolites for which little or no field information is available.

  20. A solar energy estimation procedure using remote sensing techniques. [watershed hydrologic models

    NASA Technical Reports Server (NTRS)

    Khorram, S.

    1977-01-01

    The objective of this investigation is to design a remote sensing-aided procedure for daily location-specific estimation of solar radiation components over the watershed(s) of interest. This technique has been tested on the Spanish Creek Watershed, Northern California, with successful results.

  1. Active vibrissal sensing in rodents and marsupials

    PubMed Central

    Mitchinson, Ben; Grant, Robyn A.; Arkley, Kendra; Rankov, Vladan; Perkon, Igor; Prescott, Tony J.

    2011-01-01

    In rats, the long facial whiskers (mystacial macrovibrissae) are repetitively and rapidly swept back and forth during exploration in a behaviour known as ‘whisking’. In this paper, we summarize previous evidence from rats, and present new data for rat, mouse and the marsupial grey short-tailed opossum (Monodelphis domestica) showing that whisking in all three species is actively controlled both with respect to movement of the animal's body and relative to environmental structure. Using automatic whisker tracking, and Fourier analysis, we first show that the whisking motion of the mystacial vibrissae, in the horizontal plane, can be approximated as a blend of two sinusoids at the fundamental frequency (mean 8.5, 11.3 and 7.3 Hz in rat, mouse and opossum, respectively) and its second harmonic. The oscillation at the second harmonic is particularly strong in mouse (around 22 Hz) consistent with previous reports of fast whisking in that species. In all three species, we found evidence of asymmetric whisking during head turning and following unilateral object contacts consistent with active control of whisker movement. We propose that the presence of active vibrissal touch in both rodents and marsupials suggests that this behavioural capacity emerged at an early stage in the evolution of therian mammals. PMID:21969685

  2. Millimeter Wave Active Sensing Technology For Self-Contained Munitions

    NASA Astrophysics Data System (ADS)

    Hunton, Andrew J.

    1983-10-01

    Active millimeter wave (MMW) sensing technology is playing an increasing role throughout the DoD research and development community in the area of Self Contained Munitions (SCM's), autonomous missiles and armament primarily intended for air and surface launched standoff antiarmor weapon systems. Each type of SCM, which requires fire-and-forget search, detection, discrimination and warhead aiming sensing functions, places varied operational, packaging and performance specifications on its MMW sensor subsystem. This paper attempts to portray the rationale for implementation of active MMW sensing devices into SCM's, along with a description of the spectrum of SCM sensor operational parameters. A treatise of active MMW sensor technologies required for ultimate successful weaponization will include discussions in the areas of signal processing and MMW RF hardware. Ultimately, as active MMW technology matures, the critical trade between complexity, cost and effectiveness must be analyzed for each SCM type. A qualitative discussion in this area will be covered as well, yielding insight into future MMW development areas which require increased heavy emphasis in order to meet the stringent requirements on SCM active MMW sensing subsystems.

  3. NASA's Future Active Remote Sensing Missing for Earth Science

    NASA Technical Reports Server (NTRS)

    Hartley, Jonathan B.

    2000-01-01

    Since the beginning of space remote sensing of the earth, there has been a natural progression widening the range of electromagnetic radiation used to sense the earth, and slowly, steadily increasing the spatial, spectral, and radiometric resolution of the measurements. There has also been a somewhat slower trend toward active measurements across the electromagnetic spectrum, motivated in part by increased resolution, but also by the ability to make new measurements. Active microwave instruments have been used to measure ocean topography, to study the land surface. and to study rainfall from space. Future NASA active microwave missions may add detail to the topographical studies, sense soil moisture, and better characterize the cryosphere. Only recently have active optical instruments been flown in space by NASA; however, there are currently several missions in development which will sense the earth with lasers and many more conceptual active optical missions which address the priorities of NASA's earth science program. Missions are under development to investigate the structure of the terrestrial vegetation canopy, to characterize the earth's ice caps, and to study clouds and aerosols. Future NASA missions may measure tropospheric vector winds and make vastly improved measurements of the chemical components of the earth's atmosphere.

  4. Morphotectonics of the Jamini River basin, Bundelkhand Craton, Central India; using remote sensing and GIS technique

    NASA Astrophysics Data System (ADS)

    Prakash, K.; Mohanty, T.; Pati, J. K.; Singh, S.; Chaubey, K.

    2016-12-01

    Morphological and morphotectonic analyses have been used to obtain information that influence hydrographic basins, predominantly these are modifications of tectonic elements and the quantitative description of landforms. Discrimination of morphotectonic indices of active tectonics of the Jamini river basin consists the analyses of asymmetry factor, ruggedness number, basin relief, gradient, basin elongation ratio, drainage density analysis, and drainage pattern analysis, which have been completed for each drainage basin using remote sensing and GIS techniques. The Jamini river is one of the major tributaries of the Betwa river in central India. The Jamini river basin is divided into five subwatersheds viz. Jamrar, Onri, Sainam, Shahzad and Baragl subwatershed. The quantitative approach of watershed development of the Jamini river basin, and its four sixth (SW1-SW4) and one fifth (SW5) order subwatersheds, was carried out using Survey of India toposheets (parts of 54I, 54K, 54L, 54O, and 54P), Landsat 7 ETM+, ASTER (GDEM) data, and field data. The Jamini river has low bifurcation index which is a positive marker of tectonic imprint on the hydrographic network. The analyses show that the geomorphological progression of the study area was robustly influenced by tectonics. The analysis demonstrates to extensional tectonics system with the following alignments: NE-SW, NW-SE, NNE-SSW, ENE-WSW, E-W, and N-S. Three major trends are followed by lower order streams viz. NE-SW, NW-SE, and E-W directions which advocate that these tectonic trends were active at least up to the Late Pleistocene. The assessment of morphotectonic indices may be used to evaluate the control of active faults on the hydrographic system. The analysis points out westward tilting of the drainage basins with strong asymmetry in some reaches, marked elongation ratio of subwatersheds, and lower order streams having close alignment with lineaments (active faults). The study facilitated to considerate the

  5. Distributed fiber optical HC leakage and pH sensing techniques for implementation into smart structures

    NASA Astrophysics Data System (ADS)

    Buerck, Jochen M.; Vogel, Bernhard H.; Roth, Siegmar; Ebrahimi, Sasan; Kraemer, Karl

    2004-07-01

    Interaction of target molecules with the evanescent wave of light guided in optical fibers is among the most promising sensing schemes for building up smart chemical sensor technologies. If the technique of optical time domain reflectometry (OTDR) is combined with silicone-clad quartz glass fibers distributed chemical sensing is possible. Hydrocarbon (HC) detection and location is done by automated identification of the position of the corresponding step drop (light loss) in the backscatter signal induced by local refractive index increase in the silicone cladding due to a penetrating HC compound. A commercially available mini-OTDR was adapted to sensing fibers of up to nearly 2-kilometer length and location of typical HC fuels could be demonstrated. The instrument is applicable for fuel leakage monitoring in large technical installations such as tanks or pipelines with spatial resolution down to 1 m. A similar technique using measurements in the Vis spectral range is being developed for health monitoring of large structures, e.g., for early detection of corrosion caused by water ingress and pH changes in reinforced concrete. Here, a pH indicator dye and a phase transfer reagent are immobilized in the originally hydrophobic fiber cladding, leading to a pH induced absorption increase and a step drop signal in the backscatter curve. The configuration of the distributed sensing cables, the instrumental setups, and examples for HC and pH sensing are presented.

  6. Demonstration of distributed fiber-optic temperature sensing with PM fiber using polarization crosstalk analysis technique

    NASA Astrophysics Data System (ADS)

    Su, Hongxin; Zhao, Ziwei; Feng, Ting; Ding, Dongliang; Li, Zhihong; Yao, X. Steve

    2016-11-01

    Polarization crosstalk is a phenomenon that the powers of two orthogonal polarization modes propagating in a polarization maintaining (PM) fiber couple into each other. Because there is certain mathematical relationship between the polarization crosstalk signals and external perturbations such as stress and temperature variations, stress and temperature sensing in PM fiber can be simultaneously achieved by measuring the strengths and locations of polarization crosstalk signals. In this paper, we report what we believe the first distributed temperature sensing demonstration using polarization crosstalk analysis in PM fibers. Firstly, by measuring the spacing changes between two crosstalk peaks at different fiber length locations, we obtained the temperature sensing coefficient (TSC) of approximately -0.73 μm/(°C•m), which means that the spacing between two crosstalk peaks induced at two locations changes by 0.73 μm when the temperature changes by 1 °C over a fiber length of 1 meter. Secondly, in order to bring different temperature values at different axial locations along a PM fiber to verify the distributed temperature sensing, four heating-strips are used to heat different fiber sections of the PM fiber under test, and the temperatures measured by the proposed fiber sensing method according to the obtained TSC are almost consistent with those of heating-strips measured by a thermoelectric thermometer. As a new type of distributed fiber temperature sensing technique, we believe that our method will find broad applications in the near future.

  7. Browsing Image Collections with Representations of Common-Sense Activities.

    ERIC Educational Resources Information Center

    Gordon, Andrew S.

    2001-01-01

    Describes a methodology for creating networks of subject terms by manually representing a large number of common-sense activities that are broadly related to image subject terms. Application of this methodology to the Library of Congress Thesaurus for Graphic Materials produced 768 representations that supported users of a prototype browsing-based…

  8. Method of maintaining activity of hydrogen-sensing platinum electrode

    NASA Technical Reports Server (NTRS)

    Harman, J. N., III

    1968-01-01

    Three-electrode hydrogen sensor containing a platinum electrode maintained in a highly catalytic state, operates with a minimal response time and maximal sensitivity to the hydrogen gas being sensed. Electronic control and readout circuitry reactivates the working electrode of the sensor to a state of maximal catalytic activity.

  9. Novel technique for distributed fibre sensing based on coherent Rayleigh scattering measurements of birefringence

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Soto, Marcelo A.; Thévenaz, Luc

    2016-05-01

    A novel distributed fibre sensing technique is described and experimentally validated, based on birefringence measurements using coherent Rayleigh scattering. It natively provides distributed measurements of temperature and strain with more than an order of magnitude higher sensitivity than Brillouin sensing, and requiring access to a single fibre-end. Unlike the traditional Rayleigh-based coherent optical time-domain reflectometry, this new method provides absolute measurements of the measurand and may lead to a robust discrimination between temperature and strain in combination with another technique. Since birefringence is purposely induced in the fibre by design, large degrees of freedom are offered to optimize and scale the sensitivity to a given quantity. The technique has been validated in 2 radically different types of birefringent fibres - elliptical-core and Panda polarization-maintaining fibres - with a good repeatability.

  10. Small molecule-sensing strategy and techniques for understanding the functionality of green tea.

    PubMed

    Fujimura, Yoshinori

    2015-01-01

    Various low-molecular-weight phytochemicals in green tea (Camellia sinensis L.), especially (-)-epigallocatechin-3-O-gallate (EGCG), are known to be involved in health promotion and disease risk reduction. However, the underlying mechanism has remained elusive because of the absence of an analytical technique that can easily detect the precise behavior of such a small molecule. Recently, we have identified a cell-surface EGCG-sensing receptor and the related signaling molecules that control the physiological functions of EGCG. We also developed a novel in situ label-free imaging technique for visualizing spatially resolved biotransformations based on simultaneous mapping of EGCG and its phase II metabolites. Furthermore, we established a chemometric method capable of evaluating the functionality of multicomponent green tea extracts by focusing on their compositional balances. This review highlights our proposed small molecule-sensing techniques for detecting the complex behavior of green tea components and linking such information to an enhanced understanding of green tea functionality.

  11. Classification of remotely sensed data using OCR-inspired neural network techniques. [Optical Character Recognition

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.

    1992-01-01

    Neural networks have been applied to classifications of remotely sensed data with some success. To improve the performance of this approach, an examination was made of how neural networks are applied to the optical character recognition (OCR) of handwritten digits and letters. A three-layer, feedforward network, along with techniques adopted from OCR, was used to classify Landsat-4 Thematic Mapper data. Good results were obtained. To overcome the difficulties that are characteristic of remote sensing applications and to attain significant improvements in classification accuracy, a special network architecture may be required.

  12. Remote sensing techniques for the detection of soil erosion and the identification of soil conservation practices

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Griffin, R. H.

    1985-01-01

    The following paper is a summary of a number of techniques initiated under the AgRISTARS (Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing) project for the detection of soil degradation caused by water erosion and the identification of soil conservation practices for resource inventories. Discussed are methods to utilize a geographic information system to determine potential soil erosion through a USLE (Universal Soil Loss Equation) model; application of the Kauth-Thomas Transform to detect present erosional status; and the identification of conservation practices through visual interpretation and a variety of enhancement procedures applied to digital remotely sensed data.

  13. Current achievements of nanoparticle applications in developing optical sensing and imaging techniques

    NASA Astrophysics Data System (ADS)

    Choi, Jong-ryul; Shin, Dong-Myeong; Song, Hyerin; Lee, Donghoon; Kim, Kyujung

    2016-11-01

    Metallic nanostructures have recently been demonstrated to improve the performance of optical sensing and imaging techniques due to their remarkable localization capability of electromagnetic fields. Particularly, the zero-dimensional nanostructure, commonly called a nanoparticle, is a promising component for optical measurement systems due to its attractive features, e.g., ease of fabrication, capability of surface modification and relatively high biocompatibility. This review summarizes the work to date on metallic nanoparticles for optical sensing and imaging applications, starting with the theoretical backgrounds of plasmonic effects in nanoparticles and moving through the applications in Raman spectroscopy and fluorescence biosensors. Various efforts for enhancing the sensitivity, selectivity and biocompatibility are summarized, and the future outlooks for this field are discussed. Convergent studies in optical sensing and imaging have been emerging field for the development of medical applications, including clinical diagnosis and therapeutic applications.

  14. Development and Experimental Verification of Key Techniques to Validate Remote Sensing Products

    NASA Astrophysics Data System (ADS)

    Li, X.; Wang, S. G.; Ge, Y.; Jin, R.; Liu, S. M.; Ma, M. G.; Shi, W. Z.; Li, R. X.; Liu, Q. H.

    2013-05-01

    Validation of remote sensing land products is a fundamental issue for Earth observation. Ministry of Science and Technology of the People's Republic of China (MOST) has launched a high-tech R&D Program named `Development and experimental verification of key techniques to validate remote sensing products' in 2011. This paper introduces the background, scientific objectives, research contents of this project and research result already achieved. The objectives of this project include (1) to build a technical specification for the validation of remote sensing products; (2) to investigate the performance, we will carry out a comprehensive remote sensing experiment on satellite - aircraft - ground truth and then modify Step 1 until reach the predefined requirement; (3) to establish a validation network of China for remote sensing products. In summer 2012, with support of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER), field observations have been successfully conducted in the central stream of the Heihe River Basin, a typical inland river basin in northwest China. A flux observation matrix composed of eddy covariance (EC) and large aperture scintillometer (LAS), in addition to a densely distributed eco-hydrological wireless sensor network have been established to capture multi-scale heterogeneities of evapotranspiration (ET), leaf area index (LAI), soil moisture and temperature. Airborne missions have been flown with the payloads of imaging spectrometer, light detection and ranging (LiDAR), infrared thermal imager and microwave radiometer that provide various scales of aerial remote sensing observations. Satellite images with high resolution have been collected and pre-processed, e.g. PROBA-CHRIS and TerraSAR-X. Simultaneously, ground measurements have been conducted over specific sampling plots and transects to obtain validation data sets. With this setup complex problems are addressed, e.g. heterogeneity, scaling, uncertainty, and eventually to

  15. Smart active multiwave sensing with zero background amplitude modulated probes

    SciTech Connect

    Ruggiero, A.J.; Young, R.A.; Jelsma, L.

    1994-07-01

    Recently, a new approach to multi-wavelength remote sensing has been proposed based on the generation and detection of spectral ``pickets`` synthesized from the frequency filtered bandwidth of a modelocked laser. Using linear array liquid crystal spatial light modulator (SLM) technology for spectral filtering permits real time grey scale control of individual picket amplitudes and phases, making it possible to independently modulate picket characteristics in the kHz to MHz regime. Due to the versatility of this approach, a whole suite of spectroscopies based on detection techniques that are similar to conventional sideband spectroscopies can be implemented. These techniques not only inherit the S/N advantages of their conventional counterparts, they can also be easily extended to simultaneous multi-wavelength operation using frequency multiplex techniques and configured for real time adaptive data acquisition. We report the laboratory demonstration and theoretical development of a new class of zero background AM modulated spectroscopic probes for differential absorption measurements. Preliminary detection sensitivities on the order of 10{sup {minus}6} can be inferred from our measurements. Application of this technique to realistic remote sensing scenarios, advantages over other modulation and direct detection approaches, as well as the present limitations and theoretical limits to detection sensitivity will be discussed.

  16. Quantification of fatigue cracking in CT specimens with passive and active piezoelectric sensing

    NASA Astrophysics Data System (ADS)

    Yu, Jianguo; Ziehl, Paul; Zarate, Boris; Caicedo, Juan; Yu, Lingyu; Giurgiutiu, Victor; Metrovich, Brian; Matta, Fabio

    2010-04-01

    Monitoring of fatigue cracks in steel bridges is of interest to bridge owners and agencies. Monitoring of fatigue cracks has been attempted with acoustic emission using either resonant or broadband sensors. One drawback of passive sensing is that the data is limited to that caused by growing cracks. In this work, passive emission was complemented with active sensing (piezoelectric wafer active sensors) for enhanced detection capabilities. Passive and active sensing methods were described for fatigue crack monitoring on specialized compact tension specimens. The characteristics of acoustic emission were obtained to understand the correlation of acoustic emission behavior and crack growth. Crack and noise induced signals were interpreted through Swansong II Filter and waveform-based approaches, which are appropriate for data interpretation of field tests. Upon detection of crack extension, active sensing was activated to measure the crack size. Model updating techniques were employed to minimize the difference between the numerical results and experimental data. The long term objective of this research is to develop an in-service prognostic system to monitor structural health and to assess the remaining fatigue life.

  17. Summary. [California activities in remote sensing and management of water resources

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1973-01-01

    University of California activities in the development of remote sensing techniques and their application in the study of water resources within the state are summarized. It is pointed out that the summary is very lengthy due to fact that NASA had requested a dramatic reorientation of the study. For this reason it was felt that the co-investigators and other participants, need a rather detailed and systematic tabulation of the relevant facts that have been uncovered during the period since the reorientation.

  18. Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique

    NASA Astrophysics Data System (ADS)

    Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi

    2013-09-01

    According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.

  19. High-accuracy current sensing circuit with current compensation technique for buck-boost converter

    NASA Astrophysics Data System (ADS)

    Rao, Yuan; Deng, Wan-Ling; Huang, Jun-Kai

    2015-03-01

    A novel on-chip current sensing circuit with current compensation technique suitable for buck-boost converter is presented in this article. The proposed technique can sense the full-range inductor current with high accuracy and high speed. It is mainly based on matched current mirror and does not require a large proportion of aspect ratio between the powerFET and the senseFET, thus it reduces the complexity of circuit design and the layout mismatch issue without decreasing the power efficiency. The circuit is fabricated with TSMC 0.25 µm 2P5M mixed-signal process. Simulation results show that the buck-boost converter can be operated at 200 kHz to 4 MHz switching frequency with an input voltage from 2.8 to 4.7 V. The output voltage is 3.6 V, and the maximum accuracy for both high and low side sensing current reaches 99% within the load current ranging from 200 to 600 mA.

  20. An optical fiber sensing technique for temperature distribution measurements in microwave heating

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Sugiyama, Jun-ichi; Zushi, Hiroaki; Murayama, Hideaki

    2015-08-01

    We introduce an optical fiber sensing technique that can measure the temperature distributions along a fiber during microwave heating. We used a long-length fiber Bragg grating (FBG) as an electromagnetic-immune sensor and interrogated temperature distributions along the FBG by an optical frequency domain reflectometry. Water in a glass tube with a length of 820 mm was heated in a microwave oven, and its temperature distribution along the glass tube was measured using the sensing system. The temperature distribution was obtained in 5 mm intervals. Infrared radiometry was also used to compare the temperature measurement results. Time and spatial variations of the temperature distribution profiles were monitored for several microwave input powers. The results clearly depict inhomogeneous temperature profiles. The applicability and effectiveness of the optical fiber distributed measurement technique in microwave heating are demonstrated.

  1. A novel self-sensing technique for tapping-mode atomic force microscopy

    SciTech Connect

    Ruppert, Michael G.; Moheimani, S. O. Reza

    2013-12-15

    This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging.

  2. Muscle Activation Patterns During Different Squat Techniques.

    PubMed

    Slater, Lindsay V; Hart, Joseph M

    2017-03-01

    Slater, LV, and Hart, JM. Muscle activation patterns during different squat techniques. J Strength Cond Res 31(3): 667-676, 2017-Bilateral squats are frequently used exercises in sport performance programs. Lower extremity muscle activation may change based on knee alignment during the performance of the exercise. The purpose of this study was to compare lower extremity muscle activation patterns during different squat techniques. Twenty-eight healthy, uninjured subjects (19 women, 9 men, 21.5 ± 3 years, 170 ± 8.4 cm, 65.7 ± 11.8 kg) volunteered. Electromyography (EMG) electrodes were placed on the vastus lateralis, vastus medialis, rectus femoris, biceps femoris, and the gastrocnemius of the dominant leg. Participants completed 5 squats while purposefully displacing the knee anteriorly (AP malaligned), 5 squats while purposefully displacing the knee medially (ML malaligned) and 5 squats with control alignment (control). Normalized EMG data (MVIC) were reduced to 100 points and represented as percentage of squat cycle with 50% representing peak knee flexion and 0 and 99% representing fully extended. Vastus lateralis, medialis, and rectus femoris activity decreased in the medio-lateral (ML) malaligned squat compared with the control squat. In the antero-posterior (AP) malaligned squat, the vastus lateralis, medialis, and rectus femoris activity decreased during initial descent and final ascent; however, vastus lateralis and rectus femoris activation increased during initial ascent compared with the control squat. The biceps femoris and gastrocnemius displayed increased activation during both malaligned squats compared with the control squat. In conclusion, participants had altered muscle activation patterns during squats with intentional frontal and sagittal malalignment as demonstrated by changes in quadriceps, biceps femoris, and gastrocnemius activation during the squat cycle.

  3. Interactive Change Detection Using High Resolution Remote Sensing Images Based on Active Learning with Gaussian Processes

    NASA Astrophysics Data System (ADS)

    Ru, Hui; Yu, Huai; Huang, Pingping; Yang, Wen

    2016-06-01

    Although there have been many studies for change detection, the effective and efficient use of high resolution remote sensing images is still a problem. Conventional supervised methods need lots of annotations to classify the land cover categories and detect their changes. Besides, the training set in supervised methods often has lots of redundant samples without any essential information. In this study, we present a method for interactive change detection using high resolution remote sensing images with active learning to overcome the shortages of existing remote sensing image change detection techniques. In our method, there is no annotation of actual land cover category at the beginning. First, we find a certain number of the most representative objects in unsupervised way. Then, we can detect the change areas from multi-temporal high resolution remote sensing images by active learning with Gaussian processes in an interactive way gradually until the detection results do not change notably. The artificial labelling can be reduced substantially, and a desirable detection result can be obtained in a few iterations. The experiments on Geo-Eye1 and WorldView2 remote sensing images demonstrate the effectiveness and efficiency of our proposed method.

  4. An indirect sensing technique for diesel fuel quantity control. Progress report, April 1--June 30, 1998

    SciTech Connect

    MacCarley, C.A.

    1998-08-31

    This reports on a project to develop an indirect sensing technique for diesel fuel quantity control. Development has continued on a vehicle-installed prototype for EPA certification and demonstration. Focus of development is on the use of this technology for retrofitting existing diesel vehicles to reduce emissions rather than exclusively upon deployment in the OEM market. Technical obstacles that have been encountered and their solutions and remaining project tasks are described.

  5. Active load control techniques for wind turbines.

    SciTech Connect

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  6. Eigenspace techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Liebst, Bradley S.; Farm, Jerome A.

    1987-01-01

    The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.

  7. Optimization of the polarization remote-sensing techniques of the ocean

    NASA Astrophysics Data System (ADS)

    Krotkov, Nickolay A.; Kondranin, Timofei V.; Vasilkov, Alexander P.

    1992-12-01

    A numerical code has been developed to calculate Stokes parameters of the visible solar radiation, scattered in the atmosphere-ocean system. Mathematical modeling is used to examine spectral and angular (azimuth and zenith angle) variations of degree of polarization at sea level and at different heights in the atmosphere above the sea surface. On the basis of a developed computer code the efficiency of the polarization measurements for different optical passive remote sensing techniques of the ocean has been investigated. For the passive spectral measurements of the water bio-productivity (chlorophyll-a, dissolved organic matter, concentration of suspended particles) the polarizer can improve signal-to-background ratio. The magnitude of this effect and optimum direction of the polarizer depend upon height, viewing direction, and solar zenith angle. Within the framework of polarization remote sensing technique the influence of the observation height and viewing direction on the results of water turbidity measurements is investigated. Optimal viewing directions in such polarization passive remote sensing technique are discussed.

  8. High-quality correspondence imaging based on sorting and compressive sensing technique

    NASA Astrophysics Data System (ADS)

    Wu, Heng; Zhang, Xianmin; Gan, Jinqiang; Luo, Chunling; Ge, Peng

    2016-11-01

    We propose a high-quality imaging method based on correspondence imaging (CI) using a sorting and compressive sensing (CS) technique. Unlike the traditional CI, the positive and negative (PN) subsets are created by a sorting method, and the image of an object is then recovered from the PN subsets using a CS technique. We compare the performance of the proposed method with different ghost imaging (GI) algorithms using the data from a single-detector computational GI system. The results demonstrate that our method enjoys excellent imaging and anti-interference capabilities, and can further reduce the measurement numbers compared with the direct use of CS in GI.

  9. Active sensing without efference copy: referent control of perception.

    PubMed

    Feldman, Anatol G

    2016-09-01

    Although action and perception are different behaviors, they are likely to be interrelated, as implied by the notions of perception-action coupling and active sensing. Traditionally, it has been assumed that the nervous system directly preprograms motor commands required for actions and uses a copy of them called efference copy (EC) to also influence our senses. This review offers a critical analysis of the EC concept by identifying its limitations. An alternative to the EC concept is based on the experimentally confirmed notion that sensory signals from receptors are perceived relative to referent signals specified by the brain. These referents also underlie the control of motor actions by predetermining where, in the spatial domain, muscles can work without preprogramming how they should work in terms of motor commands or EC. This approach helps solve several problems of action and explain several sensory experiences, including position sense and the sense that the world remains stationary despite changes in its retinal image during eye or body motion (visual space constancy). The phantom limb phenomenon and other kinesthetic illusions are also explained within this framework.

  10. Active sampling technique to enhance chemical signature of buried explosives

    NASA Astrophysics Data System (ADS)

    Lovell, John S.; French, Patrick D.

    2004-09-01

    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  11. Measuring thermal budgets of active volcanoes by satellite remote sensing

    NASA Technical Reports Server (NTRS)

    Glaze, L.; Francis, P. W.; Rothery, D. A.

    1989-01-01

    Thematic Mapper measurements of the total radiant energy flux Q at Lascar volcano in north Chile for December 1984 are reported. The results are consistent with the earlier suggestion that a lava lake is the source of a reported thermal budget anomaly, and with values for 1985-1986 that are much lower, suggesting that fumarolic activity was then a more likely heat source. The results show that satellite remote sensing may be used to monitor the activity of a volcano quantitatively, in a way not possible by conventional ground studies, and may provide a method for predicting eruptions.

  12. Tribotronic Transistor Array as an Active Tactile Sensing System.

    PubMed

    Yang, Zhi Wei; Pang, Yaokun; Zhang, Limin; Lu, Cunxin; Chen, Jian; Zhou, Tao; Zhang, Chi; Wang, Zhong Lin

    2016-12-27

    Large-scale tactile sensor arrays are of great importance in flexible electronics, human-robot interaction, and medical monitoring. In this paper, a flexible 10 × 10 tribotronic transistor array (TTA) is developed as an active tactile sensing system by incorporating field-effect transistor units and triboelectric nanogenerators into a polyimide substrate. The drain-source current of each tribotronic transistor can be individually modulated by the corresponding external contact, which has induced a local electrostatic potential to act as the conventional gate voltage. By scaling down the pixel size from 5 × 5 to 0.5 × 0.5 mm(2), the sensitivities of single pixels are systematically investigated. The pixels of the TTA show excellent durability, independence, and synchronicity, which are suitable for applications in real-time tactile sensing, motion monitoring, and spatial mapping. The integrated tribotronics provides an unconventional route to realize an active tactile sensing system, with prospective applications in wearable electronics, human-machine interfaces, fingerprint identification, and so on.

  13. Dynorphin Activates Quorum Sensing Quinolone Signaling in Pseudomonas aeruginosa

    PubMed Central

    Zaborina, Olga; Lepine, Francois; Xiao, Gaoping; Valuckaite, Vesta; Chen, Yimei; Li, Terry; Ciancio, Mae; Zaborin, Alex; Petroff, Elaine; Turner, Jerrold R; Rahme, Laurence G; Chang, Eugene; Alverdy, John C

    2007-01-01

    There is now substantial evidence that compounds released during host stress directly activate the virulence of certain opportunistic pathogens. Here, we considered that endogenous opioids might function as such compounds, given that they are among the first signals to be released at multiple tissue sites during host stress. We tested the ability of various opioid compounds to enhance the virulence of Pseudomonas aeruginosa using pyocyanin production as a biological readout, and demonstrated enhanced virulence when P. aeruginosa was exposed to synthetic (U-50,488) and endogenous (dynorphin) κ-agonists. Using various mutants and reporter strains of P. aeruginosa, we identified involvement of key elements of the quorum sensing circuitry such as the global transcriptional regulator MvfR and the quorum sensing-related quinolone signaling molecules PQS, HHQ, and HQNO that respond to κ-opioids. The in vivo significance of κ-opioid signaling of P. aeruginosa was demonstrated in mice by showing that dynorphin is released from the intestinal mucosa following ischemia/reperfusion injury, activates quinolone signaling in P. aeruginosa, and enhances the virulence of P. aeruginosa against Lactobacillus spp. and Caenorhabditis elegans. Taken together, these data demonstrate that P. aeruginosa can intercept opioid compounds released during host stress and integrate them into core elements of quorum sensing circuitry leading to enhanced virulence. PMID:17367209

  14. Generalized high-spectral-resolution lidar technique with a multimode laser for aerosol remote sensing.

    PubMed

    Cheng, Zhongtao; Liu, Dong; Zhang, Yupeng; Liu, Chong; Bai, Jian; Wang, Dan; Wang, Nanchao; Zhou, Yudi; Luo, Jing; Yang, Yongying; Shen, Yibing; Su, Lin; Yang, Liming

    2017-01-23

    High-spectral-resolution lidar (HSRL) is a powerful tool for atmospheric aerosol remote sensing. The current HSRL technique often requires a single longitudinal mode laser as the transmitter to accomplish the spectral discrimination of the aerosol and molecular scattering conveniently. However, single-mode laser is cumbersome and has very strict requirements for ambient stability, making the HSRL instrument not so robust in many cases. In this paper, a new HSRL concept, called generalized HSRL technique with a multimode laser (MML-gHSRL), is proposed, which can work using a multimode laser. The MML-gHSRL takes advantage of the period characteristic of the spectral function of the interferometric spectral discrimination filter (ISDF) thoroughly. By matching the free spectral range of the ISDF with the mode interval of the multimode laser, fine spectral discrimination for the lidar return from each longitudinal mode can be realized. Two common ISDFs, i.e., the Fabry-Perot interferometer (FPI) and field-widened Michelson interferometer (FWMI), are introduced to develop the MML-gHSRL, and their performance is quantitatively analyzed and compared. The MML-gHSRL is a natural but significant generalization for the current HSRL technique based on the IDSF. It is potential that this technique would be a good entrance to future HSRL developments, especially in airborne and satellite-borne aerosol remote sensing applications.

  15. Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey.

    PubMed

    Shi, Chaoyang; Luo, Xiongbiao; Qi, Peng; Li, Tianliang; Song, Shuang; Najdovski, Zoran; Ren, Hongliang; Fukuda, Toshio

    2016-10-27

    Continuum robots provide inherent structural compliance with high dexterity to access the surgical target sites along tortuous anatomical paths under constrained environments, and enable to perform complex and delicate operations through small incisions in minimally invasive surgery. These advantages enable their broad applications with minimal trauma, and make challenging clinical procedures possible with miniaturized instrumentation and high curvilinear access capabilities. However, their inherent deformable designs make it difficult to realize three-dimensional (3D) intraoperative real-time shape sensing to accurately model their shape. Solutions to this limitation can lead themselves to further develop closely associated techniques of closed-loop control, path planning, human-robot interaction and surgical manipulation safety concerns in minimally invasive surgery. Although extensive model-based research that relies on kinematics and mechanics has been performed, accurate shape sensing of continuum robots remains challenging, particularly in cases of unknown and dynamic payloads. This survey investigates the recent advances in alternative emerging techniques for 3D shape sensing in this field, and focuses on the following categories: fiber optic sensors based, electromagnetic tracking based and intraoperative imaging modalities based shape reconstruction methods. The limitations of existing technologies and prospects of new technologies are also discussed.

  16. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2002-07

    USGS Publications Warehouse

    Pearson, D.K.; Gary, R.H.; Wilson, Z.D.

    2007-01-01

    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is particularly useful when analyzing a wide variety of spatial data such as with remote sensing and spatial analysis. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This document presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup from 2002 through 2007.

  17. Measurements of Absorbing Aerosols Using in Situ and Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Martins, J. V.; Martins, J. V.; Kaufman, Y.; Artaxo, P.; Andrea, C.; Yamasoe, M.; Remer, L.

    2001-12-01

    Reliable measurements of light absorption by aerosol particles are essential for an accurate assessment of the climate radiative forcing by aerosol particles. Depending on the absorption properties, the radiative forcing of the aerosols may change from a cooling to a heating effect. New techniques for the remote sensing of aerosol absorption over land and ocean are developed and applied in combination with in situ measurements for validation and addition of complementary information. Spectral measurements show the effects of aerosols on absorption of light from the UV to the near infrared. Depending on particle size and structure, there is a significant absorption component that must be accounted for the radiative forcing in the near infrared. Remote sensing results from MODIS and from the CLAMS field experiment, as well as in situ validation data will be discussed.

  18. Experimental Verification of Dispersed Fringe Sensing as a Segment Phasing Technique using the Keck Telescope

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Chanan, Gary; Ohara, Catherine; Troy, Mitchell; Redding, David C.

    2004-01-01

    Dispersed fringe sensing (DFS) is an efficient and robust method for coarse phasing of segmented primary mirrors (from one quarter of a wavelength to as much as the depth of focus of a single segment, typically several tens of microns). Unlike phasing techniques currently used for ground-based segmented telescopes, DFS does not require the use of edge sensors in order to sense changes in the relative heights of adjacent segments; this makes it particularly well suited for phasing of space-borne segmented telescopes, such as the James Webb Space Telescope. We validate DFS by using it to measure the piston errors of the segments of one of the Keck telescopes. The results agree with those of the Shack-Hartmann-based phasing scheme currently in use at Keck to within 2% over a range of initial piston errors of +/-16 (mu)m.

  19. Multi-Technique Remote-Sensing Observations and Modelling of a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Hardwick, S. A.; Bisi, M. M.; Davies, J.; Morgan, H.; Fallows, R.; Harrison, R. A.; Xiong, M.; Jensen, E. A.

    2012-12-01

    On 14 November 2011, SDO|AIA observed a filament eruption located around S25 to S30 and extended between W20 and W40 of disc centre. The resulting coronal mass ejection (CME) is studied in detail using radio, white-light, and EUV remote-sensing observations from STEREO, SOHO, SDO, and the new next-generation LOFAR radio telescope system. We present a detailed story of the CME as it travels through the heliosphere with its northern flank travelling in the ecliptic out towards Mars. Various models are fitted to the heliospheric white-light data and different portions of the CME are investigated as they propagate through the inner heliosphere. The validity of each model is discussed. This combination of remote-sensing observational and modelling techniques displays a valid framework for further detailed investigations of CMEs.

  20. Guided compressive sensing single-pixel imaging technique based on hierarchical model

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Liu, Yu; Ren, Weiya; Tan, Shuren; Zhang, Maojun

    2016-04-01

    Single-pixel imaging has emerged a decade ago as an imaging technique that exploits the theory of compressive sensing. In this research, the problem of optimizing the measurement matrix in compressive sensing framework was addressed. Thus far, random measurement matrices are widely used because they provide small coherence. However, recent reports claim that measurement matrix can be optimized, thereby improving its performance. Based on such proposition, this study proposed an alternative approach of optimizing the measurement matrix in a hierarchical model. In particular, this study constructed the hierarchical model based on an increasing resolution grade by exploiting the guided information and the adaptive step size method. An image with a demanded resolution was then obtained using the l1-norm method. Subsequently, the performance of the introduced method was verified and compared with those of existing approaches via several experiments. Results of the tests indicated that the reconstruction quality of optimizing the measurement matrix was improved when the proposed method was used.

  1. A Remote Sensing Technique For Combustion Gas Temperature Measurement In Black Liquor Recovery Boilers

    NASA Astrophysics Data System (ADS)

    Charagundla, S. R.; Semerjian, H. G.

    1986-10-01

    A remote sensing technique, based on the principles of emission spectroscopy, is being developed for temperature measurements in black liquor recovery boilers. Several tests have been carried out, both in the laboratory and at a number of recovery boilers, to characterize the emission spectra in the wavelength range of 300 nm to 800 nm. These tests have pointed out the potential for temperature measurements using the line intensity ratio technique based on a pair of emission lines at 404.4 nm and 766.5 nm observed in the recovery boiler combustion zone; these emission lines are due to potassium, a common constituent found in all the black liquors. Accordingly, a fiber optics based four-color system has been developed. This in-situ, nonintrusive temperature measurement technique, together with some of the more recent results, is described in this paper.

  2. Wageningen UR Unmanned Aerial Remote Sensing Facility - Overview of activities

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Harm; Keesstra, Saskia; Kooistra, Lammert; Suomalainen, Juha; Mucher, Sander; Kramer, Henk; Franke, Jappe

    2016-04-01

    To support environmental management there is an increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Systems (UAS) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAS technology is maturing quickly while the flexible capabilities of UAS fill a gap between satellite based and ground based geo-sensing systems. In 2012, different groups within Wageningen University and Research Centre have established an Unmanned Airborne Remote Sensing Facility. The objective of this facility is threefold: a) To develop innovation in the field of remote sensing science by providing a platform for dedicated and high-quality experiments; b) To support high quality UAS services by providing calibration facilities and disseminating processing procedures to the UAS user community; and c) To promote and test the use of UAS in a broad range of application fields like habitat monitoring, precision agriculture and land degradation assessment. The facility is hosted by the Laboratory of Geo-Information Science and Remote Sensing (GRS) and the Department of Soil Physics and Land Management (SLM) of Wageningen University together with the team Earth Informatics (EI) of Alterra. The added value of the Unmanned Aerial Remote Sensing Facility is that compared to for example satellite based remote sensing more dedicated science experiments can be prepared. This includes for example higher frequent observations in time (e.g., diurnal observations), observations of an object under different observation angles for characterization of BRDF and flexibility in use of camera's and sensors types. In this way, laboratory type of set ups can be tested in a field situation and effects of up-scaling can be tested. In the last years we developed and implemented different camera systems (e.g. a hyperspectral pushbroom system, and multispectral frame cameras) which we operated in projects all

  3. Built-in active sensing diagnostic system for civil infrastructure systems

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Chang, Fu-Kuo

    2001-07-01

    A reliable, robust monitoring system can improve the maintenance of and provide safety protection for civil structures and therefore prolong their service lives. A built-in, active sensing diagnostic technique for civil structures has been under investigation. In this technique, piezoelectric materials are used as sensors/actuators to receive and generate signals. The transducers are embedded in reinforced concrete (RC) beams and are designed to detect damage, particularly debonding damage between the reinforcing bars and concrete. This paper presents preliminary results from a feasibility study of the technology. Laboratory experiments performed on RC beams, with piezo-electric sensors and actuators mounted on reinforced steel bars, have clearly demonstrated that the proposed technique could detect debonding damage. Analytical work, using a special purpose finite-element software, PZFlex, was also conducted to interpret the relationship between the measured data and actual debonding damage. Effectiveness of the proposed technique for detecting debonding damage in civil structures has been demonstrated.

  4. Mapping Glauconite Unites with Using Remote Sensing Techniques in North East of Iran

    NASA Astrophysics Data System (ADS)

    Ahmadirouhani, R.; Samiee, S.

    2014-10-01

    Glauconite is a greenish ferric-iron silicate mineral with micaceous structure, characteristically formed in shallow marine environments. Glauconite has been used as a pigmentation agent for oil paint, contaminants remover in environmental studies and a source of potassium in plant fertilizers, and other industries. Koppeh-dagh basin is extended in Iran, Afghanistan and Turkmenistan countries and Glauconite units exist in this basin. In this research for enhancing and mapping glauconitic units in Koppeh-dagh structural zone in north east of Iran, remote sensing techniques such as Spectral Angle Mapper classification (SAM), band ratio and band composition methods on SPOT, ASTER and Landsat data in 3 steps were applied.

  5. Sensing and identification of carbon monoxide using carbon films fabricated by methane arc discharge decomposition technique

    PubMed Central

    2014-01-01

    Carbonaceous materials have recently received attention in electronic applications and measurement systems. In this work, we demonstrate the electrical behavior of carbon films fabricated by methane arc discharge decomposition technique. The current-voltage (I-V) characteristics of carbon films are investigated in the presence and absence of gas. The experiment reveals that the current passing through the carbon films increases when the concentration of CO2 gas is increased from 200 to 800 ppm. This phenomenon which is a result of conductance changes can be employed in sensing applications such as gas sensors. PMID:25177219

  6. Equipment and techniques for low-altitude aerial sensing of water-vapor concentration and movement

    USGS Publications Warehouse

    Howell, R.L.

    1969-01-01

    Progress in the development of equipment and techniques for making rapid measurements of moisture movement through the atmosphere over a large area is described. Airborne sensing elements measure relative humidity, temperature, and air currents. These data are telemetered to a ground-based station and recorded. A radar unit tracks the aircraft and electronically plots its position on a base map of the area being studied. Thus the distribution of atmospheric conditions can be directly related to the underlying terrain and vegetation features. ?? 1969 American Elsevier Publishing Company, Inc.

  7. Reliable Welding of HSLA Steels by Square Wave Pulsing Using an Advanced Sensing (EDAP) Technique.

    DTIC Science & Technology

    1986-04-30

    situation is the result of welding on A710 steel . (A similar effect on welding on HY80 ?) The following is offered by Woods and Milner (Ref. 12): "The...AD-R69 762 RELIABLE MELDING OF HSLA STEELS BY SQUARE MAVE PULSING 1/2 USING AN ADV NCED.. (U) APPLIED FUSION TECHNOLOGIES INC FORT COLLINS CO C...6 p . 0 Report 0001 AZ AD-A 168 762 I "RELIABLE WELDING OF HSLA STEELS BY SQUARE WAVE PULSING USING AN ADVANCED SENSING (EDAP) TECHNIQUE- Preliminary

  8. Active microwave remote sensing of earth/land, chapter 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Geoscience applications of active microwave remote sensing systems are examined. Major application areas for the system include: (1) exploration of petroleum, mineral, and ground water resources, (2) mapping surface and structural features, (3) terrain analysis, both morphometric and genetic, (4) application in civil works, and (5) application in the areas of earthquake prediction and crustal movements. Although the success of radar surveys has not been widely publicized, they have been used as a prime reconnaissance data base for mineral exploration and land-use evaluation in areas where photography cannot be obtained.

  9. A satellite remote-sensing technique for geological horizon structure mapping

    SciTech Connect

    Fraser, A.J.; Huggins, P.; Cleverley, P.H.; Rees, J.L.

    1995-12-31

    A Satellite Remote Sensing technique is demonstrated which provides accurate and cost effective near-surface geological structure data. In the exploration phase the technique enables the rapid and inexpensive screening of open licences and the targeting of seismic acquisition, particularly important in terrains of difficult data acquisition. This paper describes the satellite data used, the technique of horizon surface data extraction and the analysis of a case study from Yemen. Landsat Thematic Mapper (TM) data and a high resolution digital elevation model (DEM), generated from stereo SPOT panchromatic images, are used in conjunction to identify a number of outcropping horizons and map their spatial position and height. Geological contacts are identified and digitised from the Landsat TM data and the elevations of these points taken from the digital elevation data. The extracted x,y,z co-ordinates are then gridded to construct a horizon structure map. The technique is applied to an area of central Yemen which is characterised by a near-surface {open_quote}layer cake{close_quote} geological structure in an extremely low dipping terrain (Less than 1{degrees}). The remote sensing interpretation is validated by comparison with 2D seismic across the area. Regional flexural structures with bed dips of as little as 0.25{degrees} can be mapped. Trend analysis and residual calculations on the horizon structure map show the techniques ability to identify and quantify horizon deformation related to faulting. Surface geological structure was successfully interpolated into the subsurface indicating potential fault closure at reservoir target depths.

  10. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2008-09

    USGS Publications Warehouse

    ,

    2009-01-01

    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is useful for analyzing a wide variety of spatial data. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This fact sheet presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup during 2008 and 2009. After a summary of GIS Workgroup capabilities, brief descriptions of activities by project at the local and national levels are presented. Projects are grouped by the fiscal year (October-September 2008 or 2009) the project ends and include overviews, project images, and Internet links to additional project information and related publications or articles.

  11. Geographic techniques and recent applications of remote sensing to landscape-water quality studies

    USGS Publications Warehouse

    Griffith, J.A.

    2002-01-01

    This article overviews recent advances in studies of landscape-water quality relationships using remote sensing techniques. With the increasing feasibility of using remotely-sensed data, landscape-water quality studies can now be more easily performed on regional, multi-state scales. The traditional method of relating land use and land cover to water quality has been extended to include landscape pattern and other landscape information derived from satellite data. Three items are focused on in this article: 1) the increasing recognition of the importance of larger-scale studies of regional water quality that require a landscape perspective; 2) the increasing importance of remotely sensed data, such as the imagery-derived normalized difference vegetation index (NDVI) and vegetation phenological metrics derived from time-series NDVI data; and 3) landscape pattern. In some studies, using landscape pattern metrics explained some of the variation in water quality not explained by land use/cover. However, in some other studies, the NDVI metrics were even more highly correlated to certain water quality parameters than either landscape pattern metrics or land use/cover proportions. Although studies relating landscape pattern metrics to water quality have had mixed results, this recent body of work applying these landscape measures and satellite-derived metrics to water quality analysis has demonstrated their potential usefulness in monitoring watershed conditions across large regions.

  12. Utilizing the cochlea as a bio-inspired compressive sensing technique

    NASA Astrophysics Data System (ADS)

    Peckens, C. A.; Lynch, J. P.

    2013-10-01

    Structural monitoring for civil infrastructure is a rapidly developing field that has made significant advancements over the last decade. However, a number of performance bottlenecks remain including challenges with cost-effectively scaling monitoring systems up to large nodal counts. Due to the many parallels between biological sensory systems and engineered sensing systems, the biological nervous system can offer potential solutions to the current deficiencies of structural monitoring systems. The nervous system is capable of real-time processing and data transmission of external stimuli through an extremely condensed format with very basic processing units. This study explores the mammalian auditory system for inspiration because it achieves efficient data acquisition processes that outperform existing engineered sensing systems. Specifically, the auditory system realizes this through three steps: (1) real-time decomposition of a convoluted time-based signal into frequency components, (2) information compression for each component, and (3) efficient high-speed data transmission to the auditory cortex. In this paper, these three main mechanisms are explored and a bio-inspired structural monitoring system is proposed. The functionality of the proposed system is compared to traditional data compression techniques (wavelet transforms and compressed sensing) on various vibratory signals. While the wavelet transform is able to outperform the proposed sensor by minimizing signal reconstruction errors, the proposed bio-inspired sensor achieves similar compression rates but, unlike the others, does so using real-time processing.

  13. Integrating remote sensing techniques at Cuprite, Nevada: AVIRIS, Thematic Mapper, and field spectroscopy

    NASA Technical Reports Server (NTRS)

    Hill, Bradley; Nash, Greg; Ridd, Merrill; Hauff, Phoebe L.; Ebel, Phil

    1992-01-01

    The Cuprite mining district in southwestern Nevada has become a test site for remote sensing studies with numerous airborne scanners and ground sensor data sets collected over the past fifteen years. Structurally, the Cuprite region can be divided into two areas with slightly different alteration and mineralogy. These zones lie on either side of a postulated low-angle structural discontinuity that strikes nearly parallel to US Route 95. Hydrothermal alternation at Cuprite was classified into three major zones: silicified, opalized, and argillized. These alteration types form a bulls-eye pattern east of the highway and are more linear on the west side of the highway making a striking contrast from the air and the imagery. Cuprite is therefore an ideal location for remote sensing research as it exhibits easily identified hydrothermal zoning, is relatively devoid of vegetation, and contains a distinctive spectrally diagnostic mineral suite including the ammonium feldspar buddingtonite, several types of alunite, different jarosites, illite, kaolinite, smectite, dickite, and opal. This present study brings a new dimension to these previous remote sensing and ground data sets compiled for Cuprite. The development of a higher resolution field spectrometer now provides the capability to combine extensive in-situ mineralogical data with a new geologic field survey and detailed Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images. The various data collection methods and the refinement of the integrated techniques are discussed.

  14. Monitoring soil moisture patterns in alpine meadows using ground sensor networks and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Bertoldi, Giacomo; Brenner, Johannes; Notarnicola, Claudia; Greifeneder, Felix; Nicolini, Irene; Della Chiesa, Stefano; Niedrist, Georg; Tappeiner, Ulrike

    2015-04-01

    Soil moisture content (SMC) is a key factor for numerous processes, including runoff generation, groundwater recharge, evapotranspiration, soil respiration, and biological productivity. Understanding the controls on the spatial and temporal variability of SMC in mountain catchments is an essential step towards improving quantitative predictions of catchment hydrological processes and related ecosystem services. The interacting influences of precipitation, soil properties, vegetation, and topography on SMC and the influence of SMC patterns on runoff generation processes have been extensively investigated (Vereecken et al., 2014). However, in mountain areas, obtaining reliable SMC estimations is still challenging, because of the high variability in topography, soil and vegetation properties. In the last few years, there has been an increasing interest in the estimation of surface SMC at local scales. On the one hand, low cost wireless sensor networks provide high-resolution SMC time series. On the other hand, active remote sensing microwave techniques, such as Synthetic Aperture Radars (SARs), show promising results (Bertoldi et al. 2014). As these data provide continuous coverage of large spatial extents with high spatial resolution (10-20 m), they are particularly in demand for mountain areas. However, there are still limitations related to the fact that the SAR signal can penetrate only a few centimeters in the soil. Moreover, the signal is strongly influenced by vegetation, surface roughness and topography. In this contribution, we analyse the spatial and temporal dynamics of surface and root-zone SMC (2.5 - 5 - 25 cm depth) of alpine meadows and pastures in the Long Term Ecological Research (LTER) Area Mazia Valley (South Tyrol - Italy) with different techniques: (I) a network of 18 stations; (II) field campaigns with mobile ground sensors; (III) 20-m resolution RADARSAT2 SAR images; (IV) numerical simulations using the GEOtop hydrological model (Rigon et al

  15. A novel technique for active fibre production

    NASA Astrophysics Data System (ADS)

    Renner-Erny, Ruth; Di Labio, Loredana; Lüthy, Willy

    2007-04-01

    Active fibre devices are conventionally manufactured using MCVD technique. Recently it has been shown that nearly equivalent results can also be obtained with sol-gel technology. Now we present a novel technique allowing simplification of the manufacturing process even more. The required constituents are mixed in the form of dry micro- and nano-sized particles. A silica glass tube forming the future core region of a fibre preform is filled with a powder mix of SiO 2, 1% Nd (as Nd 2O 3) and 10% Al (as Al 2O 3). This tube is mounted in the centre of a larger tube forming the future cladding. The empty space between the two tubes is filled with SiO 2 powder. After preheating, the evacuated preform is drawn to a fibre. A length of 45 cm, cladding-pumped with a diode laser at 808 nm as well as a core-pumped fibre of 5.1 cm length showed laser action between 1.05 and 1.1 μm.

  16. Use of Geophysical and Remote Sensing Techniques During the Comprehensive Test Ban Treaty Organization's Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Labak, Peter; Sussman, Aviva; Rowlands, Aled; Chiappini, Massimo; Malich, Gregor; MacLeod, Gordon; Sankey, Peter; Sweeney, Jerry; Tuckwell, George

    2016-04-01

    The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI). During an OSI, up to 40 inspectors search a 1000km2 inspection area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of an OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams to execute the scenario in which the exercise was played, to those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, a number of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force Group (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, as well as other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection by other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  17. Quantification of Virus Particles Using Nanopore-Based Resistive-Pulse Sensing Techniques

    PubMed Central

    Yang, Lu; Yamamoto, Takatoki

    2016-01-01

    Viruses have drawn much attention in recent years due to increased recognition of their important roles in virology, immunology, clinical diagnosis, and therapy. Because the biological and physical properties of viruses significantly impact their applications, quantitative detection of individual virus particles has become a critical issue. However, due to various inherent limitations of conventional enumeration techniques such as infectious titer assays, immunological assays, and electron microscopic observation, this issue remains challenging. Thanks to significant advances in nanotechnology, nanostructure-based electrical sensors have emerged as promising platforms for real-time, sensitive detection of numerous bioanalytes. In this paper, we review recent progress in nanopore-based electrical sensing, with particular emphasis on the application of this technique to the quantification of virus particles. Our aim is to provide insights into this novel nanosensor technology, and highlight its ability to enhance current understanding of a variety of viruses. PMID:27713738

  18. Application of Remote Sensing Techniques for Appraising Changes in Wildlife Habitat

    NASA Technical Reports Server (NTRS)

    Nelson, H. K.; Klett, A. T.; Johnston, J. E.

    1971-01-01

    An attempt was made to investigate the potential of airborne, multispectral, line scanner data acquisition and computer-implemented automatic recognition techniques for providing useful information about waterfowl breeding habitat in North Dakota. The spectral characteristics of the components of a landscape containing waterfowl habitat can be detected with airborne scanners. By analyzing these spectral characteristics it is possible to identify and map the landscape components through analog and digital processing methods. At the present stage of development multispectral remote sensing techniques are not ready for operational application to surveys of migratory bird habitat and other such resources. Further developments are needed to: (1) increase accuracy; (2) decrease retrieval and processing time; and (3) reduce costs.

  19. Optical sensing of peroxide using ceria nanoparticles via fluorescence quenching technique

    NASA Astrophysics Data System (ADS)

    Shehata, Nader; Samir, Effat; Gaballah, Soha; Salah, Mohammed

    2016-07-01

    This study introduces the application of ceria nanoparticles (NPs) as an optical sensor for peroxide using fluorescence quenching technique. Our synthesized ceria NPs have the ability to adsorb peroxides via its oxygen vacancies. Ceria NPs solution with added variable concentrations of hydrogen peroxides is exposed through near-UV excitation and the detected visible fluorescent emission is found to be at ˜520 nm. The fluorescent intensity peak is found to be reduced with increasing the peroxide concentrations due to static fluorescence quenching technique. The relative intensity change of the visible fluorescent emission has been reduced to more than 50% at added peroxide concentrations up to 10 wt. %. In order to increase ceria peroxides sensing sensitivity, lanthanide elements such as samarium (Sm) are used as ceria NPs dopant. This research work could be applied further in optical sensors of radicals in biomedical engineering and environmental monitoring.

  20. Groundwater resources development in hard rock terrain - an approach using remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Jagannathan; Mani, Arul; Jayaraman, Venkatakrishnan; Manivel, M.

    To demonstrate the capabilities of remote sensing and Geographic Information System (GIS) techniques for groundwater resources development in hard rock terrains, specifically for the demarcation of suitable sites for artificial recharge of groundwater aquifers, a study was carried out in the Kallar Basin, which is located in parts of the Salem and Tiruchirapalli districts, Tamil Nadu, India. Thematic maps defining lithology, lineaments, landforms, landuse, drainage density, thickness of weathered zone, thickness of fractured zone, hydrological soils, and well yield were prepared from data collected by the Indian Remote Sensing Satellite (IRS) -1C and by conventional methods. All the thematic layers were integrated using a GIS-based model developed specifically for this purpose, enabling a map showing artificial recharge zones to be generated. The exact type of artificial recharge structure, eg, check dam, nallabund, gully plugging and percolation pond, suitable for replenishing groundwater was identified by superposing a drainage network map over an artificial recharge zones map. The GIS-based demarcation of artificial zones developed in the study was based on logical conditions and reasoning, so that the same techniques (with appropriate modifications) could be adopted elsewhere, especially in hard rock terrain, where the occurrence of groundwater is restricted and subject to greater complexity.

  1. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  2. Temperature Compensation of Oxygen Sensing Films Utilizing a Dynamic Dual Lifetime Calculation Technique

    PubMed Central

    Collier, Bradley B.; McShane, Michael J.

    2014-01-01

    With advances to chemical sensing, methods for compensation of errors introduced by interfering analytes are needed. In this work, a dual lifetime calculation technique was developed to enable simultaneous monitoring of two luminescence decays. Utilizing a windowed time-domain luminescence approach, the response of two luminophores is separated temporally. The ability of the dual dynamic rapid lifetime determination (DDRLD) approach to determine the response of two luminophores simultaneously was investigated through mathematical modeling and experimental testing. Modeling results indicated that lifetime predictions will be most accurate when the ratio of the lifetimes from each luminophore is at least three and the ratio of intensities is near unity. In vitro experiments were performed using a porphyrin that is sensitive to both oxygen and temperature, combined with a temperature-sensitive inorganic phosphor used for compensation of the porphyrin response. In static experiments, the dual measurements were found to be highly accurate when compared to single-luminophore measurements—statistically equivalent for the long lifetime emission and an average difference of 2% for the short lifetimes. Real-time testing with dynamic windowing was successful in demonstrating dual lifetime measurements and temperature compensation of the oxygen sensitive dye. When comparing the actual oxygen and temperature values with predictions made using a dual calibration approach, an overall difference of less than 1% was obtained. Thus, this method enables rapid, accurate extraction of multiple lifetimes without requiring computationally intense curve fitting, providing a significant advancement toward multi-analyte sensing and imaging techniques. PMID:26566384

  3. U.S. Geological Survey land remote sensing activities

    USGS Publications Warehouse

    Frederick, Doyle G.

    1983-01-01

    The U.S. Geological Survey (USGS) and the Department of the Interior (DOI) were among the earliest to recognize the potential applications of satellite land remote sensing for management of the country's land and water resources…not only as a user but also as a program participant responsible for final data processing, product generation, and data distribution. With guidance from Dr. William T. Pecora, who was the Survey's Director at that time and later Under Secretary of Interior, the Earth Resources Observation Systems (EROS) Program was established in 1966 as a focal point for these activities within the Department. Dr. Pecora was among the few who could envision a role for the Survey and the Department as active participants in programs yet to come--like the Landsat, Magsat, Seasat and, most recently, Shuttle Imaging Radar programs.

  4. On the Estimation of Forest Resources Using 3D Remote Sensing Techniques and Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Karjalainen, Mika; Karila, Kirsi; Liang, Xinlian; Yu, Xiaowei; Huang, Guoman; Lu, Lijun

    2016-08-01

    In recent years, 3D capable remote sensing techniques have shown great potential in forest biomass estimation because of their ability to measure the forest canopy structure, tree height and density. The objective of the Dragon3 forest resources research project (ID 10667) and the supporting ESA young scientist project (ESA contract NO. 4000109483/13/I-BG) was to study the use of satellite based 3D techniques in forest tree height estimation, and consequently in forest biomass and biomass change estimation, by combining satellite data with terrestrial measurements. Results from airborne 3D techniques were also used in the project. Even though, forest tree height can be estimated from 3D satellite SAR data to some extent, there is need for field reference plots. For this reason, we have also been developing automated field plot measurement techniques based on Terrestrial Laser Scanning data, which can be used to train and calibrate satellite based estimation models. In this paper, results of canopy height models created from TerraSAR-X stereo and TanDEM-X INSAR data are shown as well as preliminary results from TLS field plot measurement system. Also, results from the airborne CASMSAR system to measure forest canopy height from P- and X- band INSAR are presented.

  5. Comparison of remote sensing image processing techniques to identify tornado damage areas from Landsat TM data

    USGS Publications Warehouse

    Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.P.

    2008-01-01

    Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and objectoriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. ?? 2008 by MDPI.

  6. Comparison of Remote Sensing Image Processing Techniques to Identify Tornado Damage Areas from Landsat TM Data

    PubMed Central

    Myint, Soe W.; Yuan, May; Cerveny, Randall S.; Giri, Chandra P.

    2008-01-01

    Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and object-oriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. PMID:27879757

  7. Lighter-Than-Air Blimps As a Testbed For River Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Fonstad, M. A.

    2010-12-01

    River science has seen a methodological revolution during the past decade as new platforms, sensors, and processing algorithms have allowed the remote collection of river data with ever-increasing ease, accuracy, precision, and extent. Recently, hand-held, low cost lighter-than-air blimps have been suggested as an important platform for river remote sensing, particularly when high-resolution and low-cost imaging is required. Because blimps are small, inexpensive, and relatively simple to operate in the field, they allow rapid river remote sensing trials, particularly over shorter river reaches. Unlike most airborne or satellite approaches, hand-held blimps can also be used to do very rapid repeat imaging. Field experiments show that such hand-held platforms are not as stable as most airborne and satellite platforms, and they have far reduced lift, allowing only very small and simple camera systems. They are also susceptible to become entangled in near-channel trees, and almost always have the problem of inclusion of the operator somewhere in resulting image. These issues notwithstanding, the simple adjustment of blimp tether length can easily allow adjustment of ground resolution to extremely high levels, and programmable cameras can allow versatility in automatic camera shutter intervals, shutter speeds, and other image constraints. We utilize low-altitude helikite platforms to test the potential for remote sensing (a) well geometrically-controlled measurements of water surface configuration, (b) submerged and near-channel sediment sizes, (c) water depth, and (d) surface velocity. The velocity imaging techniques include the use of natural and artificial particle image velocimetry (PIV) features, with velocity extracted using either the principles of motion blur or from sequential images. In addition, we use these low-cost, mobile platforms to test the brightness and color effects of shadows cast upon the water surface, and use these results to suggest potential

  8. Frequency Based Volcanic Activity Detection through Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Worden, A. K.; Dehn, J.; Webley, P. W.

    2015-12-01

    Satellite remote sensing has proved to offer a useful and relatively inexpensive method for monitoring large areas where field work is logistically unrealistic, and potentially dangerous. Current sensors are able to detect the majority of explosive volcanic activity; those that tend to effect and represent larger scale changes in the volcanic systems, eventually relating to ash producing periods of extended eruptive activity, and effusive activity. As new spaceborne sensors are developed, the ability to detect activity improves so that a system to gauge the frequency of volcanic activity can be used as a useful monitoring tool. Four volcanoes were chosen for development and testing of a method to monitor explosive activity: Stromboli (Italy); Shishaldin and Cleveland (Alaska, USA); and Karymsky (Kamchatka, Russia). Each volcano studied had similar but unique signatures of pre-cursory and eruptive activity. This study has shown that this monitoring tool could be applied to a wide range of volcanoes and still produce useful and robust data. Our method deals specifically with the detection of small scale explosive activity. The method described here could be useful in an operational setting, especially at remote volcanoes that have the potential to impact populations, infrastructure, and the aviation community. A number of important factors will affect the validity of application of this method. They are: (1) the availability of a continuous and continually populated dataset; (2) appropriate and reasonable sensor resolutions; (3) a recorded history of the volcano's previous activity; and, if available, (4) some ground-based monitoring system. We aim to develop the method further to be able to capture and evaluate the frequency of other volcanic processes such as lava flows, phreatomagmatic eruptions and dome growth and collapse. The work shown here has served to illustrate the capability of this method and monitoring tool for use at remote, un-instrumented volcanoes.

  9. Optimal virtual sensing for active noise control in a rigid-walled acoustic duct

    NASA Astrophysics Data System (ADS)

    Petersen, Dick; Zander, Anthony C.; Cazzolato, Ben S.; Hansen, Colin H.

    2005-11-01

    The performance of local active noise control systems is generally limited by the small sizes of the zones of quiet created at the error sensors. This is often exacerbated by the fact that the error sensors cannot always be located close to an observer's ears. Virtual sensing is a method that can move the zone of quiet away from the physical location of the transducers to a desired location, such as an observer's ear. In this article, analytical expressions are derived for optimal virtual sensing in a rigid-walled acoustic duct with arbitrary termination conditions. The expressions are derived for tonal excitations, and are obtained by employing a traveling wave model of a rigid-walled acoustic duct. It is shown that the optimal solution for the virtual sensing microphone weights is independent of the source location and microphone locations. It is also shown that, theoretically, it is possible to obtain infinite reductions at the virtual location. The analytical expressions are compared with forward difference prediction techniques. The results demonstrate that the maximum attenuation, that theoretically can be obtained at the virtual location using forward difference prediction techniques, is expected to decrease for higher excitation frequencies and larger virtual distances.

  10. A comparison of the ethanol sensing properties of α-iron oxide nanostructures prepared via the sol-gel and electrospinning techniques

    NASA Astrophysics Data System (ADS)

    Leonardi, S. G.; Mirzaei, A.; Bonavita, A.; Santangelo, S.; Frontera, P.; Pantò, F.; Antonucci, P. L.; Neri, G.

    2016-02-01

    Haematite (α-Fe2O3) nanostructures were synthesized via a Pechini sol-gel method (PSG) and an electrospinning (ES) technique. Their texture and morphology were investigated by scanning and transmission electron microscopy. α-Fe2O3 nanoparticles were obtained by the PSG method, whereas fibrous structures consisting of interconnected particles were synthesized through the ES technique. The crystallinity of the α-Fe2O3 nanostructures was also studied by means of x-ray diffraction and Raman spectroscopy. Gas-sensing devices were fabricated by printing the synthesized samples on ceramic substrates provided with interdigitated Pt electrodes. The sensors were tested towards low concentrations of ethanol in air in the temperature range (200-400°C). The results show that the α-Fe2O3 nanostructures exhibit somewhat different gas-sensing properties and, interestingly, their sensing behaviour is strongly temperature-dependent. The availability of active sites for oxygen chemisorption and the diffusion of the analyte gas within the sensing layer structure are hypothesized to be the key factors responsible for the different sensing behaviour observed.

  11. A comparison of the ethanol sensing properties of α-iron oxide nanostructures prepared via the sol-gel and electrospinning techniques.

    PubMed

    Leonardi, S G; Mirzaei, A; Bonavita, A; Santangelo, S; Frontera, P; Pantò, F; Antonucci, P L; Neri, G

    2016-02-19

    Haematite (α-Fe2O3) nanostructures were synthesized via a Pechini sol-gel method (PSG) and an electrospinning (ES) technique. Their texture and morphology were investigated by scanning and transmission electron microscopy. α-Fe2O3 nanoparticles were obtained by the PSG method, whereas fibrous structures consisting of interconnected particles were synthesized through the ES technique. The crystallinity of the α-Fe2O3 nanostructures was also studied by means of x-ray diffraction and Raman spectroscopy. Gas-sensing devices were fabricated by printing the synthesized samples on ceramic substrates provided with interdigitated Pt electrodes. The sensors were tested towards low concentrations of ethanol in air in the temperature range (200-400 °C). The results show that the α-Fe2O3 nanostructures exhibit somewhat different gas-sensing properties and, interestingly, their sensing behaviour is strongly temperature-dependent. The availability of active sites for oxygen chemisorption and the diffusion of the analyte gas within the sensing layer structure are hypothesized to be the key factors responsible for the different sensing behaviour observed.

  12. Quantifying the change in soil moisture modeling uncertainty from remote sensing observations using Bayesian inference techniques

    NASA Astrophysics Data System (ADS)

    Harrison, Kenneth W.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Santanello, Joseph A.

    2012-11-01

    Operational land surface models (LSMs) compute hydrologic states such as soil moisture that are needed for a range of important applications (e.g., drought, flood, and weather prediction). The uncertainty in LSM parameters is sufficiently great that several researchers have proposed conducting parameter estimation using globally available remote sensing data to identify best fit local parameter sets. However, even with in situ data at fine modeling scales, there can be significant remaining uncertainty in LSM parameters and outputs. Here, using a new uncertainty estimation subsystem of the NASA Land Information System (LIS) (described herein), a Markov chain Monte Carlo (MCMC) technique is applied to conduct Bayesian analysis for the accounting of parameter uncertainties. The Differential Evolution Markov Chain (DE-MC) MCMC algorithm was applied, for which a new parallel implementation was developed. A case study is examined that builds on previous work in which the Noah LSM was calibrated to passive (L-band) microwave remote sensing estimates of soil moisture for the Walnut Gulch Experimental Watershed. In keeping with prior related studies, the parameters subjected to the analysis were restricted to the soil hydraulic properties (SHPs). The main goal is to estimate SHPs and soil moisture simulation uncertainty before and after consideration of the remote sensing data. The prior SHP uncertainty is based on the original source of the standard SHP lookup tables for the Noah LSM. Conclusions are drawn regarding the value and viability of Bayesian analysis over alternative approaches (e.g., parameter estimation, lookup tables) and further research needs are identified.

  13. Efficient active depth sensing by laser speckle projection system

    NASA Astrophysics Data System (ADS)

    Yin, Xuanwu; Wang, Guijin; Shi, Chenbo; Liao, Qingmin

    2014-01-01

    An active depth sensing approach by laser speckle projection system is proposed. After capturing the speckle pattern with an infrared digital camera, we extract the pure speckle pattern using a direct-global separation method. Then the pure speckles are represented by Census binary features. By evaluating the matching cost and uniqueness between the real-time image and the reference image, robust correspondences are selected as support points. After that, we build a disparity grid and propose a generative graphical model to compute disparities. An iterative approach is designed to propagate the messages between blocks and update the model. Finally, a dense depth map can be obtained by subpixel interpolation and transformation. The experimental evaluations demonstrate the effectiveness and efficiency of our approach.

  14. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques

    PubMed Central

    Gholizadeh, Mohammad Haji; Melesse, Assefa M.; Reddi, Lakshmi

    2016-01-01

    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD). PMID:27537896

  15. Use of remote-sensing techniques to survey the physical habitat of large rivers

    USGS Publications Warehouse

    Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffery W.; Kennedy, Gregory W.; Smith, Stephen B.; Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffrey W.; Kennedy, Gregory W.; Smith, Stephen B.

    1997-01-01

    Remote-sensing techniques that can be used to quantitatively characterize the physical habitat in large rivers in the United States where traditional survey approaches typically used in small- and medium-sized streams and rivers would be ineffective or impossible to apply. The state-of-the-art remote-sensing technologies that we discuss here include side-scan sonar, RoxAnn, acoustic Doppler current profiler, remotely operated vehicles and camera systems, global positioning systems, and laser level survey systems. The use of these technologies will permit the collection of information needed to create computer visualizations and hard copy maps and generate quantitative databases that can be used in real-time mode in the field to characterize the physical habitat at a study location of interest and to guide the distribution of sampling effort needed to address other habitat-related study objectives. This report augments habitat sampling and characterization guidance provided by Meador et al. (1993) and is intended for use primarily by U.S. Geological Survey National Water Quality Assessment program managers and scientists who are documenting water quality in streams and rivers of the United States.

  16. Realization of daily evapotranspiration in arid ecosystems based on remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Bahrawi, Jarbou A.

    2017-03-01

    Daily evapotranspiration is a major component of water resources management plans. In arid ecosystems, the quest for an efficient water budget is always hard to achieve due to insufficient irrigational water and high evapotranspiration rates. Therefore, monitoring of daily evapotranspiration is a key practice for sustainable water resources management, especially in arid environments. Remote sensing techniques offered a great help to estimate the daily evapotranspiration on a regional scale. Existing open-source algorithms proved to estimate daily evapotranspiration comprehensively in arid environments. The only deficiency of these algorithms is the course scale of the used remote sensing data. Consequently, the adequate downscaling algorithm is a compulsory step to rationalize an effective water resources management plan. Daily evapotranspiration was estimated fairly well using an Advance Along-Track Scanner Radiometer (AATSR) in conjunction with (MEdium Resolution Imaging Spectrometer) MERIS data acquired in July 2013 with 1 km spatial resolution and 3 days of temporal resolution under a surface energy balance system (SEBS) model. Results were validated against reference evapotranspiration ground truth values using standardized Penman-Monteith method with R2 of 0.879. The findings of the current research successfully monitor turbulent heat fluxes values estimated from AATSR and MERIS data with a temporal resolution of 3 days only in conjunction with reliable meteorological data. Research verdicts are necessary inputs for a well-informed decision-making processes regarding sustainable water resource management.

  17. Exploring social sensing techniques for measuring rainfall and flood response in urban environments

    NASA Astrophysics Data System (ADS)

    Koole, Wouter; Sips, Robert-Jan; ten Veldhuis, Marie-claire

    2016-04-01

    Extreme rainfall is expected to occur more often in the future as a result of climate change. To be able to react to this, urban water managers need to accurately know vulnerable spots in the city, as well as the potential impact to society. Currently, detailed information about rainfall intensities in cities, and effects of intense storm events on urban societies is lacking. In this study, we will present first results of social sensing experiments to measure rainfall and flooding using a smartphone app. Users of the app are asked to submit rainfall reports by selecting an rainfall class from a pre-defined list of (6) classes, to register time and location and to make a photo of the rainfall. Rainfall photos will be used in a future experiment for automated retrieval of rainfall classes using computer vision techniques. With the experiments we aim to validate rainfall observations made by lay people and to evaluate factors that influence the willingness of users to contribute observations. The results show that users consistently distinguish heavy and extreme rainfall from drizzle and mild rainfall, but have difficulty in making more detailed distinctions. The main factor driving willingness to contribute to the social rainfall sensing experiments is the perceived usefulness of rainfall reporting.

  18. Nondestructive, in-process inspection of inertia friction welding : an investigation into a new sensing technique.

    SciTech Connect

    Hartman, D. A.; Cola, M. J.; Dave, V. R.; Dozhier, N. G.; Carpenter, R. W.

    2002-01-01

    This paper investigates the capabilities of a new sensor for in-process monitoring of quality during friction welding. The non-contact sensor is composed of microphones that are mounted in an aluminum ring which surrounds the weld joint. The sensor collects the acoustical energy (in the form of sound pressure) that is emitted during the plastic deformation and phase transformations (if applicable) in friction welding processes. The focus in this preliminary investigation is to search for and identify features within the acoustical emission that are indicative of bond quality. Bar-to-bar inertia friction welding (one form of friction welding) of copper to 304L stainless steel is used in this proof-of-concept study. This material combination exhibits only marginal weldability and is ideally suited for validating the capabilities of this new sensing technique. A probabilistic neural network is employed in this work to analyze the acoustical emission's frequency spectrum in an attempt to classify acceptable, conditional, and unacceptable welds. Our preliminary findings indicate that quality-based process features do exist within the frequency spectrum of the acoustical signature. The results from this analysis are presented. Future work in improving the sensing and interpretation of the data is discussed in an effort to develop a robust method of quality-based, in-process monitoring of friction welds.

  19. Remote sensing of row crop structure and component temperatures using directional radiometric temperatures and inversion techniques

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1983-01-01

    A physically based sensor response model of a row crop was used as the mathematical framework from which several inversion strategies were tested for extracting row structure information and component temperatures using a series of sensor view angles. The technique was evaluated on ground-based radiometric thermal infrared data of a cotton row crop that covered 48 percent of the ground in the vertical projection. The results showed that the accuracies of the predicted row heights and widths, vegetation temperatures, and soil temperatures of the cotton row crop were on the order of 5 cm, 1 deg, and 2 deg C, respectively. The inversion techniques can be applied to directional sensor data from aircraft platforms and even space platforms if the effects of atmospheric absorption and emission can be corrected. In theory, such inversion techniques can be applied to a wide variety of vegetation types and thus can have significant implications for remote sensing research and applications in disciplines that deal with incomplete vegetation canopies.

  20. Noninvasive glucose sensing in scattering media using OCT, PAS, and TOF techniques

    NASA Astrophysics Data System (ADS)

    Alarousu, Erkki; Hast, Jukka T.; Kinnunen, Matti T.; Kirillin, Mikhail Y.; Myllyla, Risto A.; Plucinski, Jerzy; Popov, Alexey P.; Priezzhev, Alexander V.; Prykari, Tuukka; Saarela, Juha; Zhao, Zuomin

    2004-08-01

    In this paper, optical measurement techniques, which enable non-invasive measurement, are superimposed to glucose sensing in scattering media. Used measurement techniques are Optical Coherence Tomography (OCT), Photoacoustic spectroscopy (PAS) and laser pulse Time-of-Flight (TOF) measurement using a streak camera. In parallel with measurements, a Monte-Carlo (MC) simulation models have been developed. Experimental in vitro measurements were performed using Intralipid fat emulsion as a tissue simulating phantom for OCT and TOF measurements. In PAS measurements, a pork meat was used as a subject but also preliminary in vivo measurements were done. OCT measurement results show that the slope of the OCT signal's envelope changes as a function of glucose content in the scattering media. TOF measurements show that the laser pulse full width of half maximum (FWHM) changes a little as function of glucose content. An agreement with MC-simulations and measurements with Intralipid was also found. Measurement results of PAS technique show that changes in glucose content in the pork meat tissue can be measured. In vivo measurements with a human volunteer show that other factors such as physiological change, blood circulation and body temperature drift may interfere the PA response of glucose.

  1. Realizing parameterless automatic classification of remote sensing imagery using ontology engineering and cyberinfrastructure techniques

    NASA Astrophysics Data System (ADS)

    Sun, Ziheng; Fang, Hui; Di, Liping; Yue, Peng

    2016-09-01

    classification activities. Currently, the approach is used only on high resolution optical three-band remote sensing imagery. The feasibility using the approach on other kinds of remote sensing images or involving additional bands in classification will be studied in future.

  2. Feasibility of estimating rice planting area of hilly region in southern China using remote sensing technique

    NASA Astrophysics Data System (ADS)

    Lai, Geying; Yang, Xingwei

    1998-08-01

    The objective of the study (Zhejiang province as study area) was to estimate rice planting area of hilly region in southern part of China by remote sensing technique with NOAA/AVHRR data. The research contents mainly concerned contrast tests on practical approaches, both digital elevation model (DEM) and digital slope model (DSM) derived from the digital relief map were used for the purpose of improving the classification accuracy of AVHRR imagery in large-area hilly region. The results indicated that the accuracy of maximum-likelihood (MLH) classification could satisfy the professional requirements of estimating rice planting area and fuzzy supervised classification based on unmixing AVHRR imagery has better classification accuracy and stability than MLH. In addition, the results through using both DEM and DSM as ancillary categorization data suggests DSM may improve the results of extracting paddy field signatures from AVHRR, particularly may improve the spatial accuracy, while DEM contribute nothing to improve the accuracy mentioned above.

  3. Formulaton of a general technique for predicting pneumatic attenuation errors in airborne pressure sensing devices

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.

    1988-01-01

    Presented is a mathematical model, derived from the Navier-Stokes equations of momentum and continuity, which may be accurately used to predict the behavior of conventionally mounted pneumatic sensing systems subject to arbitrary pressure inputs. Numerical techniques for solving the general model are developed. Both step and frequency response lab tests were performed. These data are compared against solutions of the mathematical model. The comparisons show excellent agreement. The procedures used to obtain the lab data are described. In-flight step and frequency response data were obtained. Comparisons with numerical solutions of the mathematical model show good agreement. Procedures used to obtain the flight data are described. Difficulties encountered with obtaining the flight data are discussed.

  4. Experimental Verification of Dispersed Fringe Sensing as a Segment Phasing Technique using the Keck Telescope

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Ohara, Catherine M.; Chanan, Gary; Troy, Mitch; Redding, Dave C.

    2004-01-01

    Dispersed Fringe Sensing (DFS) is an efficient and robust method for coarse phasing of segmented primary mirrors (from a quarter of a wavelength up to the depth of focus of a single segment, typically several tens of microns). Unlike phasing techniques currently used for ground-based segmented telescopes; this makes it particularly well-suited to the phasing of space-borne segmented telescopes, such as the James Webb Space Telescopes (JWST). In this work we validate DFS by using it to measure the pistons of the segments of one of the Keck telescopes; the results agree with those of the Shack-Hartmann based phasing scheme currently in use at Keck to within 2% over a range of initial piston errors of +/-16 microns.

  5. Formulation of a General Technique for Predicting Pneumatic Attenuation Errors in Airborne Pressure Sensing Devices

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.

    1988-01-01

    Presented is a mathematical model derived from the Navier-Stokes equations of momentum and continuity, which may be accurately used to predict the behavior of conventionally mounted pneumatic sensing systems subject to arbitrary pressure inputs. Numerical techniques for solving the general model are developed. Both step and frequency response lab tests were performed. These data are compared with solutions of the mathematical model and show excellent agreement. The procedures used to obtain the lab data are described. In-flight step and frequency response data were obtained. Comparisons with numerical solutions of the math model show good agreement. Procedures used to obtain the flight data are described. Difficulties encountered with obtaining the flight data are discussed.

  6. Comparison of multispectral remote-sensing techniques for monitoring subsurface drain conditions. [Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Goettelman, R. C.; Grass, L. B.; Millard, J. P.; Nixon, P. R.

    1983-01-01

    The following multispectral remote-sensing techniques were compared to determine the most suitable method for routinely monitoring agricultural subsurface drain conditions: airborne scanning, covering the visible through thermal-infrared (IR) portions of the spectrum; color-IR photography; and natural-color photography. Color-IR photography was determined to be the best approach, from the standpoint of both cost and information content. Aerial monitoring of drain conditions for early warning of tile malfunction appears practical. With careful selection of season and rain-induced soil-moisture conditions, extensive regional surveys are possible. Certain locations, such as the Imperial Valley, Calif., are precluded from regional monitoring because of year-round crop rotations and soil stratification conditions. Here, farms with similar crops could time local coverage for bare-field and saturated-soil conditions.

  7. Application of remote sensing techniques to the geology of the bonanza volcanic center

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.

    1973-01-01

    A program is reported for evaluating remote sensing as an aid to geologic mapping for the past four years. Data tested in this evaluation include color and color infrared photography, multiband photography, low sun-angle photography, thermal infrared scanner imagery, and side-looking airborne radar. The relative utility of color and color infrared photography was tested as it was used to refine geologic maps in previously mapped areas, as field photos while mapping in the field, and in making photogeologic maps prior to field mapping. The latter technique served as a test of the maximum utility of the photography. In this application the photography was used successfully to locate 75% of all faults in a portion of the geologically complex Bonanza volcanic center and to map and correctly identify 93% of all Quaternary deposits and 62% of all areas of Tertiary volcanic outcrop in the area.

  8. Remote sensing of temperature profiles in vegetation canopies using multiple view angles and inversion techniques

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1981-01-01

    A mathematical method is presented which allows the determination of vertical temperature profiles of vegetation canopies from multiple sensor view angles and some knowledge of the vegetation geometric structure. The technique was evaluated with data from several wheat canopies at different stages of development, and shown to be most useful in the separation of vegetation and substrate temperatures with greater accuracy in the case of intermediate and dense vegetation canopies than in sparse ones. The converse is true for substrate temperatures. Root-mean-square prediction accuracies of temperatures for intermediate-density wheat canopies were 1.8 C and 1.4 C for an exact and an overdeterminate system, respectively. The findings have implication for remote sensing research in agriculture, geology or other earth resources disciplines.

  9. A Study of Flood Evacuation Center Using GIS and Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Mustaffa, A. A.; Rosli, M. F.; Abustan, M. S.; Adib, R.; Rosli, M. I.; Masiri, K.; Saifullizan, B.

    2016-07-01

    This research demonstrated the use of Remote Sensing technique and GIS to determine the suitability of an evacuation center. This study was conducted in Batu Pahat areas that always hit by a series of flood. The data of Digital Elevation Model (DEM) was obtained by ASTER database that has been used to delineate extract contour line and elevation. Landsat 8 image was used for classification purposes such as land use map. Remote Sensing incorporate with GIS techniques was used to determined the suitability location of the evacuation center from contour map of flood affected areas in Batu Pahat. GIS will calculate the elevation of the area and information about the country of the area, the road access and percentage of the affected area. The flood affected area map may provide the suitability of the flood evacuation center during the several levels of flood. The suitability of evacuation centers can be determined based on several criteria and the existing data of the evacuation center will be analysed. From the analysis among 16 evacuation center listed, there are only 8 evacuation center suitable for the usage during emergency situation. The suitability analysis was based on the location and the road access of the evacuation center toward the flood affected area. There are 10 new locations with suitable criteria of evacuation center proposed on the study area to facilitate the process of rescue and evacuating flood victims to much safer and suitable locations. The results of this study will help in decision making processes and indirectly will help organization such as fire-fighter and the Department of Social Welfare in their work. Thus, this study can contribute more towards the society.

  10. Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques.

    PubMed

    Yadav, Bechu K V; Nandy, S

    2015-05-01

    Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.

  11. Inversion Techniques for Retrieving Detailed Aerosol Properties from Remote Sensing Observations: Achievements and Perspectives

    NASA Astrophysics Data System (ADS)

    Dubovik, O.

    2010-12-01

    The ability of aerosol particles to interact strongly with electromagnetic radiation makes aerosol one of most climatically important atmospheric component. Remote sensing using the same ability for characterizing properties of atmospheric aerosol is probably the most adequate observational approach for accessing aerosol effect in climatic studies. Indeed, the satellite remote sensing is unique technique allowing monitoring of time variability of the aerosol at regional and global scales. Compare to in situ and laboratory measurements, remote methods do not use aerosol sampling and allow accessing the properties of unperturbed ambient aerosol in the atmospheres. However, interpretation of the remote sensing observations involves data inversion that, in practice, often appears to be a sophisticated procedure leading to rather ambiguous results. Numerous publications offer a wide diversity of approaches suggesting somewhat different inversion methods. Such uncertainty in methodological guidance leads to excessive dependence of retrieval algorithms on the personalized input and preferences of the developer. This presentation highlights a continues effort on developing a concept clarifying the differences between various methods and outlining unified principles addressing such important aspects of inversion optimization as accounting for errors in the data used, inverting the data with different levels of accuracy, accounting for a priori and ancillary information, estimating retrieval errors, etc. The developed concept uses the principles of statistical estimation and suggests a generalized multi-term Least Square type formulation that complementarily unites advantages of a variety of practical inversion approaches, such as Phillips-Tikhonov-Twomey constrained inversion, Kalman filter, Newton-Gauss and Levenberg-Marquardt iterations, optimal estimation, etc. The concept will be demonstrated by successful implementations in several challenging aerosol remote sensing

  12. Advancements in sensing and perception using structured lighting techniques :an LDRD final report.

    SciTech Connect

    Novick, David Keith; Padilla, Denise D.; Davidson, Patrick A. Jr.; Carlson, Jeffrey J.

    2005-09-01

    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Advancements in Sensing and Perception using Structured Lighting Techniques''. There is an ever-increasing need for robust, autonomous ground vehicles for counterterrorism and defense missions. Although there has been nearly 30 years of government-sponsored research, it is undisputed that significant advancements in sensing and perception are necessary. We developed an innovative, advanced sensing technology for national security missions serving the Department of Energy, the Department of Defense, and other government agencies. The principal goal of this project was to develop an eye-safe, robust, low-cost, lightweight, 3D structured lighting sensor for use in broad daylight outdoor applications. The market for this technology is wide open due to the unavailability of such a sensor. Currently available laser scanners are slow, bulky and heavy, expensive, fragile, short-range, sensitive to vibration (highly problematic for moving platforms), and unreliable for outdoor use in bright sunlight conditions. Eye-safety issues are a primary concern for currently available laser-based sensors. Passive, stereo-imaging sensors are available for 3D sensing but suffer from several limitations : computationally intensive, require a lighted environment (natural or man-made light source), and don't work for many scenes or regions lacking texture or with ambiguous texture. Our approach leveraged from the advanced capabilities of modern CCD camera technology and Center 6600's expertise in 3D world modeling, mapping, and analysis, using structured lighting. We have a diverse customer base for indoor mapping applications and this research extends our current technology's lifecycle and opens a new market base for outdoor 3D mapping. Applications include precision mapping, autonomous navigation, dexterous manipulation, surveillance and

  13. Remote Sensing Techniques as a Tool for Geothermal Exploration: the Case Study of Blawan Ijen, East Java

    NASA Astrophysics Data System (ADS)

    Pasqua, Claudio; Verdoya, Massimo

    2014-05-01

    The use of remote sensing techniques in the initial phase of geothermal surveys represents a very cost-effective tool, which can contribute to a successful exploration program. Remote sensing allows the analysis of large surfaces and can lead to a significant improvement of the identification of surface thermal anomalies, through the use of thermal infra red data (TIR), as well as of zones of widespread and recent faulting, which can reflect larger permeability of geological formations. Generally, the fractures analysis from remote sensing can be fundamental to clarify the structural setting of an area. In a regional volcanic framework, it can also help in defining the spatial and time evolution of the different volcanic apparatuses. This paper describes the main results of a remote sensing study, conducted in the Blawan-Ijen volcanic area (East Java), which is at present subject of geothermal exploration. This area is characterized by the presence of a 15 km wide caldera originated by a collapsed strato volcano. This event was followed by the emplacement of several peri-calderic and intra-calderic volcanoes, among which G. Raung, as testified by the frequent occurrence of shallow earthquakes and by H2S emission and sulfur deposition, and G. Kawah Ijen, occurring at the eastern rim of the caldera, are still active. The summit of G. Kawah Ijen volcano consists of two interlocking craters forming an E-W elongated depression filled up by a hyperacidic lake. Along the southern shore of the lake, a small rhyolitic dome occurs, which exhibits strong fumarolic activity with temperature of as much as 600 °C. We performed an analysis based on the combined interpretation of Landsat ETM+7, Aster and Synthetic Aperture Radar (SAR) images, focused on the identification of subsurface high permeability zones. The main trends of the linear features as derived from the fractures analysis, as well as their relation with the distribution of volcanic centres, were identified

  14. Active sensing in the categorization of visual patterns

    PubMed Central

    Yang, Scott Cheng-Hsin; Lengyel, Máté; Wolpert, Daniel M

    2016-01-01

    Interpreting visual scenes typically requires us to accumulate information from multiple locations in a scene. Using a novel gaze-contingent paradigm in a visual categorization task, we show that participants' scan paths follow an active sensing strategy that incorporates information already acquired about the scene and knowledge of the statistical structure of patterns. Intriguingly, categorization performance was markedly improved when locations were revealed to participants by an optimal Bayesian active sensor algorithm. By using a combination of a Bayesian ideal observer and the active sensor algorithm, we estimate that a major portion of this apparent suboptimality of fixation locations arises from prior biases, perceptual noise and inaccuracies in eye movements, and the central process of selecting fixation locations is around 70% efficient in our task. Our results suggest that participants select eye movements with the goal of maximizing information about abstract categories that require the integration of information from multiple locations. DOI: http://dx.doi.org/10.7554/eLife.12215.001 PMID:26880546

  15. Irrigated rice area estimation using remote sensing techniques: Project's proposal and preliminary results. [Rio Grande do Sul, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Deassuncao, G. V.; Moreira, M. A.; Novaes, R. A.

    1984-01-01

    The development of a methodology for annual estimates of irrigated rice crop in the State of Rio Grande do Sul, Brazil, using remote sensing techniques is proposed. The project involves interpretation, digital analysis, and sampling techniques of LANDSAT imagery. Results are discussed from a preliminary phase for identifying and evaluating irrigated rice crop areas in four counties of the State, for the crop year 1982/1983. This first phase involved just visual interpretation techniques of MSS/LANDSAT images.

  16. Mapping Tamarix: New techniques for field measurements, spatial modeling and remote sensing

    NASA Astrophysics Data System (ADS)

    Evangelista, Paul H.

    peak growing months. These studies demonstrate that new techniques can further our understanding of tamarisk's impacts on ecosystem processes, predict potential distribution and new invasions, and improve our ability to detect occurrence using remote sensing techniques. Collectively, the results of my studies may increase our ability to map tamarisk distributions and better quantify its impacts over multiple spatial and temporal scales.

  17. Recent Developments in Active and Passive Distributed Temperature Sensing for Soil Moisture Monitoring

    NASA Astrophysics Data System (ADS)

    Steele-Dunne, S. C.; Dong, J.; Hoes, O.; Van De Giesen, N.; Sayde, C.; Ochsner, T. E.; Selker, J. S.

    2015-12-01

    In this presentation we will review recent developments in both active and passive Distributed Temperature Sensing (DTS) for soil moisture monitoring. DTS involves using fiber-optic cables to measure temperature at sub-meter resolution along cables up to several kilometers in length. Soil thermal properties depend on soil moisture. Hence, temperature variations either in response to externally-applied heating (active) or the response to net radiation (passive) can be monitored and used to infer soil moisture. DTS occupies a unique measurement niche, potentially providing soil moisture information at sub-meter resolution over extents on the order of km at sub-daily time steps. It complements observations from point sensors to other innovative measurement techniques like cosmic ray neutron detection methods and GPS reflectometry. DTS is being developed as a tool for the validation of soil moisture observations from remote sensing and for hydrological field investigations. Here, we will discuss both technological and theoretical advances in active and passive DTS for soil moisture monitoring. We will present data from new installations in the Netherlands and the USA to illustrate recent developments. In particular, we will focus on the value of combining temperature observations from DTS with physical models using data assimilation. In addition to yielding improved soil moisture and temperature profile estimates, recent research has shown the potential to also derive information on the soil thermal and hydraulic properties. We will conclude by outlining the current challenges, with particular emphasis on combining active and passive DTS.

  18. Temporal Signatures of Taste Quality Driven by Active Sensing

    PubMed Central

    Sun, Chengsan; Hill, David L.

    2014-01-01

    Animals actively acquire sensory information from the outside world, with rodents sniffing to smell and whisking to feel. Licking, a rapid motor sequence used for gustation, serves as the primary means of controlling stimulus access to taste receptors in the mouth. Using a novel taste-quality discrimination task in head-restrained mice, we measured and compared reaction times to four basic taste qualities (salt, sour, sweet, and bitter) and found that certain taste qualities are perceived inherently faster than others, driven by the precise biomechanics of licking and functional organization of the peripheral gustatory system. The minimum time required for accurate perception was strongly dependent on taste quality, ranging from the sensory-motor limits of a single lick (salt, ∼100 ms) to several sampling cycles (bitter, >500 ms). Further, disruption of sensory input from the anterior tongue significantly impaired the speed of perception of some taste qualities, with little effect on others. Overall, our results show that active sensing may play an important role in shaping the timing of taste-quality representations and perception in the gustatory system. PMID:24872546

  19. Active contour segmentation for hyperspectral oil spill remote sensing

    NASA Astrophysics Data System (ADS)

    Song, Mei-ping; Chang, Ming; An, Ju-bai; Huang, Jian; Lin, Bin

    2013-08-01

    Oil spills could occur in many conditions, which results in pollution of the natural resources, marine environment and economic health of the area. Whenever we need to identify oil spill, confirm the location or get the shape and acreage of oil spill, we have to get the edge information of oil slick images firstly. Hyperspectral remote sensing imaging is now widely used to detect oil spill. Active Contour Models (ACMs) is a widely used image segmentation method that utilizes the geometric information of objects within images. Region based models are less sensitive to noise and give good performance for images with weak edges or without edges. One of the popular Region based ACMs, active contours without edges Models, is implemented by Chan-Vese. The model has the property of global segmentation to segment all the objects within an image irrespective of the initial contour. In this paper, we propose an improved CV model, which can perform well in the oil spill hyper-spectral image segmentation. The energy function embeds spectral and spatial information, introduces the vector edge stopping function, and constructs a novel length term. Results of the improved model on airborne hyperspectral oil spill images show that it improves the ability of distinguishing between oil spills and sea water, as well as the capability of noise reduction.

  20. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique

    NASA Astrophysics Data System (ADS)

    Zhao, Shengmei; Wang, Le; Liang, Wenqiang; Cheng, Weiwen; Gong, Longyan

    2015-10-01

    In this paper, we propose a high performance optical encryption (OE) scheme based on computational ghost imaging (GI) with QR code and compressive sensing (CS) technique, named QR-CGI-OE scheme. N random phase screens, generated by Alice, is a secret key and be shared with its authorized user, Bob. The information is first encoded by Alice with QR code, and the QR-coded image is then encrypted with the aid of computational ghost imaging optical system. Here, measurement results from the GI optical system's bucket detector are the encrypted information and be transmitted to Bob. With the key, Bob decrypts the encrypted information to obtain the QR-coded image with GI and CS techniques, and further recovers the information by QR decoding. The experimental and numerical simulated results show that the authorized users can recover completely the original image, whereas the eavesdroppers can not acquire any information about the image even the eavesdropping ratio (ER) is up to 60% at the given measurement times. For the proposed scheme, the number of bits sent from Alice to Bob are reduced considerably and the robustness is enhanced significantly. Meantime, the measurement times in GI system is reduced and the quality of the reconstructed QR-coded image is improved.

  1. Application of remote sensing techniques to hydrography with emphasis on bathymetry. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Meireles, D. S.

    1980-01-01

    Remote sensing techniques are utilized for the determination of hydrographic characteristics, with emphasis in bathymetry. Two sensor systems were utilized: the Metric Camera Wild RC-10 and the Multispectral Scanner of LANDSAT Satellite (MSS-LANDSAT). From photographs of the metric camera, data of photographic density of points with known depth are obtained. A correlation between the variables density x depth is calculated through a regression straight line. From this line, the depth of points with known photographic density is determined. The LANDSAT MSS images are interpreted automatically in the Iterative Multispectral Analysis System (I-100) with the obtention of point subareas with the same gray level. With some simplifications done, it is assumed that the depth of a point is directly related with its gray level. Subareas with points of the same depth are then determined and isobathymetric curves are drawn. The coast line is obtained through the sensor systems already mentioned. Advantages and limitations of the techniques and of the sensor systems utilized are discussed and the results are compared with ground truth.

  2. Urban Mapping and Growth Prediction using Remote Sensing and GIS Techniques, Pune, India

    NASA Astrophysics Data System (ADS)

    Sivakumar, V.

    2014-11-01

    This study aims to map the urban area in and around Pune region between the year 1991 and 2010, and predict its probable future growth using remote sensing and GIS techniques. The Landsat TM and ETM+ satellite images of 1991, 2001 and 2010 were used for analyzing urban land use class. Urban class was extracted / mapped using supervised classification technique with maximum likelihood classifier. The accuracy assessment was carried out for classified maps. The achieved overall accuracy and Kappa statistics were 86.33 % & 0.76 respectively. Transition probability matrix and area change were obtained using different classified images. A plug-in was developed in QGIS software (open source) based on Markov Chain model algorithm for predicting probable urban growth for the future year 2021. Based on available data set, the result shows that urban area is expected to grow much higher in the year 2021 when compared to 2010. This study provides an insight into understanding of urban growth and aids in subsequent infrastructure planning, management and decision-making.

  3. Geobotanical discrimination of ultramafic parent materials An evaluation of remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Morrissey, L. A.; Horn, E. M.

    1984-01-01

    Color and color infrared aerial photography and imagery acquired from a Daedalus DEI-1260 multispectral airborne scanner were employed in an investigation to discriminate ultramafic rock types in a test site in southwest Oregon. An analysis of the relationships between vegetation characteristics and parent materials was performed using a vegetation classification and map developed for the project, lithologic information derived from published geologic maps of the region, and terrain information gathered in the field. Several analytical methods, including visual image analysis, band ratioing, principal components analysis, and contrast enhancement and subsequent color composite generation were used in the investigation. There was a close correspondence between vegetation types and major rock types. These were readily discriminated by the remote sensing techniques. It was found that ultramafic rock types were separable from non-ultramafic rock types and serpentine was distinguishable from non-serpentinized peridotite. Further investigations involving spectroradiometric and digital classification techniques are being performed to further identify rock types and to discriminate chromium and nickel-bearing rock types.

  4. A cell-microelectronic sensing technique for profiling cytotoxicity of chemicals.

    PubMed

    Boyd, Jessica M; Huang, Li; Xie, Li; Moe, Birget; Gabos, Stephan; Li, Xing-Fang

    2008-05-12

    A cell-microelectronic sensing technique is developed for profiling chemical cytotoxicity and is used to study different cytotoxic effects of the same class chemicals using nitrosamines as examples. This technique uses three human cell lines (T24 bladder, HepG2 liver, and A549 lung carcinoma cells) and Chinese hamster ovary (CHO-K1) cells in parallel as the living components of the sensors of a real-time cell electronic sensing (RT-CES) method for dynamic monitoring of chemical toxicity. The RT-CES technique measures changes in the impedance of individual microelectronic wells that is correlated linearly with changes in cell numbers during t log phase of cell growth, thus allowing determination of cytotoxicity. Four nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiphenylamine (NDPhA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were examined and unique cytotoxicity profiles were detected for each nitrosamine. In vitro cytotoxicity values (IC(50)) for NDPhA (ranging from 0.6 to 1.9 mM) were significantly lower than the IC(50) values for the well-known carcinogen NDMA (15-95 mM) in all four cell lines. T24 cells were the most sensitive to nitrosamine exposure among the four cell lines tested (T24>CHO>A549>HepG2), suggesting that T24 may serve as a new sensitive model for cytotoxicity screening. Cell staining results confirmed that administration of the IC(50) concentration from the RT-CES experiments inhibited cell growth by 50% compared to the controls, indicating that the RT-CES method provides reliable measures of IC(50). Staining and cell-cycle analysis confirmed that NDPhA caused cell-cycle arrest at the G0/G1 phase, whereas NDMA did not disrupt the cell cycle but induced cell death, thus explaining the different cytotoxicity profiles detected by the RT-CES method. The parallel cytotoxicity profiling of nitrosamines on the four cell lines by the RT-CES method led to the discovery of the unique cytotoxicity of NDPhA causing cell

  5. Predicting eruptions from precursory activity using remote sensing data hybridization

    NASA Astrophysics Data System (ADS)

    Reath, K. A.; Ramsey, M. S.; Dehn, J.; Webley, P. W.

    2016-07-01

    Many volcanoes produce some level of precursory activity prior to an eruption. This activity may or may not be detected depending on the available monitoring technology. In certain cases, precursors such as thermal output can be interpreted to make forecasts about the time and magnitude of the impending eruption. Kamchatka (Russia) provides an ideal natural laboratory to study a wide variety of eruption styles and precursory activity prior to an eruption. At Bezymianny volcano for example, a clear increase in thermal activity commonly occurs before an eruption, which has allowed predictions to be made months ahead of time. Conversely, the eruption of Tolbachik volcano in 2012 produced no discernable thermal precursors before the large scale effusive eruption. However, most volcanoes fall between the extremes of consistently behaved and completely undetectable, which is the case with neighboring Kliuchevskoi volcano. This study tests the effectiveness of using thermal infrared (TIR) remote sensing to track volcanic thermal precursors using data from both the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Advanced Very High Resolution Radiometer (AVHRR) sensors. It focuses on three large eruptions that produced different levels and durations of effusive and explosive behavior at Kliuchevskoi. Before each of these eruptions, TIR spaceborne sensors detected thermal anomalies (i.e., pixels with brightness temperatures > 2 °C above the background temperature). High-temporal, low-spatial resolution (i.e., ~ hours and 1 km) AVHRR data are ideal for detecting large thermal events occurring over shorter time scales, such as the hot material ejected following strombolian eruptions. In contrast, high-spatial, low-temporal resolution (i.e., days to weeks and 90 m) ASTER data enables the detection of much lower thermal activity; however, activity with a shorter duration will commonly be missed. ASTER and AVHRR data are combined to track low

  6. Specific quorum sensing-disrupting activity (A QSI) of thiophenones and their therapeutic potential.

    PubMed

    Yang, Qian; Scheie, Anne Aamdal; Benneche, Tore; Defoirdt, Tom

    2015-12-09

    Disease caused by antibiotic resistant pathogens is becoming a serious problem, both in human and veterinary medicine. The inhibition of quorum sensing, bacterial cell-to-cell communication, is a promising alternative strategy to control disease. In this study, we determined the quorum sensing-disrupting activity of 20 thiophenones towards the quorum sensing model bacterium V. harveyi. In order to exclude false positives, we propose a new parameter (AQSI) to describe specific quorum sensing activity. AQSI is defined as the ratio between inhibition of quorum sensing-regulated activity in a reporter strain and inhibition of the same activity when it is independent of quorum sensing. Calculation of AQSI allowed to exclude five false positives, whereas the six most active thiophenones (TF203, TF307, TF319, TF339, TF342 and TF403) inhibited quorum sensing at 0.25 μM, with AQSI higher than 10. Further, we determined the protective effect and toxicity of the thiophenones in a highly controlled gnotobiotic model system with brine shrimp larvae. There was a strong positive correlation between the specific quorum sensing-disrupting activity of the thiophenones and the protection of brine shrimp larvae against pathogenic V. harveyi. Four of the most active quorum sensing-disrupting thiophenones (TF 203, TF319, TF339 and TF342) were considered to be promising since they have a therapeutic potential of at least 10.

  7. Technique for inferring sizes of stellar-active regions

    SciTech Connect

    Dobson-Hockey, A.K.; Radick, R.R.

    1986-01-01

    Inspection of spectroheliograms showing large, well-developed active regions generally show the sunspots to lead the associated plage, in the sense of the solar rotation. Measurements have been made from spectroheliograms of spot-plage offsets and compared with nearly contemporaneous integrated disk observations. Larger active regions generally show larger spot leads; however, information regarding active-region sizes and spot-plage offsets is not readily obtainable form stellar-type observations of the Sun.

  8. Transfer of microstructure pattern of CNTs onto flexible substrate using hot press technique for sensing applications

    SciTech Connect

    Mishra, Prabhash; Harsh

    2013-08-01

    Graphical abstract: - Highlights: • Successfully transfer of microstructure patterned CNTs on PET substrate. • Demonstrate as resistor-based NH{sub 3} gas sensor in the sub-ppm range. • Excellent photodetector having instantaneous response and recovery characteristics. • An effective technique to grow and produce flexible electronic device. - Abstract: In this work, we report the successful and efficient transfer process of two- dimensional (2-D) vertically aligned carbon nanotubes (CNTs) onto polyethylene terephthalate (PET) substrate by hot pressing method with an aim to develop flexible sensor devices. Carbon nanotubes are synthesized by cold wall thermal chemical vapor deposition using patterned SiO{sub 2} substrate under low pressure. The height of the pattern of CNTs is controlled by reaction time. The entire growth and transfer process is carried out within 30 min. Strong adhesion between the nanotube and polyethylene terephthalate substrate was observed in the post-transferred case. Raman spectroscopy and scanning electron microscope (SEM) studies are used to analyze the microstructure of carbon nanotube film before and after hot pressing. This technique shows great potential for the fabrication of flexible sensing devices. We report for the first time, the application of patterned microstructure developed by this technique in the development of gas sensor and optoelectronic device. Surface resistive mode is used for detection of ammonia (NH{sub 3}) gas in the sub-ppm range. An impressive photoconducting response is also observed in the visible wavelength. The reproducibility of the sample was checked and the results indicate the possibility of use of carbon nanotube as gas sensor, photodetector, CCDs etc.

  9. Yangon River Geomorphology Identification and its Enviromental Imapacts Analsysi by Optical and Radar Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Lwin, A.; Khaing, M. M.

    2012-07-01

    The Yangon river, also known as the Rangoon river, is about 40 km long (25miles), and flows from southern Myanmar as an outlet of the Irrawaddy (Ayeyarwady) river into the Ayeyarwady delta. The Yangon river drains the Pegu Mountains; both the Yangon and the Pathein rivers enter the Ayeyarwady at the delta. Fluvial geomorphology is based primarily on rivers of manageable dimensions. The emphasis is on geomorphology, sedimentology of Yangon river and techniques for their identification and management. Present techniques such as remote sensing have made it easier to investigate and interpret in details analysis of river geomorphology. In this paper, attempt has been made the complicated issues of geomorphology, sedimentation patterns and management of river system and evolution studied. The analysis was carried out for the impact of land use/ land cover (LULC) changes on stream flow patterns. The hydrologic response to intense, flood producing rainfall events bears the signatures of the geomorphic structure of the channel network and of the characteristic slope lengths defining the drainage density of the basin. The interpretation of the hydrologic response as the travel time distribution of a water particle randomly injected in a distributed manner across the landscape inspired many geomorphic insights. In 2008, Cyclone Nargis was seriously damaged to mangrove area and its biodiversity system in and around of Yangon river terraces. A combination of digital image processing techniques was employed for enhancement and classification process. It is observed from the study that middle infra red band (0.77mm - 0.86mm) is highly suitable for mapping mangroves. Two major classes of mangroves, dense and open mangroves were delineated from the digital data.

  10. Propagation Limitations in Remote Sensing.

    DTIC Science & Technology

    Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .

  11. Application of multispectral remote sensing techniques for dismissed mine sites monitoring and rehabilitation

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Serranti, Silvia

    2007-09-01

    Mining activities, expecially those operated in open air (open pit), present a deep impact on the sourrondings. Such an impact, and the related problems, are directly related to the correct operation of the activities, and usually strongly interact with the environment. Impact can be mainly related to the following issues: high volumes of handled material, ii) generation of dust, noise and vibrations, water pollution, visual impact and, finally, mining area recovery at the end of exploitation activities. All these aspects can be considered very important, and must be properly evaluated and monitored. Environmental impact control is usually carried out during and after the end of the mining activities, adopting methods related to the detection, collection, analysis of specific environmental indicators and with their further comparison with reference thresholding values stated by official regulations. Aim of the study was to investigate, and critically evaluate, the problems related to development of an integrated set of procedures based on the collection and the analysis of remote sensed data in order to evaluate the effect of rehabilitation of land contaminated by extractive industry activities. Starting from the results of these analyses, a monitoring and registration of the environmental impact of such operations was performed by the application and the integration of modern information technologies, as the previous mentioned Earth Observation (EO), with Geographic Information Systems (GIS). The study was developed with reference to different dismissed mine sites in India, Thailand and China. The results of the study have been utilized as input for the construction of a knowledge based decision support system finalized to help in the identification of the appropriate rehabilitation technologies for all those dismissed area previously interested by extractive industry activities. The work was financially supported within the framework of the Project ASIA IT&C - CN

  12. Natural polysaccharides as active biomaterials in nanostructured films for sensing.

    PubMed

    Eiras, Carla; Santos, Amanda C; Zampa, Maysa F; de Brito, Ana Cristina Facundo; Leopoldo Constantino, Carlos J; Zucolotto, Valtencir; dos Santos, José R

    2010-01-01

    The search for natural, biocompatible and degradable materials amenable to be used in biomedical/analytical applications has attracted attention, either from the environmental or medical point of view. Examples are the polysaccharides extracted from natural gums, which have found applications in the food and pharmaceutical industries as stabilizers or thickening agent. In a previous paper, however, it was shown that a Brazilian natural gum, chicha (Sterculia striata), is suitable for application as building block for nanostructured film fabrication in conjunction with phthalocyanines. The films displayed electroactivity and could be used in sensing. In the present paper, we introduce the use of two different natural gums, viz., angico (Anadenanthera colubrina) and caraia (Sterculia urens), as active biomaterials to be used to modification layers, in the form of nanostructured thin films, including the study of dopamine detection. The multilayer films were assembled in conjunction with nickel tetrasulfonated phthalocyanines (NiTsPC) and displayed good chemical and electrochemical stability, allowing their use as transducer elements in sensors for detection of specific neurotransmitters. It is suggested here that nanoscale manipulation of new biodegradable natural polymers opens up a variety of new opportunities for the use of these materials in advanced biomedical and analytical devices.

  13. Realistic Instrumentation Platform for Active and Passive Optical Remote Sensing.

    PubMed

    Brydegaard, Mikkel; Merdasa, Aboma; Gebru, Alem; Jayaweera, Hiran; Svanberg, Sune

    2016-02-01

    We describe the development of a novel versatile optical platform for active and passive remote sensing of environmental parameters. Applications include assessment of vegetation status and water quality. The system is also adapted for ecological studies, such as identification of flying insects including agricultural pests. The system is based on two mid-size amateur astronomy telescopes, continuous-wave diode lasers at different wavelengths ranging from violet to the near infrared, and detector facilities including quadrant photodiodes, two-dimensional and line scan charge-coupled device cameras, and a compact digital spectrometer. Application examples include remote Ramanlaser-induced fluorescence monitoring of water quality at 120 m distance, and insect identification at kilometer ranges using the recorded wing beat frequency and its spectrum of overtones. Because of the low cost this developmental platform is very suitable for advanced research projects in developing countries and has, in fact, been multiplied during hands-on workshops and is now being used by a number of groups at African universities.

  14. Active Sensing with Fabry-Perot Infrared Interferometers

    NASA Astrophysics Data System (ADS)

    Huang, Jin; Gosangi, Rakesh; Gutierrez-Osuna, Ricardo

    2011-09-01

    In this article, we describe an active-sensing framework for infrared (IR) spectroscopy. The goal is to generate a sequence of wavelengths that best discriminates among chemicals. Unlike feature-selection strategies, the sequence is selected on-the-fly as the device acquires data. The framework models the problem as a Partially Observable Markov Decision Process (POMDP), which is solved by a greedy myopic algorithm. In previous work [1], we had applied this framework to temperature-modulated metal oxide sensor. Here, we adapt the framework to a tunable IR sensor based on Fabry-Perot interferometers (FPI). FPIs provide a low-cost alternative to traditional Fourier Transform Infrared Spectroscopy (FTIR), though at the expense of a narrower effective range and lower spectral resolution. Here, we first test whether the framework can scale up to large problems consisting 27 chemicals with 60 dimensions; our previous work on metal oxide sensors employed three chemicals and 7 dimensions. For this purpose, FPI spectra are simulated from FTIR. Then we validate the framework experimentally on 3 chemicals using a prototype instrument based on FPIs. These preliminary results are encouraging and indicate that the framework is able to solve classification problems of reasonable size.

  15. Multiplexing technique using amplitude-modulated chirped fibre Bragg gratings with applications in two-parameter sensing

    NASA Astrophysics Data System (ADS)

    Wong, Allan C. L.; Childs, Paul A.; Peng, Gang-Ding

    2007-11-01

    A multiplexing technique using amplitude-modulated chirped fibre Bragg gratings (AMCFBGs) is presented. This technique realises the multiplexing of spectrally overlapped AMCFBGs with identical centre Bragg wavelength and bandwidth. Since it is fully compatible with the wavelength division multiplexing scheme, the number of gratings that can be multiplexed can be increased by several times. The discrete wavelet transform is used to demodulate such multiplexed signal. A wavelet denoising technique is applied to the multiplexed signal in conjunction with the demodulation. Strain measurements are performed to experimentally demonstrate the feasibility of this multiplexing technique. The absolute error and crosstalk are measured. An application to simultaneous two-parameter sensing is also demonstrated.

  16. The investigation of advanced remote sensing, radiative transfer and inversion techniques for the measurement of atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Deepak, Adarsh; Wang, Pi-Huan

    1985-01-01

    The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.

  17. Active/Passive Remote Sensing of the Ocean Surface at Microwave Frequencies

    DTIC Science & Technology

    1999-09-30

    This report summarizes research activities and results obtained under grant N000l4-99-1-0627 "Active/Passive Remote Sensing of the Ocean Surface at...Measurements were completed during April 1999 by the Microwave Remote Sensing Laboratory at the University of Massachusetts.

  18. Aerospace Education Workshop Techniques and Activities

    ERIC Educational Resources Information Center

    Frizzell, Helen J.

    1977-01-01

    Outlines procedures and lists hints for planning successful workshops in aerospace education; included are possible locations, resources, orientation activities, brochures, speakers, and follow-up activities for various combinations of participants (parents, elementary school and secondary school teachers, vocational-technical oriented students,…

  19. Bioinspired active whisker sensor for robotic vibrissal tactile sensing

    NASA Astrophysics Data System (ADS)

    Ju, Feng; Ling, Shih-Fu

    2014-12-01

    A whisker transducer (WT) inspired by rat’s vibrissal tactile perception is proposed based on a transduction matrix model characterizing the electro-mechanical transduction process in both forward and backward directions. It is capable of acting as an actuator to sweep the whisker and simultaneously as a sensor to sense the force, motion, and mechanical impedance at whisker tip. Its validity is confirmed by numerical simulation using a finite element model. A prototype is then fabricated and its transduction matrix is determined by parameter identification. The calibrated WT can accurately sense mechanical impedance which is directly related to stiffness, mass and damping. Subsequent vibrissal tactile sensing of sandpaper texture reveals that the real part of mechanical impedance sensed by WT is correlated with sandpaper roughness. Texture discrimination is successfully achieved by inputting the real part to a k-means clustering algorithm. The mechanical impedance sensing ability as well as other features of the WT such as simultaneous-actuation-and-sensing makes it a good solution to robotic tactile sensing.

  20. Predictive Analysis of Landslide Activity Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Markuzon, N.; Regan, J.; Slesnick, C.

    2012-12-01

    Landslides are historically one of the most damaging geohazard phenomena in terms of death tolls and socio-economic losses. Therefore, understanding the underlying causes of landslides and how environmental phenomena affect their frequency and severity is of critical importance. Of specific importance for mitigating future damage is increasing our understanding of how climate change will affect landslide severity, occurrence rates, and damage. We are developing data driven models aimed at predicting landslide activity. The models learn multi-dimensional weather and geophysical patterns associated with historical landslides and estimate location-dependent probabilities for landslides under current or future weather and geophysical conditions. Our approach uses machine learning algorithms capable of determining non-linear associations between dependent variables and landslide occurrence without requiring detailed knowledge of geomorphology. Our primary goal in year one of the project is to evaluate the predictive capabilities of data mining models in application to landslide activity, and to analyze if the approach will discover previously unknown variables and/or relationships important to landslide occurrence, frequency or severity. The models include remote sensing and ground-based data, including weather, landcover, slope, elevation and drainage information as well as urbanization data. The historical landslide dataset we used to build our preliminary models was compiled from City of Seattle landslide files, United States Geological Survey reports, newspaper articles, and a verified subset of the Seattle Landslide Database that consists of all reported landslides within Seattle, WA, between 1948 and 1999. Most of the landslides analyzed to-date are shallow. Using statistical analysis and unsupervised clustering methods we have thus far identified subsets of weather conditions that lead to a significantly higher landslide probability, and have developed

  1. AHIMSA - Ad hoc histogram information measure sensing algorithm for feature selection in the context of histogram inspired clustering techniques

    NASA Technical Reports Server (NTRS)

    Dasarathy, B. V.

    1976-01-01

    An algorithm is proposed for dimensionality reduction in the context of clustering techniques based on histogram analysis. The approach is based on an evaluation of the hills and valleys in the unidimensional histograms along the different features and provides an economical means of assessing the significance of the features in a nonparametric unsupervised data environment. The method has relevance to remote sensing applications.

  2. Spatial and functional characterization, identification and assessment of isolated wetlands in Alachua County, Florida, USA - GIS and remote sensing techniques

    EPA Science Inventory

    In this study, Geographic Information Systems (GIS) and remote sensing mapping techniques were developed to identify the locations of isolated wetlands in Alachua County, FL, a 2510 sq km area in north-central Florida with diverse geology and numerous isolated wetlands. The resul...

  3. Streamlined environmental remediation characterization using remote sensing techniques: Case studies for the US Department of Energy, Oak Ridge Operations

    SciTech Connect

    Carden, D.M.; Smyre, J.L.; Evers, T.K.; King, A.L.

    1996-07-01

    This paper provides an overview of the DOE Oak Ridge Operations Remote Sensing Program and discusses how data from this program have assisted the environmental restoration program in streamlining site-characterization activities. Three case studies are described where remote sensing imagery has provided a more focused understanding of site problems with a resultant reduction in the need for costly and time-consuming, ground-based sampling approaches.

  4. A Colloquial Approach: An Active Learning Technique.

    ERIC Educational Resources Information Center

    Arce, Pedro

    1994-01-01

    Addresses the problem of the effectiveness of teaching methodologies on fundamental engineering courses such as transport phenomena. Recommends the colloquial approach, an active learning strategy, to increase student involvement in the learning process. (ZWH)

  5. Environmental modelling of Omerli catchment area in Istanbul, Turkey using remote sensing and GIS techniques.

    PubMed

    Coskun, H Gonca; Alparslan, Erhan

    2009-06-01

    Omerli Reservoir is one of the major drinking water reservoirs of Greater Metropolis Istanbul, providing 40% of the overall water demand. Istanbul where is one of the greatest metropolitan areas of the world with a population over 10 million and a rate of population increase about twice that of Turkey. As a result of population growth and industrial development, Omerli watershed is highly affected by the wastewater discharges from the residential areas and industrial plants. The main objective of this study is to investigate the temporal assessment of the land-use/cover of the Omerli Watershed and the water quality changes in the Reservoir. It is not possible to adequately control urbanization and other pollution sources affecting the water quality. Responses of these detrimental effects are due to rapidly increasing population, unplanned and illegal housing, and irrelevant industries at the protection zones of the watershed, together with insufficient infrastructure. The study is focused on the assessment of urbanization in relation to land use and water quality using Remote Sensing (RS) and Geographic Information Systems (GIS) techniques for all the four protection zones of the Reservoir and a time variant analyzing model is obtained. IRS-1C LISS and IRS-1C PAN, LANDSAT-5 TM satellite data of 1997, 1998, 2000, 2001 and 2006 are analyzed by confirmation through the ground truth data. RS data have been transferred into UTM coordinate system and image enhancement and classification techniques were used. Raster data were converted to vector data that belongs to study area to analyze in GIS for the purpose of planning and decision-making on protected watersheds.

  6. Detecting Subsurface Agricultural Tile Drainage using GIS and Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Budhathoki, M.; Gokkaya, K.; Tank, J. L.; Christopher, S. F.; Hanrahan, B.

    2015-12-01

    Subsurface tile drainage is a common practice in many of the row crop dominated agricultural lands in the Upper Midwest, which increases yield by making the soil more productive. It is reported that nearly half of all cropland in Indiana benefits from some sort of artificial drainage. However, subsurface tile has a significant negative impact on surface water quality by providing a fast means of transport for nutrients from fertilizers. Therefore, generating spatial data of tile drainage in the field is important and useful for agricultural landscape and hydrological studies. Subsurface tile drains in Indiana's croplands are not widely mapped. In this study, we will delineate subsurface tile drainage in agricultural land in Shatto Ditch watershed, located in Kosciusko County, Indiana. We will use geo-spatial methodology, which was purposed by earlier researchers to detect tile drainage. We will use aerial color-infrared and satellite imagery along with Light Detection and Ranging (LiDAR) data. In order to map tile lines with possible accuracy, we will use GIS-based analysis in combination with remotely sensed data. This research will be comprised of three stages: 1) masking out the potential drainage area using a decision tree rule based on land cover information, soil drainage category, surface slope, and satellite image differencing technique, 2) delineate tile lines using image processing techniques, and 3) check the accuracy of mapped tile lines with ground control points. To our knowledge, this study will be the first to check the accuracy of mapping with ground truth data. Based on the accuracy of results, we will extend the methodology to greater spatial scales. The results are expected to contribute to better characterizing and controlling water pollution sources in Indiana, which is a major environmental problem.

  7. An ameliorative technique for distributed Brillouin-based fiber optics sensing

    NASA Astrophysics Data System (ADS)

    Yang, Xing-hong; Li, Yong-qian; Yang, Zhi; Yoshino, Toshihiko

    2008-12-01

    This paper reports an ameliorative technique for distributed fiber optics sensing based on Brillouin optical time-domain reflectometry (BOTDR) and Brillouin optical-fiber time-domain analysis (BOTDA). Because the electro-optic modulator in BOTDR system has a finite extinction ratio, the pulsed laser always contains a CW component, which is hereafter called leakage. The frequency of the leakage is pv which is the same as that of the pulse, and the frequency of the Stokes wave is sv. The frequency of the acoustic wave bv at each point along the fiber matches the beat frequency of the leakage and the Stokes wave. As a result, when given an appropriate extinction ratio, the leakage will have a biggish effect on the Stokes wave, which is the same as the function between the continuous wave and the Stokes in BOTDA system. The Stokes component in spontaneous Brillouin scattering (SPBS) is amplified by the leakage along the distance when it backs to the laser end, which is the well known stimulated Brillouin scattering (SBS) phenomena. So long as the distance from the point where the SPBS engender to the laser end is long, the intensity of the SBS signal is relatively large owing to the longer amplified interval. In BOTDR system, when setting the extinction ratio at 20dB, using the SBS signal we can achieve a SNR which is approximately 5 dB greater than that of traditional system and the dynamic range performance 3 dB greater. Utilizing this new technique in BOTDR system it also has an ascendency compared with BOTDA system in respect that it access to only one end of the fiber with probe pulse light.

  8. Coastal geomorphological change monitoring by remote sensing techniques in Nouakchott, Mauritania

    NASA Astrophysics Data System (ADS)

    Wu, Weicheng; Courel, Marie-Francoise; Le Rhun, Jeannine

    2003-03-01

    Since the construction of a harbour, Port de l'Amitie, an important importation gate for Nouakchott in 1987, the previous coast dynamic equilibrium had been destroyed and thus a significant littoral geomorphological change has occurred, which has produced a severe degradation of the littoral and urban environment. Our research is focused on this coastal environmental change monitoring and its potential evolution estimation by remote sensing techniques using multi-temporal SPOT images and Markov chain analysis. The objectives of this study are to understand coastline evolution particularities, measure geomorphological change rates, evaluate life-span of the harbour, produce useful data for the government to control the environment degradation and provide reference for the future similar coastal engineering. According to our research, the north beach of the harbour has extended by 0.92km2 (91.6ha) from 1989 to 2001 and the accretion will probably reach its maximum limit in about 13.4 +/- 0.5 years (in 2014-2015) and the harbour will arrive at the end of service. The south sandbar has been eroded by 1.34km2 (134ha) and the coastline has landward retreated at the maximum by 362m. Another 0.91km2 of land will be nibbled by seawater in the next 10 years. This erosion has caused several times inundation into the suburb and urban areas, provoking a deterioration of the urban environment.

  9. Feasibility study for locating archaeological village sites by satellite remote sensing techniques. [multispectral photography of Alaska

    NASA Technical Reports Server (NTRS)

    Cook, J. P. (Principal Investigator); Stringer, W. J.

    1974-01-01

    The author has identified the following significant results. The objective is to determine the feasibility of detecting large Alaskan archaeological sites by satellite remote sensing techniques and mapping such sites. The approach used is to develop digital multispectral signatures of dominant surface features including vegetation, exposed soils and rock, hydrological patterns and known archaeological sites. ERTS-1 scenes are then printed out digitally in a map-like array with a letter reflecting the most appropriate classification representing each pixel. Preliminary signatures were developed and tested. It was determined that there was a need to tighten up the archaeological site signature by developing accurate signatures for all naturally-occurring vegetation and surface conditions in the vicinity of the test area. These second generation signatures have been tested by means of computer printouts and classified tape displays on the University of Alaska CDU-200 and by comparison with aerial photography. It has been concluded that the archaeological signatures now in use are as good as can be developed. Plans are to print out signatures for the entire test area and locate on topographic maps the likely locations of archaeological sites within the test area.

  10. Estimation of flooded area in the Bahr El-Jebel basin using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Shamseddin, M. A. H.; Hata, T.; Tada, A.; Bashir, M. A.; Tanakamaru, T.

    2006-07-01

    In spite of the importance of Sudd (swamp) area estimation for any hydrological project in the southern Sudan, yet, no abroad agreement on its size, due to the inaccessibility and civil war. In this study, remote sensing techniques are used to estimate the Bahr El-Jebel flooded area. MODIS-Terra (Moderate Resolution Imaging Spectroradiometer) level 1B satellite images are analyzed on basis of the unsupervised classification method. The annual mean of Bahr El-Jebel flooded area has been estimated at 20 400 km2, which is 96% of Sutcliffe and Park (1999) estimation on basis of water balance model prediction. And only, 53% of SEBAL (Surface Energy Balance Algorithm for Land) model estimation. The accuracy of the classification is 71%. The study also found the swelling and shrinkage pattern of Sudd area throughout the year is following the trends of Lake Victoria outflow patterns. The study has used two evaporation methods (open water evaporation and SEBAL model) to estimate the annual storage volume of Bahr El-Jebel River by using a water balance model. Also the storage changes due time is generated throughout the study years.

  11. Development of an Electrochemical Sensing Technique for Rapid Genotyping of Hepatitis B Virus

    PubMed Central

    Chen, Jinyuan; Weng, Shaohuang; Chen, Qingqiong; Liu, Ailin; Wang, Fengqing; Chen, Jing; Yi, Qiang; Liu, Qicai; Lin, Xinhua

    2014-01-01

    Objective To develop a convenient; sensitive; accurate; and economical technique for genotyping of hepatitis B viruses (HBVs). Methods The mercapto-modified B1; B2; C1; and C2-specific genotyping probes consisted of two probes for each HBV genotype that served as a double verification system. These probes were fixed on the surface of No. 1; 2; 3; and 4 gold electrodes; respectively; via Au-S bonds. Different charge generated by the binding of RuHex to phosphate groups of the DNA backbone before and after hybridization was used for distinguishing the different genotypes. Results During hybridization with genotype B; the charges detected at the No. 1 and 2 electrodes were significantly increased; while the charge at the No. 3 and 4 electrodes did not change significantly. During hybridization with genotype C; the charges detected at No. 3 and 4 electrodes were significantly increased; while the signals remained unchanged at the No. 1 and 2 electrodes. During hybridization with mixed genotypes (B and C); the charges detected at all four electrodes were significantly increased. The linear range of detection was 10−7 to 10−10 mol/L and the sensitivity for detecting mixed B (10%) or C (10%). Conclusions Rapid genotyping of HBVs based on electrochemical sensing is simple, has good specificity; and can greatly reduce the cost. This method can be used for sensitive detection of mixed B and C HBV genotypes. PMID:24658623

  12. Inverse transport problem solvers based on regularized and compressive sensing techniques

    SciTech Connect

    Cheng, Y.; Cao, L.; Wu, H.; Zhang, H.

    2012-07-01

    According to the direct exposure measurements from flash radiographic image, regularized-based method and compressive sensing (CS)-based method for inverse transport equation are presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. With a large number of measurements, least-square method is utilized to complete the reconstruction. Owing to the ill-posedness of the inverse problems, regularized algorithm is employed. Tikhonov method is applied with an appropriate posterior regularization parameter to get a meaningful solution. However, it's always very costly to obtain enough measurements. With limited measurements, CS sparse reconstruction technique Orthogonal Matching Pursuit (OMP) is applied to obtain the sparse coefficients by solving an optimization problem. This paper constructs and takes the forward projection matrix rather than Gauss matrix as measurement matrix. In the CS-based algorithm, Fourier expansion and wavelet expansion are adopted to convert an underdetermined system to a well-posed system. Simulations and numerical results of regularized method with appropriate regularization parameter and that of CS-based agree well with the reference value, furthermore, both methods avoid amplifying the noise. (authors)

  13. Dynamic drought risk assessment using crop model and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Sun, H.; Su, Z.; Lv, J.; Li, L.; Wang, Y.

    2017-02-01

    Drought risk assessment is of great significance to reduce the loss of agricultural drought and ensure food security. The normally drought risk assessment method is to evaluate its exposure to the hazard and the vulnerability to extended periods of water shortage for a specific region, which is a static evaluation method. The Dynamic Drought Risk Assessment (DDRA) is to estimate the drought risk according to the crop growth and water stress conditions in real time. In this study, a DDRA method using crop model and remote sensing techniques was proposed. The crop model we employed is DeNitrification and DeComposition (DNDC) model. The drought risk was quantified by the yield losses predicted by the crop model in a scenario-based method. The crop model was re-calibrated to improve the performance by the Leaf Area Index (LAI) retrieved from MODerate Resolution Imaging Spectroradiometer (MODIS) data. And the in-situ station-based crop model was extended to assess the regional drought risk by integrating crop planted mapping. The crop planted area was extracted with extended CPPI method from MODIS data. This study was implemented and validated on maize crop in Liaoning province, China.

  14. Impacts of soil sealing on potential agriculture in Egypt using remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Mohamed, Elsayed Said; Belal, Abdelaziz; Shalaby, Adel

    2015-10-01

    This paper highlights the impacts of soil sealing on the agricultural soils in Nile Delta using remote sensing and GIS. The current work focuses on two aims. The first aim is to evaluate soil productivity lost to urban sprawl, which is a significant cause of soil sealing in Nile Delta. The second aim is to evaluate the Land Use and Land Cover Changes (LU LC) from 2001 to 2013 in El-Gharbia governorate as a case study. Three temporal data sets of images from two different sensors: Landsat 7 Enhanced Thematic Mapper (ETM+) with 30 m resolution acquired in 2001 and Landsat 8 acquired in 2013 with 30 m resolution, and Egypt sat acquired in 2010 with 7.8 m resolution, consequently were used. Four different supervised classification techniques (Maximum Likelihood (ML), Minimum Distance, Neural Networks (NN); and Support Vector Machine (SVM) were applied to monitor the changes of LULC in the investigated area. The results showed that the agricultural soils of the investigated area are characterized by high soil productivity depending on its chemical and physical properties. During 2010-2013, soil sealing took place on 1397 ha from the study area which characterized by soil productivity classes ranging between I and II. It is expected that the urban sprawl will be increased to 12.4% by 2020 from the study area, which means that additional 3400 ha of productive soils will be lost from agriculture. However, population growth is the most significant factor effecting urban sprawl in Nile Delta.

  15. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands.

    PubMed

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan; Maiti, Subodh Kumar

    2016-11-01

    The objective of the present study is to monitor reclamation activity in mining areas. Monitoring of these reclaimed sites in the vicinity of mining areas and on closed Over Burden (OB) dumps is critical for improving the overall environmental condition, especially in developing countries where area around the mines are densely populated. The present study evaluated the reclamation success in the Block II area of Jharia coal field, India, using Landsat satellite images for the years 2000 and 2015. Four image processing methods (support vector machine, ratio vegetation index, enhanced vegetation index, and normalized difference vegetation index) were used to quantify the change in vegetation cover between the years 2000 and 2015. The study also evaluated the relationship between vegetation health and moisture content of the study area using remote sensing techniques. Statistical linear regression analysis revealed that Normalized Difference Vegetation Index (NDVI) coupled with Normalized Difference Moisture Index (NDMI) is the best method for vegetation monitoring in the study area when compared to other indices. A strong linear relationship (r(2) > 0.86) was found between NDVI and NDMI. An increase of 21% from 213.88 ha in 2000 to 258.9 ha in 2015 was observed in the vegetation cover of the reclaimed sites for an open cast mine, indicating satisfactory reclamation activity. NDVI results indicated that vegetation health also improved over the years.

  16. The Challenge of Active Optical Sensing from Extreme Orbits

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    2004-01-01

    A review of the history and current state of atmospheric sensing lidar from Earth orbit was conducted and it was found that space based earth remote sensing is still in its infancy with only one limited success extended duration autonomous mission to date. An analysis of the basic requirements for some candidate geo-synchronous lidar concepts was completed and it was concluded that significant basic work is required in all areas of lidar development.

  17. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    NASA Technical Reports Server (NTRS)

    Seinfeld, J. H. (Principal Investigator)

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three dimensional concentration fields from atmospheric diffusion models. General conditions are derived for the "reconstructability' of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data is developed.

  18. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    NASA Technical Reports Server (NTRS)

    Seinfeld, J. H. (Principal Investigator)

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The data assimilation problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three-dimensional concentration fields from atmospheric diffusion models. General conditions were derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data was developed.

  19. Structural Analysis for Gold Mineralization Using Remote Sensing and Geochemical Techniques in a GIS Environment: Island of Lesvos, Hellas

    SciTech Connect

    Rokos, D. Argialas, D. Mavrantza, R. St Seymour, K.; Vamvoukakis, C.; Kouli, M.; Lamera, S.; Paraskevas, H.; Karfakis, I.; Denes, G

    2000-12-15

    Exploration for epithermal Au has been active lately in the Aegean Sea of the eastern Mediterranean Basin, both in the islands of the Quaternary arc and in those of the back-arc region. The purpose of this study was the structural mapping and analysis for a preliminary investigation of possible epithermal gold mineralization, using remotely sensed data and techniques, structural and field data, and geochemical information, for a specific area on the Island of Lesvos. Therefore, Landsat-TM and SPOT-Pan satellite images and the Digital Elevation Model (DEM) of the study area were processed digitally using spatial filtering techniques for the enhancement and recognition of the geologically significant lineaments, as well as algebraic operations with band ratios and Principal Component Analysis (PCA), for the identification of alteration zones. Statistical rose diagrams and a SCHMIDT projection Stereo Net were generated from the lineament maps and the collected field data (dip and strike measurements of faults, joints, and veins), respectively. The derived lineament map and the band ratio images were manipulated in a GIS environment, in order to study the relation of the tectonic pattern to both the alteration zoning and the geomorphology of the volcanic field of the study area. Target areas of high interest for possible mineralization also were specified using geochemical techniques, such as X-Ray Diffraction (XRD) analysis, trace-element, and fluid-inclusion analysis. Finally, preliminary conclusions were derived about possible mineralization, the type (high or low sulfidation), and the extent of mineralization, by combining the structural information with geochemical information.

  20. Water impact studies. [impact of remote sensing techniques on management storage, flow, and delivery of California water

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1973-01-01

    An investigation has begun into the potential impact of using modern remote sensing techniques as an aid in managing, even on a day-to-day basis, the storage, flow, and delivery of water made available through the California Water Project. It is obvious that the amount of this impact depends upon the extent to which remote sensing is proven to be useful in improving predictions of both the amount of water that will be available and the amount that will be needed. It is also proposed to investigate the potential impact of remote sensing techniques as an aid in monitoring, and perhaps even in directing, changes in land use and life style being brought about through the increased availability of water in central and southern California as a result of the California Water Project. The impact of remote sensing can be of appreciable significance only if: (1) the induced changes are very substantial ones; (2) remote sensing is found, in this context, to be very useful and potentially very cost effective; and (3) resource managers adopt this new technology. Analyses will be conducted of the changing economic bases and the new land use demands resulting from increased water availability in central and southern California.

  1. Comparing the effects of Different Remote Sensing Techniques for Extracting Deciduous Broadleaf Phenology

    NASA Astrophysics Data System (ADS)

    Ilushin, D.; Richardson, A. D.; Toomey, M. P.; Pless, R.; Shapiro, A.

    2013-12-01

    Vegetation phenology, annual life cycles of plants, provides a key feedback with climate variability and change and is an important parameter in land surface models used to predict global climate. As such, there is a need to track the rhythm of the seasons with more detail. Common remote sensing methods used to track phenology are limited by their coarse temporal and/or spatial resolutions. Alternatively, I look to explore the usability of publicly available 'webcams' as an indicator of phenological trends. More specifically, I address the question of how this new measurement relates to that of satellite imagery, a common technique for remote sensing of phenology. I have used a subset of images from publically available, geo-referenced webcams from the Archive of Many Outdoor Scenes, a repository maintained by faculty at Washington University in St. Louis, as my test data. From the GCC (Greenness Chromatic Coordinate, or average greenness) time series produced from each of the 685 cameras used, I extract the phenological transition dates calculated for both spring and fall using curve fitting or threshold methods and compared these values to corresponding dates extracted from satellite imagery. Firstly, I look to the efficacy of reproducing reliable dates of phenological transition from data with missing information, with preliminary results showing that up to twenty percent of data can be missing while still resulting in reliable results. Next, I determine the relationship of differing date extraction methods on the webcams to find out their utility in arriving at dates that correspond with visual cues of phenological dates. These phenologically derived dates are further compared with their corresponding satellite imagery dates to find whether or not there exist prevailing biases between measurements calculated using the near-infrared and visual spectrum versus solely the visual spectrum. Lastly, the resulting information is compared geospatially to look for both

  2. Identification of sewage leaks by active remote-sensing methods

    NASA Astrophysics Data System (ADS)

    Goldshleger, Naftaly; Basson, Uri

    2016-04-01

    The increasing length of sewage pipelines, and concomitant risk of leaks due to urban and industrial growth and development is exposing the surrounding land to contamination risk and environmental harm. It is therefore important to locate such leaks in a timely manner, to minimize the damage. Advances in active remote sensing Ground Penetrating Radar (GPR) and Frequency Domain Electromagnetic (FDEM) technologies was used to identify leaking potentially responsible for pollution and to identify minor spills before they cause widespread damage. This study focused on the development of these electromagnetic methods to replace conventional acoustic methods for the identification of leaks along sewage pipes. Electromagnetic methods provide an additional advantage in that they allow mapping of the fluid-transport system in the subsurface. Leak-detection systems using GPR and FDEM are not limited to large amounts of water, but enable detecting leaks of tens of liters per hour, because they can locate increases in environmental moisture content of only a few percentage along the pipes. The importance and uniqueness of this research lies in the development of practical tools to provide a snapshot and monitoring of the spatial changes in soil moisture content up to depths of about 3-4 m, in open and paved areas, at relatively low cost, in real time or close to real time. Spatial measurements performed using GPR and FDEM systems allow monitoring many tens of thousands of measurement points per hectare, thus providing a picture of the spatial situation along pipelines and the surrounding. The main purpose of this study was to develop a method for detecting sewage leaks using the above-proposed geophysical methods, since their contaminants can severely affect public health. We focused on identifying, locating and characterizing such leaks in sewage pipes in residential and industrial areas.

  3. Opportunities to Create Active Learning Techniques in the Classroom

    ERIC Educational Resources Information Center

    Camacho, Danielle J.; Legare, Jill M.

    2015-01-01

    The purpose of this article is to contribute to the growing body of research that focuses on active learning techniques. Active learning techniques require students to consider a given set of information, analyze, process, and prepare to restate what has been learned--all strategies are confirmed to improve higher order thinking skills. Active…

  4. Quorum Sensing Inhibitory Activity of Giganteone A from Myristica cinnamomea King against Escherichia coli Biosensors.

    PubMed

    Sivasothy, Yasodha; Krishnan, Thiba; Chan, Kok-Gan; Abdul Wahab, Siti Mariam; Othman, Muhamad Aqmal; Litaudon, Marc; Awang, Khalijah

    2016-03-21

    Malabaricones A-C (1-3) and giganteone A (4) were isolated from the bark of Myristica cinnamomea King. Their structures were elucidated and characterized by means of NMR and MS spectral analyses. These isolates were evaluated for their anti-quorum sensing activity using quorum sensing biosensors, namely Escherichia coli [pSB401] and Escherichia coli [pSB1075], whereby the potential of giganteone A (4) as a suitable anti-quorum sensing agent was demonstrated.

  5. Flow cytometric allergy diagnosis: basophil activation techniques.

    PubMed

    Bridts, Chris H; Sabato, Vito; Mertens, Christel; Hagendorens, Margo M; De Clerck, Luc S; Ebo, Didier G

    2014-01-01

    The basis of flow cytometric allergy diagnosis is quantification of changes in expression of basophilic surface membrane markers (Ebo et al., Clin Exp Allergy 34: 332-339, 2004). Upon encountering specific allergens recognized by surface receptor FcεRI-bound IgE, basophils not only secrete and generate quantifiable bioactive mediators but also up-regulate the expression of different markers (e.g., CD63, CD203c) which can be detected by multicolor flow cytometry using specific monoclonal antibodies (Ebo et al., Cytometry B Clin Cytom 74: 201-210, 2008). Here, we describe two flow cytometry-based protocols which allow detection of surface marker activation (Method 1) and changes in intragranular histamine (Method 2), both reflecting different facets of basophil activation.

  6. Technique for surface oxidation of activated carbon

    SciTech Connect

    Sircar, S.; Golden, T.C.

    1987-10-27

    A method of activating a carbon adsorbent is described, which comprises oxidizing the surface of the carbon adsorbent with a mild oxidizing acid in the presence of a metal oxidation catalyst at an elevated temperature and boiling the mixture of the carbon adsorbent, mild oxidizing acid and metal oxidation catalyst to dryness. Then rinse the surface oxidizing carbon adsorbent with water; and dry the rinsed surface oxidized carbon adsorbent. In a process for the removal of water or carbon dioxide from a gas stream containing water or carbon dioxide of the type wherein the gas stream containing water or carbon dioxide is contacted with a solid phase adsorbent under pressure-swing adsorption or thermal-swing adsorption processing conditions, the improvement is described comprising utilizing an adsorbent produced by the activation of a carbon adsorbent. The activation comprises oxidizing the surface of the carbon adsorbent with a mold oxidizing acid in the presence of a metal oxidation catalyst at an elevated temperature and boiling the mixture of the carbon adsorbent, mild oxidizing acid and metal oxidation catalyst to dryness. Then rinse the surface oxidized carbon adsorbent with water; and dry the rinsed surface oxidized carbon adsorbent.

  7. Applications of remote sensing techniques to county land use and flood hazard mapping

    NASA Technical Reports Server (NTRS)

    Clark, R. B.; Conn, J. S.; Miller, D. A.; Mouat, D. A.

    1975-01-01

    The application of remote sensing in Arizona is discussed. Land use and flood hazard mapping completed by the Applied Remote Sensing Program is described. Areas subject to periodic flood inundation are delineated and land use maps monitoring the growth within specific counties are provided.

  8. The microbial habitability of weathered volcanic glass inferred from continuous sensing techniques.

    PubMed

    Bagshaw, Elizabeth A; Cockell, Charles S; Magan, Naresh; Wadham, Jemma L; Venugopalan, T; Sun, Tong; Mowlem, Matt; Croxford, Anthony J

    2011-09-01

    Basaltic glasses (hyaloclastite) are a widespread habitat for life in volcanic environments, yet their interior physical conditions are poorly characterized. We investigated the characteristics of exposed weathered basaltic glass from a surface outcrop in Iceland, using microprobes capable of continuous sensing, to determine whether the physical conditions in the rock interior are hospitable to microbial life. The material provided thermal protection from freeze-thaw and rapid temperature fluctuations, similar to data reported for other rock types. Water activity experiments showed that at moisture contents less than 13% wet weight, the glass and its weathering product, palagonite, had a water activity below levels suitable for bacterial growth. In pore spaces, however, these higher moisture conditions might be maintained for many days after a precipitation event. Gas exchange between the rock interior and exterior was rapid (< 10 min) when the rocks were dry, but when saturated with water, equilibration took many hours. During this period, we demonstrated the potential for low oxygen conditions within the rock caused by respiratory stimulation of the heterotrophic community within. These conditions might exist within subglacial environments during the formation of the rocks or in micro-environments in the interior of exposed rocks. The experiments showed that microbial communities at the site studied here could potentially be active for 39% of the year, if the depth of the community within the outcrop maintains a balance between access to liquid water and adequate protection from freezing. In the absence of precipitation, the interior of weathered basaltic glass is an extreme and life-limiting environment for microorganisms on Earth and other planets.

  9. Structural damage identification in wind turbine blades using piezoelectric active sensing with ultrasonic validation

    SciTech Connect

    Claytor, Thomas N; Ammerman, Curtt N; Park, Gyu Hae; Farinholt, Kevin M; Farrar, Charles R; Atterbury, Marie K

    2010-01-01

    This paper gives a brief overview of a new project at LANL in structural damage identification for wind turbines. This project makes use of modeling capabilities and sensing technology to understand realistic blade loading on large turbine blades, with the goal of developing the technology needed to automatically detect early damage. Several structural health monitoring (SHM) techniques using piezoelectric active materials are being investigated for the development of wireless, low power sensors that interrogate sections of the wind turbine blade using Lamb wave propagation data, frequency response functions (FRFs), and time-series analysis methods. The modeling and sensor research will be compared with extensive experimental testing, including wind tunnel experiments, load and fatigue tests, and ultrasonic scans - on small- to mid-scale turbine blades. Furthermore, this study will investigate the effect of local damage on the global response of the blade by monitoring low-frequency response changes.

  10. Quorum Sensing Activity in Pandoraea pnomenusa RB38

    PubMed Central

    Ee, Robson; Lim, Yan-Lue; Kin, Lin-Xin; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Strain RB38 was recovered from a former dumping area in Malaysia. MALDI-TOF mass spectrometry and genomic analysis identified strain RB-38 as Pandoraea pnomenusa. Various biosensors confirmed its quorum sensing properties. High resolution triple quadrupole liquid chromatography–mass spectrometry analysis was subsequently used to characterize the N-acyl homoserine lactone production profile of P. pnomenusa strain RB38, which validated that this isolate produced N-octanoyl homoserine lactone as a quorum sensing molecule. This is the first report of the production of N-octanoyl homoserine lactone by P. pnomenusa strain RB38. PMID:24919016

  11. U. S. GEOLOGICAL SURVEY LAND REMOTE SENSING ACTIVITIES.

    USGS Publications Warehouse

    Frederick, Doyle G.

    1983-01-01

    USGS uses all types of remotely sensed data, in combination with other sources of data, to support geologic analyses, hydrologic assessments, land cover mapping, image mapping, and applications research. Survey scientists use all types of remotely sensed data with ground verifications and digital topographic and cartographic data. A considerable amount of research is being done by Survey scientists on developing automated geographic information systems that can handle a wide variety of digital data. The Survey is also investigating the use of microprocessor computer systems for accessing, displaying, and analyzing digital data.

  12. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques.

    PubMed

    Thilagavathi, N; Subramani, T; Suresh, M; Karunanidhi, D

    2015-04-01

    This study proposes to introduce the remote sensing and geographic information system (GIS) techniques in mapping the groundwater potential zones. Remote sensing and GIS techniques have been used to map the groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India. Charnockites and fissile hornblende biotite gneiss are the major rock types in this region. Dunites and peridodites are the ultramafic rocks which cut across the foliation planes of the gneisses and are highly weathered. It comprises magnesite and chromite deposits which are excavated by five mining companies by adopting bench mining. The thickness of weathered and fracture zone varies from 2.2 to 50 m in gneissic formation and 5.8 to 55 m in charnockite. At the contacts of gneiss and charnockite, the thickness ranges from 9.0 to 90.8 m favoring good groundwater potential. The mine lease area is underlined by fractured and sheared hornblende biotite gneiss where groundwater potential is good. Water catchment tanks in this area of 5 km radius are small to moderate in size and are only seasonal. They remain dry during summer seasons. As perennial water resources are remote, the domestic and agricultural activities in this region depend mainly upon the groundwater resources. The mines are located in gently slope area, and accumulation of water is not observed except in mine pits even during the monsoon period. Therefore, it is essential to map the groundwater potential zones for proper management of the aquifer system. Satellite imageries were also used to extract lineaments, hydrogeomorphic landforms, drainage patterns, and land use, which are the major controlling factors for the occurrence of groundwater. Various thematic layers pertaining to groundwater existence such as geology, geomorphology, land use/land cover, lineament, lineament density, drainage, drainage density, slope, and soil were generated using GIS tools. By integrating all the above thematic layers based on the ranks and

  13. Monitoring the urban expansion of Athens using remote sensing and GIS techniques in the last 35 years

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos; Pavlopoulos, Kosmas; Chalkias, Christos; Manou, Dora

    2005-10-01

    During the last thirty-five years the capital of Greece has suffered from an enormous internal immigration. Its population has overpassed the five millions and today almost the half population of Greece is squeezed in Athens metropolitan area. Because of the significant increase of population, the urban expansion in the basin of Athens was also excessive and in some cases catastrophic. Buildings have covered all the free places, new roads have been constructed, the drainage networks have been covered or disappeared and a lot of changes have been occurred to the landforms. The construction of the new airport (Elefterios Venizelos) at the beginning of this decade created a new commercial and urban pole at the eastern part of Athens and the constructive activity has been moved to new areas around the airport. Our aim was to detect and map all the changes that occurred in the urban area, estimate the urban expansion rate and the human interferences in the natural landscape, using GIS and remote sensing techniques. We have used satellite images from three different periods (1973, 1992, 2002) and topographic maps of 1:25.000 scale. The spatial resolution of all the satellite images ranges from 5 to 10 meters and is it acceptable for the monitoring and mapping of the urban growth. Supervised classification and on screen digitizing methods have been used in order to map the changes. Finally the qualitative and quantitative results of this study are presented in this paper.

  14. Droplet sensing using small and compact high-Q planar resonator based on impedance matching technique.

    PubMed

    Lee, Hee-Jo; Yook, Jong-Gwan

    2016-09-01

    In this paper, we demonstrate the sensing feasibility of the proposed high-Q resonator using a phosphate-buffered saline droplet at microwave frequencies. In the experimental results, the resonant frequency, signal level, and Q-factor of the S21-parameter with and without a 1-μl droplet were changed to about 230 MHz, 32 dB, and 1500, respectively. The resonator system was found to be suitable for droplet sensing with a small volume due to its small and compact scheme. This resonator system is expected to play an important role in droplet sensing with different dielectric constants.

  15. Droplet sensing using small and compact high-Q planar resonator based on impedance matching technique

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Jo; Yook, Jong-Gwan

    2016-09-01

    In this paper, we demonstrate the sensing feasibility of the proposed high-Q resonator using a phosphate-buffered saline droplet at microwave frequencies. In the experimental results, the resonant frequency, signal level, and Q-factor of the S21-parameter with and without a 1-μl droplet were changed to about 230 MHz, 32 dB, and 1500, respectively. The resonator system was found to be suitable for droplet sensing with a small volume due to its small and compact scheme. This resonator system is expected to play an important role in droplet sensing with different dielectric constants.

  16. Alignment signal extraction of the optically degenerate RSE interferometer using the wave front sensing technique

    NASA Astrophysics Data System (ADS)

    Sato, S.; Kawamura, S.

    2008-07-01

    The alignment sensing and control scheme of the resonant sideband extraction interferometer is still an unsettled issue for the next-generation gravitational wave antennas. The issue is that it is difficult to extract separate error signals for all 12 angular degrees of freedom, which is mainly arising from the complexity of the optical system and cavity 'degeneracy'. We have suggested a new sensing scheme giving reasonably separated signals which is fully compatible with the length sensing scheme. The key of this idea is to resolve the 'degeneracy' of the optical cavities. By choosing an appropriate Gouy phase for the degenerate cavities, alignment error signals with much less admixtures can be extracted.

  17. The application of remote sensing techniques to inter and intra urban analysis

    NASA Technical Reports Server (NTRS)

    Horton, F. E.

    1972-01-01

    This is an effort to assess the applicability of air and spaceborne photography toward providing data inputs to urban and regional planning, management, and research. Through evaluation of remote sensing inputs to urban change detection systems, analyzing an effort to replicate an existing urban land use data file using remotely sensed data, estimating population and dwelling units from imagery, and by identifying and evaluating a system of urban places ultilizing space photography, it was determined that remote sensing can provide data concerning land use, changes in commercial structure, data for transportation planning, housing quality, residential dynamics, and population density.

  18. Expanding applications for surface-contaminant sensing using the laser interrogation of surface agents (LISA) technique

    NASA Astrophysics Data System (ADS)

    Ponsardin, Patrick L.; Higdon, N. S.; Chyba, Thomas H.; Armstrong, Wayne T.; Sedlacek, Arthur J., III; Christesen, Steven D.; Wong, Anna

    2004-02-01

    Laser Interrogation of Surface Agents (LISA) is a UV-Raman technique that provides short-range standoff detection and identification of surface-deposited chemical agents. ITT Industries, Advanced Engineering and Sciences Division, is currently developing and expanding the LISA technology under several programs that span a variety of missions for homeland defense. We will present and discuss some of these applications, while putting in perspective the overall evolution undergone by the technique within the last years. These applications include LISA-Recon (now called the Joint Contaminated Surface Detector--JCSD) which was developed under a cost-sharing arrangement with the U.S. Army Soldier and Biological Chemical Command (SBCCOM) for incorporation on the Army"s future reconnaissance vehicles, and designed to demonstrate single-shot on-the-move measurements of chemical contaminants at concentration levels below the Army's requirements. In parallel, LISA-Shipboard is being developed to optimize the sensor technique for detection of surface contaminants in the operational environment of a ship. The most recently started activity is LISA-Inspector that is being developed to provide a transportable sensor in a 'cart-like' configuration.

  19. Monitoring land-use change by combining participatory land-use maps with standard remote sensing techniques: Showcase from a remote forest catchment on Mindanao, Philippines

    NASA Astrophysics Data System (ADS)

    Mialhe, François; Gunnell, Yanni; Ignacio, J. Andres F.; Delbart, Nicolas; Ogania, Jenifer L.; Henry, Sabine

    2015-04-01

    This paper combines participatory activities (PA) with remote sensing analysis into an integrated methodology to describe and explain land-cover changes. A remote watershed on Mindanao (Philippines) is used to showcase the approach, which hypothesizes that the accuracy of expert knowledge gained from remote sensing techniques can be further enhanced by inputs from vernacular knowledge when attempting to understand complex land mosaics and past land-use changes. Six participatory sessions based on focus-group discussions were conducted. These were enhanced by community-based land-use mapping, resulting in a final total of 21 participatory land-use maps (PLUMs) co-produced by a sample of stakeholders with different sociocultural and ecological perspectives. In parallel, seven satellite images (Landsat MSS, Landsat TM, Landsat ETM+, and SPOT4) were classified following standard techniques and provided snapshots for the years 1976, 1996, and 2010. Local knowledge and collective memory contributed to define and qualify relevant land-use classes. This also provided information about what had caused the land-use changes in the past. Results show that combining PA with remote-sensing analysis provides a unique understanding of land-cover change because the two methods complement and validate one another. Substantive qualitative information regarding the chronology of land-cover change was obtained in a short amount of time across an area poorly covered by scientific literature. The remote sensing techniques contributed to test and to quantify verbal reports of land-use and land-cover change by stakeholders. We conclude that the method is particularly relevant to data-poor areas or conflict zones where rapid reconnaissance work is the only available option. It provides a preliminary but accurate baseline for capturing land changes and for reporting their causes and consequences. A discussion of the main challenges encountered (i.e. how to combine different systems of

  20. Sense of Cohesion among Community Activists Engaging in Volunteer Activity

    ERIC Educational Resources Information Center

    Levy, Drorit; Itzhaky, Haya; Zanbar, Lea; Schwartz, Chaya

    2012-01-01

    The present article attempts to shed light on the direct and indirect contribution of personal resources and community indices to Sense of Cohesion among activists engaging in community volunteer work. The sample comprised 481 activists. Based on social systems theory, three levels of variables were examined: (1) inputs, which included personal…

  1. Activities of the Remote Sensing Information Sciences Research Group

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Botkin, D.; Peuquet, D.; Smith, T.; Star, J. L. (Principal Investigator)

    1984-01-01

    Topics on the analysis and processing of remotely sensed data in the areas of vegetation analysis and modelling, georeferenced information systems, machine assisted information extraction from image data, and artificial intelligence are investigated. Discussions on support field data and specific applications of the proposed technologies are also included.

  2. Remote sensing research activities related to academic institutions

    NASA Technical Reports Server (NTRS)

    Myers, V. I.

    1980-01-01

    The role of research in the educational setting is discussed. Curriculum developments for integrating teaching and research are described. Remote sensing technology is used as an example of bridging the gap between research and application. Recommendations are presented for strengthing research groups.

  3. Multisensor of Remotely Sensed Data for Characterizing Seismotectonic Activities in Malaysia

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Rabieahtul; Azahari Razak, Khamarrul; Anuar Jamaludin, Tajul; Tongkul, Felix; Mohamad, Zakaria; Ramli, Zamri; Abd Manap, Mohamad; Rahman, Muhammad Zulkarnain Abdul

    2015-04-01

    Seismically induced events pose serious hazards yet are difficult to predict. Despite remarkable efforts of mapping, monitoring and modelling of such great events at regional or local scales, the understanding of the processes in the Earth's dynamic system remains elusive. Although Malaysia is in a relatively low seismic hazard zone, the current trend and pattern of seismotectonic activities triggered a series of fundamental study to better understand the relationship between the earthquakes, recent tectonics and seismically active fault zones. Several conventional mapping techniques have been intensively used but shown some limitations. Remote sensing is the preferable mean to quantify the seismic activity accurately in a larger area within a short period. Still, only few of such studies have been carried out in this subduction region. Characterization of seismotectonic activities from space in a tropical environment is very challenging given the complexity of its physiographic, climatic, geologic conditions and anthropogenic activities. There are many factors controlling the success rate of the implementation mainly due to the lack of historical earthquakes, geomorphological evidence, and proper identification of regional tectonic patterns. In this study, we aim at providing better insight to extract and characterize seismotectonic activities by integrating passive and active remotely-sensed data, geodetic data, historical records, GIS-based data analysis and in-situ measurements as well quantify them based on field investigation and expert knowledge. It is crucial to perform spatiotemporal analysis of its activities in the most seismically induced region in North-Western Sabah. A comprehensive geodatabase of seismotectonic events are developed and allowed us to analyse the spatiotemporal activities. A novelty of object-based image method for extracting tropical seismically active faults and related seismotectonic features are introduced and evaluated. We aim to

  4. Applying remote sensing and GIS techniques in solving rural county information needs

    NASA Technical Reports Server (NTRS)

    Johannsen, Chris J.; Fernandez, R. Norberto; Lozano-Garcia, D. Fabian

    1992-01-01

    The project designed was to acquaint county government officials and their clientele with remote sensing and GIS products that contain information about land conditions and land use. Other users determined through the course of this project were federal agencies working at the county level, agricultural businesses and others in need of spatial information. The specific project objectives were: (1) to investigate the feasibility of using remotely sensed data to identify and quantify specific land cover categories and conditions for purposes of tax assessment, cropland area measurements and land use evaluation; (2) to investigate the use of satellite remote sensing data as an aid in assessing soil management practices; and (3) to evaluate the use of remotely sensed data to assess soil resources and conditions which affect productivity.

  5. New remote sensing techniques facilitate study of earth's far-flung volcanos

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Pieri, David C.

    1990-01-01

    The study of volcanos using remote sensing is discussed. The dynamics of volcanic eruptions and the interactions between volcanos and the atmosphere and ecosphere are examined. Remote sensing equipment can effectively detect mud flows, pyroclastic falls, debris avalanches, lava flows, and hazards to aircraft from eruption plumes. Consideration is given to the use of thermal IR imaging, weather satellites, and polar-orbiting satellites to study such features as lava flow, silica content, and SO2 distribution.

  6. Multiple-image encryption by space multiplexing based on compressive sensing and the double-random phase-encoding technique.

    PubMed

    Deepan, B; Quan, C; Wang, Y; Tay, C J

    2014-07-10

    In this paper, a new multiple-image encryption and decryption technique that utilizes the compressive sensing (CS) concept along with a double-random phase encryption (DRPE) has been proposed. The space multiplexing method is employed for integrating multiple-image data. The method, which results in a nonlinear encryption system, is able to overcome the vulnerability of classical DRPE. The CS technique and space multiplexing are able to provide additional key space in the proposed method. A numerical experiment of the proposed method is implemented and the results show that the proposed method has good accuracy and is more robust than classical DRPE. The proposed system is also employed against chosen-plaintext attacks and it is found that the inclusion of compressive sensing enhances robustness against the attacks.

  7. Detecting river sediments to assess hazardous materials at volcanic lake using advanced remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Saepuloh, Asep; Fitrianingtyas, Chintya

    2016-05-01

    The Toba Caldera formed from large depression of Quaternary volcanism is a remarkable feature at the Earth surface. The last Toba super eruptions were recorded around 73 ka and produced the Youngest Toba Tuff about 2,800 km3. Since then, there is no record of significant volcanic seismicity at Toba Volcanic Complex (TVC). However, the hydrothermal activities are still on going as presented by the existence of hot springs and alteration zones at the northwest caldera. The hydrothermal fluids probably containing some chemical compositions mixed with surficial water pollutant and contaminated the Toba Lake. Therefore, an environmental issues related to the existence of chemical composition and degradation of water clearness in the lake had been raised in the local community. The pollutant sources are debatable between natural and anthropogenic influences because some human activities grow rapidly at and around the lake such as hotels, tourisms, husbandry, aquaculture, as well as urbanization. Therefore, obtaining correct information about the source materials floating at the surface of the Toba Lake is crucial for environmental and hazard mitigation purposes. Overcoming the problem, we presented this paper to assess the source possibility of floating materials at Toba Lake, especially from natural sources such as hydrothermal activities of TVC and river stream sediments. The Spectral Angle Mapper (SAM) techniques using atmospherically corrected of Landsat-8 and colour composite of Polarimetric Synthetic Aperture Radar (PolSAR) were used to map the distribution of floating materials. The seven ground truth points were used to confirm the correctness of proposed method. Based on the SAM and PolSAR techniques, we could detect the interface of hydrothermal fluid at the lake surfaces. Various distributions of stream sediment were also detected from the river mouth to the lake. The influence possibilities of the upwelling process from the bottom floor of Toba Lake were also

  8. Laboratory and Field Application of River Depth Estimation Techniques Using Remotely Sensed Data: Annual Report Year 1

    DTIC Science & Technology

    2013-09-30

    Estimation Techniques Using Remotely Sensed Data: Annual Report Year 1 Jonathan M. Nelson US Geological Survey National Research Program Geomorphology ...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Geological Survey National Research Program, Geomorphology and Sediment Transport Laboratory...Survey Geomorphology and Sediment Transport Laboratory (GSTL). The IR camera was mounted on a rack ~1m above the surface of the flow and oriented so that

  9. Experimental validation of a millimeter wave radar technique to remotely sense atmospheric pressure at the Earth's surface

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1984-01-01

    Experiments with a millimeter wave radar operating on the NASA CV-990 aircraft which validate the technique for remotely sensing atmospheric pressure at the Earth's surface are described. Measurements show that the precise millimeter wave observations needed to deduce pressure from space with an accuracy of 1 mb are possible, that sea surface reflection properties agree with theory and that the measured variation of differential absorption with altitude corresponds to that expected from spectroscopic models.

  10. Development of a remote sensing technique to study the hydrology of earth stock tanks on a semiarid watershed

    NASA Technical Reports Server (NTRS)

    Cluff, C. B.; Lovely, C. J.

    1974-01-01

    The stock tanks considered are relatively small earthen reservoirs, built in tributary stream channels and drainageways. A remote sensing technique is developed for obtaining quantitative data on water levels and water losses from stock tanks. Details of the used approaches are discussed along with some difficulties which would have to be overcome in order to determine the effects of the stock tanks on stream flow.

  11. Models to support active sensing of biological aerosol clouds

    NASA Astrophysics Data System (ADS)

    Brown, Andrea M.; Kalter, Jeffrey M.; Corson, Elizabeth C.; Chaudhry, Zahra; Boggs, Nathan T.; Brown, David M.; Thomas, Michael E.; Carter, Christopher C.

    2013-05-01

    Elastic backscatter LIght Detection And Ranging (LIDAR) is a promising approach for stand-off detection of biological aerosol clouds. Comprehensive models that explain the scattering behavior from the aerosol cloud are needed to understand and predict the scattering signatures of biological aerosols under varying atmospheric conditions and against different aerosol backgrounds. Elastic signatures are dependent on many parameters of the aerosol cloud, with two major components being the size distribution and refractive index of the aerosols. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has been in a unique position to measure the size distributions of released biological simulant clouds using a wide assortment of aerosol characterization systems that are available on the commercial market. In conjunction with the size distribution measurements, JHU/APL has also been making a dedicated effort to properly measure the refractive indices of the released materials using a thin-film absorption technique and laboratory characterization of the released materials. Intimate knowledge of the size distributions and refractive indices of the biological aerosols provides JHU/APL with powerful tools to build elastic scattering models, with the purpose of understanding, and ultimately, predicting the active signatures of biological clouds.

  12. Analytical and Numerical Studies of Active and Passive Microwave Ocean Remote Sensing

    DTIC Science & Technology

    2001-09-30

    of both analytical and efficient numerical methods for electromagnetics and hydrodynamics. New insights regarding these phenomena can then be applied to improve microwave active and passive remote sensing of the ocean surface.

  13. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...

  14. Hybrid architecture active wavefront sensing and control system, and method

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D. (Inventor); Dean, Bruce H. (Inventor); Hyde, Tristram T. (Inventor)

    2011-01-01

    According to various embodiments, provided herein is an optical system and method that can be configured to perform image analysis. The optical system can comprise a telescope assembly and one or more hybrid instruments. The one or more hybrid instruments can be configured to receive image data from the telescope assembly and perform a fine guidance operation and a wavefront sensing operation, simultaneously, on the image data received from the telescope assembly.

  15. Application of Remote Sensing Technique to Suspended Sediment Estimation of Pinan River, Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Y. S.; Chang, C. P.

    2014-12-01

    Because of the rapid compression between the Eurasian Plate and the Philippine Sea Plate, the Central Range of the Taiwan Island continued to quickly uplift. Moreover, because of being located in the subtropical area, Taiwan has abundant rainfall, and has distinct wet and dry season. Typhoons which almost brought violent rain, struck Taiwan average four times a year during the summer. This extreme tectonic and weather condition makes that a large number of sediments easily to be taken away from the mountainous area and output to the downstream estuary in a short time. These eroded sediments can be classified into two categories. One is bedrock sediments, and the other is suspended sediments which could be detected by the satellite remote sensing technique. In previous studies, some suspended sediment concentration (SSC) predictions were carried out by using optical satellites imagery in different areas. As we know, the more suspension sediment in water can directly reflect the higher reflectance of solar radiation. In addition, the exact form of the relationship between SSC and reflectance also depends on the mineralogy, color, and size of the sediments. Therefore, most studies developed unique relationships by relating field measurements of SSC to reflectance data from satellite imagery. The Pinan River is the largest river in eastern Taiwan. It rises in the Central Range and flows through Taitung County for 84 kilometers. Statistically, in Taiwan, more than 40 percent typhoons struck and landed from the Pinan River watershed. Abundant rainfall coupled with short channel caused plenty of sediments output from the Pinan River. In this study, we focus on Pinan River estuary by using SSC field data which was got from the Hydrological Year Book of Taiwan published by Water Resources Agency every year. Because of lack of field data, we got daily river discharge to establish the Rating Curve and predict daily SSC. Moreover, we also used FORMOSAT-2 imagery in band 3 and

  16. Monitoring changes in riverine forests of Sindh-Pakistan using remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Siddiqui, M. N.; Jamil, Z.; Afsar, J.

    Depletion in the forest area threatens the sustainability of agricultural production systems and en-dangers the economy of the country. Every year extensive areas of arable agricultural and forestlands are degraded and turned into wastelands over time, due to natural causes or human interventions. Depletion in forest cover, therefore, has an important impact on socio-economic development and ecological balance. High population growth rate in Pakistan is one of the main causes for rapid deterioration of the physical environment and natural resource base. In view of this, it was felt necessary to carryout landuse studies focusing on mapping the past and present conditions and the extent of forests and rangelands using satellite remote sensing (SRS) and Geographic Information System (GIS) technologies. The SRS and GIS technologies provide a possible means of monitoring and mapping the changes occurring in natural resources and the environment on a continuous basis. The riverine forests of Sindh mostly growing along the river Indus in the flood plains are spread over an area of 241,000 ha but are disappearing very rapidly. Construction of dams/barrages on the upper reaches of the river Indus for hydroelectric power and irrigation works have significantly reduced the discharge of fresh water into the lower Indus basin and as a result 100,000 acres of forests have disappeared. Furthermore, heavy floods that occurred in 1978, 1988, 1992 and 1997, altered the course of the River Indus in many places, especially in the lower reaches, this has also damaged the riverine forests of Sindh. An integrated approach involving analysis of SRS data from 1977 to 1998 and GIS technique have been used to evaluate the geographic extent and distribution of the riverine forests of Sindh and to monitor temporal changes in the forest cover between 1977 and 1990; 1990 and 1998; and 1977 and 1998. The integrated landuse forest cover maps have shown not only the temporal changes that occur in

  17. A fast auto-focusing technique for the long focal lens TDI CCD camera in remote sensing applications

    NASA Astrophysics Data System (ADS)

    Wang, Dejiang; Ding, Xu; Zhang, Tao; Kuang, Haipeng

    2013-02-01

    The key issue in automatic focus adjustment for long focal lens TDI CCD camera in remote sensing applications is to achieve the optimum focus position as fast as possible. Existing auto-focusing techniques consume too much time as the mechanical focusing parts of the camera move in steps during the searching procedure. In this paper, we demonstrate a fast auto-focusing technique, which employs the internal optical elements and the TDI CCD itself to directly sense the deviations in back focal distance of the lens and restore the imaging system to a best-available focus. It is particularly advantageous for determination of the focus, due to that the relative motion between the TDI CCD and the focusing element can proceed without interruption. Moreover, the theoretical formulas describing the effect of imaging motion on the focusing precision and the effective focusing range are also developed. Finally, an experimental setup is constructed to evaluate the performance of the proposed technique. The results of the experiment show a ±5 μm precision of auto-focusing in a range of ±500 μmdefocus, and the searching procedure could be accomplished within 0.125 s, which leads to remarkable improvement on the real-time imaging capability for high resolution TDI CCD camera in remote sensing applications.

  18. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae.

    PubMed

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-12-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host-pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.

  19. Use of remote sensing techniques for inventorying and planning utilization of land resources in South Dakota

    NASA Technical Reports Server (NTRS)

    Myers, V. I.; Frazee, C. J.; Rusche, A. E.; Moore, D. G.; Nelson, G. D.; Westin, F. C.

    1974-01-01

    The basic procedures for interpreting remote sensing imagery to rapidly develop general soils and land use inventories were developed and utilized in Pennington County, South Dakota. These procedures and remote sensing data products were illustrated and explained to many user groups, some of whom are interested in obtaining similar data. The general soils data were integrated with land soils data supplied by the county director of equalization to prepare a land value map. A computer print-out of this map indicating a land value for each quarter section is being used in tax reappraisal of Pennington County. The land use data provided the land use planners with the present use of land in Pennington County. Additional uses of remote sensing applications are also discussed including tornado damage assessment, hail damage evaluation, and presentation of soil and land value information on base maps assembled from ERTS-1 imagery.

  20. Development of satellite remote sensing techniques as an economic tool for forestry industry

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.; Jadkowski, Mark A.

    1989-01-01

    A cooperative commercial development project designed to focus on cost-effective and practical applications of satellite remote sensing in forest management is discussed. The project, initiated in September, 1988 is being executed in three phases: (1) development of a forest resource inventory and geographic information system (GIS) updating systems; (2) testing and evaluation of remote-sensing products against forest industry specifications; and (3) integration of remote-sensing services and products in an operational setting. An advisory group represented by eleven major forest-product companies will provide direct involvement of the target market. The advisory group will focus on the following questions: Does the technology work for them? How can it be packaged to provide the needed forest-management information? Can the products and information be provided in a cost-effective manner?

  1. Remote-Sensing Technique for Determination of the Volume Absorption Coefficient of Turbid Water

    NASA Astrophysics Data System (ADS)

    Sydor, Michael; Arnone, Robert A.; Gould, Richard W., Jr.; Terrie, Gregory E.; Ladner, Sherwin D.; Wood, Christoper G.

    1998-07-01

    We use remote-sensing reflectance from particulate R rs to determine the volume absorption coefficient a of turbid water in the 400 700-nm spectral region. The calculated and measured values of a ( ) show good agreement for 0 . 5 a 10 (m 1 ). To determine R rs from a particulate, we needed to make corrections for remote-sensing reflectance owing to surface roughness S rs . We determined the average spectral distribution of S rs from the difference in total remote-sensing reflectance measured with and without polarization. The spectral shape of S rs showed an excellent fit to theoretical formulas for glare based on Rayleigh and aerosol scattering from the atmosphere.

  2. Remote sensing techniques applied to multispectral recognition of the Aranjuez pilot zone

    NASA Technical Reports Server (NTRS)

    Lemos, G. L.; Salinas, J.; Rebollo, M.

    1977-01-01

    A rectangular (7 x 14 km) area 40 km S of Madrid was remote-sensed with a three-stage recognition process. Ground truth was established in the first phase, airborne sensing with a multispectral scanner and photographic cameras were used in the second phase, and Landsat satellite data were obtained in the third phase. Agronomic and hydrological photointerpretation problems are discussed. Color, black/white, and labeled areas are displayed for crop recognition in the land-use survey; turbidity, concentrations of pollutants and natural chemicals, and densitometry of the water are considered in the evaluation of water resources.

  3. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques.

    PubMed

    Gao, Yongnian; Gao, Junfeng; Yin, Hongbin; Liu, Chuansheng; Xia, Ting; Wang, Jing; Huang, Qi

    2015-03-15

    Remote sensing has been widely used for ater quality monitoring, but most of these monitoring studies have only focused on a few water quality variables, such as chlorophyll-a, turbidity, and total suspended solids, which have typically been considered optically active variables. Remote sensing presents a challenge in estimating the phosphorus concentration in water. The total phosphorus (TP) in lakes has been estimated from remotely sensed observations, primarily using the simple individual band ratio or their natural logarithm and the statistical regression method based on the field TP data and the spectral reflectance. In this study, we investigated the possibility of establishing a spatial modeling scheme to estimate the TP concentration of a large lake from multi-spectral satellite imagery using band combinations and regional multivariate statistical modeling techniques, and we tested the applicability of the spatial modeling scheme. The results showed that HJ-1A CCD multi-spectral satellite imagery can be used to estimate the TP concentration in a lake. The correlation and regression analysis showed a highly significant positive relationship between the TP concentration and certain remotely sensed combination variables. The proposed modeling scheme had a higher accuracy for the TP concentration estimation in the large lake compared with the traditional individual band ratio method and the whole-lake scale regression-modeling scheme. The TP concentration values showed a clear spatial variability and were high in western Lake Chaohu and relatively low in eastern Lake Chaohu. The northernmost portion, the northeastern coastal zone and the southeastern portion of western Lake Chaohu had the highest TP concentrations, and the other regions had the lowest TP concentration values, except for the coastal zone of eastern Lake Chaohu. These results strongly suggested that the proposed modeling scheme, i.e., the band combinations and the regional multivariate

  4. The Object of Activity: Making Sense of the Sense-Maker

    ERIC Educational Resources Information Center

    Kaptelinin, Victor

    2005-01-01

    The concept of "the object of activity" plays a key role in research based on activity theory. However, the usefulness of this concept is somewhat undermined by the fact that a number of problems related to its meaning and its contexts of use remain unsolved. This article is an attempt to address some of these problems. The article focuses on 3…

  5. Estimating primary productivity of tropical oil palm in Malaysia using remote sensing technique and ancillary data

    NASA Astrophysics Data System (ADS)

    Kanniah, K. D.; Tan, K. P.; Cracknell, A. P.

    2014-10-01

    The amount of carbon sequestration by vegetation can be estimated using vegetation productivity. At present, there is a knowledge gap in oil palm net primary productivity (NPP) at a regional scale. Therefore, in this study NPP of oil palm trees in Peninsular Malaysia was estimated using remote sensing based light use efficiency (LUE) model with inputs from local meteorological data, upscaled leaf area index/fractional photosynthetically active radiation (LAI/fPAR) derived using UK-DMC 2 satellite data and a constant maximum LUE value from the literature. NPP values estimated from the model was then compared and validated with NPP estimated using allometric equations developed by Corley and Tinker (2003), Henson (2003) and Syahrinudin (2005) with diameter at breast height, age and the height of the oil palm trees collected from three estates in Peninsular Malaysia. Results of this study show that oil palm NPP derived using a light use efficiency model increases with respect to the age of oil palm trees, and it stabilises after ten years old. The mean value of oil palm NPP at 118 plots as derived using the LUE model is 968.72 g C m-2 year-1 and this is 188% - 273% higher than the NPP derived from the allometric equations. The estimated oil palm NPP of young oil palm trees is lower compared to mature oil palm trees (<10 years old), as young oil palm trees contribute to lower oil palm LAI and therefore fPAR, which is an important variable in the LUE model. In contrast, it is noted that oil palm NPP decreases with respect to the age of oil palm trees as estimated using the allomeric equations. It was found in this study that LUE models could not capture NPP variation of oil palm trees if LAI/fPAR is used. On the other hand, tree height and DBH are found to be important variables that can capture changes in oil palm NPP as a function of age.

  6. Young Scientists Explore the Five Senses. Book 4--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of the five senses. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each…

  7. Integration of remote sensing and ground-based techniques for the study of land degradation phenomena in coastal areas.

    NASA Astrophysics Data System (ADS)

    Imbrenda, Vito; Coluzzi, Rosa; Calamita, Giuseppe; Luigia Giannossi, Maria; D'Emilio, Mariagrazia; Lanfredi, Maria; Makris, John; Palombo, Angelo; Pascucci, Simone; Santini, Federico; Margiotta, Salvatore; Emanuela Bonomo, Agnese; De Martino, Gregory; Perrone, Angela; Rizzo, Enzo; Pignatti, Stefano; Summa, Vito; Simoniello, Tiziana

    2015-04-01

    Land degradation processes, such as salinization and waterlogging, are increasingly affecting extensive areas devoted to agriculture threatening the sustainability of farming practices. Soil salinization typically appears as an excess accumulation of salt generally pronounced at the soil surface. Commonly, soil salinity is defined and measured by means of laboratory measurements of the electrical conductivity of liquid extracted from saturated soil-paste or different soil-water suspensions. Lab measurements are generally time consuming, costly, destructive, untimely for practical situations where the determination of the causes and/or the assessment of management practices are of interest. Recently, emerging survey techniques proved to be powerful tools to support soil salinity appraisal reducing costs and increasing the amount of spatial information. In the frame of PRO-LAND project (PO-FESR Basilicata 2007-2013) the research activities have been focused on the study of a complex salinization phenomenon occurring in a coastal environment of the Basilicata region (Southern Italy) as a result of natural and anthropic disturbances. The study area is located in the southernmost part of the Bradanic Trough along the sandy Ionian coastal plain. The hydrogeological conditions affect shallowness of the aquifer (45-50 cm below the ground) allowing the occurrence of seawater intrusion. Moreover, during last century, human activities, i.e. built-up of dams, the emergence of farms and industries, played a relevant role in the alteration of soil and groundwater quality of the area. In this work, both ground-based and remote sensing data were used. First, a geophysical mapping of electrical conductivity was carried out using a multi-frequency portable electro-magnetic induction (EMI) sensor. Based on the geophysical mapping and on optimization sampling approach, a number of locations were identified to collect soil samples for the geomineralogical characterization. Airborne

  8. Comparative research on activation technique for GaAs photocathodes

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Qian, Yunsheng; Chang, Benkang; Chen, Xinlong; Yang, Rui

    2012-03-01

    The properties of GaAs photocathodes mainly depend on the material design and activation technique. In early researches, high-low temperature two-step activation has been proved to get more quantum efficiency than high-temperature single-step activation. But the variations of surface barriers for two activation techniques have not been well studied, thus the best activation temperature, best Cs-O ratio and best activation time for two-step activation technique have not been well found. Because the surface photovoltage spectroscopy (SPS) before activation is only in connection with the body parameters for GaAs photocathode such as electron diffusion length and the spectral response current (SRC) after activation is in connection with not only body parameters but also surface barriers, thus the surface escape probability (SEP) can be well fitted through the comparative research between SPS before activation and SEP after activation. Through deduction for the tunneling process of surface barriers by Schrödinger equation, the width and height for surface barrier I and II can be well fitted through the curves of SEP. The fitting results were well proved and analyzed by quantitative analysis of angle-dependent X-ray photoelectron spectroscopy (ADXPS) which can also study the surface chemical compositions, atomic concentration percentage and layer thickness for GaAs photocathodes. This comparative research method for fitting parameters of surface barriers through SPS before activation and SRC after activation shows a better real-time in system method for the researches of activation techniques.

  9. Improved Target Detection in Urban Structures Using Distributed Sensing and Fast Data Acquisition Techniques

    DTIC Science & Technology

    2013-04-01

    Trans. Signal Process., vol. 57, no. 6, pp. 2275-2284, 2009. [83] A. Gurbuz, J. IVIcClellan, and W. Scott, "Compressive sensing for subsurface ... imaging using ground penetrating radar," Signal Pracess., vol. 89, no. 10, pp. 1959 -1972, 2009. [84] A. Gurbuz, J. McClellan, and W. Scott, "A

  10. Theory and analysis of statistical discriminant techniques as applied to remote sensing data

    NASA Technical Reports Server (NTRS)

    Odell, P. L.

    1973-01-01

    Classification of remote earth resources sensing data according to normed exponential density statistics is reported. The use of density models appropriate for several physical situations provides an exact solution for the probabilities of classifications associated with the Bayes discriminant procedure even when the covariance matrices are unequal.

  11. Estimation of land remote sensing satellites productivity based on the simulation technique

    NASA Astrophysics Data System (ADS)

    Kurenkov, Vladimir I.; Kucherov, Alexander S.; Yakischik, Artem A.

    2017-01-01

    The problem of estimating land remote sensing satellites productivity is considered. Here, productivity is treated as a number of separate survey objects taken in a definite time. Appropriate mathematical models have been developed. Some results obtained with the help of the software worked out in Delphi programming support environment are presented.

  12. Incorporating Active Learning Techniques into a Genetics Class

    ERIC Educational Resources Information Center

    Lee, W. Theodore; Jabot, Michael E.

    2011-01-01

    We revised a sophomore-level genetics class to more actively engage the students in their learning. The students worked in groups on quizzes using the Immediate Feedback Assessment Technique (IF-AT) and active-learning projects. The IF-AT quizzes allowed students to discuss key concepts in small groups and learn the correct answers in class. The…

  13. Predicting Species Cover of Marine Macrophyte and Invertebrate Species Combining Hyperspectral Remote Sensing, Machine Learning and Regression Techniques

    PubMed Central

    Kotta, Jonne; Kutser, Tiit; Teeveer, Karolin; Vahtmäe, Ele; Pärnoja, Merli

    2013-01-01

    In order to understand biotic patterns and their changes in nature there is an obvious need for high-quality seamless measurements of such patterns. If remote sensing methods have been applied with reasonable success in terrestrial environment, their use in aquatic ecosystems still remained challenging. In the present study we combined hyperspectral remote sensing and boosted regression tree modelling (BTR), an ensemble method for statistical techniques and machine learning, in order to test their applicability in predicting macrophyte and invertebrate species cover in the optically complex seawater of the Baltic Sea. The BRT technique combined with remote sensing and traditional spatial modelling succeeded in identifying, constructing and testing functionality of abiotic environmental predictors on the coverage of benthic macrophyte and invertebrate species. Our models easily predicted a large quantity of macrophyte and invertebrate species cover and recaptured multitude of interactions between environment and biota indicating a strong potential of the method in the modelling of aquatic species in the large variety of ecosystems. PMID:23755113

  14. Strain-induced vibration and temperature sensing BOTDA system combined frequency sweeping and slope-assisted techniques.

    PubMed

    Hu, Junhui; Xia, Lan; Yang, Li; Quan, Wenwen; Zhang, Xuping

    2016-06-13

    A BOTDA sensing scheme combined frequency sweeping and slope-assisted techniques is proposed and experimentally demonstrated for simultaneously temperature and strain-induced vibration sensing. In this scheme, during sweeping Brillouin gain spectrum (BGS) for temperature measurement, we simultaneously perform FFT to the time-domain traces whose probe-pump frequency difference (PPFD) is within the FWHM of the BGS at each position of fiber, and the location and the frequency of the strain-induced vibration event can be acquired based on SA-BOTDA technique. In this way, the vibration can be continuously measured at each selected working frequency point during the BGS scanning process and multiple measurements of vibration event can be completed in one whole BGS scanning process. Meanwhile, double sidebands probe method is employed to reduce the nonlocal effects. In our experiment, a temperature event and two vibration events with the frequency of 7.00Hz or 10.00Hz are simultaneously measured near the end of 10.6km long sensing fiber in a traditional BOTDA system. The system shows 1.2°C temperature accuracy and 0.67Hz frequency resolution, as well as a 3m spatial resolution. The proposed method may find some potential applications where both the strain-induced vibration frequency and temperature are the diagnostic objects.

  15. Multi-scale characterization of rock mass discontinuities and rock slope geometry using terrestrial remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Sturzenegger, Matthieu

    Terrestrial remote sensing techniques including both digital photogrammetry and laser scanning, represent useful complements to conventional field mapping and rock mass discontinuity characterization. Several studies have highlighted practical advantages at close-range (< 300 m), including the ability to map inaccessible rock exposures and hazard reduction related to both traffic and rockfall along investigated outcrops. In addition, several authors have demonstrated their potential to provide adequate quantification of discontinuity parameters. Consequently, their incorporation into rock slope stability investigations and design projects has grown substantially over recent years. As these techniques are increasingly applied by geologists and geological engineers, it is important that their use be properly evaluated. Furthermore, guidelines to optimize their application are required in a similar manner to standardization of conventional discontinuity mapping techniques. An important thesis objective is to develop recommendations for optimal applications of terrestrial remote sensing techniques for discontinuity characterization, based on a quantitative evaluation of various registration approaches, sampling bias and extended manual mapping of 3D digital models. It is shown that simple registration networks can provide adequate measurement of discontinuity geometry for engineering purposes. The bias associated with remote sensing mapping is described. The advantages of these techniques over conventional mapping are demonstrated, including reliable discontinuity orientation measurements. Persistence can be precisely quantified instead of approximately estimated, resulting in a new class for extremely persistent discontinuities being suggested. Secondary roughness and curvature can also be considered at larger scales. The techniques are suitable for the definition of discontinuity sets, and the estimation of both trace intensity and block size/shape, if sampling bias

  16. Analytical techniques for the study of some parameters of multispectral scanner systems for remote sensing

    NASA Technical Reports Server (NTRS)

    Wiswell, E. R.; Cooper, G. R. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The concept of average mutual information in the received spectral random process about the spectral scene was developed. Techniques amenable to implementation on a digital computer were also developed to make the required average mutual information calculations. These techniques required identification of models for the spectral response process of scenes. Stochastic modeling techniques were adapted for use. These techniques were demonstrated on empirical data from wheat and vegetation scenes.

  17. Study of Influence of Effluent on Ground Water Using Remote Sensing, GIS and Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Pathak, S.; Bhadra, B. K.; Sharma, J. R.

    2012-07-01

    The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India). There are four Common Effluent Treatment Plant (CETP) treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi - a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat -1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer - inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer boundaries using specialized

  18. Structural, magnetic and gas sensing properties of nanosized copper ferrite powder synthesized by sol gel combustion technique

    NASA Astrophysics Data System (ADS)

    Sumangala, T. P.; Mahender, C.; Barnabe, A.; Venkataramani, N.; Prasad, Shiva

    2016-11-01

    Stoichiometric nano sized copper ferrite particles were synthesized by sol gel combustion technique. They were then calcined at various temperatures ranging from 300-800 °C and were either furnace cooled or quenched in liquid nitrogen. A high magnetisation value of 48.2 emu/g signifying the cubic phase of copper ferrite, was obtained for sample quenched to liquid nitrogen temperature from 800 °C. The ethanol sensing response of the samples was studied and a maximum of 86% response was obtained for 500 ppm ethanol in the case of a furnace cooled sample calcined at 800 °C. The chemical sensing is seen to be correlated with the c/a ratio and is best in the case of tetragonal copper ferrite.

  19. Remote-sensing based technique to account for sub-grid scale variability of land surface properties

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Laymon, Charles A.

    1995-01-01

    A method has been presented for the representation of sub-grid scale variability of surface properties within a land surface processes model. The method uses remotely-sensed data to directly or indirectly estimate probability density functions (PDF's) or key surface variables. Application of this technique in a coupled land surface-atmosphere model requires only grid-scale values of the variables of interest, obtained from low-resolution satellite imagery or surface/remote sensing data assimilation. The PDF's of each controlling surface property are superimposed on the respective grid-scale values to simulate sub-grid scale heterogeneity. Sensitivity studies will be carried out to ascertain the relative importance of the heterogeneity of several variables, and the degree to which non-linear property-process interactions impact large-scale fluxes.

  20. Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa

    PubMed Central

    2012-01-01

    Introduction The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. Methods A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST). Results The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points. Conclusions Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling

  1. Revised radiometric calibration technique for LANDSAT-4 Thematic Mapper data by the Canada Centre for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Murphy, J.; Butlin, T.; Duff, P.; Fitzgerald, A.

    1984-01-01

    Observations of raw image data, raw radiometric calibration data, and background measurements extracted from the raw data streams on high density tape reveal major shortcomings in a technique proposed by the Canadian Center for Remote Sensing in 1982 for the radiometric correction of TM data. Results are presented which correlate measurements of the DC background with variations in both image data background and calibration samples. The effect on both raw data and data corrected using the earlier proposed technique is explained and the correction required for these factors as a function of individual scan line number for each detector is described. How the revised technique can be incorporated into an operational environment is demonstrated.

  2. Revised Radiometric Calibration Technique for LANDSAT-4 Thematic Mapper Data by the Canada Centre for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Murphy, J.; Butlin, T.; Duff, P.; Fitzgerald, A.

    1984-01-01

    A technique for the radiometric correction of LANDSAT-4 Thematic Mapper data was proposed by the Canada Center for Remote Sensing. Subsequent detailed observations of raw image data, raw radiometric calibration data and background measurements extracted from the raw data stream on High Density Tape highlighted major shortcomings in the proposed method which if left uncorrected, can cause severe radiometric striping in the output product. Results are presented which correlate measurements of the DC background with variations in both image data background and calibration samples. The effect on both raw data and on data corrected using the earlier proposed technique is explained, and the correction required for these factors as a function of individual scan line number for each detector is described. It is shown how the revised technique can be incorporated into an operational environment.

  3. Reflectance spectroscopy - Quantitative analysis techniques for remote sensing applications. [in planetary surface geology

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Roush, T. L.

    1984-01-01

    The empirical methods and scattering theories that are important for solving remote sensing problems are among the methods for remotely sensed reflectance data analysis presently compared. In the case of the photon mean optical path length concept's implications for reflectance spectra modeling, it is shown that the mean optical path length in a particulate surface is in roughly inverse proportion to the square root of the absorption coefficient. Absorption bands, which are Gaussian in shape when plotted as true absorptance vs photon energy, are also Gaussians in apparent absorptance, although they have a smaller intensity. An apparent continuum in a reflectance spectrum is modeled as a mathematical function that is used to isolate a particular absorption feature for analysis, and it is noted that this continuum should be removed by dividing it into the reflectance spectrum.

  4. Engineering studies related to geodetic and oceanographic remote sensing using short pulsed techniques. [using laser probe

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Theoretical basis is presented for a feasibility study of measuring global ocean surface current pattern from satellites and aircraft. The analysis is supported by some preliminary laboratory experiments. Since the ultimate goal is to establish an operational routine for monitoring the global current pattern, a nondisturbing remote sensing device using a laser probe was developed. Detailed construction of the measuring system and the results of some preliminary observations are also presented.

  5. Use hyperspectral remote sensing technique to monitoring pine wood nomatode disease preliminary

    NASA Astrophysics Data System (ADS)

    Qin, Lin; Wang, Xianghong; Jiang, Jing; Yang, Xianchang; Ke, Daiyan; Li, Hongqun; Wang, Dingyi

    2016-10-01

    The pine wilt disease is a devastating disease of pine trees. In China, the first discoveries of the pine wilt disease on 1982 at Dr. Sun Yat-sen's Mausoleum in Nanjing. It occurred an area of 77000 hm2 in 2005, More than 1540000 pine trees deaths in the year. Many districts of Chongqing in Three Gorges Reservoir have different degrees of pine wilt disease occurrence. It is a serious threat to the ecological environment of the reservoir area. Use unmanned airship to carry high spectrum remote sensing monitoring technology to develop the study on pine wood nematode disease early diagnosis and early warning and forecasting in this study. The hyper spectral data and the digital orthophoto map data of Fuling District Yongsheng Forestry had been achieved In September 2015. Using digital image processing technology to deal with the digital orthophoto map, the number of disease tree and its distribution is automatic identified. Hyper spectral remote sensing data is processed by the spectrum comparison algorithm, and the number and distribution of disease pine trees are also obtained. Two results are compared, the distribution area of disease pine trees are basically the same, indicating that using low air remote sensing technology to monitor the pine wood nematode distribution is successful. From the results we can see that the hyper spectral data analysis results more accurate and less affected by environmental factors than digital orthophoto map analysis results, and more environment variable can be extracted, so the hyper spectral data study is future development direction.

  6. Analysis of multispectral signatures and investigation of multi-aspect remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Hieber, R. H.; Sarno, J. E.

    1974-01-01

    Two major aspects of remote sensing with multispectral scanners (MSS) are investigated. The first, multispectral signature analysis, includes the effects on classification performance of systematic variations found in the average signals received from various ground covers as well as the prediction of these variations with theoretical models of physical processes. The foremost effects studied are those associated with the time of day airborne MSS data are collected. Six data collection runs made over the same flight line in a period of five hours are analyzed, it is found that the time span significantly affects classification performance. Variations associated with scan angle also are studied. The second major topic of discussion is multi-aspect remote sensing, a new concept in remote sensing with scanners. Here, data are collected on multiple passes by a scanner that can be tilted to scan forward of the aircraft at different angles on different passes. The use of such spatially registered data to achieve improved classification of agricultural scenes is investigated and found promising. Also considered are the possibilities of extracting from multi-aspect data, information on the condition of corn canopies and the stand characteristics of forests.

  7. The conservative treatment of Trigger Thumb using Graston Techniques and Active Release Techniques®

    PubMed Central

    Howitt, Scott; Wong, Jerome; Zabukovec, Sonja

    2006-01-01

    Objective To detail the progress of a patient with unresolved symptoms of Trigger thumb who underwent a treatment plan featuring Active Release Technique (ART) and Graston Technique. Clinical Features The most important feature is painful snapping or restriction of movement, most notably in actively extending or flexing the digit. The cause of this flexor tendinopathy is believed to be multi-factorial including anatomical variations of the pulley system and biomechanical etiologies such as exposure to shear forces and unaccustomed activity. Conventional treatment aims at decreasing inflammation through corticosteroid injection or surgically removing imposing tissue. Intervention and Outcome The conservative treatment approach utilized in this case involved Active Release Technique (ART®) and Graston Technique (GT). An activity specific rehabilitation protocol was employed to re-establish thumb extensor strength and ice was used to control pain and any residual inflammation. Outcome measures included subjective pain ratings with range of motion and motion palpation of the first right phalangeal joint. Objective measures were made by assessing range of motion. Conclusion A patient with trigger thumb appeared to be relieved of his pain and disability after a treatment plan of GT and ART. PMID:17549185

  8. Real-time optimal sensing strategies for active control of optical systems

    NASA Astrophysics Data System (ADS)

    Moon, Suk-Min; Fowler, Leslie P.; Clark, Robert L.; Anderson, Eric H.

    2007-04-01

    The pointing and imaging performance of precision optical systems is degraded by disturbances on the system that create optical jitter. These disturbances can be caused by structural motion of optical components due to vibration sources that (1) originate within the optical system, (2) originate external to the system and are transmitted through the structural path in the environment, and (3) are air-induced vibrations from acoustic noise. Beam control systems can suppress optical jitter, and active control techniques can be used to extend performance by incorporating information from accelerometers, microphones, and other auxiliary sensors. In some applications, offline fixed gain controllers can be used to minimize jitter. However there are many applications in which a real-time adaptive control approach would yield improved optical performance. Often we would like the capability to adapt in real-time to a system which is time-varying or whose disturbances are non-stationary and hard to predict. In the presence of these harsh, ever-changing environments we would like to use every available tool to optimize performance. Improvements in control algorithms are important, but another potentially useful tool is a real-time adaptive control method employing optimal sensing strategies. In this approach, real-time updating of reference sensors is provided to minimize optical jitter. The technique selects an optimal subset of sensors to use as references from an array of possible sensor locations. The optimal, weighted reference sensor set is well correlated with the disturbance and when used with an adaptive control algorithm, results in improved line-of-sight jitter performance with less computational burden compared to a controller which uses multiple reference sensors. The proposed technique is applied to an experimental test bed in which multiple proof-mass actuators generate structural vibrations on a flexible plate. These vibrations are transmitted to an optical

  9. Assessment of Anti-Quorum Sensing Activity for Some Ornamental and Medicinal Plants Native to Egypt

    PubMed Central

    Zaki, Ahmed A.; Shaaban, Mona I.; Hashish, Nadia E.; Amer, Mohamed A.; Lahloub, Mohamed-Farid

    2013-01-01

    This study investigated the effects of some plant extracts on the bacterial communication system, expressed as quorum sensing (QS) activity. Quorum sensing has a directly proportional effect on the amount of certain compounds, such as pigments, produced by the bacteria. Alcohol extracts of 23 ornamental and medicinal plants were tested for anti-QS activity by the Chromobacterium violaceum assay using the agar cup diffusion method. The screening revealed the anti-QS activity of six plants; namely the leaves of Adhatoda vasica Nees, Bauhinia purpurea L., Lantana camara L., Myoporum laetum G. Forst.; the fruits of Piper longum L.; and the aerial parts of Taraxacum officinale F.H. Wigg. PMID:23641343

  10. Validation of satellite data through the remote sensing techniques and the inclusion of them into agricultural education pilot programs

    NASA Astrophysics Data System (ADS)

    Papadavid, Georgios; Kountios, Georgios; Bournaris, T.; Michailidis, Anastasios; Hadjimitsis, Diofantos G.

    2016-08-01

    Nowadays, the remote sensing techniques have a significant role in all the fields of agricultural extensions as well as agricultural economics and education but they are used more specifically in hydrology. The aim of this paper is to demonstrate the use of field spectroscopy for validation of the satellite data and how combination of remote sensing techniques and field spectroscopy can have more accurate results for irrigation purposes. For this reason vegetation indices are used which are mostly empirical equations describing vegetation parameters during the lifecycle of the crops. These numbers are generated by some combination of remote sensing bands and may have some relationship to the amount of vegetation in a given image pixel. Due to the fact that most of the commonly used vegetation indices are only concerned with red-near-infrared spectrum and can be divided to perpendicular and ratio based indices the specific goal of the research is to illustrate the effect of the atmosphere to those indices, in both categories. In this frame field spectroscopy is employed in order to derive the spectral signatures of different crops in red and infrared spectrum after a campaign of ground measurements. The main indices have been calculated using satellite images taken at interval dates during the whole lifecycle of the crops by using a GER 1500 spectro-radiomete. These indices was compared to those extracted from satellite images after applying an atmospheric correction algorithm -darkest pixel- to the satellite images at a pre-processing level so as the indices would be in comparable form to those of the ground measurements. Furthermore, there has been a research made concerning the perspectives of the inclusion of the above mentioned remote satellite techniques to agricultural education pilot programs.

  11. Use of acoustic velocity methodology and remote sensing techniques to measure unsteady flow on the lower Yazoo River in Mississippi

    USGS Publications Warehouse

    Turnipseed, D. Phil; Cooper, Lance M.; Davis, Angela A.

    1998-01-01

    Methodologies have been developed for computing continuous discharge during varied, non-uniform low and medium flows on the Yazoo River at the U.S. Geological Survey streamgage below Steele Bayou near Long Lake, Mississippi, using acoustic signal processing and conventional streamgaging techniques. Procedures were also developed to compute locations of discharges during future high flow events when the stream reach is subject to hi-directional and reverse flow caused by rising stages on the Mississippi River using a combination of acoustic equipment and remote sensing technology. A description of the study area is presented. Selected results of these methods are presented for the period from March through September 1997.

  12. The senses of active and passive forces at the human ankle joint.

    PubMed

    Savage, G; Allen, T J; Proske, U

    2015-07-01

    The traditional view of the neural basis for the sense of muscle force is that it is generated at least in part within the brain. Recently it has been proposed that force sensations do not arise entirely centrally and that there is a contribution from peripheral receptors within the contracting muscle. Evidence comes from experiments on thumb flexor and elbow flexor muscles. Here we have studied the sense of force in plantar flexor muscles of the human ankle, looking for further evidence for such a mechanism. The active angle-torque curve was measured for muscles of both legs, and for each muscle, ankle angles were identified on the ascending and descending limbs of the curve where active forces were similar. In a plantar flexion force matching task, subjects were asked to match the force in one foot, generated on the ascending limb of the curve, with force in the other foot, generated on the descending limb. It was hypothesised that despite active forces being similar, the sensation generated in the more stretched muscle should be greater because of the contribution from its peripheral stretch receptors, leading to an overestimation of the force in the stretched muscle. It was found that provided that the comparison was between active forces, there was no difference in the forces generated by the two legs, supporting the central hypothesis for the sense of force. When total forces were matched, including a component of passive force due to muscle stretch, subjects seemed to ignore the passive component. Yet subjects had an acute sense of passive force, provided that the muscles remained relaxed. It was concluded that subjects had two senses, a sense of active force, generated centrally, and a sense of passive force, or perhaps muscle stretch, generated within the muscle itself.

  13. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  14. Characteristics of active spectral sensor for plant sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant stress has been estimated by spectral signature using both passive and active sensors. As optical sensors measure reflected light from a target, changes in illumination conditions critically affect sensor response. Active spectral sensors minimize the illumination effects by producing their ...

  15. A technique for conditioning and calibrating force-sensing resistors for repeatable and reliable measurement of compressive force.

    PubMed

    Hall, Rick S; Desmoulin, Geoffrey T; Milner, Theodore E

    2008-12-05

    Miniature sensors that could measure forces applied by the fingers and hand without interfering with manual dexterity or range of motion would have considerable practical value in ergonomics and rehabilitation. In this study, techniques have been developed to use inexpensive pressure-sensing resistors (FSRs) to accurately measure compression force. The FSRs are converted from pressure-sensing to force-sensing devices. The effects of nonlinear response properties and dependence on loading history are compensated by signal conditioning and calibration. A fourth-order polynomial relating the applied force to the current voltage output and a linearly weighted sum of prior outputs corrects for sensor hysteresis and drift. It was found that prolonged (>20h) shear force loading caused sensor gain to change by approximately 100%. Shear loading also had the effect of eliminating shear force effects on sensor output, albeit only in the direction of shear loading. By applying prolonged shear loading in two orthogonal directions, the sensors were converted into pure compression sensors. Such preloading of the sensor is, therefore, required prior to calibration. The error in compression force after prolonged shear loading and calibration was consistently <5% from 0 to 30N and <10% from 30 to 40N. This novel method of calibrating FSRs for measuring compression force provides an inexpensive tool for biomedical and industrial design applications where measurements of finger and hand force are needed.

  16. Formulation of a minimum variance deconvolution technique for compensation of pneumatic distortion in pressure sensing devices

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.

    1990-01-01

    Increasingly, aircraft system designs require that aerodynamic parameters derived from pneumatic measurements be employed as control-system feedbacks. Such high frequency pressure measurements' accuracy is compromised by pressure distortion due to frictional attenuation and pneumatic resonance within the sensing system. A pneumatic distortion model is here formulated and reduced to a low-order state-variable model which retains most of the full model's dynamic characteristics. This reduced-order model is coupled with standard results from minimum variance estimation theory to develop an algorithm to compensate for pneumatic-distortion effects.

  17. The technique flows of target detection using thermal infrared hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Wu, Wen Huan; Yu, Hong; Huang, Shu Tao

    2016-10-01

    In this work, the workflow of airborne thermal infrared hyperspectral technology in the actual application process is reviewed. Using the Thermal Airborne Spectrographic Imager (TASI-600), a hyperspectral thermal infrared imager manufactured by ITRES Research Limited as a case study, the work process including instrument calibration, collecting the region information of interest, data processing and analysis is elaborated. The value and effect using thermal infrared data obtained through TASI-600 is demonstrated. This work provides ideas and references for further study and investigation on the application of airborne thermal infrared hyperspectral remote sensing.

  18. A regression technique for evaluation and quantification for water quality parameters from remote sensing data

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Kuo, C. Y.

    1979-01-01

    The objective of this paper is to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. An investigation of the signal-response equations is conducted and the concept is tested by application to actual remote sensing data from a laboratory experiment performed under controlled conditions. Investigation of the signal-response equations shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined.

  19. Electrical Impedance Spectroscopy-Based Defect Sensing Technique in Estimating Cracks

    PubMed Central

    Zhang, Tingting; Zhou, Liangdong; Ammari, Habib; Seo, Jin Keun

    2015-01-01

    A defect sensing method based on electrical impedance spectroscopy is proposed to image cracks and reinforcing bars in concrete structures. The method utilizes the frequency-dependent behavior of thin insulating cracks: low-frequency electrical currents are blocked by insulating cracks, whereas high-frequency currents can pass through thin cracks to probe the conducting bars. From various frequency-dependent electrical impedance tomography (EIT) images, we can show its advantage in terms of detecting both thin cracks with their thickness and bars. We perform numerical simulations and phantom experiments to support the feasibility of the proposed method. PMID:26007713

  20. Antimicrobial and antibiofilm activity of quorum sensing peptides and Peptide analogues against oral biofilm bacteria.

    PubMed

    LoVetri, Karen; Madhyastha, Srinivasa

    2010-01-01

    Widespread antibiotic resistance is a major incentive for the investigation of novel ways to treat or prevent infections. Much effort has been put into the discovery of peptides in nature accompanied by manipulation of natural peptides to improve activity and decrease toxicity. The ever increasing knowledge about bacteria and the discovery of quorum sensing have presented itself as another mechanism to disrupt the infection process. We have shown that the natural quorum sensing (QS) peptide, competence-stimulating peptide (CSP), used by the caries causing bacteria Streptococcus mutans when used in higher than normally present concentrations can actually contribute to cell death in S. mutans. Using an analogue of this quorum sensing peptide (KBI-3221), we have shown it to be beneficial at decreasing biofilm of various Streptococcus species. This chapter looks at a number of assay methods to test the inhibitory effects of quorum sensing peptides and their analogues on the growth and biofilm formation of oral bacteria.

  1. Robust control design techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  2. Comparison of data inversion techniques for remotely sensed wide-angle observations of Earth emitted radiation

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1981-01-01

    The shape factor, parameter estimation, and deconvolution data analysis techniques were applied to the same set of Earth emitted radiation measurements to determine the effects of different techniques on the estimated radiation field. All three techniques are defined and their assumptions, advantages, and disadvantages are discussed. Their results are compared globally, zonally, regionally, and on a spatial spectrum basis. The standard deviations of the regional differences in the derived radiant exitance varied from 7.4 W-m/2 to 13.5 W-m/2.

  3. Advanced Sensing and Control Techniques to Facilitate Semi-Autonomous Decommissioning of Hazardous Sites - Final Report

    SciTech Connect

    Schalkoff, R.J.

    2000-12-01

    This report summarizes work after 4 years of a 3-year project (no-cost extension of the above-referenced project for a period of 12 months granted). The fourth generation of a vision sensing head for geometric and photometric scene sensing has been built and tested. Estimation algorithms for automatic sensor calibration updating under robot motion have been developed and tested. We have modified the geometry extraction component of the rendering pipeline. Laser scanning now produces highly accurate points on segmented curves. These point-curves are input to a NURBS (non-uniform rational B-spline) skinning procedure to produce interpolating surface segments. The NURBS formulation includes quadrics as a sub-class, thus this formulation allows much greater flexibility without the attendant instability of generating an entire quadric surface. We have also implemented correction for diffuse lighting and specular effects. The QRobot joint level control was extended to a complete semi-autonomous robot control system for D and D operations. The imaging and VR subsystems have been integrated and tested.

  4. First fusion proton measurements in TEXTOR plasmas using activation technique

    SciTech Connect

    Bonheure, G.; Wassenhove, G. Van; Mlynar, J.; Hult, M.; Gonzalez de Orduna, R.; Lutter, G.; Vermaercke, P.; Huber, A.; Schweer, B.; Esser, G.; Biel, W.

    2012-10-15

    MeV particle loss measurements from fusion plasmas, in particular alpha particles, remain difficult in large fusion devices and further R and D is needed for ITER. This paper describes the first attempt to measure 3 MeV escaping fusion protons emitted from TEXTOR tokamak plasmas using activation technique. This technique was successfully demonstrated, initially, in 2006 on the JET tokamak. An ion camera equipped with a collimator and several types of activation detectors was installed inside the TEXTOR vacuum vessel to perform these measurements. After irradiation, the detectors were analyzed using ultra low level gamma-ray spectrometry at the HADES underground laboratory. 3 MeV escaping fusion protons were detected in larger number -{approx}6 times more - compared to earlier measurements using this technique on JET. Another major progress was the reduction of the cooling time by a factor of 50, which made possible to detect radionuclides with half-life of less than 90 min.

  5. First fusion proton measurements in TEXTOR plasmas using activation technique.

    PubMed

    Bonheure, G; Mlynar, J; Van Wassenhove, G; Hult, M; González de Orduña, R; Lutter, G; Vermaercke, P; Huber, A; Schweer, B; Esser, G; Biel, W

    2012-10-01

    MeV particle loss measurements from fusion plasmas, in particular alpha particles, remain difficult in large fusion devices and further R&D is needed for ITER. This paper describes the first attempt to measure 3 MeV escaping fusion protons emitted from TEXTOR tokamak plasmas using activation technique. This technique was successfully demonstrated, initially, in 2006 on the JET tokamak. An ion camera equipped with a collimator and several types of activation detectors was installed inside the TEXTOR vacuum vessel to perform these measurements. After irradiation, the detectors were analyzed using ultra low level gamma-ray spectrometry at the HADES underground laboratory. 3 MeV escaping fusion protons were detected in larger number -~6 times more--compared to earlier measurements using this technique on JET. Another major progress was the reduction of the cooling time by a factor of 50, which made possible to detect radionuclides with half-life of less than 90 min.

  6. Innovative Perceptual Motor Activities: Programing Techniques That Work.

    ERIC Educational Resources Information Center

    Sorrell, Howard M.

    1978-01-01

    A circuit approach and station techniques are used to depict perceptual motor games for handicapped and nonhandicapped children. Twenty activities are described in terms of objectives, materials, and procedures, and their focus on visual tracking, visual discrimination and copying of forms, spatial body perception, fine motor coordination, tactile…

  7. Integrated Evaluation of Urban Development Suitability Based on Remote Sensing and GIS Techniques - A Case Study in Jingjinji Area, China.

    PubMed

    Dong, Jiang; Zhuang, Dafang; Xu, Xinliang; Ying, Lei

    2008-09-25

    Jingjinji area (namely Beijing, Tianjin and He Bei Province) is one of the three largest regional economic communities in China. Urban expansion has sped up in the past 20 years in this area due to the rapid economic and population growth. Evaluating the landuse suitability for urban growth on a regional scale is an urgent need, because the most suitable areas and the most suitable scale of urban growth can thus be determined accordingly. In order to meet this requirement, remote sensing and geographic information system (GIS) techniques were adopted, and an integrated evaluating model was developed supported by AHP method. The integrated urban development suitability index (UDSI) was calculated using this model. According to the UDSI result, the spatial distribution of urban development suitability and its driving forces were analyzed. Urban boundaries in 1995, 2000 and 2005, which were derived from Landsat TM/ETM+ satellite data, were overlaid on the UDSI map, and the suitable urban develop tendency in this area were discussed. The result of this study indicated that integrated evaluation of urban development could be conducted in an operational way using remote sensing data, GIS spatial analysis technique and AHP modeling method.

  8. Detection of terrain indices related to soil salinity and mapping salt-affected soils using remote sensing and geostatistical techniques.

    PubMed

    Triki Fourati, Hela; Bouaziz, Moncef; Benzina, Mourad; Bouaziz, Samir

    2017-04-01

    Traditional surveying methods of soil properties over landscapes are dramatically cost and time-consuming. Thus, remote sensing is a proper choice for monitoring environmental problem. This research aims to study the effect of environmental factors on soil salinity and to map the spatial distribution of this salinity over the southern east part of Tunisia by means of remote sensing and geostatistical techniques. For this purpose, we used Advanced Spaceborne Thermal Emission and Reflection Radiometer data to depict geomorphological parameters: elevation, slope, plan curvature (PLC), profile curvature (PRC), and aspect. Pearson correlation between these parameters and soil electrical conductivity (ECsoil) showed that mainly slope and elevation affect the concentration of salt in soil. Moreover, spectral analysis illustrated the high potential of short-wave infrared (SWIR) bands to identify saline soils. To map soil salinity in southern Tunisia, ordinary kriging (OK), minimum distance (MD) classification, and simple regression (SR) were used. The findings showed that ordinary kriging technique provides the most reliable performances to identify and classify saline soils over the study area with a root mean square error of 1.83 and mean error of 0.018.

  9. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Miller, D. A.; Conn, J. S.

    1976-01-01

    The activities and accomplishments of the Applied Remote Sensing Program during FY 1975-1976 are reported. The principal objective of the Applied Remote Sensing Program continues to be designed projects having specific decision-making impacts as a principal goal. These projects are carried out in cooperation and collaboration with local, state and federal agencies whose responsibilities lie with planning, zoning and environmental monitoring and/or assessment in the application of remote sensing techniques. The end result of the projects is the use by the involved agencies of remote sensing techniques in problem solving.

  10. Zinc activates damage-sensing TRPA1 ion channels

    PubMed Central

    Hu, Hongzhen; Bandell, Michael; Petrus, Matt J.; Zhu, Michael X.; Patapoutian, Ardem

    2009-01-01

    Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine-modification. Zinc activates TRPA1 through a novel mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as a major target for the sensory effects of zinc, and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission. PMID:19202543

  11. Dynamical quorum sensing and clustering dynamics in a population of spatially distributed active rotators

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Maeyama, Satomi

    2013-02-01

    A model of clustering dynamics is proposed for a population of spatially distributed active rotators. A transition from excitable to oscillatory dynamics is induced by the increase of the local density of active rotators. It is interpreted as dynamical quorum sensing. In the oscillation regime, phase waves propagate without decay, which generates an effectively long-range interaction in the clustering dynamics. The clustering process becomes facilitated and only one dominant cluster appears rapidly as a result of the dynamical quorum sensing. An exact localized solution is found to a simplified model equation, and the competitive dynamics between two localized states is studied numerically.

  12. On the haptic nature of the active electric sense of fish.

    PubMed

    Caputi, Angel A; Aguilera, Pedro A; Carolina Pereira, Ana; Rodríguez-Cattáneo, Alejo

    2013-11-06

    Electroreception is a sensory modality present in chondrichthyes, actinopterygii, amphibians, and mammalian monotremes. The study of this non-intuitive sensory modality has provided insights for better understanding of sensory systems in general and inspired the development of innovative artificial devices. Here we review evidence obtained from the analysis of electrosensory images, neurophysiological data from the recording of unitary activity in the electrosensory lobe, and psychophysical data from analysis of novelty responses provoked in well-defined stimulus conditions, which all confirm that active electroreception has a short range, and that the influence of exploratory movements on object identification is strong. In active electric images two components can be identified: a "global" image profile depending on the volume, shape and global impedance of an object and a "texture" component depending on its surface attributes. There is a short range of the active electric sense and the progressive "blurring" of object image with distance. Consequently, the lack of precision regarding object location, considered together, challenge the current view of this sense as serving long range electrolocation and the commonly used metaphor of "electric vision". In fact, the active electric sense shares more commonalities with human active touch than with teleceptive senses as vision or audition. Taking into account that other skin exteroceptors and proprioception may be congruently stimulated during fish exploratory movements we propose that electric, mechanoceptive and proprioceptive sensory modalities found in electric fish could be considered together as a single haptic sensory system. This article is part of a Special Issue entitled Neural Coding 2012.

  13. Making Sense of Total VET Activity: An Initial Market Analysis

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2016

    2016-01-01

    Following the successful first national publication of total vocational education and training (VET) activity and presentation of various informative data products, NCVER has continued to undertake further analysis of the submitted data. This paper is the first in a suite of the National Centre for Vocational Education Research (NCVER) authored…

  14. Assessing voluntary muscle activation with the twitch interpolation technique.

    PubMed

    Shield, Anthony; Zhou, Shi

    2004-01-01

    The twitch interpolation technique is commonly employed to assess the completeness of skeletal muscle activation during voluntary contractions. Early applications of twitch interpolation suggested that healthy human subjects could fully activate most of the skeletal muscles to which the technique had been applied. More recently, however, highly sensitive twitch interpolation has revealed that even healthy adults routinely fail to fully activate a number of skeletal muscles despite apparently maximal effort. Unfortunately, some disagreement exists as to how the results of twitch interpolation should be employed to quantify voluntary activation. The negative linear relationship between evoked twitch force and voluntary force that has been observed by some researchers implies that voluntary activation can be quantified by scaling a single interpolated twitch to a control twitch evoked in relaxed muscle. Observations of non-linear evoked-voluntary force relationships have lead to the suggestion that the single interpolated twitch ratio can not accurately estimate voluntary activation. Instead, it has been proposed that muscle activation is better determined by extrapolating the relationship between evoked and voluntary force to provide an estimate of true maximum force. However, criticism of the single interpolated twitch ratio typically fails to take into account the reasons for the non-linearity of the evoked-voluntary force relationship. When these reasons are examined, it appears that most are even more challenging to the validity of extrapolation than they are to the linear equation. Furthermore, several factors that contribute to the observed non-linearity can be minimised or even eliminated with appropriate experimental technique. The detection of small activation deficits requires high resolution measurement of force and careful consideration of numerous experimental details such as the site of stimulation, stimulation intensity and the number of interpolated

  15. Advances in atmospheric light scattering theory and remote-sensing techniques

    NASA Astrophysics Data System (ADS)

    Videen, Gorden; Sun, Wenbo; Gong, Wei

    2017-02-01

    This issue focuses especially on characterizing particles in the Earth-atmosphere system. The significant role of aerosol particles in this system was recognized in the mid-1970s [1]. Since that time, our appreciation for the role they play has only increased. It has been and continues to be one of the greatest unknown factors in the Earth-atmosphere system as evidenced by the most recent Intergovernmental Panel on Climate Change (IPCC) assessments [2]. With increased computational capabilities, in terms of both advanced algorithms and in brute-force computational power, more researchers have the tools available to address different aspects of the role of aerosols in the atmosphere. In this issue, we focus on recent advances in this topical area, especially the role of light scattering and remote sensing. This issue follows on the heels of four previous topical issues on this subject matter that have graced the pages of this journal [3-6].

  16. A capacitive displacement sensing technique for early detection of unbalanced loads in a washing machine.

    PubMed

    Ramasubramanian, Melur K; Tiruthani, Karthik

    2009-01-01

    Horizontal axis washing machines are water and energy efficient and becoming popular in the USA. Unlike a vertical axis washer, these do not have an agitator and depend solely on tumbling for the agitation of laundry during the wash cycle. However, due to the constant shifting of laundry during washing, the load distribution is often unbalanced during the high speed spin cycle. We present a displacement-based sensing method to detect unbalance early while the spin rate (rpm) is well below the resonance frequency so that corrective actions may be taken prior to the high speed spin cycle. Experimental and analytical characterizations of the sensor configuration are presented. Results show that the displacement sensor is more appropriate than an accelerometer for this application and offer the potential for a simple, reliable, low cost detection of unbalance.

  17. Compressed sensing techniques for arbitrary frequency-sparse signals in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Duan, Zhongdong; Kang, Jie

    2014-03-01

    Structural health monitoring requires collection of large number sample data and sometimes high frequent vibration data for detecting the damage of structures. The expensive cost for collecting the data is a big challenge. The recent proposed Compressive Sensing method enables a potentially large reduction in the sampling, and it is a way to meet the challenge. The Compressed Sensing theory requires sparse signal, meaning that the signals can be well-approximated as a linear combination of just a few elements from a known discrete basis or dictionary. The signal of structure vibration can be decomposed into a few sinusoid linear combinations in the DFT domain. Unfortunately, in most cases, the frequencies of decomposed sinusoid are arbitrary in that domain, which may not lie precisely on the discrete DFT basis or dictionary. In this case, the signal will lost its sparsity, and that makes recovery performance degrades significantly. One way to improve the sparsity of the signal is to increase the size of the dictionary, but there exists a tradeoff: the closely-spaced DFT dictionary will increase the coherence between the elements in the dictionary, which in turn decreases recovery performance. In this work we introduce three approaches for arbitrary frequency signals recovery. The first approach is the continuous basis pursuit (CBP), which reconstructs a continuous basis by introducing interpolation steps. The second approach is a semidefinite programming (SDP), which searches the sparest signal on continuous basis without establish any dictionary, enabling a very high recovery precision. The third approach is spectral iterative hard threshold (SIHT), which is based on redundant DFT dictionary and a restricted union-of-subspaces signal model, inhibiting closely spaced sinusoids. The three approaches are studied by numerical simulation. Structure vibration signal is simulated by a finite element model, and compressed measurements of the signal are taken to perform

  18. Spatial and Temporal knowledge representation techniques for traditional machine learning classifiers applied to remote sensing data.

    NASA Astrophysics Data System (ADS)

    Cervone, G.; Kafatos, M.

    2005-12-01

    Formulating general hypotheses from limited observations is one of the fundamental principles of scientific discovery. The data mining approach consists, among others, in generating new knowledge analyzing massive amounts of data and using background knowledge. Knowledge representation is one of the fundamental topics of data mining, because the representation language dictates which algorithms to use, as well as the effective usefulness of the learned hypotheses. Programs that use richer representation languages have the advantage of generating hypotheses that are compact and easy to understand, and the disadvantage of being more complex, slower and ususally with more control parameters. On the other hand, programs that use simpler representaiton languages overcome these shortcomings, but fail to generate hypotheses that can be easily interpreted and used for problem solving and decision making. Symbolic machine learning methods, such as decision rule classifiers, use a complex representation language which can be used to describe difficult concepts, and allow to cope with spatial and temporal data, such as remote sensing data. Because data are usually collected as a sequence of observations over time and in specific locations, very often it is necessary to find relations not only in the data per se, but also in the temporal and spatial distribution of the observations. Due to the increasingly large amount of spatial and temporal data collected and analyzed in several fields such as remote sensing, geographical information systems (GIS), bioinformatics, medicine, bank transactions, etc, spatial and temporal knowledge representaion has become a problem of crucial importance. Present research investigates methods to use existing symbolic machine learning classifiers with temporal and spatial data. The data are converted in a representation language which is suitable to learn spatial and temporal relationship without modifying the existing algorithms. Results from

  19. Study on the techniques of valuation of ecosystem services based on remote sensing in Anxin County

    NASA Astrophysics Data System (ADS)

    Wang, Hongyan; Li, Zengyuan; Gao, Zhihai; Wang, Bengyu; Bai, Lina; Wu, Junjun; Sun, Bin; Wang, Zhibo

    2014-05-01

    The farmland ecosystem is an important component of terrestrial ecosystems and has a fundamental role in the human life. The wetland is an unique and versatile ecological system. It is important for rational development and sustainable utilization of farmland and wetland resources to study on the measurement of valuation of farmland and wetland ecosystem services. It also has important significance for improving productivity. With the rapid development of remote sensing technology, it has become a powerful tool for evaluation of the value of ecosystem services. The land cover types in Anxin County mainly was farmland and wetland, the indicator system for ecosystem services valuation was brought up based on the remote sensing data of high spatial resolution ratio(Landsat-5 TM data and SPOT-5 data), the technology system for measurement of ecosystem services value was established. The study results show that the total ecosystem services value in 2009 in Anxin was 4.216 billion yuan, and the unit area value was between 8489 yuan/hm2 and 329535 yuan/hm2. The value of natural resources, water conservation value in farmland ecosystem and eco-tourism value in wetland ecosystem were higher than the other, total of the three values reached 2.858 billion yuan, and the percentage of the total ecosystem services values in Anxin was 67.79%. Through the statistics in the nine towns and three villages of Anxin County, the juantou town has the highest services value, reached 0.736 billion yuan. Scientific and comprehensive evaluation of the ecosystem services can conducive to promoting the understanding of the importance of the ecosystem. The research results had significance to ensure the sustainable use of wetland resources and the guidance of ecological construction in Anxin County.

  20. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    NASA Astrophysics Data System (ADS)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  1. Flood Vulnerability Analysis of the part of Karad Region, Satara District, Maharashtra using Remote Sensing and Geographic Information System technique

    NASA Astrophysics Data System (ADS)

    Warghat, Sumedh R.; Das, Sandipan; Doad, Atul; Mali, Sagar; Moon, Vishal S.

    2012-07-01

    Karad City is situated on the bank of confluence of river Krishna & Koyana, which is severely flood prone area. The floodwaters enter the city through the roads and disrupt the infrastructure in the whole city. Furthermore, due to negligence of the authorities and unplanned growth of the city, the people living in the city have harnessed the natural flow of water by constructing unnecessary embankments in the river Koyna. Due to this reason now river koyna is flowing in the form of a narrow channel, which very easily over-flows during very minor flooding.Flood Vulnerabilty Analysis has been done for the karad region of satara district, maharashtra using remote sensing and geographic information system technique. The aim of this study is to identify flood vulnerability zone by using GIS and RS technique and an attempt has been to demonstrat the application of remote sensing and GIS in order to map flood vulnerabilty area by utilizing ArcMap, and Erdas software. Flood vulnerabilty analysis of part the Karad Regian of Satara District, Maharashtra has been carried out with the objectives - Identify the Flood Prone area in the Koyana and Krishna river basin, Calculate surface runoff and Delineate flood sensitive areas. Delineate classified hazard Map, Evaluate the Flood affected area, Prepare the Flood Vulnerability Map by utilizing Remote Sensing and GIS technique. (C.J. Kumanan;S.M. Ramasamy)The study is based on GIS and spatial technique is used for analysis and understanding of flood problem in Karad Tahsil. The flood affected areas of the different magnitude has been identified and mapped using Arc GIS software. The analysis is useful for local planning authority for identification of risk areas and taking proper decision in right moment. In the analysis causative factors for flooding in watershed are taken into account as annual rainfall, size of watershed, basin slope, drainage density of natural channels and land use. (Dinand Alkema; Farah Aziz.)This study of

  2. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    SciTech Connect

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-15

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed

  3. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    PubMed

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  4. Scanning laser Doppler Technique for velocity profile sensing on a moving surface.

    PubMed

    Sriram, P; Hanagud, S; Craig, J; Komerath, N M

    1990-06-01

    A scanning laser Doppler technique based on Chebyshev demodulation has been developed for the rapid measurement of spatially distributed velocity profiles. Scan frequencies up to 100 Hz can be used over scan lengths up to 270 mm. The Doppler signals are processed in the conventional manner using a frequency counter. The analog velocity output from the counter is post-processed to obtain the velocity profile. The Chebyshev demodulation post-processing technique for processing the velocity signals from solid surfaces has been introduced. The data processing technique directly yields the spatial velocity distribution in approximate functional form through frequency domain analysis of the scanning LDV velocity output. Results from a rotating disk setup are presented to illustrate the concept.

  5. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  6. Does Active Learning through an Antisense Jigsaw Make Sense?

    NASA Astrophysics Data System (ADS)

    Seetharaman, Mahadevan; Musier-Forsyth, Karin

    2003-12-01

    Three journal articles on nucleic acid antisense modification strategies were assigned to 12 students as part of an active learning "jigsaw" exercise for a graduate-level chemistry course on nucleic acids. Each student was required to read one of the three articles. This assignment was preceded by an hour-long lecture on the basic concepts in antisense antigene technology. On the day of the jigsaw, the students with the same article (three groups of four students) discussed their article briefly, and then formed four new groups where no one had read the same article. Each student spent about five minutes teaching his or her article to the other group members, using specific questions provided to guide the discussion. This exercise laid the foundation for bringing the discussion to the entire class, where most of the students actively participated. To test the students' comprehension of the reading materials, a problem set was designed that required not only an understanding of the three articles, but also application of the concepts learned. The effectiveness of this active learning strategy and its applicability to other topics are discussed in this article.

  7. Practical applications of activation analysis and other nuclear techniques

    SciTech Connect

    Lyon, W S

    1982-01-01

    Neeutron activation analysis (NAA) is a versatile, sensitive multielement, usually nondestructive analytical technique used to determine elemental concentrations in a variety of materials. Samples are irradiated with neutrons in a nuclear reactor, removed, and for the nondestructive technique, the induced radioactivity measured. This measurement of ..gamma.. rays emitted from specific radionuclides makes possible the quantitative determination of elements present. The method is described, advantages and disadvantages listed and a number of examples of its use given. Two other nuclear methods, particle induced x-ray emission and synchrotron produced x-ray fluorescence are also briefly discussed.

  8. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods.

    PubMed

    Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei

    2014-06-21

    As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate [Formula: see text]. In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques.

  9. Morphostructural characterization of the western edge of the Huila Plateau (SW Angola), based on remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Lopes, Fernando Carlos; Pereira, Alcides José; Mantas, Vasco Manuel; Mpengo, Horácio Kativa

    2016-05-01

    Recognition of the main morphostructural features of the western edge of the Huila Plateau (SW Angola) can be done by using remote sensing techniques associated with field work. A digital elevation model (DEM) of the area was built for this purpose. This model is based on altimeter data acquired from the Aster sensor, on which image processing techniques such as enhancement techniques, contrast change and filtering were applied. Other techniques, such as RGB colour composition, were also tested. The processed satellite images were interpreted by visual process and the results were then compared with available geological maps (scale 1: 1 000 000). To facilitate both analysis and interpretation, the edge of the plateau was divided into three sectors: northern (or Chongoroi Edge), central (or Humpata Edge) and southern (or Oncocua Edge). For each sector, the main morphological aspects and main lineament systems were identified and characterized. In the specific case of the central sector, these parameters were also confirmed by field work. This study shows that the morphology of the western edge of the plateau is dominated by N50°W-N60°W, N60°E and N-S trending main tectonic systems. These results have important implications in terms of geological mapping and regional tectonics as well as in land-use planning and other areas, such as hydrogeology or geotechnics.

  10. Integrating Remote Sensing Data with Directional Two- Dimensional Wavelet Analysis and Open Geospatial Techniques for Efficient Disaster Monitoring and Management.

    PubMed

    Lin, Yun-Bin; Lin, Yu-Pin; Deng, Dong-Po; Chen, Kuan-Wei

    2008-02-19

    In Taiwan, earthquakes have long been recognized as a major cause oflandslides that are wide spread by floods brought by typhoons followed. Distinguishingbetween landslide spatial patterns in different disturbance regimes is fundamental fordisaster monitoring, management, and land-cover restoration. To circumscribe landslides,this study adopts the normalized difference vegetation index (NDVI), which can bedetermined by simply applying mathematical operations of near-infrared and visible-redspectral data immediately after remotely sensed data is acquired. In real-time disastermonitoring, the NDVI is more effective than using land-cover classifications generatedfrom remotely sensed data as land-cover classification tasks are extremely time consuming.Directional two-dimensional (2D) wavelet analysis has an advantage over traditionalspectrum analysis in that it determines localized variations along a specific direction whenidentifying dominant modes of change, and where those modes are located in multi-temporal remotely sensed images. Open geospatial techniques comprise a series ofsolutions developed based on Open Geospatial Consortium specifications that can beapplied to encode data for interoperability and develop an open geospatial service for sharing data. This study presents a novel approach and framework that uses directional 2Dwavelet analysis of real-time NDVI images to effectively identify landslide patterns andshare resulting patterns via open geospatial techniques. As a case study, this study analyzedNDVI images derived from SPOT HRV images before and after the ChiChi earthquake(7.3 on the Richter scale) that hit the Chenyulan basin in Taiwan, as well as images aftertwo large typhoons (Xangsane and Toraji) to delineate the spatial patterns of landslidescaused by major disturbances. Disturbed spatial patterns of landslides that followed theseevents were successfully delineated using 2D wavelet analysis, and results of patternrecognitions of landslides were

  11. Making Quality Sense: A Guide to Quality, Tools and Techniques, Awards and the Thinking Behind Them.

    ERIC Educational Resources Information Center

    Owen, Jane

    This document is intended to guide further education colleges and work-based learning providers through some of the commonly used tools, techniques, and theories of quality management. The following are among the topics discussed: (1) various ways of defining quality; methods used by organizations to achieve quality (quality control, quality…

  12. Application of Active Learning Techniques to an Advanced Course

    NASA Astrophysics Data System (ADS)

    Knop, R. A.

    2004-05-01

    The New Faculty Workshop provided a wealth of techniques as well as an overriding philosophy for the teaching of undergraduate Physics and Astronomy courses. The focus of the workshop was active learning, summarized in ``Learner-Centered Astronomy Teaching" by Slater & Adams: it's not what you do in class that matters, it's what the students do. Much of the specific focus of the New Faculty Workshop is on teaching the large, introductory Physics classes that many of the faculty present are sure to teach, both algebra-based and calculus-based. Many of these techniques apply directly and with little modification to introductory Astronomy courses. However, little direct attention is given to upper-division undergraduate, or even graduate, courses. In this presentation, I will share my experience in attempting to apply some of the techniques discussed at the New Faculty Workshop to an upper-division course in Galactic Astrophysics at Vanderbilt University during the Spring semester of 2004.

  13. Active and Passive Sensing from Geosynchronous and Libration Orbits

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Raymond, Carol; Hildebrand, Peter

    2003-01-01

    The development of the LEO (EOS) missions has led the way to new technologies and new science discoveries. However, LEO measurements alone cannot cost effectively produce high time resolution measurements needed to move the science to the next level. Both GEO and the Lagrange points, L1 and L2, provide vantage points that will allow higher time resolution measurements. GEO is currently being exploited by weather satellites, but the sensors currently operating at GEO do not provide the spatial or spectral resolution needed for atmospheric trace gas, ocean or land surface measurements. It is also may be possible to place active sensors in geostationary orbit. It seems clear, that the next era in earth observation and discovery will be opened by sensor systems operating beyond near earth orbit.

  14. Virtual Sensors: Using Data Mining Techniques to Efficiently Estimate Remote Sensing Spectra

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Oza, Nikunj; Stroeve, Julienne

    2004-01-01

    Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. These instruments are sometimes built in a phased approach, with some measurement capabilities being added in later phases. In other cases, there may not be a planned increase in measurement capability, but technology may mature to the point that it offers new measurement capabilities that were not available before. In still other cases, detailed spectral measurements may be too costly to perform on a large sample. Thus, lower resolution instruments with lower associated cost may be used to take the majority of measurements. Higher resolution instruments, with a higher associated cost may be used to take only a small fraction of the measurements in a given area. Many applied science questions that are relevant to the remote sensing community need to be addressed by analyzing enormous amounts of data that were generated from instruments with disparate measurement capability. This paper addresses this problem by demonstrating methods to produce high accuracy estimates of spectra with an associated measure of uncertainty from data that is perhaps nonlinearly correlated with the spectra. In particular, we demonstrate multi-layer perceptrons (MLPs), Support Vector Machines (SVMs) with Radial Basis Function (RBF) kernels, and SVMs with Mixture Density Mercer Kernels (MDMK). We call this type of an estimator a Virtual Sensor because it predicts, with a measure of uncertainty, unmeasured spectral phenomena.

  15. Coadding Techniques for Image-based Wavefront Sensing for Segmented-mirror Telescopes

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Aronstein, David; Dean, Bruce; Acton, Scott

    2007-01-01

    Image-based wavefront sensing algorithms are being used to characterize optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be coadded in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on every set of PSFs individually and average the resulting wavefronts. The choice of coadd methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using data collected on and simulations of the James Webb Space Telescope Testbed Telescope (TBT) commissioned at Ball Aerospace, we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the coadd method. Of particular interest, segment piston is more accurately recovered in "image-plane space" coadding, while segment tip/tilt is recovered in "pupil-plane space" coadding.

  16. Co-adding techniques for image-based wavefront sensing for segmented-mirror telescopes

    NASA Astrophysics Data System (ADS)

    Smith, J. S.; Aronstein, David L.; Dean, Bruce H.; Acton, D. S.

    2007-09-01

    Image-based wavefront sensing algorithms are being used to characterize the optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be co-added in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on each PSF frame individually and average the resulting wavefronts. The choice of co-add methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using models and data from the James Webb Space Telescope (JWST) Testbed Telescope (TBT), we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the co-add method. Of particular interest, segment piston is more accurately recovered in "image-plane space" co-adding, while segment tip/tilt is recovered in "pupil-plane space" co-adding.

  17. Fast and low-dose computed laminography using compressive sensing based technique

    SciTech Connect

    Abbas, Sajid Park, Miran Cho, Seungryong

    2015-03-31

    Computed laminography (CL) is well known for inspecting microstructures in the materials, weldments and soldering defects in high density packed components or multilayer printed circuit boards. The overload problem on x-ray tube and gross failure of the radio-sensitive electronics devices during a scan are among important issues in CL which needs to be addressed. The sparse-view CL can be one of the viable option to overcome such issues. In this work a numerical aluminum welding phantom was simulated to collect sparsely sampled projection data at only 40 views using a conventional CL scanning scheme i.e. oblique scan. A compressive-sensing inspired total-variation (TV) minimization algorithm was utilized to reconstruct the images. It is found that the images reconstructed using sparse view data are visually comparable with the images reconstructed using full scan data set i.e. at 360 views on regular interval. We have quantitatively confirmed that tiny structures such as copper and tungsten slags, and copper flakes in the reconstructed images from sparsely sampled data are comparable with the corresponding structure present in the fully sampled data case. A blurring effect can be seen near the edges of few pores at the bottom of the reconstructed images from sparsely sampled data, despite the overall image quality is reasonable for fast and low-dose NDT.

  18. Modelling submerged coastal environments: Remote sensing technologies, techniques, and comparative analysis

    NASA Astrophysics Data System (ADS)

    Dillon, Chris

    Built upon remote sensing and GIS littoral zone characterization methodologies of the past decade, a series of loosely coupled models aimed to test, compare and synthesize multi-beam SONAR (MBES), Airborne LiDAR Bathymetry (ALB), and satellite based optical data sets in the Gulf of St. Lawrence, Canada, eco-region. Bathymetry and relative intensity metrics for the MBES and ALB data sets were run through a quantitative and qualitative comparison, which included outputs from the Benthic Terrain Modeller (BTM) tool. Substrate classification based on relative intensities of respective data sets and textural indices generated using grey level co-occurrence matrices (GLCM) were investigated. A spatial modelling framework built in ArcGIS(TM) for the derivation of bathymetric data sets from optical satellite imagery was also tested for proof of concept and validation. Where possible, efficiencies and semi-automation for repeatable testing was achieved using ArcGIS(TM) ModelBuilder. The findings from this study could assist future decision makers in the field of coastal management and hydrographic studies. Keywords: Seafloor terrain characterization, Benthic Terrain Modeller (BTM), Multi-beam SONAR, Airborne LiDAR Bathymetry, Satellite Derived Bathymetry, ArcGISTM ModelBuilder, Textural analysis, Substrate classification.

  19. Species identification of mixed algal bloom in the Northern Arabian Sea using remote sensing techniques.

    PubMed

    Dwivedi, R; Rafeeq, M; Smitha, B R; Padmakumar, K B; Thomas, Lathika Cicily; Sanjeevan, V N; Prakash, Prince; Raman, Mini

    2015-02-01

    Oceanic waters of the Northern Arabian Sea experience massive algal blooms during winter-spring (mid Feb-end Mar), which prevail for at least for 3 months covering the entire northern half of the basin from east to west. Ship cruises were conducted during winter-spring of 2001-2012 covering different stages of the bloom to study the biogeochemistry of the region. Phytoplankton analysis indicated the presence of green tides of dinoflagellate, Noctiluca scintillans (=N. miliaris), in the oceanic waters. Our observations indicated that diatoms are coupled and often co-exist with N. scintillans, making it a mixed-species ecosystem. In this paper, we describe an approach for detection of bloom-forming algae N. scintillans and its discrimination from diatoms using Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua data in a mixed-species environment. In situ remote sensing reflectance spectra were generated using Satlantic™ hyperspectral radiometer for the bloom and non-bloom waters. Spectral shapes of the reflectance spectra for different water types were distinct, and the same were used for species identification. Scatter of points representing different phytoplankton classes on a derivative plot revealed four diverse clusters, viz. N. scintillans, diatoms, non-bloom oceanic, and non-bloom coastal waters. The criteria developed for species discrimination were implemented on MODIS data and validated using inputs from a recent ship cruise conducted in March 2013.

  20. Fast and low-dose computed laminography using compressive sensing based technique

    NASA Astrophysics Data System (ADS)

    Abbas, Sajid; Park, Miran; Cho, Seungryong

    2015-03-01

    Computed laminography (CL) is well known for inspecting microstructures in the materials, weldments and soldering defects in high density packed components or multilayer printed circuit boards. The overload problem on x-ray tube and gross failure of the radio-sensitive electronics devices during a scan are among important issues in CL which needs to be addressed. The sparse-view CL can be one of the viable option to overcome such issues. In this work a numerical aluminum welding phantom was simulated to collect sparsely sampled projection data at only 40 views using a conventional CL scanning scheme i.e. oblique scan. A compressive-sensing inspired total-variation (TV) minimization algorithm was utilized to reconstruct the images. It is found that the images reconstructed using sparse view data are visually comparable with the images reconstructed using full scan data set i.e. at 360 views on regular interval. We have quantitatively confirmed that tiny structures such as copper and tungsten slags, and copper flakes in the reconstructed images from sparsely sampled data are comparable with the corresponding structure present in the fully sampled data case. A blurring effect can be seen near the edges of few pores at the bottom of the reconstructed images from sparsely sampled data, despite the overall image quality is reasonable for fast and low-dose NDT.

  1. Soil salinity mapping and hydrological drought indices assessment in arid environments based on remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Bahrawi, Jarbou A.

    2017-03-01

    Vegetation indices are mostly described as crop water derivatives. The normalized difference vegetation index (NDVI) is one of the oldest remote sensing applications that is widely used to evaluate crop vigor directly and crop water relationships indirectly. Recently, several NDVI derivatives were exclusively used to assess crop water relationships. Four hydrological drought indices are examined in the current research study. The water supply vegetation index (WSVI), the soil-adjusted vegetation index (SAVI), the moisture stress index (MSI) and the normalized difference infrared index (NDII) are implemented in the current study as an indirect tool to map the effect of different soil salinity levels on crop water stress in arid environments. In arid environments, such as Saudi Arabia, water resources are under pressure, especially groundwater levels. Groundwater wells are rapidly depleted due to the heavy abstraction of the reserved water. Heavy abstractions of groundwater, which exceed crop water requirements in most of the cases, are powered by high evaporation rates in the designated study area because of the long days of extremely hot summer. Landsat 8 OLI data were extensively used in the current research to obtain several vegetation indices in response to soil salinity in Wadi ad-Dawasir. Principal component analyses (PCA) and artificial neural network (ANN) analyses are complementary tools used to understand the regression pattern of the hydrological drought indices in the designated study area.

  2. Active Planning, Sensing and Recognition Using a Resource-Constrained Discriminant POMDP

    DTIC Science & Technology

    2014-06-28

    ADDRESS. William Marsh Rice University 6100 Main St., MS-16 Houston, TX 77005 -1827 ABSTRACT Active Planning, Sensing and Recognition Using a...Urbana, IL 61801 ‡Dept. of Computer Science, Rice University, Houston, TX 77005 §U.S. Army Research Laboratory, Adelphi, MD 20783 {wang308, zwang119

  3. More than Activities: Using a "Sense of Place" to Enrich Student Experience in Adventure Sport

    ERIC Educational Resources Information Center

    Leather, Mark; Nicholls, Fiona

    2016-01-01

    There has been increasing interest in recent years in the significance of a sense of place in the literature of outdoor adventure education. In the UK relationships between outdoor education and the environment still appear largely focused on the science of the natural environment and the activity in question. In this paper, we present empirical…

  4. Active Teaching Strategies for a Sense of Salience: End-of-Life Communication

    ERIC Educational Resources Information Center

    Kopp, Mary L.

    2013-01-01

    This study compared active teaching strategies with passive lecture by evaluating cognitive, affective, and psychomotor learning outcomes, while highlighting end-of-life communication in nursing education. The problem addressed was twofold: First, passive lecture prevents transfer to situational decision-making, or a sense of salience (Benner,…

  5. Passive and Active Microwave Remote Sensing of Precipitation and Latent Heating Distributions in the Tropics from TRMM

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Haddad, Ziad S.; Tao, Wei-Kuo; Wang, Yansen; Lang, Stephen E.; Braun, Scott A.; Chiu, Christine; Wang, Jian-Jian

    2002-01-01

    Passive and active microwave remote sensing data are analyzed to identify signatures of precipitation and vertical motion in tropical convection. A database of cloud/radiative model simulations is used to quantify surface rain rates and latent heating profiles that are consistent with these signatures. At satellite footprint-scale (approximately 10 km), rain rate and latent heating estimates are subject to significant random errors, but by averaging the estimates in space and time, random errors are substantially reduced, Bias errors have been minimized by improving the microphysics in the supporting cloud/radiative model simulations, and by imposing a consistent definition of remotely-sensed and model-simulated convective/stratiform rain coverage. Remotely-sensed precipitation and latent heating distributions in the tropics are derived from Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave/ Imager (SSM/ I) sensor data. The prototype Version 6 TRMM passive microwave algorithm typically yields average heating profiles with maxima between 6 and 7 km altitude for organized mesoscale convective systems. Retrieved heating profiles for individual convective systems are compared to coincident estimates based upon a combination of dual-Doppler radar and rawinsonde data. Also, large-scale latent heating distributions are compared to estimates derived from a simpler technique that utilizes observations of surface rain rate and stratiform rain proportion to infer vertical heating structure. Results of these tests will be presented at the conference.

  6. A new polarimetric active radar calibrator and calibration technique

    NASA Astrophysics Data System (ADS)

    Tang, Jianguo; Xu, Xiaojian

    2015-10-01

    Polarimetric active radar calibrator (PARC) is one of the most important calibrators with high radar cross section (RCS) for polarimetry measurement. In this paper, a new double-antenna polarimetric active radar calibrator (DPARC) is proposed, which consists of two rotatable antennas with wideband electromagnetic polarization filters (EMPF) to achieve lower cross-polarization for transmission and reception. With two antennas which are rotatable around the radar line of sight (LOS), the DPARC provides a variety of standard polarimetric scattering matrices (PSM) through the rotation combination of receiving and transmitting polarization, which are useful for polarimatric calibration in different applications. In addition, a technique based on Fourier analysis is proposed for calibration processing. Numerical simulation results are presented to demonstrate the superior performance of the proposed DPARC and processing technique.

  7. Remote sensing techniques for mapping range sites and estimating range yield

    NASA Technical Reports Server (NTRS)

    Benson, L. A.; Frazee, C. J.; Waltz, F. A.; Reed, C.; Carey, R. L.; Gropper, J. L.

    1974-01-01

    Image interpretation procedures for determining range yield and for extrapolating range information were investigated for an area of the Pine Ridge Indian Reservation in southwestern South Dakota. Soil and vegetative data collected in the field utilizing a grid sampling design and digital film data from color infrared film and black and white films were analyzed statistically using correlation and regression techniques. The pattern recognition techniques used were K-class, mode seeking, and thresholding. The herbage yield equation derived for the detailed test site was used to predict yield for an adjacent similar field. The herbage yield estimate for the adjacent field was 1744 lbs. of dry matter per acre and was favorably compared to the mean yield of 1830 lbs. of dry matter per acre based upon ground observations. Also an inverse relationship was observed between vegetative cover and the ratio of MSS 5 to MSS 7 of ERTS-1 imagery.

  8. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique.

    PubMed

    Wada, Daichi; Igawa, Hirotaka; Kasai, Tokio

    2016-09-01

    We demonstrate a dynamic distributed monitoring technique using a long-length fiber Bragg grating (FBG) interrogated by optical frequency domain reflectometry (OFDR) that measures strain at a speed of 150 Hz, spatial resolution of 1 mm, and measurement range of 20 m. A 5 m FBG is bonded to a 5.5 m helicopter blade model, and vibration is applied by the step relaxation method. The time domain responses of the strain distributions are measured, and the blade deflections are calculated based on the strain distributions. Frequency response functions are obtained using the time domain responses of the calculated deflection induced by the preload release, and the modal parameters are retrieved. Experimental results demonstrated the dynamic monitoring performances and the applicability to the modal analysis of the OFDR-FBG technique.

  9. Optical sensing of peroxide using ceria nanoparticles via fluorescence quenching technique

    NASA Astrophysics Data System (ADS)

    Shehata, N.; Samir, E.; Gaballah, S.

    2016-04-01

    This study introduces the application of small ceria nanoparticles (NPs) as optical sensor for peroxide using fluorescence quenching technique. Our synthesized ceria nanoparticles have the ability to adsorb peroxides via its oxygen vacancies. Ceria nanoparticles (NPs) solution with added variable concentrations of hydrogen peroxides is exposed through near UV excitation and the detected visible fluorescent emission is found to be at 520nm, with reduced peak intensity peaks with increasing the peroxide concentrations due to static fluorescence quenching technique. The relative intensity change of the visible fluorescent emission has been reduced to more than 50% at added peroxide concentrations up to 10 wt.%. This research work could be applied further in optical sensors of radicals in biomedical engineering and environmental monitoring.

  10. Evaluation of remote sensing and automatic data techniques for characterization of wetlands. [Atchafalaya River Basin, Louisiana

    NASA Technical Reports Server (NTRS)

    Cartmill, R. H.

    1974-01-01

    This investigation has been conducted in the Atchafalaya River Basin of South Central Louisiana. This is a humid area of heavily forested swamps with a large volume of flow mostly from a diversion of the lower Mississippi River. Techniques to obtain enlarged imagery from computer compatible tapes of ERTS data without photographic enlargement is explained and illustrated. Techniques of extraction of environmental information from single bands and multiband pattern recognition procedures are explained and evaluated. A comparison of pattern recognition classifications of the Atchafalaya Basin by aircraft multispectral scanner and ERTS MSS data is made. Data for this comparison were gathered within three weeks of each other in the winter of 1973. Scorecards of the accuracy of the classifications are presented. Recommendations are made concerning the utilization of each sensor platform to perform specific tasks of wetlands characterization.

  11. Active vibration control techniques for flexible space structures

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.

  12. Microbial growth and quorum sensing antagonist activities of herbal plants extracts.

    PubMed

    Al-Hussaini, Reema; Mahasneh, Adel M

    2009-09-03

    Antimicrobial and antiquorum sensing (AQS) activities of fourteen ethanolic extracts of different parts of eight plants were screened against four Gram-positive, five Gram-negative bacteria and four fungi. Depending on the plant part extract used and the test microorganism, variable activities were recorded at 3 mg per disc. Among the Grampositive bacteria tested, for example, activities of Laurus nobilis bark extract ranged between a 9.5 mm inhibition zone against Bacillus subtilis up to a 25 mm one against methicillin resistant Staphylococcus aureus. Staphylococcus aureus and Aspergillus fumigatus were the most susceptible among bacteria and fungi tested towards other plant parts. Of interest is the tangible antifungal activity of a Tecoma capensis flower extract, which is reported for the first time. However, minimum inhibitory concentrations (MIC's) for both bacteria and fungi were relatively high (0.5-3.0 mg). As for antiquorum sensing activity against Chromobacterium violaceum, superior activity (>17 mm QS inhibition) was associated with Sonchus oleraceus and Laurus nobilis extracts and weak to good activity (8-17 mm) was recorded for other plants. In conclusion, results indicate the potential of these plant extracts in treating microbial infections through cell growth inhibition or quorum sensing antagonism, which is reported for the first time, thus validating their medicinal use.

  13. Techniques of the environmental observer: India's earth remote sensing program in the age of global information

    NASA Astrophysics Data System (ADS)

    Denicola, Lane A.

    This research examines the emergence in India of earth remote sensing (ERS), a principal medium for environmental analysis, communication, and policy-making. ERS---the science and "craft" of analyzing images of terrestrial phenomena collected by aircraft or satellite---constitutes an information technology whose predominance in environmental discourse has grown continuously since first proposed for such applications by American researchers in 1962. Raising many thorny issues in information access and control, the use and popularization of ERS has intensified dramatically since the mid-1980s. In Westernized discourse (both popular and expert), space research and industry are often depicted at a double-remove from the so-called "developing world," where exotic technologies and esoteric goals are overshadowed by patent human needs and a lack of basic infrastructure. Yet advocates hail the utility of ERS in socially relevant applications, and India has amassed upwards of five decades of experience in space, with systems and products rivaled today only by those of the United States and China. A multi-sited ethnography of a nascent visual medium, the dissertation triangulates on its topic by tracing three analytical threads: (1) a diachronic analysis of Indian ERS satellites as an allegory of statehood and participation in the global present, (2) a synchronic analysis of ERS imagery as a discursive artifact and global information commodity, and (3) an analysis of interpretive practice as observed through a single class of Indian and foreign students at the Indian Institute of Remote Sensing (IIRS), considered here as an "interpretive community" of environmental experts. The dissertation is the result of four years of research with ERS students, faculty, researchers, users and administrators in the U.S., the U.K., Turkey and India. In particular, I conducted nine months of ethnographic fieldwork in India in 2002 and 2005, the latter half of which was spent in participant

  14. Hyperspectral Remote Sensing Techniques in Predicting Phycocyanin Concentrations in Cyanobacteria: A Comprehensive Study

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Mishra, D. R.; Schluchter, W. M.

    2009-12-01

    The purpose of this research was to evaluate the performance of existing spectral band ratio algorithms and develop a novel algorithm to quantify phycocyanin (PC) in cyanobacteria using hyperspectral remotely-sensed data. We performed four spectroscopic experiments on two different laboratory cultured cyanobacterial species and found that the existing band ratio algorithms are highly sensitive to chlorophylls, making them inaccurate in predicting cyanobacterial abundance in the presence of other chlorophyll-containing organisms. Our results also show that the widely used 654 nm reflectance peak in existing algorithms is highly sensitive to changes in chlorophyll-a concentration and offers poor PC predictive ability. We present a novel spectral band ratio algorithm that is least sensitive to the presence of chlorophyll. The newly developed band ratio model showed promising results by yielding low root mean squared error (RMSE, 15,260 cells mL-1) and significantly low relative root mean squared error (RMS, 101%) as compared to the existing band ratio algorithms. Natural logarithmic transformation of the new model yielded the lowest RMSE (13,885 cells mL-1) and a high coefficient of determination (0.95) between measured and predicted PC concentration. We also show that the new algorithm is species independent and accurately retrieves PC concentration in the presence of varying amount of chlorophyll-a in the system. Band setting of the model confirms that it can be used for retrieval of PC using hyperspectral sensors such as Hyperion as well as data acquired by other airborne sensors. Figure (A, B, C) Percent reflectance spectra of Synechocystis PCC 6803 from Exp I, II, III respectively. (D) Percent reflectance spectra of Anabaena from Exp IV. Data collected from these experiments were included in the evaluation of existing PC predictive models and the calibration and validation of the new spectral band ratio model.

  15. Micro - Watershed Development Plans Using Remote Sensing & GIS Techniques Panoli Village, Ahmednagar, Maharashtra, Iindia

    NASA Astrophysics Data System (ADS)

    Purushothuman, S.

    2013-05-01

    Sustainable development aims at maintaining the equilibrium between the human needs and economic developments within the parameters of environmental conservation through efficient use of natural resources to ensure tradeoff between desired productions - consumption levels. The well-known Brundtland Commission defined sustainability as a "development that meets the needs of the present without compromising the ability of future generations to meet their own needs. In essence, the sustainable development is a process of change in which the exploitation of resources, the direction of investments, the orientation of technological development and instrumental changes, all are in harmony". The sustainable development of natural resources is based on maintaining the fragile ecosystem balance between the productivity functions and conservation practices through monitoring and identification of problem areas, agricultural practices, crop rotation, use of bio-fertilizers, energy efficient farming methods and reclamation of underutilized lands. Sustainable development requires a holistic approach towards natural resources after taking into account the precarious environmental conditions. Watershed development has become the main involvement in natural resource management in India. This Dissertation demonstrates the use of Remote Sensing and GIS-based modeling framework for local-level planning, incorporating the sustainability aspects of Micro-watershed development. A case study has been taken in Panoli Village, Parner Taluka, Ahmanagar District, Maharashtra state to demonstrate the implementation of these new technologies for watershed prioritization and sustainable development. Watershed development and its management is achieved through the combination of database within the watershed boundaries of a drainage area to optimally develop land, water and plant resources to meet the basic minimum needs of the people in a sustained manner.;

  16. Proximal Sensing of Plant-Pathogen Interactions in Spring Barley with Three Fluorescence Techniques

    PubMed Central

    Leufen, Georg; Noga, Georg; Hunsche, Mauricio

    2014-01-01

    In the last years fluorescence spectroscopy has come to be viewed as an essential approach in key research fields of applied plant sciences. However, the quantity and particularly the quality of information produced by different equipment might vary considerably. In this study we investigate the potential of three optical devices for the proximal sensing of plant-pathogen interactions in four genotypes of spring barley. For this purpose, the fluorescence lifetime, the image-resolved multispectral fluorescence and selected indices of a portable multiparametric fluorescence device were recorded at 3, 6, and 9 days after inoculation (dai) from healthy leaves as well as from leaves inoculated with powdery mildew (Blumeria graminis) or leaf rust (Puccinia hordei). Genotype-specific responses to pathogen infections were revealed already at 3 dai by higher fluorescence mean lifetimes in the spectral range from 410 to 560 nm in the less susceptible varieties. Noticeable pathogen-induced modifications were also revealed by the ‘Blue-to-Far-Red Fluorescence Ratio’ and the ‘Simple Fluorescence Ratio’. Particularly in the susceptible varieties the differences became more evident in the time-course of the experiment i.e., following the pathogen development. The relevance of the blue and green fluorescence to exploit the plant-pathogen interaction was demonstrated by the multispectral fluorescence imaging system. As shown, mildewed leaves were characterized by exceptionally high blue fluorescence, contrasting the values observed in rust inoculated leaves. Further, we confirm that the intensity of green fluorescence depends on the pathogen infection and the stage of disease development; this information might allow a differentiation of both diseases. Moreover, our results demonstrate that the detection area might influence the quality of the information, although it had a minor impact only in the current study. Finally, we highlight the relevance of different excitation

  17. An inexpensive active optical remote sensing instrument for assessing aerosol distributions.

    PubMed

    Barnes, John E; Sharma, Nimmi C P

    2012-02-01

    Air quality studies on a broad variety of topics from health impacts to source/sink analyses, require information on the distributions of atmospheric aerosols over both altitude and time. An inexpensive, simple to implement, ground-based optical remote sensing technique has been developed to assess aerosol distributions. The technique, called CLidar (Charge Coupled Device Camera Light Detection and Ranging), provides aerosol altitude profiles over time. In the CLidar technique a relatively low-power laser transmits light vertically into the atmosphere. The transmitted laser light scatters off of air molecules, clouds, and aerosols. The entire beam from ground to zenith is imaged using a CCD camera and wide-angle (100 degree) optics which are a few hundred meters from the laser. The CLidar technique is optimized for low altitude (boundary layer and lower troposphere) measurements where most aerosols are found and where many other profiling techniques face difficulties. Currently the technique is limited to nighttime measurements. Using the CLidar technique aerosols may be mapped over both altitude and time. The instrumentation required is portable and can easily be moved to locations of interest (e.g. downwind from factories or power plants, near highways). This paper describes the CLidar technique, implementation and data analysis and offers specifics for users wishing to apply the technique for aerosol profiles.

  18. Active Microwave Remote Sensing Observations of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1997-01-01

    Since July 1991, the European Space Agency's ERS-1 and ERS-2 satellites have acquired radar data of the Weddell Sea, Antarctica. The Active Microwave Instrument on board ERS has two modes; SAR and Scatterometer. Two receiving stations enable direct downlink and recording of high bit-rate, high resolution SAR image data of this region. When not in an imaging mode, when direct SAR downlink is not possible, or when a receiving station is inoperable, the latter mode allows normalized radar cross-section data to be acquired. These low bit-rate ERS scatterometer data are tape recorded, downlinked and processed off-line. Recent advances in image generation from Scatterometer backscatter measurements enable complementary medium-scale resolution images to be made during periods when SAR images cannot be acquired. Together, these combined C-band microwave image data have for the first time enabled uninterrupted night and day coverage of the Weddell Sea region at both high (25 m) and medium-scale (-20 km) resolutions. C-band ERS-1 radar data are analyzed in conjunction with field data from two simultaneous field experiments in 1992. Satellite radar signature data are compared with shipborne radar data to extract a regional and seasonal signature database for recognition of ice types in the images. Performance of automated sea-ice tracking algorithms is tested on Antarctic data to evaluate their success. Examples demonstrate that both winter and summer ice can be effectively tracked. The kinematics of the main ice zones within the Weddell Sea are illustrated, together with the complementary time-dependencies in their radar signatures. Time-series of satellite images are used to illustrate the development of the Weddell Sea ice cover from its austral summer minimum (February) to its winter maximum (September). The combination of time-dependent microwave signatures and ice dynamics tracking enable various drift regimes to be defined which relate closely to the circulation of the

  19. Assessment of practicality of remote sensing techniques for a study of the effects of strip mining in Alabama

    NASA Technical Reports Server (NTRS)

    Hughes, T. H.; Dillion, A. C., III; White, J. R., Jr.; Drummond, S. E., Jr.; Hooks, W. G.

    1975-01-01

    Because of the volume of coal produced by strip mining, the proximity of mining operations, and the diversity of mining methods (e.g. contour stripping, area stripping, multiple seam stripping, and augering, as well as underground mining), the Warrior Coal Basin seemed best suited for initial studies on the physical impact of strip mining in Alabama. Two test sites, (Cordova and Searles) representative of the various strip mining techniques and environmental problems, were chosen for intensive studies of the correlation between remote sensing and ground truth data. Efforts were eventually concentrated in the Searles Area, since it is more accessible and offers a better opportunity for study of erosional and depositional processes than the Cordova Area.

  20. Research on giant magnetostrictive actuator online nonlinear modeling based on data driven principle with grating sensing technique

    NASA Astrophysics Data System (ADS)

    Han, Ping

    2017-01-01

    A novel Giant Magnetostrictive Actuator (GMA) experimental system with Fiber Bragg Grating (FBG) sensing technique and its modeling method based on data driven principle are proposed. The FBG sensors are adopted to gather the multi-physics fields' status data of GMA considering the strong nonlinearity of the Giant Magnetostrictive Material and GMA micro-actuated structure. The feedback features are obtained from the raw dynamic status data, which are preprocessed by data fill and abnormal value detection algorithms. Correspondingly the Least Squares Support Vector Machine method is utilized to realize GMA online nonlinear modeling with data driven principle. The model performance and its relative algorithms are experimentally evaluated. The model can regularly run in the frequency range from 10 to 1000 Hz and temperature range from 20 to 100 °C with the minimum prediction error stable in the range from -1.2% to 1.1%.

  1. Mining remote sensing image data: an integration of fuzzy set theory and image understanding techniques for environmental change detection

    NASA Astrophysics Data System (ADS)

    Eklund, Peter W.; You, Jane; Deer, Peter

    2000-04-01

    This paper presents an image understanding approach to mine remotely sensed image data from different source dates for environmental change detection. It is focused on the immediate needs for knowledge discovery from large sets of image data for environmental monitoring. In contrast to the traditional approaches for change detection, we introduce a wavelet-based hierarchical scheme which integrates fuzzy set theory and image understanding techniques for knowledge discovery of the remote image data. The proposed approach includes algorithms for hierarchical change detection, region representations and classification. The effectiveness of the proposed algorithms is demonstrated throughout the completion of three tasks, namely hierarchial detection of change by fuzzy post classification comparisons, localization of change by B-spline based region representation, and categorization of change by hierarchial texture classification.

  2. E-tracers: A New Technique for Wireless Sensing Under Ice Sheets

    NASA Astrophysics Data System (ADS)

    Burrow, S.; Wadham, J. L.; Salter, M.; Barnes, R.

    2009-12-01

    A significant hurdle to the understanding of ice sheet basal hydrology and its coupling with ice motion is the difficulty in making in-situ measurements along a flow path. While dye tracing techniques may be used in small glaciers to determine transit times of surface melt water through the sub-glacial system, they provide no information on in situ conditions (e.g. pressure) and are ineffective at ice-sheet scale where dilution is high. The use of tethered sensor packages is complicated by the long lengths (~100’s m) and torturous path of the moulins and conduits within ice sheets. Recent attempts to pass solid objects (rubber ducks) and other sensor packages through glacial moulins have confirmed the difficultly in deploying sensors into the sub glacial environment. Here, we report the first successful deployment and recovery of compact, electronic units to moulins up to 7 km from the margin of a large land-terminating Greenland outlet. The technique uses RF (Radio Frequency) location to create an electronic tracer (an ‘e-tracer’) enabling a data-logging sensor package to be located in the pro-glacial flood plain once it has passed through the ice sheet. A number of individual packages are used in each deployment mitigating for the risk that some may become stuck within the moulin or lodge in an inaccessible part of the floodplain. In preliminary tests on the Leverett glacier in West Greenland during August 2009 we have demonstrated that this technique can be used to locate and retrieve dummy sensor packages: 50% and 20% of the dummy sensor packages introduced to moulins at 1 and 7 km from the ice sheet terminus respectively, emerged in the sub-glacial stream. It was possible to effectively detect the e-tracer units (which broadcast on 151MHz with 10mW of power) over a horizontal range of up to 5km across the pro-glacial floodplain and locate them to a high accuracy, allowing visual recognition and manual recovery. These performance statistics give this

  3. Active and passvie microwave remote sensing of springtime near-surface soil that at mid-latitudes

    NASA Astrophysics Data System (ADS)

    Han, L.; Tsunekawa, A.; Tsubo, M.

    2010-12-01

    Springtime near-surface soil thaw event is important for understanding the near-surface earth system. Previous researches based on both active and passive microwave remote sensing technologies have paid scant attention, especially at mid-latitudes where the near-surface earth system has been changed substantially by climate change and human activities, and are characterized by more complex climate and land surface conditions than the permafrost areas. SSM/I brightness temperature and QuikSCAT Ku-band backscatter were applied in this study at a case study area of northern China and Mongolia in springtime. The soil freeze-thaw algorithm was employed for SSM/I data, and a random sampling technique was applied to determine the brightness temperature threshold for 37 GHz vertically polarized radiation: 258.2 and 260.1 K for the morning and evening satellite passes, respectively. A multi-step method was proposed for QuikSCAT Ku-band backscatter based on both field observed soil thaw events and the typical signature of radar backscatter time series when soil thaw event occurred. The method is mainly focuses on the estimated boundary of thaw events and detection of primary thaw date. Finally, based on those results, a theoretical method by applying both active and passive microwave remote sensing was proposed for understanding different types of frozen grounds and their specific characters (e.g. initial and end date of springtime soil freeze-thaw transition period) in mid-latitudes.

  4. Sensing performance of electrically conductive fabrics and dielectric electro active polymers for parachutes

    NASA Astrophysics Data System (ADS)

    Favini, Eric; Niezrecki, Christopher; Manohar, Sanjeev K.; Willis, David; Chen, Julie; Niemi, Eugene; Desabrais, Kenneth; Charette, Christine

    2011-04-01

    This paper quantifies the sensing capabilities of novel smart materials in an effort to improve the performance, better understand the physics, and enhance the safety of parachutes. Based upon a recent review of actuation technologies for parachute applications, it was surmised that the actuators reviewed could not be used to effectively alter the drag or lift (i.e. geometry, porosity, or air vent openings) of a parachute during flight. However, several materials showed potential for sensing applications within a parachute, specifically electrically conductive fabrics and dielectric electro-active polymers. This paper introduces several new conductive fabrics and provides an evaluation of the sensing performance of these smart materials based upon test results using mechanical testing and digital image correlation for comparison.

  5. Structural sensing of interior sound for active control of noise in structural-acoustic cavities.

    PubMed

    Bagha, Ashok K; Modak, S V

    2015-07-01

    This paper proposes a method for structural sensing of acoustic potential energy for active control of noise in a structural-acoustic cavity. The sensing strategy aims at global control and works with a fewer number of sensors. It is based on the established concept of radiation modes and hence does not add too many states to the order of the system. Acoustic potential energy is sensed using a combination of a Kalman filter and a frequency weighting filter with the structural response measurements as the inputs. The use of Kalman filter also makes the system robust against measurement noise. The formulation of the strategy is presented using finite element models of the system including that of sensors and actuators so that it can be easily applied to practical systems. The sensing strategy is numerically evaluated in the framework of Linear Quadratic Gaussian based feedback control of interior noise in a rectangular box cavity with a flexible plate with single and multiple pairs of piezoelectric sensor-actuator patches when broadband disturbances act on the plate. The performance is compared with an "acoustic filter" that models the complete transfer function from the structure to the acoustic domain. The sensing performance is also compared with a direct estimation strategy.

  6. Investigating Coincidence Techniques in Biomedical Applications of Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Chowdhury, P.; Gramer, R.; Tandel, S. K.; Reinhardt, C. J.

    2004-05-01

    While neutron activation analysis has been widely used in biomedical applications for some time, the use of non-radioactive tracer techniques, to monitor, for example, organ blood flow, is more recent. In these studies, pre-clinical animal models are injected with micro-spheres labeled with stable isotopes of elements that have a high neutron absorption cross-section. Subsequently, samples of blood and/or tissue from different locations in the body are subjected to neutron activation analysis to measure the propagation of the labeled micro-spheres through the body. Following irradiation, the counting (with high-resolution Ge detectors) is typically delayed by a few days to dissipate short-lived activity in the samples and improve signal-to-noise for the peaks of interest in the activation spectrum. The aim of the present study was to investigate whether coincidence techniques (for isotopes which decay via two-photon cascades) could improve signal-to-noise and turn-around times. The samples were irradiated at the 1 MW research reactor at the UMass Lowell Radiation Laboratory. The analysis of the multi-parameter coincidence data recorded in event-mode will be presented and compared with the standard method of recording singles spectra.

  7. Does dystonic muscle activity affect sense of effort in cervical dystonia?

    PubMed Central

    Carment, Loïc; Maier, Marc A.; Sangla, Sophie; Guiraud, Vincent; Mesure, Serge; Vidailhet, Marie

    2017-01-01

    Background Focal dystonia has been associated with deficient processing of sense of effort cues. However, corresponding studies are lacking in cervical dystonia (CD). We hypothesized that dystonic muscle activity would perturb neck force control based on sense of effort cues. Methods Neck extension force control was investigated in 18 CD patients with different clinical features (7 with and 11 without retrocollis) and in 19 control subjects. Subjects performed force-matching and force-maintaining tasks at 5% and 20% of maximum voluntary contraction (MVC). Three task conditions were tested: i) with visual force feedback, ii) without visual feedback (requiring use of sense of effort), iii) without visual feedback, but with neck extensor muscle vibration (modifying muscle afferent cues). Trapezius muscle activity was recorded using electromyography (EMG). Results CD patients did not differ in task performance from healthy subjects when using visual feedback (ANOVA, p>0.7). In contrast, when relying on sense of effort cues (without visual feedback, 5% MVC), force control was impaired in patients without retrocollis (p = 0.006), but not in patients with retrocollis (p>0.2). Compared to controls, muscle vibration without visual feedback significantly affected performance in patients with retrocollis (p<0.001), but not in patients without retrocollis. Extensor EMG during rest, included as covariate in ANOVA, explained these group differences. Conclusion This study shows that muscle afferent feedback biases sense of effort cues when controlling neck forces in patients with CD. The bias acts on peripheral or central sense of effort cues depending on whether the task involves dystonic muscles. This may explain why patients with retrocollis more accurately matched isometric neck extension forces. This highlights the need to consider clinical features (pattern of dystonic muscles) when evaluating sensorimotor integration in CD. PMID:28192488

  8. On the detection of adobe buried archaeological structures using multiscale remote sensing techniques : Piramide Naranja in Cahuachi (Peru)

    NASA Astrophysics Data System (ADS)

    Masini, N.; Rizzo, E.; Lasaponara, R.; Orefici, G.

    2009-04-01

    The detection of buried adobe structures is a crucial issue for the remote sensing (ground, aerial and satellite) applied to archaeology for the widespread of sun-dried earth as building material in several ancient civilizations in Central and Southern America, Middle East and North Africa. Moreover it is complex, due to the subtle contrast existing between the archaeological features and the surrounding, especially in arid setting, as in the case of the well know Nazca Ceremonial Centre of Cahuachi, located in the desert of Nazca (Southern Peru) . During the last two decades of excavations adobe monuments dating back from the 6th century B.C. to the 4th century A.D have been highlighted by the Centro de Estudios Arqueológicos Precolombinos (CEAP), an italian-peruvian mission directed by Giuseppe Orefici. Actually, the archaeologists are excavating and restoring the core of the Ceremonial centre where is located a great pyramid (kown as Gran Piramide). Beginning from 2007 the two institutes of CNR, IMAA and IBAM, have been involved by CEAP, in order to provide a scientific and technological support for the archaeological research. Therefore, a multi-scale approach based on the integration of aerial and satellite remote sensing with geophysical techniques was employed in order to provide data useful for archaeological excavations. The abstract refers to the last investigations performed on a mound, known as "Piramide Naranja", during the 2008. The processing of an aerial imagery time series and two QuickBird satellite images acquired in 2002 and 2005, allowed for identifying some features related to shallow and buried structures. Such features were verified by means of geophysical prospections, performed by using the magnetometric method which observed changes in the magnetic field within the first few metres beneath the subsurface detecting buried walls and anomalies linked to ceramic deposits referable to possible tombs. Finally, the integration of all data

  9. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, Kelly J.; Lawson, Gareth L.

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  10. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques.

    PubMed

    Benoit-Bird, Kelly J; Lawson, Gareth L

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  11. An integrated study of earth resources in the state of California using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. A weighted stratified double sample design using hardcopy LANDSAT-1 and ground data was utilized in developmental studies for snow water content estimation. Study results gave a correlation coefficient of 0.80 between LANDSAT sample units estimates of snow water content and ground subsamples. A basin snow water content estimate allowable error was given as 1.00 percent at the 99 percent confidence level with the same budget level utilized in conventional snow surveys. Several evapotranspiration estimation models were selected for efficient application at each level of data to be sampled. An area estimation procedure for impervious surface types of differing impermeability adjacent to stream channels was developed. This technique employs a double sample of 1:125,000 color infrared hightflight transparency data with ground or large scale photography.

  12. Remote sensing of OH in the atmosphere using the technique of laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Wang, C. C.

    1983-01-01

    The use of a laser-induced fluorescence technique for the sensitive measurement of the atmospheric hydroxyl radical is discussed. Results of laboratory studies of the fluorescence and other spectroscopic properties of OH which allow the calculation of OH concentrations from the returned signals for various altitudes, water vapor contents and temperatures are presented. The experimental setup used for airborne OH measurements is then described, with particular attention given to the use of a telescope for excitation and light collection in a coaxial configuration and the periodic tuning of the exciting radiation necessary to obtain an OH signal in the presence of strong solar and nonresonant fluorescence backgrounds. The best detection limit obtained to date with the system is noted to be about 700,000 OH/cu cm, and it is expected that, with planned improvements in detection and tuning schemes, limits in the neighborhood of 1,000,000 OH/cu cm will be achieved routinely.

  13. Review of passive-blind detection in digital video forgery based on sensing and imaging techniques

    NASA Astrophysics Data System (ADS)

    Tao, Junjie; Jia, Lili; You, Ying

    2016-01-01

    Advances in digital video compression and IP communication technologies raised new issues and challenges concerning the integrity and authenticity of surveillance videos. It is so important that the system should ensure that once recorded, the video cannot be altered; ensuring the audit trail is intact for evidential purposes. This paper gives an overview of passive techniques of Digital Video Forensics which are based on intrinsic fingerprints inherent in digital surveillance videos. In this paper, we performed a thorough research of literatures relevant to video manipulation detection methods which accomplish blind authentications without referring to any auxiliary information. We presents review of various existing methods in literature, and much more work is needed to be done in this field of video forensics based on video data analysis and observation of the surveillance systems.

  14. Spectrum sensing of trace C(2)H(2) detection in differential optical absorption spectroscopy technique.

    PubMed

    Chen, Xi; Dong, Xiaopeng

    2014-09-10

    An improved algorithm for trace C(2)H(2) detection is presented in this paper. The trace concentration is accurately calculated by focusing on the absorption spectrum from the frequency domain perspective. The advantage of the absorption spectroscopy frequency domain algorithm is its anti-interference capability. First, the influence of the background noise on the minimum detectable concentration is greatly reduced. Second, the time-consuming preprocess of spectra calibration in the differential optical absorption spectroscopy technique is skipped. Experimental results showed the detection limit of 50 ppm is achieved at a lightpath length of 0.2 m. This algorithm can be used in real-time spectrum analysis with high accuracy.

  15. Using passive, thermal remote sensing techniques for detecting subsurface gravel accumulations in vegetated, unconsolidated sedimentary terrains

    NASA Technical Reports Server (NTRS)

    Burns, Gregory S.; Scholen, Douglas E.

    1989-01-01

    Multiband radiometric data from an airborne imaging thermal scanner are being studied for use in finding buried gravel deposits. The techniques are based on measuring relative differences in the thermal properties between gravel-laden targets and the surrounding gravelless background. These properties are determined from modeling the spectral radiant emittance recorded over both types of surfaces in conjunction with ground measurements of the most significant heat flows above and below the surface. Thermodynamic properties of sampled materials from control sites are determined, and diurnal and annual subsurface heat waves are recorded. Thermal models that account for heat exchange at the surface, as well as varying levels of soil moisture, humidity, and vegetation, are needed for adaptation and modification to simulate the physical and radiative environments of this region.

  16. New dielectric sensors and sensing techniques for soil and snow moisture measurements.

    PubMed

    Stacheder, Markus; Koeniger, Franz; Schuhmann, Rainer

    2009-01-01

    Measurements of material moisture are essential in fields such as agriculture or civil engineering. Electromagnetic techniques, more precisely dielectric methods, have gained wide acceptance in the last decades. Frequency or Time Domain methods take advantage of the high dielectric permittivity of water compared to dry materials. This paper presents four new dielectric sensors for the determination of soil or snow water content. After a short introduction into the principles, both the hardware and operating mode of each sensor are described. Field test results show the advantages and potentials such as automatic measurement and profiling, state-of-ground detection or large-scale determination. From the results it follows that the presented sensors offer promising new tools for modern environmental research.

  17. Embodied information processing: vibrissa mechanics and texture features shape micromotions in actively sensing rats.

    PubMed

    Ritt, Jason T; Andermann, Mark L; Moore, Christopher I

    2008-02-28

    Peripheral sensory organs provide the first transformation of sensory information, and understanding how their physical embodiment shapes transduction is central to understanding perception. We report the characterization of surface transduction during active sensing in the rodent vibrissa sensory system, a widely used model. Employing high-speed videography, we tracked vibrissae while rats sampled rough and smooth textures. Variation in vibrissa length predicted motion mean frequencies, including for the highest velocity events, indicating that biomechanics, such as vibrissa resonance, shape signals most likely to drive neural activity. Rough surface contact generated large amplitude, high-velocity "stick-slip-ring" events, while smooth surfaces generated smaller and more regular stick-slip oscillations. Both surfaces produced velocities exceeding those applied in reduced preparations, indicating active sensation of surfaces generates more robust drive than previously predicted. These findings demonstrate a key role for embodiment in vibrissal sensing and the importance of input transformations in sensory representation.

  18. Spatiotemporal analysis of soil moisture in using active and passive remotely sensed data and ground observations

    NASA Astrophysics Data System (ADS)

    Li, H.; Fang, B.; Lakshmi, V.

    2015-12-01

    Abstract: Soil moisture plays a vital role in ecosystem, biological processes, climate, weather and agriculture. The Soil Moisture Active Passive (SMAP) improves data by combining the advantages and avoiding the limitation of passive microwave remote sensing (low resolution), and active microwave (challenge of soil moisture retrieval). This study will advance the knowledge of the application of soil moisture by using the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) data as well as data collected at Walnut Gulch Arizona in August 2015 during SMAPVEX15. Specifically, we will analyze the 5m radar data from Unmanned Airborne Vehicle Synthetic Aperture Radar (UAVSAR) to study spatial variability within the PALS radiometer pixel. SMAPVEX12/15 and SMAP data will also be analyzed to evaluate disaggregation algorithms. The analytical findings will provide valuable information for policy-makers to initiate and adjust protocols and regulations for protecting land resources and improving environmental conditions. Keywords: soil moisture, Remote Sensing (RS), spatial statistic

  19. Feasibility study for locating archaeological village sites by satellite remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Cook, J. P. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. As a result of ground truth activities, the accurate geographic location of an old fish camp was established as 64 deg 12 min 38 sec N, 158 deg 30 min 42 sec W. Previously the location of this very large abandoned village site was given only on a map sketched in 1935. This location and two other nearby sites will be used as ERTS training areas.

  20. Design of an osmotic pressure sensor for sensing an osmotically active substance

    NASA Astrophysics Data System (ADS)

    Ch, Nagesh; Paily, Roy P.

    2015-04-01

    A pressure sensor based on the osmosis principle has been designed and demonstrated successfully for the sensing of the concentration levels of an osmotically active substance. The device is fabricated using the bulk micro-machining technique on a silicon on insulator (SOI) substrate. The substrate has a square cavity on the bottom side to fill with the reference glucose solution and a silicon (Si) membrane on the top side for the actuation. Two sets of devices, having membrane thicknesses of 10 µm and 25 µm, but the same area of 3 mm ×3 mm, are fabricated. The cavity is filled with a glucose solution of 100 mg dL-1 and it is sealed with a semi-permeable membrane made up of cellulose acetate material. The glucose solution is employed to prove the functionality of the device and it is tested for different glucose concentration levels, ranging from 50 mg dL-1 to 450 mg dL-1. The output voltage obtained for the corresponding glucose concentration levels ranges from -6.7 mV to 22.7 mV for the 10 µm device and from -1.7 mV to 4 mV for the 25 µm device. The device operation was simulated using the finite element method (FEM) and the finite volume method (FVM), and the simulation and experimental results match closely. A response time of 40 min is obtained in the case of the 10 µm device compared to one of 30 min for the 25 µm device. The response times obtained for these devices are found to be small compared to those in similar works based on the osmosis principle. This pressure sensor has the potential to provide controlled drug delivery if it can be integrated with other microfluidic devices.

  1. A study and evaluation of image analysis techniques applied to remotely sensed data

    NASA Technical Reports Server (NTRS)

    Atkinson, R. J.; Dasarathy, B. V.; Lybanon, M.; Ramapriyan, H. K.

    1976-01-01

    An analysis of phenomena causing nonlinearities in the transformation from Landsat multispectral scanner coordinates to ground coordinates is presented. Experimental results comparing rms errors at ground control points indicated a slight improvement when a nonlinear (8-parameter) transformation was used instead of an affine (6-parameter) transformation. Using a preliminary ground truth map of a test site in Alabama covering the Mobile Bay area and six Landsat images of the same scene, several classification methods were assessed. A methodology was developed for automatic change detection using classification/cluster maps. A coding scheme was employed for generation of change depiction maps indicating specific types of changes. Inter- and intraseasonal data of the Mobile Bay test area were compared to illustrate the method. A beginning was made in the study of data compression by applying a Karhunen-Loeve transform technique to a small section of the test data set. The second part of the report provides a formal documentation of the several programs developed for the analysis and assessments presented.

  2. Optimal spatial sampling techniques for ground truth data in microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Rao, R. G. S.; Ulaby, F. T.

    1977-01-01

    The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.

  3. Applying satellite remote sensing technique in disastrous rainfall systems around Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Gin-Rong; Chen, Kwan-Ru; Kuo, Tsung-Hua; Liu, Chian-Yi; Lin, Tang-Huang; Chen, Liang-De

    2016-05-01

    Many people in Asia regions have been suffering from disastrous rainfalls year by year. The rainfall from typhoons or tropical cyclones (TCs) is one of their key water supply sources, but from another perspective such TCs may also bring forth unexpected heavy rainfall, thereby causing flash floods, mudslides or other disasters. So far we cannot stop or change a TC route or intensity via present techniques. Instead, however we could significantly mitigate the possible heavy casualties and economic losses if we can earlier know a TC's formation and can estimate its rainfall amount and distribution more accurate before its landfalling. In light of these problems, this short article presents methods to detect a TC's formation as earlier and to delineate its rainfall potential pattern more accurate in advance. For this first part, the satellite-retrieved air-sea parameters are obtained and used to estimate the thermal and dynamic energy fields and variation over open oceans to delineate the high-possibility typhoon occurring ocean areas and cloud clusters. For the second part, an improved tropical rainfall potential (TRaP) model is proposed with better assumptions then the original TRaP for TC rainfall band rotations, rainfall amount estimation, and topographic effect correction, to obtain more accurate TC rainfall distributions, especially for hilly and mountainous areas, such as Taiwan.

  4. Romantic versus scientific perspective: the ruins of Radlin palace in Wielkopolska region in the light of remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Wilgocka, Aleksandra; Ruciński, Dominik; RÄ czkowski, Włodzimierz

    2015-06-01

    Although ruins of palace in Radlin, localized in Wielkopolska Region (Poland), could have been a great inspiration for romantic landscape painters, they were hardly considered as the subject of artistic interest. Nevertheless they stand as a marker in a landscape as a romantic background for the village on one hand and a memento for the neighbouring graveyard on another. Small scale excavations carried out in late 1950s with historical maps and analysis of still standing remains gave a general idea about wings order, localisation of main entrance and communication routs inside courtyard. Those early research thereby were the first step to change the meaning of this place from romantic to more scientific. New remote sensing technology allows move even further into scientific direction. The ruins in Radlin have been included into project ArchEO - archaeological applications of Earth Observation techniques. The main aim of the project in case of Radlin is an attempt to answer the question to what extent very high resolution optical satellite imagery might allow better understanding the spatial structure of the place. The various processing techniques were applied to facilitate the detection of archaeological features' impact on the vegetation condition. It enabled to assess the usefulness of satellite based data in recognizing specific archaeological remains. Thus, potential and limitations of satellite imagery versus other sources of spatial information like historic maps, excavation results, aerial photographs and Lidar will be discussed.

  5. Pulsed neutron generator for use with pulsed neutron activation techniques

    SciTech Connect

    Rochau, G.E.

    1980-01-01

    A high-output, transportable, pulsed neutron generator has been developed by Sandia National Laboratories for use with Pulsed Neutron Activation (PNA) techniques. The PNA neutron generator generates > 10/sup 10/ 14 MeV D-T neutrons in a 1.2 millisecond pulse. Each operation of the unit will produce a nominal total neutron output of 1.2 x 10/sup 10/ neutrons. The generator has been designed to be easily repaired and modified. The unit requires no additional equipment for operation or measurement of output.

  6. Comparing Remote Sensing Techniques in Detecting Salmonid Habitat, Salmon River, Oregon

    NASA Astrophysics Data System (ADS)

    Shintani, C. M.

    2015-12-01

    Many restoration projects in the Pacific Northwest are implemented to improve habitat quality, quantity, and complexity for fish. Although numerous engineered log structures have been constructed in the hopes of achieving these goals, relatively few projects have been rigorously monitored to determine their success. This research seeks to compare the utility and application between photogrammetric and spectral depth approaches in detecting fish habitat in order to determine which method is more accurate and affordable for monitoring channel bathymetry. While each of these techniques has been individually studied, previous research has not directly compared and quantified their differences. Channel bathymetry data were collected by combining pre- and post-restoration digital photographs of the Salmon River in Northeast Clackamas County, Oregon, using structure-from-motion (SfM). The resulting 3D point cloud will be used to estimate water depths using photogrammetry and spectral depth. The photogrammetric method applies a refraction correction to the extracted water depth from the SfM topography to derive water depth. A regression between the surveyed water depth values and digital number values of surface pixels will derive depth. The resulting water depths from these two methods will be compared to the surveyed water depths for their accuracy and precision, particularly in critical salmonid habitats. The quantification of these differences will be an important contribution to river restoration science as it will allow for more accurate measurement and monitoring of changes in fish habitat. In the future, these data will be used in an eco-hydraulic River2D model to simulate changes in salmonid habitat availability after restoration.

  7. Efficiencies of Rotational Raman, and Rayleigh Techniques for Laser Remote Sensing of the Atmospheric Temperature

    NASA Technical Reports Server (NTRS)

    Ivanova, I. D.; Gurdev, L. L.; Mitev, V. M.

    1992-01-01

    Various lidar methods have been developed for measuring the atmospheric temperature, making use of the temperature dependant characteristics of rotational Raman scattering (RRS) from nitrogen and oxygen, and Rayleigh or Rayleigh-Brillowin scattering (RS or RBS). These methods have various advantages and disadvantages as compared to each other but their potential accuracies are principal characteristics of their efficiency. No systematic attempt has been undertaken so far to compare the efficiences, in the above meaning, of different temperature lidar methods. Two RRS techniques have been compared. Here, we do such a comparison using two methods based on the detection and analysis of RS (RBS) spectra. Four methods are considered here for measuring the atmospheric temperature. One of them (Schwiesow and Lading, 1981) is based on an analysis of the RS linewidth with two Michelson interferometers (MI) in parallel. The second method (Shimisu et al., 1986) employs a high-resolution analysis of the RBS line shape. The third method (Cooney, 1972) employs the temperature dependance of the RRS spectrum envelope. The fourth method (Armstrong, 1974) makes use of a scanning Fabry-Perot interferometer (FPI) as a comb filter for processing the periodic RRS spectrum of the nitrogen. Let us denote the corresponding errors in measuring the temperature by sigma(sub MI), sigma(sub HR), sigma(sub ENV), and sigma(sub FPI). Let us also define the ratios chi(sub 1) = sigma(sub MI)/sigma(sub ENV), chi(sub 2) = sigma(sub HR)/sigma(sub ENV), and chi(sub 3) = sigma(sub FPI)/sigma(sub ENV) interpreted as relative errors with respect to sigma(sub ENV).

  8. A multi-mode sensing system for corrosion detection using piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Giurgiutiu, Victor; Pollock, Patrick

    2008-03-01

    As an emerging technology for in-situ damage detection and nondestructive evaluation, structural health monitoring with active sensors (active SHM) plays as a promising candidate for the pipeline inspection and diagnosis. Piezoelectric wafer active sensor (PWAS), as an active sensing device, can be permanently attached to the structure to interrogate it at will and can operate in propagating wave mode or electromechanical impedance mode. Its small size and low cost (about $10 each) make itself a potential and unique technology for in-situ SHM application. The objective of the research in this paper is to develop a permanently installed in-situ "multi-mode" sensing system for the corrosion monitoring and prediction of critical pipeline systems. Such a system is used during in-service period, recording and monitoring the changes of the pipelines over time, such as corrosion, wall thickness, etc. Having the real-time data available, maintenance strategies based on these data can then be developed to ensure a safe and less expensive operation of the pipeline systems. After a detailed review of PWAS SHM methods, including ultrasonic, impedance, and thickness measurement, we introduce the concept of PWAS-based multi-mode sensing approach for corrosion detection in pipelines. Particularly, we investigate the potential for using PWAS waves for in thickness mode experimentally. Finally, experiments are conducted to verify the corrosion detection ability of the PWAS network in both metallic plate and pipe in a laboratory setting. Results show successful corrosion localization in both tests.

  9. The application of remote sensing techniques for air pollution analysis and climate change on Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Palve, S. N.; Nemade, P. D., Dr.; Ghude, S. D., Dr.

    2016-06-01

    India is home to an extraordinary variety of climatic regions, ranging from tropical in the south to temperate and alpine in the Himalayan north, where elevated regions receive sustained winter snowfall. The subcontinent is characterized by high levels of air pollution due to intensively developing industries and mass fuel consumption for domestic purposes. The main tropospheric pollutants (O3, NO2, CO, formaldehyde (HCHO) and SO2) and two major greenhouse gases (tropospheric O3 and methane (CH4)) and important parameters of aerosols, which play a key role in climate change and affecting on the overall well-being of subcontinent residents. In light of considering these facts this paper aims to investigate possible impact of air pollutants over the climate change on Indian subcontinent. Satellite derived column aerosol optical depth (AOD) is a cost effective way to monitor and study aerosols distribution and effects over a long time period. AOD is found to be increasing rapidly since 2000 in summer season that may cause adverse effect to the agricultural crops and also to the human health. Increased aerosol loading may likely affect the rainfall which is responsible for the observed drought conditions over the Indian subcontinent. Carbon monoxide is emitted into the atmosphere by biomass burning activities and India is the second largest contributor of CO emissions in Asia. The MOPITT CO retrievals at 850 hPa show large CO emission from the IG region. The development of convective activity associated with the ASM leads to large scale vertical transport of the boundary layer CO from the Indian region into the upper troposphere. TCO over the Indian subcontinent during 2007 has a systematic and gradual variation, spatial as well as temporal. Higher amount of TCO in the northern latitudes and simultaneous lower TCO at near equatorial latitudes indicates depletion of ozone near the equator and accumulation at higher latitudes within the subcontinent. In addition, changes

  10. Remote Sensing and Remote Control Activities in Europe and America: Part 2--Remote Sensing Ground Stations in Europe,

    DTIC Science & Technology

    2007-11-02

    Development tasks and products of remote sensing ground stations in Europe are represented by the In-Sec Corporation and the Schlumberger Industries Corporation. The article presents the main products of these two corporations.

  11. An Integrated Use of Experimental, Modeling and Remote Sensing Techniques to Investigate Carbon and Phosphorus Dynamics in the Humid Tropics

    NASA Technical Reports Server (NTRS)

    Townsend, Alan R.; Asner, Gregory P.; Bustamante, Mercedes M. C.

    2001-01-01

    Moist tropical forests comprise one of the world's largest and most diverse biomes, and exchange more carbon, water, and energy with the atmosphere than any other ecosystem. In recent decades, tropical forests have also become one of the globe's most threatened biomes, subjected to exceptionally high rates of deforestation and land degradation. Thus, the importance of and threats to tropical forests are undeniable, yet our understanding of basic ecosystem processes in both intact and disturbed portions of the moist tropics remains poorer than for almost any other major biome. Our approach in this project was to take a multi-scale, multi-tool approach to address two different problems. First, we wanted to test if land-use driven changes in the cycles of probable limiting nutrients in forest systems were a key driver in the frequently observed pattern of declining pasture productivity and carbon stocks. Given the enormous complexity of land use change in the tropics, in which one finds a myriad of different land use types and intensities overlain on varying climates and soil types, we also wanted to see if new remote sensing techniques would allow some novel links between parameters which could be sensed remotely, and key biogeochemical variables which cannot. Second, we addressed to general questions about the role of tropical forests in the global carbon cycle. First, we used a new approach for quantifying and minimizing non-biological artifacts in the NOAA/NASA AVHRR Pathfinder time series of surface reflectance data so that we could address potential links between Amazonian forest dynamics and ENSO cycles. Second, we showed that the disequilibrium in C-13 exchanged between land and atmosphere following tropical deforestation probably has a significant impact on the use of 13-CO2 data to predict regional fluxes in the global carbon cycle.

  12. Quorum Sensing in Vibrio fischeri Cell Density-Dependent Activation of Symbiosis-Related Genes in a Marine Bacterium

    DTIC Science & Technology

    2007-11-02

    Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE August 3, 1998 4. TITLE AND SUBTITLE Quorum Sensing in Vibrio fischeri Cell...of the proposed research is to fully elucidate the mechanism of quorum sensing and response in bacteria by continuing investigations of the most well...Regulation/Marine bacteria/Symbiosis Genes/ Transcriptional activation/ Quorum Sensing 17. SECURITY CLASSIFICATION OF REPORT u NSN 7540-01-280

  13. Remote sensing reflectance model of optically active components of turbid waters

    NASA Astrophysics Data System (ADS)

    Kutser, Tiit; Arst, Helgi

    1994-12-01

    A mathematical model that simulates the spectral curves of remote sensing reflectance is developed. The model is compared to measurements obtained from research vessel or boat in the Baltic Sea and Estonian lakes. The model simulates the effects of light backscattering from water and suspended matter, and the effects of its absorption due to water, phytoplankton, suspended matter and yellow substance. Measured by remote sensing spectral curves are compared by multiple of spectra obtained from model calculations to find the theoretical spectrum which is closest to experimental. It is assumed that in case of coincidence of the spectral curves concentrations of optically active substances in the model correspond to real ones. Preliminary testing of the model demonstrates that this model is useful for estimation of concentration of optically active substances in the waters of the Baltic Sea and Estonian lakes.

  14. Reading as active sensing: a computational model of gaze planning in word recognition.

    PubMed

    Ferro, Marcello; Ognibene, Dimitri; Pezzulo, Giovanni; Pirrelli, Vito

    2010-01-01

    WE OFFER A COMPUTATIONAL MODEL OF GAZE PLANNING DURING READING THAT CONSISTS OF TWO MAIN COMPONENTS: a lexical representation network, acquiring lexical representations from input texts (a subset of the Italian CHILDES database), and a gaze planner, designed to recognize written words by mapping strings of characters onto lexical representations. The model implements an active sensing strategy that selects which characters of the input string are to be fixated, depending on the predictions dynamically made by the lexical representation network. We analyze the developmental trajectory of the system in performing the word recognition task as a function of both increasing lexical competence, and correspondingly increasing lexical prediction ability. We conclude by discussing how our approach can be scaled up in the context of an active sensing strategy applied to a robotic setting.

  15. Reading as Active Sensing: A Computational Model of Gaze Planning in Word Recognition

    PubMed Central

    Ferro, Marcello; Ognibene, Dimitri; Pezzulo, Giovanni; Pirrelli, Vito

    2010-01-01

    We offer a computational model of gaze planning during reading that consists of two main components: a lexical representation network, acquiring lexical representations from input texts (a subset of the Italian CHILDES database), and a gaze planner, designed to recognize written words by mapping strings of characters onto lexical representations. The model implements an active sensing strategy that selects which characters of the input string are to be fixated, depending on the predictions dynamically made by the lexical representation network. We analyze the developmental trajectory of the system in performing the word recognition task as a function of both increasing lexical competence, and correspondingly increasing lexical prediction ability. We conclude by discussing how our approach can be scaled up in the context of an active sensing strategy applied to a robotic setting. PMID:20577589

  16. Alpine Vegetation Ecotone Dynamics in Gangotri Catchment Using Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Singh, C. P.; Panigrahy, S.; Parihar, J. S.

    2011-09-01

    Analysis of the satellite imagery reveals two different perspectives of the vegetation ecotone dynamics in Gangotri catchment. On one hand, there is evidence of upward shift in the alpine tree and vegetation ecotone over three decades. On the other hand, there has been densification happening at the past treeline. The time series fAPAR data of two decades from NOAA-AVHRR confirms the greening trend in the area. The density of trees in Chirbasa has gone up whereas in Bhojbasa there is no significant change in NDVI but the number of groves has increased. Near Gaumukh the vegetal activity has not shown any significant change. We found that the treeline extracted from satellite imagery has moved up about 327±80m and other vegetation line has moved up about 401±77m in three decades. The vertical rate of treeline shift is found to be 11m/yr with reference to 1976 treeline; however, this can be 5m/yr if past toposheet records (1924 - 45) are considered as reliable reference. However, the future IPCC scenario based bioclimatic fundamental niche modelling of the Betula utilis (a surrogate to alpine treeline) suggests that treeline could be moving upward with an average rate of 3m/yr. This study not only confirms that there is an upward shift of vegetation in the alpine zone of Himalayas, but also indicate that old vegetation ecotones have grown denser

  17. Stress inversion of heterogeneous fault-slip data with unknown slip sense - an OFA clustering technique tested on artificial and real data

    NASA Astrophysics Data System (ADS)

    Hansen, J.-A.; Bergh, S. G.; Osmundsen, P. T.; Redfield, T.

    2012-04-01

    Mesozoic to early Cenozoic brittle fault zones are exposed in crystalline basement rocks in the Lofoten and Vesterålen area, North Norway. These fault zones contain abundant striated fracture planes, and may convey important information about the kinematic and dynamic evolution of adjacent fault-bounded rift basins offshore. However, determining slip sense is difficult as offset markers are rare and one has to rely on fault plane morphology. The fault-slip data does, in addition, show clear evidence of being heterogeneous. The linear part of Fry's σ-space inversion method do not depend on slip sense and may, in conjunction with the Objective Function Algorithm (OFA), be used to separate heterogeneous fault-slip data and calculate respective stress tensors. However, tests on artificial data show that the inversions corresponding with the lowest obtained value of the objective function give erroneous results when errors are introduced in the dataset. The method also fails in determining the number of superimposed tensors. We show that by contouring principal stress orientations from the OFA after e.g. 1000 runs, using all solutions with an objective function value below mean and different initial subdivisions, we get more reliable orientations for the principal stresses active during faulting. The method can also be used to evaluate the number of superimposed tensors in the heterogeneous dataset as an overestimation of tensors does not generate significant artificial clusters of principal stress orientations. We refer to this technique as OFA clustering. Initial results using OFA clustering on field data from the Lofoten and Vesterålen area give principal stress orientations in agreement with plate reconstructions and the orientations of the main boundary faults offshore. Since no pre-classification of the fault-slip data is needed, all data points are used with no filtering, and slip sense is not required, the OFA clustering technique is a robust method for

  18. Geothermal Target Areas in Colorado as Identified by Remote Sensing Techniques

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Target Areas Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the areas identified as targets of potential geothermal activity. The Criteria used to identify the target areas include: hot/warm surface exposures modeled from ASTER/Landsat satellite imagery and geological characteristics, alteration mineral commonly associated with hot springs (clays, Si, and FeOx) modeled from ASTER and Landsat data, Coloradodo Geological Survey (CGS) known thermal hot springs/wells and heat-flow data points, Colorado deep-seated fault zones, weakened basement identified from isostatic gravity data, and Colorado sedimentary and topographic characteristics Spatial Domain: Extent: Top: 4546251.530446 m Left: 151398.567298 m Right: 502919.587395 m Bottom: 4095100.068903 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  19. A structural perspective on the mechanisms of quorum sensing activation in bacteria.

    PubMed

    Lixa, Carolina; Mujo, Amanda; Anobom, Cristiane D; Pinheiro, Anderson S

    2015-01-01

    Bacteria are able to synchronize the population behavior in order to regulate gene expression through a cell-to-cell communication mechanism called quorum sensing. This phenomenon involves the production, detection and the response to extracellular signaling molecules named autoinducers, which directly or indirectly regulate gene expression in a cell density-dependent manner. Quorum sensing may control a wide range of biological processes in bacteria, such as bioluminescence, virulence factor production, biofilm formation and antibiotic resistance. The autoinducers are recognized by specific receptors that can either be membrane-bound histidine kinase receptors, which work by activating cognate cytoplasmic response regulators, or cytoplasmic receptors acting as transcription factors. In this review, we focused on the cytosolic quorum sensing regulators whose three-dimensional structures helped elucidate their mechanisms of action. Structural studies of quorum sensing receptors may enable the rational design of inhibitor molecules. Ultimately, this approach may represent an effective alternative to treat infections where classical antimicrobial therapy fails to overcome the microorganism virulence.

  20. Nanopore-based electrical and label-free sensing of enzyme activity in blood serum.

    PubMed

    Kukwikila, Mikiembo; Howorka, Stefan

    2015-09-15

    A generic strategy to expand the analytical scope of electrical nanopore sensing is presented. We specifically and electrically detect the activity of a diagnostically relevant hydrolytic enzyme and remove the analytically harmful interference from the biochemically complex sample matrix of blood serum. Our strategy is demonstrated at the example of the renin protease which is involved in regulation of blood pressure. The analysis scheme exploits a new approach to reduce sample complexity while generating a specific read-out signal. Within a single spin-column (i), the protease cleaves a resin-tethered peptide substrate (ii) which is affinity-purified using the same multifunctional resin to remove interfering blood serum components, followed by (iii) detecting the peptide via electrical nanopore recordings. Our approach is beneficial in several ways. First, by eliminating serum components, we overcome limitations of nanopore sensing when challenging samples lead to membrane instability and a poor signal-to-noise ratio. Second, the label-free sensing avoids drawbacks of currently used radiolabel-immunoassays for renin. Finally, the strategy of simultaneous generation and purification of a signal peptide within a multifunctional resin can very likely be expanded to other hydrolytic enzymes dissolved in any analyte matrix and exploited for analytical read-out methods other than nanopore sensing.

  1. Sun Photometer Laser and Lamp Based Radiometric Calibrations; Comparison with the Langley Technique and Implications on Remote Sensing

    NASA Astrophysics Data System (ADS)

    Souaidia, N.; Pietras, C.; Brown, S. W.; Lykke, K. R.; Frouin, R.; Deschamps, P.; Fargion, G.; Johnson, B. C.

    2002-12-01

    Satellite-based remote sensing of the earth is a valuable data source for biological and oceanic studies. However when using remote sensing, it is necessary to correct the measured signal for atmospheric effects. As aerosols play a major role in atmospheric scattering, correcting algorithms based on Aerosol Optical Thickness (AOT) data have been developed to describe the scattering of radiation by aerosols. AOT data are collected by filter radiometers measuring the solar irradiance. The AOT is then retrieved applying the Beer-Bouger-Lambert Law to those measurements. Two radiometers, called Satellite Validation for Marine Biology and Aerosol Determination (SimbadA), were calibrated in this study. These instruments measure the upwelling radiance from the ocean as well as the solar irradiance, providing information on both marine reflectance and AOT. The goals of this study were to calibrate the radiometers using independent methods, evaluate the uncertainties for each method, and assess the influence of the results in terms of the science requirements. The radiometers were calibrated in irradiance and radiance mode using a monochromatic, laser-illuminated integrating sphere, in radiance mode using two different lamp-illuminated integrating spheres, and in irradiance mode using the Langley technique. First, a limited characterization of the instrument was conducted. The instrument's temporal stability and its spectral out-of-band response were evaluated. The instrument was then calibrated in radiance mode using a laser-illuminated integrating sphere that overfilled its field of view (FOV). The absolute radiance responsivity from this calibration was compared to results from measurements of two calibrated lamp illuminated spheres. The first comparison, with the NIST portable radiometric source (NPR), was a validation as good agreement between the two methods has been reported in previous studies. The second comparison was with the Hardy sphere from the Goddard Space

  2. Understanding mechanisms behind intense precipitation events in East Antarctica: merging modeling and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Gorodetskaya, Irina V.; Maahn, Maximilian; Gallée, Hubert; Kneifel, Stefan; Souverijns, Niels; Gossart, Alexandra; Crewell, Susanne; Van Lipzig, Nicole P. M.

    2016-04-01

    Large interannual variability has been found in surface mass balance (SMB) over the East Antarctic ice sheet coastal and escarpment zones, with the total yearly SMB strongly depending on occasional intense precipitation events. Thus for correct prediction of the ice sheet climate and SMB, climate models should be capable to represent such events. Not less importantly, models should also correctly represent the relevant mechanisms behind. The coupled land-atmosphere non-hydrostatic regional climate model MAR (Modèle Atmosphérique Régional) is used to simulate climate and SMB of Dronning Maud Land (DML), East Antarctica. DML has shown a significant increase in SMB during the last years attributed to only few occasional very intense snowfall events. MAR is run at 5km horizontal resolution using initial and boundary conditions from the European Centre for Medium-range Weather Forecasts (ECMWF) Interim re-analysis atmospheric and oceanic fields. The MAR microphysical scheme predicts the evolution of the mixing ratios of five water species: specific humidity, cloud droplets and ice crystals, raindrops and snow particles. Additional prognostic equation describes the number concentration of cloud ice crystals. The mass and terminal velocity of snow particles are defined as for the graupel-like snowflakes of hexagonal type. These definitions are important to determine single scattering properties for snow hydrometeors used as input (along with cloud particle properties and atmospheric parameters) into the Passive and Active Microwave radiative TRAnsfer model (PAMTRA). PAMTRA allows direct comparison of the radar-measured and climate model-based vertical profiles of the radar reflectivity and Doppler velocity for particular precipitation events. The comparison is based on the measurements from the vertically profiling 24-GHz MRR radar operating as part of the cloud-precipitation-meteorological observatory at Princess Elisabeth (PE) base in DML escarpment zone, from 2010

  3. Synergistic effect of MgO nanoparticles for electrochemical sensing, photocatalytic-dye degradation and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Reddy Yadav, L. S.; Lingaraju, K.; Manjunath, K.; Raghu, G. K.; Sudheer Kumar, K. H.; Nagaraju, G.

    2017-02-01

    MgO nanoparticles (NPs) have been synthesized by a simple and eco-friendly route using watermelon juice as a novel fuel. The synthesized MgO NPs have been subjected to detailed characterization using various analytical techniques. The XRD pattern confirms the crystal structure of MgO which is composed of cubic phase of periclase. The FTIR spectrum gave another manifest for the presence of Mg–O bonding at 552 cm‑1. The surface structure, morphology and particle size have been studied using SEM and TEM which show the MgO NPs are in agglomerated form, almost spherical in shape and average size is about 30–50 nm. Finally, the multidimensional studies have been examined by subjecting MgO NPs as a catalyst for the photodegradation of methylene blue dye (one of the most commonly encountered environmental pollutants), antibacterial activities and electrochemical sensing for the detection of hydrazine at trace level concentration.

  4. Mini Review of Phytochemicals and Plant Taxa with Activity as Microbial Biofilm and Quorum Sensing Inhibitors.

    PubMed

    Ta, Chieu Anh Kim; Arnason, John Thor

    2015-12-26

    Microbial biofilms readily form on many surfaces in nature including plant surfaces. In order to coordinate the formation of these biofilms, microorganisms use a cell-to-cell communication system called quorum sensing (QS). As formation of biofilms on vascular plants may not be advantageous to the hosts, plants have developed inhibitors to interfere with these processes. In this mini review, research papers published on plant-derived molecules that have microbial biofilm or quorum sensing inhibition are reviewed with the objectives of determining the biosynthetic classes of active compounds, their biological activity in assays, and their families of occurrence and range. The main findings are the identification of plant phenolics, including benzoates, phenyl propanoids, stilbenes, flavonoids, gallotannins, proanthocyanidins and coumarins as important inhibitors with both activities. Some terpenes including monoterpenes, sesquiterpenes, diterpenes and triterpenes also have anti-QS and anti-biofilm activities. Relatively few alkaloids were reported. Quinones and organosulfur compounds, especially from garlic, were also active. A common feature is the polar nature of these compounds. Phytochemicals with these activities are widespread in Angiosperms in temperate and tropical regions, but gymnosperms, bryophytes and pteridophytes were not represented.

  5. Activation of geminivirus V-sense promoters in roots is restricted to nematode feeding sites.

    PubMed

    Escobar, Carolina; García, Alejandra; Aristizábal, Fabio; Portillo, Mary; Herreros, Esther; Munoz-Martín, M Angeles; Grundler, Florian; Mullineaux, Phillip M; Fenoll, Carmen

    2010-05-01

    Obligate sedentary endoparasitic nematodes, such as the root-knot and cyst nematodes, elicit the differentiation of specialized nematode nurse or feeding cells [nematode feeding sites (NFS), giant cells and syncytia, respectively]. During NFS differentiation, marked changes in cell cycle progression occur, partly similar to those induced by some geminiviruses. In this work, we describe the activation of V-sense promoters from the Maize streak virus (MSV) and Wheat dwarf virus (WDV) in NFS formed by root-knot and cyst nematodes. Both promoters were transiently active in microinjection experiments. In tobacco and Arabidopsis transgenic lines carrying promoter-beta-glucuronidase fusions, the MSV V-sense promoter was activated in the vascular tissues of aerial plant parts, primarily leaf and cotyledon phloem tissue and some floral structures. Interestingly, in roots, promoter activation was restricted to syncytia and giant cells tested with four different nematode populations, but undetectable in the rest of the root system. As the activity of the promoter in transgenic rootstocks should be restricted to NFS only, the MSV promoter may have utility in engineering grafted crops for nematode control. Therefore, this study represents a step in the provision of some of the much needed additional data on promoters with restricted activation in NFS useful in biotechnological nematode control strategies.

  6. An integrated study of earth resources in the state of California using remote sensing techniques. [planning and management of water resources

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.; Churchman, C. W.; Burgy, R. H.; Schubert, G.; Estes, J. E.; Bowden, L. W.; Algazi, R.; Coulson, K. L. (Principal Investigator)

    1973-01-01

    The University of California has been conducting an investigation which seeks to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Most of the work has concentrated on California's water resources, but with some attention being given to other earth resources as well and to the interplay between them and California's water resources.

  7. A Comparison of Two Above-Ground Biomass Estimation Techniques Integrating Satellite-Based Remotely Sensed Data and Ground Data for Tropical and Semiarid Forests in Puerto Rico

    EPA Science Inventory

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA)...

  8. Applying aerial digital photography as a spectral remote sensing technique for macrophytic cover assessment in small rural streams

    NASA Astrophysics Data System (ADS)

    Anker, Y.; Hershkovitz, Y.; Gasith, A.; Ben-Dor, E.

    2011-12-01

    Although remote sensing of fluvial ecosystems is well developed, the tradeoff between spectral and spatial resolutions prevents its application in small streams (<3m width). In the current study, a remote sensing approach for monitoring and research of small ecosystem was developed. The method is based on differentiation between two indicative vegetation species out of the ecosystem flora. Since when studied, the channel was covered mostly by a filamentous green alga (Cladophora glomerata) and watercress (Nasturtium officinale), these species were chosen as indicative; nonetheless, common reed (Phragmites australis) was also classified in order to exclude it from the stream ROI. The procedure included: A. For both section and habitat scales classifications, acquisition of aerial digital RGB datasets. B. For section scale classification, hyperspectral (HSR) dataset acquisition. C. For calibration, HSR reflectance measurements of specific ground targets, in close proximity to each dataset acquisition swath. D. For habitat scale classification, manual, in-stream flora grid transects classification. The digital RGB datasets were converted to reflectance units by spectral calibration against colored reference plates. These red, green, blue, white, and black EVA foam reference plates were measured by an ASD field spectrometer and each was given a spectral value. Each spectral value was later applied to the spectral calibration and radiometric correction of spectral RGB (SRGB) cube. Spectral calibration of the HSR dataset was done using the empirical line method, based on reference values of progressive grey scale targets. Differentiation between the vegetation species was done by supervised classification both for the HSR and for the SRGB datasets. This procedure was done using the Spectral Angle Mapper function with the spectral pattern of each vegetation species as a spectral end member. Comparison between the two remote sensing techniques and between the SRGB

  9. The possibility of using photogrammetric and remote sensing techniques to model lavaka (gully erosion) development in Madagascar

    NASA Astrophysics Data System (ADS)

    Raveloson, Andrea; Székely, Balázs; Molnár, Gábor; Rasztovits, Sascha

    2013-04-01

    Gully erosion is a worldwide problem for it has a number of undesirable effects and their development is hard to follow. Madagascar is one of the most affected countries for its highlands are densely covered with gullies named lavakas. Lavaka formation and development seems to be triggered by many regional and local causes but the actual reasons are still poorly understood. Furthermore lavakas differ from normal gullies due to their enormous size and special shape. Field surveys are time consuming and data from two-dimensional measurements and pictures (even aerial) might lack major information for morphologic studies. Therefore close range surveying technologies should be used to get three-dimensional information about these unusual and complex features. This contribution discusses which remote sensing and photogrammetric techniques are adequate to survey the development of lavakas, their volume change and sediment budget. Depending on the types and properties (such as volume, depth, shape, vegetation) of the lavaka different methods will be proposed showing pros and cons of each one of them. Our goal is to review techniques to model, survey and analyze lavakas development to better understand the cause of their formation, special size and shape. Different methods are evaluated and compared from field survey through data processing, analyzing cost-effectiveness, potential errors and accuracy for each one of them. For this purpose we will also consider time- and cost-effectiveness of the softwares able to render the images into 3D model as well as the resolution and accuracy of the outputs. Further studies will concentrate on using the three dimensional models of lavakas which will be later on used for geomorphological studies in order to understand their special shape and size. This is ILARG-contribution #07.

  10. Application of remote-sensing techniques to hydrologic studies in selected coal-mine areas of southeastern Kansas

    USGS Publications Warehouse

    Kenny, J.F.; McCauley, J.R.

    1983-01-01

    Disturbances resulting from intensive coal mining in the Cherry Creek basin of southeastern Kansas were investigated using color and color-infrared aerial photography in conjunction with water-quality data from simultaneously acquired samples. Imagery was used to identify the type and extent of vegetative cover on strip-mined lands and the extent and success of reclamation practices. Drainage patterns, point sources of acid mine drainage, and recharge areas for underground mines were located for onsite inspection. Comparison of these interpretations with water-quality data illustrated differences between the eastern and western parts of the Cherry Creek basin. Contamination in the eastern part is due largely to circulation of water from unreclaimed strip mines and collapse features through the network of underground mines and subsequent discharge of acidic drainage through seeps. Contamination in the western part is primarily caused by runoff and seepage from strip-mined lands in which surfaces have frequently been graded and limed but are generally devoid of mature stands of soil-anchoring vegetation. The successful use of aerial photography in the study of Cherry Creek basin indicates the potential of using remote-sensing techniques in studies of other coal-mined regions. (USGS)

  11. Remote sensing and GIS techniques for evaluation of groundwater quality in municipal corporation of Hyderabad (Zone-V), India.

    PubMed

    Asadi, S S; Vuppala, Padmaja; Reddy, M Anji

    2007-03-01

    Groundwater quality in Hyderabad has special significance and needs great attention of all concerned since it is the major alternate source of domestic, industrial and drinking water supply. The present study monitors the ground water quality, relates it to the land use / land cover and maps such quality using Remote sensing and GIS techniques for a part of Hyderabad metropolis. Thematic maps for the study are prepared by visual interpretation of SOI toposheets and linearly enhanced fused data of IRS-ID PAN and LISS-III imagery on 1:50,000 scale using AutoCAD and ARC/INFO software. Physico-chemical analysis data of the groundwater samples collected at predetermined locations forms the attribute database for the study, based on which, spatial distribution maps of major water quality parameters are prepared using curve fitting method in Arc View GIS software. Water Quality Index (WQI) was then calculated to find the suitability of water for drinking purpose. The overall view of the water quality index of the present study area revealed that most of the study area with >50 standard rating of water quality index exhibited poor, very poor and unfit water quality except in places like Banjara Hills, Erragadda and Tolichowki. Appropriate methods for improving the water quality in affected areas have been suggested.

  12. Femtosecond laser fabricated multimode fiber sensors interrogated by optical-carrier-based microwave interferometry technique for distributed strain sensing

    NASA Astrophysics Data System (ADS)

    Hua, Liwei; Song, Yang; Huang, Jie; Cheng, Baokai; Zhu, Wenge; Xiao, Hai

    2016-03-01

    A multimode fiber (MMF) based cascaded intrinsic Fabry-Perot interferometers (IFPIs) system is presented and the distributed strain sensing has been experimentally demonstrated by using such system. The proposed 13 cascaded IFPIs have been formed by 14 cascaded reflectors that have been fabricated on a grade index MMF. Each reflector has been made by drawing a line on the center of the cross-section of the MMF through a femtosecond laser. The distance between any two adjacent reflectors is around 100 cm. The optical carrier based microwave interferometry (OCMI) technique has been used to interrogate the MMF based cascaded FPIs system by reading the optical interference information in the microwave domain. The location along with the shift of the interference fringe pattern for each FPI can be resolved though signal processing based on the microwave domain information. The multimode interference showed very little influence to the microwave domain signals. By using such system the strain of 10-4 for each FPI sensor and the spatial resolution of less than 5 cm for the system can be easily achieved.

  13. A Low-Power and In Situ Annealing Mitigation Technique for Fast Neutrons Irradiation of Integrated Temperature Sensing Diodes

    SciTech Connect

    Francis, Laurent A.; Andre, Nicolas; Gerard, Pierre; Flandre, Denis; Ali, S. Zeeshan; Udrea, Florin

    2015-07-01

    High doses of fast neutrons is detrimental to the performance of most common solid-state devices such as diodes and transistors. The ionizing effect is observed in particular for diodes used as simple integrated temperature sensors, or thermo-diodes, when their junction voltage is measured at constant current bias. In this work, we present a low-power and in situ mitigation technique based on Silicon-on-Insulator (SOI) micro-hot-plates to recover thermo-diodes. The basic operating principle consists in annealing the temperature-sensitive diodes integrated on the membrane during or after their irradiation in order to restore similar sensing characteristics over time. We measured thermo-diodes integrated to micro-hot-plates during their irradiation by fast neutrons (23 MeV peak) with total doses about 2.97±0.08 kGy. The membrane annealing is taking place at 450 deg. C using 40 mW of electrical power. Thanks to the annealing, the diode keeps a total measurement error below 0.5 deg. C. In this harsh radiation environment and beside the good tolerance of the thermo-diodes and the membrane materials to the total ionizing dose, the thermo-diode located on the heating membrane keeps a constant sensitivity. The demonstrated resistance of micro-hot-plates and the integrated thermo-diodes to fast neutron radiations can extend their use in nuclear plants and for radiation detectors. (authors)

  14. Activation studies of NEG coatings by surface techniques

    SciTech Connect

    Sharma, R. K.; Jagannath,; Bhushan, K. G.; Gadkari, S. C.; Mukund, R.; Gupta, S. K.

    2013-02-05

    NEG (Non Evaporable Getters)materials in the form of ternary alloy coatings have many benefits compare to traditional bare surfaces such as Extreme high vacuum(XHV), lower secondary electron yield(SEY), low photon desorption cofficient. The extreme high vacuum (pressure > 10{sup -10} mbar) is very useful to the study of surfaces of the material, for high energy particle accelerators(LHC, Photon Factories), synchrotrons (ESRF, Ellectra) etc. Low secondary electron yield leads to better beam life time. In LHC the pressure in the interaction region of the two beams is something of the order of 10{sup -12} mbar. In this paper preparation of the coatings and their characterization to get the Activation temperature by using the surface techniques XPS, SEM and SIMS has been shown.

  15. Active Learning Techniques Applied to an Interdisciplinary Mineral Resources Course.

    NASA Astrophysics Data System (ADS)

    Aird, H. M.

    2015-12-01

    An interdisciplinary active learning course was introduced at the University of Puget Sound entitled 'Mineral Resources and the Environment'. Various formative assessment and active learning techniques that have been effective in other courses were adapted and implemented to improve student learning, increase retention and broaden knowledge and understanding of course material. This was an elective course targeted towards upper-level undergraduate geology and environmental majors. The course provided an introduction to the mineral resources industry, discussing geological, environmental, societal and economic aspects, legislation and the processes involved in exploration, extraction, processing, reclamation/remediation and recycling of products. Lectures and associated weekly labs were linked in subject matter; relevant readings from the recent scientific literature were assigned and discussed in the second lecture of the week. Peer-based learning was facilitated through weekly reading assignments with peer-led discussions and through group research projects, in addition to in-class exercises such as debates. Writing and research skills were developed through student groups designing, carrying out and reporting on their own semester-long research projects around the lasting effects of the historical Ruston Smelter on the biology and water systems of Tacoma. The writing of their mini grant proposals and final project reports was carried out in stages to allow for feedback before the deadline. Speakers from industry were invited to share their specialist knowledge as guest lecturers, and students were encouraged to interact with them, with a view to employment opportunities. Formative assessment techniques included jigsaw exercises, gallery walks, placemat surveys, think pair share and take-home point summaries. Summative assessment included discussion leadership, exams, homeworks, group projects, in-class exercises, field trips, and pre-discussion reading exercises

  16. Quorum Sensing Activity of Aeromonas Caviae Strain YL12, A Bacterium Isolated from Compost

    PubMed Central

    Lim, Yan-Lue; Ee, Robson; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing is a well-studied cell-to-cell communication method that involves a cell-density dependent regulation of genes expression mediated by signalling molecules. In this study, a bacterium isolated from a plant material compost pile was found to possess quorum sensing activity based on bioassay screening. Isolate YL12 was identified using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and molecular typing using rpoD gene which identified the isolate as Aeromonas caviae. High resolution tandem mass spectrometry was subsequently employed to identify the N-acyl homoserine lactone profile of Aeromonas caviae YL12 and confirmed that this isolate produced two short chain N-acyl homoserine lactones, namely C4-HSL and C6, and the production was observed to be cell density-dependent. Using the thin layer chromatography (TLC) bioassay, both AHLs were found to activate C. violaceum CV026, whereas only C6-HSL was revealed to induce bioluminescence expression of E. coli [pSB401]. The data presented in this study will be the leading steps in understanding the role of quorum sensing in Aeromonas caviae strain YL12. PMID:24759107

  17. Induced Voltage Linear Extraction Method Using an Active Kelvin Bridge for Disturbing Force Self-Sensing.

    PubMed

    Yang, Yuanyuan; Wang, Lei; Tan, Jiubin; Zhao, Bo

    2016-05-20

    This paper presents an induced voltage linear extraction method for disturbing force self-sensing in the application of giant magnetostrictive actuators (GMAs). In this method, a Kelvin bridge combined with an active device is constructed instead of a conventional Wheatstone bridge for extraction of the induced voltage, and an additional GMA is adopted as a reference actuator in the self-sensing circuit in order to balance the circuit bridge. The linear fitting of the measurement data is done according to the linear relationship between the disturbing forces and the integral of the induced voltage. The experimental results confirm the good performance of the proposed method, and the self-sensitivity of the disturbing forces is better than 2.0 (mV·s)/N.

  18. Gas sensing properties of Al-doped ZnO for UV-activated CO detection

    NASA Astrophysics Data System (ADS)

    Dhahri, R.; Hjiri, M.; El Mir, L.; Bonavita, A.; Iannazzo, D.; Latino, M.; Donato, N.; Leonardi, S. G.; Neri, G.

    2016-04-01

    Al-doped ZnO (AZO) samples were prepared using a modified sol-gel route and charaterized by means of trasmission electron microscopy, x-ray diffraction and photoluminescence analysis. Resistive planar devices based on thick films of AZO deposited on interdigitated alumina substrates were fabricated and investigated as UV light activated CO sensors. CO sensing tests were performed in both dark and illumination condition by exposing the samples to UV radiation (λ  =  400 nm).Under UV light, Al-doped ZnO gas sensors operated at lower temperature than in dark. Furthermore, by photoactivation we also promoted CO sensitivity and made signal recovery of AZO sensors faster. Results demonstrate that Al-doped ZnO might be a promising sensing material for the detection of CO under UV illumination.

  19. Validity of PALMS GPS Scoring of Active and Passive Travel Compared to SenseCam

    PubMed Central

    Carlson, Jordan A.; Jankowska, Marta M.; Meseck, Kristin; Godbole, Suneeta; Natarajan, Loki; Raab, Fredric; Demchak, Barry; Patrick, Kevin; Kerr, Jacqueline

    2014-01-01

    Purpose To assess validity of the Personal Activity Location Measurement System (PALMS) for deriving time spent walking/running, bicycling, and in vehicle, using SenseCam as the comparison. Methods 40 adult cyclists wore a Qstarz BT-Q1000XT GPS data logger and SenseCam (camera worn around neck capturing multiple images every minute) for a mean of 4 days. PALMS used distance and speed between GPS points to classify whether each minute was part of a trip (yes/no), and if so, the trip mode (walking/running, bicycling, in vehicle). SenseCam images were annotated to create the same classifications (i.e., trip yes/no and mode). 2×2 contingency tables and confusion matrices were calculated at the minute-level for PALMS vs. SenseCam classifications. Mixed-effects linear regression models estimated agreement (mean differences and intraclass correlations [ICCs]) between PALMS and SenseCam with regards to minutes/day in each mode. Results Minute-level sensitivity, specificity, and negative predictive value were ≥88%, and positive predictive value was ≥75% for non mode-specific trip detection. 72–80% of outdoor walking/running minutes, 73% of bicycling minutes, and 74–76% of in-vehicle minutes were correctly classified by PALMS. For minutes/day, PALMS had a mean bias (i.e., amount of over or under estimation) of 2.4–3.1 minutes (11–15%) for walking/running, 2.3–2.9 minutes (7–9%) for bicycling, and 4.3–5 minutes (15–17%) for vehicle time. ICCs were ≥.80 for all modes. Conclusions PALMS has validity for processing GPS data to objectively measure time walking/running, bicycling, and in vehicle in population studies. Assessing travel patterns is one of many valuable applications of GPS in physical activity research that can improve our understanding of the determinants and health outcomes of active transportation as well as its impact on physical activity. PMID:25010407

  20. Quorum Sensing Inhibition and Structure-Activity Relationships of β-Keto Esters.

    PubMed

    Forschner-Dancause, Stephanie; Poulin, Emily; Meschwitz, Susan

    2016-07-25

    Traditional therapeutics to treat bacterial infections have given rise to multi-drug resistant pathogens, which pose a major threat to human and animal health. In several pathogens, quorum sensing (QS)-a cell-cell communication system in bacteria-controls the expression of genes responsible for pathogenesis, thus representing a novel target in the fight against bacterial infections. Based on the structure of the autoinducers responsible for QS activity and other QS inhibitors, we hypothesize that β-keto esters with aryl functionality could possess anti-QS activity. A panel of nineteen β-keto ester analogs was tested for the inhibition of bioluminescence (a QS-controlled phenotype) in the marine pathogen Vibrio harveyi. Initial screening demonstrated the need of a phenyl ring at the C-3 position for antagonistic activity. Further additions to the phenyl ring with 4-substituted halo groups or a 3- or 4-substituted methoxy group resulted in the most active compounds with IC50 values ranging from 23 µM to 53 µM. The compounds additionally inhibit green fluorescent protein production by E. coli JB525. Evidence is presented that aryl β-keto esters may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. Expansion of the β-keto ester panel will enable us to obtain more insight into the structure-activity relationships needed to allow for the development of novel anti-virulence agents.

  1. Bacterial Secretant from Pseudomonas aeruginosa Dampens Inflammasome Activation in a Quorum Sensing-Dependent Manner

    PubMed Central

    Yang, Jungmin; Lee, Kang-Mu; Park, Sangjun; Cho, Yoeseph; Lee, Eunju; Park, Jong-Hwan; Shin, Ok Sarah; Son, Junghyun; Yoon, Sang Sun; Yu, Je-Wook

    2017-01-01

    Inflammasome signaling can contribute to host innate immune defense against bacterial pathogens such as Pseudomonas aeruginosa. However, bacterial evasion of host inflammasome activation is still poorly elucidated. Quorum sensing (QS) is a bacterial communication mechanism that promotes coordinated adaptation by triggering expression of a wide range of genes. QS is thought to strongly contribute to the virulence of P. aeruginosa, but the molecular impact of bacterial QS on host inflammasome defense is completely unknown. Here, we present evidence that QS-related factors of the bacterial secretant (BS) from P. aeruginosa can dampen host inflammasome signaling in mouse bone marrow-derived macrophages. We found that BS from QS-defective ΔlasR/rhlR mutant, but not from wild-type (WT) P. aeruginosa, induces robust activation of the NLRC4 inflammasome. P. aeruginosa-released flagellin mediates this inflammasome activation by ΔlasR/rhlR secretant, but QS-regulated bacterial proteases in the WT BS impair extracellular flagellin to attenuate NLRC4 inflammasome activation. P. aeruginosa-secreted proteases also degrade inflammasome components in the extracellular space to inhibit the propagation of inflammasome-mediated responses. Furthermore, QS-regulated virulence factor pyocyanin and QS autoinducer 3-oxo-C12-homoserine lactone directly suppressed NLRC4- and even NLRP3-mediated inflammasome assembly and activation. Taken together, our data indicate that QS system of P. aeruginosa facilitates bacteria to evade host inflammasome-dependent sensing machinery.

  2. Integrating passive and active remote sensing methods to assess and map soil salinity

    NASA Astrophysics Data System (ADS)

    Goldshleger, Naftaly; Chudnovsky Chudnovsky, Alexandra

    2013-04-01

    Irrigated lands in Israel are subjected to salinization processes, mostly as a result of using low-quality irrigation water. The Jezre'el Valley in northern Israel is an example of this phenomenon and thus it was selected to carry out this study. This area is characterized by increasing soil salinity over the years, followed by an increase in soil SAR (Sodium Adsorption Ration), which leads to a significant deterioration of the soil structure and a reduced infiltration rate. The traditional methods of mapping, by soil sampling (sampling, laboratory checks, and mapping) are time-consuming and do not provide near real-time information. An alternative method is suggested herein using active and passive remote sensing methods: (1) an hyperspectral data from the ground ASD field spectrometer and from the air, by AISA air-born sensor (2) EFDM- Frequency Domain Electro-Magnetic, and (3) GPR- ground penetration radar. The constructed PLS model was applied on the hyperspectral images, producing an EC thematic map of the surface. In addition, a sub-surface salinity map was generated by applying the surface - sub-surface correlation on the surface EC thematic map. The generated maps were found to be in good agreement with maps based on chemical data. The results indicated that traditional methods are correlated with the remote sensing ones and that merging the three remote sensing methodologies may yield a better picture than each of them alone. In addition, we discuss the advantages and disadvantages of applied in this study methods. It can be concluded that it is possible to account for soil salinity based on active and passive remote sensing means.

  3. Synergistic Effect and Antiquorum Sensing Activity of Nymphaea tetragona (Water Lily) Extract

    PubMed Central

    Hossain, Md. Akil; Park, Ji-Yong; Kim, Jin-Yoon; Suh, Joo-Won; Park, Seung-Chun

    2014-01-01

    Salmonellosis is a common and widely distributed food borne disease where Salmonella typhimurium is one of the most important etiologic agents. The purpose of this study was to investigate the antimicrobial activity of Nymphaea tetragona alone and in combination with antibiotics against S. typhimurium. It also aimed to assess the plant for quorum sensing inhibition (QSI) activity and to identify the bioactive compounds. The antibacterial activities of the extract were assessed using broth microdilution method. Disk agar diffusion method was employed to determine the QSI and bioactive compounds were identified by GC-MS analysis. Ethyl acetate fraction of N. tetragona extract (EFNTE) demonstrated good antimicrobial activity (MIC 781 μg/mL) against 4 strains out of 5. FIC index ranged from 0.375 to 1.031 between EFNTE/tylosin and 0.515 to 1.250 between EFNTE/streptomycin against S. typhimurium. Among all extracts, EFNTE and butanol fraction more significantly inhibited pigment production of C. violaceum. Polyphenols were identified as major compound of EFNTE and butanol fraction. These results indicate that combination among N. tetragona extract and antibiotics could be useful to combat drug-resistance Salmonella infections and polyphenols are promising new components from N. tetragona that warrant further investigation as a candidate anti-Salmonella agent and quorum sensing inhibitor. PMID:24895589

  4. Functional marine metagenomic screening for anti-quorum sensing and anti-biofilm activity.

    PubMed

    Yaniv, Karin; Golberg, Karina; Kramarsky-Winter, Esti; Marks, Robert; Pushkarev, Alina; Béjà, Oded; Kushmaro, Ariel

    2017-01-01

    Quorum sensing (QS), a cell-to-cell communication process, entails the production of signaling molecules that enable synchronized gene expression in microbial communities to regulate myriad microbial functions, including biofilm formation. QS disruption may constitute an innovative approach to the design of novel antifouling and anti-biofilm agents. To identify novel quorum sensing inhibitors (QSI), 2,500 environmental bacterial artificial chromosomes (BAC) from uncultured marine planktonic bacteria were screened for QSI activity using soft agar overlaid with wild type Chromobacterium violaceum as an indicator. Of the BAC library clones, 7% showed high QSI activity (>40%) against the indicator bacterium, suggesting that QSI is common in the marine environment. The most active compound, eluted from BAC clone 14-A5, disrupted QS signaling pathways and reduced biofilm formation in both Pseudomonas aeruginosa and Acinetobacter baumannii. The mass spectra of the active BAC clone (14-A5) that had been visualized by thin layer chromatography was dominated by a m/z peak of 362.1.

  5. Synergistic effect and antiquorum sensing activity of Nymphaea tetragona (water lily) extract.

    PubMed

    Hossain, Md Akil; Park, Ji-Yong; Kim, Jin-Yoon; Suh, Joo-Won; Park, Seung-Chun

    2014-01-01

    Salmonellosis is a common and widely distributed food borne disease where Salmonella typhimurium is one of the most important etiologic agents. The purpose of this study was to investigate the antimicrobial activity of Nymphaea tetragona alone and in combination with antibiotics against S. typhimurium. It also aimed to assess the plant for quorum sensing inhibition (QSI) activity and to identify the bioactive compounds. The antibacterial activities of the extract were assessed using broth microdilution method. Disk agar diffusion method was employed to determine the QSI and bioactive compounds were identified by GC-MS analysis. Ethyl acetate fraction of N. tetragona extract (EFNTE) demonstrated good antimicrobial activity (MIC 781 μg/mL) against 4 strains out of 5. FIC index ranged from 0.375 to 1.031 between EFNTE/tylosin and 0.515 to 1.250 between EFNTE/streptomycin against S. typhimurium. Among all extracts, EFNTE and butanol fraction more significantly inhibited pigment production of C. violaceum. Polyphenols were identified as major compound of EFNTE and butanol fraction. These results indicate that combination among N. tetragona extract and antibiotics could be useful to combat drug-resistance Salmonella infections and polyphenols are promising new components from N. tetragona that warrant further investigation as a candidate anti-Salmonella agent and quorum sensing inhibitor.

  6. The presence and role of bacterial quorum sensing in activated sludge

    PubMed Central

    Chong, Grace; Kimyon, Onder; Rice, Scott A.; Kjelleberg, Staffan; Manefield, Mike

    2012-01-01

    Summary Activated sludge used for wastewater treatment globally is composed of a high‐density microbial community of great biotechnological significance. In this study the presence and purpose of quorum sensing via N‐acylated‐l‐homoserine lactones (AHLs) in activated sludge was explored. The presence of N‐heptanoyl‐l‐homoserine lactone in organic extracts of sludge was demonstrated along with activation of a LuxR‐based AHL monitor strain deployed in sludge, indicating AHL‐mediated gene expression is active in sludge flocculates but not in the bulk aqueous phase. Bacterial isolates from activated sludge were screened for AHL production and expression of phenotypes commonly but not exclusively regulated by AHL‐mediated gene transcription. N‐acylated‐l‐homoserine lactone and exoenzyme production were frequently observed among the isolates. N‐acylated‐l‐homoserine lactone addition to sludge upregulated chitinase activity and an AHL‐ and chitinase‐producing isolate closely related to Aeromonas hydrophila was shown to respond to AHL addition with upregulation of chitinase activity. N‐acylated‐l‐homoserine lactones produced by this strain were identified and genes ahyI/R and chiA, encoding AHL production and response and chitinase activity respectively, were sequenced. These experiments provide insight into the relationship between AHL‐mediated gene expression and exoenzyme activity in activated sludge and may ultimately create opportunities to improve sludge performance. PMID:22583685

  7. Research activity of the greenhouse gas measurements using optical remote sensing in Japan (Invited)

    NASA Astrophysics Data System (ADS)

    Asai, K.

    2009-12-01

    Japan might be one of the most active countries dedicating themselves to studying the greenhouse gas (GHG) measurements using optical remote sensing not only on the ground but also from space. There are two reasons; one of them ascends to the Kyoto Protocol, agreed in December 1997 in Kyoto, an ancient city of Japan until 19th centuries, was designed to address the international response to serious climate change due to greenhouse gases. The other reason is due to a revision of the Basic Environment Law of Japan in order to meet the Kyoto Protocol in 1998. The State makes efforts to ensure international collaboration so as to effectively promote the monitoring, observation and measurement of the environmental situation with regard to global warming. Main activities are listed in a Table1. They are divided into two categories, i.e. the Greenhouse gases Observing SATellite (GOSAT), launched on Jan.23, 2009 and active remote sensing using lidar technology. In case of GOSAT, an initial analysis of carbon dioxide and methane concentrations was obtained for clear-sky scenes over land. In the future, after further calibration and validation of the data, observation data and corresponding analyzed products will be made available. On the other hand, studies of the laser remote sensing for measuring GHG have been actively carrying out to achieve reliable data with a higher accuracy at wavelengths of 1.6micron meter (Tokyo Metropolitan University, JAXA, Mitsubishi Electric Co.) and 2 micron meter (National Institute of Information and Communications Technology). As well-known, one of the most interests regarding atmospheric CO2 measurements is that carbon dioxide molecule measured are due to anthropological emission from fossil fuel burning or due to natural one from forest fires etc. We proposed a newly advanced CO2/CO DIAL using a hybrid of pulsed Tm,Ho:YLF and pulsed OPO pumped by it for better understanding them. Now, our effort is directed to find out the most suitable

  8. Anti-Quorum Sensing Activity of Substances Isolated from Wild Berry Associated Bacteria

    PubMed Central

    Abudoleh, Suha M.; Mahasneh, Adel M.

    2017-01-01

    Background: Quorum Sensing (QS) is a mechanism used by bacteria to determine their physiological activities and coordinate gene expression based on cell to cell signaling. Many bacterial physiological functions are under the regulation of quorum sensing such as virulence, luminescence, motility, sporulation and biofilm formation. The aim of the present study was to isolate and characterize Quorum Sensing Inhibitory (QSI) substances from epiphytic bacteria residing on wild berries surfaces. Methods: Fifty nine bacterial isolates out of 600 screened bacteria were successfully isolated. These bacteria were obtained from berry surfaces of different plants in the wild forests of Ajloun-Jordan. Screening for QSI activity using Chromobacterium violaceum ATCC 12472 monitor strain, resulted in isolating 6 isolates exhibiting QSI activity only, 11 isolates with QSI and antibacterial activity, and 42 isolates with antibacterial activity only. Three potential isolates S 130, S 153, and S 664, were gram positive rods and spore formers, catalase positive and oxidase negative. These were chosen for further testing and characterization. Results: Different solvent extraction of the QSI substances based on polarity indicated that the activity of S 130 was in the butanol extract, S 153 activity in both chloroform and butanol; and for S 664, the activity was detected in the hexane extract. The chloroform extract of S 153 and hexane extract of S 664 were proteinaceous in nature while QSI substances of the butanol extract of S 130 and S 153 were non-proteinaceous. All the tested QSI substances showed a marked thermal stability when subjected at several time intervals to 70°C, with the highest stability observed for the butanol extract of S 153. Assessing the QSI substances using violacein quantification assay revealed varying degrees of activity depending upon the extracting solvent, type of the producer bacteria and the concentration of the substances. Conclusion: This study

  9. Application of remote sensing techniques to study the neotectonics in the northwestern Himalayan fold-and-thrust belt, Pakistan

    NASA Astrophysics Data System (ADS)

    Chen, Lize

    The northwestern Himalayan foreland fold-and-thrust belt in Pakistan is characterized by a gentle slope, extraordinary width, and abrupt lateral structural variations at the front of this belt. To understand the structures and the formation mechanism of the structural reentrants, remote sensing and seismic interpretation techniques are used to study the surface and subsurface geology. Geomorphic features are extracted from the Shuttle Radar Topography Mission (SRTM) DEM data. Structures are interpreted from Landsat ETM+ images and published maps. These data suggest that the varying resistance under the fold-and-thrust belt is the main cause of the distinct topographic and structural features. ASTER data are used to map the detailed lithology and structures in the Kalabagh Fault Zone, which is the largest lateral structure connecting the Salt Range and the Surghar Range at leading edge of the fold-and-thrust belt. Combining surface geology with seismic interpretations, cross sections are constructed to understand the fault geometry. Salt is found to have played an important role in the development of the Kalabagh Fault. InSAR observations are used to estimate the slip rate, and slip direction along the Kalalabagh Fault Zone. The deformation style interpreted from the interferogram is in concordance with the analogue modeling results. Integration of the geomorphologic analysis, structures, current deformation, and previous studies suggests that the foreland fold-and-thrust belt can be divided into three thrust wedges propagating on decollements with different rheological properties. The viscous salt decollement allows the Salt Range to propagate further southwards than the Surghar Range. The Kalabagh Fault accommodates different shortening between these wedges.

  10. A novel approach to model exposure of coastal-marine ecosystems to riverine flood plumes based on remote sensing techniques.

    PubMed

    Álvarez-Romero, Jorge G; Devlin, Michelle; Teixeira da Silva, Eduardo; Petus, Caroline; Ban, Natalie C; Pressey, Robert L; Kool, Johnathan; Roberts, Jason J; Cerdeira-Estrada, Sergio; Wenger, Amelia S; Brodie, Jon

    2013-04-15

    Increased loads of land-based pollutants are a major threat to coastal-marine ecosystems. Identifying the affected marine areas and the scale of influence on ecosystems is critical to assess the impacts of degraded water quality and to inform planning for catchment management and marine conservation. Studies using remotely-sensed data have contributed to our understanding of the occurrence and influence of river plumes, and to our ability to assess exposure of marine ecosystems to land-based pollutants. However, refinement of plume modeling techniques is required to improve risk assessments. We developed a novel, complementary, approach to model exposure of coastal-marine ecosystems to land-based pollutants. We used supervised classification of MODIS-Aqua true-color satellite imagery to map the extent of plumes and to qualitatively assess the dispersal of pollutants in plumes. We used the Great Barrier Reef (GBR), the world's largest coral reef system, to test our approach. We combined frequency of plume occurrence with spatially distributed loads (based on a cost-distance function) to create maps of exposure to suspended sediment and dissolved inorganic nitrogen. We then compared annual exposure maps (2007-2011) to assess inter-annual variability in the exposure of coral reefs and seagrass beds to these pollutants. We found this method useful to map plumes and qualitatively assess exposure to land-based pollutants. We observed inter-annual variation in exposure of ecosystems to pollutants in the GBR, stressing the need to incorporate a temporal component into plume exposure/risk models. Our study contributes to our understanding of plume spatial-temporal dynamics of the GBR and offers a method that can also be applied to monitor exposure of coastal-marine ecosystems to plumes and explore their ecological influences.

  11. Plankton Biomass Models Based on GIS and Remote Sensing Technique for Predicting Marine Megafauna Hotspots in the Solor Waters

    NASA Astrophysics Data System (ADS)

    Putra, MIH; Lewis, SA; Kurniasih, EM; Prabuning, D.; Faiqoh, E.

    2016-11-01

    Geographic information system and remote sensing techniques can be used to assist with distribution modelling; a useful tool that helps with strategic design and management plans for MPAs. This study built a pilot model of plankton biomass and distribution in the waters off Solor and Lembata, and is the first study to identify marine megafauna foraging areas in the region. Forty-three samples of zooplankton were collected every 4 km according to the range time and station of aqua MODIS. Generalized additive model (GAM) we used to modelling zooplankton biomass response from environmental properties.Thirty one samples were used to build a model of inverse distance weighting (IDW) (cell size 0.01°) and 12 samples were used as a control to verify the models accuracy. Furthermore, Getis-Ord Gi was used to identify the significance of the hotspot and cold-spot for foraging area. The GAM models was explain 88.1% response of zooplankton biomass and percent to full moon, phytopankton biomassbeing strong predictors. The sampling design was essential in order to build highly accurate models. Our models 96% accurate for phytoplankton and 88% accurate for zooplankton. The foraging behaviour was significantly related to plankton biomass hotspots, which were two times higher compared to plankton cold-spots. In addition, extremely steep slopes of the Lamakera strait support strong upwelling with highly productive waters that affect the presence of marine megafauna. This study detects that the Lamakera strait provides the planktonic requirements for marine megafauna foraging, helping to explain why this region supports such high diversity and abundance of marine megafauna.

  12. New Active Remote-sensing Capabilities: Laser Ablation Spectrometer and Lidar Atmospheric Species Profile Measurements

    NASA Technical Reports Server (NTRS)

    DeYoung, R. J.; Bergstralh, J. T.

    2005-01-01

    Introduction: With the anticipated development of high-capacity fission power and electric propulsion for deep-space missions, it will become possible to propose experiments that demand higher power than current technologies (e.g. radioisotope power sources) provide. Jupiter Icy Moons Orbiter (JIMO), the first mission in the Project Prometheus program, will explore the icy moons of Jupiter with a suite of high-capability experiments that take advantage of the high power levels (and indirectly, the high data rates) that fission power affords. This abstract describes two high-capability active-remote-sensing experiments that will be logical candidates for subsequent Prometheus-class missions.

  13. Short cavity active mode locking fiber laser for optical sensing and imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hwi Don; Han, Ga Hee; Jeong, Syung Won; Jeong, Myung Yung; Kim, Chang-Seok; Shin, Jun Geun; Lee, Byeong Ha; Eom, Tae Joong

    2014-05-01

    We demonstrate a highly linear wavenumber- swept active mode locking (AML) fiber laser for optical sensing and imaging without any wavenumber-space resampling process. In this all-electric AML wavenumber-swept mechanism, a conventional wavelength selection filter is eliminated and, instead, the suitable programmed electric modulation signal is directly applied to the gain medium. Various types of wavenumber (or wavelength) tunings can be implemented because of the filter-less cavity configuration. Therefore, we successfully demonstrate a linearly wavenumber-swept AML fiber laser with 26.5 mW of output power to obtain an in-vivo OCT image at the 100 kHz swept rate.

  14. Radiative transfer theory for active remote sensing of a layer of small ellipsoidal scatterers. [of vegetation

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kubacsi, M. C.; Kong, J. A.

    1981-01-01

    The radiative transfer theory is applied within the Rayleigh approximation to calculate the backscattering cross section of a layer of randomly positioned and oriented small ellipsoids. The orientation of the ellipsoids is characterized by a probability density function of the Eulerian angles of rotation. The radiative transfer equations are solved by an iterative approach to first order in albedo. In the half space limit the results are identical to those obtained via the approach of Foldy's and distorted Born approximation. Numerical results of the theory are illustrated using parameters encountered in active remote sensing of vegetation layers. A distinctive characteristic is the strong depolarization shown by vertically aligned leaves.

  15. Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source.

    PubMed

    Manninen, Albert; Kääriäinen, Teemu; Parviainen, Tomi; Buchter, Scott; Heiliö, Miika; Laurila, Toni

    2014-03-24

    A hyperspectral remote sensing instrument employing a novel near-infrared supercontinuum light source has been developed for active illumination and identification of targets. The supercontinuum is generated in a standard normal dispersion multi-mode fiber and has 16 W total optical output power covering 1000 nm to 2300 nm spectral range. A commercial 256-channel infrared spectrometer was used for broadband infrared detection. The feasibility of the presented hyperspectral measurement approach was investigated both indoors and in the field. Reflection spectra from several diffusive targets were successfully measured and a measurement range of 1.5 km was demonstrated.

  16. Anti-quorum sensing activity of essential oils from Colombian plants.

    PubMed

    Jaramillo-Colorado, Beatriz; Olivero-Verbel, Jesus; Stashenko, Elena E; Wagner-Döbler, Irene; Kunze, Brigitte

    2012-01-01

    Essential oils from Colombian plants were characterised by GC-MS, and assayed for anti-quorum sensing activity in bacteria sensor strains. Two major chemotypes were found for Lippia alba, the limonene-carvone and the citral (geranial-neral). For other species, the main components included α-pinene (Ocotea sp.), β-pinene (Swinglea glutinosa), cineol (Elettaria cardamomun), α-zingiberene (Zingiber officinale) and pulegone (Minthostachys mollis). Several essential oils presented promising inhibitory properties for the short chain AHL quorum sensing (QS) system, in Escherichia coli containing the biosensor plasmid pJBA132, in particular Lippia alba. Moderate activity as anti-QS using the same plasmid, were also found for selected constituents of essential oils studied here, such as citral, carvone and α-pinene, although solely at the highest tested concentration (250 µg mL(-1)). Only citral presented some activity for the long chain AHL QS system, in Pseudomonas putida containing the plasmid pRK-C12. In short, essential oils from Colombian flora have promising properties as QS modulators.

  17. A framework for nowcasting and forecasting of rainfall-triggered landslide activity using remotely sensed data

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Dalia; Stanley, Thomas

    2016-04-01

    Remote sensing data offers the unique perspective to provide situational awareness of hydrometeorological hazards over large areas in a way that is impossible to achieve with in situ data. Recent work has shown that rainfall-triggered landslides, while typically local hazards that occupy small spatial areas, can be approximated over regional or global scales in near real-time. This work presents a regional and global approach to approximating potential landslide activity using the landslide hazard assessment for situational awareness (LHASA) model. This system couples remote sensing data, including Global Precipitation Measurement rainfall data, Shuttle Radar Topography Mission and other surface variables to estimate where and when landslide activity may be likely. This system also evaluates the effectiveness of quantitative precipitation estimates from the Goddard Earth Observing System Model, Version 5 to provide a 24 forecast of potential landslide activity. Preliminary results of the LHASA model and implications for are presented for a regional version of this system in Central America as well as a prototype global approach.

  18. Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing.

    PubMed

    Rivest, Jessy B; Jain, Prashant K

    2013-01-07

    Cation exchange is an age-old technique for the chemical conversion of liquids or extended solids by place-exchanging the cations in an ionic material with a different set of cations. The technique is undergoing a major revival with the advent of high-quality nanocrystals: researchers are now able to overcome the limitations in bulk systems and fully exploit cation exchange for materials synthesis and discovery via rapid, low-temperature transformations in the solid state. In this tutorial review, we discuss cation exchange as a promising materials synthesis and discovery tool. Exchange on the nanoscale exhibits some unique attributes: rapid kinetics at room temperature (orders of magnitude faster than in the bulk) and the tuning of reactivity via control of nanocrystal size, shape, and surface faceting. These features make cation exchange a convenient tool for accessing nanocrystal compositions and morphologies for which conventional synthesis may not be established. A simple exchange reaction allows extension of nanochemistry to a larger part of the periodic table, beyond the typical gamut of II-VI, IV-VI, and III-V materials. Cation exchange transformations in nanocrystals can be topotactic and size- and shape-conserving, allowing nanocrystals synthesized by conventional methods to be used as templates for production of compositionally novel, multicomponent, or doped nanocrystals. Since phases and compositions resulting from an exchange reaction can be kinetically controlled, rather than governed by the phase diagram, nanocrystals of metastable and hitherto inaccessible compositions are attainable. Outside of materials synthesis, applications for cation exchange exist in water purification, chemical staining, and sensing. Since nanoscale cation exchange occurs rapidly at room temperature, it can be integrated with sensitive environments such as those in biological systems. Cation exchange is already allowing access to a variety of new materials and processes

  19. Using Remote Sensing and GIS Techniques to Detect Changes to the Prince Alfred Hamlet Conservation Area in the Western Cape, South Africa

    NASA Astrophysics Data System (ADS)

    Duncan, P.; Lewarne, M.

    2016-06-01

    Understanding and identifying the spatial-temporal changes in the natural environment is crucial for monitoring and evaluating conservation efforts, as well as understanding the impact of human activities on natural resources, informing responsible land management, and promoting better decision-making. Conservation areas are often under pressure from expanding farming and related industry, invasive alien vegetation, and an ever-increasing human settlement footprint. This study focuses on detecting changes to the Prince Alfred Hamlet commonage, near Ceres in the Cape Floral Kingdom. It was chosen for its high conservation value and significance as a critical water source area. The study area includes a fast-growing human settlement footprint in a highly productive farming landscape. There are conflicting development needs as well as risks to agricultural production, and both of these threaten the integrity of the ecosystems which supply underlying services to both demands on the land. Using a multi-disciplinary approach and high-resolution satellite imagery, land use and land cover changes can be detected and classified, and the results used to support the conservation of biodiversity and wildlife, and protect our natural resources. The aim of this research is to study the efficacy of using remote sensing and GIS techniques to detect changes to critical conservation areas where disturbances can be understood, and therefore better managed and mitigated before these areas are degraded beyond repair.

  20. Electrochemical Sensing, Photocatalytic and Biological Activities of ZnO Nanoparticles: Synthesis via Green Chemistry Route

    NASA Astrophysics Data System (ADS)

    Yadav, L. S. Reddy; Archana, B.; Lingaraju, K.; Kavitha, C.; Suresh, D.; Nagabhushana, H.; Nagaraju, G.

    2016-05-01

    In this paper, we have successfully synthesized ZnO nanoparticles (Nps) via solution combustion method using sugarcane juice as the novel fuel. The structure and morphology of the synthesized ZnO Nps have been analyzed using various analytical tools. The synthesized ZnO Nps exhibit excellent photocatalytic activity for the degradation of methylene blue dye, indicating that the ZnO Nps are potential photocatalytic semiconductor materials. The synthesized ZnO Nps also show good electrochemical sensing of dopamine. ZnO Nps exhibit significant bactericidal activity against Klebsiella aerogenes, Pseudomonas aeruginosa, Eschesichia coli and Staphylococcus aureus using agar well diffusion method. Furthermore, the ZnO Nps show good antioxidant activity by potentially scavenging 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The above studies clearly demonstrate versatile applications of ZnO synthesized by simple eco-friendly route.

  1. Discrimination of active and inactive sand from remote sensing - Kelso dunes, Mojave Desert, California

    NASA Technical Reports Server (NTRS)

    Paisley, Elizabeth C. I.; Lancaster, Nicholas; Gaddis, Lisa R.; Greeley, Ronald

    1991-01-01

    Landsat TM images, field data, and laboratoray reflectance spectra were examined for the Kelso dunes, Mojave Desert, California to assess the use of visible and near-infrared (VNIR) remote sensing data to discriminate aeolian sand populations on the basis of spectral brightness. Results show that areas of inactive sand have a larger percentage of dark, fine-grained materials compared to those composed of active sand, which contain less dark fines and a higher percentage of quartz sand-size grains. Both areas are spectrally distinct in the VNIR, suggesting that VNIR spectral data can be used to discriminate active and inactive sand populations in the Mojave Desert. Analysis of laboratory spectra was complicated by the presence of magnetite in the active sands, which decreases their laboratory reflectance values to those of inactive sands. For this application, comparison of TM and laboratory spectra suggests that less than 35 percent vegetation cover does not influence the TM spectra.

  2. Residual matrix from different separation techniques impacts exosome biological activity

    PubMed Central

    Paolini, Lucia; Zendrini, Andrea; Noto, Giuseppe Di; Busatto, Sara; Lottini, Elisabetta; Radeghieri, Annalisa; Dossi, Alessandra; Caneschi, Andrea; Ricotta, Doris; Bergese, Paolo

    2016-01-01

    Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical techniques - including Western Blot, colloidal nanoplasmonics, atomic force microscopy (AFM) and scanning helium ion microscopy (HIM). The preparations obtained by iodixanol and sucrose gradients were highly pure. To the contrary, those achieved with limited processing (serial centrifugation or one step precipitation kit) resulted contaminated by a residual matrix, embedding the exosomes. The contaminated preparations showed lower ability to induce NfkB nuclear translocation in endothelial cells with respect to the pure ones, probably because the matrix prevents the interaction and fusion of the exosomes with the cell membrane. These findings suggest that exosome preparation purity must be carefully assessed since it may interfere with exosome biological activity. Contaminants can be reliably probed only by an integrated characterization approach aimed at both the molecular and the colloidal length scales. PMID:27009329

  3. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing Determination of Various Atmospheric Trace Gases

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Heaps, W. S.; Wilson, E. L.

    2007-01-01

    New type of remote sensing instrument based upon the Fabry-Perot inte rferometric technique has been developed at NASA's Goddard Space Flight Center. Fabry-Perot interferometry (FPI) is a well known, powerful spectroscopic technique and one of its many applications is to be use d to measure greenhouse gases and also some harmful species in the at mosphere. With this technique, absorption of particular species is me asured and related to its concentration. A solid Fabry-Perot etalon is used as a frequency filter to restrict the measurement to particular absorption bands of the gas of interest. With adjusting the thicknes s of the etalon that separation (in frequency) of the transmitted fri nges can be made equal to the almost constant separation of the gas a bsorption lines. By adjusting the temperature of the etalon, which changes the index of refi-action of its material, the transmission fring es can be brought into nearly exact correspondence with absorption li nes of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosph ere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The instrument that we have dev eloped detects the absorption of various atmospheric trace gases in d irect or reflected sunlight. Our instrument employing Fabry-Perot interferometer makes use of two features to achieve high sensitivity. The first is high spectral resolution enabling one to match the width of an atmospheric absorption feature by the instrumental band pass. The second is high optical throughput enabled by using multiple spectral lines simultaneously. For any species that one wishes to measure, thi s first feature is available while the use of multiple spectral features can be employed only for species with suitable spectra and freedom from interfering species in the same wavelength region. We have deve loped an instrument for use as ground based

  4. Fiber Loop Ringdown — a Time-Domain Sensing Technique for Multi-Function Fiber Optic Sensor Platforms: Current Status and Design Perspectives

    PubMed Central

    Wang, Chuji

    2009-01-01

    Fiber loop ringdown (FLRD) utilizes an inexpensive telecommunications light source, a photodiode, and a section of single-mode fiber to form a uniform fiber optic sensor platform for sensing various quantities, such as pressure, temperature, strain, refractive index, chemical species, biological cells, and small volume of fluids. In FLRD, optical losses of a light pulse in a fiber loop induced by changes in a quantity are measured by the light decay time constants. FLRD measures time to detect a quantity; thus, FLRD is referred to as a time-domain sensing technique. FLRD sensors have near real-time response, multi-pass enhanced high-sensitivity, and relatively low cost (i.e., without using an optical spectral analyzer). During the last eight years since the introduction of the original form of fiber ringdown spectroscopy, there has been increasing interest in the FLRD technique in fiber optic sensor developments, and new application potential is being explored. This paper first discusses the challenging issues in development of multi-function, fiber optic sensors or sensor networks using current fiber optic sensor sensing schemes, and then gives a review on current fiber optic sensor development using FLRD technique. Finally, design perspectives on new generation, multi-function, fiber optic sensor platforms using FLRD technique are particularly presented. PMID:22408471

  5. Fiber loop ringdown - a time-domain sensing technique for multi-function fiber optic sensor platforms: current status and design perspectives.

    PubMed

    Wang, Chuji

    2009-01-01

    Fiber loop ringdown (FLRD) utilizes an inexpensive telecommunications light source, a photodiode, and a section of single-mode fiber to form a uniform fiber optic sensor platform for sensing various quantities, such as pressure, temperature, strain, refractive index, chemical species, biological cells, and small volume of fluids. In FLRD, optical losses of a light pulse in a fiber loop induced by changes in a quantity are measured by the light decay time constants. FLRD measures time to detect a quantity; thus, FLRD is referred to as a time-domain sensing technique. FLRD sensors have near real-time response, multi-pass enhanced high-sensitivity, and relatively low cost (i.e., without using an optical spectral analyzer). During the last eight years since the introduction of the original form of fiber ringdown spectroscopy, there has been increasing interest in the FLRD technique in fiber optic sensor developments, and new application potential is being explored. This paper first discusses the challenging issues in development of multi-function, fiber optic sensors or sensor networks using current fiber optic sensor sensing schemes, and then gives a review on current fiber optic sensor development using FLRD technique. Finally, design perspectives on new generation, multi-function, fiber optic sensor platforms using FLRD technique are particularly presented.

  6. Quorum Sensing Contributes to Activated IgM-Secreting B Cell Homeostasis

    PubMed Central

    Montaudouin, Caroline; Anson, Marie; Hao, Yi; Duncker, Susanne V.; Fernandez, Tahia; Gaudin, Emmanuelle; Ehrenstein, Michael; Kerr, William G.; Colle, Jean-Hervé; Bruhns, Pierre; Daëron, Marc; Freitas, António A.

    2013-01-01

    Maintenance of plasma IgM levels is critical for immune system function and homeostasis in humans and mice. However, the mechanisms that control homeostasis of the activated IgM-secreting B cells are unknown. After adoptive transfer into immune-deficient hosts, B lymphocytes expand poorly, but fully reconstitute the pool of natural IgM-secreting cells and circulating IgM levels. By using sequential cell transfers and B cell populations from several mutant mice, we were able to identify novel mechanisms regulating the size of the IgM-secreting B cell pool. Contrary to previous mechanisms described regulating homeostasis, which involve competition for the same niche by cells having overlapping survival requirements, homeostasis of the innate IgM-secreting B cell pool is also achieved when B cell populations are able to monitor the number of activated B cells by detecting their secreted products. Notably, B cell populations are able to assess the density of activated B cells by sensing their secreted IgG. This process involves the FcγRIIB, a low-affinity IgG receptor that is expressed on B cells and acts as a negative regulator of B cell activation, and its intracellular effector the inositol phosphatase SHIP. As a result of the engagement of this inhibitory pathway, the number of activated IgM-secreting B cells is kept under control. We hypothesize that malfunction of this quorum-sensing mechanism may lead to uncontrolled B cell activation and autoimmunity. PMID:23209322

  7. Remote sensing of Italian volcanos

    NASA Technical Reports Server (NTRS)

    Bianchi, R.; Casacchia, R.; Coradini, A.; Duncan, A. M.; Guest, J. E.; Kahle, A.; Lanciano, P.; Pieri, D. C.; Poscolieri, M.

    1990-01-01

    The results of a July 1986 remote sensing campaign of Italian volcanoes are reviewed. The equipment and techniques used to acquire the data are described and the results obtained for Campi Flegrei and Mount Etna are reviewed and evaluated for their usefulness for the study of active and recently active volcanoes.

  8. Seismic Spatial Autocorrelation as a Technique to Track Changes in the Permafrost Active Layer

    NASA Astrophysics Data System (ADS)

    Abbott, R. E.

    2013-12-01

    We present preliminary results from an effort to continuously track freezing and thawing of the permafrost active layer using a small-aperture seismic array. The 7-element array of three-component posthole seismometers is installed on permafrost at Poker Flat Research Range, near Fairbanks, Alaska. The array is configured in two three-station circles with 75 and 25 meter radii that share a common center station. This configuration is designed to resolve omnidirectional, high-frequency seismic microtremor (i.e. ambient noise). Microtremor is continuously monitored and the data are processed using the spatial autocorrelation (SPAC) method. The resulting SPAC coefficients are then inverted for shear-wave velocity structure versus depth. Thawed active-layer soils have a much slower seismic velocity than frozen soils, allowing us to track the depth and intensity of thawing. Persistent monitoring on a permanent array would allow for a way to investigate year-to-year changes without costly site visits. Results from the seismic array will compared to, and correlated with, other measurement techniques, such as physical probing and remote sensing methods. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba

    PubMed Central

    Olivero-Verbel, Jesus; Barreto-Maya, Ana; Bertel-Sevilla, Angela; Stashenko, Elena E.

    2014-01-01

    Many Gram-negative pathogens have the ability to produce N-acylhomoserine lactones (AHLs) as signal molecules for quorum sensing (QS). This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Strategies to inhibit QS are promising for the control of infectious diseases or antibiotic resistant bacterial pathogens. The aim of the present study was to evaluate the anti-quorum sensing (anti-QS) and antibacterial potential of five essential oils isolated from Lippia alba on the Tn-5 mutant of Chromobacterium violaceum CV026, and on the growth of the gram-positive bacteria S. aureus ATCC 25923. The anti-QS activity was detected through the inhibition of the QS-controlled violacein pigment production by the sensor bacteria. Results showed that two essential oils from L. alba, one containing the greatest geranial:neral and the other the highest limonene:carvone concentrations, were the most effective QS inhibitors. Both oils also had small effects on cell growth. Moreover, the geranial/neral chemotype oil also produced the maximum zone of growth inhibition against S. aureus ATCC 25923. These data suggest essential oils from L. alba have promising properties as QS modulators, and present antibacterial activity on S. aureus. PMID:25477905

  10. Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba.

    PubMed

    Olivero-Verbel, Jesus; Barreto-Maya, Ana; Bertel-Sevilla, Angela; Stashenko, Elena E

    2014-01-01

    Many Gram-negative pathogens have the ability to produce N-acylhomoserine lactones (AHLs) as signal molecules for quorum sensing (QS). This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Strategies to inhibit QS are promising for the control of infectious diseases or antibiotic resistant bacterial pathogens. The aim of the present study was to evaluate the anti-quorum sensing (anti-QS) and antibacterial potential of five essential oils isolated from Lippia alba on the Tn-5 mutant of Chromobacterium violaceum CV026, and on the growth of the gram-positive bacteria S. aureus ATCC 25923. The anti-QS activity was detected through the inhibition of the QS-controlled violacein pigment production by the sensor bacteria. Results showed that two essential oils from L. alba, one containing the greatest geranial:neral and the other the highest limonene:carvone concentrations, were the most effective QS inhibitors. Both oils also had small effects on cell growth. Moreover, the geranial/neral chemotype oil also produced the maximum zone of growth inhibition against S. aureus ATCC 25923. These data suggest essential oils from L. alba have promising properties as QS modulators, and present antibacterial activity on S. aureus.

  11. ESA activities in the use of microwaves for the remote sensing of the Earth

    NASA Technical Reports Server (NTRS)

    Maccoll, D.

    1984-01-01

    The program of activities under way in the European Space Agency (ESA) directed towards Remote Sensing of the oceans and troposphere is discussed. The initial project is the launch of a satellite named ERS-1 with a primary payload of microwave values in theee C- and Ku-bands. This payload is discussed in depth. The secondary payload includes precision location experiments and an instrument to measure sea surface temperature, which are described. The important topic of calibration is extensively discussed, and a review of activities directed towards improvements to the instruments for future satellites is presented. Some discussion of the impact of the instrument payload on the spacecraft design follows and the commitment of ESA to the provision of a service of value to the ultimate user is emphasized.

  12. Innate Immune Activation Through Nalp3 Inflammasome Sensing of Asbestos and Silica

    PubMed Central

    Dostert, Catherine; Pétrilli, Virginie; Van Bruggen, Robin; Steele, Chad; Mossman, Brooke T; Tschopp, Jürg

    2008-01-01

    The inhalation of airborne pollutants, such as asbestos or silica, is linked to inflammation of the lung, fibrosis, and lung cancer. How the presence of pathogenic dust is recognized and how chronic inflammatory diseases are triggered are poorly understood. Here, we show that asbestos and silica are sensed by the Nalp3 inflammasome, whose subsequent activation leads to interleukin 1β secretion. Inflammasome activation is triggered by reactive oxygen species, which are generated by a NADPH oxidase upon particle phagocytosis (NADPH is the reduced form of nicotinamide adenine dinucleotide phosphate). In a model of asbestos inhalation, Nalp3−/− mice showed diminished recruitment of inflammatory cells to the lungs, paralleled by lower cytokine production. Our findings implicate the Nalp3 inflammasome in particulate matter–related pulmonary diseases and support its role as a major proinflammatory “danger” receptor. PMID:18403674

  13. Active Thermal Extraction and Temperature Sensing of Near-field Thermal Radiation

    PubMed Central

    Ding, D.; Kim, T.; Minnich, A. J.

    2016-01-01

    Recently, we proposed an active thermal extraction (ATX) scheme that enables thermally populated surface phonon polaritons to escape into the far-field. The concept is based on a fluorescence upconversion process that also occurs in laser cooling of solids (LCS). Here, we present a generalized analysis of our scheme using the theoretical framework for LCS. We show that both LCS and ATX can be described with the same mathematical formalism by replacing the electron-phonon coupling parameter in LCS with the electron-photon coupling parameter in ATX. Using this framework, we compare the ideal efficiency and power extracted for the two schemes and examine the parasitic loss mechanisms. This work advances the application of ATX to manipulate near-field thermal radiation for applications such as temperature sensing and active radiative cooling. PMID:27595609

  14. Effect of Traditional Chinese Herbal Medicine with Antiquorum Sensing Activity on Pseudomonas aeruginosa

    PubMed Central

    Zhou, Shuxin; Jiang, Yan; Zhu, Wei; Zhuang, Xiyi; Fu, Jiangyan

    2013-01-01

    Traditional Chinese herbal medicines (TCHMs) were tested for their ability of antiquorum sensing. Water extracts of Rhubarb, Fructus gardeniae, and Andrographis paniculata show antiquorumsensing activity when using Chromobacterium violaceum CV12472 as reporter; the sub-MIC concentrations of these TCHMs were tested against AHL-dependent phenotypic expressions of PAO1. Results showed significant reduction in pyocyanin pigment, protease, elastase production, and biofilm formation in PAO1 without inhibiting the bacterial growth, revealing that the QSI by the extracts is not related to static or killing effects on the bacteria. The results indicate a potential modulation of bacterial cell-cell communication, P. aeruginosa biofilm, and virulence factors by traditional Chinese herbal medicine. This study introduces not only a new mode of action for traditional Chinese herbal medicines, but also a potential new therapeutic direction for the treatment of bacterial infections, which have QSI activity and might be important in reducing virulence and pathogenicity of pathogenic bacteria. PMID:24319480

  15. Antioxidant and anti-quorum sensing activities of green pod of Acacia nilotica L.

    PubMed

    Singh, Brahma N; Singh, B R; Singh, R L; Prakash, D; Sarma, B K; Singh, H B

    2009-04-01

    The antioxidant and anti-quorum sensing activities of eight extracts were studied in green pods of Acacia nilotica. The specific phenolic compositions and their quantifications were performed by HPLC and MS/MS, which showed that the HEF (pH 4) was higher in gallic acid, ellagic acid, epicatechin, rutin, and GTs. In order to find antioxidant potential of various extracts, their activities were studied for TPC, AOA, FRSA, RP, inhibition of LPO, FIC activity, HO* and O(2)(-) scavenging activities. Among them HEF (pH 4) has shown potent antioxidant activity. HEF (pH 4) was also found effective in protecting plasmid DNA and HAS protein oxidation induced by HO*. Pre-treatment of HEF (pH 4) at 75 and 150 mg/kg body weight for 6 days caused a significant increase in the levels of CAT and SOD and decrease in the level of MDA content in liver, lungs, kidneys and blood when compared to CCl(4)-intoxicated rats. Eventually, the extracts were also screened for anti-QS activity. Of these extracts two showed QS inhibition: HEF (pH 4) and HCE. The results obtained strongly indicate that green pod of A. nilotica are important source of natural antioxidants.

  16. Dynamic Sensing Performance of a Point-Wise Fiber Bragg Grating Displacement Measurement System Integrated in an Active Structural Control System

    PubMed Central

    Chuang, Kuo-Chih; Liao, Heng-Tseng; Ma, Chien-Ching

    2011-01-01

    In this work, a fiber Bragg grating (FBG) sensing system which can measure the transient response of out-of-plane point-wise displacement responses is set up on a smart cantilever beam and the feasibility of its use as a feedback sensor in an active structural control system is studied experimentally. An FBG filter is employed in the proposed fiber sensing system to dynamically demodulate the responses obtained by the FBG displacement sensor with high sensitivity. For comparison, a laser Doppler vibrometer (LDV) is utilized simultaneously to verify displacement detection ability of the FBG sensing system. An optical full-field measurement technique called amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to provide full-field vibration mode shapes and resonant frequencies. To verify the dynamic demodulation performance of the FBG filter, a traditional FBG strain sensor calibrated with a strain gauge is first employed to measure the dynamic strain of impact-induced vibrations. Then, system identification of the smart cantilever beam is performed by FBG strain and displacement sensors. Finally, by employing a velocity feedback control algorithm, the feasibility of integrating the proposed FBG displacement sensing system in a collocated feedback system is investigated and excellent dynamic feedback performance is demonstrated. In conclusion, our experiments show that the FBG sensor is capable of performing dynamic displacement feedback and/or strain measurements with high sensitivity and resolution. PMID:22247683

  17. Differential Immune Modulatory Activity of Pseudomonas aeruginosa Quorum-Sensing Signal Molecules

    PubMed Central

    Hooi, Doreen S. W.; Bycroft, Barrie W.; Chhabra, Siri Ram; Williams, Paul; Pritchard, David I.

    2004-01-01

    Pseudomonas aeruginosa releases a spectrum of well-regulated virulence factors, controlled by intercellular communication (quorum sensing) and mediated through the production of small diffusible quorum-sensing signal molecules (QSSM). We hypothesize that QSSM may in fact serve a dual purpose, also allowing bacterial colonization via their intrinsic immune-modulatory capacity. One class of signal molecule, the N-acylhomoserine lactones, has pleiotropic effects on eukaryotic cells, particularly those involved in host immunity. In the present study, we have determined the comparative effects of two chemically distinct and endobronchially detectable QSSM, N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and 2-heptyl-3-hydroxy-4 (1H)-quinolone or the Pseudomonas quinolone signal (PQS), on human leukocytes exposed to a series of stimuli designed to detect differential immunological activity in vitro. 3-Oxo-C12-HSL and PQS displayed differential effects on the release of interleukin-2 (IL-2) when human T cells were activated via the T-cell receptor and CD28 (a costimulatory molecule). 3-Oxo-C12-HSL inhibited cell proliferation and IL-2 release; PQS inhibited cell proliferation without affecting IL-2 release. Both molecules inhibited cell proliferation and the release of IL-2 following mitogen stimulation. Furthermore, in the presence of Escherichia coli lipopolysaccharide, 3-oxo-C12-HSL inhibited tumor necrosis factor alpha release from human monocytes, as reported previously (K. Tateda et al., Infect. Immun. 64:37-43, 1996), whereas PQS did not inhibit in this assay. These data highlight the presence of two differentially active immune modulatory QSSM from P. aeruginosa, which are detectable endobronchially and may be active at the host/pathogen interface during infection with P. aeruginosa, should the bronchial airway lymphoid tissues prove to be accessible to QSSM. PMID:15501777

  18. Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules.

    PubMed

    Hooi, Doreen S W; Bycroft, Barrie W; Chhabra, Siri Ram; Williams, Paul; Pritchard, David I

    2004-11-01

    Pseudomonas aeruginosa releases a spectrum of well-regulated virulence factors, controlled by intercellular communication (quorum sensing) and mediated through the production of small diffusible quorum-sensing signal molecules (QSSM). We hypothesize that QSSM may in fact serve a dual purpose, also allowing bacterial colonization via their intrinsic immune-modulatory capacity. One class of signal molecule, the N-acylhomoserine lactones, has pleiotropic effects on eukaryotic cells, particularly those involved in host immunity. In the present study, we have determined the comparative effects of two chemically distinct and endobronchially detectable QSSM, N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and 2-heptyl-3-hydroxy-4 (1H)-quinolone or the Pseudomonas quinolone signal (PQS), on human leukocytes exposed to a series of stimuli designed to detect differential immunological activity in vitro. 3-Oxo-C12-HSL and PQS displayed differential effects on the release of interleukin-2 (IL-2) when human T cells were activated via the T-cell receptor and CD28 (a costimulatory molecule). 3-Oxo-C12-HSL inhibited cell proliferation and IL-2 release; PQS inhibited cell proliferation without affecting IL-2 release. Both molecules inhibited cell proliferation and the release of IL-2 following mitogen stimulation. Furthermore, in the presence of Escherichia coli lipopolysaccharide, 3-oxo-C12-HSL inhibited tumor necrosis factor alpha release from human monocytes, as reported previously (K. Tateda et al., Infect. Immun. 64:37-43, 1996), whereas PQS did not inhibit in this assay. These data highlight the presence of two differentially active immune modulatory QSSM from P. aeruginosa, which are detectable endobronchially and may be active at the host/pathogen interface during infection with P. aeruginosa, should the bronchial airway lymphoid tissues prove to be accessible to QSSM.

  19. Wave Correlation Effects in Active Microwave Remote Sensing of the Environment.

    NASA Astrophysics Data System (ADS)

    Khadr, Nagi Mahmoud

    This study examines the wave correlation effects that arise in active microwave remote sensing of the environment. These correlation effects, or coherent interference effects, are not accounted for by the regular phenomenological transport and radar equations, in which intensities, as a rule, are added incoherently. In particular, two types of correlation effects are examined: those associated with the medium and those associated with the source. The study method is the analytical wave approach to propagation and scattering from random media. This entails using Maxwell's equations to arrive at expressions for the first and second moments of the field. Unlike previous studies, however, in which plane wave incidence is assumed, here the radar is directly incorporated into the analytical wave formulation, and the antenna fields replaced via their plane wave representations. In this way, analysis of both the medium and source correlation effects on a per plane wave basis becomes a straightforward matter. The medium correlation effects are responsible for backscatter enhancement. Although the enhancement effect has been studied before on numerous occasions, careful characterization of the enhancement for microwave scattering from environmental scenes, such as vegetation canopies, has been lacking. The study at hand therefore fills this void and, in addition, quantifies the influence of this enhancement on phase difference statistics, a new and potentially important environmental remote sensing tool. The source correlation effects arise as a result of both the nature of the source and the geometry of the particular problem. By including these effects, a more general expression than the radar equation is obtained analytically. Quantitative examples show that, under certain circumstances, the results of this general expression deviate substantially from the results provided by the radar equation. This finding verifies the importance of considering source correlation

  20. Sensing interrogation technique for fiber-optic interferometer type of sensors based on a single-passband RF filter.

    PubMed

    Chen, Hao; Zhang, Shiwei; Fu, Hongyan; Zhou, Bin; Chen, Nan

    2016-02-08

    In this paper, a sensing interrogation system for fiber-optic interferometer type of sensors by using a single-passband radio-frequency (RF) filter has been proposed and experimentally demonstrated. The fiber-optic interferometer based sensors can give continuous optical sampling, and along with dispersive medium a single-passband RF frequency response can be achieved. The sensing parameter variation on the fiber-optic interferometer type of sensors will affect their free spectrum range, and thus the peak frequency of the RF filter. By tracking the central frequency of the passband the sensing parameter can be demodulated. As a demonstration, in our experiment a fiber Mach-Zehnder interferometer (FMZI) based temperature sensor has been interrogated. By tracking the peak frequency of the passband the temperature variation can be monitored. In our experiment, the sensing responsivity of 10.5 MHz/°C, 20.0 MHz/°C and 41.2 MHz/°C, when the lengths of sensing fiber are 1 m, 2 m and 4 m have been achieved.