NASA Astrophysics Data System (ADS)
Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang
2017-08-01
According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.
Technology study of quantum remote sensing imaging
NASA Astrophysics Data System (ADS)
Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang
2016-02-01
According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.
Remote sensing education in NASA's technology transfer program
NASA Technical Reports Server (NTRS)
Weinstein, R. H.
1981-01-01
Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.
Ciuti, Gastone; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo
2015-03-17
Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users' health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users' physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson's disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy.
Applications of Remote Sensing to Emergency Management.
1980-02-15
Contents: Foundations of Remote Sensing : Data Acquisition and Interpretation; Availability of Remote Sensing Technology for Disaster Response...Imaging Systems, Current and Near Future Satellite and Aircraft Remote Sensing Systems; Utilization of Remote Sensing in Disaster Response: Categories of...Disasters, Phases of Monitoring Activities; Recommendations for Utilization of Remote Sensing Technology in Disaster Response; Selected Reading List.
NASA Astrophysics Data System (ADS)
Obland, Michael D.; Campbell, Joel; Kooi, Susan; Fan, Tai-Fang; Carrion, William; Hicks, Jonathan; Lin, Bing; Nehrir, Amin R.; Browell, Edward V.; Meadows, Byron; Davis, Kenneth J.
2018-04-01
This work describes advances in critical lidar technologies and techniques developed as part of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons CarbonHawk Experiment Simulator system for measuring atmospheric column carbon dioxide (CO2) mixing ratios. This work provides an overview of these technologies and results from recent test flights during the NASA Atmospheric Carbon and Transport - America (ACT-America) Earth Venture Suborbital summer 2016 flight campaign.
Ciuti, Gastone; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo
2015-01-01
Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users’ health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users’ physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson’s disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy. PMID:25808763
Sensors research and technology
NASA Technical Reports Server (NTRS)
Cutts, James A.
1988-01-01
Information on sensors research and technology is given in viewgraph form. Information is given on sensing techniques for space science, passive remote sensing techniques and applications, submillimeter coherent sensing, submillimeter mixers and local oscillator sources, non-coherent sensors, active remote sensing, solid state laser development, a low vibration cooler, separation of liquid helium and vapor phase in zero gravity, and future plans.
Technology transfer of remote sensing technology
NASA Technical Reports Server (NTRS)
Smith, A. D.
1980-01-01
The basic philosophy and some current activities of MSFC Technology Transfer with regard to remote sensing technology are briefly reviewed. Among the problems that may be alleviated through such technology transfer are the scarcity of energy and mineral resources, the alteration of the environment by man, unpredictable natural disasters, and the effect of unanticipated climatic change on agricultural productivity.
Investigation of the application of remote sensing technology to environmental monitoring
NASA Technical Reports Server (NTRS)
Rader, M. L. (Principal Investigator)
1980-01-01
Activities and results are reported of a project to investigate the application of remote sensing technology developed for the LACIE, AgRISTARS, Forestry and other NASA remote sensing projects for the environmental monitoring of strip mining, industrial pollution, and acid rain. Following a remote sensing workshop for EPA personnel, the EOD clustering algorithm CLASSY was selected for evaluation by EPA as a possible candidate technology. LANDSAT data acquired for a North Dakota test sight was clustered in order to compare CLASSY with other algorithms.
NASA Laser Remote Sensing Technology Needs for Earth Science in the Next Decade and Beyond
NASA Technical Reports Server (NTRS)
Trait, David M.; Neff, Jon M.; Valinia, Azita
2007-01-01
In late 2005 the NASA Earth Science Technology Office convened a working group to review decadal-term technology needs for Earth science active optical remote sensing objectives. The outcome from this effort is intended to guide future NASA investments in laser remote sensing technologies. This paper summarizes the working group findings and places them in context with the conclusions of the National Research Council assessment of Earth science needs, completed in 2007.
Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems
NASA Technical Reports Server (NTRS)
Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John
2011-01-01
This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.
NASA Technical Reports Server (NTRS)
Murphy, J. D.; Dideriksen, R. I.
1975-01-01
The application of remote sensing technology by the U.S. Department of Agriculture (USDA) is examined. The activities of the USDA Remote-Sensing User Requirement Task Force which include cataloging USDA requirements for earth resources data, determining those requirements that would return maximum benefits by using remote sensing technology and developing a plan for acquiring, processing, analyzing, and distributing data to satisfy those requirements are described. Emphasis is placed on the large area crop inventory experiment and its relationship to the task force.
Novel sensing technology in fall risk assessment in older adults: a systematic review.
Sun, Ruopeng; Sosnoff, Jacob J
2018-01-16
Falls are a major health problem for older adults with significant physical and psychological consequences. A first step of successful fall prevention is to identify those at risk of falling. Recent advancement in sensing technology offers the possibility of objective, low-cost and easy-to-implement fall risk assessment. The objective of this systematic review is to assess the current state of sensing technology on providing objective fall risk assessment in older adults. A systematic review was conducted in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement (PRISMA). Twenty-two studies out of 855 articles were systematically identified and included in this review. Pertinent methodological features (sensing technique, assessment activities, outcome variables, and fall discrimination/prediction models) were extracted from each article. Four major sensing technologies (inertial sensors, video/depth camera, pressure sensing platform and laser sensing) were reported to provide accurate fall risk diagnostic in older adults. Steady state walking, static/dynamic balance, and functional mobility were used as the assessment activity. A diverse range of diagnostic accuracy across studies (47.9% - 100%) were reported, due to variation in measured kinematic/kinetic parameters and modelling techniques. A wide range of sensor technologies have been utilized in fall risk assessment in older adults. Overall, these devices have the potential to provide an accurate, inexpensive, and easy-to-implement fall risk assessment. However, the variation in measured parameters, assessment tools, sensor sites, movement tasks, and modelling techniques, precludes a firm conclusion on their ability to predict future falls. Future work is needed to determine a clinical meaningful and easy to interpret fall risk diagnosis utilizing sensing technology. Additionally, the gap between functional evaluation and user experience to technology should be addressed.
DOT National Transportation Integrated Search
2010-08-31
This report presents the results of research activities conducted under Contract No. 519691-PIT 008 on Sensing Technology for : Damage Assessment of Sign Supports and Cantilever Poles between the University of Pittsburgh and the Pennsylvania De...
NASA Technical Reports Server (NTRS)
Poulton, C. E.; Faulkner, D. P.
1973-01-01
Activities, pilot projects, and research that will effectively close the gap between state-of-the-art remote sensing technology and the potential users and beneficiaries of this technological and scientific progress are discussed in light of the first year of activity. A broad spectrum of resource and man-environment problems are described in terms of the central thrust of the first-year program to support land use planning decisions with information derived from the interpretation of NASA highlight and satellite imagery.
NASA Technical Reports Server (NTRS)
Bowden, L. W.
1971-01-01
Land pollution is described in numerous ways by various societies. Pollutants of land are material by-products of human activity and range from environmentally ineffective to positively toxic. The pollution of land by man is centuries old and correlates directly with economy, technology and population. In order to remotely sense land pollution, standards or thresholds must be established. Examples of the potential for sensing land pollution and quality are presented. The technological capabilities for remotely sensed land quality is far advanced over the judgment on how to use the sensed data. Until authoritative and directive decisions on land pollution policy are made, sensing of pollutants will be a random, local and academic affair.
Remote sensing applications program
NASA Technical Reports Server (NTRS)
1984-01-01
The activities of the Mississippi Remote Sensing Center are described in addition to technology transfer and information dissemination, remote sensing topics such as timber identification, water quality, flood prevention, land use, erosion control, animal habitats, and environmental impact studies are also discussed.
Land remote sensing in the 1980's
NASA Technical Reports Server (NTRS)
Thome, P. G.
1982-01-01
A discussion is presented concerning U.S. governmental funding policy for the Land Remote Sensing programs, in which the Landsat spacecraft and the research and development activities associated with them are essential elements. Even if present program management practices were to be changed in the next 1-2 years, the investment of significant amounts of private capital in land remote sensing may be 3-5 years away, due to the immaturity of the prospective markets for the services rendered and the present state of technological development. It is judged that even if NASA is successful in bringing significant private investment into remote sensing activities by the mid-1980s, government must continue to support basic research and expensive technology development in long term and high risk, but potentially high payoff, areas which the still-developing remote sensing industry cannot afford.
Remote sensing in Michigan for land resource management
NASA Technical Reports Server (NTRS)
Lowe, D. S.; Istvan, L. B.; Roller, N. E.; Sattinger, I. J.; Sellman, A. N.; Wagner, T. W.
1974-01-01
The application of NASA earth resource survey technology to resource management and environmental protection in Michigan was investigated. Remote sensing techniques to aid Michigan government agencies were applied in the following activities: (1) land use inventory and management, (2) great lakes shorelands protection and management, (3) wetlands protection and management, and (4) soil survey. In addition, information was disseminated on remote sensing technology, and advice and assistance was provided to a number of users.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Committees prior to any release outside the Department. (6) Related to remote sensing. (i) Provide technical... satellite remote sensing activities to assure full consideration and evaluation of advanced technology. (ii) Coordinate administrative, management, and budget information relating to the Department's remote sensing...
CRESTA : consortium on remote sensing of freight flows in congested border crossings and work zones.
DOT National Transportation Integrated Search
2011-03-01
"The objectives of this project were to develop and demonstrate the use of remote sensing and : geospatial information technologies to provide useful information for applications related to : the times trucks incur in various activities (activity...
NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing
NASA Technical Reports Server (NTRS)
Chirayath, Ved
2018-01-01
We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and aquatic organics.
Development of the Synthetic Aperture Radiometer ESTAR and the Next Generation
NASA Technical Reports Server (NTRS)
LeVine, David M.; Haken, Michael; Swift, Calvin T.
2004-01-01
ESTAR is a research instrument built to develop the technology of aperture synthesis for passive remote sensing of Earth from space. Aperture synthesis is an interferometric technology that addresses the problem of putting large antenna apertures in space to achieve the spatial resolution needed for remote sensing at long wavelengths ESTAR was a first step (synthesis only across track and only at horizontal polarization). The development has progressed to a new generation instrument that is dual polarized and does aperture synthesis in two dimensions. Among the plans for the future is technology to combine active and passive remote sensing.
Fiber-Optic Sensing for In-Space Inspection
NASA Technical Reports Server (NTRS)
Pena, Francisco; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.; Hudson, Larry D.
2014-01-01
This presentation provides examples of fiber optic sensing technology development activities performed at NASA Armstrong. Examples of current and previous work that support in-space inspection techniques and methodologies are highlighted.
High-speed optical 3D sensing and its applications
NASA Astrophysics Data System (ADS)
Watanabe, Yoshihiro
2016-12-01
This paper reviews high-speed optical 3D sensing technologies for obtaining the 3D shape of a target using a camera. The focusing speed is from 100 to 1000 fps, exceeding normal camera frame rates, which are typically 30 fps. In particular, contactless, active, and real-time systems are introduced. Also, three example applications of this type of sensing technology are introduced, including surface reconstruction from time-sequential depth images, high-speed 3D user interaction, and high-speed digital archiving.
Arnedillo-Sánchez, Inmaculada; Boyle, Bryan; Bossavit, Benoît
2017-01-01
MotorSense is a motion detection and tracking technology that can be implemented across a range of environments to assist in detecting delays in gross-motor skills development. The system utilises the motion tracking functionality of Microsoft's Kinect™. It features games that require children to perform graded gross-motor tasks matched with their chronological and developmental ages. This paper describes the rationale for MotorSense, provides an overview of the functionality of the system and illustrates sample activities.
Western Regional Remote Sensing Conference Proceedings, 1981
NASA Technical Reports Server (NTRS)
1981-01-01
Diverse applications of LANDSAT data, problem solutions, and operational goals are described by remote sensing users from 14 western states. The proposed FY82 federal budget reductions for technology transfer activities and the planned transition of the operational remote sensing system to NOAA's supervision are also considered.
Indicators of international remote sensing activities
NASA Technical Reports Server (NTRS)
Spann, G. W.
1977-01-01
The extent of worldwide remote sensing activities, including the use of satellite and high/medium altitude aircraft data was studied. Data were obtained from numerous individuals and organizations with international remote sensing responsibilities. Indicators were selected to evaluate the nature and scope of remote sensing activities in each country. These indicators ranged from attendance at remote sensing workshops and training courses to the establishment of earth resources satellite ground stations and plans for the launch of earth resources satellites. Results indicate that this technology constitutes a rapidly increasing component of environmental, land use, and natural resources investigations in many countries, and most of these countries rely on the LANDSAT satellites for a major portion of their data.
Increasing Sense of Community in Higher Education Nutrition Courses Using Technology.
Haar, Mindy
2018-01-01
Sense of community is integral across education formats and can affect achievement, interactivity, and retention. Factors shown to engage students and foster sense of community include the instructor focusing and directing discussions, encouraging open expression of opinions, responding to communications and feedback in a timely way, and giving the opportunity to build relationships. Technology has tremendous potential to enhance these activities at all levels of higher education. This article presents ways in which several technologies are used to enhance student experience in undergraduate and graduate nutrition course work across delivery formats. Copyright © 2017 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
The Earth Observation Technology Cluster
NASA Astrophysics Data System (ADS)
Aplin, P.; Boyd, D. S.; Danson, F. M.; Donoghue, D. N. M.; Ferrier, G.; Galiatsatos, N.; Marsh, A.; Pope, A.; Ramirez, F. A.; Tate, N. J.
2012-07-01
The Earth Observation Technology Cluster is a knowledge exchange initiative, promoting development, understanding and communication about innovative technology used in remote sensing of the terrestrial or land surface. This initiative provides an opportunity for presentation of novel developments from, and cross-fertilisation of ideas between, the many and diverse members of the terrestrial remote sensing community. The Earth Observation Technology Cluster involves a range of knowledge exchange activities, including organisation of technical events, delivery of educational materials, publication of scientific findings and development of a coherent terrestrial EO community. The initiative as a whole covers the full range of remote sensing operation, from new platform and sensor development, through image retrieval and analysis, to data applications and environmental modelling. However, certain topical and strategic themes have been selected for detailed investigation: (1) Unpiloted Aerial Vehicles, (2) Terrestrial Laser Scanning, (3) Field-Based Fourier Transform Infra-Red Spectroscopy, (4) Hypertemporal Image Analysis, and (5) Circumpolar and Cryospheric Application. This paper presents general activities and achievements of the Earth Observation Technology Cluster, and reviews state-of-the-art developments in the five specific thematic areas.
Sustainable Biosphere Initiative Project
NASA Technical Reports Server (NTRS)
1997-01-01
The goal of the Advanced Technology in Ecological Sciences project is to gain broad participation within the environmental scientific community in developing a research agenda addressing the development and refinement of technologies instrumental to research that responds to these challenges (e.g. global climate change, unsustainable resource use, and threats to biological diversity). The following activities have been completed: (1) A listserve 'eco-tech was set up to serve as a clearinghouse of information about activities and events relating to advanced technologies; (2) A series of conference calls were organized on specific topics including data visualization and spatial analysis, and remote sensing; and (3) Two meetings were organized at the 19% ESA Annual Meeting in Providence, Rhode Island. Topics covered included concerns about tool and data sharing; interest in expanded development of ground-based remote sensing technologies for monitoring; issues involved in training for using new technologies and increasing data streams, and- associated implications of data processing capabilities; questions about how to develop appropriate standards (i.e. surface morphology classification standards) that facilitate the exchange and comparison of analytical results; and some thoughts about remote sensing platforms and vehicles.
NASA Technical Reports Server (NTRS)
1991-01-01
Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.
A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body
Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo
2016-01-01
Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body—because human tissues exhibit some conductivity at these frequencies—resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard. PMID:27918416
A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body.
Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo
2016-12-02
Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body-because human tissues exhibit some conductivity at these frequencies-resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard.
Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2002-07
Pearson, D.K.; Gary, R.H.; Wilson, Z.D.
2007-01-01
Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is particularly useful when analyzing a wide variety of spatial data such as with remote sensing and spatial analysis. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This document presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup from 2002 through 2007.
ERIC Educational Resources Information Center
Nebeker, Camille; Linares-Orozco, Rubi; Crist, Katie
2015-01-01
Introduction: The increased availability of mobile sensing technologies is creating a paradigm shift for health research by creating new opportunities for measuring and monitoring behavior. For example, researchers can now collect objective information about a participant's daily activity using wearable devices that have: 1- Global Positioning…
Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site
Jonsson, Amanda; Inal, Sahika; Uguz, Ilke; Williamson, Adam J.; Kergoat, Loïg; Rivnay, Jonathan; Khodagholy, Dion; Berggren, Magnus; Bernard, Christophe; Malliaras, George G.
2016-01-01
Local control of neuronal activity is central to many therapeutic strategies aiming to treat neurological disorders. Arguably, the best solution would make use of endogenous highly localized and specialized regulatory mechanisms of neuronal activity, and an ideal therapeutic technology should sense activity and deliver endogenous molecules at the same site for the most efficient feedback regulation. Here, we address this challenge with an organic electronic multifunctional device that is capable of chemical stimulation and electrical sensing at the same site, at the single-cell scale. Conducting polymer electrodes recorded epileptiform discharges induced in mouse hippocampal preparation. The inhibitory neurotransmitter, γ-aminobutyric acid (GABA), was then actively delivered through the recording electrodes via organic electronic ion pump technology. GABA delivery stopped epileptiform activity, recorded simultaneously and colocally. This multifunctional “neural pixel” creates a range of opportunities, including implantable therapeutic devices with automated feedback, where locally recorded signals regulate local release of specific therapeutic agents. PMID:27506784
Application of remote sensing to state and regional problems. [for Mississippi
NASA Technical Reports Server (NTRS)
Miller, W. F.; Bouchillon, C. W.; Harris, J. C.; Carter, B.; Whisler, F. D.; Robinette, R.
1974-01-01
The primary purpose of the remote sensing applications program is for various members of the university community to participate in activities that improve the effective communication between the scientific community engaged in remote sensing research and development and the potential users of modern remote sensing technology. Activities of this program are assisting the State of Mississippi in recognizing and solving its environmental, resource and socio-economic problems through inventory, analysis, and monitoring by appropriate remote sensing systems. Objectives, accomplishments, and current status of the following individual projects are reported: (1) bark beetle project; (2) state park location planning; and (3) waste source location and stream channel geometry monitoring.
[Progress in inversion of vegetation nitrogen concentration by hyperspectral remote sensing].
Wang, Li-Wen; Wei, Ya-Xing
2013-10-01
Nitrogen is the necessary element in life activity of vegetation, which takes important function in biosynthesis of protein, nucleic acid, chlorophyll, and enzyme etc, and plays a key role in vegetation photosynthesis. The technology about inversion of vegetation nitrogen concentration by hyperspectral remote sensing has been the research hotspot since the 70s of last century. With the development of hyperspectral remote sensing technology in recent years, the advantage of spectral bands subdivision in a certain spectral region provides the powerful technology measure for correlative spectral characteristic research on vegetation nitrogen. In the present paper, combined with the newest research production about monitoring vegetation nitrogen concentration by hyperspectral remote sensing published in main geography science literature in recent several years, the principle and correlated problem about monitoring vegetation nitrogen concentration by hyperspectral remote sensing were introduced. From four aspects including vegetation nitrogen spectral index, vegetation nitrogen content inversion based on chlorophyll index, regression model, and eliminating influence factors to inversion of vegetation nitrogen concentration, main technology methods about inversion of vegetation nitrogen concentration by hyperspectral remote sensing were detailedly introduced. Correlative research conclusions were summarized and analyzed, and research development trend was discussed.
Systematically disseminating technological information to potential users
NASA Technical Reports Server (NTRS)
Russell, J. D.
1976-01-01
Rapid technological information dissemination system related to the field of remote sensing is presented. The technology transfer staff systematically designed instructional materials and activities using the matrix as an organizer to meet the need of the students, scientists and users in a rapidly expanding technology.
Improving estimates of air pollution exposure through ubiquitous sensing technologies
de Nazelle, Audrey; Seto, Edmund; Donaire-Gonzalez, David; Mendez, Michelle; Matamala, Jaume; Nieuwenhuijsen, Mark J; Jerrett, Michael
2013-01-01
Traditional methods of exposure assessment in epidemiological studies often fail to integrate important information on activity patterns, which may lead to bias, loss of statistical power or both in health effects estimates. Novel sensing technologies integrated with mobile phones offer potential to reduce exposure measurement error. We sought to demonstrate the usability and relevance of the CalFit smartphone technology to track person-level time, geographic location, and physical activity patterns for improved air pollution exposure assessment. We deployed CalFit-equipped smartphones in a free living-population of 36 subjects in Barcelona, Spain. Information obtained on physical activity and geographic location was linked to space-time air pollution mapping. For instance, we found on average travel activities accounted for 6% of people’s time and 24% of their daily inhaled NO2. Due to the large number of mobile phone users, this technology potentially provides an unobtrusive means of collecting epidemiologic exposure data at low cost. PMID:23416743
NASA Astrophysics Data System (ADS)
Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.
2015-12-01
The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.
Remote Sensing for Tropical Forest Assessment
AJR Gillespie
1994-01-01
The purpose of this workshop was to allow remote sensing experts from Latin America, the U.S.A., and FAO to discuss state-of-the-art methodology in remote sensing of forest environments, and to develop plans on how to better incorporate this technology into FAO and national forest inventory efforts. The workshop included numerous presentations of ongoing activities, as...
Geospatial Image Mining For Nuclear Proliferation Detection: Challenges and New Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vatsavai, Raju; Bhaduri, Budhendra L; Cheriyadat, Anil M
2010-01-01
With increasing understanding and availability of nuclear technologies, and increasing persuasion of nuclear technologies by several new countries, it is increasingly becoming important to monitor the nuclear proliferation activities. There is a great need for developing technologies to automatically or semi-automatically detect nuclear proliferation activities using remote sensing. Images acquired from earth observation satellites is an important source of information in detecting proliferation activities. High-resolution remote sensing images are highly useful in verifying the correctness, as well as completeness of any nuclear program. DOE national laboratories are interested in detecting nuclear proliferation by developing advanced geospatial image mining algorithms. Inmore » this paper we describe the current understanding of geospatial image mining techniques and enumerate key gaps and identify future research needs in the context of nuclear proliferation.« less
Research and technology of the Langley Research Center
NASA Technical Reports Server (NTRS)
1980-01-01
Descriptions of the research and technology activities at the Langley Research Center are given. Topics include laser development, aircraft design, aircraft engines, aerodynamics, remote sensing, space transportation systems, and composite materials.
What Do Students Want? Making Sense of Student Preferences in Technology-Enhanced Learning
ERIC Educational Resources Information Center
Pechenkina, Ekaterina; Aeschliman, Carol
2017-01-01
This article, with its focus on university students as intended recipients and users of technological innovations in education, explores student preferences across three dimensions of technology-enhanced learning: mode of instruction; communication; and educational technology tools embedded in learning and teaching activities. The article draws on…
DOT National Transportation Integrated Search
1997-11-01
This report presents the findings of the study team on a Federal Highway Administration (FHWA) International Scanning Tour to the countries of Finland, Sweden, the Netherlands, and England. The tour was unique in that it represented the first time th...
Crab, R; Lambert, A; Defoirdt, T; Bossier, P; Verstraete, W
2010-11-01
To study the potential biocontrol activity of bioflocs technology. Glycerol-grown bioflocs were investigated for their antimicrobial and antipathogenic properties against the opportunistic pathogen Vibrio harveyi. The bioflocs did not produce growth-inhibitory substances. However, bioflocs and biofloc supernatants decreased quorum sensing-regulated bioluminescence of V. harveyi. This suggested that the bioflocs had biocontrol activity against this pathogen because quorum sensing regulates virulence of vibrios towards different hosts. Interestingly, the addition of live bioflocs significantly increased the survival of gnotobiotic brine shrimp (Artemia franciscana) larvae challenged to V. harveyi. Bioflocs grown on glycerol as carbon source inhibit quorum sensing-regulated bioluminescence in V. harveyi and protect brine shrimp larvae from vibriosis. The results presented in this study indicate that in addition to water quality control and in situ feed production, bioflocs technology could help in controlling bacterial infections within the aquaculture pond. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.
Educational activities of remote sensing archaeology (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasilki; Themistocleous, Kyriacos; Cuca, Branka; Nisantzi, Argyro; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter
2016-10-01
Remote sensing science is increasingly being used to support archaeological and cultural heritage research in various ways. Satellite sensors either passive or active are currently used in a systematic basis to detect buried archaeological remains and to systematic monitor tangible heritage. In addition, airborne and low altitude systems are being used for documentation purposes. Ground surveys using remote sensing tools such as spectroradiometers and ground penetrating radars can detect variations of vegetation and soil respectively, which are linked to the presence of underground archaeological features. Education activities and training of remote sensing archaeology to young people is characterized of highly importance. Specific remote sensing tools relevant for archaeological research can be developed including web tools, small libraries, interactive learning games etc. These tools can be then combined and aligned with archaeology and cultural heritage. This can be achieved by presenting historical and pre-historical records, excavated sites or even artifacts under a "remote sensing" approach. Using such non-form educational approach, the students can be involved, ask, read, and seek to learn more about remote sensing and of course to learn about history. The paper aims to present a modern didactical concept and some examples of practical implementation of remote sensing archaeology in secondary schools in Cyprus. The idea was built upon an ongoing project (ATHENA) focused on the sue of remote sensing for archaeological research in Cyprus. Through H2020 ATHENA project, the Remote Sensing Science and Geo-Environment Research Laboratory at the Cyprus University of Technology (CUT), with the support of the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR) aims to enhance its performance in all these new technologies.
Remote sensing research activities related to academic institutions
NASA Technical Reports Server (NTRS)
Myers, V. I.
1980-01-01
The role of research in the educational setting is discussed. Curriculum developments for integrating teaching and research are described. Remote sensing technology is used as an example of bridging the gap between research and application. Recommendations are presented for strengthing research groups.
Lai, Ying-Chih; Deng, Jianan; Liu, Ruiyuan; Hsiao, Yung-Chi; Zhang, Steven L; Peng, Wenbo; Wu, Hsing-Mei; Wang, Xingfu; Wang, Zhong Lin
2018-06-04
Robots that can move, feel, and respond like organisms will bring revolutionary impact to today's technologies. Soft robots with organism-like adaptive bodies have shown great potential in vast robot-human and robot-environment applications. Developing skin-like sensory devices allows them to naturally sense and interact with environment. Also, it would be better if the capabilities to feel can be active, like real skin. However, challenges in the complicated structures, incompatible moduli, poor stretchability and sensitivity, large driving voltage, and power dissipation hinder applicability of conventional technologies. Here, various actively perceivable and responsive soft robots are enabled by self-powered active triboelectric robotic skins (tribo-skins) that simultaneously possess excellent stretchability and excellent sensitivity in the low-pressure regime. The tribo-skins can actively sense proximity, contact, and pressure to external stimuli via self-generating electricity. The driving energy comes from a natural triboelectrification effect involving the cooperation of contact electrification and electrostatic induction. The perfect integration of the tribo-skins and soft actuators enables soft robots to perform various actively sensing and interactive tasks including actively perceiving their muscle motions, working states, textile's dampness, and even subtle human physiological signals. Moreover, the self-generating signals can drive optoelectronic devices for visual communication and be processed for diverse sophisticated uses. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ramsey, Michael S.; Harris, Andrew J. L.
2013-01-01
Volcanological remote sensing spans numerous techniques, wavelength regions, data collection strategies, targets, and applications. Attempting to foresee and predict the growth vectors in this broad and rapidly developing field is therefore exceedingly difficult. However, we attempted to make such predictions at both the American Geophysical Union (AGU) meeting session entitled Volcanology 2010: How will the science and practice of volcanology change in the coming decade? held in December 2000 and the follow-up session 10 years later, Looking backward and forward: Volcanology in 2010 and 2020. In this summary paper, we assess how well we did with our predictions for specific facets of volcano remote sensing in 2000 the advances made over the most recent decade, and attempt a new look ahead to the next decade. In completing this review, we only consider the subset of the field focused on thermal infrared remote sensing of surface activity using ground-based and space-based technology and the subsequent research results. This review keeps to the original scope of both AGU presentations, and therefore does not address the entire field of volcanological remote sensing, which uses technologies in other wavelength regions (e.g., ultraviolet, radar, etc.) or the study of volcanic processes other than the those associated with surface (mostly effusive) activity. Therefore we do not consider remote sensing of ash/gas plumes, for example. In 2000, we had looked forward to a "golden age" in volcanological remote sensing, with a variety of new orbital missions both planned and recently launched. In addition, exciting field-based sensors such as hand-held thermal cameras were also becoming available and being quickly adopted by volcanologists for both monitoring and research applications. All of our predictions in 2000 came true, but at a pace far quicker than we predicted. Relative to the 2000-2010 timeframe, the coming decade will see far fewer new orbital instruments with direct applications to volcanology. However ground-based technologies and applications will continue to proliferate, and unforeseen technology promises many exciting possibilities that will advance volcano thermal monitoring and science far beyond what we can currently envision.
Advances in the development of remote sensing technology for agricultural applications
NASA Technical Reports Server (NTRS)
Powers, J. E.; Erb, R. B.; Hall, F. G.; Macdonald, R. B.
1979-01-01
The application of remote sensing technology to crop forecasting is discussed. The importance of crop forecasts to the world economy and agricultural management is explained, and the development of aerial and spaceborne remote sensing for global crop forecasting by the United States is outlined. The structure, goals and technical aspects of the Large Area Crop Inventory Experiment (LACIE) are presented, and main findings on the accuracy, efficiency, applicability and areas for further study of the LACIE procedure are reviewed. The current status of NASA crop forecasting activities in the United States and worldwide is discussed, and the objectives and organization of the newly created Agriculture and Resources Inventory Surveys through Aerospace Remote Sensing (AgRISTARS) program are presented.
NASA/ESTO investments in remote sensing technologies (Conference Presentation)
NASA Astrophysics Data System (ADS)
Babu, Sachidananda R.
2017-02-01
For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.
ESTO Investments in Innovative Sensor Technologies for Remote Sensing
NASA Technical Reports Server (NTRS)
Babu, Sachidananda R.
2017-01-01
For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.
Improving estimates of air pollution exposure through ubiquitous sensing technologies.
de Nazelle, Audrey; Seto, Edmund; Donaire-Gonzalez, David; Mendez, Michelle; Matamala, Jaume; Nieuwenhuijsen, Mark J; Jerrett, Michael
2013-05-01
Traditional methods of exposure assessment in epidemiological studies often fail to integrate important information on activity patterns, which may lead to bias, loss of statistical power, or both in health effects estimates. Novel sensing technologies integrated with mobile phones offer potential to reduce exposure measurement error. We sought to demonstrate the usability and relevance of the CalFit smartphone technology to track person-level time, geographic location, and physical activity patterns for improved air pollution exposure assessment. We deployed CalFit-equipped smartphones in a free-living population of 36 subjects in Barcelona, Spain. Information obtained on physical activity and geographic location was linked to space-time air pollution mapping. We found that information from CalFit could substantially alter exposure estimates. For instance, on average travel activities accounted for 6% of people's time and 24% of their daily inhaled NO2. Due to the large number of mobile phone users, this technology potentially provides an unobtrusive means of enhancing epidemiologic exposure data at low cost. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Caudill, C. E.; Hatch, R. E.
1985-01-01
An account is given of the activities and accomplishments to date of the U.S. Department of Agriculture's Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing (AgRISTARS) program, which is a cooperative venture with NASA and the Departments of the Interior and of Commerce. AgRISTARS research activities encompass early warning and crop condition assessment, inventory technology development for production forecasting, crop yield model development, soil moisture monitoring, domestic crops and land cover sensing, renewable resources inventory, and conservation and pollution assessment.
Achieving Efficient Spectrum Usage in Passive and Active Sensing
NASA Astrophysics Data System (ADS)
Wang, Huaiyi
Increasing demand for supporting more wireless services with higher performance and reliability within the frequency bands that are most conducive to operating cost-effective cellular and mobile broadband is aggravating current electromagnetic spectrum congestion. This situation motivates technology and management innovation to increase the efficiency of spectral use. If primary-secondary spectrum sharing can be shown possible without compromising (or while even improving) performance in an existing application, opportunities for efficiency may be realizable by making the freed spectrum available for commercial use. While both active and passive sensing systems are vitally important for many public good applications, opportunities for increasing the efficiency of spectrum use can be shown to exist for both systems. This dissertation explores methods and technologies for remote sensing systems that enhance spectral efficiency and enable dynamic spectrum access both within and outside traditionally allocated bands.
Advancing Partnerships Towards an Integrated Approach to Oil Spill Response
NASA Astrophysics Data System (ADS)
Green, D. S.; Stough, T.; Gallegos, S. C.; Leifer, I.; Murray, J. J.; Streett, D.
2015-12-01
Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, and remote sensing is playing a growing critical role in the detection and monitoring of oil spills, as well as facilitating validation of remote sensing oil spill products. The FOSTERRS (Federal Oil Science Team for Emergency Response Remote Sensing) interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft/instruments) and analysis techniques are quickly, effectively, appropriately, and seamlessly available to oil spills responders. Yet significant challenges remain for addressing oils spanning a vast range of chemical properties that may be spilled from the Tropics to the Arctic, with algorithms and scientific understanding needing advances to keep up with technology. Thus, FOSTERRS promotes enabling scientific discovery to ensure robust utilization of available technology as well as identifying technologies moving up the TRL (Technology Readiness Level). A recent FOSTERRS facilitated support activity involved deployment of the AVIRIS NG (Airborne Visual Infrared Imaging Spectrometer- Next Generation) during the Santa Barbara Oil Spill to validate the potential of airborne hyperspectral imaging to real-time map beach tar coverage including surface validation data. Many developing airborne technologies have potential to transition to space-based platforms providing global readiness.
Detecting Landscape Change: The View from Above
ERIC Educational Resources Information Center
Porter, Jess
2008-01-01
This article will demonstrate an approach for discovering and assessing local landscape change through the use of remotely sensed images. A brief introduction to remotely sensed imagery is followed by a discussion of relevant ways to introduce this technology into the college science classroom. The Map Detective activity demonstrates the…
Activities of the Remote Sensing Information Sciences Research Group
NASA Technical Reports Server (NTRS)
Estes, J. E.; Botkin, D.; Peuquet, D.; Smith, T.; Star, J. L. (Principal Investigator)
1984-01-01
Topics on the analysis and processing of remotely sensed data in the areas of vegetation analysis and modelling, georeferenced information systems, machine assisted information extraction from image data, and artificial intelligence are investigated. Discussions on support field data and specific applications of the proposed technologies are also included.
Hans-Erik Andersen; Stephen E. Reutebuch; Robert J. McGaughey
2006-01-01
The development of remote sensing technologies increases the potential to support more precise, efficient, and ecologically-sensitive approaches to forest resource management. One of the primary requirements of precision forest management is accurate and detailed 3D spatial data relating to the type and condition of forest stands and characteristics of the underlying...
The Road to Successful ITS Software Acquisition. Executive Summary
DOT National Transportation Integrated Search
2013-08-01
This report analyzes the merits and limits of active sensing technologies such as radar, LIDAR, and ultrasonic detectors and how the market for these technologies is evolving and being applied to vehicles and highway infrastructure to improve...
NASA Astrophysics Data System (ADS)
Siegfried, Tobias
2016-04-01
In developing and transition countries and despite significant global investments in hydrometeorology, data on water remain scarce/fragmented. One key reason is that traditional sensing in hydrology, hydro- and agro-meteorology does not scale because of high investment costs and difficult maintenance of traditional technology, esp. in remote and/or poor regions. Even where there are data, these are often difficult to access and interpret for local stakeholders due outdated data transmission and the lack of access to modern tools for data management/analysis/synthesis and exchange. In recent years, there have been substantial technology developments in environmental sensing and mobile communication technology that enable the application and deployment of affordable and scalable high-tech solutions for better water monitoring at different scales (local to transboundary levels). The WMO is acknowledging and promoting the potential for application of these technologies. One key aspect is to anchor these technologies in local communities that perform crowd-sensing tasks on a regular basis. The merits as well as challenges (including introduction of human factor, less accuracy as compared to traditional sensing, intermittency of data, …) of such approaches will be discussed in the context of the WMO-led Global iMoMo Initiative and its numerous activities on the ground in Eastern and Southern Africa as well as in Central Asia.
NASA Remote Sensing Research as Applied to Archaeology
NASA Technical Reports Server (NTRS)
Giardino, Marco J.; Thomas, Michael R.
2002-01-01
The use of remotely sensed images is not new to archaeology. Ever since balloons and airplanes first flew cameras over archaeological sites, researchers have taken advantage of the elevated observation platforms to understand sites better. When viewed from above, crop marks, soil anomalies and buried features revealed new information that was not readily visible from ground level. Since 1974 and initially under the leadership of Dr. Tom Sever, NASA's Stennis Space Center, located on the Mississippi Gulf Coast, pioneered and expanded the application of remote sensing to archaeological topics, including cultural resource management. Building on remote sensing activities initiated by the National Park Service, archaeologists increasingly used this technology to study the past in greater depth. By the early 1980s, there were sufficient accomplishments in the application of remote sensing to anthropology and archaeology that a chapter on the subject was included in fundamental remote sensing references. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, or nearing deployment, offer significantly finer spatial and spectral resolutions than were previously available. Paired with new techniques of image analysis, this technology may make the direct detection of archaeological sites a realistic goal.
NEW HORIZONS IN SENSOR DEVELOPMENT
Intille, Stephen S.; Lester, Jonathan; Sallis, James F.; Duncan, Glen
2011-01-01
Background Accelerometery and other sensing technologies are important tools for physical activity measurement. Engineering advances have allowed developers to transform clunky, uncomfortable, and conspicuous monitors into relatively small, ergonomic, and convenient research tools. New devices can be used to collect data on overall physical activity and in some cases posture, physiological state, and location, for many days or weeks from subjects during their everyday lives. In this review article, we identify emerging trends in several types of monitoring technologies and gaps in the current state of knowledge. Best practices The only certainty about the future of activity sensing technologies is that researchers must anticipate and plan for change. We propose a set of best practices that may accelerate adoption of new devices and increase the likelihood that data being collected and used today will be compatible with new datasets and methods likely to appear on the horizon. Future directions We describe several technology-driven trends, ranging from continued miniaturization of devices that provide gross summary information about activity levels and energy expenditure, to new devices that provide highly detailed information about the specific type, amount, and location of physical activity. Some devices will take advantage of consumer technologies, such as mobile phones, to detect and respond to physical activity in real time, creating new opportunities in measurement, remote compliance monitoring, data-driven discovery, and intervention. PMID:22157771
Sonner, Zachary; Wilder, Eliza; Gaillard, Trudy; Kasting, Gerald; Heikenfeld, Jason
2017-07-25
Eccrine sweat has rapidly emerged as a non-invasive, ergonomic, and rich source of chemical analytes with numerous technological demonstrations now showing the ability for continuous electrochemical sensing. However, beyond active perspirers (athletes, workers, etc.), continuous sweat access in individuals at rest has hindered the advancement of both sweat sensing science and technology. Reported here is integration of sudomotor axon reflex sweat stimulation for continuous wearable sweat analyte analysis, including the ability for side-by-side integration of chemical stimulants & sensors without cross-contamination. This integration approach is uniquely compatible with sensors which consume the analyte (enzymatic) or sensors which equilibrate with analyte concentrations. In vivo validation is performed using iontophoretic delivery of carbachol with ion-selective and impedance sensors for sweat analysis. Carbachol has shown prolonged sweat stimulation in directly stimulated regions for five hours or longer. This work represents a significant leap forward in sweat sensing technology, and may be of broader interest to those interested in on-skin sensing integrated with drug-delivery.
Electrical stimulation of mechanoreceptors
NASA Astrophysics Data System (ADS)
Echenique, A. M.; Graffigna, J. P.
2011-12-01
Within the field of Rehabilitation Engineering, this work is aimed at identifying the optimal parameters of electric current stimulus which activate the nervous axons of mecanoreceptors found in the fingertip, allowing, this way, to resemble tactile senses. These sensorial feelings can be used by aiding technological means, namely, the sensorial substitution technology, in an attempt to render information to blind people through the tactile sense. The physical pressure on sensorial areas (fingertips) used for reading activities through the Braille System is the main effect that is imitated and studied in this research work. An experimental aiding prototype for Braille reading research has been developed and tested with blinds and reduced vision people, with highly satisfactory results.
Empowering Prospective Teachers to Become Active Sense-Makers: Multimodal Modeling of the Seasons
NASA Astrophysics Data System (ADS)
Kim, Mi Song
2015-10-01
Situating science concepts in concrete and authentic contexts, using information and communications technologies, including multimodal modeling tools, is important for promoting the development of higher-order thinking skills in learners. However, teachers often struggle to integrate emergent multimodal models into a technology-rich informal learning environment. Our design-based research co-designs and develops engaging, immersive, and interactive informal learning activities called "Embodied Modeling-Mediated Activities" (EMMA) to support not only Singaporean learners' deep learning of astronomy but also the capacity of teachers. As part of the research on EMMA, this case study describes two prospective teachers' co-design processes involving multimodal models for teaching and learning the concept of the seasons in a technology-rich informal learning setting. Our study uncovers four prominent themes emerging from our data concerning the contextualized nature of learning and teaching involving multimodal models in informal learning contexts: (1) promoting communication and emerging questions, (2) offering affordances through limitations, (3) explaining one concept involving multiple concepts, and (4) integrating teaching and learning experiences. This study has an implication for the development of a pedagogical framework for teaching and learning in technology-enhanced learning environments—that is empowering teachers to become active sense-makers using multimodal models.
Multimodal Interaction in Ambient Intelligence Environments Using Speech, Localization and Robotics
ERIC Educational Resources Information Center
Galatas, Georgios
2013-01-01
An Ambient Intelligence Environment is meant to sense and respond to the presence of people, using its embedded technology. In order to effectively sense the activities and intentions of its inhabitants, such an environment needs to utilize information captured from multiple sensors and modalities. By doing so, the interaction becomes more natural…
Archimedean Witness: The Application of Remote Sensing as an Aid to Human Rights Prosecutions
NASA Astrophysics Data System (ADS)
Walker, James Robin
The 21st century has seen a significant increase in the use of remote sensing technology in the international human rights arena for the purposes of documenting crimes against humanity. The nexus between remote sensing, human rights activism, and international criminal prosecutions sits at a significant crossroads within geographic thought, calling attention to the epistemological and geopolitical implications that stem from the "view from nowhere" afforded by satellite imagery. Therefore, this thesis is divided into three sections. The first looks at the geographical questions raised by the expansion of remote sensing use in the context of international activism. The second explores the complications inherent in the presentation of remote sensing data as evidence of war crimes. Building upon the first two, the third section is a case study in alternate forms of analysis, aimed at expanding the utility of remote sensing data in international criminal prosecutions.
Bio-inspired Computing for Robots
NASA Technical Reports Server (NTRS)
Laufenberg, Larry
2003-01-01
Living creatures may provide algorithms to enable active sensing/control systems in robots. Active sensing could enable planetary rovers to feel their way in unknown environments. The surface of Jupiter's moon Europa consists of fractured ice over a liquid sea that may contain microbes similar to those on Earth. To explore such extreme environments, NASA needs robots that autonomously survive, navigate, and gather scientific data. They will be too far away for guidance from Earth. They must sense their environment and control their own movements to avoid obstacles or investigate a science opportunity. To meet this challenge, CICT's Information Technology Strategic Research (ITSR) Project is funding neurobiologists at NASA's Jet Propulsion Laboratory (JPL) and selected universities to search for biologically inspired algorithms that enable robust active sensing and control for exploratory robots. Sources for these algorithms are living creatures, including rats and electric fish.
Advanced Wavefront Sensing and Control Testbed (AWCT)
NASA Technical Reports Server (NTRS)
Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell
2010-01-01
The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.
Concept of software interface for BCI systems
NASA Astrophysics Data System (ADS)
Svejda, Jaromir; Zak, Roman; Jasek, Roman
2016-06-01
Brain Computer Interface (BCI) technology is intended to control external system by brain activity. One of main part of such system is software interface, which carries about clear communication between brain and either computer or additional devices connected to computer. This paper is organized as follows. Firstly, current knowledge about human brain is briefly summarized to points out its complexity. Secondly, there is described a concept of BCI system, which is then used to build an architecture of proposed software interface. Finally, there are mentioned disadvantages of sensing technology discovered during sensing part of our research.
Representation of activity in images using geospatial temporal graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brost, Randolph; McLendon, III, William C.; Parekh, Ojas D.
Various technologies pertaining to modeling patterns of activity observed in remote sensing images using geospatial-temporal graphs are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Activity patterns may be discerned from the graphs by coding nodes representing persistent objects like buildings differently from nodes representing ephemeral objects like vehicles, and examining the geospatial-temporal relationships of ephemeral nodes within the graph.
Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2008-09
,
2009-01-01
Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is useful for analyzing a wide variety of spatial data. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This fact sheet presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup during 2008 and 2009. After a summary of GIS Workgroup capabilities, brief descriptions of activities by project at the local and national levels are presented. Projects are grouped by the fiscal year (October-September 2008 or 2009) the project ends and include overviews, project images, and Internet links to additional project information and related publications or articles.
Remote sensing, imaging, and signal engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brase, J.M.
1993-03-01
This report discusses the Remote Sensing, Imaging, and Signal Engineering (RISE) trust area which has been very active in working to define new directions. Signal and image processing have always been important support for existing programs at Lawrence Livermore National Laboratory (LLNL), but now these technologies are becoming central to the formation of new programs. Exciting new applications such as high-resolution telescopes, radar remote sensing, and advanced medical imaging are allowing us to participate in the development of new programs.
Applications of airborne remote sensing in atmospheric sciences research
NASA Technical Reports Server (NTRS)
Serafin, R. J.; Szejwach, G.; Phillips, B. B.
1984-01-01
This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.
"SpaceCam": Legal Issues in the Use of Remote-Sensing Satellites for News Gathering.
ERIC Educational Resources Information Center
Smith, William E.
News media representatives foresee a growing use of remote-sensing satellites to gather data, including data that could be used to check government claims about military and other activities occurring anywhere on the planet. The satellite technology is developing rapidly, and several nations and private corporations are involved in separate…
NASA Astrophysics Data System (ADS)
As'ari, M. A.; Sheikh, U. U.
2012-04-01
The rapid development of intelligent assistive technology for replacing a human caregiver in assisting people with dementia performing activities of daily living (ADLs) promises in the reduction of care cost especially in training and hiring human caregiver. The main problem however, is the various kinds of sensing agents used in such system and is dependent on the intent (types of ADLs) and environment where the activity is performed. In this paper on overview of the potential of computer vision based sensing agent in assistive system and how it can be generalized and be invariant to various kind of ADLs and environment. We find that there exists a gap from the existing vision based human action recognition method in designing such system due to cognitive and physical impairment of people with dementia.
Novel Technique and Technologies for Active Optical Remote Sensing of Greenhouse Gases
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta
2017-01-01
The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.
Polarimetric Remote Sensing of Atmospheric Particulate Pollutants
NASA Astrophysics Data System (ADS)
Li, Z.; Zhang, Y.; Hong, J.
2018-04-01
Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF), whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.
NASA Technical Reports Server (NTRS)
Zaitzeff, J. B. (Editor); Cornillon, P. (Editor); Aubrey, D. A. (Editor)
1980-01-01
Presentations were grouped in the following categories: (1) a technical orientation of Earth resources remote sensing including data sources and processing; (2) a review of the present status of remote sensing technology applicable to the coastal and marine environment; (3) a description of data and information needs of selected coastal and marine activities; and (4) an outline of plans for marine monitoring systems for the east coast and a concept for an east coast remote sensing facility. Also discussed were user needs and remote sensing potentials in the areas of coastal processes and management, commercial and recreational fisheries, and marine physical processes.
Remote Sensing Terminology in a Global and Knowledge-Based World
NASA Astrophysics Data System (ADS)
Kancheva, Rumiana
The paper is devoted to terminology issues related to all aspects of remote sensing research and applications. Terminology is the basis for a better understanding among people. It is crucial to keep up with the latest developments and novelties of the terminology in advanced technology fields such as aerospace science and industry. This is especially true in remote sensing and geoinformatics which develop rapidly and have ever extending applications in various domains of science and human activities. Remote sensing terminology issues are directly relevant to the contemporary worldwide policies on information accessibility, dissemination and utilization of research results in support of solutions to global environmental challenges and sustainable development goals. Remote sensing and spatial information technologies are an integral part of the international strategies for cooperation in scientific, research and application areas with a particular accent on environmental monitoring, ecological problems natural resources management, climate modeling, weather forecasts, disaster mitigation and many others to which remote sensing data can be put. Remote sensing researchers, professionals, students and decision makers of different counties and nationalities should fully understand, interpret and translate into their native language any term, definition or acronym found in papers, books, proceedings, specifications, documentation, and etc. The importance of the correct use, precise definition and unification of remote sensing terms refers not only to people working in this field but also to experts in a variety of disciplines who handle remote sensing data and information products. In this paper, we draw the attention on the specifics, peculiarities and recent needs of compiling specialized dictionaries in the area of remote sensing focusing on Earth observations and the integration of remote sensing with other geoinformation technologies such as photogrammetry, geodesy, GIS, etc. Our belief is that the elaboration of bilingual and multilingual dictionaries and glossaries in this spreading, most technically advanced and promising field of human expertise is of great practical importance. The work on an English-Bulgarian Dictionary of Remote Sensing Terms is described including considerations on its scope, structure, information content, sellection of terms, and etc. The vision builds upon previous national and international experience and makes use of ongoing activities on the subject. Any interest in cooperation and initiating suchlike collaborative projects is welcome and highly appreciated.
NASA Technical Reports Server (NTRS)
1975-01-01
Advanced technology requirements associated with sensing and data acquisition systems were assessed for future space missions. Sensing and data acquisition system payloads which would benefit from the use of the space shuttle in demonstrating technology readiness are identified. Topics covered include: atmospheric sensing payloads, earth resources sensing payloads, microwave systems sensing payloads, technology development/evaluation payloads, and astronomy/planetary payloads.
Two-Way Chemical Communication between Artificial and Natural Cells
2017-01-01
Artificial cells capable of both sensing and sending chemical messages to bacteria have yet to be built. Here we show that artificial cells that are able to sense and synthesize quorum signaling molecules can chemically communicate with V. fischeri, V. harveyi, E. coli, and P. aeruginosa. Activity was assessed by fluorescence, luminescence, RT-qPCR, and RNA-seq. Two potential applications for this technology were demonstrated. First, the extent to which artificial cells could imitate natural cells was quantified by a type of cellular Turing test. Artificial cells capable of sensing and in response synthesizing and releasing N-3-(oxohexanoyl)homoserine lactone showed a high degree of likeness to natural V. fischeri under specific test conditions. Second, artificial cells that sensed V. fischeri and in response degraded a quorum signaling molecule of P. aeruginosa (N-(3-oxododecanoyl)homoserine lactone) were constructed, laying the foundation for future technologies that control complex networks of natural cells. PMID:28280778
Education, outreach and the future of remote sensing in human health
NASA Technical Reports Server (NTRS)
Wood, B. L.; Beck, L. R.; Lobitz, B. M.; Bobo, M. R.
2000-01-01
The human health community has been slow to adopt remote sensing technology for research, surveillance, or control activities. This chapter presents a brief history of the National Aeronautics and Space Administration's experiences in the use of remotely sensed data for health applications, and explores some of the obstacles, both real and perceived, that have slowed the transfer of this technology to the health community. These obstacles include the lack of awareness, which must be overcome through outreach and proper training in remote sensing, and inadequate spatial, spectral and temporal data resolutions, which are being addressed as new sensor systems are launched and currently overlooked (and underutilized) sensors are newly discovered by the health community. A basic training outline is presented, along with general considerations for selecting training candidates. The chapter concludes with a brief discussion of some current and future sensors that show promise for health applications.
Promoting Sustainable Agricultural Practices Through Remote Sensing Education and Outreach
NASA Astrophysics Data System (ADS)
Driese, K. L.; Sivanpillai, R.
2007-12-01
Ever increasing demand for food and fiber calls for farm management strategies such as effective use of chemicals and efficient water use that will maximize productivity while reducing adverse impacts on the environment. Remotely sensed data collected by satellites are a valuable resource for farmers and ranchers for gaining insights about farm and ranch productivity. While researchers in universities and agencies have made tremendous advances, technology transfer to end-users has lagged, preventing the farmers from taking advantage of this valuable resource. To overcome this barrier, the Upper Midwest Aerospace Consortium (UMAC), a NASA funded program headed by the University of North Dakota, has been working with end-users to promote the use of remote sensing technology for sustainable agricultural practices. We will highlight the UMAC activities in Wyoming aimed at promoting this technology to sugar-beet farmers in the Big Horn Basin. To assist farmers who might not have a computer at home, we provide them to local county Cooperative Extension Offices pre-loaded with relevant imagery. Our targeted outreach activities have resulted in farmers requesting and using new and old Landsat images to identify growth anomalies and trends which have enabled them to develop management zones within their croplands.
The study of active tectonic based on hyperspectral remote sensing
NASA Astrophysics Data System (ADS)
Cui, J.; Zhang, S.; Zhang, J.; Shen, X.; Ding, R.; Xu, S.
2017-12-01
As of the latest technical methods, hyperspectral remote sensing technology has been widely used in each brach of the geosciences. However, it is still a blank for using the hyperspectral remote sensing to study the active structrure. Hyperspectral remote sensing, with high spectral resolution, continuous spectrum, continuous spatial data, low cost, etc, has great potentialities in the areas of stratum division and fault identification. Blind fault identification in plains and invisible fault discrimination in loess strata are the two hot problems in the current active fault research. Thus, the study of active fault based on the hyperspectral technology has great theoretical significance and practical value. Magnetic susceptibility (MS) records could reflect the rhythm alteration of the formation. Previous study shown that MS has correlation with spectral feature. In this study, the Emaokou section, located to the northwest of the town of Huairen, in Shanxi Province, has been chosen for invisible fault study. We collected data from the Emaokou section, including spectral data, hyperspectral image, MS data. MS models based on spectral features were established and applied to the UHD185 image for MS mapping. The results shown that MS map corresponded well to the loess sequences. It can recognize the stratum which can not identity by naked eyes. Invisible fault has been found in this section, which is useful for paleoearthquake analysis. The faults act as the conduit for migration of terrestrial gases, the fault zones, especially the structurally weak zones such as inrtersections or bends of fault, may has different material composition. We take Xiadian fault for study. Several samples cross-fault were collected and these samples were measured by ASD Field Spec 3 spectrometer. Spectral classification method has been used for spectral analysis, we found that the spectrum of the fault zone have four special spectral region(550-580nm, 600-700nm, 700-800nm and 800-900nm), which different with the spectrum of the none-fault zone. It could help us welly located the fault zone. The located result correspond well to the physical prospecting method result. The above study shown that Hypersepctral remote sensing technology provide a new method for active study.
FTEE/CTETE 21st Century Leadership Academy: A Second Decade of Excellence
ERIC Educational Resources Information Center
Havice, William; Hill, Roger
2018-01-01
In 2006, the International Technology and Engineering Educators Association's Council on Technology Teacher Education (CTETE) Leadership Development Committee established the Twenty-First Century Leader Associates (TCLA) program. This initiative was developed to facilitate a sense of community and provide activities and resources for scholarly and…
Satellite Technology Contribution to Water and Food Security
NASA Technical Reports Server (NTRS)
Brown, Molly E.
2010-01-01
This slide presentation reviews the issue of supplies of food, the relationship to food security, the ability of all people to attain sufficient food for an active and healthy life, and the ability to use satellite technology and remote sensing to assist with planning and act as an early warning system.
Empowering Prospective Teachers to Become Active Sense-Makers: Multimodal Modeling of the Seasons
ERIC Educational Resources Information Center
Kim, Mi Song
2015-01-01
Situating science concepts in concrete and authentic contexts, using information and communications technologies, including multimodal modeling tools, is important for promoting the development of higher-order thinking skills in learners. However, teachers often struggle to integrate emergent multimodal models into a technology-rich informal…
Sensing Technologies for Autism Spectrum Disorder Screening and Intervention
Cabibihan, John-John; Javed, Hifza; Aldosari, Mohammed; Frazier, Thomas W.; Elbashir, Haitham
2016-01-01
This paper reviews the state-of-the-art in sensing technologies that are relevant for Autism Spectrum Disorder (ASD) screening and therapy. This disorder is characterized by difficulties in social communication, social interactions, and repetitive behaviors. It is diagnosed during the first three years of life. Early and intensive interventions have been shown to improve the developmental trajectory of the affected children. The earlier the diagnosis, the sooner the intervention therapy can begin, thus, making early diagnosis an important research goal. Technological innovations have tremendous potential to assist with early diagnosis and improve intervention programs. The need for careful and methodological evaluation of such emerging technologies becomes important in order to assist not only the therapists and clinicians in their selection of suitable tools, but to also guide the developers of the technologies in improving hardware and software. In this paper, we survey the literatures on sensing technologies for ASD and we categorize them into eye trackers, movement trackers, electrodermal activity monitors, tactile sensors, vocal prosody and speech detectors, and sleep quality assessment devices. We assess their effectiveness and study their limitations. We also examine the challenges faced by this growing field that need to be addressed before these technologies can perform up to their theoretical potential. PMID:28036004
Remote sensing utilization of developing countries: An appropriate technology
NASA Technical Reports Server (NTRS)
Conitz, M. W.; Lowe, D. S.
1977-01-01
The activities of the Agency for international development were discussed. Regional and national training centers were established to create an understanding of the role and impact of remote sensing on the developing process. Workshops, training seminars, and demonstration projects were conducted. Research on application was carried out and financial and technical assistance to build or strengthen a country's capability were granted.
Infrared Detector Activities at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Abedin, M. N.; Refaat, T. F.; Sulima, O. V.; Amzajerdian, F.
2008-01-01
Infrared detector development and characterization at NASA Langley Research Center will be reviewed. These detectors were intended for ground, airborne, and space borne remote sensing applications. Discussion will be focused on recently developed single-element infrared detector and future development of near-infrared focal plane arrays (FPA). The FPA will be applied to next generation space-based instruments. These activities are based on phototransistor and avalanche photodiode technologies, which offer high internal gain and relatively low noise-equivalent-power. These novel devices will improve the sensitivity of active remote sensing instruments while eliminating the need for a high power laser transmitter.
Ten years research activities in Earth observation at the Cyprus University of Technology
NASA Astrophysics Data System (ADS)
Hadjimitsis, Diofantos G.; Themistocleous, Kyriacos; Agapiou, Athos; Mamouri, Rodanthi; Nisantzi, Argyro; Papoutsa, Christiana; Tzouvaras, Marios; Neoclous, Kyriacos; Mettas, Christodoulos; Michaelides, Silas
2017-09-01
This paper presents the achievements for the last 10 years of the Remote Sensing and Geo-Environment Laboratory of the Cyprus University of Technology in the Earth observation through the ERATOSTHENES Research Centre. Over the past 10 years, the Centre has secured competitive research funding from various sources, such as the European Commission, the Cyprus Research Promotion Foundation, as well as industrial partners, having participated either as a coordinator or as a partner in more than 60 research projects. The research activities of the Centre encompass remote sensing and GIS applications in the fields of Cultural Heritage, Agriculture, Water Resource Management, Environment, Infrastructure, Marine Spatial Planning, Atmospheric, Air Pollution and Coastal Applications, Natural Resource Management and Hazard Assessment. The aim of this paper is to map the existing activities and identify the future trends and goals of the Eratosthenes Research Centre for the next 15 years.
COSMO-SkyMed and GIS applications
NASA Astrophysics Data System (ADS)
Milillo, Pietro; Sole, Aurelia; Serio, Carmine
2013-04-01
Geographic Information Systems (GIS) and Remote Sensing have become key technology tools for the collection, storage and analysis of spatially referenced data. Industries that utilise these spatial technologies include agriculture, forestry, mining, market research as well as the environmental analysis . Synthetic Aperture Radar (SAR) is a coherent active sensor operating in the microwave band which exploits relative motion between antenna and target in order to obtain a finer spatial resolution in the flight direction exploiting the Doppler effect. SAR have wide applications in Remote Sensing such as cartography, surface deformation detection, forest cover mapping, urban planning, disasters monitoring , surveillance etc… The utilization of satellite remote sensing and GIS technology for this applications has proven to be a powerful and effective tool for environmental monitoring. Remote sensing techniques are often less costly and time-consuming for large geographic areas compared to conventional methods, moreover GIS technology provides a flexible environment for, analyzing and displaying digital data from various sources necessary for classification, change detection and database development. The aim of this work si to illustrate the potential of COSMO-SkyMed data and SAR applications in a GIS environment, in particular a demostration of the operational use of COSMO-SkyMed SAR data and GIS in real cases will be provided for what concern DEM validation, river basin estimation, flood mapping and landslide monitoring.
Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors.
Fahad, Hossain Mohammad; Shiraki, Hiroshi; Amani, Matin; Zhang, Chuchu; Hebbar, Vivek Srinivas; Gao, Wei; Ota, Hiroki; Hettick, Mark; Kiriya, Daisuke; Chen, Yu-Ze; Chueh, Yu-Lun; Javey, Ali
2017-03-01
There is great interest in developing a low-power gas sensing technology that can sensitively and selectively quantify the chemical composition of a target atmosphere. Nanomaterials have emerged as extremely promising candidates for this technology due to their inherent low-dimensional nature and high surface-to-volume ratio. Among these, nanoscale silicon is of great interest because pristine silicon is largely inert on its own in the context of gas sensing, unless functionalized with an appropriate gas-sensitive material. We report a chemical-sensitive field-effect transistor (CS-FET) platform based on 3.5-nm-thin silicon channel transistors. Using industry-compatible processing techniques, the conventional electrically active gate stack is replaced by an ultrathin chemical-sensitive layer that is electrically nonconducting and coupled to the 3.5-nm-thin silicon channel. We demonstrate a low-power, sensitive, and selective multiplexed gas sensing technology using this platform by detecting H 2 S, H 2 , and NO 2 at room temperature for environment, health, and safety in the oil and gas industry, offering significant advantages over existing technology. Moreover, the system described here can be readily integrated with mobile electronics for distributed sensor networks in environmental pollution mapping and personal air-quality monitors.
Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors
Fahad, Hossain Mohammad; Shiraki, Hiroshi; Amani, Matin; Zhang, Chuchu; Hebbar, Vivek Srinivas; Gao, Wei; Ota, Hiroki; Hettick, Mark; Kiriya, Daisuke; Chen, Yu-Ze; Chueh, Yu-Lun; Javey, Ali
2017-01-01
There is great interest in developing a low-power gas sensing technology that can sensitively and selectively quantify the chemical composition of a target atmosphere. Nanomaterials have emerged as extremely promising candidates for this technology due to their inherent low-dimensional nature and high surface-to-volume ratio. Among these, nanoscale silicon is of great interest because pristine silicon is largely inert on its own in the context of gas sensing, unless functionalized with an appropriate gas-sensitive material. We report a chemical-sensitive field-effect transistor (CS-FET) platform based on 3.5-nm-thin silicon channel transistors. Using industry-compatible processing techniques, the conventional electrically active gate stack is replaced by an ultrathin chemical-sensitive layer that is electrically nonconducting and coupled to the 3.5-nm-thin silicon channel. We demonstrate a low-power, sensitive, and selective multiplexed gas sensing technology using this platform by detecting H2S, H2, and NO2 at room temperature for environment, health, and safety in the oil and gas industry, offering significant advantages over existing technology. Moreover, the system described here can be readily integrated with mobile electronics for distributed sensor networks in environmental pollution mapping and personal air-quality monitors. PMID:28378017
A Survey on Gas Sensing Technology
Liu, Xiao; Cheng, Sitian; Liu, Hong; Hu, Sha; Zhang, Daqiang; Ning, Huansheng
2012-01-01
Sensing technology has been widely investigated and utilized for gas detection. Due to the different applicability and inherent limitations of different gas sensing technologies, researchers have been working on different scenarios with enhanced gas sensor calibration. This paper reviews the descriptions, evaluation, comparison and recent developments in existing gas sensing technologies. A classification of sensing technologies is given, based on the variation of electrical and other properties. Detailed introduction to sensing methods based on electrical variation is discussed through further classification according to sensing materials, including metal oxide semiconductors, polymers, carbon nanotubes, and moisture absorbing materials. Methods based on other kinds of variations such as optical, calorimetric, acoustic and gas-chromatographic, are presented in a general way. Several suggestions related to future development are also discussed. Furthermore, this paper focuses on sensitivity and selectivity for performance indicators to compare different sensing technologies, analyzes the factors that influence these two indicators, and lists several corresponding improved approaches. PMID:23012563
Innovations in the Use of Interactive Technology to Support Weight Management
Spruijt-Metz, D.; Wen, C.K.F.; O’Reilly, G.; Li, M.; Lee, S; Emken, B.A.; Mitra, U.; Annavaram, M.; Ragusa, G.; Narayanan, S.
2015-01-01
New and emerging mobile technologies are providing unprecedented possibilities for understanding and intervening on obesity-related behaviors in real time. However, the mobile health (mHealth) field has yet to catch up with the fast-paced development of technology. Current mHealth efforts in weight management still tend to focus mainly on short message systems (SMS) interventions, rather than taking advantage of real-time sensing to develop Just-In-Time, Adaptive Interventions (JITAIs). This paper will give an overview of the current technology landscape for sensing and intervening on three behaviors that are central to weight management; diet, physical activity, and sleep. Then five studies that really dig into the possibilities that these new technologies afford will be showcased. We conclude with a discussion of hurdles that mHealth obesity research has yet to overcome, and a future-facing discussion. PMID:26364308
NASA Astrophysics Data System (ADS)
Tamondong, A.; Cruz, C.; Ticman, T.; Peralta, R.; Go, G. A.; Vergara, M.; Estabillo, M. S.; Cadalzo, I. E.; Jalbuena, R.; Blanco, A.
2016-06-01
Remote sensing has been an effective technology in mapping natural resources by reducing the costs and field data gathering time and bringing in timely information. With the launch of several earth observation satellites, an increase in the availability of satellite imageries provides an immense selection of data for the users. The Philippines has recently embarked in a program which will enable the gathering of LiDAR data in the whole country. The capacity of the Philippines to take advantage of these advancements and opportunities is lacking. There is a need to transfer the knowledge of remote sensing technology to other institutions to better utilize the available data. Being an archipelagic country with approximately 36,000 kilometers of coastline, and most of its people depending on its coastal resources, remote sensing is an optimal choice in mapping such resources. A project involving fifteen (15) state universities and colleges and higher education institutions all over the country headed by the University of the Philippines Training Center for Applied Geodesy and Photogrammetry and funded by the Department of Science and Technology was formed to carry out the task of capacity building in mapping the country's coastal resources using LiDAR and other remotely sensed datasets. This paper discusses the accomplishments and the future activities of the project.
Horizon: A Proposal for Large Aperture, Active Optics in Geosynchronous Orbit
NASA Technical Reports Server (NTRS)
Chesters, Dennis; Jenstrom, Del
2000-01-01
In 1999, NASA's New Millennium Program called for proposals to validate new technology in high-earth orbit for the Earth Observing-3 (NMP EO3) mission to fly in 2003. In response, we proposed to test a large aperture, active optics telescope in geosynchronous orbit. This would flight-qualify new technologies for both Earth and Space science: 1) a future instrument with LANDSAT image resolution and radiometric quality watching continuously from geosynchronous station, and 2) the Next Generation Space Telescope (NGST) for deep space imaging. Six enabling technologies were to be flight-qualified: 1) a 3-meter, lightweight segmented primary mirror, 2) mirror actuators and mechanisms, 3) a deformable mirror, 4) coarse phasing techniques, 5) phase retrieval for wavefront control during stellar viewing, and 6) phase diversity for wavefront control during Earth viewing. Three enhancing technologies were to be flight- validated: 1) mirror deployment and latching mechanisms, 2) an advanced microcontroller, and 3) GPS at GEO. In particular, two wavefront sensing algorithms, phase retrieval by JPL and phase diversity by ERIM International, were to sense optical system alignment and focus errors, and to correct them using high-precision mirror mechanisms. Active corrections based on Earth scenes are challenging because phase diversity images must be collected from extended, dynamically changing scenes. In addition, an Earth-facing telescope in GEO orbit is subject to a powerful diurnal thermal and radiometric cycle not experienced by deep-space astronomy. The Horizon proposal was a bare-bones design for a lightweight large-aperture, active optical system that is a practical blend of science requirements, emerging technologies, budget constraints, launch vehicle considerations, orbital mechanics, optical hardware, phase-determination algorithms, communication strategy, computational burdens, and first-rate cooperation among earth and space scientists, engineers and managers. This manuscript presents excerpts from the Horizon proposal's sections that describe the Earth science requirements, the structural -thermal-optical design, the wavefront sensing and control, and the on-orbit validation.
ERIC Educational Resources Information Center
Andrade, Alejandro; Danish, Joshua A.; Maltese, Adam V.
2017-01-01
Interactive learning environments with body-centric technologies lie at the intersection of the design of embodied learning activities and multimodal learning analytics. Sensing technologies can generate large amounts of fine-grained data automatically captured from student movements. Researchers can use these fine-grained data to create a…
Space electronics technology summary
NASA Technical Reports Server (NTRS)
1976-01-01
An overview is given of current electronics R and D activities, potential future thrusts, and related NASA payoffs. Major increases in NASA mission return and significant concurrent reductions in mission cost appear possible through a focused, long range electronics technology program. The overview covers: guidance assessments, navigation and control, and sensing and data acquisition processing, storage, and transfer.
ERIC Educational Resources Information Center
Brewster, Joy
2001-01-01
Presents five technology-based activities to teach elementary students about the human body, including: creating a heartbeat graph; charting the benefits of exercise; playing a "sense"ational card game; reading online stories from three children living with various conditions or illnesses; and examining diagrams of the human body that have been…
Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review
Ge, Chang; Wang, Z. Jane; Cretu, Edmond; Li, Xiaoou
2017-01-01
During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted. PMID:29149080
Eastern Regional Remote Sensing Applications Conference
NASA Technical Reports Server (NTRS)
Short, N. M. (Editor)
1981-01-01
The roles and activities of NASA and the National Conference of State Legislatures in fostering remote sensing technology utilization by the states and in promoting interstate communication and cooperation are reviewed. The reduction and interpretation of LANDSAT MSS and aerial reconnaissance data for resources management and environment assessment are described as well as resource information systems, and the value of SEASAT synthetic aperture radar and LANDSAT 4 data.
NASA Technical Reports Server (NTRS)
Runco, Susan K.; Pickard,Henry; Kowtha, Vijayanand; Jackson, Dan
2011-01-01
Universities and secondary schools can help solve a real issue for remote sensing from the ISS WORF through hands-on engineering and activities. Remote sensing technology is providing scientists with higher resolution, higher sensitivity sensors. Where is it pointing? - To take full advantage of these improved sensors, space platforms must provide commensurate improvements in attitude determination
Potential Collaborative Research topics with Korea’s Agency for Defense Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, Charles R.; Todd, Michael D.
2012-08-23
This presentation provides a high level summary of current research activities at the Los Alamos National Laboratory (LANL)-University of California Jacobs School of Engineering (UCSD) Engineering Institute that will be presented at Korea's Agency for Defense Development (ADD). These research activities are at the basic engineering science level with different level of maturity ranging from initial concepts to field proof-of-concept demonstrations. We believe that all of these activities are appropriate for collaborative research activities with ADD subject to approval by each institution. All the activities summarized herein have the common theme that they are multi-disciplinary in nature and typically involvedmore » the integration of high-fidelity predictive modeling, advanced sensing technologies and new development in information technology. These activities include: Wireless Sensor Systems, Swarming Robot sensor systems, Advanced signal processing (compressed sensing) and pattern recognition, Model Verification and Validation, Optimal/robust sensor system design, Haptic systems for large-scale data processing, Cyber-physical security for robots, Multi-source energy harvesting, Reliability-based approaches to damage prognosis, SHMTools software development, and Cyber-physical systems advanced study institute.« less
NASA Technical Reports Server (NTRS)
Velez-Rodriguez, Linda L. (Principal Investigator)
1996-01-01
Aerial photography, one of the first form of remote sensing technology, has long been an invaluable means to monitor activities and conditions at the Earth's surface. Geographic Information Systems or GIS is the use of computers in showing and manipulating spatial data. This report will present the use of geographic information systems and remote sensing technology for monitoring land use and soil carbon change in the subtropical dry forest life zone of Puerto Rico. This research included the south of Puerto Rico that belongs to the subtropical dry forest life zone. The Guanica Commonwealth Forest Biosphere Reserve and the Jobos Bay National Estuarine Research Reserve are studied in detail, because of their location in the subtropical dry forest life zone. Aerial photography, digital multispectral imagery, soil samples, soil survey maps, field inspections, and differential global positioning system (DGPS) observations were used.
Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas
2015-09-07
In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process.
Chem/bio sensing with non-classical light and integrated photonics.
Haas, J; Schwartz, M; Rengstl, U; Jetter, M; Michler, P; Mizaikoff, B
2018-01-29
Modern quantum technology currently experiences extensive advances in applicability in communications, cryptography, computing, metrology and lithography. Harnessing this technology platform for chem/bio sensing scenarios is an appealing opportunity enabling ultra-sensitive detection schemes. This is further facilliated by the progress in fabrication, miniaturization and integration of visible and infrared quantum photonics. Especially, the combination of efficient single-photon sources together with waveguiding/sensing structures, serving as active optical transducer, as well as advanced detector materials is promising integrated quantum photonic chem/bio sensors. Besides the intrinsic molecular selectivity and non-destructive character of visible and infrared light based sensing schemes, chem/bio sensors taking advantage of non-classical light sources promise sensitivities beyond the standard quantum limit. In the present review, recent achievements towards on-chip chem/bio quantum photonic sensing platforms based on N00N states are discussed along with appropriate recognition chemistries, facilitating the detection of relevant (bio)analytes at ultra-trace concentration levels. After evaluating recent developments in this field, a perspective for a potentially promising sensor testbed is discussed for reaching integrated quantum sensing with two fiber-coupled GaAs chips together with semiconductor quantum dots serving as single-photon sources.
NASA Technical Reports Server (NTRS)
1991-01-01
The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, U.S. and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.
2004-12-01
monitoring, diabetes, IGF-I, patient decision assist, hyperspectral imaging, actigraphy, accelerometry, foot contact time, Con A-glucose sensing, lactate...was reduced in both con - mottling, and rebound of a skin fold could all ditions. contribute to a diagnosis. Current technologies Hyperspectral imaging...information such as ambient con - responses in the context of various external ditions, meals and recent activity, and specific challenges ("green light
Use of Remote Sensing for Decision Support in Africa
NASA Technical Reports Server (NTRS)
Policelli, Frederick S.
2007-01-01
Over the past 30 years, the scientific community has learned a great deal about the Earth as an integrated system. Much of this research has been enabled by the development of remote sensing technologies and their operation from space. Decision makers in many nations have begun to make use of remote sensing data for resource management, policy making, and sustainable development planning. This paper makes an attempt to provide a survey of the current state of the requirements and use of remote sensing for sustainable development in Africa. This activity has shown that there are not many climate data ready decision support tools already functioning in Africa. There are, however, endusers with known requirements who could benefit from remote sensing data.
Technology and business practices that work.
DOT National Transportation Integrated Search
2013-04-01
This report highlights exciting activities in five states today that have potential for : implementation in other departments of transportation. The variety is impressive, and : the sense of innovation inspiring. : In Florida, deliberate decision-mak...
REMOTE SENSING TECHNOLOGIES APPLICATIONS RESEARCH
Remote sensing technologies applications research supports the ORD Landscape Sciences Program (LSP) in two separate areas: operational remote sensing, and remote sensing research and development. Operational remote sensing is provided to the LSP through the use of current and t...
Active microwave users working group program planning
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Bare, J.; Brown, W. E., Jr.; Childs, L. F.; Dellwig, L. F.; Heighway, J. E.; Joosten, R.; Lewis, A. J.; Linlor, W.; Lundien, J. R.
1978-01-01
A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured.
Ground-Based Icing Condition Remote Sensing System Definition
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Koenig, George G.
2001-01-01
This report documents the NASA Glenn Research Center activities to assess and down select remote sensing technologies for the purpose of developing a system capable of measuring icing condition hazards aloft. The information generated by such a remote sensing system is intended for use by the entire aviation community, including flight crews. air traffic controllers. airline dispatchers, and aviation weather forecasters. The remote sensing system must be capable of remotely measuring temperature and liquid water content (LWC), and indicating the presence of super-cooled large droplets (SLD). Technologies examined include Profiling Microwave Radiometer, Dual-Band Radar, Multi-Band Radar, Ka-Band Radar. Polarized Ka-Band Radar, and Multiple Field of View (MFOV) Lidar. The assessment of these systems took place primarily during the Mt. Washington Icing Sensors Project (MWISP) in April 1999 and the Alliance Icing Research Study (AIRS) from November 1999 to February 2000. A discussion of the various sensing technologies is included. The result of the assessment is that no one sensing technology can satisfy all of the stated project goals. Therefore a proposed system includes radiometry and Ka-band radar. A multilevel approach is proposed to allow the future selection of the fielded system based upon required capability and available funding. The most basic level system would be the least capable and least expensive. The next level would increase capability and cost, and the highest level would be the most capable and most expensive to field. The Level 1 system would consist of a Profiling Microwave Radiometer. The Level 2 system would add a Ka-Band Radar. The Level 3 system would add polarization to the Ka-Band Radar. All levels of the system would utilize hardware that is already under development by the U.S. Government. However, to meet the needs of the aviation community, all levels of the system will require further development. In addition to the proposed system, it is also recommended that NASA continue to foster the development of Multi-Band Radar and airborne microwave radiometer technologies.
Healthy Video Gaming: Oxymoron or Possibility?
ERIC Educational Resources Information Center
Yang, Stephen; Smith, Brian; Graham, George
2008-01-01
Stephen Yang, Brian Smith, and George Graham explore the potential of exergames as a tool to combat the growing problem of childhood and adolescent obesity. Exergames rely on sensing technology that allows on-screen activity to be controlled through physical activity, rather than through operation of a handheld controller. Researchers frequently…
Sturdevant, J.A.
1981-01-01
The Earth Resources Observation Systems (EROS) Data Center (EDO, administered by the U.S. Geological Survey, U.S. Department of the Interior, provides remotely sensed data to the user community and offers a variety of professional services to further the understanding and use of remote sensing technology. EDC reproduces and sells photographic and electronic copies of satellite images of areas throughout the world. Other products include aerial photographs collected by 16 organizations, including the U.S. Geological Survey and the National Aeronautics and Space Administration. Primary users of the remotely sensed data are Federal, State, and municipal government agencies, universities, foreign nations, and private industries. The professional services available at EDC are primarily directed at integrating satellite and aircraft remote sensing technology into the programs of the Department of the Interior and its cooperators. This is accomplished through formal training workshops, user assistance, cooperative demonstration projects, and access to equipment and capabilities in an advanced data analysis laboratory. In addition, other Federal agencies, State and local governments, universities, and the general public can get assistance from the EDC Staff. Since 1973, EDC has contributed to the accelerating growth in development and operational use of remotely sensed data for land resource problems through its role as educator and by conducting basic and applied remote sensing applications research. As remote sensing technology continues to evolve, EDC will continue to respond to the increasing demand for timely information on remote sensing applications. Questions most often asked about EDC's research and training programs include: Who may attend an EDC remote sensing training course? Specifically, what is taught? Who may cooperate with EDC on remote sensing projects? Are interpretation services provided on a service basis? This report attempts to define the goals and objectives of and policies on the following EDC services: Training Program.User Assistance.Data Analysis Laboratory.Cooperative Demonstration Projects.Research Projects.
NASA Astrophysics Data System (ADS)
DeFelice, T. P.; Axisa, Duncan
2017-09-01
This paper builds upon the processes and framework already established for identifying, integrating and testing an unmanned aircraft system (UAS) with sensing technology for use in rainfall enhancement cloud seeding programs to carry out operational activities or to monitor and evaluate seeding operations. We describe the development and assessment methodologies of an autonomous and adaptive UAS platform that utilizes in-situ real time data to sense, target and implement seeding. The development of a UAS platform that utilizes remote and in-situ real-time data to sense, target and implement seeding deployed with a companion UAS ensures optimal, safe, secure, cost-effective seeding operations, and the dataset to quantify the results of seeding. It also sets the path for an innovative, paradigm shifting approach for enhancing precipitation independent of seeding mode. UAS technology is improving and their application in weather modification must be explored to lay the foundation for future implementation. The broader significance lies in evolving improved technology and automating cloud seeding operations that lowers the cloud seeding operational footprint and optimizes their effectiveness and efficiency, while providing the temporal and spatial sensitivities to overcome the predictability or sparseness of environmental parameters needed to identify conditions suitable for seeding, and how such might be implemented. The dataset from the featured approach will contain data from concurrent Eulerian and Lagrangian perspectives over sub-cloud scales that will facilitate the development of cloud seeding decision support tools.
Li, Wen-Jie; Zhang, Shi-Huang; Wang, Hui-Min
2011-12-01
Ecosystem services evaluation is a hot topic in current ecosystem management, and has a close link with human beings welfare. This paper summarized the research progress on the evaluation of ecosystem services based on geographic information system (GIS) and remote sensing (RS) technology, which could be reduced to the following three characters, i. e., ecological economics theory is widely applied as a key method in quantifying ecosystem services, GIS and RS technology play a key role in multi-source data acquisition, spatiotemporal analysis, and integrated platform, and ecosystem mechanism model becomes a powerful tool for understanding the relationships between natural phenomena and human activities. Aiming at the present research status and its inadequacies, this paper put forward an "Assembly Line" framework, which was a distributed one with scalable characteristics, and discussed the future development trend of the integration research on ecosystem services evaluation based on GIS and RS technologies.
Nanogenerators for Self-Powered Gas Sensing
NASA Astrophysics Data System (ADS)
Wen, Zhen; Shen, Qingqing; Sun, Xuhui
2017-10-01
Looking toward world technology trends over the next few decades, self-powered sensing networks are a key field of technological and economic driver for global industries. Since 2006, Zhong Lin Wang's group has proposed a novel concept of nanogenerators (NGs), including piezoelectric nanogenerator and triboelectric nanogenerator, which could convert a mechanical trigger into an electric output. Considering motion ubiquitously exists in the surrounding environment and for any most common materials used every day, NGs could be inherently served as an energy source for our daily increasing requirements or as one of self-powered environmental sensors. In this regard, by coupling the piezoelectric or triboelectric properties with semiconducting gas sensing characterization, a new research field of self-powered gas sensing has been proposed. Recent works have shown promising concept to realize NG-based self-powered gas sensors that are capable of detecting gas environment without the need of external power sources to activate the gas sensors or to actively generate a readout signal. Compared with conventional sensors, these self-powered gas sensors keep the approximate performance. Meanwhile, these sensors drastically reduce power consumption and additionally reduce the required space for integration, which are significantly suitable for the wearable devices. This paper gives a brief summary about the establishment and latest progress in the fundamental principle, updated progress and potential applications of NG-based self-powered gas sensing system. The development trend in this field is envisaged, and the basic configurations are also introduced.
Polarimetric Hyperspectral Imaging Systems and Applications
NASA Technical Reports Server (NTRS)
Cheng, Li-Jen; Mahoney, Colin; Reyes, George; Baw, Clayton La; Li, G. P.
1996-01-01
This paper reports activities in the development of AOTF Polarimetric Hyperspectral Imaging (PHI) Systems at JPL along with field observation results for illustrating the technology capabilities and advantages in remote sensing. In addition, the technology was also used to measure thickness distribution and structural imperfections of silicon-on-silicon wafers using white light interference phenomenon for demonstrating the potential in scientific and industrial applications.
AgRISTARS: Agriculture and resources inventory surveys through aerospace remote sensing
NASA Technical Reports Server (NTRS)
1982-01-01
The rationale, objectives, participants, and approach of the AgRISTARS program are described. Progress is reported in activities related to early warning and crop condition assessment; inventory technology development (formerly foreign commodity production forecasting); yield model development; supporting research; soil moisture; renewable resources inventory; domestic crops and land cover; and conservation and pollution. Emphasis is on technological highlights.
Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) Implementation Study
NASA Technical Reports Server (NTRS)
Stadler, John H.; Browell, Edward V.; Ismail, Syed; Dudelzak, Alexander E.; Ball, Donald J.
1998-01-01
New technological advances have made possible new active remote sensing capabilities from space. Utilizing these technologies, the Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) will provide high spatial resolution measurements of ozone, clouds and aerosols in the stratosphere and lower troposphere. Simultaneous measurements of ozone, clouds and aerosols will assist in the understanding of global change, atmospheric chemistry and meteorology.
A Brief Overview of NASA Glenn Research Center Sensor and Electronics Activities
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2012-01-01
Aerospace applications require a range of sensing technologies. There is a range of sensor and sensor system technologies being developed using microfabrication and micromachining technology to form smart sensor systems and intelligent microsystems. Drive system intelligence to the local (sensor) level -- distributed smart sensor systems. Sensor and sensor system development examples: (1) Thin-film physical sensors (2) High temperature electronics and wireless (3) "lick and stick" technology. NASA GRC is a world leader in aerospace sensor technology with a broad range of development and application experience. Core microsystems technology applicable to a range of application environmentS.
A self-sensing active magnetic bearing based on a direct current measurement approach.
Niemann, Andries C; van Schoor, George; du Rand, Carel P
2013-09-11
Active magnetic bearings (AMBs) have become a key technology in various industrial applications. Self-sensing AMBs provide an integrated sensorless solution for position estimation, consolidating the sensing and actuating functions into a single electromagnetic transducer. The approach aims to reduce possible hardware failure points, production costs, and system complexity. Despite these advantages, self-sensing methods must address various technical challenges to maximize the performance thereof. This paper presents the direct current measurement (DCM) approach for self-sensing AMBs, denoting the direct measurement of the current ripple component. In AMB systems, switching power amplifiers (PAs) modulate the rotor position information onto the current waveform. Demodulation self-sensing techniques then use bandpass and lowpass filters to estimate the rotor position from the voltage and current signals. However, the additional phase-shift introduced by these filters results in lower stability margins. The DCM approach utilizes a novel PA switching method that directly measures the current ripple to obtain duty-cycle invariant position estimates. Demodulation filters are largely excluded to minimize additional phase-shift in the position estimates. Basic functionality and performance of the proposed self-sensing approach are demonstrated via a transient simulation model as well as a high current (10 A) experimental system. A digital implementation of amplitude modulation self-sensing serves as a comparative estimator.
Solid State Laser Technology Development for Atmospheric Sensing Applications
NASA Technical Reports Server (NTRS)
Barnes, James C.
1998-01-01
NASA atmospheric scientists are currently planning active remote sensing missions that will enable global monitoring of atmospheric ozone, water vapor, aerosols and clouds as well as global wind velocity. The measurements of these elements and parameters are important because of the effects they have on climate change, atmospheric chemistry and dynamics, atmospheric transport and, in general, the health of the planet. NASA will make use of Differential Absorption Lidar (DIAL) and backscatter lidar techniques for active remote sensing of molecular constituents and atmospheric phenomena from advanced high-altitude aircraft and space platforms. This paper provides an overview of NASA Langley Research Center's (LaRC's) development of advanced solid state lasers, harmonic generators, and wave mixing techniques aimed at providing the broad range of wavelengths necessary to meet measurement goals of NASA's Earth Science Enterprise.
Flood- and drought-related natural hazards activities of the U.S. Geological Survey in New England
Lombard, Pamela J.
2016-03-23
Tools for natural hazard assessment and mitigation • Light detection and ranging (lidar) remote sensing technology • StreamStats Web-based tool for streamflow statistics • Flood inundation mapper
NASA Technical Reports Server (NTRS)
Martinko, E. A.; Merchant, J. W.
1986-01-01
The University of Kansas Applied Remote Sensing (KARS) program is engaged in a continuing long term research and development effort designed to reveal and facilitate new applications of remote sensing technology for decision makers in governmental agencies and private firms. Some objectives of the program follows. The development of new modes of analyzing multispectral scanner, aerial camera, thermal scanner, and radar data, singly or in concert in order to more effectively use these systems. Merge data derived from remote sensing with data derived from conventional sources in geographic information systems to facilitate better environmental planning. Stimulation of the application of the products of remote sensing systems to problems of resource management and environmental quality now being addressed in NASA's Global Habitability directive. The application of remote sensing techniques and analysis and geographic information systems technology to the solution of significant concerns of state and local officials and private industry. The guidance, assistance and stimulation of faculty, staff and students in the utilization of information from the Earth Resources Satellite (LANDSAT) and Aircraft Programs of NASA in research, education, and public service activities carried at the University of Kansas.
Radar activities of the DFVLR Institute for Radio Frequency Technology
NASA Technical Reports Server (NTRS)
Keydel, W.
1983-01-01
Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.
The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce
NASA Astrophysics Data System (ADS)
Chen, Xi; Zhou, Liqing
2015-12-01
With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.
NASA Technical Reports Server (NTRS)
1987-01-01
A Health Maintenance Facility is currently under development for space station application which will provide capabilities equivalent to those found on Earth. This final report addresses the study of alternate means of diagnosis and evaluation of impaired tissue perfusion in a microgravity environment. Chemical data variables related to the dysfunction and the sensors required to measure these variables are reviewed. A technology survey outlines the ability of existing systems to meet these requirements. How the candidate sensing system was subjected to rigorous testing is explored to determine its suitability. Recommendations for follow-on activities are included that would make the commercial system more appropriate for space station applications.
Review of silicon photonics: history and recent advances
NASA Astrophysics Data System (ADS)
Ye, Winnie N.; Xiong, Yule
2013-09-01
Silicon photonics has attracted tremendous attention and research effort as a promising technology in optoelectronic integration for computing, communications, sensing, and solar harvesting. Mainly due to the combination of its excellent material properties and the complementary metal-oxide semiconductor (CMOS) fabrication processing technology, silicon has becoming the material choice for photonic and optoelectronic circuits with low cost, ultra-compact device footprint, and high-density integration. This review paper provides an overview on silicon photonics, by highlighting the early work from the mid-1980s on the fundamental building blocks such as silicon platforms and waveguides, and the main milestones that have been achieved so far in the field. A summary of reported work on functional elements in both passive and active devices, as well as the applications of the technology in interconnect, sensing, and solar cells, is identified.
Research activity of the greenhouse gas measurements using optical remote sensing in Japan (Invited)
NASA Astrophysics Data System (ADS)
Asai, K.
2009-12-01
Japan might be one of the most active countries dedicating themselves to studying the greenhouse gas (GHG) measurements using optical remote sensing not only on the ground but also from space. There are two reasons; one of them ascends to the Kyoto Protocol, agreed in December 1997 in Kyoto, an ancient city of Japan until 19th centuries, was designed to address the international response to serious climate change due to greenhouse gases. The other reason is due to a revision of the Basic Environment Law of Japan in order to meet the Kyoto Protocol in 1998. The State makes efforts to ensure international collaboration so as to effectively promote the monitoring, observation and measurement of the environmental situation with regard to global warming. Main activities are listed in a Table1. They are divided into two categories, i.e. the Greenhouse gases Observing SATellite (GOSAT), launched on Jan.23, 2009 and active remote sensing using lidar technology. In case of GOSAT, an initial analysis of carbon dioxide and methane concentrations was obtained for clear-sky scenes over land. In the future, after further calibration and validation of the data, observation data and corresponding analyzed products will be made available. On the other hand, studies of the laser remote sensing for measuring GHG have been actively carrying out to achieve reliable data with a higher accuracy at wavelengths of 1.6micron meter (Tokyo Metropolitan University, JAXA, Mitsubishi Electric Co.) and 2 micron meter (National Institute of Information and Communications Technology). As well-known, one of the most interests regarding atmospheric CO2 measurements is that carbon dioxide molecule measured are due to anthropological emission from fossil fuel burning or due to natural one from forest fires etc. We proposed a newly advanced CO2/CO DIAL using a hybrid of pulsed Tm,Ho:YLF and pulsed OPO pumped by it for better understanding them. Now, our effort is directed to find out the most suitable wavelength pairs to be selected.Activities of optical remote sensing for GHG in Japan
Electrochemical Sensing for a Rapidly Evolving World
NASA Astrophysics Data System (ADS)
Mullen, Max Robertson
This dissertation focuses on three projects involving the development of harsh environment gas sensors. The first project discusses the development of a multipurpose oxygen sensor electrode for use in sealing with the common electrolyte yttria stabilized zirconia. The purpose of the sealing function is to produce an internal reference environment maintained by a metal/metal oxide mixture, a criteria for miniaturization of potentiometric oxygen sensing technology. This sensor measures a potential between the internal reference and a sensing environment. The second project discusses the miniaturization of an oxygen sensor and the fabrication of a more generalized electrochemical sensing platform. The third project discusses the discovery of a new mechanism in the electrochemical sensing of ammonia through molecular recognition and the utilization of a sensor taking advantage of the new mechanism. An initial study involving the development of a microwave synthesized La0.8Sr0.2Al0.9Mn0.1O3 sensor electrode material illustrates the ability of the material developed to meet ionic and electronic conducting requirements for effective and Nernstian oxygen sensing. In addition the material deforms plastically under hot isostatic pressing conditions in a similar temperature and pressure regime with yttria stabilized zirconia to produce a seal and survive temperatures up to 1350 °C. In the second project we show novel methods to seal an oxygen environment inside a device cavity to produce an electrochemical sensor body using room temperature plasma-activated bonding and low temperature and pressure assisted plasma-activated bonding with silicon bodies, both in a clean room environment. The evolution from isostatic hot pressing methods towards room temperature complementary metal oxide semiconductor (CMOS) compatible technologies using single crystal silicon substrates in the clean room allows the sealing of devices on a much larger scale. Through this evolution in bonding technology we move from performing non-scalable experiments to produce one sensor at a time to scalable experiments producing six. The bonding methods we use are compatible with wafer scale processing. Practically speaking this means that the oxygen sensor design is scalable to produce thousands of sensors from one single bond. Using this bonding technology we develop a generalized sensing platform that could be used for a variety of sensing applications, including oxygen sensing, but also potentially involving CO2 or NOx as well. Future efforts will involve completing of O2 sensor construction and adaption of the design for CO2 and NOx sensing. The final project focuses on a novel ammonia sensor and sensing mechanism in Ag loaded zeolite Y. The sensor resistance changes upon exposure to ammonia due to the molecular recognition of Ag+ and ammonia, producing Ag(NH3)x+ species. The sensing mechanism is a Grothuss like mechanism based on the hoping of Ag+ centers. The hopping frequency of Ag+ changes upon introduction of ammonia due to the reduced electrostatic interactions between Ag+ and the negatively charged zeolite framework upon formation of Ag(NH3) x+. The change in hopping frequency results in a measurable change in impedance.
New Concepts in Electromagnetic Materials and Antennas
2015-01-01
Bae-Ian Wu Antennas & Electromagnetics Technology Branch Multispectral Sensing & Detection Division JANUARY 2015 Final Report...Signature// //Signature// BRADLEY A. KRAMER, Program Manager TONY C. KIM, Branch Chief Antenna & Electromagnetic Technology ...Branch Antenna & Electromagnetic Technology Branch Multispectral Sensing & Detection Division Multispectral Sensing & Detection Division
NASA Astrophysics Data System (ADS)
Anheier, N. C., Jr.; McDonald, C. E.; Cuta, J. M.; Cuta, F. M.; Olsen, K. B.
1995-05-01
This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. Pacific Northwest Laboratory (PNL) researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH4(+)). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.
Applications of FBG sensors on telecom satellites
NASA Astrophysics Data System (ADS)
Abad, S.; Araújo, F. M.; Ferreira, L. A.; Pedersen, F.; Esteban, M. A.; McKenzie, I.; Karafolas, N.
2017-11-01
Monitoring needs of spacecraft are rapidly increasing due to new and more challenging missions, along with demands to reduce launching costs by minimizing the manufacture, assembly, integration and test time and employing new low weight materials balanced by the need for maximizing system lifetime while maintaining good reliability. Conventional electronic sensors are characterized by their low multiplexing capability and their EMI/RF susceptibility and it is in this scenario that Fiber Optic Sensors (FOS) in general, and more specifically Fiber Bragg Grating (FBG) technology offers important benefits, improving in various ways the already deployed sensing subsystems (e.g. reducing the weight associated with sensor cabling, increasing the number of sensing points) and enabling new monitoring applications that were not possible by using conventional sensing technologies. This work presents the activities performed and the lessons learnt in the frame of ESA's ARTES-5 project "Fiber Optic Sensing Subsystem for Spacecraft Health Monitoring in Telecommunication Satellites". This project finished in July 2009, with the implementation and testing of two different demonstrators employing FBG sensor technology: FBG sensors for temperature monitoring in high voltage environments, and in particular in several parts of electric propulsion subsystems [1], and FBG sensors for thermal monitoring of array-antennas during RF testing [2]. In addition, the contacts performed with different actors within the space community allowed the identification of a special area of interest for the substitution of regular thermocouple instrumentation by FBG technology for thermal vacuum ground testing of satellites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfmeyer, Volker; Hardesty, R. Michael; Turner, David D.
A review of remote sensing technology for lower tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer—usually characterized by an inversion—and the lowermore » troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global navigation satellite system, as well as water vapor and temperature Raman lidar and water vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
Tracking Activities in Complex Settings Using Smart Environment Technologies.
Singla, Geetika; Cook, Diane J; Schmitter-Edgecombe, Maureen
2009-01-01
The pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. A primary challenge that needs to be tackled to meet this need is the ability to recognize and track functional activities that people perform in their own homes and everyday settings. In this paper we look at approaches to perform real-time recognition of Activities of Daily Living. We enhance other related research efforts to develop approaches that are effective when activities are interrupted and interleaved. To evaluate the accuracy of our recognition algorithms we assess them using real data collected from participants performing activities in our on-campus smart apartment testbed.
JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.
1991-01-17
Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,
Virtual reality applications to automated rendezvous and capture
NASA Technical Reports Server (NTRS)
Hale, Joseph; Oneil, Daniel
1991-01-01
Virtual Reality (VR) is a rapidly developing Human/Computer Interface (HCI) technology. The evolution of high-speed graphics processors and development of specialized anthropomorphic user interface devices, that more fully involve the human senses, have enabled VR technology. Recently, the maturity of this technology has reached a level where it can be used as a tool in a variety of applications. This paper provides an overview of: VR technology, VR activities at Marshall Space Flight Center (MSFC), applications of VR to Automated Rendezvous and Capture (AR&C), and identifies areas of VR technology that requires further development.
Probe-pin device for optical neurotransmitter sensing in the brain
NASA Astrophysics Data System (ADS)
Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon; Park, Yeonjoon; Choi, Sang H.; Lee, Dae-Sung; Shin, Kyu-Sik; Hwang, Hak-In; Lee, Uhn
2015-04-01
Development of an optical neurotransmitter sensing device using nano-plasmonic probes and a micro-spectrometer for real time monitoring of neural signals in the brain is underway. Clinical application of this device technology is to provide autonomous closed-loop feedback control to a deep brain stimulation (DBS) system and enhance the accuracy and efficacy of DBS treatment. By far, we have developed an implantable probe-pin device based on localized field enhancement of surface plasmonic resonance on a nanostructured sensing domain which can amplify neurochemical signals from evoked neural activity in the brain. In this paper, we will introduce the details of design and sensing performance of a proto-typed microspectrometer and nanostructured probing devices for real time measurement of neurotransmitter concentrations.
Diraco, Giovanni; Leone, Alessandro; Siciliano, Pietro
2017-11-24
Continuous in-home monitoring of older adults living alone aims to improve their quality of life and independence, by detecting early signs of illness and functional decline or emergency conditions. To meet requirements for technology acceptance by seniors (unobtrusiveness, non-intrusiveness, and privacy-preservation), this study presents and discusses a new smart sensor system for the detection of abnormalities during daily activities, based on ultra-wideband radar providing rich, not privacy-sensitive, information useful for sensing both cardiorespiratory and body movements, regardless of ambient lighting conditions and physical obstructions (through-wall sensing). The radar sensing is a very promising technology, enabling the measurement of vital signs and body movements at a distance, and thus meeting both requirements of unobtrusiveness and accuracy. In particular, impulse-radio ultra-wideband radar has attracted considerable attention in recent years thanks to many properties that make it useful for assisted living purposes. The proposed sensing system, evaluated in meaningful assisted living scenarios by involving 30 participants, exhibited the ability to detect vital signs, to discriminate among dangerous situations and activities of daily living, and to accommodate individual physical characteristics and habits. The reported results show that vital signs can be detected also while carrying out daily activities or after a fall event (post-fall phase), with accuracy varying according to the level of movements, reaching up to 95% and 91% in detecting respiration and heart rates, respectively. Similarly, good results were achieved in fall detection by using the micro-motion signature and unsupervised learning, with sensitivity and specificity greater than 97% and 90%, respectively.
Leone, Alessandro; Siciliano, Pietro
2017-01-01
Continuous in-home monitoring of older adults living alone aims to improve their quality of life and independence, by detecting early signs of illness and functional decline or emergency conditions. To meet requirements for technology acceptance by seniors (unobtrusiveness, non-intrusiveness, and privacy-preservation), this study presents and discusses a new smart sensor system for the detection of abnormalities during daily activities, based on ultra-wideband radar providing rich, not privacy-sensitive, information useful for sensing both cardiorespiratory and body movements, regardless of ambient lighting conditions and physical obstructions (through-wall sensing). The radar sensing is a very promising technology, enabling the measurement of vital signs and body movements at a distance, and thus meeting both requirements of unobtrusiveness and accuracy. In particular, impulse-radio ultra-wideband radar has attracted considerable attention in recent years thanks to many properties that make it useful for assisted living purposes. The proposed sensing system, evaluated in meaningful assisted living scenarios by involving 30 participants, exhibited the ability to detect vital signs, to discriminate among dangerous situations and activities of daily living, and to accommodate individual physical characteristics and habits. The reported results show that vital signs can be detected also while carrying out daily activities or after a fall event (post-fall phase), with accuracy varying according to the level of movements, reaching up to 95% and 91% in detecting respiration and heart rates, respectively. Similarly, good results were achieved in fall detection by using the micro-motion signature and unsupervised learning, with sensitivity and specificity greater than 97% and 90%, respectively. PMID:29186786
ERIC Educational Resources Information Center
Sad, Suleyman Nihat
2012-01-01
Problem statement: Parental involvement is used as an umbrella term to imply parents' efforts to take an active role in their children's education. In this sense it takes many forms ranging from parent-child communication to participating/volunteering in school activities. Although parental involvement is one condition for students' success, the…
NASA Astrophysics Data System (ADS)
Rissanen, Anna; Guo, Bin; Saari, Heikki; Näsilä, Antti; Mannila, Rami; Akujärvi, Altti; Ojanen, Harri
2017-02-01
VTT's Fabry-Perot interferometers (FPI) technology enables creation of small and cost-efficient microspectrometers and hyperspectral imagers - these robust and light-weight sensors are currently finding their way into a variety of novel applications, including emerging medical products, automotive sensors, space instruments and mobile sensing devices. This presentation gives an overview of our core FPI technologies with current advances in generation of novel sensing applications including recent mobile technology demonstrators of a hyperspectral iPhone and a mobile phone CO2 sensor, which aim to advance mobile spectroscopic sensing.
NASA Technical Reports Server (NTRS)
DeYoung, R. J.; Bergstralh, J. T.
2005-01-01
Introduction: With the anticipated development of high-capacity fission power and electric propulsion for deep-space missions, it will become possible to propose experiments that demand higher power than current technologies (e.g. radioisotope power sources) provide. Jupiter Icy Moons Orbiter (JIMO), the first mission in the Project Prometheus program, will explore the icy moons of Jupiter with a suite of high-capability experiments that take advantage of the high power levels (and indirectly, the high data rates) that fission power affords. This abstract describes two high-capability active-remote-sensing experiments that will be logical candidates for subsequent Prometheus-class missions.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta; Yu, Jirong
2015-01-01
The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-micron laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-micron integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.
Remote sensing for rural development planning in Africa
NASA Technical Reports Server (NTRS)
Dunford, C.; Mouat, D. A.; Norton-Griffiths, M.; Slaymaker, D. M.
1983-01-01
Multilevel remote-sensing techniques were combined to provide land resource and land-use information for rural development planning in Arusha Region, Tanzania. Enhanced Landsat imagery, supplemented by low-level aerial survey data, slope angle data from topographic sheets, and existing reports on vegetation and soil conditions, was used jointly by image analysts and district-level land-management officials to divide the region's six districts into land-planning units. District-planning officials selected a number of these land-planning units for priority planning and development activities. For the priority areas, natural color aerial photographs provided detailed information for land-use planning discussions between district officials and villagers. Consideration of the efficiency of this remote sensing approach leads to general recommendations for similar applications. The technology and timing of data collection and interpretation activities should allow maximum participation by intended users of the information.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Food and agricultural sciences means basic, applied, and developmental research, extension, and... social sciences, in the broadest sense of these terms, including but not limited to, activities concerned... and experience in particular fields of science, education, or technology to give expert advice on the...
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Food and agricultural sciences means basic, applied, and developmental research, extension, and... social sciences, in the broadest sense of these terms, including but not limited to, activities concerned... and experience in particular fields of science, education, or technology to give expert advice on the...
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Food and agricultural sciences means basic, applied, and developmental research, extension, and... social sciences, in the broadest sense of these terms, including but not limited to, activities concerned... and experience in particular fields of science, education, or technology to give expert advice on the...
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Food and agricultural sciences means basic, applied, and developmental research, extension, and... social sciences, in the broadest sense of these terms, including but not limited to, activities concerned... and experience in particular fields of science, education, or technology to give expert advice on the...
Optically powered active sensing system for Internet Of Things
NASA Astrophysics Data System (ADS)
Gao, Chen; Wang, Jin; Yin, Long; Yang, Jing; Jiang, Jian; Wan, Hongdan
2014-10-01
Internet Of Things (IOT) drives a significant increase in the extent and type of sensing technology and equipment. Sensors, instrumentation, control electronics, data logging and transmission units comprising such sensing systems will all require to be powered. Conventionally, electrical powering is supplied by batteries or/and electric power cables. The power supply by batteries usually has a limited lifetime, while the electric power cables are susceptible to electromagnetic interference. In fact, the electromagnetic interference is the key issue limiting the power supply in the strong electromagnetic radiation area and other extreme environments. The novel alternative method of power supply is power over fiber (PoF) technique. As fibers are used as power supply lines instead, the delivery of the power is inherently immune to electromagnetic radiation, and avoids cumbersome shielding of power lines. Such a safer power supply mode would be a promising candidate for applications in IOT. In this work, we built up optically powered active sensing system, supplying uninterrupted power for the remote active sensors and communication modules. Also, we proposed a novel maximum power point tracking technique for photovoltaic power convertors. In our system, the actual output efficiency greater than 40% within 1W laser power. After 1km fiber transmission and opto-electric power conversion, a stable electric power of 210mW was obtained, which is sufficient for operating an active sensing system.
Remote sensing for detecting and mapping whitefly (Bemisia tabaci) infestations
USDA-ARS?s Scientific Manuscript database
Remote sensing technology has long been used for detecting insect infestations on agricultural crops. With recent advances in remote sensing sensors and other spatial information technologies such as Global Position Systems (GPS) and Geographic Information Systems (GIS), remote sensing is finding mo...
History and future of remote sensing technology and education
NASA Technical Reports Server (NTRS)
Colwell, R. N.
1980-01-01
A historical overview of the discovery and development of photography, related sciences, and remote sensing technology is presented. The role of education to date in the development of remote sensing is discussed. The probable future and potential of remote sensing and training is described.
Unmanned and Unattended Response Capability for Homeland Defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
BENNETT, PHIL C.
2002-11-01
An analysis was conducted of the potential for unmanned and unattended robotic technologies for forward-based, immediate response capabilities that enables access and controlled task performance. The authors analyze high-impact response scenarios in conjunction with homeland security organizations, such as the NNSA Office of Emergency Response, the FBI, the National Guard, and the Army Technical Escort Unit, to cover a range of radiological, chemical and biological threats. They conducted an analysis of the potential of forward-based, unmanned and unattended robotic technologies to accelerate and enhance emergency and crisis response by Homeland Defense organizations. Response systems concepts were developed utilizing new technologiesmore » supported by existing emerging threats base technologies to meet the defined response scenarios. These systems will pre-position robotic and remote sensing capabilities stationed close to multiple sites for immediate action. Analysis of assembled systems included experimental activities to determine potential efficacy in the response scenarios, and iteration on systems concepts and remote sensing and robotic technologies, creating new immediate response capabilities for Homeland Defense.« less
Advanced optical technologies for space exploration
NASA Astrophysics Data System (ADS)
Clark, Natalie
2007-09-01
NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems
Advanced Optical Technologies for Space Exploration
NASA Technical Reports Server (NTRS)
Clark, Natalie
2007-01-01
NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.
Aeronautics and space report of the President
NASA Technical Reports Server (NTRS)
1995-01-01
This report describes the activities and accomplishments of all agencies of the United States in the fields of aeronautics and space science during FY 1994. Activity summaries are presented for the following areas: space launch activities, space science, space flight and space technology, space communications, aeronuatics, and studies of the planet Earth. Several appendices providing data on U.S. launch activities, the Federal budget for space and aeronautics, remote sensing capabilities, and space policy are included.
The role of advanced sensing in smart cities.
Hancke, Gerhard P; Silva, Bruno de Carvalho E; Hancke, Gerhard P
2012-12-27
In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities.
The Role of Advanced Sensing in Smart Cities
Hancke, Gerhard P.; de Carvalho e Silva, Bruno; Hancke, Gerhard P.
2013-01-01
In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities. PMID:23271603
Object-oriented structures supporting remote sensing databases
NASA Technical Reports Server (NTRS)
Wichmann, Keith; Cromp, Robert F.
1995-01-01
Object-oriented databases show promise for modeling the complex interrelationships pervasive in scientific domains. To examine the utility of this approach, we have developed an Intelligent Information Fusion System based on this technology, and applied it to the problem of managing an active repository of remotely-sensed satellite scenes. The design and implementation of the system is compared and contrasted with conventional relational database techniques, followed by a presentation of the underlying object-oriented data structures used to enable fast indexing into the data holdings.
NASA Technical Reports Server (NTRS)
Pena, Francisco; Martins, Benjamin L.; Richards, W. Lance
2018-01-01
Morphing wing technologies have gained research interest in recent years as technological advancements pave the way for such innovations. A key benefit of such a morphing wing concept is the ability of the wing to transition into an optimal configuration at multiple flight conditions. Such a morphing wing will have applications not only in drag reduction but also in flutter suppression and gust alleviation. By manipulating the wing geometry to match a given flight profile it is likely that the wing will yield increases in not just aerodynamic efficiency but also structural efficiency. These structurally efficient designs will likely rely on some type of structural sensing system which will ensure the wing maintains positive margins throughout its flight profile.
Using Game Development to Engage Students in Science and Technology
NASA Technical Reports Server (NTRS)
Wiacek, John
2011-01-01
Game design workshops, camps and activities engage K-12 students In STEM disciplines that use game engine and development tools. Game development will have students create games and simulations that Will inspire them to love technology while learning math, physics, and,logic. By using tools such as Gamemaker, Alice, Unity, Gamesalad and others, students will get a sense of confidence and accomplishment creating games and simulations.
Integrated photonics for fiber optic based temperature sensing
NASA Astrophysics Data System (ADS)
Evenblij, R. S.; van Leest, T.; Haverdings, M. B.
2017-09-01
One of the promising space applications areas for fibre sensing is high reliable thermal mapping of metrology structures for effects as thermal deformation, focal plane distortion, etc. Subsequently, multi-point temperature sensing capability for payload panels and instrumentation instead of, or in addition to conventional thermo-couple technology will drastically reduce electrical wiring and sensor materials to minimize weight and costs. Current fiber sensing technologies based on solid state ASPIC (Application Specific Photonic Integrated Circuits) technology, allow significant miniaturization of instrumentation and improved reliability. These imperative aspects make the technology candidate for applications in harsh environments such as space. One of the major aspects in order to mature ASPIC technology for space is assessment on radiation hardness. This paper describes the results of radiation hardness experiments on ASPIC including typical multipoint temperature sensing and thermal mapping capabilities.
Optical Design of the Developmental Cryogenic Active Telescope Testbed (DCATT)
NASA Technical Reports Server (NTRS)
Davila, Pam; Wilson, Mark; Young, Eric W.; Lowman, Andrew E.; Redding, David C.
1997-01-01
In the summer of 1996, three Study teams developed conceptual designs and mission architectures for the Next Generation Space Telescope (NGST). Each group highlighted areas of technology development that need to be further advanced to meet the goals of the NGST mission. The most important areas for future study included: deployable structures, lightweight optics, cryogenic optics and mechanisms, passive cooling, and on-orbit closed loop wavefront sensing and control. NASA and industry are currently planning to develop a series of ground testbeds and validation flights to demonstrate many of these technologies. The Deployed Cryogenic Active Telescope Testbed (DCATT) is a system level testbed to be developed at Goddard Space Flight Center in three phases over an extended period of time. This testbed will combine an actively controlled telescope with the hardware and software elements of a closed loop wavefront sensing and control system to achieve diffraction limited imaging at 2 microns. We will present an overview of the system level requirements, a discussion of the optical design, and results of performance analyses for the Phase 1 ambient concept for DCATT,
Application transfer activity in Missouri
NASA Technical Reports Server (NTRS)
Barr, D. J.; Johannsen, C. J.
1978-01-01
Experimental demonstrations and workshop instructional courses were conducted to transfer the technology of satellite remote sensing to a wide audience of resource managers. This audience included planning commissions, state agencies, federal agencies, and special councils of the Governor. Some of the experiments and workshops are outlined.
NASA Astrophysics Data System (ADS)
Shuxin, Li; Zhilong, Zhang; Biao, Li
2018-01-01
Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.
Stennis Space Center Verification & Validation Capabilities
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; O'Neal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir
2007-01-01
Scientists within NASA#s Applied Research & Technology Project Office (formerly the Applied Sciences Directorate) have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists have used the SSC V&V site to characterize thermal infrared systems. Enhancements are being considered to characterize active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. Similar techniques are used to characterize moderate spatial resolution sensing systems at selected nearby locations. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.
Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.; ...
2015-07-08
A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.
A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
Reeder, Blaine; Meyer, Ellen; Lazar, Amanda; Chaudhuri, Shomir; Thompson, Hilaire J.; Demiris, George
2013-01-01
Introduction There is a critical need for public health interventions to support the independence of older adults as the world’s population ages. Health smart homes (HSH) and home-based consumer health (HCH) technologies may play a role in these interventions. Methods We conducted a systematic review of HSH and HCH literature from indexed repositories for health care and technology disciplines (e.g., MEDLINE, CINAHL, and IEEE Xplore) and classified included studies according to an evidence-based public health (EBPH) typology. Results One thousand, six hundred and thirty nine candidate articles were identified. Thirty-one studies from the years 1998–2011 were included. Twenty-one included studies were classified as emerging, 10 as promising and 3 as effective (first tier). Conclusion The majority of included studies were published in the period beginning in the year 2005. All 3 effective (first tier) studies and 9 of 10 of promising studies were published during this period. Almost all studies included an activity sensing component and most of these used passive infrared motion sensors. The three effective (first tier) studies all used a multicomponent technology approach that included activity sensing, reminders and other technologies tailored to individual preferences. Future research should explore the use of technology for self-management of health by older adults, social support and self-reported health measures incorporated into personal health records, electronic medical records, and community health registries. PMID:23639263
Sensor technology for smart homes.
Ding, Dan; Cooper, Rory A; Pasquina, Paul F; Fici-Pasquina, Lavinia
2011-06-01
A smart home is a residence equipped with technology that observes the residents and provides proactive services. Most recently, it has been introduced as a potential solution to support independent living of people with disabilities and older adults, as well as to relieve the workload from family caregivers and health providers. One of the key supporting features of a smart home is its ability to monitor the activities of daily living and safety of residents, and in detecting changes in their daily routines. With the availability of inexpensive low-power sensors, radios, and embedded processors, current smart homes are typically equipped with a large amount of networked sensors which collaboratively process and make deductions from the acquired data on the state of the home as well as the activities and behaviors of its residents. This article reviews sensor technology used in smart homes with a focus on direct environment sensing and infrastructure mediated sensing. The article also points out the strengths and limitations of different sensor technologies, as well as discusses challenges and opportunities from clinical, technical, and ethical perspectives. It is recommended that sensor technologies for smart homes address actual needs of all stake holders including end users, their family members and caregivers, and their doctors and therapists. More evidence on the appropriateness, usefulness, and cost benefits analysis of sensor technologies for smart homes is necessary before these sensors should be widely deployed into real-world residential settings and successfully integrated into everyday life and health care services. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Reeder, Blaine; Meyer, Ellen; Lazar, Amanda; Chaudhuri, Shomir; Thompson, Hilaire J; Demiris, George
2013-07-01
There is a critical need for public health interventions to support the independence of older adults as the world's population ages. Health smart homes (HSH) and home-based consumer health (HCH) technologies may play a role in these interventions. We conducted a systematic review of HSH and HCH literature from indexed repositories for health care and technology disciplines (e.g., MEDLINE, CINAHL, and IEEE Xplore) and classified included studies according to an evidence-based public health (EBPH) typology. One thousand, six hundred and thirty-nine candidate articles were identified. Thirty-one studies from the years 1998-2011 were included. Twenty-one included studies were classified as emerging, 10 as promising and 3 as effective (first tier). The majority of included studies were published in the period beginning in the year 2005. All 3 effective (first tier) studies and 9 of 10 of promising studies were published during this period. Almost all studies included an activity sensing component and most of them used passive infrared motion sensors. The three effective (first tier) studies all used a multicomponent technology approach that included activity sensing, reminders and other technologies tailored to individual preferences. Future research should explore the use of technology for self-management of health by older adults; social support; and self-reported health measures incorporated into personal health records, electronic medical records, and community health registries. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kouhartsiouk, Demetris; Agapiou, Athos; Lynsadrou, Vasiliki; Themistocleous, Kyriacos; Nisantzi, Argyro; Hadjimitsis, Diofantos G.; Lasaponara, Rosa; Masini, Nicola; Brcic, Ramon; Eineder, Michael; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter
2017-04-01
Non-invasive landscape investigation for archaeological purposes includes a wide range of survey techniques, most of which include in-situ methods. In the recent years, a major advance in the non-invasive surveying techniques has been the introduction of active remote sensing technologies. One of such technologies is spaceborne radar, known as Synthetic Aperture Radar (SAR). SAR has proven to be a valuable tool in the analysis of potential archaeological marks and in the systematic cultural heritage site monitoring. With the use of SAR, it is possible to monitor slight variations in vegetation and soil often interpreted as archaeological signs, while radar sensors frequently having penetrating capabilities offering an insight into shallow underground remains. Radar remote sensing for immovable cultural heritage and archaeological applications has been recently introduced to Cyprus through the currently ongoing ATHENA project. ATHENA project, under the Horizon 2020 programme, aims at building a bridge between research institutions of the low performing Member States and internationally-leading counterparts at EU level, mainly through training workshops and a series of knowledge transfer activities, frequently taking place on the basis of capacity development. The project is formed as the consortium of the Remote Sensing and Geo-Environment Research Laboratory of the Cyprus University of Technology (CUT), the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR). As part of the project, a number of cultural heritage sites in Cyprus have been studied testing different methodologies involving SAR imagery such as Amplitude Change Detection, Coherence Calculation and fusion techniques. The ATHENA's prospective agenda includes the continuation of the capacity building programme with upcoming training workshops to take place while expanding the knowledge of radar applications on conservation and risk monitoring of cultural heritage sites through SAR Interferometry. The current paper presents some preliminary results from the archaeological site of "Nea Paphos", addressing the potential use of the radar technology.
Ubiquitous computing technology for just-in-time motivation of behavior change.
Intille, Stephen S
2004-01-01
This paper describes a vision of health care where "just-in-time" user interfaces are used to transform people from passive to active consumers of health care. Systems that use computational pattern recognition to detect points of decision, behavior, or consequences automatically can present motivational messages to encourage healthy behavior at just the right time. Further, new ubiquitous computing and mobile computing devices permit information to be conveyed to users at just the right place. In combination, computer systems that present messages at the right time and place can be developed to motivate physical activity and healthy eating. Computational sensing technologies can also be used to measure the impact of the motivational technology on behavior.
Semiconductor technology in protein kinase research and drug discovery: sensing a revolution.
Bhalla, Nikhil; Di Lorenzo, Mirella; Estrela, Pedro; Pula, Giordano
2017-02-01
Since the discovery of protein kinase activity in 1954, close to 600 kinases have been discovered that have crucial roles in cell physiology. In several pathological conditions, aberrant protein kinase activity leads to abnormal cell and tissue physiology. Therefore, protein kinase inhibitors are investigated as potential treatments for several diseases, including dementia, diabetes, cancer and autoimmune and cardiovascular disease. Modern semiconductor technology has recently been applied to accelerate the discovery of novel protein kinase inhibitors that could become the standard-of-care drugs of tomorrow. Here, we describe current techniques and novel applications of semiconductor technologies in protein kinase inhibitor drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Laser optical disk position encoder with active heads
NASA Technical Reports Server (NTRS)
Osborne, Eric P.
1991-01-01
An angular position encoder that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads with beam steering optics that actively track the disk in directions along the disk radius and normal to its surface is discussed. The device adapts features prevalent in optical disk technology to the application of angular position sensing.
NASA Astrophysics Data System (ADS)
Sankatsing Nava, Tibisay; Russo, Pedro
2015-08-01
Universe Awareness (UNAWE) is an educational programme coordinated by Leiden University that uses the beauty and grandeur of the Universe to encourage young children, particularly those from an underprivileged background, to have an interest in science and technology and foster their sense of global citizenship from the earliest age.UNAWE's twofold vision uses our Universe to inspire and motivate very young children: the excitement of the Universe provides an exciting introduction to science and technology, while the vastness and beauty of the Universe helps broaden the mind and stimulate a sense of global citizenship and tolerance. UNAWE's goals are accomplished through four main activities: the coordination of a global network of more than 1000 astronomers, teachers and educators from more than 60 countries, development of educational resources, teacher training activities and evaluation of educational activities.Between 2011 and 2013, EU-UNAWE, the European branch of UNAWE, was funded by the European Commission to implement a project in 5 EU countries and South Africa. This project has been concluded successfully. Since then, the global project Universe Awareness has continued to grow with an expanding international network, new educational resources and teacher trainings and a planned International Workshop in collaboration with ESA in October 2015, among other activities.
Organic Electronics for Point-of-Care Metabolite Monitoring.
Pappa, Anna-Maria; Parlak, Onur; Scheiblin, Gaetan; Mailley, Pascal; Salleo, Alberto; Owens, Roisin M
2018-01-01
In this review we focus on demonstrating how organic electronic materials can solve key problems in biosensing thanks to their unique material properties and implementation in innovative device configurations. We highlight specific examples where these materials solve multiple issues related to complex sensing environments, and we benchmark these examples by comparing them to state-of-the-art commercially available sensing using alternative technologies. We have categorized our examples by sample type, focusing on sensing from body fluids in vitro and on wearable sensors, which have attracted significant interest owing to their integration with everyday life activities. We finish by describing a future trend for in vivo, implantable sensors, which aims to build on current progress from sensing in biological fluids ex vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.
Proceedings of the 8th International Symposium on Remote Sensing of Environment, volume 1
NASA Technical Reports Server (NTRS)
Cook, J. J.
1972-01-01
These Proceedings contain papers presented at the Eighth International Symposium on Remote Sensing of Environment, held October 2nd through 6th, 1972, on the campus of the University of Michigan. The symposium was conducted by the Center for Remote Sensing Information and Analysis of the Environmental Research Institute of Michigan (formerly the University of Michigan's Willow Run Laboratories) as a part of a continuing program investigating current activities in the field of remote sensing. Presentations include those on the use of this technology by regional governmental units and by federal governmental agencies, as well as various applications in monitoring and managing the earth's resources and man's global environment. Ground-based, airborne, and spaceborne sensor systems and manual and machine-assisted data analysis and interpretation are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anheier, N.C. Jr.; McDonald, C.E.; Cuta, J.M.
1995-05-01
This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose of this work was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. PNL researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation,more » sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH{sub 4}{sup +}). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.« less
Proceedings of the twelfth international symposium on remote sensing of environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This is the third of three volumes of the proceedings of the Twelfth International Symposium on Remote Sensing of Environment, held 20 to 26 April 1978 in Manila, Philippines. This symposium is part of a continuing program investigating current activities in the field of remote sensing. The meeting is intended to promote increased international cooperation in research, development and application of this technology, and to stimulate an exchange of information on all aspects of this multidisciplinary field through the presentation of reports on work planned, in progress or completed. Presentations include those concerned with the utilization of this technology inmore » various national and international programs as well as in numerous applications for monitoring and managing the earth's resources and man's global environment. Ground-based, airborne, and spaceborne sensor systems and both manual and machine-assisted data analysis and interpretation are included. All papers included in their entirety were abstracted and indexed for EDB/ERA.« less
Kubota, Ryou; Hamachi, Itaru
2015-07-07
Chemical sensing of amino acids, peptides, and proteins provides fruitful information to understand their biological functions, as well as to develop the medical and technological applications. To detect amino acids, peptides, and proteins in vitro and in vivo, vast kinds of chemical sensors including small synthetic binders/sensors, genetically-encoded fluorescent proteins and protein-based semisynthetic biosensors have been intensely investigated. This review deals with concepts, strategies, and applications of protein recognition and sensing using small synthetic binders/sensors, which are now actively studied but still in the early stage of investigation. The recognition strategies for peptides and proteins can be divided into three categories: (i) recognition of protein substructures, (ii) protein surface recognition, and (iii) protein sensing through protein-ligand interaction. Here, we overview representative examples of protein recognition and sensing, and discuss biological or diagnostic applications such as potent inhibitors/modulators of protein-protein interactions.
NASA Astrophysics Data System (ADS)
French, N. H. F.; Lawrence, R. L.
2017-12-01
AmericaView is a nationwide partnership of remote sensing scientists who support the use of Landsat and other public domain remotely sensed data through applied remote sensing research, K-12 and higher STEM education, workforce development, and technology transfer. The national AmericaView program currently has active university-lead members in 39 states, each of which has a "stateview" consortium consisting of some combination of university, agency, non-profit, and other members. This "consortium of consortia" has resulted in a strong and unique nationwide network of remote sensing practitioners. AmericaView has used this network to contribute to the USGS Requirements Capabilities & Analysis for Earth Observations. Participating states have conducted interviews of key remote sensing end users across the country to provide key input at the state and local level for the design and implementation of future U.S. moderate resolution Earth observations.
Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections
Shen, Hui-Min; Hu, Liang; Fu, Xin
2018-01-01
With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future. PMID:29316670
Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections.
Shen, Hui-Min; Hu, Liang; Fu, Xin
2018-01-07
With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/ f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz 0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future.
Advancement of China’s Visible Light Remote Sensing Technology In Aerospace,
1996-03-19
Aerospace visible light film systems were among the earliest space remote sensing systems to be developed in China. They have been applied very well...makes China the third nation in the world to master space remote sensing technology, it also puts recoverable remote sensing satellites among the first
Quantum Sensing and Communications Being Developed for Nanotechnology
NASA Technical Reports Server (NTRS)
Lekki, John D.; Nguyen, Quang-Viet
2005-01-01
An interdisciplinary quantum communications and sensing research effort for application in microdevices has been underway at the NASA Glenn Research Center since 2000. Researchers in Glenn's Instrumentation and Controls, Communications Technology, and Propulsion and Turbomachinery Divisions have been working together to study and develop techniques that utilize quantum effects for sensing and communications. The emerging technology provides an innovative way to communicate faster and farther using less power and to sense, measure, and image environmental properties in ways that are not possible with existing technology.
Active coatings technologies for tailorable military coating systems
NASA Astrophysics Data System (ADS)
Zunino, J. L., III
2007-04-01
The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.
From ships to robots: The social relations of sensing the world ocean.
Lehman, Jessica
2018-02-01
The dominant practices of physical oceanography have recently shifted from being based on ship-based ocean sampling and sensing to being based on remote and robotic sensing using satellites, drifting floats and remotely operated and autonomous underwater vehicles. What are the implications of this change for the social relations of oceanographic science? This paper contributes to efforts to address this question, pursuing a situated view of ocean sensing technologies so as to contextualize and analyze new representations of the sea, and interactions between individual scientists, technologies and the ocean. By taking a broad view on oceanography through a 50-year shift from ship-based to remote and robotic sensing, I show the ways in which new technologies may provide an opportunity to fight what Oreskes has called 'ideologies of scientific heroism'. In particular, new sensing relations may emphasize the contributions of women and scientists from less well-funded institutions, as well as the ways in which oceanographic knowledge is always partial and dependent on interactions between nonhuman animals, technologies, and different humans. Thus, I argue that remote and robotic sensing technologies do not simply create more abstracted relations between scientists and the sea, but also may provide opportunities for more equitable scientific practice and refigured sensing relations.
Blended Design Approach of Long Span Structure and Malay Traditional Architecture
NASA Astrophysics Data System (ADS)
Sundari, Titin
2017-12-01
The growing population in the world is so fast, which is followed by the increasing need of some new and large activities. Architects face the problem on how to facilitate buildings with various activities such as for large meeting, conference, indoors gymnasium and sports, and many others. The long span structure of building is one of the solutions to solve that problem. Generally, large buildings which implemented this structure will look as a technological, modern and futuristic ones or even neo futuristic performance. But on the other hand, many people still want to enjoy the specific and unique senses of local traditional architecture. So is the Malay people who want an easy pleasant large facilities which can be fulfilled by implementing modern long span building structure technology. In the same time, their unique sense of Malay traditional architecture can still be maintained. To overcome this double problems of design, it needs a blended design approach of long span structure and Malay Traditional Architecture.
Modular extracellular sensor architecture for engineering mammalian cell-based devices.
Daringer, Nichole M; Dudek, Rachel M; Schwarz, Kelly A; Leonard, Joshua N
2014-12-19
Engineering mammalian cell-based devices that monitor and therapeutically modulate human physiology is a promising and emerging frontier in clinical synthetic biology. However, realizing this vision will require new technologies enabling engineered circuitry to sense and respond to physiologically relevant cues. No existing technology enables an engineered cell to sense exclusively extracellular ligands, including proteins and pathogens, without relying upon native cellular receptors or signal transduction pathways that may be subject to crosstalk with native cellular components. To address this need, we here report a technology we term a Modular Extracellular Sensor Architecture (MESA). This self-contained receptor and signal transduction platform is maximally orthogonal to native cellular processes and comprises independent, tunable protein modules that enable performance optimization and straightforward engineering of novel MESA that recognize novel ligands. We demonstrate ligand-inducible activation of MESA signaling, optimization of receptor performance using design-based approaches, and generation of MESA biosensors that produce outputs in the form of either transcriptional regulation or transcription-independent reconstitution of enzymatic activity. This systematic, quantitative platform characterization provides a framework for engineering MESA to recognize novel ligands and for integrating these sensors into diverse mammalian synthetic biology applications.
Strain sensing technology for high temperature applications
NASA Technical Reports Server (NTRS)
Williams, W. Dan
1993-01-01
This review discusses the status of strain sensing technology for high temperature applications. Technologies covered are those supported by NASA such as required for applications in hypersonic vehicles and engines, advanced subsonic engines, as well as material and structure development. The applications may be at temperatures of 540 C (1000 F) to temperatures in excess of 1400 C (2500 F). The most promising technologies at present are the resistance strain gage and remote sensing schemes. Resistance strain gages discussed include the BCL gage, the LaRC compensated gage, and the PdCr gage. Remote sensing schemes such as laser based speckle strain measurement, phase-shifling interferometry, and x-ray extensometry are discussed. Present status and limitations of these technologies are presented.
NASA Technical Reports Server (NTRS)
Lietzke, K. R.
1974-01-01
The impact of remote sensing upon marine activities and oceanography is presented. The present capabilities of the current Earth Resources Technology Satellite (ERTS-1), as demonstrated by the principal investigators are discussed. Cost savings benefits are quantified in the area of nautical and hygrographic mapping and charting. Benefits are found in aiding coastal zone management and in the fields of weather (marine) prediction, fishery harvesting and management, and potential uses for ocean vegetation. Difficulties in quantification are explained, the primary factor being that remotely sensed information will be of greater benefit as input to forecasting models which have not yet been constructed.
Remote sensing information for fire management and fire effects assessment
NASA Astrophysics Data System (ADS)
Chuvieco, Emilio; Kasischke, Eric S.
2007-03-01
Over the past decade, much research has been carried out on the utilization of advanced geospatial technologies (remote sensing and geographic information systems) in the fire science and fire management disciplines. Recent advances in these technologies were the focus of a workshop sponsored by the EARSEL special interest group (SIG) on forest fires (FF-SIG) and the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) fire implementation team. Here we summarize the framework and the key findings of papers submitted from this meeting and presented in this special section. These papers focus on the latest advances for near real-time monitoring of active fires, prediction of fire hazards and danger, monitoring of fuel moisture, mapping of fuel types, and postfire assessment of the impacts from fires.
Bibliography of Remote Sensing Techniques Used in Wetland Research.
1993-01-01
remote sensing technology for detecting changes in wetland environments. This report documents a bibliographic search conducted as part of that work unit on applications of remote sensing techniques in wetland research. Results were used to guide research efforts on the use of remote sensing technology for wetland change detection and assessment. The citations are presented in three appendixes, organized by wetland type, sensor type, and author.... Change detection, Wetland assessment, Remote sensing ,
Advances in Structures for Large Space Systems
NASA Technical Reports Server (NTRS)
Belvin, W. Keith
2004-01-01
The development of structural systems for scientific remote sensing and space exploration has been underway for four decades. The seminal work from 1960 to 1980 provided the basis for many of the design principles of modern space systems. From 1980- 2000 advances in active materials and structures and the maturing of composites technology led to high precision active systems such those used in the Space Interferometry Mission. Recently, thin-film membrane or gossamer structures are being investigated for use in large area space systems because of their low mass and high packaging efficiency. Various classes of Large Space Systems (LSS) are defined in order to describe the goals and system challenges in structures and materials technologies. With an appreciation of both past and current technology developments, future technology challenges are used to develop a list of technology investments that can have significant impacts on LSS development.
Steel bridge fatigue crack detection with piezoelectric wafer active sensors
NASA Astrophysics Data System (ADS)
Yu, Lingyu; Giurgiutiu, Victor; Ziehl, Paul; Ozevin, Didem; Pollock, Patrick
2010-04-01
Piezoelectric wafer active sensors (PWAS) are well known for its dual capabilities in structural health monitoring, acting as either actuators or sensors. Due to the variety of deterioration sources and locations of bridge defects, there is currently no single method that can detect and address the potential sources globally. In our research, our use of the PWAS based sensing has the novelty of implementing both passive (as acoustic emission) and active (as ultrasonic transducers) sensing with a single PWAS network. The combined schematic is using acoustic emission to detect the presence of fatigue cracks in steel bridges in their early stage since methods such as ultrasonics are unable to quantify the initial condition of crack growth since most of the fatigue life for these details is consumed while the fatigue crack is too small to be detected. Hence, combing acoustic emission with ultrasonic active sensing will strengthen the damage detection process. The integration of passive acoustic emission detection with active sensing will be a technological leap forward from the current practice of periodic and subjective visual inspection, and bridge management based primarily on history of past performance. In this study, extensive laboratory investigation is performed supported by theoretical modeling analysis. A demonstration system will be presented to show how piezoelectric wafer active sensor is used for acoustic emission. Specimens representing complex structures are tested. The results will also be compared with traditional acoustic emission transducers to identify the application barriers.
NASA Technical Reports Server (NTRS)
2001-01-01
Ciencia, Inc. created a new device, known as a Portable Photosynthesis Analyzer, or Phase Fluorometer, that provides real-time data about the photochemical efficiency of phytoplankton and other plant forms. The commercial version of this technology is used for photosynthesis research and offers major benefits to the field of life science. This new instrument is the first portable instrument of its kind. Through a license agreement with Ciencia, Oriel Instruments, of Stratford, Connecticut, manufactures and markets the commercial version of the instrument under the name LifeSense.TMLifeSense is a 70 MHz single-frequency fluorometer that offers unrivaled capabilities for fluorescence lifetime sensing and analysis. LifeSense provides information about all varieties of photosynthetic systems. Photosynthesis research contributes important health assessments about the plant, be it phytoplankton or a higher form of plant life. With its unique sensing capabilities, LifeSense furnishes data regarding the yield of a plant's photochemistry, as well as its levels of photosynthetic activity. The user can then gain an extremely accurate estimate of the plant's chlorophyll biomass, primary production rates, and a general overview of the plant's physiological condition.
Sensor technology more than a support.
Olsson, Anna; Persson, Ann-Christine; Bartfai, Aniko; Boman, Inga-Lill
2018-03-01
This interview study is a part of a project that evaluated sensor technology as a support in everyday activities for patients with memory impairment. To explore patients with memory impairment and their partners' experiences of using sensor technology in their homes. Five patients with memory impairment after stroke and three partners were interviewed. Individual semi-structured interviews were analyzed with qualitative content analysis. Installing sensor technology with individually prerecorded voice reminders as memory support in the home had a broad impact on patients' and their families' lives. These effects were both positive and negative. The sensor technology not only supported activities but also influenced the patients by changing behavior, providing a sense of security, independence and increased self-confidence. For the partners, the sensor technology eased daily life, but also gave increased responsibility for maintenance. Technical problems led to frustration and stress for the patients. The results indicate that sensor technology has potential to increase opportunities for persons with memory impairment to perform and participate in activities and to unburden their partners. The results may promote an understanding of how sensor technology can be used to support persons with memory impairment in their homes.
Remote sensing for cotton farming
USDA-ARS?s Scientific Manuscript database
Application of remote sensing technologies in agriculture began with the use of aerial photography to identify cotton root rot in the late 1920s. From then on, agricultural remote sensing has developed gradually until the introduction of precision farming technologies in the late 1980s and biotechno...
REVIEW OF METHODS FOR REMOTE SENSING OF ATMOSPHERIC EMISSIONS FROM STATIONARY SOURCES
The report reviews the commercially available and developing technologies for the application of remote sensing to the measurement of source emissions. The term 'remote sensing technology', as applied in the report, means the detection or concentration measurement of trace atmosp...
Physics and Robotic Sensing -- the good, the bad, and approaches to making it work
NASA Astrophysics Data System (ADS)
Huff, Brian
2011-03-01
All of the technological advances that have benefited consumer electronics have direct application to robotics. Technological advances have resulted in the dramatic reduction in size, cost, and weight of computing systems, while simultaneously doubling computational speed every eighteen months. The same manufacturing advancements that have enabled this rapid increase in computational power are now being leveraged to produce small, powerful and cost-effective sensing technologies applicable for use in mobile robotics applications. Despite the increase in computing and sensing resources available to today's robotic systems developers, there are sensing problems typically found in unstructured environments that continue to frustrate the widespread use of robotics and unmanned systems. This talk presents how physics has contributed to the creation of the technologies that are making modern robotics possible. The talk discusses theoretical approaches to robotic sensing that appear to suffer when they are deployed in the real world. Finally the author presents methods being used to make robotic sensing more robust.
NASA Technical Reports Server (NTRS)
1984-01-01
CPI's human-implantable automatic implantable defibrillator (AID) is a heart assist system, derived from NASA's space circuitry technology, that can prevent erratic heart action known as arrhythmias. Implanted AID, consisting of microcomputer power source and two electrodes for sensing heart activity, recognizes onset of ventricular fibrillation (VF) and delivers corrective electrical countershock to restore rhythmic heartbeat.
Ground Truth Studies. Teacher Handbook. Second Edition.
ERIC Educational Resources Information Center
Boyce, Jesse; And Others
Ground Truth Studies is an interdisciplinary activity-based program that draws on the broad range of sciences that make up the study of global change and the complementary technology of remote sensing. It integrates local environmental issues with global change topics, such as the greenhouse effect, loss of biological diversity, and ozone…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamel Boulos, Maged; Resch, Bernd; Crowley, David N.
The PIE Activity Awareness Environment is designed to be an adaptive data triage and decision support tool that allows role and activity based situation awareness through a dynamic, trainable filtering system. This paper discusses the process and methodology involved in the application as well as some of its capabilities. 'Wikification of GIS by the masses' is a phrase-term first coined by Kamel Boulos in 2005, two years earlier than Goodchild's term 'Volunteered Geographic Information'. Six years later (2005-2011), OpenStreetMap and Google Earth (GE) are now full-fledged, crowdsourced 'Wikipedias of the Earth' par excellence, with millions of users contributing their ownmore » layers to GE, attaching photos, videos, notes and even 3-D (three dimensional) models to locations in GE. From using Twitter in participatory sensing and bicycle-mounted sensors in pervasive environmental sensing, to creating a 100,000-sensor geo-mashup using Semantic Web technology, to the 3-D visualisation of indoor and outdoor surveillance data in real-time and the development of next-generation, collaborative natural user interfaces that will power the spatially-enabled public health and emergency situation rooms of the future, where sensor data and citizen reports can be triaged and acted upon in real-time by distributed teams of professionals, this paper offers a comprehensive state-of-the-art review of the overlapping domains of the Sensor Web, citizen sensing and 'human-in-the-loop sensing' in the era of the Mobile and Social Web, and the roles these domains can play in environmental and public health surveillance and crisis/disaster informatics. We provide an in-depth review of the key issues and trends in these areas, the challenges faced when reasoning and making decisions with real-time crowdsourced data (such as issues of information overload, 'noise', misinformation, bias and trust), the core technologies and Open Geospatial Consortium (OGC) standards involved (Sensor Web Enablement and Open GeoSMS), as well as a few outstanding project implementation examples from around the world.« less
NASA spinoffs to public service
NASA Technical Reports Server (NTRS)
Ault, L. A.; Cleland, J. G.
1989-01-01
The National Aeronautics and Space Administration (NASA) Technology Utilization (TU) Division of the Office of Commercial Programs has been quite successful in directing the transfer to technology into the public sector. NASA developments of particular interest have been those in the areas of aerodynamics and aviation transport, safety, sensors, electronics and computing, and satellites and remote sensing. NASA technology has helped law enforcement, firefighting, public transportation, education, search and rescue, and practically every other sector of activity serving the U.S. public. NASA works closely with public service agencies and associations, especially those serving local needs of citizens, to expedite technology transfer benefits. A number of examples exist to demonstrate the technology transfer method and opportunities of NASA spinoffs to public service.
On the Design of Smart Homes: A Framework for Activity Recognition in Home Environment.
Cicirelli, Franco; Fortino, Giancarlo; Giordano, Andrea; Guerrieri, Antonio; Spezzano, Giandomenico; Vinci, Andrea
2016-09-01
A smart home is a home environment enriched with sensing, actuation, communication and computation capabilities which permits to adapt it to inhabitants preferences and requirements. Establishing a proper strategy of actuation on the home environment can require complex computational tasks on the sensed data. This is the case of activity recognition, which consists in retrieving high-level knowledge about what occurs in the home environment and about the behaviour of the inhabitants. The inherent complexity of this application domain asks for tools able to properly support the design and implementation phases. This paper proposes a framework for the design and implementation of smart home applications focused on activity recognition in home environments. The framework mainly relies on the Cloud-assisted Agent-based Smart home Environment (CASE) architecture offering basic abstraction entities which easily allow to design and implement Smart Home applications. CASE is a three layered architecture which exploits the distributed multi-agent paradigm and the cloud technology for offering analytics services. Details about how to implement activity recognition onto the CASE architecture are supplied focusing on the low-level technological issues as well as the algorithms and the methodologies useful for the activity recognition. The effectiveness of the framework is shown through a case study consisting of a daily activity recognition of a person in a home environment.
Heat-activated Plasmonic Chemical Sensors for Harsh Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Michael; Oh, Sang-Hyun
2015-12-01
A passive plasmonics based chemical sensing system to be used in harsh operating environments was investigated and developed within this program. The initial proposed technology was based on combining technologies developed at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering (CNSE) and at the University of Minnesota (UM). Specifically, a passive wireless technique developed at UM was to utilize a heat-activated plasmonic design to passively harvest the thermal energy from within a combustion emission stream and convert this into a narrowly focused light source. This plasmonic device was based on a bullseye design patterned into a gold filmmore » using focused ion beam methods (FIB). Critical to the design was the use of thermal stabilizing under and overlayers surrounding the gold film. These stabilizing layers were based on both atomic layer deposited films as well as metal laminate layers developed by United Technologies Aerospace Systems (UTAS). While the bullseye design was never able to be thermally stabilized for operating temperatures of 500oC or higher, an alternative energy harvesting design was developed by CNSE within this program. With this new development, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The method was further improved by patterning rods which harvested energy in the near infrared, which led to a factor of 10 decrease in data acquisition times as well as demonstrated selectivity with a reduced wavelength data set. The combination of a plasmonic-based energy harvesting sensing paradigm with PCA analysis and wavelength down selection offers a novel path towards simplification and integration of plasmonic-based sensing methods using selected wavelengths rather than a full spectral analysis. Integration efforts were designed and modeled for thermal and mass transport considerations by UTAS which led to the 3D printing of scaled models that would serve as the housing for the alternative energy harvesting plasmonic chemical sensor design developed by CNSE.« less
Sappok, Alex; Herman, Andrew; Parks, Jim; Prikhodko, Vitaly
2018-06-12
Leaders from Filter Sensing Technologies, CTS Corporation, and Oak Ridge National Laboratory discuss how a small business developed an award-winning diesel emissions control sensor with support from the DOE Vehicle Technologies Office and researchers at ORNLâs National Transportation Research Center.
An overview of wireless structural health monitoring for civil structures.
Lynch, Jerome Peter
2007-02-15
Wireless monitoring has emerged in recent years as a promising technology that could greatly impact the field of structural monitoring and infrastructure asset management. This paper is a summary of research efforts that have resulted in the design of numerous wireless sensing unit prototypes explicitly intended for implementation in civil structures. Wireless sensing units integrate wireless communications and mobile computing with sensors to deliver a relatively inexpensive sensor platform. A key design feature of wireless sensing units is the collocation of computational power and sensors; the tight integration of computing with a wireless sensing unit provides sensors with the opportunity to self-interrogate measurement data. In particular, there is strong interest in using wireless sensing units to build structural health monitoring systems that interrogate structural data for signs of damage. After the hardware and the software designs of wireless sensing units are completed, the Alamosa Canyon Bridge in New Mexico is utilized to validate their accuracy and reliability. To improve the ability of low-cost wireless sensing units to detect the onset of structural damage, the wireless sensing unit paradigm is extended to include the capability to command actuators and active sensors.
Market Assessment of Forward-Looking Turbulence Sensing Systems
NASA Technical Reports Server (NTRS)
Kauffmann, Paul; Sousa-Poza, Andres
2001-01-01
In recognition of the importance of turbulence mitigation as a tool to improve aviation safety, NASA's Aviation Safety Program developed a Turbulence Detection and Mitigation Sub-element. The objective of this effort is to develop highly reliable turbulence detection technologies for commercial transport aircraft to sense dangerous turbulence with sufficient time warning so that defensive measures can be implemented and prevent passenger and crew injuries. Current research involves three forward sensing products to improve the cockpit awareness of possible turbulence hazards. X-band radar enhancements will improve the capabilities of current weather radar to detect turbulence associated with convective activity. LIDAR (Light Detection and Ranging) is a laser-based technology that is capable of detecting turbulence in clear air. Finally, a possible Radar-LIDAR hybrid sensor is envisioned to detect the full range of convective and clear air turbulence. To support decisions relating to the development of these three forward-looking turbulence sensor technologies, the objective of this study was defined as examination of cost and implementation metrics. Tasks performed included the identification of cost factors and certification issues, the development and application of an implementation model, and the development of cost budget/targets for installing the turbulence sensor and associated software devices into the commercial transport fleet.
Discovering Activities to Recognize and Track in a Smart Environment.
Rashidi, Parisa; Cook, Diane J; Holder, Lawrence B; Schmitter-Edgecombe, Maureen
2011-01-01
The machine learning and pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track activities that people normally perform as part of their daily routines. Although approaches do exist for recognizing activities, the approaches are applied to activities that have been pre-selected and for which labeled training data is available. In contrast, we introduce an automated approach to activity tracking that identifies frequent activities that naturally occur in an individual's routine. With this capability we can then track the occurrence of regular activities to monitor functional health and to detect changes in an individual's patterns and lifestyle. In this paper we describe our activity mining and tracking approach and validate our algorithms on data collected in physical smart environments.
Unmanned Aerial Mass Spectrometer Systems for In-Situ Volcanic Plume Analysis
NASA Astrophysics Data System (ADS)
Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C. Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin
2015-02-01
Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.
Unmanned aerial mass spectrometer systems for in-situ volcanic plume analysis.
Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin
2015-02-01
Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.
Integration of Metal Oxide Nanowires in Flexible Gas Sensing Devices
Comini, Elisabetta
2013-01-01
Metal oxide nanowires are very promising active materials for different applications, especially in the field of gas sensors. Advances in fabrication technologies now allow the preparation of nanowires on flexible substrates, expanding the potential market of the resulting sensors. The critical steps for the large-scale preparation of reliable sensing devices are the elimination of high temperatures processes and the stretchability of the entire final device, including the active material. Direct growth on flexible substrates and post-growth procedures have been successfully used for the preparation of gas sensors. The paper will summarize the procedures used for the preparation of flexible and wearable gas sensors prototypes with an overlook of the challenges and the future perspectives concerning this field. PMID:23955436
Interactive Online Tools for Enhancing Student Learning Experiences in Remote Sensing
ERIC Educational Resources Information Center
Joyce, Karen E.; Boitshwarelo, Bopelo; Phinn, Stuart R.; Hill, Greg J. E.; Kelly, Gail D.
2014-01-01
The rapid growth in Information and Communications Technologies usage in higher education has provided immense opportunities to foster effective student learning experiences in geography. In particular, remote sensing lends itself to the creative utilization of multimedia technologies. This paper presents a case study of a remote sensing computer…
ERIC Educational Resources Information Center
Hotchkiss, Rose; Dickerson, Daniel
2008-01-01
Sponsored by NASA and the JASON Education Foundation, the remote Sensing Earth Science Teacher Education Program (RSESTeP) trains teachers to use state-of-the art remote-sensing technology with the idea that participants bring back what they learn and incorporate it into Earth science lessons using technology. The author's participation in the…
Object-oriented recognition of high-resolution remote sensing image
NASA Astrophysics Data System (ADS)
Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan
2016-01-01
With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .
Self-Sensing TDR with Micro-Strip Line
2015-06-11
detect impact damage of a CFRP plate in the second year (Todoroki A, et al., Impact damage detection of a carbon- fibre -reinforced-polymer plate...inspection methods is self-sensing technology that uses carbon fibres as sensors [1]-[11]. The self-sensing technology applies electric current to the...Time Domain Reflectometry (TDR) for damage detection [15]-[17]. Authors have developed a self-sensing TDR for detection of fibre breakages using a
Lessons from single-cell transcriptome analysis of oxygen-sensing cells.
Zhou, Ting; Matsunami, Hiroaki
2018-05-01
The advent of single-cell RNA-sequencing (RNA-Seq) technology has enabled transcriptome profiling of individual cells. Comprehensive gene expression analysis at the single-cell level has proven to be effective in characterizing the most fundamental aspects of cellular function and identity. This unbiased approach is revolutionary for small and/or heterogeneous tissues like oxygen-sensing cells in identifying key molecules. Here, we review the major methods of current single-cell RNA-Seq technology. We discuss how this technology has advanced the understanding of oxygen-sensing glomus cells in the carotid body and helped uncover novel oxygen-sensing cells and mechanisms in the mice olfactory system. We conclude by providing our perspective on future single-cell RNA-Seq research directed at oxygen-sensing cells.
Characterization of sapphire: For its material properties at high temperatures
NASA Astrophysics Data System (ADS)
Bal, Harman Singh
There are numerous needs for sensing, one of which is in pressure sensing for high temperature application such as combustion related process and embedded in aircraft wings for reusable space vehicles. Currently, silicon based MEMS technology is used for pressure sensing. However, due to material properties the sensors have a limited range of approximately 600 °C which is capable of being pushed towards 1000 °C with active cooling. This can introduce reliability issues when you add more parts and high flow rates to remove large amounts of heat. To overcome this challenge, sapphire is investigated for optical based pressure transducers at temperatures approaching 1400 °C. Due to its hardness and chemical inertness, traditional cutting and etching methods used in MEMS technology are not applicable. A method that is being investigated as a possible alternative is laser machining using a picosecond laser. In this research, we study the material property changes that occur from laser machining and quantify the changes with the experimental results obtained by testing sapphire at high-temperature with a standard 4-point bending set-up.
Ubiquitous technologies in health: new challenges of opportunity, expectation, and responsibility.
Rigby, Michael
2006-01-01
In spite of their name, 'ubiquitous' technologies are not yet ubiquitous in the true sense of the word, but rather are 'novel', being at the research, pilot, and selective use stages. In future, the proliferation in types of application, the major increase in cases and data volumes, and above all the dependence on ubiquitous technologies will raise practical, ethical, and liability issues. Equally significantly, it will require health service redesign, including new response services. Health informaticians need to be active in stimulating consideration of all these issues, as part of both social and professional responsibility.
A remote sensing and GIS-enabled highway asset management system : final report.
DOT National Transportation Integrated Search
2016-04-01
The objective of this project is to validate the use of commercial remote sensing and spatial information : (CRS&SI) technologies, including emerging 3D line laser imaging technology, mobile LiDAR, image : processing algorithms, and GPS/GIS technolog...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milnes, M.; Baylor, L.C.; Bave, S.
This article offers a basic review of fiber-optic sensing technology, or more specifically, fiber-optic sensing technology as applied to the qualitative or quantitative identification of a chemical sample, and how it works,
St Jacques, Peggy L; Conway, Martin A; Cabeza, Roberto
2011-10-01
Gender differences are frequently observed in autobiographical memory (AM). However, few studies have investigated the neural basis of potential gender differences in AM. In the present functional MRI (fMRI) study we investigated gender differences in AMs elicited using dynamic visual images vs verbal cues. We used a novel technology called a SenseCam, a wearable device that automatically takes thousands of photographs. SenseCam differs considerably from other prospective methods of generating retrieval cues because it does not disrupt the ongoing experience. This allowed us to control for potential gender differences in emotional processing and elaborative rehearsal, while manipulating how the AMs were elicited. We predicted that males would retrieve more richly experienced AMs elicited by the SenseCam images vs the verbal cues, whereas females would show equal sensitivity to both cues. The behavioural results indicated that there were no gender differences in subjective ratings of reliving, importance, vividness, emotion, and uniqueness, suggesting that gender differences in brain activity were not due to differences in these measures of phenomenological experience. Consistent with our predictions, the fMRI results revealed that males showed a greater difference in functional activity associated with the rich experience of SenseCam vs verbal cues, than did females.
NASA Icing Remote Sensing System Comparisons From AIRS II
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Brinker, David J.; Ratvasky, Thomas P.
2005-01-01
NASA has an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. A multiple instrument approach is the current emphasis of this activity. Utilizing radar, radiometry, and lidar, a region of supercooled liquid is identified. If the liquid water content (LWC) is sufficiently high, then the region of supercooled liquid cloud is flagged as being an aviation hazard. The instruments utilized for the current effort are an X-band vertical staring radar, a radiometer that measures twelve frequencies between 22 and 59 GHz, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data is post-processed with a LabVIEW program with a resultant supercooled LWC profile and aircraft hazard identification. Individual remotely sensed measurements gathered during the 2003-2004 Alliance Icing Research Study (AIRS II) were compared to aircraft in-situ measurements. Comparisons between the remote sensing system s fused icing product and in-situ measurements from the research aircraft are reviewed here. While there are areas where improvement can be made, the cases examined indicate that the fused sensor remote sensing technique appears to be a valid approach.
Enabling technologies for fiber optic sensing
NASA Astrophysics Data System (ADS)
Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.
2016-04-01
In order for fiber optic sensors to compete with electrical sensors, several critical parameters need to be addressed such as performance, cost, size, reliability, etc. Relying on technologies developed in different industrial sectors helps to achieve this goal in a more efficient and cost effective way. FAZ Technology has developed a tunable laser based optical interrogator based on technologies developed in the telecommunication sector and optical transducer/sensors based on components sourced from the automotive market. Combining Fiber Bragg Grating (FBG) sensing technology with the above, high speed, high precision, reliable quasi distributed optical sensing systems for temperature, pressure, acoustics, acceleration, etc. has been developed. Careful design needs to be considered to filter out any sources of measurement drifts/errors due to different effects e.g. polarization and birefringence, coating imperfections, sensor packaging etc. Also to achieve high speed and high performance optical sensing systems, combining and synchronizing multiple optical interrogators similar to what has been used with computer/processors to deliver super computing power is an attractive solution. This path can be achieved by using photonic integrated circuit (PIC) technology which opens the doors to scaling up and delivering powerful optical sensing systems in an efficient and cost effective way.
NASA Astrophysics Data System (ADS)
Hallibert, Pascal
2017-09-01
In recent years, a trend for higher resolution has increased the entrance apertures of future optical payloads for both Astronomy and Earth Observation most demanding applications, resulting in new opto-mechanical challenges for future systems based on either monolithic or segmented large primary mirrors. Whether easing feasibility and schedule impact of tight manufacturing and integration constraints or correcting mission-critical in-orbit and commissioning effects, Active Optics constitutes an enabling technology for future large optical space instruments at ESA and needs to reach the necessary maturity in time for future mission selection and implementation. We present here a complete updated overview of our current R and D activities in this field, ranging from deformable space-compatible components to full correction chains including wavefront sensing as well as control and correction algorithms. We share as well our perspectives on the way-forward to technological maturity and implementation within future missions.
Harvey, Juliet A; Skelton, Dawn A; Chastin, Sebastien F M
2016-01-01
Lifelogging, using body worn sensors (activity monitors and time lapse photography) has the potential to shed light on the context of sedentary behaviour. The objectives of this study were to examine the acceptability, to older adults, of using lifelogging technology and indicate its usefulness for understanding behaviour. 6 older adults (4 males, mean age: 68yrs) wore the equipment (ActivPAL™ and Vicon Revue™/SenseCam™) for 7 consecutive days during free-living activity. The older adults' perception of the lifelogging technology was assessed through semi-structured interviews, including a brief questionnaire (Likert scale), and reference to the researcher's diary. Older adults in this study found the equipment acceptable to wear and it did not interfere with privacy, safety or create reactivity, but they reported problems with the actual technical functioning of the camera. This combination of sensors has good potential to provide lifelogging information on the context of sedentary behaviour.
NASA Technical Reports Server (NTRS)
1975-01-01
An overview is given of the utility, feasibility, and advantages of active microwave sensors for a broad range of applications, including aerospace. In many instances, the material provides an in-depth examination of the applicability and/or the technology of microwave remote sensing, and considerable documentation is presented in support of these techniques. An assessment of the relative strengths and weaknesses of active microwave sensor data indicates that satisfactory data are obtainable for several significant applications.
Current Space Projects of the Bolivarian Republic of Venezuela
NASA Astrophysics Data System (ADS)
Hernández, R.; Acevedo R.; Varela, F.; Otero, S.
2014-06-01
Since 2008, with the successful launch of the first Venezuelan telecommunication satellite VENESAT-1, the Bolivarian Republic of Venezuela became an active player in the international space sector aimed at using space science and technology as a powerful tool to promote the national development. Based on that, through the Bolivarian Agency for Space Activities (ABAE), Venezuela has been implemented several space projects such as the manufacturing and launch of the first Venezuelan remote sensing satellite, the construction of a design center for small satellite technologies, as well as research and development activities related with the estimation of the physical properties of the Earth. This paper presents a brief description of the current space projects that are being developed by Venezuela.
Development of nanostructured antireflection coatings for infrared technologies and applications
NASA Astrophysics Data System (ADS)
Pethuraja, Gopal G.; Zeller, John W.; Welser, Roger E.; Efstathiadis, Harry; Haldar, Pradeep; Wijewarnasuriya, Priyalal S.; Dhar, Nibir K.; Sood, Ashok K.
2017-09-01
Infrared (IR) sensing technologies and systems operating from the near-infrared (NIR) to long-wave infrared (LWIR) spectra are being developed for a variety of defense and commercial systems applications. Reflection losses affecting a significant portion of the incident signal limits the performance of IR sensing systems. One of the critical technologies that will overcome this limitation and enhance the performance of IR sensing systems is the development of advanced antireflection (AR) coatings. Magnolia is actively involved in the development and advancement of ultrahigh performance AR coatings for a wide variety of defense and commercial applications. Ultrahigh performance nanostructured AR coatings have been demonstrated for UV to LWIR spectral bands using various substrates. The AR coatings enhance the optical transmission through optical components and devices by significantly minimizing reflection losses, a substantial improvement over conventional thin-film AR coating technologies. Nanostructured AR coatings are fabricated using a tunable self-assembly process on substrates that are transparent for a given spectrum of interest ranging from UV to LWIR. The nanostructured multilayer structures have been designed, developed and optimized for various optoelectronic applications. The optical properties of the AR-coated optical components and sensor substrates have been measured and fine-tuned to achieve a predicted high level of performance of the coatings. In this paper, we review our latest work on high quality nanostructure-based AR coatings, including recent efforts towards the development of nanostructured AR coatings on IR-transparent substrates.
NASA programs in technology transfer and their relation to remote sensing education
NASA Technical Reports Server (NTRS)
Weinstein, R. H.
1980-01-01
Technology transfer to users is a central feature of NASA programs. In each major area of responsibility, a variety of mechanisms was established to provide for this transfer of operational capability to the proper end user, be it a Federal agency, industry, or other public sector users. In addition, the Technology Utilization program was established to cut across all program areas and to make available a wealth of 'spinoff' technology (i.e., secondary applications of space technology to ground-based use). The transfer of remote sensing technology, particularly to state and local users, presents some real challenges in application and education for NASA and the university community. The agency's approach to the transfer of remote sensing technology and the current and potential role of universities in the process are considered.
ERIC Educational Resources Information Center
Simmons, Denise R.; Creamer, Elizabeth G.; Yu, Rongrong
2017-01-01
Co-curricular and extracurricular involvement plays important roles in students' cognitive and effective development, educational effectiveness and satisfaction, and sense of belonging. Moreover, these practices can help equip a diverse population with the academic and professional skills necessary to succeed in the technological workforce. Yet…
FBG-Based Monitoring of Geohazards: Current Status and Trends
Zhu, Hong-Hu; Shi, Bin; Zhang, Cheng-Cheng
2017-01-01
In recent years, natural and anthropogenic geohazards have occured frequently all over the world, and field monitoring is becoming an increasingly important task to mitigate these risks. However, conventional geotechnical instrumentations for monitoring geohazards have a number of weaknesses, such as low accuracy, poor durability, and high sensitivity to environmental interferences. In this aspect, fiber Bragg grating (FBG), as a popular fiber optic sensing technology, has gained an explosive amount of attention. Based on this technology, quasi-distributed sensing systems have been established to perform real-time monitoring and early warning of landslides, debris flows, land subsidence, earth fissures and so on. In this paper, the recent research and development activities of applying FBG systems to monitor different types of geohazards, especially those triggered by human activities, are critically reviewed. The working principles of newly developed FBG sensors are briefly introduced, and their features are summarized. This is followed by a discussion of recent case studies and lessons learned, and some critical problems associated with field implementation of FBG-based monitoring systems. Finally the challenges and future trends in this research area are presented. PMID:28245551
FBG-Based Monitoring of Geohazards: Current Status and Trends.
Zhu, Hong-Hu; Shi, Bin; Zhang, Cheng-Cheng
2017-02-24
In recent years, natural and anthropogenic geohazards have occured frequently all over the world, and field monitoring is becoming an increasingly important task to mitigate these risks. However, conventional geotechnical instrumentations for monitoring geohazards have a number of weaknesses, such as low accuracy, poor durability, and high sensitivity to environmental interferences. In this aspect, fiber Bragg grating (FBG), as a popular fiber optic sensing technology, has gained an explosive amount of attention. Based on this technology, quasi-distributed sensing systems have been established to perform real-time monitoring and early warning of landslides, debris flows, land subsidence, earth fissures and so on. In this paper, the recent research and development activities of applying FBG systems to monitor different types of geohazards, especially those triggered by human activities, are critically reviewed. The working principles of newly developed FBG sensors are briefly introduced, and their features are summarized. This is followed by a discussion of recent case studies and lessons learned, and some critical problems associated with field implementation of FBG-based monitoring systems. Finally the challenges and future trends in this research area are presented.
NASA Technical Reports Server (NTRS)
Dipippo, S.; Prendin, W.; Gasparoni, F.
1994-01-01
In spite of the apparent great differences between deep ocean and space environment, significant similarities can be recognized when considering the possible solutions and technologies enabling the development of remote automatic stations supporting the execution of scientific activities. In this sense it is believed that mutual benefits shall be derived from the exchange of experiences and results between people and organizations involved in research and engineering activities for hostile environments, such as space, deep sea, and polar areas. A significant example of possible technology transfer and common systematic approach is given, which describes in some detail how the solutions and the enabling technologies identified for an Abyssal Benthic Laboratory can be applied for the case of a lunar or planetary station.
ESA technology flies on Italian mini-satellite launched from Russia
NASA Astrophysics Data System (ADS)
2000-07-01
Owned by the Italian space agency (ASI) and developed by Carlo Gavazzi with contributions from many other Italian companies, MITA has two tasks to perform: in a circular orbit at 450 km altitude, the mini satellite will carry a cosmic particle detector, while its platform will be tested for the first time as a vehicle for future scientific missions. MITA also carries the MTS-AOMS payload (MicroTechSensor for Attitude and Orbit Measurement System), developed by Astrium in the framework of ESA's Technology Flight Opportunity trial programme. With the Technology Flight Opportunity scheme, funded by its General Studies Programme, ESA intends to provide access to space for European industry's technology products needing in-orbit demonstration to enhance their competitiveness on the space market. This new form of support to the European space industry ties in with ESA's strategy for fostering the competitiveness of European-made technology for eventual commercialisation. In-orbit demonstration is essential if new technologies are to compete on level terms on non-European markets. It thus consolidates strategic investments made by the space industry. The MTS-AOMS is a highly integrated sensor for autonomous attitude and orbit control systems. It combines three functions in one unit: Earth sensing, star sensing and magnetic field sensing. The equipment incorporates an active pixel array sensor and a 2-D fluxgate magnetometer. The aims of the flight are to verify in situ the payload's inherent functions and performance, which cannot be done on the ground, and to assess the behaviour of this type of technology when exposed to the space environment. The Technology Flight Opportunity rule is that ESA funds the launch and integration costs, industry the development and operating costs. According to present planning, two further in-orbit demonstrations funded by this scheme will be carried out between now and January 2001.
Strain Wave Acquisition by a Fiber Optic Coherent Sensor for Impact Monitoring
Sbarufatti, Claudio; Beligni, Alessio; Gilioli, Andrea; Ferrario, Maddalena; Mattarei, Marco; Martinelli, Mario; Giglio, Marco
2017-01-01
A novel fiber optic sensing technology for high frequency dynamics detection is proposed in this paper, specifically tailored for structural health monitoring applications based on strain wave analysis, for both passive impact identification and active Lamb wave monitoring. The sensing solution relies on a fiber optic-based interferometric architecture associated to an innovative coherent detection scheme, which retrieves in a completely passive way the high-frequency phase information of the received optical signal. The sensing fiber can be arranged into different layouts, depending on the requirement of the specific application, in order to enhance the sensor sensitivity while still ensuring a limited gauge length if punctual measures are required. For active Lamb wave monitoring, this results in a sensing fiber arranged in multiple loops glued on an aluminum thin panel in order to increase the phase signal only in correspondence to the sensing points of interest. Instead, for passive impact identification, the required sensitivity is guaranteed by simply exploiting a longer gauge length glued to the structure. The fiber optic coherent (FOC) sensor is exploited to detect the strain waves emitted by a piezoelectric transducer placed on the aluminum panel or generated by an impulse hammer, respectively. The FOC sensor measurements have been compared with both a numerical model based on Finite Elements and traditional piezoelectric sensors, confirming a good agreement between experimental and simulated results for both active and passive impact monitoring scenarios. PMID:28773154
Bibliography of Remote Sensing Techniques Used in Wetland Research
1993-01-01
8217 is investigating the application of remote sensing technology for detecting changes in wetland environments. This report documents a bibliographic...search conducted as part of that work unit on applications of remote sensing techniques in wetland research. Results were used to guide research...efforts on the use of remote sensing technology for wetland change detection and assessment. The citations are presented in three appendixes, organized by wetland type, sensor type, and author.
NASA Technical Reports Server (NTRS)
Leboeuf, Claudia M.; Davila, Pamela S.; Redding, David C.; Morell, Armando; Lowman, Andrew E.; Wilson, Mark E.; Young, Eric W.; Pacini, Linda K.; Coulter, Dan R.
1998-01-01
As part of the technology validation strategy of the next generation space telescope (NGST), a system testbed is being developed at GSFC, in partnership with JPL and Marshall Space Flight Center (MSFC), which will include all of the component functions envisioned in an NGST active optical system. The system will include an actively controlled, segmented primary mirror, actively controlled secondary, deformable, and fast steering mirrors, wavefront sensing optics, wavefront control algorithms, a telescope simulator module, and an interferometric wavefront sensor for use in comparing final obtained wavefronts from different tests. The developmental. cryogenic active telescope testbed (DCATT) will be implemented in three phases. Phase 1 will focus on operating the testbed at ambient temperature. During Phase 2, a cryocapable segmented telescope will be developed and cooled to cryogenic temperature to investigate the impact on the ability to correct the wavefront and stabilize the image. In Phase 3, it is planned to incorporate industry developed flight-like components, such as figure controlled mirror segments, cryogenic, low hold power actuators, or different wavefront sensing and control hardware or software. A very important element of the program is the development and subsequent validation of the integrated multidisciplinary models. The Phase 1 testbed objectives, plans, configuration, and design will be discussed.
NASA Technical Reports Server (NTRS)
Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.
1998-01-01
In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.
NASA Technical Reports Server (NTRS)
Whitmore, R. A., Jr. (Principal Investigator)
1980-01-01
A syllabus and training materials prepared and used in a series of one-day workshops to introduce modern remote sensing technology to selected groups of professional personnel in Vermont are described. Success in using computer compatible tapes, LANDSAT imagery and aerial photographs is reported for the following applications: (1) mapping defoliation of hardwood forests by tent caterpillar and gypsy moth; (2) differentiating conifer species; (3) mapping ground cover of major lake and pond watersheds; (4) inventorying and locating artificially regenerated conifer forest stands; (5) mapping water quality; (6) ascertaining the boat population to quantify recreational activity on lakes and waterways; and (7) identifying potential aquaculture sites.
Mihailidis, Alex; Carmichael, Brent; Boger, Jennifer
2004-09-01
This paper discusses the use of computer vision in pervasive healthcare systems, specifically in the design of a sensing agent for an intelligent environment that assists older adults with dementia during an activity of daily living. An overview of the techniques applied in this particular example is provided, along with results from preliminary trials completed using the new sensing agent. A discussion of the results obtained to date is presented, including technical and social issues that remain for the advancement and acceptance of this type of technology within pervasive healthcare.
A self-sensing magnetorheological damper with power generation
NASA Astrophysics Data System (ADS)
Chen, Chao; Liao, Wei-Hsin
2012-02-01
Magnetorheological (MR) dampers are promising for semi-active vibration control of various dynamic systems. In the current MR damper systems, a separate power supply and dynamic sensor are required. To enable the MR damper to be self-powered and self-sensing in the future, in this paper we propose and investigate a self-sensing MR damper with power generation, which integrates energy harvesting, dynamic sensing and MR damping technologies into one device. This MR damper has self-contained power generation and velocity sensing capabilities, and is applicable to various dynamic systems. It combines the advantages of energy harvesting—reusing wasted energy, MR damping—controllable damping force, and sensing—providing dynamic information for controlling system dynamics. This multifunctional integration would bring great benefits such as energy saving, size and weight reduction, lower cost, high reliability, and less maintenance for the MR damper systems. In this paper, a prototype of the self-sensing MR damper with power generation was designed, fabricated, and tested. Theoretical analyses and experimental studies on power generation were performed. A velocity-sensing method was proposed and experimentally validated. The magnetic-field interference among three functions was prevented by a combined magnetic-field isolation method. Modeling, analysis, and experimental results on damping forces are also presented.
Needs and emerging trends of remote sensing
NASA Astrophysics Data System (ADS)
McNair, Michael
2014-06-01
From the earliest need to be able to see an enemy over a hill to sending semi-autonomous platforms with advanced sensor packages out into space, humans have wanted to know more about what is around them. Issues of distance are being minimized through advances in technology to the point where remote control of a sensor is useful but sensing by way of a non-collocated sensor is better. We are not content to just sense what is physically nearby. However, it is not always practical or possible to move sensors to an area of interest; we must be able to sense at a distance. This requires not only new technologies but new approaches; our need to sense at a distance is ever changing with newer challenges. As a result, remote sensing is not limited to relocating a sensor but is expanded into possibly deducing or inferring from available information. Sensing at a distance is the heart of remote sensing. Much of the sensing technology today is focused on analysis of electromagnetic radiation and sound. While these are important and the most mature areas of sensing, this paper seeks to identify future sensing possibilities by looking beyond light and sound. By drawing a parallel to the five human senses, we can then identify the existing and some of the future possibilities. A further narrowing of the field of sensing causes us to look specifically at robotic sensing. It is here that this paper will be directed.
Bittner, James A; Balfe, Susan; Pittendrigh, Barry R; Popovics, John S
2018-05-28
Cowpea provides a significant source of protein for over 200 million people in Sub-Saharan Africa. The cowpea bruchid, Callosobruchus maculatus (F) (Coleoptera: Bruchidae), is a major pest of cowpea as the larval stage attacks stored cowpea grains, causing postharvest loss. Cowpea bruchid larvae spend all their time feeding within the cowpea seed. Past research findings, published over 25 yr ago, have shown that feeding activity of several bruchids within a cowpea seed emit mechanical vibrations within the frequency range 5-75 kHz. This work led to the development of monitoring technologies that are both important for basic research and practical application. Here, we use newer and significantly improved technologies to re-explore the nature of the vibration signals produced by an individual C. maculatus, when it feeds in cowpea seeds. Utilizing broadband frequency sensing, individual fourth-instar bruchid larvae feeding activities (vibration events) were recorded to identify specific key emission frequencies. Verification of recorded events and association to actual feeding activities was achieved through mass measurements over 24 h for a series of replicates. The measurements identified variable peak event emission frequencies across the replicate sample set ranging in frequency from 16.4 to 26.5 kHz. A positive correlation between the number of events recorded and the measured mass loss of the cowpea seed was observed. The procedure and verification reported in this work provide an improved basis for laboratory-based monitoring of single larval feeding. From the rich dataset captured, additional analysis can be carried out to identify new key variables of hidden bruchid larval activity.
The Economics of Remote Sensing for Planning and Construction
ERIC Educational Resources Information Center
Rottweiler, Kurt A.; Wilson, Jerry C.
1971-01-01
Discusses the latest in remote sensing technology including multispectral scanners, thermal scanners, aero magnetometers and side looking radar. Describes the application of this technology to preconstruction site surveys. (JF)
Remote sensing and the Mississippi high accuracy reference network
NASA Technical Reports Server (NTRS)
Mick, Mark; Alexander, Timothy M.; Woolley, Stan
1994-01-01
Since 1986, NASA's Commercial Remote Sensing Program (CRSP) at Stennis Space Center has supported commercial remote sensing partnerships with industry. CRSP's mission is to maximize U.S. market exploitation of remote sensing and related space-based technologies and to develop advanced technical solutions for spatial information requirements. Observation, geolocation, and communications technologies are converging and their integration is critical to realize the economic potential for spatial informational needs. Global positioning system (GPS) technology enables a virtual revolution in geopositionally accurate remote sensing of the earth. A majority of states are creating GPS-based reference networks, or high accuracy reference networks (HARN). A HARN can be defined for a variety of local applications and tied to aerial or satellite observations to provide an important contribution to geographic information systems (GIS). This paper details CRSP's experience in the design and implementation of a HARN in Mississippi and the design and support of future applications of integrated earth observations, geolocation, and communications technology.
Electromagnetic sensing for deterministic finishing gridded domes
NASA Astrophysics Data System (ADS)
Galbraith, Stephen L.
2013-06-01
Electromagnetic sensing is a promising technology for precisely locating conductive grid structures that are buried in optical ceramic domes. Burying grid structures directly in the ceramic makes gridded dome construction easier, but a practical sensing technology is required to locate the grid relative to the dome surfaces. This paper presents a novel approach being developed for locating mesh grids that are physically thin, on the order of a mil, curved, and 75% to 90% open space. Non-contact location sensing takes place over a distance of 1/2 inch. A non-contact approach was required because the presence of the ceramic material precludes touching the grid with a measurement tool. Furthermore, the ceramic which may be opaque or transparent is invisible to the sensing technology which is advantageous for calibration. The paper first details the physical principles being exploited. Next, sensor impedance response is discussed for thin, open mesh, grids versus thick, solid, metal conductors. Finally, the technology approach is incorporated into a practical field tool for use in inspecting gridded domes.
Lancaster, David G.; Monro, Tanya M.
2017-01-01
Optical microfibers possess excellent optical and mechanical properties that have been exploited for sensing. We highlight the authors’ recent work in the areas of current, temperature, acceleration, acoustic, humidity and ultraviolet-light sensing based on this exquisite technology, and the advantages and challenges of using optical microfibers are discussed. PMID:29283414
The NASA Icing Remote Sensing System
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Brinker, David J.; Ratvasky, Thomas P.; Ryerson, Charles C.; Koenig, George G.
2005-01-01
NASA and the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) have an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. A multiple instrument approach is the current emphasis of this activity. Utilizing radar, radiometry, and lidar, a region of supercooled liquid is identified. If the liquid water content (LWC) is sufficiently high, then the region of supercooled liquid cloud is flagged as being an aviation hazard. The instruments utilized for the current effort are an X-band vertical staring radar, a radiometer that measures twelve frequencies between 22 and 59 GHz, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data are post-processed with a LabVIEW program with a resultant supercooled LWC profile and aircraft hazard identification. Remotely sensed measurements gathered during the 2003-2004 Alliance Icing Research Study (AIRS II) were compared to aircraft in-situ measurements. Although the comparison data set is quite small, the cases examined indicate that the remote sensing technique appears to be an acceptable approach.
Applications of earth resources technology to human needs
NASA Technical Reports Server (NTRS)
Weinberger, C.
1975-01-01
The application of remote sensing technology in the fields of health and education is examined. The technology and accomplishments of ATS 6 and the development of a nationwide telecommunications system to meet the varied needs of the health and education communities are among the topics discussed. The economic and social aspects of utilizing and benefiting from remote sensing technology are stressed.
ERIC Educational Resources Information Center
Wicklein, Robert C.; Rojewski, Jay W.
1995-01-01
Of secondary school teachers who completed the Keirsey-Bates Temperament Sorter, 136 were in technology education, 110 in industrial arts. Two types were prevalent among industrial arts teachers: Extrovert Sensing Feeling Judging and Introvert Sensing Feeling Judging. Technology education teachers were more Extrovert Intuitive Thinking Judging,…
Novel remote sensor systems: design, prototyping, and characterization
NASA Astrophysics Data System (ADS)
Kayastha, V.; Gibbons, S.; Lamb, J. E.; Giedd, R. E.
2014-06-01
We have designed and tested a prototype TRL4 radio-frequency (RF) sensing platform containing a transceiver that interrogates a passive carbon nanotube (CNT)-based sensor platform. The transceiver can be interfaced to a server technology such as a Bluetooth® or Wi-Fi device for further connectivity. The novelty of a very-low-frequency (VLF) implementation in the transceiver design will ultimately enable deep penetration into the ground or metal structures to communicate with buried sensing platforms. The sensor platform generally consists of printed electronic devices made of CNTs on flexible poly(ethylene terephthalate) (PET) and Kapton® substrates. This novel remote sensing system can be integrated with both passive and active sensing platforms. It offers unique characteristics suitable for a variety of sensing applications. The proposed sensing platforms can take on different form factors and the RF output of the sensing platforms could be modulated by humidity, temperature, pressure, strain, or vibration signals. Resonant structures were designed and constructed to operate in the very-high-frequency (VHF) and VLF ranges. In this presentation, we will report results of our continued effort to develop a commercially viable transceiver capable of interrogating the conformally mounted sensing platforms made from CNTs or silver-based nanomaterials on polyimide substrates over a broad range of frequencies. The overall performance of the sensing system with different sensing elements and at different frequency ranges will be discussed.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta
2017-01-01
The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.
Toward biomaterial-based implantable photonic devices
NASA Astrophysics Data System (ADS)
Humar, Matjaž; Kwok, Sheldon J. J.; Choi, Myunghwan; Yetisen, Ali K.; Cho, Sangyeon; Yun, Seok-Hyun
2017-03-01
Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs) and miniature lasers made of biocompatible materials may offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies.
Petroleum exploration in Africa from space
NASA Astrophysics Data System (ADS)
Gianinetto, Marco; Frassy, Federico; Aiello, Martina; Rota Nodari, Francesco
2017-10-01
Hydrocarbons are nonrenewable resources but today they are the cheaper and easier energy we have access and will remain the main source of energy for this century. Nevertheless, their exploration is extremely high-risk, very expensive and time consuming. In this context, satellite technologies for Earth observation can play a fundamental role by making hydrocarbon exploration more efficient, economical and much more eco-friendly. Complementary to traditional geophysical methods such as gravity and magnetic (gravmag) surveys, satellite remote sensing can be used to detect onshore long-term biochemical and geochemical alterations on the environment produced by invisible small fluxes of light hydrocarbons migrating from the underground deposits to the surface, known as microseepage effect. This paper describes two case studies: one in South Sudan and another in Mozambique. Results show how remote sensing is a powerful technology for detecting active petroleum systems, thus supporting hydrocarbon exploration in remote or hardly accessible areas and without the need of any exploration license.
Huber, Meghan; Rabin, Bryan; Docan, Ciprian; Burdea, Grigore C; AbdelBaky, Moustafa; Golomb, Meredith R
2010-03-01
The convergence of game technology, the Internet, and rehabilitation science forms the second-generation virtual rehabilitation framework. This paper presents the first pilot study designed to look at the feasibility of at-home use of gaming technology adapted to address hand impairments in adolescents with hemiplegia due to perinatal stroke or intraventricular hemorrhage. Three participants trained at home for approximately 30 min/day, several days a week, for six to ten months. During therapy, they wore a fifths dimension technologies ultra sensing glove and played custom-developed Java 3D games on a modified PlayStation 3. The games were designed to accommodate the participants' limited range of motion, and to improve finger range and speed of motion. Trials took place in Indiana, while monitoFring/data storage took place at Rutgers Tele-Rehabilitation Institute (New Jersey). Significant improvements in finger range of motion (as measured by the sensing glove) were associated with self- and family-reported improvements in activities of daily living. In online subjective evaluations, participants indicated that they liked the system ease of use, clarity of instructions, and appropriate length of exercising. Other telerehabilitation studies are compared to this study and its technology challenges. Directions for future research are included.
An investigation into non-invasive physical activity recognition using smartphones.
Kelly, Daniel; Caulfield, Brian
2012-01-01
Technology utilized to automatically monitor Activities of Daily Living (ADL) could be a key component in identifying deviations from normal functional profiles and providing feedback on interventions aimed at improving health. However, if activity recognition systems are to be implemented in real world scenarios such as health and wellness monitoring, the activity sensing modality must unobtrusively fit the human environment rather than forcing humans to adhere to sensor specific conditions. Modern smart phones represent a ubiquitous computing device which has already undergone mainstream adoption. In this paper, we investigate the feasibility of using a modern smartphone, with limited placement constraints, as the sensing modality for an activity recognition system. A dataset of 4 subjects performing 7 activities, using varying sensor placement conditions, is utilized to investigate this. Initial experiments show that a decision tree classifier performs activity classification with precision and recall scores of 0.75 and 0.73 respectively. More importantly, as part of this initial experiment, 3 main problems, and subsequently 3 solutions, relating to unconstrained sensor placement were identified. Using our proposed solutions, classification precision and recall scores were improved by +13% and +14.6% respectively.
Panda, Sudhanshu S.; Rao, Mahesh N.; Thenkabail, Prasad S.; Fitzerald, James E.
2015-01-01
The American Society of Photogrammetry and Remote Sensing defined remote sensing as the measurement or acquisition of information of some property of an object or phenomenon, by a recording device that is not in physical or intimate contact with the object or phenomenon under study (Colwell et al., 1983). Environmental Systems Research Institute (ESRI) in its geographic information system (GIS) dictionary defines remote sensing as “collecting and interpreting information about the environment and the surface of the earth from a distance, primarily by sensing radiation that is naturally emitted or reflected by the earth’s surface or from the atmosphere, or by sending signals transmitted from a device and reflected back to it (ESRI, 2014).” The usual source of passive remote sensing data is the measurement of reflected or transmitted electromagnetic radiation (EMR) from the sun across the electromagnetic spectrum (EMS); this can also include acoustic or sound energy, gravity, or the magnetic field from or of the objects under consideration. In this context, the simple act of reading this text is considered remote sensing. In this case, the eye acts as a sensor and senses the light reflected from the object to obtain information about the object. It is the same technology used by a handheld camera to take a photograph of a person or a distant scenic view. Active remote sensing, however, involves sending a pulse of energy and then measuring the returned energy through a sensor (e.g., Radio Detection and Ranging [RADAR], Light Detection and Ranging [LiDAR]). Thermal sensors measure emitted energy by different objects. Thus, in general, passive remote sensing involves the measurement of solar energy reflected from the Earth’s surface, while active remote sensing involves synthetic (man-made) energy pulsed at the environment and the return signals are measured and recorded.
Noninvasive blood pressure measurement scheme based on optical fiber sensor
NASA Astrophysics Data System (ADS)
Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan
2016-10-01
Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.
Svanberg, Jenny; Evans, Jonathan J
2014-01-01
This study aimed to investigate the impact of SenseCam, a wearable, automatic camera, on subjective mood and identity in a patient with severe memory impairment due to Korsakoff's syndrome. It was hypothesised that SenseCam would improve Ms A's mood and identity through enhancing recall of autobiographical memories of recent events, therefore supporting a coherent sense of self; the lack of which was contributing to Ms A's mood deterioration. An ABA single case experimental design investigated whether using SenseCam to record regular activities impacted on Ms A's mood and identity. Ms A experienced improved recall for events recorded using SenseCam, and showed improvement on subjective ratings of identity. However, a corresponding improvement in mood was not seen, and the study was ended early at Ms A's request. Qualitative information was gathered to explore Ms A's experience of the study, and investigate psychosocial factors that may have impacted on the use of SenseCam. SenseCam may be of significant use as a compensatory memory aid for people with Korsakoff's syndrome and other types of alcohol-related brain damage (ARBD), but acceptance of memory impairment and consistent support may be among the factors required to support the use of such assistive technologies in a community setting.
Criteria for successful government-industry-academic partnerships
NASA Astrophysics Data System (ADS)
Brannon, David P.
1996-03-01
The mission of the Commercial Remote Sensing Program (CRSP) Office at NASA's John C. Stennis Space Center is to maximize U.S. industry's commercial use of remote sensing and related space-based technologies and to develop advanced technical responses to spatial information requirements. The CRSP Office carries out this mission by offering several commercial partnership programs that help companies to apply remote sensing technologies in business applications and to buy down the risk of bringing new or improved products and services to market. Through its commercial partnerships, the CRSP seeks to increase the market demand for remote sensing products and related advanced technologies, thus increasing the use and reducing the cost of spatial information.
Photonic sensors review recent progress of fiber sensing technologies in Tianjin University
NASA Astrophysics Data System (ADS)
Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Li, Enbang; Zhang, Hongxia; Jia, Dagong; Zhang, Yimo
2011-03-01
The up to date progress of fiber sensing technologies in Tianjin University are proposed in this paper. Fiber-optic temperature sensor based on the interference of selective higher-order modes in circular optical fiber is developed. Parallel demodulation for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is realized based on white light interference. Gas concentration detection is realized based on intra-cavity fiber laser spectroscopy. Polarization maintaining fiber (PMF) is used for distributed position or displacement sensing. Based on the before work and results, we gained National Basic Research Program of China on optical fiber sensing technology and will develop further investigation in this area.
Solid-State, High Energy 2-Micron Laser Development for Space-Based Remote Sensing
NASA Technical Reports Server (NTRS)
Singh, Upendra N.
2010-01-01
Lidar (light detection and ranging) remote sensing enjoys the advantages of excellent vertical and horizontal resolution; pointing capability; a signal source independent from natural light; and control and knowledge of transmitted wavelength, pulse shape, and polarization and received polarization. Lidar in space is an emerging technology now being developing to fit applications where passive sensors cannot meet current measurement requirements. Technical requirements for space lidar are more demanding than for ground-based or airborne systems. Perhaps the most distinguishing characteristics of space lidars are the environmental requirements. Space lidar systems must be specially designed to survive the mechanical vibration loads of launch and operate in the vacuum of space where exposure to ionizing radiation limits the electronic components available. Finally, space lidars must be designed to be highly reliable because they must operate without the need for repair or adjustment. Lifetime requirements tend to be important drivers of the overall system design. The maturity of the required technologies is a key to the development of any space lidar system. NASA entered a new era in the 1990 s with the approval of several space-based remote sensing missions employing laser radar (lidar) techniques. Following the steps of passive remote sensing and then active radar remote sensing, lidar sensors were a logical next step, providing independence from natural light sources, and better spatial resolution and smaller sensor size than radar sensors. The shorter electromagnetic wavelengths of laser light also allowed signal reflectance from air molecules and aerosol particles. The smaller receiver apertures allowed the concept of scanning the sensor field of view. However, technical problems with several space-based lidar missions during that decade led to concern at NASA about the risk of lidar missions. An external panel was convened to make recommendations to NASA. Their report in 2000 strongly advocated that NASA maintain in-house laser and lidar capability, and that NASA should work to lower the technology risk for all future lidar missions. A multi-Center NASA team formulated an integrated NASA strategy to provide the technology and maturity of systems necessary to make Lidar/Laser systems viable for space-based study and monitoring of the Earth's atmosphere. In 2002 the NASA Earth Science Enterprise (ESE) and Office of Aerospace Technology (OAT) created the Laser Risk Reduction Program (LRRP) and directed NASA Langley Research Center (LaRC) and Goddard Space Flight Center to carry out synergistic and complementary research towards solid-state lasers/lidars developments for space-based remote sensing applications.
Use of remote sensing in agriculture
NASA Technical Reports Server (NTRS)
Pettry, D. E.; Powell, N. L.; Newhouse, M. E.
1974-01-01
Remote sensing studies in Virginia and Chesapeake Bay areas to investigate soil and plant conditions via remote sensing technology are reported ant the results given. Remote sensing techniques and interactions are also discussed. Specific studies on the effects of soil moisture and organic matter on energy reflection of extensively occurring Sassafras soils are discussed. Greenhouse and field studies investigating the effects of chlorophyll content of Irish potatoes on infrared reflection are presented. Selected ground truth and environmental monitoring data are shown in summary form. Practical demonstrations of remote sensing technology in agriculture are depicted and future use areas are delineated.
Impact of end effector technology on telemanipulation performance
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Szakaly, Z.; Ohm, T.
1990-01-01
Generic requirements for end effector design are briefly summarized as derived from generic functional and operational requirements. Included is a brief summary of terms and definitions related to end effector technology. The second part contains a brief overview of end effector technology work as JPL during the past ten years, with emphasis on the evolution of new mechanical, sensing and control capabilities of end effectors. The third and major part is devoted to the description of current end effector technology. The ongoing work addresses mechanical, sensing and control details with emphasis on mechanical ruggedness, increased resolution in sensing, and close electronic and control integration with overall telemanipulator control system.
NASA Astrophysics Data System (ADS)
Hughes, R. C.; Drebing, C. G.
1990-04-01
The technology that led to very large scale integrated circuits on silicon chips also provides a basis for new microsensors that are small, inexpensive, low power, rugged, and reliable. Two examples of microsensors Sandia is developing that take advantage of this technology are the microelectronic chemical sensor array and the radiation sensing field effect transistor (RADFET). Increasingly, the technology of chemical sensing needs new microsensor concepts. Applications in this area include environmental monitoring, criminal investigations, and state-of-health monitoring, both for equipment and living things. Chemical microsensors can satisfy sensing needs in the industrial, consumer, aerospace, and defense sectors. The microelectronic chemical-sensor array may address some of these applications. We have fabricated six separate chemical gas sensing areas on the microelectronic chemical sensor array. By using different catalytic metals on the gate areas of the diodes, we can selectively sense several gases.
MEMS sensing and control: an aerospace perspective
NASA Astrophysics Data System (ADS)
Schoess, Jeffrey N.; Arch, David K.; Yang, Wei; Cabuz, Cleopatra; Hocker, Ben; Johnson, Burgess R.; Wilson, Mark L.
2000-06-01
Future advanced fixed- and rotary-wing aircraft, launch vehicles, and spacecraft will incorporate smart microsensors to monitor flight integrity and provide flight control inputs. This paper provides an overview of Honeywell's MEMS technologies for aerospace applications of sensing and control. A unique second-generation polysilicon resonant microbeam sensor design is described. It incorporates a micron-level vacuum-encapsulated microbeam to optically sense aerodynamic parameters and to optically excite the sensor pick off: optically excited self-resonant microbeams form the basis for a new class of versatile, high- performance, low-cost MEMS sensors that uniquely combine silicon microfabrication technology with optoelectronic technology that can sense dynamic pressure, acceleration forces, acoustic emission, and many other aerospace parameters of interest. Honeywell's recent work in MEMS tuning fork gyros for inertial sensing and a MEMS free- piston engine are also described.
Possible role of remote sensing for increasing public awareness of the Chesapeake Bay environment
NASA Technical Reports Server (NTRS)
Wilkerson, T. D.; Maher, P. A.; Billings, G.; Cressy, P. J.; Jarman, J. W.; Macleod, N. H.; Trombka, J. I.; Wisner, T.
1978-01-01
Application of remote sensing techniques to the study of the Chesapeake Bay and the availability of the resulting information are discussed in terms of public awareness of the Chesapeake Bay, its total environment, and the need to protect that environment and to preserve the Bay. Recommendations given include: (1) continue the study of remote sensing technology and its use in the Chesapeake Bay region; (2) emphasize the importance of LANDSAT imagery to the evolution of remote sensing technological developments and the awareness of the environment and its changes; (3) increase dissemination of information of the environmental applications of remote sensing technology to the public; (4) design surveys of the Chesapeake Bay environment and its manmade changes; and (5) establish a coordinating regional institution to develop a management plan for the Chesapeake Bay.
Radio frequency identification enabled wireless sensing for intelligent food logistics.
Zou, Zhuo; Chen, Qiang; Chen, Qing; Uysal, Ismail; Zheng, Lirong
2014-06-13
Future technologies and applications for the Internet of Things (IoT) will evolve the process of the food supply chain and create added value of business. Radio frequency identifications (RFIDs) and wireless sensor networks (WSNs) have been considered as the key technological enablers. Intelligent tags, powered by autonomous energy, are attached on objects, networked by short-range wireless links, allowing the physical parameters such as temperatures and humidities as well as the location information to seamlessly integrate with the enterprise information system over the Internet. In this paper, challenges, considerations and design examples are reviewed from system, implementation and application perspectives, particularly with focus on intelligent packaging and logistics for the fresh food tracking and monitoring service. An IoT platform with a two-layer network architecture is introduced consisting of an asymmetric tag-reader link (RFID layer) and an ad-hoc link between readers (WSN layer), which are further connected to the Internet via cellular or Wi-Fi. Then, we provide insights into the enabling technology of RFID with sensing capabilities. Passive, semi-passive and active RFID solutions are discussed. In particular, we describe ultra-wideband radio RFID which has been considered as one of the most promising techniques for ultra-low-power and low-cost wireless sensing. Finally, an example is provided in the form of an application in fresh food tracking services and corresponding field testing results.
Representing and Reconciling Personal Data and Experience in a Wearable Technology Gaming Project
ERIC Educational Resources Information Center
Ching, Cynthia Carter; Stewart, Mary K.; Hagood, Danielle E.; Rashedi, Roxanne Naseem
2016-01-01
Extant literature has largely not examined how users critically engage with their physical activity monitors, as objective data sense-making is often deemed superior to users' subjective realities. Our research, however, examines how middle-school youth encounter the representation of their data, as it is converted and actionable in an online…
An Interdisciplinary Study of the SARS Virus: A One-Semester First-Year Seminar
ERIC Educational Resources Information Center
Ealy, Julie; Dorward, Adrienne
2005-01-01
The rationale for the first-year seminar is to introduce freshmen to the university. The basic components of a first-year seminar are academic integrity, skill development, a sense of community, active and collaborative learning strategies, and technology. All freshmen must take a first-year seminar that consists primarily of freshmen, although…
Maximum entropy modeling of invasive plants in the forests of Cumberland Plateau and Mountain Region
Dawn Lemke; Philip Hulme; Jennifer Brown; Wubishet. Tadesse
2011-01-01
As anthropogenic influences on the landscape change the composition of 'natural' areas, it is important that we apply spatial technology in active management to mitigate human impact. This research explores the integration of geographic information systems (GIS) and remote sensing with statistical analysis to assist in modeling the distribution of invasive...
Light detection and ranging (LIDAR): an emerging tool for multiple resource inventory.
Stephen E. Reutebuch; Hans-Erik Andersen; Robert J. McGaughey
2005-01-01
Airborne laser scanning of forests has been shown to provide accurate terrain models and, at the same time, estimates of multiple resource inventory variables through active sensing of three-dimensional (3D) forest vegetation. Brief overviews of airborne laser scanning technology [often referred to as "light detection and ranging" (LIDAR)] and research...
ERIC Educational Resources Information Center
Uden, Lorna; Hwang, Gwo-Jen
2013-01-01
Mobile computing offers potential opportunities for students' learning especially when it combines a sensing device such as RFID (Radio Frequency Identification). Researchers have indicated that a key feature of in-field learning supported by mobile devices and technology is context awareness, with which context and functionality provided by…
E-Mentoring for New Principals: A Case Study of a Mentoring Program
ERIC Educational Resources Information Center
Russo, Erin D.
2013-01-01
This descriptive case study includes both new principals and their mentor principals engaged in e-mentoring activities. This study examines the components of a school district's mentoring program in order to make sense of e-mentoring technology. The literature review highlights mentoring practices in education, and also draws upon e-mentoring…
Land cover change map comparisons using open source web mapping technologies
Erik Lindblom; Ian Housman; Tony Guay; Mark Finco; Kevin Megown
2015-01-01
The USDA Forest Service is evaluating the status of current landscape change maps and assessing gaps in their information content. These activities have been occurring under the auspices of the Landscape Change Monitoring System (LCMS) project, which is a joint effort between USFS Research, USFS Remote Sensing Applications Center (RSAC), USGS Earth Resources...
Annotating smart environment sensor data for activity learning.
Szewcyzk, S; Dwan, K; Minor, B; Swedlove, B; Cook, D
2009-01-01
The pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track the activities that people perform at home. Machine learning techniques can perform this task, but the software algorithms rely upon large amounts of sample data that is correctly labeled with the corresponding activity. Labeling, or annotating, sensor data with the corresponding activity can be time consuming, may require input from the smart home resident, and is often inaccurate. Therefore, in this paper we investigate four alternative mechanisms for annotating sensor data with a corresponding activity label. We evaluate the alternative methods along the dimensions of annotation time, resident burden, and accuracy using sensor data collected in a real smart apartment.
Rigby, Michael
2007-12-01
In spite of their name, 'ubiquitous' technologies are not yet ubiquitous in the true sense of the word, but rather are 'novel', being at the research, pilot, and selective use stages. In future, the proliferation in types of application, the major increase in cases and data volumes, and above all the dependence on ubiquitous technologies to monitor persons at risk, will raise practical, ethical, and liability issues. Equally significantly, it will require health service redesign, including new response services. Health informaticians need to be active in stimulating consideration of all these issues, as part of both social and professional responsibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovley, Derek R.
The project was successful in developing new sensing technologies for monitoring rates of microbial activity in soils and sediments and also developed a novel proof-of-concept for monitoring the presence of bioavailable concentrations of a diversity of metabolites and toxic components in sedimentary environments. These studies led not only to publications in the peer-reviewed literature, but also two patent applications and a start-up company.
1998 IEEE Aerospace Conference. Proceedings.
NASA Astrophysics Data System (ADS)
The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.
NASA Technical Reports Server (NTRS)
Chirayath, Ved
2018-01-01
We present preliminary results from NASA NeMO-Net, the first neural multi-modal observation and training network for global coral reef assessment. NeMO-Net is an open-source deep convolutional neural network (CNN) and interactive active learning training software in development which will assess the present and past dynamics of coral reef ecosystems. NeMO-Net exploits active learning and data fusion of mm-scale remotely sensed 3D images of coral reefs captured using fluid lensing with the NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as hyperspectral airborne remote sensing data from the ongoing NASA CORAL mission and lower-resolution satellite data to determine coral reef ecosystem makeup globally at unprecedented spatial and temporal scales. Aquatic ecosystems, particularly coral reefs, remain quantitatively misrepresented by low-resolution remote sensing as a result of refractive distortion from ocean waves, optical attenuation, and remoteness. Machine learning classification of coral reefs using FluidCam mm-scale 3D data show that present satellite and airborne remote sensing techniques poorly characterize coral reef percent living cover, morphology type, and species breakdown at the mm, cm, and meter scales. Indeed, current global assessments of coral reef cover and morphology classification based on km-scale satellite data alone can suffer from segmentation errors greater than 40%, capable of change detection only on yearly temporal scales and decameter spatial scales, significantly hindering our understanding of patterns and processes in marine biodiversity at a time when these ecosystems are experiencing unprecedented anthropogenic pressures, ocean acidification, and sea surface temperature rise. NeMO-Net leverages our augmented machine learning algorithm that demonstrates data fusion of regional FluidCam (mm, cm-scale) airborne remote sensing with global low-resolution (m, km-scale) airborne and spaceborne imagery to reduce classification errors up to 80% over regional scales. Such technologies can substantially enhance our ability to assess coral reef ecosystems dynamics.
Sensing Hazards with Operational Unmanned Technology
NASA Astrophysics Data System (ADS)
Hood, R. E.
2016-12-01
The Unmanned Aircraft Systems (UAS) Program of the National Oceanic and Atmospheric Administration (NOAA) is working with the National Weather Service, the National Ocean Service, other Federal agencies, private industry, and academia to evaluate the feasibility of UAS observations to provide time critical information needed for situational awareness, prediction, warning, and damage assessment of hazards. This activity is managed within a portfolio of projects entitled "Sensing Hazards with Operational Unmanned Technology (SHOUT)." The diversity of this portfolio includes evaluations of high altitude UAS observations for high impact oceanic storms prediction to low altitude UAS observations of rivers, severe storms, and coastal areas for pre-hazard situational awareness and post-hazard damage assessments. Each SHOUT evaluation project begins with a proof-of-concept field demonstration of a UAS observing strategy for a given hazard and then matures to joint studies of both scientific data impact along with cost and operational feasibility of the observing strategy for routine applications. The technology readiness and preliminary evaulation results will be presented for several UAS observing strategies designed for improved observations of oceanic storms, floods, severe storms, and coastal ecosystem hazards.
Digital Earth system based river basin data integration
NASA Astrophysics Data System (ADS)
Zhang, Xin; Li, Wanqing; Lin, Chao
2014-12-01
Digital Earth is an integrated approach to build scientific infrastructure. The Digital Earth systems provide a three-dimensional visualization and integration platform for river basin data which include the management data, in situ observation data, remote sensing observation data and model output data. This paper studies the Digital Earth system based river basin data integration technology. Firstly, the construction of the Digital Earth based three-dimensional river basin data integration environment is discussed. Then the river basin management data integration technology is presented which is realized by general database access interface, web service and ActiveX control. Thirdly, the in situ data stored in database tables as records integration is realized with three-dimensional model of the corresponding observation apparatus display in the Digital Earth system by a same ID code. In the next two parts, the remote sensing data and the model output data integration technologies are discussed in detail. The application in the Digital Zhang River basin System of China shows that the method can effectively improve the using efficiency and visualization effect of the data.
Fiber Sensor Systems Based on Fiber Laser and Microwave Photonic Technologies
Fu, Hongyan; Chen, Daru; Cai, Zhiping
2012-01-01
Fiber-optic sensors, especially fiber Bragg grating (FBG) sensors are very attractive due to their numerous advantages over traditional sensors, such as light weight, high sensitivity, cost-effectiveness, immunity to electromagnetic interference, ease of multiplexing and so on. Therefore, fiber-optic sensors have been intensively studied during the last several decades. Nowadays, with the development of novel fiber technology, more and more newly invented fiber technologies bring better and superior performance to fiber-optic sensing networks. In this paper, the applications of some advanced photonic technologies including fiber lasers and microwave photonic technologies for fiber sensing applications are reviewed. FBG interrogations based on several kinds of fiber lasers, especially the novel Fourier domain mode locking fiber laser, have been introduced; for the application of microwave photonic technology, examples of microwave photonic filtering utilized as a FBG sensing interrogator and microwave signal generation acting as a transversal loading sensor have been given. Both theoretical analysis and experimental demonstrations have been carried out. The comparison of these advanced photonic technologies for the applications of fiber sensing is carried out and important issues related to the applications have been addressed and the suitable and potential application examples have also been discussed in this paper. PMID:22778591
NASA Astrophysics Data System (ADS)
Perotti, Luigi; Conte, Riccardo; Lanfranco, Massimo; Perrone, Gianluigi; Giardino, Marco; Ratto, Sara
2010-05-01
Geo-information and remote sensing are proper tools to enhance functional strategies for increasing awareness on natural hazards and risks and for supporting research and operational activities devoted to disaster reduction. An improved Earth Sciences knowledge coupled with Geomatics advanced technologies has been developed by the joint research group and applied by the ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action) centre, within its partnership with the UN World Food Programme (WFP) with the goal of reducing human, social, economic and environmental losses due to natural hazards and related disasters. By cooperating with local and regional authorities (Municipalities, Centro Funzionale of the Aosta Valley, Civil Protection Agency of Regione Piemonte), data on natural hazards and risks have been collected, compared to national and global data, then interpreted for helping communities and civil protection agencies of sensitive mountain regions to make strategic choices and decisions to better mitigation and adaption measures. To enhance the application of GIS and Remote-sensing technologies for geothematic mapping of geological and geomorphological risks of mountain territories of Europe and Developing Countries, research activities led to the collection and evaluation of data from scientific literature and historical technical archives, for the definition of predisposing/triggering factors and evolutionary processes of natural instability phenomena (landslides, floods, storms, …) and for the design and implementation of early-warning and early-impact systems. Geodatabases, Remote Sensing and Mobile-GIS applications were developed to perform analysis of : 1) large climate-related disaster (Hurricane Mitch, Central America), by the application of remote sensing techniques, either for early warning or mitigation measures at the national and international scale; 2) distribution of slope instabilities at the regional scale (Aosta Valley, NW-Italy), for preventing and recovering measures; 3) geological and geomorphological controlling factors of seismicity, to provide microzonation maps and scenarios for co-seismic response of instable zones (Dronero, NW- Italian Alps); 4) earthquake effects on ground and infrastructures, in order to register early assessment for awareness situations and for compile damage inventories (Asti-Alessandria seismic events, 2000, 2001, 2003). The research results has been able to substantiate early warning models by structuring geodatabases on natural disasters, and to support humanitarian relief and disaster management activities by creating and testing SRG2, a mobile-GIS application for field-data collection on natural hazards and risks.
Ballen, Cissy J.; Wieman, Carl; Salehi, Shima; Searle, Jeremy B.; Zamudio, Kelly R.
2017-01-01
Efforts to retain underrepresented minority (URM) students in science, technology, engineering, and mathematics (STEM) have shown only limited success in higher education, due in part to a persistent achievement gap between students from historically underrepresented and well-represented backgrounds. To test the hypothesis that active learning disproportionately benefits URM students, we quantified the effects of traditional versus active learning on student academic performance, science self-efficacy, and sense of social belonging in a large (more than 250 students) introductory STEM course. A transition to active learning closed the gap in learning gains between non-URM and URM students and led to an increase in science self-efficacy for all students. Sense of social belonging also increased significantly with active learning, but only for non-URM students. Through structural equation modeling, we demonstrate that, for URM students, the increase in self-efficacy mediated the positive effect of active-learning pedagogy on two metrics of student performance. Our results add to a growing body of research that supports varied and inclusive teaching as one pathway to a diversified STEM workforce. PMID:29054921
NASA Astrophysics Data System (ADS)
Bonifazi, Giuseppe; Serranti, Silvia
2007-09-01
Mining activities, expecially those operated in open air (open pit), present a deep impact on the sourrondings. Such an impact, and the related problems, are directly related to the correct operation of the activities, and usually strongly interact with the environment. Impact can be mainly related to the following issues: high volumes of handled material, ii) generation of dust, noise and vibrations, water pollution, visual impact and, finally, mining area recovery at the end of exploitation activities. All these aspects can be considered very important, and must be properly evaluated and monitored. Environmental impact control is usually carried out during and after the end of the mining activities, adopting methods related to the detection, collection, analysis of specific environmental indicators and with their further comparison with reference thresholding values stated by official regulations. Aim of the study was to investigate, and critically evaluate, the problems related to development of an integrated set of procedures based on the collection and the analysis of remote sensed data in order to evaluate the effect of rehabilitation of land contaminated by extractive industry activities. Starting from the results of these analyses, a monitoring and registration of the environmental impact of such operations was performed by the application and the integration of modern information technologies, as the previous mentioned Earth Observation (EO), with Geographic Information Systems (GIS). The study was developed with reference to different dismissed mine sites in India, Thailand and China. The results of the study have been utilized as input for the construction of a knowledge based decision support system finalized to help in the identification of the appropriate rehabilitation technologies for all those dismissed area previously interested by extractive industry activities. The work was financially supported within the framework of the Project ASIA IT&C - CN/ASIA IT&C/006 (89870) Extract-It "Application of Information Technologies for the Sustainable Management of Extractive Industry Activities" of the European Union.
Discovering Activities to Recognize and Track in a Smart Environment
Rashidi, Parisa; Cook, Diane J.; Holder, Lawrence B.; Schmitter-Edgecombe, Maureen
2011-01-01
The machine learning and pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track activities that people normally perform as part of their daily routines. Although approaches do exist for recognizing activities, the approaches are applied to activities that have been pre-selected and for which labeled training data is available. In contrast, we introduce an automated approach to activity tracking that identifies frequent activities that naturally occur in an individual’s routine. With this capability we can then track the occurrence of regular activities to monitor functional health and to detect changes in an individual’s patterns and lifestyle. In this paper we describe our activity mining and tracking approach and validate our algorithms on data collected in physical smart environments. PMID:21617742
NASA Astrophysics Data System (ADS)
Selker, J. S.
2014-12-01
Noting that cool phone in your pocket, and your car have more sensors and wireless capabilities than your new Campbell weather station, does it ever feel like there is a mismatch between the world of science and that of consumer products? How can we understand our place in the "sensing ecosystem," and sort between the transformative opportunities of sensing technology and technological land mines that will expend your budget and be unreliable? Here I review the impact of three technological frameworks on biogeochemical observation: distributed fiber optic sensing; low-power radio and GSM communication; and 3-D printing. From the fiber optic sensing applications in air, soil, rivers, oceans and wells, we see that this truly does qualify as a revolutionary observational platform. Specifically, it densely spans the critical 0.1 m to 10,000 m spatial scales and 1 to 1,000,000 s temporal scales, providing opportunity to address long-standing fundamental open questions. This is placed in contrast to the unfulfilled promises touted by the self-organizing mesh network radio technology. We argue that this outcome reflects a lack of candor of technology insiders in the selling of this technology with respect to the potential given the 1/r^3 energy of radio communication combined with the challenges of environmental settings for wave propagation (e.g., intense rain, snow laden branches, and long periods of low solar radiation). This is contrasted with the excellent outcomes of GSM-based monitoring approaches that leveraged the massive infrastructure of cellular telephones. Finally, I will venture to explain why open-source 3-D printing technology will provide the next transformative opportunity for Biogeosicences by re-inventing point-sensing instrumentation.
ChR2 transgenic animals in peripheral sensory system: Sensing light as various sensations.
Ji, Zhi-Gang; Wang, Hongxia
2016-04-01
Since the introduction of Channelrhodopsin-2 (ChR2) to neuroscience, optogenetics technology was developed, making it possible to activate specific neurons or circuits with spatial and temporal precision. Various ChR2 transgenic animal models have been generated and are playing important roles in revealing the mechanisms of neural activities, mapping neural circuits, controlling the behaviors of animals as well as exploring new strategy for treating the neurological diseases in both central and peripheral nervous system. An animal including humans senses environments through Aristotle's five senses (sight, hearing, smell, taste and touch). Usually, each sense is associated with a kind of sensory organ (eyes, ears, nose, tongue and skin). Is it possible that one could hear light, smell light, taste light and touch light? When ChR2 is targeted to different peripheral sensory neurons by viral vectors or generating ChR2 transgenic animals, the animals can sense the light as various sensations such as hearing, touch, pain, smell and taste. In this review, we focus on ChR2 transgenic animals in the peripheral nervous system. Firstly the working principle of ChR2 as an optogenetic actuator is simply described. Then the current transgenic animal lines where ChR2 was expressed in peripheral sensory neurons are presented and the findings obtained by these animal models are reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.
Compact, Robust Chips Integrate Optical Functions
NASA Technical Reports Server (NTRS)
2010-01-01
Located in Bozeman, Montana, AdvR Inc. has been an active partner in NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. Langley Research Center engineers partnered with AdvR through the SBIR program to develop new, compact, lightweight electro-optic components for remote sensing systems. While the primary customer for this technology will be NASA, AdvR foresees additional uses for its NASA-derived circuit chip in the fields of academic and industrial research anywhere that compact, low-cost, stabilized single-frequency lasers are needed.
Commercial remote sensing & spatial information technologies program : program highlights.
DOT National Transportation Integrated Search
2017-01-01
The Commercial Remote Sensing and Spatial Information Technologies (CRS&SI) program was a congressionally mandated program authorized in the Safe, Accountable, Flexible and Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU). Under t...
Science, technology, and application of THz air photonics
NASA Astrophysics Data System (ADS)
Lu, X. F.; Clough, B.; Ho, I.-C.; Kaur, G.; Liu, J.; Karpowicz, N.; Dai, J. M.; Zhang, X.-C.
2010-11-01
The significant scientific and technological potential of terahertz (THz) wave sensing and imaging has been attracted considerable attention within many fields of research. However, the development of remote, broadband THz wave sensing technology is lagging behind the compelling needs that exist in the areas of astronomy, global environmental monitoring, and homeland security. This is due to the challenge posed by high absorption of ambient moisture in the THz range. Although various time-domain THz detection techniques have recently been demonstrated, the requirement for an on-site bias or forward collection of the optical signal inevitably prohibits their applications for remote sensing. The objective of this paper is to report updated THz air-plasma technology to meet this great challenge of remote sensing. A focused optical pulse (mJ pulse energy and femtosecond pulse duration) in gas creates a plasma, which can serve to generate intense, broadband, and directional THz waves in the far field.
NASA Astrophysics Data System (ADS)
Huyck, Charles K.; Adams, Beverley J.; Kehrlein, David I.
2003-06-01
Remote sensing technology has been widely recognized for contributing to emergency response efforts after the World Trade Center attack on September 11th, 2001. The need to coordinate activities in the midst of a dense, yet relatively small area, made the combination of imagery and mapped data strategically useful. This paper reviews the role played by aerial photography, satellite imagery, and LIDAR data at Ground Zero. It examines how emergency managers utilized these datasets, and identifies significant problems that were encountered. It goes on to explore additional ways in which imagery could have been used, while presenting recommendations for more effective use in future disasters and Homeland Security applications. To plan adequately for future events, it was important to capture knowledge from individuals who responded to the World Trade Center attack. In recognition, interviews with key emergency management and geographic information system (GIS) personnel provide the basis of this paper. Successful techniques should not be forgotten, or serious problems dismissed. Although widely used after September 11th, it is important to recognize that with better planning, remote sensing and GIS could have played an even greater role. Together with a data acquisition timeline, an expanded discussion of these issues is available in the MCEER/NSF report “Emergency Response in the Wake of the World Trade Center Attack; The Remote Sensing Perspective” (Huyck and Adams, 2002)
NASA Technical Reports Server (NTRS)
Ryerson, Charles C.
2000-01-01
Remote-sensing systems that map aircraft icing conditions in the flight path from airports or aircraft would allow icing to be avoided and exited. Icing remote-sensing system development requires consideration of the operational environment, the meteorological environment, and the technology available. Operationally, pilots need unambiguous cockpit icing displays for risk management decision-making. Human factors, aircraft integration, integration of remotely sensed icing information into the weather system infrastructures, and avoid-and-exit issues need resolution. Cost, maintenance, power, weight, and space concern manufacturers, operators, and regulators. An icing remote-sensing system detects cloud and precipitation liquid water, drop size, and temperature. An algorithm is needed to convert these conditions into icing potential estimates for cockpit display. Specification development requires that magnitudes of cloud microphysical conditions and their spatial and temporal variability be understood at multiple scales. The core of an icing remote-sensing system is the technology that senses icing microphysical conditions. Radar and microwave radiometers penetrate clouds and can estimate liquid water and drop size. Retrieval development is needed; differential attenuation and neural network assessment of multiple-band radar returns are most promising to date. Airport-based radar or radiometers are the most viable near-term technologies. A radiometer that profiles cloud liquid water, and experimental techniques to use radiometers horizontally, are promising. The most critical operational research needs are to assess cockpit and aircraft system integration, develop avoid-and-exit protocols, assess human factors, and integrate remote-sensing information into weather and air traffic control infrastructures. Improved spatial characterization of cloud and precipitation liquid-water content, drop-size spectra, and temperature are needed, as well as an algorithm to convert sensed conditions into a measure of icing potential. Technology development also requires refinement of inversion techniques. These goals can be accomplished with collaboration among federal agencies including NASA, the FAA, the National Center for Atmospheric Research, NOAA, and the Department of Defense. This report reviews operational, meteorological, and technological considerations in developing the capability to remotely map in-flight icing conditions from the ground and from the air.
Development of Composite Technologies for the European Next Generation Launcher
NASA Astrophysics Data System (ADS)
Fatemi, Javad; van der Bas, Finn
2014-06-01
In the frame of the European Space Agency's Future Launchers Preparatory Programme (FLPP), in conjunction with national Research and Technology programs, Dutch Space has undertaken the development of composite technologies for application in the Europe's next generation launcher, Ariane 6. The efforts have focused on development of a Carbon Fibre Reinforced Plastic (CFRP) Engine Thrust Frame (ETF) for the upper-stage of Ariane6 launcher. These new technologies are expected to improve performance and to lower cost of development and exploitation of the launcher. Although the first targeted application is the thrust frame, the developed technologies are set to be generic in the sense that they can be applied to other structures of the launcher, e.g. inter-stage structures.This paper addresses the design, analysis, manufacturing and testing activities related to the composite technology developments.
Finley, Jason R; Brewer, William F; Benjamin, Aaron S
2011-10-01
Emerging "life-logging" technologies have tremendous potential to augment human autobiographical memory by recording and processing vast amounts of information from an individual's experiences. In this experiment undergraduate participants wore a SenseCam, a small, sensor-equipped digital camera, as they went about their normal daily activities for five consecutive days. Pictures were captured either at fixed intervals or as triggered by SenseCam's sensors. On two of five nights, participants watched an end-of-day review of a random subset of pictures captured that day. Participants were tested with a variety of memory measures at intervals of 1, 3, and 8 weeks. The most fruitful of six measures were recognition rating (on a 1-7 scale) and picture-cued recall length. On these tests, end-of-day review enhanced performance relative to no review, while pictures triggered by SenseCam's sensors showed little difference in performance compared to those taken at fixed time intervals. We discuss the promise of SenseCam as a tool for research and for improving autobiographical memory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierson, Bob; Laughlin, Darren
Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA's innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a 'string' withinmore » drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding, and confidence, thus removing some current blocks to feasibility and significantly increasing access to potential geothermal sites. During the Phase 1 effort summarized in this final report, the ATA Team modeled and built two TRL 3 proof-of-concept test units for two competing rotational sensor technologies. The two competing technologies were based on ATA's angular rate and angular displacement measurement technologies; Angular rate: ATA's Magnetohydrodynamic Angular Rate Sensor (Seismic MHD); and Angular displacement: ATA's Low Frequency Improved Torsional Seismometer (LFITS). In order to down-select between these two technologies and formulate a go / no go decision, the ATA Team analyzed and traded scientific performance requirements and market constraints against sensor characteristics and components, acquiring field data where possible to validate the approach and publishing results from these studies of rotational technology capability. Based on the results of Phase 1, the ATA Team finds that the Seismic MHD (SMHD) technology is the best choice for enabling rotational seismometry and significant technical potential exists for micro-seismic monitoring using a downhole 7-DOF device based on the SMHD. Recent technical papers and field data confirm the potential of rotational sensing for seismic mapping, increasing confidence that cost-reduction benefits are achievable for EGS. However, the market for geothermal rotational sensing is small and undeveloped. As a result, this report recommends modifying the Phase 2 plan to focus on prototype development aimed at partnering with early adopters within the geothermal industry and the scientific research community. The highest public benefit will come from development and deployment of a science-grade SMHD rotational seismometer engineered for geothermal downhole conditions and an integrated test tool for downhole measurements at active geothermal test sites.« less
Lidar Remote Sensing for Industry and Environment Monitoring
NASA Technical Reports Server (NTRS)
Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)
2000-01-01
Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space Station. 13. Space lidar II: Using coherent Doppler lidar to estimate river discharge. 14. Poster session: Lidar technology, optics for lidar. Laser for lidar. Middle atmosphere observations. Tropospheric observations (aerosols, clouds). Boundary layer, urban pollution. Differential absorption lidar. Doppler lidar. and Space lidar.
NASA Technical Reports Server (NTRS)
Deutsch, M. (Editor); Wiesnet, D. R.; Rango, A.
1981-01-01
Philosophical and technical backgrounds for the application of remote sensing by earth scientists are presented. Interests and activities of participating agencies of the United States and Canadian governments, universities, and the private sector in implementing satellite technology in a diverse array of water-related programs are described. Consideration is then given to applications of satellite data to the various aspects of the hydrologic cycle and man's impact on it: meteorology, snow and ice, surface water, soil moisture, ground water, wetlands, coastal zone, water quality and environment, and water use and management.
Introductory comments on the USGS geographic applications program
NASA Technical Reports Server (NTRS)
Gerlach, A. C.
1970-01-01
The third phase of remote sensing technologies and potentials applied to the operations of the U.S. Geological Survey is introduced. Remote sensing data with multidisciplinary spatial data from traditional sources is combined with geographic theory and techniques of environmental modeling. These combined imputs are subject to four sequential activities that involve: (1) thermatic mapping of land use and environmental factors; (2) the dynamics of change detection; (3) environmental surveillance to identify sudden changes and general trends; and (4) preparation of statistical model and analytical reports. Geography program functions, products, clients, and goals are presented in graphical form, along with aircraft photo missions, geography test sites, and FY-70.
Fuzzy control of burnout of multilayer ceramic actuators
NASA Astrophysics Data System (ADS)
Ling, Alice V.; Voss, David; Christodoulou, Leo
1996-08-01
To improve the yield and repeatability of the burnout process of multilayer ceramic actuators (MCAs), an intelligent processing of materials (IPM-based) control system has been developed for the manufacture of MCAs. IPM involves the active (ultimately adaptive) control of a material process using empirical or analytical models and in situ sensing of critical process states (part features and process parameters) to modify the processing conditions in real time to achieve predefined product goals. Thus, the three enabling technologies for the IPM burnout control system are process modeling, in situ sensing and intelligent control. This paper presents the design of an IPM-based control strategy for the burnout process of MCAs.
Environmental Detection of Clandestine Nuclear Weapon Programs
NASA Astrophysics Data System (ADS)
Kemp, R. Scott
2016-06-01
Environmental sensing of nuclear activities has the potential to detect nuclear weapon programs at early stages, deter nuclear proliferation, and help verify nuclear accords. However, no robust system of detection has been deployed to date. This can be variously attributed to high costs, technical limitations in detector technology, simple countermeasures, and uncertainty about the magnitude or behavior of potential signals. In this article, current capabilities and promising opportunities are reviewed. Systematic research in a variety of areas could improve prospects for detecting covert nuclear programs, although the potential for countermeasures suggests long-term verification of nuclear agreements will need to rely on methods other than environmental sensing.
Detecting submerged features in water: modeling, sensors, and measurements
NASA Astrophysics Data System (ADS)
Bostater, Charles R., Jr.; Bassetti, Luce
2004-11-01
It is becoming more important to understand the remote sensing systems and associated autonomous or semi-autonomous methodologies (robotic & mechatronics) that may be utilized in freshwater and marine aquatic environments. This need comes from several issues related not only to advances in our scientific understanding and technological capabilities, but also from the desire to insure that the risk associated with UXO (unexploded ordnance), related submerged mines, as well as submerged targets (such as submerged aquatic vegetation) and debris left from previous human activities are remotely sensed and identified followed by reduced risks through detection and removal. This paper will describe (a) remote sensing systems, (b) platforms (fixed and mobile, as well as to demonstrate (c) the value of thinking in terms of scalability as well as modularity in the design and application of new systems now being constructed within our laboratory and other laboratories, as well as future systems. New remote sensing systems - moving or fixed sensing systems, as well as autonomous or semi-autonomous robotic and mechatronic systems will be essential to secure domestic preparedness for humanitarian reasons. These remote sensing systems hold tremendous value, if thoughtfully designed for other applications which include environmental monitoring in ambient environments.
WinASEAN for remote sensing data analysis
NASA Astrophysics Data System (ADS)
Duong, Nguyen Dinh; Takeuchi, Shoji
The image analysis system ASEAN (Advanced System for Environmental ANalysis with Remote Sensing Data) was designed and programmed by a software development group, ImaSOFr, Department of Remote Sensing Technology and GIS, Institute for Geography, National Centre for Natural Science and Technology of Vietnam under technical cooperation with the Remote Sensing Technology Centre of Japan and financial support from the National Space Development Agency of Japan. ASEAN has been in continuous development since 1989, with different versions ranging from the simplest one for MS-DOS with standard VGA 320×200×256 colours, through versions supporting SpeedStar 1.0 and SpeedStar PRO 2.0 true colour graphics cards, up to the latest version named WinASEAN, which is designed for the Windows 3.1 operating system. The most remarkable feature of WinASEAN is the use of algorithms that speed up the image analysis process, even on PC platforms. Today WinASEAN is continuously improved in cooperation with NASDA (National Space Development Agency of Japan), RESTEC (Remote Sensing Technology Center of Japan) and released as public domain software for training, research and education through the Regional Remote Sensing Seminar on Tropical Eco-system Management which is organised by NASDA and ESCAR In this paper, the authors describe the functionality of WinASEAN, some of the relevant analysis algorithms, and discuss its possibilities of computer-assisted teaching and training of remote sensing.
Technology: Technology and Common Sense
ERIC Educational Resources Information Center
Van Horn, Royal
2004-01-01
The absence of common sense in the world of technology continues to amaze the author. Things that seem so logical to just aren nott for many people. The installation of Voice-over IP (VoIP, with IP standing for Internet Protocol) in many school districts is a good example. Schools have always had trouble with telephones. Many districts don't even…
Wavefront sensing, control, and pointing
NASA Technical Reports Server (NTRS)
Pitts, Thomas; Sevaston, George; Agronin, Michael; Bely, Pierre; Colavita, Mark; Clampin, Mark; Harvey, James; Idell, Paul; Sandler, Dave; Ulmer, Melville
1992-01-01
A majority of future NASA astrophysics missions from orbiting interferometers to 16-m telescopes on the Moon have, as a common requirement, the need to bring light from a large entrance aperture to the focal plane in a way that preserves the spatial coherence properties of the starlight. Only by preserving the phase of the incoming wavefront, can many scientific observations be made, observations that range from measuring the red shift of quasi-stellar objects (QSO's) to detecting the IR emission of a planet in orbit around another star. New technologies for wavefront sensing, control, and pointing hold the key to advancing our observatories of the future from those already launched or currently under development. As the size of the optical system increases, either to increase the sensitivity or angular resolution of the instrument, traditional technologies for maintaining optical wavefront accuracy become prohibitively expensive or completely impractical. For space-based instruments, the low mass requirement and the large temperature excursions further challenge existing technologies. The Hubble Space Telescope (HST) is probably the last large space telescope to rely on passive means to keep its primary optics stable and the optical system aligned. One needs only look to the significant developments in wavefront sensing, control, and pointing that have occurred over the past several years to appreciate the potential of this technology for transforming the capability of future space observatories. Future developments in space-borne telescopes will be based in part on developments in ground-based systems. Telescopes with rigid primary mirrors much larger than 5 m in diameter are impractical because of gravity loading. New technologies are now being introduced, such as active optics, that address the scale problem and that allow very large telescopes to be built. One approach is a segmented design such as that being pioneered by the W.M. Keck telescope now under construction at the Mauna Kea Observatory. It consists of 36 hexagonal mirror segments, supported on a framework structure, which are positioned by actuators located between the structure and the mirrors. The figure of the telescope is initialized by making observations of a bright star using a Shack Hartmann sensor integrated with a white light interferometer. Then, using sensed data from the mirror edges to control these actuators, the figure of the mosaic of 36 segments is maintained as if it were a rigid primary mirror. Another active optics approach is the use of a thin meniscus mirror with actuators. This technique was demonstrated on the European Southern Observatory's New Technology Telescope (NTT) and is planned for use in the Very Large Telescope (consists of four 8-m apertures), which is now entering the design phase.
The divide within: Older active ICT users position themselves against different 'Others'.
Kania-Lundholm, Magdalena; Torres, Sandra
2015-12-01
Although research into older people's internet usage patterns is rapidly growing, their understandings of digital technologies, particularly in relation to how these are informed by their understandings of aging and old age, remain unexplored. This is the case because research on older active ICT users tends to regard old age as an empirically interesting part of the life-course as opposed to a theoretically profuse source of information about why and how older people engage with digital technologies. This article explores - through focus group interviews with 30 older adults (aged 66-89) - the ways in which the social position of old age is used by older active ICT users in order to make sense of how and why they engage with these technologies. In this article, positioning theory is used to shed light on how the older people interviewed positioned themselves as 'active older users' in the interviews. The analysis brings to the fore the divide that older people themselves create as they discursively position themselves against different types of ICT users and non-users (young and old) when describing how and why they engage with digital technologies. Copyright © 2015 Elsevier Inc. All rights reserved.
Investigation related to multispectral imaging systems
NASA Technical Reports Server (NTRS)
Nalepka, R. F.; Erickson, J. D.
1974-01-01
A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community.
People, Places and Pixels: Remote Sensing in the Service of Society
NASA Technical Reports Server (NTRS)
Lulla, Kamlesh
2003-01-01
What is the role of Earth remote sensing and other geospatial technologies in our society? Recent global events have brought into focus the role of geospatial science and technology such as remote sensing, GIS, GPS in assisting the professionals who are responsible for operations such as rescue and recovery of sites after a disaster or a terrorist act. This paper reviews the use of recent remote sensing products from satellites such as IKONOS in these efforts. Aerial and satellite imagery used in land mine detection has been evaluated and the results of this evaluation will be discussed. Synopsis of current and future ISS Earth Remote Sensing capabilities will be provided. The role of future missions in humanitarian use of remote sensing will be explored.
NASA Technical Reports Server (NTRS)
1984-01-01
Topics discussed at the symposium include hardware, geographic information system (GIS) implementation, processing remotely sensed data, spatial data structures, and NASA programs in remote sensing information systems. Attention is also given GIS applications, advanced techniques, artificial intelligence, graphics, spatial navigation, and classification. Papers are included on the design of computer software for geographic image processing, concepts for a global resource information system, algorithm development for spatial operators, and an application of expert systems technology to remotely sensed image analysis.
Human‐Like Sensing and Reflexes of Graphene‐Based Films
Zhang, Qin; Tan, Lifang; Chen, Yunxu; Zhang, Tao; Wang, Wenjie; Liu, Zhongfan
2016-01-01
Humans have numerous senses, wherein vision, hearing, smell, taste, and touch are considered as the five conventionally acknowledged senses. Triggered by light, sound, or other physical stimulations, the sensory organs of human body are excited, leading to the transformation of the afferent energy into neural activity. Also converting other signals into electronical signals, graphene‐based film shows its inherent advantages in responding to the tiny stimulations. In this review, the human‐like senses and reflexes of graphene‐based films are presented. The review starts with the brief discussions about the preparation and optimization of graphene‐based film, as where as its new progress in synthesis method, transfer operation, film‐formation technologies and optimization techniques. Various human‐like senses of graphene‐based film and their recent advancements are then summarized, including light‐sensitive devices, acoustic devices, gas sensors, biomolecules and wearable devices. Similar to the reflex action of humans, graphene‐based film also exhibits reflex when under thermal radiation and light actuation. Finally, the current challenges associated with human‐like applications are discussed to help guide the future research on graphene films. At last, the future opportunities lie in the new applicable human‐like senses and the integration of multiple senses that can raise a revolution in bionic devices. PMID:27981005
Nasa's Land Remote Sensing Plans for the 1980's
NASA Technical Reports Server (NTRS)
Higg, H. C.; Butera, K. M.; Settle, M.
1985-01-01
Research since the launch of LANDSAT-1 has been primarily directed to the development of analysis techniques and to the conduct of applications studies designed to address resource information needs in the United States and in many other countries. The current measurement capabilities represented by MSS, TM, and SIR-A and B, coupled with the present level of remote sensing understanding and the state of knowledge in the discipline earth sciences, form the foundation for NASA's Land Processes Program. Science issues to be systematically addressed include: energy balance, hydrologic cycle, biogeochemical cycles, biological productivity, rock cycle, landscape development, geological and botanical associations, and land surface inventory, monitoring, and modeling. A global perspective is required for using remote sensing technology for problem solving or applications context. A successful model for this kind of activity involves joint research with a user entity where the user provides a test site and ground truth and NASA provides the remote sensing techniques to be tested.
Intelligent hand-portable proliferation sensing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.
1997-08-01
Argonne National Laboratory, with support from DOE`s Office of Nonproliferation and National Security, is currently developing an intelligent hand-portable sensor system. This system is designed specifically to support the intelligence community with the task of in-field sensing of nuclear proliferation and related activities. Based upon pulsed laser photo-ionization time-of-flight mass spectrometry technology, this novel sensing system is capable of quickly providing a molecular or atomic analysis of specimens. The system is capable of analyzing virtually any gas phase molecule, or molecule that can be induced into the gas phase by (for example) sample heating. This system has the unique advantagesmore » of providing unprecedented portability, excellent sensitivity, tremendous fieldability, and a high performance/cost ratio. The system will be capable of operating in a highly automated manner for on-site inspections, and easily modified for other applications such as perimeter monitoring aboard a plane or drone. The paper describes the sensing system.« less
Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Anbo
This report summarizes technical progress on the program “Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology at Virginia Tech. The objective of this project is to develop a first-of-a-kind technology for remote fiber optic generation and detection of acoustic waves for structural health monitoring in harsh environments. During the project period, which is from April 1, 2013 to Septemeber 30, 2016, three different acoustic generation mechanisms were studied in detail for their applications inmore » building a fiber optic acoustic generation unit (AGU), including laser induced plasma breakdown (LIP), Erbium-doped fiber laser absorption, and metal laser absorption. By comparing the performance of the AGUs designed based on these three mechanisms and analyzing the experimental results with simulations, the metal laser absorption method was selected to build a complete fiber optic structure health monitoring (FO-SHM) system for the proposed high temperature multi-parameter structure health monitoring application. Based on the simulation of elastic wave propagation and fiber Bragg grating acoustic pulse detection, an FO-SHM element together with a completed interrogation system were designed and built. This system was first tested on an aluminum piece in the low-temperature range and successfully demonstrated its capability of multi-parameter monitoring and multi-point sensing. In the later stages of the project, the research was focused on improving the surface attachment design and preparing the FO-SHM element for high temperature environment tests. After several upgrades to the surface attachment methods, the FO-SHM element was able to work reliably up to 600oC when attached to P91 pipes, which are the target material of this project. In the final stage of this project, this FO-SHM sensing system was tested in the simulated harsh environment for its multi-parameter monitoring performance and high-temperature survivability.« less
NASA Technical Reports Server (NTRS)
2002-01-01
Contents include the following: Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine). Integration of Remote Sensing and GIS for Management Decision Support in the Pendjari Biosphere Reserve (Republic of Benin). Monitoring of deforestation invasion in natural reserves of northern Madagascar based on space imagery. Cartography of Kahuzi-Biega National Park. Cartography and Land Use Change of World Heritage Areas and the Benefits of Remote Sensing and GIS for Conservation. Assessing and Monitoring Vegetation in Nabq Protected Area, South Sinai, Egypt, using combine approach of Satellite Imagery and Land Surveys. Evaluation of forage resources in semi-arid savannah environments with satellite imagery: contribution to the management of a protected area (Nakuru National Park) in Kenya. SOGHA, the Surveillance of Gorilla Habitat in World Heritage sites using Space Technologies. Application of Remote Sensing to monitor the Mont-Saint-Michel Bay (France). Application of Remote Sensing & GIS for the Conservation of Natural and Cultural Heritage Sites of the Southern Province of Sri Lanka. Social and Environmental monitoring of a UNESCO Biosphere Reserve: Case Study over the Vosges du Nord and Pfalzerwald Parks using Corona and Spot Imagery. Satellite Remote Sensing as tool to Monitor Indian Reservation in the Brazilian Amazonia. Remote Sensing and GIS Technology for Monitoring UNESCO World Heritage Sites - A Pilot Project. Urban Green Spaces: Modern Heritage. Monitoring of the technical condition of the St. Sophia Cathedral and related monastic buildings in Kiev with Space Applications, geo-positioning systems and GIS tools. The Murghab delta palaeochannel Reconstruction on the Basis of Remote Sensing from Space. Acquisition, Registration and Application of IKONOS Space Imagery for the cultural World Heritage site at Mew, Turkmenistan. Remote Sensing and VR applications for the reconstruction of archaeological landscapes. Archaeology through Space: Experience in Indian Subcontinent. The creation of a GIS Archaeological Site Location Catalogue in Yucatan: A Tool to preserve its Cultural Heritage. Mapping the Ancient Anasazi Roads of Southeast Utah. Remote Sensing and GIS Technology for Identification of Conservation and Heritage sites in Urban Planning. Mapping Angkor: For a new appraisal of the Angkor region. Angkor and radar imaging: seeing a vast pre-industrial low-density, dispersed urban complex. Technical and methodological aspects of archaeological CRM integrating high resolution satellite imagery. The contribution of satellite imagery to archaeological survey: an example from western Syria. The use of satellite images, digital elevation models and ground truth for the monitoring of land degradation in the "Cinque Terre" National park. Remote Sensing and GIS Applications for Protection and Conservation of World Heritage Site on the coast - Case Study of Tamil Nadu Coast, India. Multispectral high resolution satellite imagery in combination with "traditional" remote sensing and ground survey methods to the study of archaeological landscapes. The case study of Tuscany. Use of Remotely-Sensed Imagery in Cultural Landscape. Characterisation at Fort Hood, Texas. Heritage Learning and Data Collection: Biodiversity & Heritage Conservation through Collaborative Monitoring & Research. A collaborative project by UNESCO's WHC (World Heritage Center) & The GLOBE Program (Global Learning and Observations to Benefit the Environment). Practical Remote Sensing Activities in an Interdisciplinary Master-Level Space Course.
Living Labs: overview of ecological approaches for health promotion and rehabilitation.
Korman, M; Weiss, P L; Kizony, R
2016-01-01
The term "Living Lab" was coined to reflect the use of sensors to monitor human behavior in real life environments. Until recently such measurements had been feasible only within experimental laboratory settings. The objective of this paper is to highlight research on health care sensing and monitoring devices that enable direct, objective and accurate capture of real-world functioning. Selected articles exemplifying the key technologies that allow monitoring of the motor-cognitive activity of persons with disabilities during naturally occurring daily experiences in real-life settings are discussed in terms of (1) the ways in which the Living Lab approach has been used to date, (2) limitations related to clinical assessment in rehabilitation settings and (3) three categories of the instruments most commonly used for this purpose: personal technologies, ambient technologies and external assistive systems. Technology's most important influences on clinical practice and rehabilitation are in a shift from laboratory-based to field-centered research and a transition between in-clinic performance to daily life activities. Numerous applications show its potential for real-time clinical assessment. Current technological solutions that may provide clinicians with objective, unobtrusive measurements of health and function, as well as tools that support rehabilitation on an individual basis in natural environments provide an important asset to standard clinical measures. Until recently objective clinical assessment could not be readily performed in a client's daily functional environment. Novel technologies enable health care sensing and monitoring devices that enable direct, objective and accurate capture of real-world functioning. Such technologies are referred to as a "Living Lab" approach since they enable the capture of objective and non-obtrusive data that clinicians can use to assess performance. Research and development in this field help clinicians support maintain independence and quality of life for people who have disabilities or who are aging, and to promote more effective methods of long-term rehabilitation and maintenance of a healthy life style.
Remote Sensing Technologies for Estuary Research and Management (Invited)
NASA Astrophysics Data System (ADS)
Hestir, E. L.; Ustin, S.; Khanna, S.; Botha, E.; Santos, M. J.; Anstee, J.; Greenberg, J. A.
2013-12-01
Estuarine ecosystems and their biogeochemical processes are extremely vulnerable to climate and environmental changes, and are threatened by sea level rise and upstream activities such as land use/land cover and hydrological changes. Despite the recognized threat to estuaries, most aspects of how change will affect estuaries are not well understood due to the poorly resolved understanding of the complex physical, chemical and biological processes and their interactions in estuarine systems. New and innovative remote sensing technologies such as high spectral resolution optical and thermal imagers and lidar, microwave radiometers and radar imagers enable measurements of key environmental parameters needed to establish baseline conditions and improve modeling efforts. Radar's sensitivity to water provides information about water height and velocity, channel geometry and wetland inundation. Water surface temperature and salinity and can be measured from microwave radiometry, and when combined with radar-derived information can provide information about estuarine hydrodynamics. Optical and thermal hyperspectral imagers provide information about sediment, plant and water chemistry including chlorophyll, dissolved organic matter and mineralogical composition. Lidar can measure bathymetry, microtopography and emergent plant structure. Plant functional types, wetland community distributions, turbidity, suspended and deposited sediments, dissolved organic matter, water column chlorophyll and phytoplankton functional types may be estimated from these measurements. Innovative deployment of advanced remote sensing technologies on airborne and submersible un-piloted platforms provides temporally and spatially continuous measurement in temporally dynamic and spatially complex tidal systems. Through biophysically-based retrievals, these technologies provide direct measurement of physical, biological and biogeochemical conditions that can be used as models to understand estuarine processes and forecast responses to change. We demonstrate that innovative remote sensing technologies, coupled with long term datasets from satellite earth observing missions and in situ sensor networks provide the spatially contiguous measurements needed to make 'supra-regional' (e.g. river to coast) assessments of ecological communities, habitat distribution, ecosystem function, sediment, nutrient and carbon source and transport. We show that this information can be used to improve environmental modeling with increased confidence and support informed environmental management.
Biomonitoring with Wireless Communications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budinger, Thomas F.
2003-03-01
This review is divided into three sections: technologies for monitoring physiological parameters; biosensors for chemical assays and wireless communications technologies including image transmissions. Applications range from monitoring high risk patients for heart, respiratory activity and falls to sensing levels of physical activity in military, rescue, and sports personnel. The range of measurements include, heart rate, pulse wave form, respiratory rate, blood oxygen, tissue pCO2, exhaled carbon dioxide and physical activity. Other feasible measurements will employ miniature chemical laboratories on silicon or plastic chips. The measurements can be extended to clinical chemical assays ranging from common blood assays to protein ormore » specialized protein measurements (e.g., troponin, creatine, and cytokines such as TNF and IL6). Though the feasibility of using wireless technology to communicate vital signs has been demonstrated 32 years ago (1) it has been only recently that practical and portable devices and communications net works have become generally available for inexpensive deployment of comfortable and affordable devices and systems.« less
Broadening the Cloaking Bandwidth with Non-Foster Metasurfaces
NASA Astrophysics Data System (ADS)
Chen, Pai-Yen; Argyropoulos, Christos; Alù, Andrea
2013-12-01
We introduce the concept and practical design of broadband, ultrathin cloaks based on non-Foster, negatively capacitive metasurfaces. By using properly tailored, active frequency-selective screens conformal to an object, within the realm of a practical realization, we show that it is possible to drastically reduce the scattering over a wide frequency range in the microwave regime, orders of magnitude broader than any available passive cloaking technology. The proposed active cloak may impact not only invisibility and camouflaging, but also practical antenna and sensing applications.
Hans-Erik Andersen; Robert J. McGaughey; Ward W. Carson; Stephen E. Reutebuch; Bryan Mercer; Jeremy Allan
2004-01-01
Active remote sensing technologies, including interferometric radar (InSAR) and airborne laser scanning (LIDAR) have the potential to provide accurate information relating to three-dimensional forest canopy structure over extensive areas of the landscape. In order to assess the capabilities of these alternative systems for characterizing the forest canopy dimensions,...
Sensing Strategies for Disambiguating among Multiple Objects in Known Poses.
1985-08-01
ELEMENT. PROIECT. TASK Artificial Inteligence Laboratory AE OKUI UBR 545 Technology Square Cambridge, MA 021.39 11. CONTROLLING OFFICE NAME AND ADDRESS 12...AD-Ali65 912 SENSING STRATEGIES FOR DISAMBIGURTING MONG MULTIPLE 1/1 OBJECTS IN KNOWN POSES(U) MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL ...or Dist Special 1 ’ MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A. I. Memo 855 August, 1985 Sensing Strategies for
Sensing Human Activity: GPS Tracking
van der Spek, Stefan; van Schaick, Jeroen; de Bois, Peter; de Haan, Remco
2009-01-01
The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for collecting data on pedestrian movement in three European city centres, Norwich, Rouen and Koblenz, and in another experiment for collecting activity data of 13 families in Almere (The Netherlands) for one week. The question posed in this paper is: what is the value of GPS as ‘sensor technology’ measuring activities of people? The conclusion is that GPS offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in different settings adding new layers of knowledge to urban studies, but the use of GPS-technology and deployment of GPS-devices still offers significant challenges for future research. PMID:22574061
Remote sensing education and Internet/World Wide Web technology
Griffith, J.A.; Egbert, S.L.
2001-01-01
Remote sensing education is increasingly in demand across academic and professional disciplines. Meanwhile, Internet technology and the World Wide Web (WWW) are being more frequently employed as teaching tools in remote sensing and other disciplines. The current wealth of information on the Internet and World Wide Web must be distilled, nonetheless, to be useful in remote sensing education. An extensive literature base is developing on the WWW as a tool in education and in teaching remote sensing. This literature reveals benefits and limitations of the WWW, and can guide its implementation. Among the most beneficial aspects of the Web are increased access to remote sensing expertise regardless of geographic location, increased access to current material, and access to extensive archives of satellite imagery and aerial photography. As with other teaching innovations, using the WWW/Internet may well mean more work, not less, for teachers, at least at the stage of early adoption. Also, information posted on Web sites is not always accurate. Development stages of this technology range from on-line posting of syllabi and lecture notes to on-line laboratory exercises and animated landscape flyovers and on-line image processing. The advantages of WWW/Internet technology may likely outweigh the costs of implementing it as a teaching tool.
Remote Sensing and Reflectance Profiling in Entomology.
Nansen, Christian; Elliott, Norman
2016-01-01
Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.
Ahn, Heesang; Song, Hyerin; Kim, Kyujung
2017-01-01
From active developments and applications of various devices to acquire outside and inside information and to operate based on feedback from that information, the sensor market is growing rapidly. In accordance to this trend, the surface plasmon resonance (SPR) sensor, an optical sensor, has been actively developed for high-sensitivity real-time detection. In this study, the fundamentals of SPR sensors and recent approaches for enhancing sensing performance are reported. In the section on the fundamentals of SPR sensors, a brief description of surface plasmon phenomena, SPR, SPR-based sensing applications, and several configuration types of SPR sensors are introduced. In addition, advanced nanotechnology- and nanofabrication-based techniques for improving the sensing performance of SPR sensors are proposed: (1) localized SPR (LSPR) using nanostructures or nanoparticles; (2) long-range SPR (LRSPR); and (3) double-metal-layer SPR sensors for additional performance improvements. Consequently, a high-sensitivity, high-biocompatibility SPR sensor method is suggested. Moreover, we briefly describe issues (miniaturization and communication technology integration) for future SPR sensors. PMID:29301238
Hunter, Gail; Burns, Laurie; Bone, Brian; Mintel, Thomas; Jimenez, Eduardo
2012-01-01
This paper summarizes the results of a longitudinal usability research study of a specially engineered sonic powered toothbrush with unique sensing and control technologies. The usability test was conducted with fourteen (14) consumers from the St. Louis, MO, USA area who use manual toothbrushes. The study consisted of consumers using the specially engineered sonic powered toothbrush with unique sensing and control technologies for three weeks. During the study, users participated in four toothbrush trials during weekly visits to the research facility. These trials were videotaped and were analyzed regarding brushing time, behavior, and technique. In addition, the users were required to use the toothbrush twice a day for their at-home brushing. The toothbrush had a positive impact on consumers' tooth brushing behavior. Users spent more time brushing their teeth with this toothbrush as compared to their manual toothbrush. In addition, users spent more time keeping the sonic toothbrush in the recommended angle during use. Finally, users perceived their teeth to be cleaner when using the specially engineered sonic powered toothbrush with unique sensing and control technologies. The specially engineered sonic powered toothbrush with unique sensing and control technologies left a positive impression on the users. The users perceived the toothbrush to clean their teeth better than a manual toothbrush.
Effects of Technology on Experienced Job Characteristics and Job Satisfaction.
1980-07-01
Ability to discriminate between odors (sense of smell) 23. Ability to discriminate between salty , sour, sweet (sense of taste ) 24. Ability to remember...Ability to estimate speed Ability to estimate quality Sense of touch Sense of smell Sense of taste Cognitive .833 Ability to remember names Ability to
Müller, Andre Matthias; Blandford, Ann; Yardley, Lucy
2017-01-01
Low physical activity and high sedentary behavior in older adults can be addressed with interventions that are delivered through modern technology. Just-In-Time Adaptive Interventions (JITAIs) are an emerging technology-driven behavior-change intervention type and capitalize on data that is collected via mobile sensing technology (e.g., smartphones) to trigger appropriate support in real-life. In this paper we integrated behavior change and aging theory and research as well as knowledge around older adult's technology use to conceptualize a JITAI targeting the reduction of sedentary behavior in older adults. The JITAIs ultimate goal is to encourage older adults to take regular activity breaks from prolonged sitting. As a proximal outcome, we suggest the number of daily activity breaks from sitting. Support provided to interrupt sitting time can be based on tailoring variables: (I) the current accumulated sitting time; (II) the location of the individual; (III) the time of the day; (IV) the frequency of daily support prompts; and (V) the response to previous support prompts. Data on these variables can be collected using sensors that are commonly inbuilt into smartphones (e.g., accelerometer, GPS). Support prompts might be best delivered via traditional text messages as older adults are usually familiar and comfortable with this function. The content of the prompts should encourage breaks from prolonged sitting by highlighting immediate benefits of sitting time interruptions. Additionally, light physical activities that could be done during the breaks should also be presented (e.g., walking into the kitchen to prepare a cup of tea). Although the conceptualized JITAI can be developed and implemented to test its efficacy, more work is required to identify ways to collect, aggregate, organize and immediately use dense data on the proposed and other potentially important tailoring variables. Machine learning and other computational modelling techniques commonly used by computer scientists and engineers appear promising. With this, to develop powerful JITAIs and to actualize the full potential of modern sensing technologies transdisciplinary approaches are required.
Blandford, Ann; Yardley, Lucy
2017-01-01
Low physical activity and high sedentary behavior in older adults can be addressed with interventions that are delivered through modern technology. Just-In-Time Adaptive Interventions (JITAIs) are an emerging technology-driven behavior-change intervention type and capitalize on data that is collected via mobile sensing technology (e.g., smartphones) to trigger appropriate support in real-life. In this paper we integrated behavior change and aging theory and research as well as knowledge around older adult's technology use to conceptualize a JITAI targeting the reduction of sedentary behavior in older adults. The JITAIs ultimate goal is to encourage older adults to take regular activity breaks from prolonged sitting. As a proximal outcome, we suggest the number of daily activity breaks from sitting. Support provided to interrupt sitting time can be based on tailoring variables: (I) the current accumulated sitting time; (II) the location of the individual; (III) the time of the day; (IV) the frequency of daily support prompts; and (V) the response to previous support prompts. Data on these variables can be collected using sensors that are commonly inbuilt into smartphones (e.g., accelerometer, GPS). Support prompts might be best delivered via traditional text messages as older adults are usually familiar and comfortable with this function. The content of the prompts should encourage breaks from prolonged sitting by highlighting immediate benefits of sitting time interruptions. Additionally, light physical activities that could be done during the breaks should also be presented (e.g., walking into the kitchen to prepare a cup of tea). Although the conceptualized JITAI can be developed and implemented to test its efficacy, more work is required to identify ways to collect, aggregate, organize and immediately use dense data on the proposed and other potentially important tailoring variables. Machine learning and other computational modelling techniques commonly used by computer scientists and engineers appear promising. With this, to develop powerful JITAIs and to actualize the full potential of modern sensing technologies transdisciplinary approaches are required PMID:29184889
GAIN Technology Workshops Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori Ann
National and global demand for nuclear energy is increasing and United States (U.S.) global leadership is eroding. There is a sense of urgency with respect to the deployment of the innovative nuclear energy technologies. The Gateway for Accelerated Innovation in Nuclear (GAIN) initiative is based on the simultaneous achievement of three strategic goals. The first is maintaining global technology leadership within the U.S. Department of Energy (DOE). The second is enabling global industrial leadership for nuclear vendors and suppliers. The third is focused on utility optimization of nuclear energy within the clean energy portfolio. An effective public-private partnership is requiredmore » to achieve these goals. DOEs recognizes the recent sense of urgency new developers and investors have in getting their concepts to market. They know that time to market for nuclear technology takes too long and the facilities needed to conduct the necessary research, development and demonstration (RD&D) activities are very expensive to develop and maintain. Early technologies, in the lower technology readiness levels (TRL) need materials testing, analysis, modeling, code development, etc., most of which currently exists in the DOE national laboratory system. However, mature technologies typically need large component testing and demonstration facilities, which are expensive and long-lead efforts. By understanding the needs of advanced nuclear technology developers, GAIN will connect DOE national laboratory capabilities (e.g., facilities, expertise, materials, and data) with industry RD&D needs. In addition, GAIN is working with the Nuclear Regulatory Commission (NRC) to streamline processes and increase understanding of the licensing requirements for advanced reactors.« less
NASA Technical Reports Server (NTRS)
Bauer, M. E.; Cary, T. K.; Davis, B. J.; Swain, P. H.
1975-01-01
The results of classifications and experiments for the crop identification technology assessment for remote sensing are summarized. Using two analysis procedures, 15 data sets were classified. One procedure used class weights while the other assumed equal probabilities of occurrence for all classes. Additionally, 20 data sets were classified using training statistics from another segment or date. The classification and proportion estimation results of the local and nonlocal classifications are reported. Data also describe several other experiments to provide additional understanding of the results of the crop identification technology assessment for remote sensing. These experiments investigated alternative analysis procedures, training set selection and size, effects of multitemporal registration, spectral discriminability of corn, soybeans, and other, and analyses of aircraft multispectral data.
Utilising the Intel RealSense Camera for Measuring Health Outcomes in Clinical Research.
Siena, Francesco Luke; Byrom, Bill; Watts, Paul; Breedon, Philip
2018-02-05
Applications utilising 3D Camera technologies for the measurement of health outcomes in the health and wellness sector continues to expand. The Intel® RealSense™ is one of the leading 3D depth sensing cameras currently available on the market and aligns itself for use in many applications, including robotics, automation, and medical systems. One of the most prominent areas is the production of interactive solutions for rehabilitation which includes gait analysis and facial tracking. Advancements in depth camera technology has resulted in a noticeable increase in the integration of these technologies into portable platforms, suggesting significant future potential for pervasive in-clinic and field based health assessment solutions. This paper reviews the Intel RealSense technology's technical capabilities and discusses its application to clinical research and includes examples where the Intel RealSense camera range has been used for the measurement of health outcomes. This review supports the use of the technology to develop robust, objective movement and mobility-based endpoints to enable accurate tracking of the effects of treatment interventions in clinical trials.
Alternative strategies for space station financing
NASA Technical Reports Server (NTRS)
Walklet, D. C.; Heenan, A. T.
1983-01-01
The attributes of the proposed space station program are oriented toward research activities and technologies which generate long term benefits for mankind. Unless such technologies are deemed of national interest and thus are government funded, they must stand on their own in the market place. Therefore, the objectives of a United States space station should be based on commercial criteria; otherwise, such a project attracts no long term funding. There is encouraging evidence that some potential space station activities should generate revenues from shuttle related projects within the decade. Materials processing concepts as well as remote sensing indicate substantial potential. Futhermore, the economics and thus the commercial feasibility of such projects will be improved by the operating efficiencies available with an ongoing space station program.
A REMOTE SENSING AND GIS-ENABLED HIGHWAY ASSET MANAGEMENT SYSTEM PHASE 2
DOT National Transportation Integrated Search
2018-02-02
The objective of this project is to validate the use of commercial remote sensing and spatial information (CRS&SI) technologies, including emerging 3D line laser imaging technology, mobile light detection and ranging (LiDAR), image processing algorit...
An overview of remote sensing technology transfer in Canada and the United States
NASA Technical Reports Server (NTRS)
Strome, W. M.; Lauer, D. T.
1977-01-01
To realize the maximum potential benefits of remote sensing, the technology must be applied by personnel responsible for the management of natural resources and the environment. In Canada and the United States, these managers are often in local offices and are not those responsible for the development of systems to acquire, preprocess, and disseminate remotely sensed data, nor those leading the research and development of techniques for analysis of the data. However, the latter organizations have recognized that the technology they develop must be transferred to the management agencies if the technology is to be useful to society. Problems of motivation and communication associated with the technology transfer process, and some of the methods employed by Federal, State, Provincial, and local agencies, academic institutions, and private organizations to overcome these problems are explored.
Slonecker, E. Terrence; Fisher, Gary B.
2011-01-01
This report presents the overhead imagery and field sampling results used to prepare U.S. Geological Survey Open-File Report 2011-1050, 'Evaluation of Traditional and Emerging Remote Sensing Technologies for the Detection of Fugitive Contamination at Selected Superfund Hazardous Waste Sites'. These graphic products were used in the evaluation of remote sensing technology in postclosure monitoring of hazardous waste sites and represent an ongoing research effort. Soil sampling results presented here were accomplished with field portable x-ray fluoresence (XRF) technology and are used as screening tools only representing the current conditions of metals and other contaminants at selected Superfund hazardous waste sites.
Achievable Performance and Effective Interrogator Design for SAW RFID Sensor Tags
NASA Technical Reports Server (NTRS)
Barton Richard J.
2012-01-01
For many NASA missions, remote sensing is a critical application that supports activities such as environmental monitoring, planetary science, structural shape and health monitoring, non-destructive evaluation, etc. The utility of the remote sensing devices themselves is greatly increased if they are passive V that is, they do not require any on-board power supply such as batteries V and if they can be identified uniquely during the sensor interrogation process. Additional passive sensor characteristics that enable greater utilization in space applications are small size and weight, long read ranges with low interrogator power, ruggedness, and operability in extreme environments (vacuum, extreme high/low temperature, high radiation, etc.) In this paper, we consider one very promising passive sensor technology, called surface acoustic wave (SAW) radio-frequency identification (RFID), that satisfies all of these criteria. In general, RFID is a method of identifying items using radio waves to interrogate tags encoded with a unique identifier that are affixed to the items of interest. In the case of passive tags, only the interrogator, which transmits power to the tags in the form of radio-frequency electromagnetic radiation, requires access to a power supply. Passive RFID technologies are used today in many applications, including asset tracking and management, security and access control, and remote sensing. To date, most of the development and application in RFID technology has focused on either asset/inventory tracking and control or security and access control because these are the largest commercial application areas. Recently however, there has been growing interest in using passive RFID technology for remote sensing applications, and SAW devices are at the forefront of RFID sensing technology development. Although SAW RFID tags have great potential for use in numerous space-based remote sensing applications, the limited collision resolution capability of current generation tags limits the performance in a cluttered sensing environment. That is, as more SAW-based sensors are added to the environment, numerous tag responses are superimposed at the receiver and decoding all or even a subset of the telemetry becomes increasingly difficult. Background clutter generated by reflectors other than the sensors themselves is also a problem, as is multipath interference and signal distortion, but the limiting factor in many remote sensing applications can be expected to be tag mutual interference. This problem may be greatly mitigated by proper design of the SAW tag waveform, but that remains an open research problem, and in the meantime, several other related questions remain to be answered including: (1) What are the fundamental relationships between tag parameters such as bit-rate, time-bandwidth-product, SNR, and achievable collision resolution? (2) What are the differences in optimal or near-optimal interrogator designs between noise-limited environments and interference-limited environments? (3) What are the performance characteristics of different interrogator designs in term of parameters such as transmitter power level, range, and number of interfering tags? In this paper, we will present the results of a research effort aimed at providing at least partial answers to all of these questions.
Remote Sensing and the Environment.
ERIC Educational Resources Information Center
Osmers, Karl
1991-01-01
Suggests using remote sensing technology to help students make sense of the natural world. Explains that satellite information allows observation of environmental changes over time. Identifies possible student projects based on remotely sensed data. Recommends obtaining the assistance of experts and seeking funding through effective project…
ERIC Educational Resources Information Center
Divilbiss, James L., Ed.
This collection of papers addresses the impact of rapidly changing telecommunications technology on libraries. A brief introduction by James L. Divilbiss sets the stage for the following papers: (1) "Making Sense of New Technologies and New Legislation" (Joseph Ford); (2) "Selection and Use of Telecommunications Consultants for…
Tropospheric Passive Remote Sensing
NASA Technical Reports Server (NTRS)
Keafer, L. S., Jr. (Editor)
1982-01-01
The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.
Fiber optic shape sensing for monitoring of flexible structures
NASA Astrophysics Data System (ADS)
Lally, Evan M.; Reaves, Matt; Horrell, Emily; Klute, Sandra; Froggatt, Mark E.
2012-04-01
Recent advances in materials science have resulted in a proliferation of flexible structures for high-performance civil, mechanical, and aerospace applications. Large aspect-ratio aircraft wings, composite wind turbine blades, and suspension bridges are all designed to meet critical performance targets while adapting to dynamic loading conditions. By monitoring the distributed shape of a flexible component, fiber optic shape sensing technology has the potential to provide valuable data during design, testing, and operation of these smart structures. This work presents a demonstration of such an extended-range fiber optic shape sensing technology. Three-dimensional distributed shape and position sensing is demonstrated over a 30m length using a monolithic silica fiber with multiple optical cores. A novel, helicallywound geometry endows the fiber with the capability to convert distributed strain measurements, made using Optical Frequency-Domain Reflectometry (OFDR), to a measurement of curvature, twist, and 3D shape along its entire length. Laboratory testing of the extended-range shape sensing technology shows
The integrated design and archive of space-borne signal processing and compression coding
NASA Astrophysics Data System (ADS)
He, Qiang-min; Su, Hao-hang; Wu, Wen-bo
2017-10-01
With the increasing demand of users for the extraction of remote sensing image information, it is very urgent to significantly enhance the whole system's imaging quality and imaging ability by using the integrated design to achieve its compact structure, light quality and higher attitude maneuver ability. At this present stage, the remote sensing camera's video signal processing unit and image compression and coding unit are distributed in different devices. The volume, weight and consumption of these two units is relatively large, which unable to meet the requirements of the high mobility remote sensing camera. This paper according to the high mobility remote sensing camera's technical requirements, designs a kind of space-borne integrated signal processing and compression circuit by researching a variety of technologies, such as the high speed and high density analog-digital mixed PCB design, the embedded DSP technology and the image compression technology based on the special-purpose chips. This circuit lays a solid foundation for the research of the high mobility remote sensing camera.
Evolution of Archival Storage (from Tape to Memory)
NASA Technical Reports Server (NTRS)
Ramapriyan, Hampapuram K.
2015-01-01
Over the last three decades, there has been a significant evolution in storage technologies supporting archival of remote sensing data. This section provides a brief survey of how these technologies have evolved. Three main technologies are considered - tape, hard disk and solid state disk. Their historical evolution is traced, summarizing how reductions in cost have helped being able to store larger volumes of data on faster media. The cost per GB of media is only one of the considerations in determining the best approach to archival storage. Active archives generally require faster response to user requests for data than permanent archives. The archive costs have to consider facilities and other capital costs, operations costs, software licenses, utilities costs, etc. For meeting requirements in any organization, typically a mix of technologies is needed.
Role of Lidar Technology in Future NASA Space Missions
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin
2008-01-01
The past success of lidar instruments in space combined with potentials of laser remote sensing techniques in improving measurements traditionally performed by other instrument technologies and in enabling new measurements have expanded the role of lidar technology in future NASA missions. Compared with passive optical and active radar/microwave instruments, lidar systems produce substantially more accurate and precise data without reliance on natural light sources and with much greater spatial resolution. NASA pursues lidar technology not only as science instruments, providing atmospherics and surface topography data of Earth and other solar system bodies, but also as viable guidance and navigation sensors for space vehicles. This paper summarizes the current NASA lidar missions and describes the lidar systems being considered for deployment in space in the near future.
NASA Astrophysics Data System (ADS)
Simard, Jean-Robert; Buteau, Sylvie; Lahaie, Pierre; Mathieu, Pierre; Roy, Gilles; Nadeau, Denis; McFee, John; Ho, Jim; Rowsell, Susan; Ho, Nicolas; Babin, François; Cantin, Daniel; Healey, Dave; Robinson, Jennifer; Wood, Scott; Hsu, Jack
2011-11-01
Threats associated with bioaerosol weapons have been around for several decades and have been mostly associated with terrorist activities or rogue nations. Up to the turn of the millennium, defence concepts against such menaces relied mainly on point or in-situ detection technologies. Over the last 10 years, significant efforts have been deployed by multiple countries to supplement the limited spatial coverage of a network of one or more point bio-detectors using lidar technology. The addition of such technology makes it possible to detect within seconds suspect aerosol clouds over area of several tens of square kilometers and track their trajectories. These additional capabilities are paramount in directing presumptive ID missions, mapping hazardous areas, establishing efficient counter-measures and supporting subsequent forensic investigations. In order to develop such capabilities, Defence Research and Development Canada (DRDC) and the Chemical, Biological, Radiological-Nuclear, and Explosives Research and Technology Initiative (CRTI) have supported two major demonstrations based on spectrally resolved Laser Induced Fluorescence (LIF) lidar: BioSense, aimed at defence military missions in wide open spaces, and SR-BioSpectra, aimed at surveillance of enclosed or semienclosed wide spaces common to defence and public security missions. This article first reviews briefly the modeling behind these demonstration concepts. Second, the lidar-adapted and the benchtop bioaerosol LIF chambers (BSL1), developed to challenge the constructed detection systems and to accelerate the population of the library of spectral LIF properties of bioaerosols and interferents of interest, will be described. Next, the most recent test and evaluation (T&E) results obtained with SR-BioSpectra and BioSense are reported. Finally, a brief discussion stating the way ahead for a complete defence suite is provided.
Cirac-Claveras, Gemma
2018-01-01
This article uses a French case to explore the who, how, and why of satellite remote-sensing development and its transition towards routine utilization in the domain of ecosystems ecology. It discusses the evolution of a community of technology developers promoting remote-sensing capabilities (mostly sponsored by the French space agency). They attempted to legitimate quality scientific practices, establish the authority of satellite remote-sensing data within academic institutions, and build a community of technology users. This article, hence, is intended to contribute to historical interest in how a community of users is constructed for a technological system.
Soviet ionospheric modification research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, L.M.; Carlson, H.C.; Djuth, F.T.
1988-07-01
Soviet published literature in ionospheric modification research by high-power radio waves is assessed, including an evaluation of its impact on and applications to future remote-sensing and telecommunications systems. This assessment is organized to place equal emphasis on basic research activities, designed to investigate both the natural geophysical environment and fundamental plasma physics; advanced research programs, such as those studying artificial ionization processes and oblique high-power radio propagation and practical system applications and operational limitations addressed by this research. The assessment indicates that the Soviet Union sustains high-quality theoretical and experimental research programs in ionospheric modification, with a breadth and levelmore » of effort greatly exceeding comparable Western programs. Soviet theoretical research tends to be analytical and intuitive, as compared to the Western emphasis on numerical simulation techniques. The Soviet experimental approach is less exploratory, designed principally to confirm theoretical predictions. Although limited by inferior diagnostic capabilities, Soviet experimental facilities are more numerous, operate on a more regular basis, and transmit radio wave powers exceeding those os Western facilities. Because of its broad scope of activity, the Soviet Union is better poised to quickly exploit new technologies and system applications as they are developed. This panel has identified several key areas of Soviet research activity and emerging technology that may offer long-term opportunities for remote-sensing and telecommunications advantages. However, we have found no results that suggest imminent breakthrough discoveries in these fields.« less
Swallowable fluorometric capsule for wireless triage of gastrointestinal bleeding.
Nemiroski, A; Ryou, M; Thompson, C C; Westervelt, R M
2015-12-07
Real-time detection of gastrointestinal bleeding remains a major challenge because there does not yet exist a minimally invasive technology that can both i) monitor for blood from an active hemorrhage and ii) uniquely distinguish it from blood left over from an inactive hemorrhage. Such a device would be an important tool for clinical triage. One promising solution, which we have proposed previously, is to inject a fluorescent dye into the blood stream and to use it as a distinctive marker of active bleeding by monitoring leakage into the gastrointestinal tract with a wireless fluorometer. This paper reports, for the first time to our knowledge, the development of a swallowable, wireless capsule with a built-in fluorometer capable of detecting fluorescein in blood, and intended for monitoring gastrointestinal bleeding in the stomach. The embedded, compact fluorometer uses pinholes to define a microliter sensing volume and to eliminate bulky optical components. The proof-of-concept capsule integrates optics, low-noise analog sensing electronics, a microcontroller, battery, and low power Zigbee radio, all into a cylindrical package measuring 11 mm × 27 mm and weighing 10 g. Bench-top experiments demonstrate wireless fluorometry with a limit-of-detection of 20 nM aqueous fluorescein. This device represents a major step towards a technology that would enable simple, rapid detection of active gastrointestinal bleeding, a capability that would save precious time and resources and, ultimately, reduce complications in patients.
Dynamic protein assembly by programmable DNA strand displacement.
Chen, Rebecca P; Blackstock, Daniel; Sun, Qing; Chen, Wilfred
2018-04-01
Inspired by the remarkable ability of natural protein switches to sense and respond to a wide range of environmental queues, here we report a strategy to engineer synthetic protein switches by using DNA strand displacement to dynamically organize proteins with highly diverse and complex logic gate architectures. We show that DNA strand displacement can be used to dynamically control the spatial proximity and the corresponding fluorescence resonance energy transfer between two fluorescent proteins. Performing Boolean logic operations enabled the explicit control of protein proximity using multi-input, reversible and amplification architectures. We further demonstrate the power of this technology beyond sensing by achieving dynamic control of an enzyme cascade. Finally, we establish the utility of the approach as a synthetic computing platform that drives the dynamic reconstitution of a split enzyme for targeted prodrug activation based on the sensing of cancer-specific miRNAs.
Dynamic protein assembly by programmable DNA strand displacement
NASA Astrophysics Data System (ADS)
Chen, Rebecca P.; Blackstock, Daniel; Sun, Qing; Chen, Wilfred
2018-03-01
Inspired by the remarkable ability of natural protein switches to sense and respond to a wide range of environmental queues, here we report a strategy to engineer synthetic protein switches by using DNA strand displacement to dynamically organize proteins with highly diverse and complex logic gate architectures. We show that DNA strand displacement can be used to dynamically control the spatial proximity and the corresponding fluorescence resonance energy transfer between two fluorescent proteins. Performing Boolean logic operations enabled the explicit control of protein proximity using multi-input, reversible and amplification architectures. We further demonstrate the power of this technology beyond sensing by achieving dynamic control of an enzyme cascade. Finally, we establish the utility of the approach as a synthetic computing platform that drives the dynamic reconstitution of a split enzyme for targeted prodrug activation based on the sensing of cancer-specific miRNAs.
Remote Sensing Laboratory - RSL
None
2018-01-16
One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.
Remote Sensing Laboratory - RSL
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-11-06
One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip,more » maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.« less
[Activities of Center for Lidar and Atmospheric Sciences Students, Hampton University
NASA Technical Reports Server (NTRS)
Temple, Doyle
2004-01-01
The mission of CLASS was to provide education and training in NASA-related mathematics, technology and science to US. students who are underrepresented. In these areas and to encourage them to pursue advanced degrees. The project has three goals which support this mission: research training, curriculum development and outreach. All project activities are designed to meet a concrete objective which directly advances one of these goals. The common theme of all project activities is NASA's Earth Science Enterprise, in particular, the use of laser-based remote sensing systems (lidars) to monitor and understand the earth's environment
Improving the Army’s Next Effort in Technology Forecasting
2010-09-01
Health Maintenance— ability to make the robotic system more robust and to provide maintenance capabilities for self -monitoring, diagnostics, and...exhibit a verity of responses, including self -sensing and self - healing activities.43 A team of chemists and materials scientists led by the Moore...ultimately lead to i) applications in vehicles, including self -repairing armor, rubber , and coatings resistant to chemical agents, ii) aerospace
2005-06-01
friction- generated charge transfer between the inner and outer portions of a cable attached to the fence ( triboelectric ), by means of a charge transfer...helpful technical reviews of Paul Loechl, ERDC- CERL, and Joyce Nagle, ERDC-CRREL. This report was prepared under the general supervision of Dr...detection systems (IDSs) are designed to generate alarms when they sense human activity. IDSs attached to a fence (fence-mounted) respond to fence
LLCySA: Making Sense of Cyberspace
2014-01-01
data center. His other activities include the development of immersive 3D environments leveraging video- game technology to provide a multiplayer ...exploring data-driven approaches to network protection. Imagine a cyber analyst navigating a three-dimen- sional (3D) game , walking down virtual office...because of information overload. One approach to this challenge leverages technol- ogy utilized in the 3D gaming industry. The video- game medium
H.-E. Andersen; R.J. McGaughey; S.E. Reutebuch
2008-01-01
High resolution, active remote sensing technologies, such as interferometric synthetic aperture radar (IFSAR) and airborne laser scanning (LIDAR) have the capability to provide forest managers with direct measurements of 3-dimensional forest canopy surface structure. Although LIDAR systems can provide highly accurate measurements of canopy and terrain surfaces, high-...
[Lights, art, science - action!].
Lopes, Thelma
2005-01-01
The article offers some reflections on the main interactions between theater, science, and technology down through the history of theater. Based on our experience at "Science in the Spotlight", part of the Casa de Oswaldo Cruz's Museum of Life, we discuss how these interactions can be part of a science museum's daily activities. We use the word 'science' in its broad sense, encompassing not only the natural but human sciences as well; likewise, we use the word 'technology' as it relates to applied science. Art and science are understood here as creative processes, as ways of representing the world and expressing human knowledge.
On the Isolation of Science Payloads from Spacecraft Vibrations
NASA Technical Reports Server (NTRS)
Sparks, Dean W.; Horta, Lucas G.; Elliott, Kenny B.; Belvin, W. Keith
1995-01-01
The remote sensing of the Earth's features from space requires precision pointing of scientific instruments. To this end, the NASA Langley Research Center has been involved in developing numerous controlled structures technologies. This paper describes one of the more promising technologies for minimizing pointing jitter, namely, payload isolation. The application of passive and active payload mounts for attenuation of pointing jitter of the EOS AM-1 spacecraft is discussed. In addition, analysis and ground tests to validate the performance of isolation mounts using a scaled dynamics model of the EOS AM-1 spacecraft are presented.
Implementation of New Technologies to Monitor Phytoplankton Blooms in the South of Chile
NASA Astrophysics Data System (ADS)
Rodríguez-Benito, C.; Haag, C.; Alvial, A.
2004-05-01
A pilot project has been carried out to demonstrate the applicability of remote sensing in the Xth region of Chile, related to the monitoring of algal blooms. Most of the fish farms of the country are located in this area, where considerable economic losses for this activity are the consequence of algal blooms. The implementation of new technologies to monitor this natural disaster is one of the main goals of local institutions. The project has been developed using ENVISAT/MERIS and AATSR images and oceanographic instrumentation in order to improve the information of the ongoing coastal monitoring programs.
Wireless Inductive Power Device Suppresses Blade Vibrations
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.
2011-01-01
Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it possible to moderate vibration on or in turbomachinery blades by providing 100 W of wireless electrical power and actuation control to thin, lightweight vibration-suppressing piezoelectric patches (eight actuation and eight sensor patches in this prototype, for a total of 16 channels) positioned strategically on the surface of, or within, titanium fan blades, or embedded in composite fan blades. This approach moves significantly closer to the ultimate integration of "active" vibration suppression technology into jet engines and other turbomachinery devices such as turbine electrical generators used in the power industry. The novel feature of this device is in its utilization of wireless technology to simultaneously sense and actively control vibration in rotating or stationary turbomachinery blades using piezoelectric patches. In the past, wireless technology was used solely for sensing and diagnostics. This technology, however, will accomplish much more, in terms of simultaneously sensing, suppressing blade vibration, and making it possible for detailed study of vibration impact in turbomachinery blades.
NASA Technical Reports Server (NTRS)
Imhoff, Marc L.; Rosenquist, A.; Milne, A. K.; Dobson, M. C.; Qi, J.
2000-01-01
An International workshop was held to address how remote sensing technology could be used to support the environmental monitoring requirements of the Kyoto Protocol. An overview of the issues addressed and the findings of the workshop are discussed.
Making Sense of Extraneous Solutions
ERIC Educational Resources Information Center
Zelkowski, Jeremy S.
2013-01-01
Principles and Standards for School Mathematics (NCTM 2000) states, "Technology is essential in teaching and learning mathematics; it influences the mathematics that is taught and enhances students' learning." The focus on reasoning and sense making with technology in the lesson presented in this article will enable students to do more…
Advanced Doppler radar physiological sensing technique for drone detection
NASA Astrophysics Data System (ADS)
Yoon, Ji Hwan; Xu, Hao; Garcia Carrillo, Luis R.
2017-05-01
A 24 GHz medium-range human detecting sensor, using the Doppler Radar Physiological Sensing (DRPS) technique, which can also detect unmanned aerial vehicles (UAVs or drones), is currently under development for potential rescue and anti-drone applications. DRPS systems are specifically designed to remotely monitor small movements of non-metallic human tissues such as cardiopulmonary activity and respiration. Once optimized, the unique capabilities of DRPS could be used to detect UAVs. Initial measurements have shown that DRPS technology is able to detect moving and stationary humans, as well as largely non-metallic multi-rotor drone helicopters. Further data processing will incorporate pattern recognition to detect multiple signatures (motor vibration and hovering patterns) of UAVs.
Remote sensing application to regional activities
NASA Technical Reports Server (NTRS)
Shahrokhi, F.; Jones, N. L.; Sharber, L. A.
1976-01-01
Two agencies within the State of Tennessee were identified whereby the transfer of aerospace technology, namely remote sensing, could be applied to their stated problem areas. Their stated problem areas are wetland and land classification and strip mining studies. In both studies, LANDSAT data was analyzed with the UTSI video-input analog/digital automatic analysis and classification facility. In the West Tennessee area three land-use classifications could be distinguished; cropland, wetland, and forest. In the East Tennessee study area, measurements were submitted to statistical tests which verified the significant differences due to natural terrain, stripped areas, various stages of reclamation, water, etc. Classifications for both studies were output in the form of maps of symbols and varying shades of gray.
A review of sensing technologies for small and large-scale touch panels
NASA Astrophysics Data System (ADS)
Akhtar, Humza; Kemao, Qian; Kakarala, Ramakrishna
2017-06-01
A touch panel is an input device for human computer interaction. It consists of a network of sensors, a sampling circuit and a micro controller for detecting and locating a touch input. Touch input can come from either finger or stylus depending upon the type of touch technology. These touch panels provide an intuitive and collaborative workspace so that people can perform various tasks with the use of their fingers instead of traditional input devices like keyboard and mouse. Touch sensing technology is not new. At the time of this writing, various technologies are available in the market and this paper reviews the most common ones. We review traditional designs and sensing algorithms for touch technology. We also observe that due to its various strengths, capacitive touch will dominate the large-scale touch panel industry in years to come. In the end, we discuss the motivation for doing academic research on large-scale panels.
Capacitance-based damage detection sensing for aerospace structural composites
NASA Astrophysics Data System (ADS)
Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.
2014-04-01
Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum.
Built-in active sensing diagnostic system for civil infrastructure systems
NASA Astrophysics Data System (ADS)
Wu, Fan; Chang, Fu-Kuo
2001-07-01
A reliable, robust monitoring system can improve the maintenance of and provide safety protection for civil structures and therefore prolong their service lives. A built-in, active sensing diagnostic technique for civil structures has been under investigation. In this technique, piezoelectric materials are used as sensors/actuators to receive and generate signals. The transducers are embedded in reinforced concrete (RC) beams and are designed to detect damage, particularly debonding damage between the reinforcing bars and concrete. This paper presents preliminary results from a feasibility study of the technology. Laboratory experiments performed on RC beams, with piezo-electric sensors and actuators mounted on reinforced steel bars, have clearly demonstrated that the proposed technique could detect debonding damage. Analytical work, using a special purpose finite-element software, PZFlex, was also conducted to interpret the relationship between the measured data and actual debonding damage. Effectiveness of the proposed technique for detecting debonding damage in civil structures has been demonstrated.
Sun, Yong-Guang; Zhao, Dong-Zhi; Zhang, Feng-Shou; Wei, Bao-Quan; Chu, Jia-Lan; Su, Xiu
2012-11-01
Based on the aerial image data of Dayang estuary in 2008, and by virtue of Analytic Hierarchy Process (AHP) , remote sensing technology, and GIS spatial analysis, a spatiotemporal evaluation was made on the comprehensive level of wetland environmental pollution risk in Dayang estuary, with the impacts of typical human activities on the dynamic variation of this comprehensive level discussed. From 1958 to 2008, the comprehensive level of the environmental pollution risk in study area presented an increasing trend. Spatially, this comprehensive level declined from land to ocean, and showed a zonal distribution. Tourism development activities unlikely led to the increase of the comprehensive level, while human inhabitation, transportation, and aquaculture would exacerbate the risk of environmental pollution. This study could provide reference for the sea area use planning, ecological function planning, and pollutants control of estuary region.
Sensing Solutions for Collecting Spatio-Temporal Data for Wildlife Monitoring Applications: A Review
Baratchi, Mitra; Meratnia, Nirvana; Havinga, Paul J. M.; Skidmore, Andrew K.; Toxopeus, Bert A. G.
2013-01-01
Movement ecology is a field which places movement as a basis for understanding animal behavior. To realize this concept, ecologists rely on data collection technologies providing spatio-temporal data in order to analyze movement. Recently, wireless sensor networks have offered new opportunities for data collection from remote places through multi-hop communication and collaborative capability of the nodes. Several technologies can be used in such networks for sensing purposes and for collecting spatio-temporal data from animals. In this paper, we investigate and review technological solutions which can be used for collecting data for wildlife monitoring. Our aim is to provide an overview of different sensing technologies used for wildlife monitoring and to review their capabilities in terms of data they provide for modeling movement behavior of animals. PMID:23666132
Kite Aerial Photography as a Tool for Remote Sensing
ERIC Educational Resources Information Center
Sallee, Jeff; Meier, Lesley R.
2010-01-01
As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…
Rijnaard, M D; van Hoof, J; Janssen, B M; Verbeek, H; Pocornie, W; Eijkelenboom, A; Beerens, H C; Molony, S L; Wouters, E J M
2016-01-01
Purpose. To provide an overview of factors influencing the sense of home of older adults residing in the nursing home. Methods. A systematic review was conducted. Inclusion criteria were (1) original and peer-reviewed research, (2) qualitative, quantitative, or mixed methods research, (3) research about nursing home residents (or similar type of housing), and (4) research on the sense of home, meaning of home, at-homeness, or homelikeness. Results. Seventeen mainly qualitative articles were included. The sense of home of nursing home residents is influenced by 15 factors, divided into three themes: (1) psychological factors (sense of acknowledgement, preservation of one's habits and values, autonomy and control, and coping); (2) social factors (interaction and relationship with staff, residents, family and friends, and pets) and activities; and (3) the built environment (private space and (quasi-)public space, personal belongings, technology, look and feel, and the outdoors and location). Conclusions. The sense of home is influenced by numerous factors related to the psychology of the residents and the social and built environmental contexts. Further research is needed to determine if and how the identified factors are interrelated, if perspectives of various stakeholders involved differ, and how the factors can be improved in practice.
Rijnaard, M. D.; van Hoof, J.; Janssen, B. M.; Verbeek, H.; Pocornie, W.; Eijkelenboom, A.; Beerens, H. C.; Molony, S. L.; Wouters, E. J. M.
2016-01-01
Purpose. To provide an overview of factors influencing the sense of home of older adults residing in the nursing home. Methods. A systematic review was conducted. Inclusion criteria were (1) original and peer-reviewed research, (2) qualitative, quantitative, or mixed methods research, (3) research about nursing home residents (or similar type of housing), and (4) research on the sense of home, meaning of home, at-homeness, or homelikeness. Results. Seventeen mainly qualitative articles were included. The sense of home of nursing home residents is influenced by 15 factors, divided into three themes: (1) psychological factors (sense of acknowledgement, preservation of one's habits and values, autonomy and control, and coping); (2) social factors (interaction and relationship with staff, residents, family and friends, and pets) and activities; and (3) the built environment (private space and (quasi-)public space, personal belongings, technology, look and feel, and the outdoors and location). Conclusions. The sense of home is influenced by numerous factors related to the psychology of the residents and the social and built environmental contexts. Further research is needed to determine if and how the identified factors are interrelated, if perspectives of various stakeholders involved differ, and how the factors can be improved in practice. PMID:27313892
The U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD) and EPA Region 8 are collaborating under the EPA’s Regional Applied Research Effort (RARE) program to evaluate ground-based remote sensing technologies that could be used to characterize emis...
DOT National Transportation Integrated Search
2017-05-31
The overarching goal of this project was to integrate data from commercial remote sensing and spatial information (CRS&SI) technologies to create a novel data-driven decision making framework that empowers the railroad industry to monitor, assess, an...
Remote sensing technology has the potential to inform and accelerate the engagement of communities and managers in the implementation and performance of best management practices. Over the last few decades, satellite technology has allowed measurements on a global scale over long...
DOT National Transportation Integrated Search
2016-08-01
Micro-electromechanical sensors and systems- (MEMS)-based and : wireless-based smart-sensing technologies have, until now, rarely : been used for monitoring pavement response in the field, and the : requirements for using such smart sensing technolog...
NASA Astrophysics Data System (ADS)
Singh, U. N.; Refaat, T. F.; Ismail, S.; Davis, K. J.; Kawa, S. R.; Menzies, R. T.; Petros, M.; Yu, J.
2016-12-01
Carbon dioxide (CO2) is recognized as the most important anthropogenic greenhouse gas. While CO2 concentration is rapidly increasing, understanding of the global carbon cycle remains a primary scientific challenge. This is mainly due to the lack of full characterization of CO2 sources and sinks. Quantifying the current global distribution of CO2 sources and sinks with sufficient accuracy and spatial resolution is a critical requirement for improving models of carbon-climate interactions and for attributing them to specific biogeochemical processes. This requires sustained atmospheric CO2 observations with high precision, and low bias for high accuracy, and spatial and temporal dense representation that cannot be fully realized with current CO2 observing systems, including existing satellite CO2 passive remote sensors. Progress in 2-micron instrument technologies, airborne testing, and system performance simulations indicates that the necessary lower tropospheric weighted CO2 measurements can be achieved from space using new high pulse energy 2-micron direct detection active remote sensing. Advantages of the CO2 active remote sensing include low bias measurements that are independent of sun light or Earth's radiation and day/night coverage over all latitudes and seasons. In addition, the direct detection system provides precise ranging with simultaneous measurement of aerosol and cloud distributions. The 2-micron active remote sensing offers strong CO2 absorption lines with optimum low tropospheric and near surface weighting. A feasibility study, including system optimization and sensitivity analysis of a space-based 2-micron pulsed IPDA lidar for CO2 measurement, is presented. This is based on the successful demonstration of the CO2 double-pulse IPDA lidar and the technology maturation of the triple-pulse IPDA lidar, currently under development at NASA Langley Research Center. Preliminary simulations indicate CO2 random measurement errors of 0.71, 0.35 and 0.13 ppm for snow, ocean surface, and desert surface reflectivity, respectively. These simulations assume a 400 km altitude polar orbit, 100 mJ pulse energy, a 1.5 m telescope, a 6.2 MHz detection bandwidth, 0.05 aerosol optical depth and 7 second data average.
Finley, Jason R.; Brewer, William F.; Benjamin, Aaron S.
2011-01-01
Emerging “life-logging” technologies have tremendous potential to augment human autobiographical memory by recording and processing vast amounts of information from an individual’s experiences. In this experiment undergraduate participants wore a SenseCam, a small, sensor-equipped digital camera, as they went about their normal daily activities for five consecutive days. Pictures were captured either at fixed intervals or as triggered by SenseCam’s sensors. On two of five nights, participants watched an end-of-day review of a random subset of pictures captured that day. Participants were tested with a variety of memory measures at intervals of 1, 3, and 8 weeks. The most fruitful of six measures were recognition rating (on a 1–7 scale) and picture-cued recall length. On these tests, end-of-day review enhanced performance relative to no review, while pictures triggered by SenseCam’s sensors showed little difference in performance compared to those taken at fixed time intervals. We discuss the promise of SenseCam as a tool for research and for improving autobiographical memory. PMID:21229457
NASA Astrophysics Data System (ADS)
McLean, M. A.; Brown, J.; Hoeberechts, M.
2016-02-01
Ocean Networks Canada (ONC), an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. Technologies developed on the world-leading NEPTUNE and VENUS observatories have been adapted for small coastal installations called "community observatories," which enable community members to directly monitor conditions in the local ocean environment. In 2014, ONC pioneered an innovative educational program, Ocean Sense: Local observations, global connections, which introduces students and teachers to the technologies installed on community observatories. The program introduces middle and high school students to research methods in biology, oceanography and ocean engineering through hands-on activities. Ocean Sense includes a variety of resources and opportunities to excite students and spark curiosity about the ocean environment. The program encourages students to connect their local observations to global ocean processes and the observations of students in other geographic regions. The connection to place and local relevance of the program is further enhanced through an emphasis on Indigenous and place-based knowledge. ONC is working with coastal Indigenous communities in a collaborative process to include local knowledge, culture, and language in Ocean Sense materials. For this process to meaningful and culturally appropriate, ONC is relying on the guidance and oversight of Indigenous community educators and knowledge holders. Ocean Sense also includes opportunities for Indigenous youth and teachers in remote communities to connect in person, including an annual Ocean Science Symposium and professional development events for teachers. Building a program which embraces multiple perspectives is effective both in making ocean science more relevant to Indigenous students and in linking Indigenous knowledge and place-based knowledge to ocean science.
Reif, Molly K; Theel, Heather J
2017-07-01
Restoration monitoring is generally perceived as costly and time consuming, given the assumptions of successfully restoring ecological functions and services of a particular ecosystem or habitat. Opportunities exist for remote sensing to bolster the restoration science associated with a wide variety of injured resources, including resources affected by fire, hydropower operations, chemical releases, and oil spills, among others. In the last decade, the role of remote sensing to support restoration monitoring has increased, in part due to the advent of high-resolution satellite sensors as well as other sensor technology, such as lidar. Restoration practitioners in federal agencies require monitoring standards to assess restoration performance of injured resources. This review attempts to address a technical need and provides an introductory overview of spatial data and restoration metric considerations, as well as an in-depth review of optical (e.g., spaceborne, airborne, unmanned aerial vehicles) and active (e.g., radar, lidar) sensors and examples of restoration metrics that can be measured with remotely sensed data (e.g., land cover, species or habitat type, change detection, quality, degradation, diversity, and pressures or threats). To that end, the present article helps restoration practitioners assemble information not only about essential restoration metrics but also about the evolving technological approaches that can be used to best assess them. Given the need for monitoring standards to assess restoration success of injured resources, a universal monitoring framework should include a range of remote sensing options with which to measure common restoration metrics. Integr Environ Assess Manag 2017;13:614-630. Published 2016. This article is a US Government work and is in the public domain in the USA. Published 2016. This article is a US Government work and is in the public domain in the USA.
Remote sensing terminology: past experience and recent needs
NASA Astrophysics Data System (ADS)
Kancheva, Rumiana
2013-10-01
Terminology is a key issue for a better understanding among people using various languages. Terminology accuracy is essential during all phases of international cooperation. It is crucial to keep up with the latest quantitative and qualitative developments and novelties of the terminology in advanced technology fields such as aerospace science and industry. This is especially true in remote sensing and geoinformatics which develop rapidly and have wide and ever extending applications in various domains of human activity. The importance of the correct use of remote sensing terms refers not only to people working in this field but also to experts in many disciplines who handle remote sensing data and information products. The paper is devoted to terminology issues that refer to all aspects of remote sensing research and application areas. The attention is drawn on the recent needs and peculiarities of compiling specialized dictionaries in the subject area of remote sensing. Details are presented about the work in progress on the preparation of an English-Bulgarian dictionary of remote sensing terms focusing on Earth observations and geoinformation science. Our belief is that the elaboration of bilingual and multilingual dictionaries and glossaries in this spreading, most technically advanced and promising field of human expertise is of great practical importance. Any interest in cooperation and initiating of suchlike collaborative multilingual projects is welcome and highly appreciated.
A technology review of time-of-flight photon counting for advanced remote sensing
NASA Astrophysics Data System (ADS)
Lamb, Robert A.
2010-04-01
Time correlated single photon counting (TCSPC) has made tremendous progress during the past ten years enabling improved performance in precision time-of-flight (TOF) rangefinding and lidar. In this review the development and performance of several ranging systems is presented that use TCSPC for accurate ranging and range profiling over distances up to 17km. A range resolution of a few millimetres is routinely achieved over distances of several kilometres. These systems include single wavelength devices operating in the visible; multi-wavelength systems covering the visible and near infra-red; the use of electronic gating to reduce in-band solar background and, most recently, operation at high repetition rates without range aliasing- typically 10MHz over several kilometres. These systems operate at very low optical power (<100μW). The technique therefore has potential for eye-safe lidar monitoring of the environment and obvious military, security and surveillance sensing applications. The review will highlight the theoretical principles of photon counting and progress made in developing absolute ranging techniques that enable high repetition rate data acquisition that avoids range aliasing. Technology trends in TCSPC rangefinding are merging with those of quantum cryptography and its future application to revolutionary quantum imaging provides diverse and exciting research into secure covert sensing, ultra-low power active imaging and quantum rangefinding.
MultiSense: A Multimodal Sensor Tool Enabling the High-Throughput Analysis of Respiration.
Keil, Peter; Liebsch, Gregor; Borisjuk, Ljudmilla; Rolletschek, Hardy
2017-01-01
The high-throughput analysis of respiratory activity has become an important component of many biological investigations. Here, a technological platform, denoted the "MultiSense tool," is described. The tool enables the parallel monitoring of respiration in 100 samples over an extended time period, by dynamically tracking the concentrations of oxygen (O 2 ) and/or carbon dioxide (CO 2 ) and/or pH within an airtight vial. Its flexible design supports the quantification of respiration based on either oxygen consumption or carbon dioxide release, thereby allowing for the determination of the physiologically significant respiratory quotient (the ratio between the quantities of CO 2 released and the O 2 consumed). It requires an LED light source to be mounted above the sample, together with a CCD camera system, adjusted to enable the capture of analyte-specific wavelengths, and fluorescent sensor spots inserted into the sample vial. Here, a demonstration is given of the use of the MultiSense tool to quantify respiration in imbibing plant seeds, for which an appropriate step-by-step protocol is provided. The technology can be easily adapted for a wide range of applications, including the monitoring of gas exchange in any kind of liquid culture system (algae, embryo and tissue culture, cell suspensions, microbial cultures).
Novel EO/IR sensor technologies
NASA Astrophysics Data System (ADS)
Lewis, Keith
2011-10-01
The requirements for advanced EO/IR sensor technologies are discussed in the context of evolving military operations, with significant emphasis on the development of new sensing technologies to meet the challenges posed by asymmetric threats. The Electro-Magnetic Remote Sensing (EMRS DTC) was established in 2003 to provide a centre of excellence in sensor research and development, supporting new capabilities in key military areas such as precision attack, battlespace manoeuvre and information superiority. In the area of advanced electro-optic technology, the DTC has supported work on discriminative imaging, advanced detectors, laser components/technologies, and novel optical techniques. This paper provides a summary of some of the EO/IR technologies explored by the DTC.
Results in standardization of FOS to support the use of SHM systems
NASA Astrophysics Data System (ADS)
Habel, Wolfgang R.; Krebber, Katerina; Daum, Werner
2016-05-01
Measurement and data recording systems are important parts of a holistic Structural Health Monitoring (SHM) system. New sensor technologies such as fiber-optic sensors are often used; however, standards (or at least guidelines) are not yet available or internationally approved. This lack in standardization makes the acceptance of FOS technologies in complex SHM systems substantially difficult. A standard family for different FOS technologies is therefore being developed that should help to design SHM systems in an optimal way. International standardization activities take place in several standardization bodies such as IEC and ASTM, and within SHM societies such as ISHMII. The paper reports on activities in standardization of fiber-optic sensors, on results already achieved, and on newly started projects. Combined activities of fiber sensor experts and SHM experts from Civil Engineering are presented. These contributions should help owners of structures as well as developers of sensors and monitoring systems to select effective and validated sensing technologies. Using these standards, both parties find recommendations how to proceed in development of SHM systems to evaluate the structural behavior based on e.g. standardized fiber optic sensors, and to derive necessary measures, e.g. the optimal maintenance strategy.
NASA Technical Reports Server (NTRS)
Miller, W. Frank; Sever, Thomas L.; Lee, C. Daniel
1991-01-01
The concept of integrating ecological perspectives on early man's settlement patterns with advanced remote sensing technologies shows promise for predictive site modeling. Early work with aerial imagery and ecosystem analysis is discussed with respect to the development of a major project in Maya archaeology supported by NASA and the National Geographic Society with technical support from the Mississippi State Remote Sensing Center. A preliminary site reconnaissance model will be developed for testing during the 1991 field season.
Six-Port Based Interferometry for Precise Radar and Sensing Applications.
Koelpin, Alexander; Lurz, Fabian; Linz, Sarah; Mann, Sebastian; Will, Christoph; Lindner, Stefan
2016-09-22
Microwave technology plays a more important role in modern industrial sensing applications. Pushed by the significant progress in monolithic microwave integrated circuit technology over the past decades, complex sensing systems operating in the microwave and even millimeter-wave range are available for reasonable costs combined with exquisite performance. In the context of industrial sensing, this stimulates new approaches for metrology based on microwave technology. An old measurement principle nearly forgotten over the years has recently gained more and more attention in both academia and industry: the six-port interferometer. This paper reviews the basic concept, investigates promising applications in remote, as well as contact-based sensing and compares the system with state-of-the-art metrology. The significant advantages will be discussed just as the limitations of the six-port architecture. Particular attention will be paid to impairment effects and non-ideal behavior, as well as compensation and linearization concepts. It will be shown that in application fields, like remote distance sensing, precise alignment measurements, as well as interferometrically-evaluated mechanical strain analysis, the six-port architecture delivers extraordinary measurement results combined with high measurement data update rates for reasonable system costs. This makes the six-port architecture a promising candidate for industrial metrology.
The NASA Carbon Monitoring System
NASA Astrophysics Data System (ADS)
Hurtt, G. C.
2015-12-01
Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder engagement, 6) partnerships with other U.S. agencies and international partners, and 7) modeling and data assimilation.
Atmospheric Research 2016 Technical Highlights
NASA Technical Reports Server (NTRS)
Platnick, Steven
2017-01-01
Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Divisions goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the Earth Sciences Division in atmospheric science research. Figure 1.1 shows the 22-year record of peer-reviewed publications and proposals among the various laboratories.
Oudshoorn, Nelly
2015-02-01
Recently there has been a renewed interest in cyborgs, and particularly in new and emerging fusions of humans and technologies related to the development of human enhancement technologies. These studies reflect a trend to follow new and emerging technologies. In this article, I argue that it is important to study 'older' and more familiar cyborgs as well. Studying 'the old' is important because it enables us to recognize hybrids' embodied experiences. This article addresses two of these older hybrids: pacemakers and implantable cardioverter defibrillators inserted in the bodies of people suffering from heart-rhythm disturbances. My concern with hybrid bodies is that internal devices seem to present a complex and neglected case if we wish to understand human agency. Their 'users' seem to be passive because they cannot exert any direct control over the working of their devices. Technologies inside bodies challenge a longstanding tradition of theorizing human-technology relations only in terms of technologies external to the body. Cyborg theory is problematic as well because most studies tend to conceptualize the cyborg merely as a discursive entity and silence the voices of people living as cyborgs. Inspired by feminist research that foregrounds the materiality of the lived and intimate relations between bodies and technologies, I argue that creating these intimate relations requires patients' active involvement in sustaining their hybrid bodies. Based on observations of these monitoring practices in a Dutch hospital and interviews with patients and technicians, the article shows that heart cyborgs are far from passive. On the contrary, their unique experience in sensing the entangled agencies of technologies and their own heart plays a crucial role in sustaining their hybrid bodies.
Folan, Alyce; Barclay, Linda; Cooper, Cathy; Robinson, Merren
2015-01-01
Assistive technology for computer access can be used to facilitate people with a spinal cord injury to utilize mainstream computer applications, thereby enabling participation in a variety of meaningful occupations. The aim of this study was to gain an understanding of the experiences of clients with tetraplegia trialing assistive technologies for computer access during different stages in a public rehabilitation service. In order to explore the experiences of clients with tetraplegia trialing assistive technologies for computer use, qualitative methodology was selected. Data were collected from seven participants using semi-structured interviews, which were audio-taped, transcribed and analyzed thematically. Three main themes were identified. These were: getting back into life, assisting in adjusting to injury and learning new skills. The findings from this study demonstrated that people with tetraplegia can be assisted to return to previous life roles or engage in new roles, through developing skills in the use of assistive technology for computer access. Being able to use computers for meaningful activities contributed to the participants gaining an enhanced sense of self-efficacy, and thereby quality of life. Implications for Rehabilitation Findings from this pilot study indicate that people with tetraplegia can be assisted to return to previous life roles, and develop new roles that have meaning to them through the use of assistive technologies for computer use. Being able to use the internet to socialize, and complete daily tasks, contributed to the participants gaining a sense of control over their lives. Early introduction to assistive technology is important to ensure sufficient time for newly injured people to feel comfortable enough with the assistive technology to use the computers productively by the time of discharge. Further research into this important and expanding area is indicated.
A prospective approach to coastal geography from satellite. [technological forecasting
NASA Technical Reports Server (NTRS)
Munday, J. C., Jr.
1981-01-01
A forecasting protocol termed the "prospective approach' was used to examine probable futures relative to coastal applications of satellite data. Significant variables include the energy situation, the national economy, national Earth satellite programs, and coastal zone research, commercial activity, and regulatory activity. Alternative scenarios for the period until 1986 are presented. Possible response by state/local remote sensing centers include operational applications for users, input to geo-base information systems (GIS), development of decision-making algorithms using GIS data, and long term research programs for coastal management using merged satellite and traditional data.
NASA Astrophysics Data System (ADS)
DePew, K. A.; Ma, C.; Schiffbauer, J. D.; Wang, J.; Dong, B.; Lally, E.; Wang, A.
2012-12-01
The Center for Photonics Technology (CPT) at Virginia Tech is engaged in cutting edge research of fiber optic sensing technologies. One current research area is the design of fiber optic temperature sensors for harsh environments. Fiber optic temperature sensing offers significant advantages over electronic sensing in terms of size and insensitivity to harsh environmental conditions and electromagnetic interference. In the field, fiber optic thermometers have been used in recent snow cover studies as well as fluvial temperature profiling projects. The extended capabilities of CPT optical sensors open further possibilities for application in additional geologic realms requiring high temperature sensing in corrosive environments. Significant strides have been made in developing single-crystal sapphire based fiber optic sensing elements for high temperature environments which are otherwise difficult to instrument. Utilization of strain insensitive designs and optical sapphire materials allow for thermometers capable of operation above 1500°C with reduced sensitivity to chemical corrosion and mechanical interference. Current efforts in fabrication techniques are reducing the footprint of temperature sensors below the millimeter scale while maintaining high resolution and operating range. The FEI Helios 600 NanoLab workstation at the Virginia Tech Institute for Critical Technologies and Applied Science has been employed, providing the capabilities necessary to reduce the footprint of sensing elements to the dimensions of standard optical communication fiber using a Ga+ focused ion beam (FIB). The capability of semi-distributed multi-point sensing can also be accomplished at this scale using similar FIB milling techniques. The fiber optic thermometer designs resulting from these methods are compact, lightweight, and able to provide remote sensing without need for electrical power at the measurement point. These traits make them an ideal sensing platform for laboratory applications with minimal instrumentation egress as well as field deployment in areas where traditional electronic technologies cannot survive.
Multiple layer identification label using stacked identification symbols
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor)
2005-01-01
An automatic identification system and method are provided which employ a machine readable multiple layer label. The label has a plurality of machine readable marking layers stacked one upon another. Each of the marking layers encodes an identification symbol detectable using one or more sensing technologies. The various marking layers may comprise the same marking material or each marking layer may comprise a different medium having characteristics detectable by a different sensing technology. These sensing technologies include x-ray, radar, capacitance, thermal, magnetic and ultrasonic. A complete symbol may be encoded within each marking layer or a symbol may be segmented into fragments which are then divided within a single marking layer or encoded across multiple marking layers.
NASA Technical Reports Server (NTRS)
Collamore, Frank N.
1989-01-01
The development of a miniature multifunction turbomachinery shaft displacement sensor using state-of-the-art non-contract capacitive sensing technology is described. Axial displacement, radial displacement, and speed are sensed using a single probe within the envelope normally required for a single function. A survey of displacement sensing technology is summarized including inductive, capacitive, optical and ultrasonic techniques. The design and operation of an experimental triple function sensor is described. Test results are included showing calibration tests and simultaneous dynamic testing of multiple functions. Recommendations for design changes are made to improve low temperature performance, reliability, and for design of a flight type signal conditioning unit.
A review of e-textiles in neurological rehabilitation: How close are we?
McLaren, Ruth; Joseph, Frances; Baguley, Craig; Taylor, Denise
2016-06-21
Textiles able to perform electronic functions are known as e-textiles, and are poised to revolutionise the manner in which rehabilitation and assistive technology is provided. With numerous reports in mainstream media of the possibilities and promise of e-textiles it is timely to review research work in this area related to neurological rehabilitation.This paper provides a review based on a systematic search conducted using EBSCO- Health, Scopus, AMED, PEDro and ProQuest databases, complemented by articles sourced from reference lists. Articles were included if the e-textile technology described had the potential for use in neurological rehabilitation and had been trialled on human participants. A total of 108 records were identified and screened, with 20 meeting the broad review inclusion criteria. Nineteen user trials of healthy people and one pilot study with stroke participants have been reported.The review identifies two areas of research focus; motion sensing, and the measurement of, or stimulation of, muscle activity. In terms of motion sensing, E-textiles appear able to reliably measure gross movement and whether an individual has achieved a predetermined movement pattern. However, the technology still remains somewhat cumbersome and lacking in resolution at present. The measurement of muscle activity and the provision of functional electrical stimulation via e-textiles is in the initial stages of development but shows potential for e-textile expansion into assistive technologies.The review identified a lack of high quality clinical evidence and, in some cases, a lack of practicality for clinical application. These issues may be overcome by engagement of clinicians in e-textile research and using their expertise to develop products that augment and enhance neurological rehabilitation practice.
A remote sensing and GIS-enabled asset management system (RS-GAMS).
DOT National Transportation Integrated Search
2013-04-01
Under U.S. Department of Transportation (DOT) Commercial Remote Sensing and : Spatial Information (CRS&SI) Technology Initiative 2 of the Transportation : Infrastructure Construction and Condition Assessment, an intelligent Remote Sensing and : GIS-b...
Stennis Space Center Verification & Validation Capabilities
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; ONeal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir
2005-01-01
Scientists within NASA s Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial and moderate resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.
Comparison of Balloonsonde and Remote Sensing Atmospheric Measurements
NASA Technical Reports Server (NTRS)
Brinker, David J.; Reehorst, Andrew L.; Power, Jack
2006-01-01
As part of its aircraft icing research program, the NASA Glenn Research Center is conducting a program to develop technologies for the remote sensing of atmospheric conditions. A suite of instruments, currently ground-based, are used to identify a region of supercooled liquid water which is labeled as hazardous if its liquid water content is sufficiently high. During the recently completed Alliance Icing Research Study (AIRS II), these instruments were deployed in conjunction with those of other U.S. and Canadian researchers at the Mirabel Airport near Montreal. As part of the study, balloonsondes were employed to provide in-situ measurement of the atmospheric conditions that were being concurrently remotely sensed. Balloonsonde launches occurred daily at 1200 GMT to provide AIRS forecasters with local data and additionally when research aircraft were present in the airspace. In this paper, we compare the processed data from the NASA remote sensing instruments, which included an X-band radar, lidar and two radiometers, to the data gathered from the 70 soundings conducted while the NASA instruments were active. Among the parameters compared are cloud upper and lower boundaries, temperature and humidity profiles and freezing levels.
Applying the miniaturization technologies for biosensor design.
Derkus, Burak
2016-05-15
Microengineering technologies give us some opportunities in developing high-tech sensing systems that operate with low volumes of samples, integrates one or more laboratory functions on a single substrate, and enables automation. These millimetric sized devices can be produced for only a few dollars, which makes them promising candidates for mass-production. Besides electron beam lithography, stencil lithography, nano-imprint lithography or dip pen lithography, basic photolithography is the technique which is extensively used for the design of microengineered sensing systems. This technique has some advantages such as easy-to-manufacture, do not require expensive instrumentation, and allow creation of lower micron-sized patterns. In this review, it has been focused on three different type of microengineered sensing devices which are developed using micro/nano-patterning techniques, microfluidic technology, and microelectromechanics system based technology. Copyright © 2016 Elsevier B.V. All rights reserved.
Advancing Technologies for Climate Observation
NASA Technical Reports Server (NTRS)
Wu, D.; Esper, J.; Ehsan, N.; Johnson, T.; Mast, W.; Piepmeier, J.; Racette, P.
2014-01-01
Climate research needs Accurate global cloud ice measurements Cloud ice properties are fundamental controlling variables of radiative transfer and precipitation Cost-effective, sensitive instruments for diurnal and wide-swath coverage Mature technology for space remote sensing IceCube objectivesDevelop and validate a flight-qualified 883 GHz receiver for future use in ice cloud radiometer missions Raise TRL (57) of 883 GHz receiver technology Reduce instrument cost and risk by developing path to space for COTS sub-mm-wave receiver systems Enable remote sensing of global cloud ice with advanced technologies and techniques
This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPA′s Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...
When Technique Is the Foundation of Health Care
ERIC Educational Resources Information Center
Downing, Raymond
2012-01-01
One of the clearest examples of a technological system, in the sense that Ellul discussed it, is contemporary biomedical health care. The foundation of technological systems is technique: efficient methods for achieving isolated goals. However, the goal of health care should be to achieve health in the full sense of wholeness. Traditional healing…
The use of remote sensing in mosquito control
NASA Technical Reports Server (NTRS)
1973-01-01
The technology of remote sensing, developed by the space program for identification of surface features from the vantage point of an aircraft or satellite, has substantial application in precisely locating mosquito breeding grounds. Preliminary results of the NASA technology working cooperatively with a city government agency in solving this problem are discussed.
Lv, Peiling; Ito, Takenori; Oogushi, Akihide; Nakashima, Kensaku; Nagao, Masahiro; Hibino, Takashi
2016-11-18
In recent years, exhaust sensors have become increasingly attractive for use in energy and environmental technologies. Important issues regarding practical applications of these sensors, especially for soot measurements, include the further development of ion-conductive electrolytes and active electrode catalysts for meeting performance and durability requirements. Herein, we design a proton conductor with a high breakdown voltage and a sensing electrode with high sensitivity to electrochemical carbon oxidation, enabling continuous soot monitoring with self-regeneration of the sensor. A Si 0.97 Al 0.03 H x P 2 O 7-δ layer with an excellent balance between proton conductivity and voltage endurance was grown on the surface of a Si 0.97 Al 0.03 O 2-δ substrate by reacting it with liquid H 3 PO 4 at 600 °C. Specific reactivity of the electrochemically formed active oxygen toward soot was accomplished by adding a Pt-impregnated Sn 0.9 In 0.1 H x P 2 O 7-δ catalyst into a Pt sensing electrode. To make the best use of these optimized materials, a unipolar electrochemical device was fabricated by configuring the sensing and counter electrodes on the same surface of the electrolyte layer. The resulting amperometric mode sensor successfully produced a current signal that corresponded to the quantity of soot.
Lv, Peiling; Ito, Takenori; Oogushi, Akihide; Nakashima, Kensaku; Nagao, Masahiro; Hibino, Takashi
2016-01-01
In recent years, exhaust sensors have become increasingly attractive for use in energy and environmental technologies. Important issues regarding practical applications of these sensors, especially for soot measurements, include the further development of ion-conductive electrolytes and active electrode catalysts for meeting performance and durability requirements. Herein, we design a proton conductor with a high breakdown voltage and a sensing electrode with high sensitivity to electrochemical carbon oxidation, enabling continuous soot monitoring with self-regeneration of the sensor. A Si0.97Al0.03HxP2O7-δ layer with an excellent balance between proton conductivity and voltage endurance was grown on the surface of a Si0.97Al0.03O2-δ substrate by reacting it with liquid H3PO4 at 600 °C. Specific reactivity of the electrochemically formed active oxygen toward soot was accomplished by adding a Pt-impregnated Sn0.9In0.1HxP2O7-δ catalyst into a Pt sensing electrode. To make the best use of these optimized materials, a unipolar electrochemical device was fabricated by configuring the sensing and counter electrodes on the same surface of the electrolyte layer. The resulting amperometric mode sensor successfully produced a current signal that corresponded to the quantity of soot. PMID:27857193
NASA Astrophysics Data System (ADS)
Lv, Peiling; Ito, Takenori; Oogushi, Akihide; Nakashima, Kensaku; Nagao, Masahiro; Hibino, Takashi
2016-11-01
In recent years, exhaust sensors have become increasingly attractive for use in energy and environmental technologies. Important issues regarding practical applications of these sensors, especially for soot measurements, include the further development of ion-conductive electrolytes and active electrode catalysts for meeting performance and durability requirements. Herein, we design a proton conductor with a high breakdown voltage and a sensing electrode with high sensitivity to electrochemical carbon oxidation, enabling continuous soot monitoring with self-regeneration of the sensor. A Si0.97Al0.03HxP2O7-δ layer with an excellent balance between proton conductivity and voltage endurance was grown on the surface of a Si0.97Al0.03O2-δ substrate by reacting it with liquid H3PO4 at 600 °C. Specific reactivity of the electrochemically formed active oxygen toward soot was accomplished by adding a Pt-impregnated Sn0.9In0.1HxP2O7-δ catalyst into a Pt sensing electrode. To make the best use of these optimized materials, a unipolar electrochemical device was fabricated by configuring the sensing and counter electrodes on the same surface of the electrolyte layer. The resulting amperometric mode sensor successfully produced a current signal that corresponded to the quantity of soot.
The remote sensing data from your UAV probably isn't scientific, but it should be!
NASA Astrophysics Data System (ADS)
McKee, Mac
2017-05-01
The application of unmanned autonomous vehicles (UAVs), or "drones", to generate data to support better decisions for agricultural management and farm operations is a relatively new technology that is now beginning to enter the market. This potentially disruptive technology is still in its infancy and must mature in ways that the current market cannot clearly foresee and probably does not fully understand. Major technical and regulatory hurdles must be overcome before the full potential of this remote sensing technology can be realized in agricultural applications. Further, and most importantly, buyers and sellers in today's market must both gain a deeper understanding of the potential that this technology might achieve and the technical challenges that must be met before advances that will bring significant market value will be possible. A lack of understanding of some of the basic concepts of remote sensing can translate into poor decisions regarding the acquisition and deployment of UAVs in agriculture. This paper focuses on some of the details of remote sensing that few growers, and, indeed, few university researchers fully understand.
Architecture of a Service-Enabled Sensing Platform for the Environment
Kotsev, Alexander; Pantisano, Francesco; Schade, Sven; Jirka, Simon
2015-01-01
Recent technological advancements have led to the production of arrays of miniaturized sensors, often embedded in existing multitasking devices (e.g., smartphones, tablets) and using a wide range of radio standards (e.g., Bluetooth, Wi-Fi, 4G cellular networks). Altogether, these technological evolutions coupled with the diffusion of ubiquitous Internet connectivity provide the base-line technology for the Internet of Things (IoT). The rapid increase of IoT devices is enabling the definition of new paradigms of data collection and introduces the concept of mobile crowd-sensing. In this respect, new sensing methodologies promise to extend the current understanding of the environment and social behaviors by leveraging citizen-contributed data for a wide range of applications. Environmental sensing can however only be successful if all the heterogeneous technologies and infrastructures work smoothly together. As a result, the interconnection and orchestration of devices is one of the central issues of the IoT paradigm. With this in mind, we propose an approach for improving the accessibility of observation data, based on interoperable standards and on-device web services. PMID:25688593
Architecture of a service-enabled sensing platform for the environment.
Kotsev, Alexander; Pantisano, Francesco; Schade, Sven; Jirka, Simon
2015-02-13
Recent technological advancements have led to the production of arrays of miniaturized sensors, often embedded in existing multitasking devices (e.g., smartphones, tablets) and using a wide range of radio standards (e.g., Bluetooth, Wi-Fi, 4G cellular networks). Altogether, these technological evolutions coupled with the diffusion of ubiquitous Internet connectivity provide the base-line technology for the Internet of Things (IoT). The rapid increase of IoT devices is enabling the definition of new paradigms of data collection and introduces the concept of mobile crowd-sensing. In this respect, new sensing methodologies promise to extend the current understanding of the environment and social behaviors by leveraging citizen-contributed data for a wide range of applications. Environmental sensing can however only be successful if all the heterogeneous technologies and infrastructures work smoothly together. As a result, the interconnection and orchestration of devices is one of the central issues of the IoT paradigm. With this in mind, we propose an approach for improving the accessibility of observation data, based on interoperable standards and on-device web services.
NASA Gulf of Mexico Initiative Hypoxia Research
NASA Technical Reports Server (NTRS)
Armstrong, Curtis D.
2012-01-01
The Applied Science & Technology Project Office at Stennis Space Center (SSC) manages NASA's Gulf of Mexico Initiative (GOMI). Addressing short-term crises and long-term issues, GOMI participants seek to understand the environment using remote sensing, in-situ observations, laboratory analyses, field observations and computational models. New capabilities are transferred to end-users to help them make informed decisions. Some GOMI activities of interest to the hypoxia research community are highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargo, G.F. Jr.
1995-06-16
The purpose of this work scope is to identify a specific potential technology/device/instrument/ideas that would provide the tank waste data. A method is needed for identifying layering and physical state within the large waste tanks at the Hanford site in Washington State. These interfaces and state changes can adversely impact sampling and characterization activities.
Automated potentiometric electrolyte analysis system. [for use in weightlessness
NASA Technical Reports Server (NTRS)
1973-01-01
The feasibility is demonstrated of utilizing chemical sensing electrode technology as the basis for an automatically-controlled system for blood gas and electrolyte analyses under weightlessness conditions. The specific measurements required were pH, pCO2, sodium, chloride, potassium ions, and ionized calcium. The general electrode theory, and ion activity measurements are described along with the fluid transport package, electronics unit, and controller for the automated potentiometric analysis system.
Development and Applications of Technology for Sensing Zooplankton
2003-09-30
zooplankton-like particles. WORK COMPLETED In support of our first objective, in prior years we occupied sites in both East and West Sound at Orcas ...Island in northern Puget Sound , WA. We have also made deployments at four sites on open linear coasts, including one just north of Oceanside, CA (Red...layers. Multi-static, multi-frequency methods Most active bioacoustical methods in oceanography exclusively utilize the sound that is scattered
System of launchable mesoscale robots for distributed sensing
NASA Astrophysics Data System (ADS)
Yesin, Kemal B.; Nelson, Bradley J.; Papanikolopoulos, Nikolaos P.; Voyles, Richard M.; Krantz, Donald G.
1999-08-01
A system of launchable miniature mobile robots with various sensors as payload is used for distributed sensing. The robots are projected to areas of interest either by a robot launcher or by a human operator using standard equipment. A wireless communication network is used to exchange information with the robots. Payloads such as a MEMS sensor for vibration detection, a microphone and an active video module are used mainly to detect humans. The video camera provides live images through a wireless video transmitter and a pan-tilt mechanism expands the effective field of view. There are strict restrictions on total volume and power consumption of the payloads due to the small size of the robot. Emerging technologies are used to address these restrictions. In this paper, we describe the use of microrobotic technologies to develop active vision modules for the mesoscale robot. A single chip CMOS video sensor is used along with a miniature lens that is approximately the size of a sugar cube. The device consumes 100 mW; about 5 times less than the power consumption of a comparable CCD camera. Miniature gearmotors 3 mm in diameter are used to drive the pan-tilt mechanism. A miniature video transmitter is used to transmit analog video signals from the camera.
Lidar system for air-pollution monitoring over urban areas
NASA Astrophysics Data System (ADS)
Moskalenko, Irina V.; Shcheglov, Djolinard A.; Molodtsov, Nikolai A.
1997-05-01
The atmospheric environmental situation over the urban area of a large city is determined by a complex combination of anthropogenic pollution and meteorological factors. The efficient way to provide three-dimensional mapping of gaseous pollutants over wide areas is utilization of lidar systems employing tunable narrowband transmitters. The paper presented describes activity of RRC 'Kurchatov Institute' in the field of lidar atmospheric monitoring. The project 'mobile remote sensing system based on tunable laser transmitter for environmental monitoring' is developed under financial support of International Scientific and Technology Center (Moscow). The objective of the project is design, construction and field testing of a DIAL-technique system. The lidar transmitter consists of an excimer laser pumping dye laser, BBO crystal frequency doubler, and scanning flat mirror. Sulfur dioxide and atomic mercury have been selected as pollutants for field tests of the lidar system under development. A recent large increase in Moscow traffic stimulated taking into consideration also the remote sensing of lower troposphere ozone because of the photochemical smog problem. The status of the project is briefly discussed. The current activity includes also collecting of environmental data relevant to lidar remote sensing. Main attention is paid to pollutant concentration levels over Moscow city and Moscow district areas.
NASA Astrophysics Data System (ADS)
Shuja Syed, Ahmed
2013-12-01
The 1st International Conference on Sensing for Industry, Control, Communication & Security Technologies (ICSICCST-2013), took place in Karachi, Pakistan, from 24-26 June 2013. It was organized by Indus University, Karachi, in collaboration with HEJ Research Institute of Chemistry, University of Karachi, Karachi. More than 80 abstracts were submitted to the conference and were double blind-reviewed by an international scientific committee. The topics of the Conference were: Video, Image & Voice Sensing Sensing for Industry, Environment, and Health Automation and Controls Laser Sensors and Systems Displays for Innovative Applications Emerging Technologies Unmanned, Robotic, and Layered Systems Sensing for Defense, Homeland Security, and Law Enforcement The title of the conference, 'Sensing for Industry, Control, Communication & Security Technologies' is very apt in capturing the main issues facing the industry of Pakistan and the world. We believe the sensing industry, particularly in Pakistan, is currently at a critical juncture of its development. The future of the industry will depend on how the industry players choose to respond to the challenge of global competition and opportunities arising from strong growth in the Asian region for which we are pleased to note that the conference covered a comprehensive spectrum of issues with an international perspective. This will certainly assist industry players to make informed decisions in shaping the future of the industry. The conference gathered qualified researchers from developed countries like USA, UK, Sweden, Saudi Arabia, China, South Korea and Malaysia etc whose expertise resulting from the research can be drawn upon to build an exploitable area of new technology that has potential Defense, Homeland Security, and Military applicability. More than 250 researchers/students attended the event and made the event great success as the turnout was 100%. An exceptional line-up of speakers spoke at the occasion. We want to thank the Organizing Committee, the Institutions and Sponsors supporting the Conference, especially 'Centre for Emerging Sciences, Engineering & Technology (CESET), Islamabad', the IOP Publishers and everyone who contributed to the organization of this meeting, for their invaluable efforts to make this event a great success. Professor Dr Ahmed Shuja Syed Chief Editor The PDF also contains lists of the boards, committees and sponsors.
The Federal Oil Spill Team for Emergency Response Remote Sensing (FOSTERRS)
NASA Astrophysics Data System (ADS)
Stough, T.; Jones, C. E.; Leifer, I.; Lindsay, F. E.; Murray, J. J.; Ramirez, E. M.; Salemi, A.; Streett, D.
2014-12-01
Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, for which remote sensing plays a critical role in detection and monitoring of oil spills. The FOSTERRS interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft) and analysis techniques are quickly, effectively and seamlessly available to oil spills responders. FOSTERRS enables cooperation between agencies with core environmental remote sensing assets and capabilities and academic and industry experts to act as an oil spill remote sensing information clearinghouse. The US government and its collaborators have a broad variety of aircraft and satellite sensors, imagery interrogation techniques and other technology that can provide indispensable remote sensing information to agencies, emergency responders and the public during an oil spill. Specifically, FOSTERRS will work to ensure that (1) suitable aircraft and satellite imagery and radar observations are quickly made available in a manner that can be integrated into oil spill detection and mitigation efforts, (2) existing imagery interrogation techniques are in the hands of those who will provide the 24 x 7 operational support and (3) efforts are made to develop new technology where the existing techniques do not provide oil spills responders with important information they need. The FOSTERRS mission goal places it in an ideal place for identification of critical technological needs, and identifying bottlenecks in technology acceptance. The core FOSTERRS team incorporates representation for operations and science for agencies with relevant instrumental and platform assets (NASA, NOAA, USGS, NRL). FOSTERRS membership will open to a wide range of end-user agencies and planned observer status from industry and academic experts, and eventually international partners. Through these collaborations, FOSTERRS facilitates interagency and cooperation and communication to the larger end-user community on remote sensing and its best use.
Lessons from Providing Professional Development in Remote Sensing for Community College Instructors
NASA Astrophysics Data System (ADS)
Allen, J. E.
2014-12-01
Two-year colleges and Tribal colleges are important centers for workforce education and training. A professional development program funded by the National Science Foundation's Advanced Technological Education Program, 2007-2011 and 2012-2015, is providing the resources needed by instructors at those colleges to develop courses and programs in remote sensing. The highly successful program, "Integrated Geospatial Education and Technology Training-Remote Sensing (iGETT-RS)" will complete its currently funded work in May 2015. 76 instructors of Geographic Information Systems (GIS) from all over the country will have been served. Each of them will have spent 18 months on the project, participating in two Summer Institutes at NASA and USGS and in monthly webinars on science and technology of remote sensing. iGETT-RS participants have created their own exercises and "concept modules" for the classroom, and many have created new courses and new programs across the country. As the external evaluator for iGETT-RS expressed it, the impact on project participants can "only be described as transformational." Viewers of this presentation will learn about the iGETT-RS project design and approach; successes, failures and lessons learned by the staff; and how to access the workshop materials and participant-authored classroom resources. Viewers will also learn about the Geospatial Technology Competency Model at the US Department of Labor, and about specifications for the Remote Sensing Model Course recently developed by the National Geospatial Technology Center to provide invaluable frameworks for faculty, students, administrators and employers.
Wind Sensing and Modeling | Grid Modernization | NREL
Simulation at the turbine, wind plant, and regional scales for resource prospecting, resource assessment Sensing and Modeling Wind Sensing and Modeling NREL's wind sensing and modeling work supports the deployment of wind-based generation technologies for all stages of a plant's life, from resource estimates to
A remote sensing and GIS-enabled asset management system (RS-GAMS) : phase 2.
DOT National Transportation Integrated Search
2014-04-01
Under the U.S. Department of Transportation (DOT) Commercial Remote Sensing and Spatial : Information (CRS&SI) Technology Initiative 2 of the Transportation Infrastructure Construction : and Condition Assessment, an intelligent Remote Sensing and GIS...
Stuckey, Melanie; Fulkerson, Robyn; Read, Emily; Russell-Minda, Elizabeth; Munoz, Claudio; Kleinstiver, Peter; Petrella, Robert
2011-07-01
Remote monitoring technologies are ideally suited for rural communities with limited access to health care. In an 8-week pilot study, we examined the feasibility of implementing and conducting a technology-intensive intervention in an underserviced rural setting. Our goal was to test the utility of self-monitoring technologies, physical activity, and education as tools to manage health indicators for the development of the cardiovascular complications (CVCs) of type 2 diabetes. The Diabetes and Technology for Increased Activity study was an open single-center study conducted in a community-based research setting. All 24 participants were provided with a Blackberry™ Smartphone, blood pressure monitor, glucometer, and pedometer. Smartphones transmitted measurements and survey results to the database, interfaced participants with the clinical team, and allowed for self-monitoring. Outcomes were improved body composition, improved markers of CVC risk factors, increased daily exercise, and interest in or awareness of lifestyle changes that impact health outcomes. Participants had excellent compliance for measurements, as self-monitoring provided a sense of security that improved from week 4 to week 8. Our team gained substantial insight into the operational requirements of technology-facilitated health care, including redefined hours of service; data reporting, management, and access protocols; and the utility of real-time clinical measures by remote monitoring. We developed an understanding of knowledge translation strategies as well as successful motivational and educational tools. Importantly, remote monitoring technology was found to be feasible and accepted in a rural setting. © 2011 Diabetes Technology Society.
The LAM space active optics facility
NASA Astrophysics Data System (ADS)
Engel, C.; Ferrari, M.; Hugot, E.; Escolle, C.; Bonnefois, A.; Bernot, M.; Bret-Dibat, T.; Carlavan, M.; Falzon, F.; Fusco, T.; Laubier, D.; Liotard, A.; Michau, V.; Mugnier, L.
2017-11-01
The next generation of large lightweight space telescopes will require the use of active optics systems to enhance the performance and increase the spatial resolution. Since almost 10 years now, LAM, CNES, THALES and ONERA conjugate their experience and efforts for the development of space active optics through the validation of key technological building blocks: correcting devices, metrology components and control strategies. This article presents the work done so far on active correcting mirrors and wave front sensing, as well as all the facilities implemented. The last part of this paper focuses on the merging of the MADRAS and RASCASSE test-set up. This unique combination will provide to the active optics community an automated, flexible and versatile facility able to feed and characterise space active optics components.
NASA Astrophysics Data System (ADS)
Reza, Syed Azer
This dissertation proposes the use of the emerging Micro-Electro-Mechanical Systems (MEMS) and agile lensing optical device technologies to design novel and powerful signal conditioning and sensing modules for advanced applications in optical communications, physical parameter sensing and RF/optical signal processing. For example, these new module designs have experimentally demonstrated exceptional features such as stable loss broadband operations and high > 60 dB optical dynamic range signal filtering capabilities. The first part of the dissertation describes the design and demonstration of digital MEMS-based signal processing modules for communication systems and sensor networks using the TI DLP (Digital Light Processing) technology. Examples of such modules include optical power splitters, narrowband and broadband variable fiber optical attenuators, spectral shapers and filters. Compared to prior works, these all-digital designs have advantages of repeatability, accuracy, and reliability that are essential for advanced communications and sensor applications. The next part of the dissertation proposes, analyzes and demonstrates the use of analog opto-fluidic agile lensing technology for sensor networks and test and measurement systems. Novel optical module designs for distance sensing, liquid level sensing, three-dimensional object shape sensing and variable photonic delay lines are presented and experimentally demonstrated. Compared to prior art module designs, the proposed analog-mode modules have exceptional performances, particularly for extreme environments (e.g., caustic liquids) where the free-space agile beam-based sensor provide remote non-contact access for physical sensing operations. The dissertation also presents novel modules involving hybrid analog-digital photonic designs that make use of the different optical device technologies to deliver the best features of both analog and digital optical device operations and controls. Digital controls are achieved through the use of the digital MEMS technology and analog controls are realized by employing opto-fluidic agile lensing technology and acousto-optic technology. For example, variable fiber-optic attenuators and spectral filters are proposed using the hybrid design. Compared to prior art module designs, these hybrid designs provide a higher module dynamic range and increased resolution that are critical in various advanced system applications. In summary, the dissertation shows the added power of hybrid optical designs using both the digital and analog photonic signal processing versus just all-digital or all-analog module designs.
Uptake of Space Technologies - An Educational Programme
NASA Astrophysics Data System (ADS)
Bacai, Hina; Zolotikova, Svetlana; Young, Mandy; Cowsill, Rhys; Wells, Alan; Monks, Paul; Archibald, Alexandra; Smith, Teresa
2013-04-01
Earth Observation data and remote sensing technologies have been maturing into useful tools that can be utilised by local authorities and businesses to aid in activates such as monitoring climate change trends and managing agricultural land and water uses. The European Earth observation programme Copernicus, previously known as GMES (Global Monitoring for Environment and Security), provides the means to collect and process multi-source EO and environmental data that supports policy developments at the European level. At the regional and local level, the Copernicus programme has been initiated through Regional Contact Office (RCO), which provide knowledge, training, and access to expertise both locally and at a European level through the network of RCOs established across Europe in the DORIS_Net (Downstream Observatory organised by Regions active In Space - Network) project (Grant Agreement No. 262789 Coordination and support action (Coordinating) FP7 SPA.2010.1.1-07 "Fostering downstream activities and links with regions"). In the East Midlands UK RCO, educational and training workshops and modules have been organised to highlight the wider range of tools and application available to businesses and local authorities in the region. Engagement with businesses and LRA highlighted the need to have a tiered system of training to build awareness prior to investigating innovative solutions and space technology uses for societal benefits. In this paper we outline education and training programmes which have been developed at G-STEP (GMES - Science and Technology Education Partnership), University of Leicester, UK to open up the Copernicus programme through the Regional Contact Office to downstream users such as local businesses and LRAs. Innovative methods to introduce the operational uses of Space technologies in real cases through e-learning modules and web-based tools will be described and examples of good practice for educational training in these sectors will be demonstrated. The results from these workshops and awareness building campaigns will show the end-user 'pull' in the uptake of remote sensing and Earth Observation data to implement successful Local Authority action plans and projects developing innovative solutions to critical Local Authority issues.
A Study on Software-based Sensing Technology for Multiple Object Control in AR Video
Jung, Sungmo; Song, Jae-gu; Hwang, Dae-Joon; Ahn, Jae Young; Kim, Seoksoo
2010-01-01
Researches on Augmented Reality (AR) have recently received attention. With these, the Machine-to-Machine (M2M) market has started to be active and there are numerous efforts to apply this to real life in all sectors of society. To date, the M2M market has applied the existing marker-based AR technology in entertainment, business and other industries. With the existing marker-based AR technology, a designated object can only be loaded on the screen from one marker and a marker has to be added to load on the screen the same object again. This situation creates a problem where the relevant marker’should be extracted and printed in screen so that loading of the multiple objects is enabled. However, since the distance between markers will not be measured in the process of detecting and copying markers, the markers can be overlapped and thus the objects would not be augmented. To solve this problem, a circle having the longest radius needs to be created from a focal point of a marker to be copied, so that no object is copied within the confines of the circle. In this paper, software-based sensing technology for multiple object detection and loading using PPHT has been developed and overlapping marker control according to multiple object control has been studied using the Bresenham and Mean Shift algorithms. PMID:22163444
A study on software-based sensing technology for multiple object control in AR video.
Jung, Sungmo; Song, Jae-Gu; Hwang, Dae-Joon; Ahn, Jae Young; Kim, Seoksoo
2010-01-01
Researches on Augmented Reality (AR) have recently received attention. With these, the Machine-to-Machine (M2M) market has started to be active and there are numerous efforts to apply this to real life in all sectors of society. To date, the M2M market has applied the existing marker-based AR technology in entertainment, business and other industries. With the existing marker-based AR technology, a designated object can only be loaded on the screen from one marker and a marker has to be added to load on the screen the same object again. This situation creates a problem where the relevant marker'should be extracted and printed in screen so that loading of the multiple objects is enabled. However, since the distance between markers will not be measured in the process of detecting and copying markers, the markers can be overlapped and thus the objects would not be augmented. To solve this problem, a circle having the longest radius needs to be created from a focal point of a marker to be copied, so that no object is copied within the confines of the circle. In this paper, software-based sensing technology for multiple object detection and loading using PPHT has been developed and overlapping marker control according to multiple object control has been studied using the Bresenham and Mean Shift algorithms.
Remote sensing by satellite - Technical and operational implications for international cooperation
NASA Technical Reports Server (NTRS)
Doyle, S. E.
1976-01-01
International cooperation in the U.S. Space Program is discussed and related to the NASA program for remote sensing of the earth. Satellite remote sensing techniques are considered along with the selection of the best sensors and wavelength bands. The technology of remote sensing satellites is considered with emphasis on the Landsat system configuration. Future aspects of remote sensing satellites are considered.
Technology Foresight and nuclear test verification: a structured and participatory approach
NASA Astrophysics Data System (ADS)
Noack, Patrick; Gaya-Piqué, Luis; Haralabus, Georgios; Auer, Matthias; Jain, Amit; Grenard, Patrick
2013-04-01
As part of its mandate, the CTBTO's nuclear explosion monitoring programme aims to maintain its sustainability, effectiveness and its long-term relevance to the verification regime. As such, the PTS is conducting a Technology Foresight programme of activities to identify technologies, processes, concepts and ideas that may serve said purpose and become applicable within the next 20 years. Through the Technology Foresight activities (online conferences, interviews, surveys, workshops and other) we have involved the wider science community in the fields of seismology, infrasound, hydroacoustics, radionuclide technology, remote sensing and geophysical techniques. We have assembled a catalogue of over 200 items, which incorporate technologies, processes, concepts and ideas which will have direct future relevance to the IMS (International Monitoring System), IDC (International Data Centre) and OSI (On-Site Inspection) activities within the PTS. In order to render this catalogue as applicable and useful as possible for strategy and planning, we have devised a "taxonomy" based on seven categories, against which each technology is assessed through a peer-review mechanism. These categories are: 1. Focus area of the technology in question: identify whether the technology relates to (one or more of the following) improving our understanding of source and source physics; propagation modelling; data acquisition; data transport; data processing; broad modelling concepts; quality assurance and data storage. 2. Current Development Stage of the technology in question. Based on a scale from one to six, this measure is specific to PTS needs and broadly reflects Technology Readiness Levels (TRLs). 3. Impact of the technology on each of the following capabilities: detection, location, characterization, sustainment and confidence building. 4. Development cost: the anticipated monetary cost of validating a prototype (i.e. Development Stage 3) of the technology in question. 5. Time to maturity: the number of years until the technology in question reaches Development Stage 3 (i.e. prototype validated). 6. Integration effort: the anticipated level of effort required by the PTS to fully integrate the technology, process, concept or idea into is verification environment. 7. Time to impact: the number of years until the technology is fully developed and integrated into the PTS verification environment and delivers on its full potential. The resulting database is coupled to Pivot, a novel information management software tool which offers powerful visualisation of the taxonomy's parameters for each technology. Pivot offers many advantages over conventional spreadhseet-interfaced database tools: based on shared categories in the taxonomy, users can quickly and intuitively discover linkages, communalities and various interpretations about prospective CTBT pertinent technologies. It is easily possible to visualise a resulting sub-set of technologies that conform to the specific user-selected attributes from the full range of taxonomy categories. In this presentation we will illustrate the range of future technologies, processes, concepts and ideas; we will demonstrate how the Pivot tool can be fruitfully applied to assist in strategic planning and development, and to identify gaps apparent on the technology development horizon. Finally, we will show how the Pivot tool together with the taxonomy offer real and emerging insights to make sense of large amounts of disparate technologies.
7th IGRSM International Remote Sensing & GIS Conference and Exhibition
NASA Astrophysics Data System (ADS)
Shariff, Abdul Rashid Mohamed
2014-06-01
IGRSM This proceedings consists of the peer-reviewed papers from the 7th IGRSM International Conference and Exhibition on Remote Sensing & GIS (IGRSM 2014), which was held on 21-22 April 2014 at Berjaya Times Square Hotel, Kuala Lumpur, Malaysia. The conference, with the theme Geospatial Innovation for Nation Building was aimed at disseminating knowledge, and sharing expertise and experiences in geospatial sciences in all aspects of applications. It also aimed to build linkages between local and international professionals in this field with industries. Highlights of the conference included: Officiation by Y B Datuk Dr Abu Bakar bin Mohamad Diah, Deputy Minister of Minister of Science, Technology & Innovation Keynote presentations by: Associate Professor Dr Francis Harvey, Chair of the Geographic Information Science Commission at the International Geographical Union (IGU) and Director of U-Spatial, University of Minnesota, US: The Next Age of Discovery and a Future in a Post-GIS World. Professor Dr Naoshi Kondo, Bio-Sensing Engineering, University of Kyoto, Japan: Mobile Fruit Grading Machine for Precision Agriculture. Datuk Ir Hj Ahmad Jamalluddin bin Shaaban, Director-General, National Hydraulic Research Institute of Malaysia (NAHRIM), Malaysia: Remote Sensing & GIS in Climate Change Analyses. Oral and poster presentations from 69 speakers, from both Malaysia (35) and abroad (34), covering areas of water resources management, urban sprawl & social mobility, agriculture, land use/cover mapping, infrastructure planning, disaster management, technology trends, environmental monitoring, atmospheric/temperature monitoring, and space applications for the environment. Post-conference workshops on: Space Applications for Environment (SAFE), which was be organised by the Japan Aerospace Exploration Agency (JAXA) Global Positioning System (GPS) Receiver Evaluation Using GPS Simulation, which was be organised by the Science & Technology Research Institute for Defence (STRIDE), and sponsored by RFI Technologies Sdn. Bhd. and Aeroflex Inc. Two awards were presented by Dr Noordin Ahmad, Director-General of the National Space Agency during the conference's closing ceremony: Best Paper Award: Dr Rizatus Shofiyati, Indonesian Center for Agricultural Land Resources Research and Development (ICALRD), Indonesia: Indonesian Drought Monitoring from Space. A Report of SAFE Activity: Assessment of Drought Impact on Rice Production in Indonesia by Satellite Remote Sensing and Dissemination with Web-GIS Best Student Paper Award: Rosnani Rahman, Space Science Centre (ANGKASA), Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM), Malaysia: Monitoring the Variability of Precipitable Water Vapor Over the Klang Valley, Malaysia During Flash Flood The success of the IGRSM 2014 was due to commitments of many: authors, keynote speakers, session chairpersons, the organising and technical programme committees, student volunteers from Universiti Putra Malaysia (UPM), and many others of various roles. We acknowledge the sponsors of IGRSM 2014, namely Antaragrafik Systems Sdn. Bhd. and Geospatial Media and Communications Sdn. Bhd. We also thank all exhibitors and contributors: E J Motiwalla, Fajar Saintifik Sdn. Bhd., Bandwork GPS Solutions Sdn. Bhd., Tenaga Nasional Bhd., TSKAY Technology Sdn. Bhd., Geo Spatial Solutions Sdn. Bhd. and Accutac Sdn. Bhd. Associate Professor Sr Dr Abdul Rashid Mohamed Shariff Chairman 7th IGRSM International Remote Sensing & GIS Conference and Exhibition (IGRSM2014) President Institution of Geospatial and Remote Sensing Malaysia (IGRSM), 2012-2014
Vectorology and Factor Delivery in Induced Pluripotent Stem Cell Reprogramming
2014-01-01
Induced pluripotent stem cell (iPSC) reprogramming requires sustained expression of multiple reprogramming factors for a limited period of time (10–30 days). Conventional iPSC reprogramming was achieved using lentiviral or simple retroviral vectors. Retroviral reprogramming has flaws of insertional mutagenesis, uncontrolled silencing, residual expression and re-activation of transgenes, and immunogenicity. To overcome these issues, various technologies were explored, including adenoviral vectors, protein transduction, RNA transfection, minicircle DNA, excisable PiggyBac (PB) transposon, Cre-lox excision system, negative-sense RNA replicon, positive-sense RNA replicon, Epstein-Barr virus-based episomal plasmids, and repeated transfections of plasmids. This review provides summaries of the main vectorologies and factor delivery systems used in current reprogramming protocols. PMID:24625220
NASA Technical Reports Server (NTRS)
Williams, G. M.; Fraser, J. C.
1991-01-01
The objective was to examine state-of-the-art optical sensing and processing technology applied to control the motion of flexible spacecraft. Proposed large flexible space systems, such an optical telescopes and antennas, will require control over vast surfaces. Most likely distributed control will be necessary involving many sensors to accurately measure the surface. A similarly large number of actuators must act upon the system. The used technical approach included reviewing proposed NASA missions to assess system needs and requirements. A candidate mission was chosen as a baseline study spacecraft for comparison of conventional and optical control components. Control system requirements of the baseline system were used for designing both a control system containing current off-the-shelf components and a system utilizing electro-optical devices for sensing and processing. State-of-the-art surveys of conventional sensor, actuator, and processor technologies were performed. A technology development plan is presented that presents a logical, effective way to develop and integrate advancing technologies.
Unmanned Aircraft Systems for Monitoring Department of the Interior Lands
NASA Astrophysics Data System (ADS)
Hutt, M. E.; Quirk, B.
2013-12-01
Unmanned Aircraft Systems (UAS) technology is quickly evolving and will have a significant impact on Earth science research. The U.S. Geological Survey (USGS) is conducting an operational test and evaluation of UAS to see how this technology supports the mission of the Department of the Interior (DOI). Over the last 4 years, the USGS, working with many partners, has been actively conducting proof of concept UAS operations, which are designed to evaluate the potential of UAS technology to support the mandated DOI scientific, resource and land management missions. UAS technology is being made available to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Using small UAS (sUAS), the USGS is able to tailor solutions to meet project requirements by obtaining very high resolution video data, acquiring thermal imagery, detecting chemical plumes, and generating digital terrain models at a fraction of the cost of conventional surveying methods. UAS technology is providing a mechanism to collect timely remote sensing data at a low cost and at low risk over DOI lands that can be difficult to monitor and consequently enhances our ability to provide unbiased scientific information to better enable decision makers to make informed decisions. This presentation describes the UAS technology and infrastructure being employed, the application projects already accomplished, lessons learned and future of UAS within the DOI. We fully expect that by 2020 UAS will emerge as a primary platform for all DOI remote sensing applications. Much like the use of Internet technology, Geographic Information Systems (GIS) and Global Positioning Systems (GPS), UAS have the potential of enabling the DOI to be better stewards of the land.
Remote Sensing Technologies and Geospatial Modelling Hierarchy for Smart City Support
NASA Astrophysics Data System (ADS)
Popov, M.; Fedorovsky, O.; Stankevich, S.; Filipovich, V.; Khyzhniak, A.; Piestova, I.; Lubskyi, M.; Svideniuk, M.
2017-12-01
The approach to implementing the remote sensing technologies and geospatial modelling for smart city support is presented. The hierarchical structure and basic components of the smart city information support subsystem are considered. Some of the already available useful practical developments are described. These include city land use planning, urban vegetation analysis, thermal condition forecasting, geohazard detection, flooding risk assessment. Remote sensing data fusion approach for comprehensive geospatial analysis is discussed. Long-term city development forecasting by Forrester - Graham system dynamics model is provided over Kiev urban area.
Predicting Air Quality in Smart Environments
Deleawe, Seun; Kusznir, Jim; Lamb, Brian; Cook, Diane J.
2011-01-01
The pervasive sensing technologies found in smart environments offer unprecedented opportunities for monitoring and assisting the individuals who live and work in these spaces. As aspect of daily life that is often overlooked in maintaining a healthy lifestyle is the air quality of the environment. In this paper we investigate the use of machine learning technologies to predict CO2 levels as an indicator of air quality in smart environments. We introduce techniques for collecting and analyzing sensor information in smart environments and analyze the correlation between resident activities and air quality levels. The effectiveness of our techniques is evaluated using three physical smart environment testbeds. PMID:21617739
Introduction to the physics and techniques of remote sensing
NASA Technical Reports Server (NTRS)
Elachi, Charles
1987-01-01
This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.
Completing the CCT mission: The challenge of change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monk, J.R.
1997-12-31
In order to complete the clean coal technology mission it will be necessary to determine CCT`s role in the restructured electricity industry and develop a strategy to promote that role. First, one must understand where the industry is headed and how clean coal technology fits into that future. Then, one needs to develop a strategy for getting from here to there, from where CCT is today to where it must be in five, ten or twenty years to be a viable option for decision-makers. Coal makes sense for the United States for several important reasons, not the least of whichmore » is its abundance here. It also makes sense in terms of its economic impact on large areas of the nation. And if coal makes sense, especially economically, then clean coal technology makes even more sense because of its potential to capitalize on this abundant resource in an environmentally friendly manner. But after nearly thirty years of involvement in the political world at all levels from Washington, D.C. to Washington, Indiana, the author has learned the hard way that ``common sense`` does not always, or even often, carry the day in the policymaking process. He believes that the future of clean coal technology hinges on the ability in the next few months and years to mobilize all those who favor that technology to move forward in a cohesive and coordinated effort to affect the policymaking and political process and thereby promote and accelerate CCT development. If this can be done, then the nation will be well on the way to completing the clean coal technology mission and meeting the challenge of change.« less
Standardized Low-Power Wireless Communication Technologies for Distributed Sensing Applications
Vilajosana, Xavier; Tuset-Peiro, Pere; Vazquez-Gallego, Francisco; Alonso-Zarate, Jesus; Alonso, Luis
2014-01-01
Recent standardization efforts on low-power wireless communication technologies, including time-slotted channel hopping (TSCH) and DASH7 Alliance Mode (D7AM), are starting to change industrial sensing applications, enabling networks to scale up to thousands of nodes whilst achieving high reliability. Past technologies, such as ZigBee, rooted in IEEE 802.15.4, and ISO 18000-7, rooted in frame-slotted ALOHA (FSA), are based on contention medium access control (MAC) layers and have very poor performance in dense networks, thus preventing the Internet of Things (IoT) paradigm from really taking off. Industrial sensing applications, such as those being deployed in oil refineries, have stringent requirements on data reliability and are being built using new standards. Despite the benefits of these new technologies, industrial shifts are not happening due to the enormous technology development and adoption costs and the fact that new standards are not well-known and completely understood. In this article, we provide a deep analysis of TSCH and D7AM, outlining operational and implementation details with the aim of facilitating the adoption of these technologies to sensor application developers. PMID:24518893
Standardized low-power wireless communication technologies for distributed sensing applications.
Vilajosana, Xavier; Tuset-Peiro, Pere; Vazquez-Gallego, Francisco; Alonso-Zarate, Jesus; Alonso, Luis
2014-02-10
Recent standardization efforts on low-power wireless communication technologies, including time-slotted channel hopping (TSCH) and DASH7 Alliance Mode (D7AM), are starting to change industrial sensing applications, enabling networks to scale up to thousands of nodes whilst achieving high reliability. Past technologies, such as ZigBee, rooted in IEEE 802.15.4, and ISO 18000-7, rooted in frame-slotted ALOHA (FSA), are based on contention medium access control (MAC) layers and have very poor performance in dense networks, thus preventing the Internet of Things (IoT) paradigm from really taking off. Industrial sensing applications, such as those being deployed in oil refineries, have stringent requirements on data reliability and are being built using new standards. Despite the benefits of these new technologies, industrial shifts are not happening due to the enormous technology development and adoption costs and the fact that new standards are not well-known and completely understood. In this article, we provide a deep analysis of TSCH and D7AM, outlining operational and implementation details with the aim of facilitating the adoption of these technologies to sensor application developers.
Current Issues and Trends in Multidimensional Sensing Technologies for Digital Media
NASA Astrophysics Data System (ADS)
Nagata, Noriko; Ohki, Hidehiro; Kato, Kunihito; Koshimizu, Hiroyasu; Sagawa, Ryusuke; Fujiwara, Takayuki; Yamashita, Atsushi; Hashimoto, Manabu
Multidimensional sensing (MDS) technologies have numerous applications in the field of digital media, including the development of audio and visual equipment for human-computer interaction (HCI) and manufacture of data storage devices; furthermore, MDS finds applications in the fields of medicine and marketing, i.e., in e-marketing and the development of diagnosis equipment.
This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPAs Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...
Small Spacecraft Technology Initiative Education Program
NASA Technical Reports Server (NTRS)
1995-01-01
A NASA engineer with the Commercial Remote Sensing Program (CRSP) at Stennis Space Center works with students from W.P. Daniels High School in New Albany, Miss., through NASA's Small Spacecraft Technology Initiative Program. CRSP is teaching students to use remote sensing to locate a potential site for a water reservoir to offset a predicted water shortage in the community's future.
ERIC Educational Resources Information Center
Lim, Sook
2007-01-01
This study examines the characteristics of library information technology (IT) workers using a mail survey. The IT workers showed a moderate level of a sense of belonging, playing the broker's role, job autonomy, and job satisfaction. There were differences between librarian IT workers and non-librarian IT workers regarding most of these…
Application possibilities of aerial and terrain data evaluation in particulate pollution effects
NASA Astrophysics Data System (ADS)
Kozma-Bognar, V.; Berke, J.; Martin, G.
2012-04-01
Recently, remote sensing has become a widely used technology in order to acquire information about our environment. Data collected using remote sensing technology indispensible criteria to recognise and monitor environmental problems caused by contamination from various human activities. According to great technological change and development in the previous decade high spectral and geometric resolution sensors are more often used. The higher resolution technology allows getting more accurate and reliable results in the research processes of the environmental pollution impacts. At University of Pannonia, Georgikon Faculty (Hungary) plant-soil-atmosphere system analyses are carried out for detecting the potential harmful effects of heavy metal pollution originated from vehicle industry. Related to this research at the Department of Meteorology and Water Management, black carbon and cadmium pollution effects are being analysed on maize crops. Testing area is situated at Agro-meteorological Research Station in Keszthely, where the first time in 2011 aerial imaging technology was used in parallel with field analyses. The experiment aims to analyses correlation of the field data with aerial data. During aerial photography were taken in different spectral bands (Visible, Near Infrared, Far Infrared). High intensity, spectral and spatial resolution data was an important part of the multitemporal imagine sensing and evaluating technology, therefore original technical solutions were applied. These resolutions served accurate plot-level evaluation. Fractal structure and intensity measurement evaluation methods were applied to examine black carbon and cadmium polluted and control maize canopy after data pre-processing. Research also focused on the examination of potential negative or positive effects of irrigation so that differences between irrigated and non-irrigated maize was investigated. For the period of growing season of 2011 time-series analyses were carried out in various phonological phases of maize. Finally, valued aerial and terrain parameters - including e.g. micro-climatic conditions, relative humidity, albedo, etc. - were compared. This article was made under the project TÁMOP-4.2.1/B-09/1/KONV-2010-0003 and TÁMOP-4.2.2/B-10/1-2010-0025. These projects are supported by the European Union and co-financed by the European Social Fund.
Biomedical sensing analyzer (BSA) for mobile-health (mHealth)-LTE.
Adibi, Sasan
2014-01-01
The rapid expansion of mobile-based systems, the capabilities of smartphone devices, as well as the radio access and cellular network technologies are the wind beneath the wing of mobile health (mHealth). In this paper, the concept of biomedical sensing analyzer (BSA) is presented, which is a novel framework, devised for sensor-based mHealth applications. The BSA is capable of formulating the Quality of Service (QoS) measurements in an end-to-end sense, covering the entire communication path (wearable sensors, link-technology, smartphone, cell-towers, mobile-cloud, and the end-users). The characterization and formulation of BSA depend on a number of factors, including the deployment of application-specific biomedical sensors, generic link-technologies, collection, aggregation, and prioritization of mHealth data, cellular network based on the Long-Term Evolution (LTE) access technology, and extensive multidimensional delay analyses. The results are studied and analyzed in a LabView 8.5 programming environment.
Open-Loop Performance of COBALT Precision Landing Payload on a Commercial Sub-Orbital Rocket
NASA Technical Reports Server (NTRS)
Restrepo, Carolina I.; Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Lovelace, Ronney S.; McCarthy, Megan M.; Tse, Teming; Stelling, Richard; Collins, Steven M.
2018-01-01
An open-loop flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuses the NDL and LVS data in real time to produce a navigation solution that is independent of GPS and suitable for future, autonomous, planetary, landing systems. COBALT was a passive payload during the open loop tests. COBALT's sensors were actively taking data and processing it in real time, but the Xodiac rocket flew with its own GPS-navigation system as a risk reduction activity in the maturation of the technologies towards space flight. A future closed-loop test campaign is planned where the COBALT navigation solution will be used to fly its host vehicle.
NASA Astrophysics Data System (ADS)
Freer, J. E.; Richardson, T.; Yang, Z.
2012-12-01
Recent advances in remote sensing and geographic information has led the way for the development of hyperspectral sensors and cloud scanning LIDAR (Light Detection And Ranging). Both these technologies can be used to sense environmental processes and capture detailed spatial information, they are often deployed in ground, aircraft and satellite based systems. Hyperspectral remote sensing, also known as imaging spectroscopy, is a relatively new technology that is currently being investigated by researchers and scientists with regard to the detection and identification of landscapes, terrestrial vegetation, and manmade materials and backgrounds. There are many applications that could take advantages of hyperspectral remote sensing coupled to detailed surface feature mapping using LIDAR. This embryonic project involves developing the engineering solutions and post processing techniques needed to realise an ultra high resolution helicopter based environmental sensing platform which can fly at lower altitudes than aircraft systems and can be deployed more frequently. We aim to present this new technology platform in this special session (the only one of it's kind in the UK). Initial applications are planned on a range of environmental sensing problems that would benefit from such complex and detailed data.We look forward to being able to display and discuss this initiative with colleagues and any potential interest in future collaborative projects.
NASA Astrophysics Data System (ADS)
Freer, J.; Richardson, T. S.
2012-04-01
Recent advances in remote sensing and geographic information has led the way for the development of hyperspectral sensors and cloud scanning LIDAR (Light Detection And Ranging). Both these technologies can be used to sense environmental processes and capture detailed spatial information, they are often deployed in ground, aircraft and satellite based systems. Hyperspectral remote sensing, also known as imaging spectroscopy, is a relatively new technology that is currently being investigated by researchers and scientists with regard to the detection and identification of landscapes, terrestrial vegetation, and manmade materials and backgrounds. There are many applications that could take advantages of hyperspectral remote sensing coupled to detailed surface feature mapping using LIDAR. This embryonic project involves developing the engineering solutions and post processing techniques needed to realise an ultra high resolution helicopter based environmental sensing platform which can fly at lower altitudes than aircraft systems and can be deployed more frequently. We aim to display this new technology platform in this special session (the only one of it's kind in the UK). Initial applications are planned on a range of environmental sensing problems that would benefit from such complex and detailed data. We look forward to being able to display and discuss this initiative with colleagues and any potential interest in future collaborative projects.
Six-Port Based Interferometry for Precise Radar and Sensing Applications
Koelpin, Alexander; Lurz, Fabian; Linz, Sarah; Mann, Sebastian; Will, Christoph; Lindner, Stefan
2016-01-01
Microwave technology plays a more important role in modern industrial sensing applications. Pushed by the significant progress in monolithic microwave integrated circuit technology over the past decades, complex sensing systems operating in the microwave and even millimeter-wave range are available for reasonable costs combined with exquisite performance. In the context of industrial sensing, this stimulates new approaches for metrology based on microwave technology. An old measurement principle nearly forgotten over the years has recently gained more and more attention in both academia and industry: the six-port interferometer. This paper reviews the basic concept, investigates promising applications in remote, as well as contact-based sensing and compares the system with state-of-the-art metrology. The significant advantages will be discussed just as the limitations of the six-port architecture. Particular attention will be paid to impairment effects and non-ideal behavior, as well as compensation and linearization concepts. It will be shown that in application fields, like remote distance sensing, precise alignment measurements, as well as interferometrically-evaluated mechanical strain analysis, the six-port architecture delivers extraordinary measurement results combined with high measurement data update rates for reasonable system costs. This makes the six-port architecture a promising candidate for industrial metrology. PMID:27669246
RF-CLASS: A Remote-sensing-based Interoperable Web service system for Flood Crop Loss Assessment
NASA Astrophysics Data System (ADS)
Di, L.; Yu, G.; Kang, L.
2014-12-01
Flood is one of the worst natural disasters in the world. Flooding often causes significant crop loss over large agricultural areas in the United States. Two USDA agencies, the National Agricultural Statistics Service (NASS) and Risk Management Agency (RMA), make decisions on flood statistics, crop insurance policy, and recovery management by collecting, analyzing, reporting, and utilizing flooded crop acreage and crop loss information. NASS has the mandate to report crop loss after all flood events. RMA manages crop insurance policy and uses crop loss information to guide the creation of the crop insurance policy and the aftermath compensation. Many studies have been conducted in the recent years on monitoring floods and assessing the crop loss due to floods with remote sensing and geographic information technologies. The Remote-sensing-based Flood Crop Loss Assessment Service System (RF-CLASS), being developed with NASA and USDA support, aims to significantly improve the post-flood agricultural decision-making supports in USDA by integrating and advancing the recently developed technologies. RF-CLASS will operationally provide information to support USDA decision making activities on collecting and archiving flood acreage and duration, recording annual crop loss due to flood, assessing the crop insurance rating areas, investigating crop policy compliance, and spot checking of crop loss claims. This presentation will discuss the remote sensing and GIS based methods for deriving the needed information to support the decision making, the RF-CLASS cybersystem architecture, the standards and interoperability arrangements in the system, and the current and planned capabilities of the system.
Exploring Remote Rensing Through The Use Of Readily-Available Classroom Technologies
NASA Astrophysics Data System (ADS)
Rogers, M. A.
2013-12-01
Frontier geoscience research using remotely-sensed satellite observation routinely requires sophisticated and novel remote sensing techniques to succeed. Describing these techniques in an educational format presents significant challenges to the science educator, especially with regards to the professional development setting where a small, but competent audience has limited instructor contact time to develop the necessary understanding. In this presentation, we describe the use of simple and cheaply available technologies, including ultrasonic transducers, FLIR detectors, and even simple web cameras to provide a tangible analogue to sophisticated remote sensing platforms. We also describe methods of curriculum development that leverages the use of these simple devices to teach the fundamentals of remote sensing, resulting in a deeper and more intuitive understanding of the techniques used in modern remote sensing research. Sample workshop itineraries using these techniques are provided as well.
Lindqvist, Eva; Nygård, Louise; Borell, Lena
2013-09-01
The aim of this study was to describe how persons in the early stages of Alzheimer's disease (AD) became users of assistive technology (AT), and what the use of AT came to mean to these users and, when relevant, their significant others. Persons with AD were provided with individually chosen AT during a six-month period. Semi-structured interviews were conducted during the intervention period. The data were analysed with a constant comparative approach. On the way towards becoming a user of AT, four junctures were identified, at which significant decisions were made by the participants. These decisions influenced whether to become a user or not and related to how the initial decision was made, how the routines to incorporate the AT were adjusted, whether the participant trusted the AT, and whether the participants felt an increased sense of capacity when using the AT. As users, the participants perceived how time and effort was saved, how worries and stress decreased, and how their sense of safety increased, which enabled them to perform valued activities, e.g. health-promoting and social activities, to a greater extent and in a more relaxed way than before. The findings support the view that AT can positively affect the activity performance of people with AD when the potential user can identify difficulties and needs and is motivated and able to make changes to overcome them, given that appropriate human support is available.
Drug and bioactive molecule screening based on a bioelectrical impedance cell culture platform
Ramasamy, Sakthivel; Bennet, Devasier; Kim, Sanghyo
2014-01-01
This review will present a brief discussion on the recent advancements of bioelectrical impedance cell-based biosensors, especially the electric cell-substrate impedance sensing (ECIS) system for screening of various bioactive molecules. The different technical integrations of various chip types, working principles, measurement systems, and applications for drug targeting of molecules in cells are highlighted in this paper. Screening of bioactive molecules based on electric cell-substrate impedance sensing is a trial-and-error process toward the development of therapeutically active agents for drug discovery and therapeutics. In general, bioactive molecule screening can be used to identify active molecular targets for various diseases and toxicity at the cellular level with nanoscale resolution. In the innovation and screening of new drugs or bioactive molecules, the activeness, the efficacy of the compound, and safety in biological systems are the main concerns on which determination of drug candidates is based. Further, drug discovery and screening of compounds are often performed in cell-based test systems in order to reduce costs and save time. Moreover, this system can provide more relevant results in in vivo studies, as well as high-throughput drug screening for various diseases during the early stages of drug discovery. Recently, MEMS technologies and integration with image detection techniques have been employed successfully. These new technologies and their possible ongoing transformations are addressed. Select reports are outlined, and not all the work that has been performed in the field of drug screening and development is covered. PMID:25525360
Development of Structural Health Management Technology for Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Prosser, W. H.
2003-01-01
As part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, NASA has focused considerable resources on the development of technologies for Structural Health Management (SHM). The motivations for these efforts are to increase the safety and reliability of aerospace structural systems, while at the same time decreasing operating and maintenance costs. Research and development of SHM technologies has been supported under a variety of programs for both aircraft and spacecraft including the Space Launch Initiative, X-33, Next Generation Launch Technology, and Aviation Safety Program. The major focus of much of the research to date has been on the development and testing of sensor technologies. A wide range of sensor technologies are under consideration including fiber-optic sensors, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, most notably being extremely light weight, fiber-optic sensors are one of the leading candidates and have received considerable attention.
Technology transfer of NASA microwave remote sensing system
NASA Technical Reports Server (NTRS)
Akey, N. D.
1981-01-01
Viable techniques for effecting the transfer from NASA to a user agency of state-of-the-art airborne microwave remote sensing technology for oceanographic applications were studied. A detailed analysis of potential users, their needs and priorities; platform options; airborne microwave instrument candidates; ancillary instrumentation; and other, less obvious factors that must be considered were studied. Conclusions and recommendations for the development of an orderly and effective technology transfer of an airborne microwave system that could meet the specific needs of the selected user agencies are reported.
Stuckey, Melanie; Fulkerson, Robyn; Read, Emily; Russell-Minda, Elizabeth; Munoz, Claudio; Kleinstiver, Peter; Petrella, Robert
2011-01-01
Objectives Remote monitoring technologies are ideally suited for rural communities with limited access to health care. In an 8-week pilot study, we examined the feasibility of implementing and conducting a technology-intensive intervention in an underserviced rural setting. Our goal was to test the utility of self-monitoring technologies, physical activity, and education as tools to manage health indicators for the development of the cardiovascular complications (CVCs) of type 2 diabetes. Research Design and Methods The Diabetes and Technology for Increased Activity study was an open single-center study conducted in a community-based research setting. All 24 participants were provided with a Blackberry™ Smartphone, blood pressure monitor, glucometer, and pedometer. Smartphones transmitted measurements and survey results to the database, interfaced participants with the clinical team, and allowed for self-monitoring. Results Outcomes were improved body composition, improved markers of CVC risk factors, increased daily exercise, and interest in or awareness of lifestyle changes that impact health outcomes. Participants had excellent compliance for measurements, as self-monitoring provided a sense of security that improved from week 4 to week 8. Conclusions Our team gained substantial insight into the operational requirements of technology-facilitated health care, including redefined hours of service; data reporting, management, and access protocols; and the utility of real-time clinical measures by remote monitoring. We developed an understanding of knowledge translation strategies as well as successful motivational and educational tools. Importantly, remote monitoring technology was found to be feasible and accepted in a rural setting. PMID:21880237
NASA Astrophysics Data System (ADS)
Kawa, S. R.; Baker, D. F.; Chatterjee, A.; Crowell, S.
2016-12-01
The measurement of atmospheric greenhouse gases (GHG), principally CO2 and CH4, from space using active (lidar) sensing techniques has several potentially significant advantages in comparison to missions using passive instrument approaches. A great deal of progress has been made in development of the active methods since the US National Academy of Sciences (NAS) 2007 Decadal Survey recommended the ASCENDS mission (Active Sensing of Carbon Emissions, Nights, Days, and Seasons) for NASA's next generation CO2 observing system. Active GHG missions remain in consideration by the current NAS Decadal Survey for Earth Science 2017. In this presentation, we update the measurement characteristics expected for active GHG sensing, test how these measurements will enhance our ability to quantify GHG surface fluxes, and examine the potential role of active sensing to address carbon cycle issues as required for confident projection of carbon-climate interactions. Over the past decade, laser CO2 instrument concepts, retrieval approaches, and measurement techniques have matured significantly, driven by technology advances and by analysis of data from airborne simulators. Performance simulations updated to match the latest developments show substantially lower random errors, better spatial resolution, and more information content for global XCO2 data than just a few years ago. Observing System Simulation Experiments using global flux inversion models show corresponding improvements in resolving surface fluxes and reducing flux uncertainties for the expected lidar data. Simulations including prospective systematic (bias) errors, which are expected to be lesser for the lidar system compared to passive measurements, provide guidance for instrument design requirements. We will comment on the impact of errors in knowledge of the atmospheric state including the need for coincident measurements of O2 column in order to normalize the column abundances to dry air mole fraction. We will also comment on the potential impact of future active missions for CH4. The results indicate that active systems will provide GHG measurements of high quality and spatial sampling that will contribute substantially to knowledge of carbon flux distributions and their dependence on underlying physical processes in critical regions.
Disease aftershocks - The health effects of natural disasters
Guptill, S.C.
2001-01-01
While the initial activity of a natural disaster event may directly injure or kill a number of people, it is possible that a significant number of individuals will be affected by disease outbreaks that occur after the first effects of the disaster have passed. Coupling the epidemiologist's knowledge of disease outbreaks with geographic information systems and remote sensing technology could help natural disaster relief workers to prevent additional victims from disease aftershocks.
Geographic Information Technologies as an outreach activity in geo-scientific education
NASA Astrophysics Data System (ADS)
Maman, Shimrit; Isaacson, Sivan; Blumberg, Dan G.
2016-04-01
In recent years, a decline in the rates of examinees in the academic track that were entitled to an enhanced matriculation certificate in scientific-technological education was reported in Israel. To confront this problem the Earth and Planetary Image Facility (EPIF) at Ben-Gurion University of the Negev fosters interdisciplinary exploration through educational programs that make use of the facility and its equipment and enable the empowerment of the community by understanding and appreciating science and technology. This is achieved by using Geographic Information Technologies (GIT) such as remote sensing and Geographical Information Systems (GIS) for geo-physical sciences in activities that combine theoretical background with hands-on activities. Monitoring Earth from space by satellites, digital atlases and virtual-based positioning applications are examples for fusion of spatial information (geographic) and technology that the activity is based on. GIT opens a new chapter and a recent history of Cartography starting from the collection of spatial data to its presentation and analysis. GIS have replaced the use of classical atlas books and offer a variety of Web-based applications that provide maps and display up-to-date imagery. The purpose of this workshop is to expose teachers and students to GITs which are applicable in every classroom. The activity imparts free geographic information systems that exist in cyberspace and accessible to single users as the Israeli national GIS and Google earth, which are based on a spatial data and long term local and global satellite imagery coverage. In this paper, our "Think global-Map Local" activity is presented. The activity uses GIS and change detection technologies as means to encourage students to explore environmental issues both around the globe and close to their surroundings. The students detect changes by comparing multi temporal images of a chosen site and learn how to map the alterations and produce change detection maps with simple and user friendly tools. The activity is offered both for students and supervised projects for teachers and youth.
Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye
2014-02-01
Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.
Progress in the Development of Practical Remote Detection of Icing Conditions
NASA Technical Reports Server (NTRS)
Reehorst, Andrew; Politovich, Marcia K.; Zednik, Stephan; Isaac, George A.; Cober, Stewart
2006-01-01
The NASA Icing Remote Sensing System (NIRSS) has been under definition and development at NASA Glenn Research Center since 1997. The goal of this development activity is to produce and demonstrate the required sensing and data processing technologies required to accurately remotely detect and measure icing conditions aloft. As part of that effort NASA has teamed with NCAR to develop software to fuse data from multiple instruments into a single detected icing condition product. The multiple instrument approach utilizes a X-band vertical staring radar, a multifrequency microwave, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data is post-processed with a LabVIEW program with a resultant supercooled liquid water profile and aircraft hazard depiction. Ground-based, remotely-sensed measurements and in-situ measurements from research aircraft were gathered during the international 2003-2004 Alliance Icing Research Study (AIRS II). Comparisons between the remote sensing system s fused icing product and the aircraft measurements are reviewed here. While there are areas where improvement can be made, the cases examined suggest that the fused sensor remote sensing technique appears to be a valid approach.
Earthquake Hazard Analysis Methods: A Review
NASA Astrophysics Data System (ADS)
Sari, A. M.; Fakhrurrozi, A.
2018-02-01
One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time required in the right decision-making shortly after the disaster. Exposed areas and possibly vulnerable areas due to earthquake hazards can be easily analyzed using remote sensing. Technological developments in remote sensing such as GeoEye-1 provide added value and excellence in the use of remote sensing as one of the methods in the assessment of earthquake risk and damage. Furthermore, the use of this technique is expected to be considered in designing policies for disaster management in particular and can reduce the risk of natural disasters such as earthquakes in Indonesia.
Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials.
Dhara, Keerthy; Mahapatra, Debiprosad Roy
2017-12-13
An overview (with 376 refs.) is given here on the current state of methods for electrochemical sensing of glucose based on the use of advanced nanomaterials. An introduction into the field covers aspects of enzyme based sensing versus nonenzymatic sensing using nanomaterials. The next chapter cover the most commonly used nanomaterials for use in such sensors, with sections on uses of noble metals, transition metals, metal oxides, metal hydroxides, and metal sulfides, on bimetallic nanoparticles and alloys, and on other composites. A further section treats electrodes based on the use of carbon nanomaterials (with subsections on carbon nanotubes, on graphene, graphene oxide and carbon dots, and on other carbonaceous nanomaterials. The mechanisms for electro-catalysis are also discussed, and several Tables are given where the performance of sensors is being compared. Finally, the review addresses merits and limitations (such as the frequent need for working in strongly etching alkaline solutions and the need for diluting samples because sensors often have analytical ranges that are far below the glucose levels found in blood). We also address market/technology gaps in comparison to commercially available enzymatic sensors. Graphical Abstract Schematic representation of electrochemical nonenzymatic glucose sensing on the nanomaterials modified electrodes. At an applied potential, the nanomaterial-modified electrodes exhibit excellent electrocatalytic activity for direct oxidation of glucose oxidation.
NASA Technical Reports Server (NTRS)
Le Vine, David M; Jackson, Thomas J.; Kim, Edward J.; Lang, Roger H.
2011-01-01
The Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad 2010) was held in Washington, DC from March 1 to 4, 2010. The objective of MicroRad 2010 was to provide an open forum to report and discuss recent advances in the field of microwave radiometry, particularly with application to remote sensing of the environment. The meeting was highly successful, with more than 200 registrations representing 48 countries. There were 80 oral presentations and more than 100 posters. MicroRad has become a venue for the microwave radiometry community to present new research results, instrument designs, and applications to an audience that is conversant in these issues. The meeting was divided into 16 sessions (listed in order of presentation): 1) SMOS Mission; 2) Future Passive Microwave Remote Sensing Missions; 3) Theory and Physical Principles of Electromagnetic Models; 4) Field Experiment Results; 5) Soil Moisture and Vegetation; 6) Snow and Cryosphere; 7) Passive/Active Microwave Remote Sensing Synergy; 8) Oceans; 9) Atmospheric Sounding and Assimilation; 10) Clouds and Precipitation; 11) Instruments and Advanced Techniques I; 12) Instruments and Advanced Techniques II; 13) Cross Calibration of Satellite Radiometers; 14) Calibration Theory and Methodology; 15) New Technologies for Microwave Radiometry; 16) Radio Frequency Interference.
Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop
NASA Astrophysics Data System (ADS)
Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.
2018-04-01
The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.
Distributed Fiber-Optic Sensors for Vibration Detection
Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai
2016-01-01
Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications. PMID:27472334
The experience of agency in human-computer interactions: a review
Limerick, Hannah; Coyle, David; Moore, James W.
2014-01-01
The sense of agency is the experience of controlling both one’s body and the external environment. Although the sense of agency has been studied extensively, there is a paucity of studies in applied “real-life” situations. One applied domain that seems highly relevant is human-computer-interaction (HCI), as an increasing number of our everyday agentive interactions involve technology. Indeed, HCI has long recognized the feeling of control as a key factor in how people experience interactions with technology. The aim of this review is to summarize and examine the possible links between sense of agency and understanding control in HCI. We explore the overlap between HCI and sense of agency for computer input modalities and system feedback, computer assistance, and joint actions between humans and computers. An overarching consideration is how agency research can inform HCI and vice versa. Finally, we discuss the potential ethical implications of personal responsibility in an ever-increasing society of technology users and intelligent machine interfaces. PMID:25191256
Distributed Fiber-Optic Sensors for Vibration Detection.
Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai
2016-07-26
Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.
Optical Multi-Gas Monitor Technology Demonstration on the International Space Station
NASA Technical Reports Server (NTRS)
Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Johnson, Michael D.; Mudgett, Paul D.
2014-01-01
The International Space Station (ISS) employs a suite of portable and permanently located gas monitors to insure crew health and safety. These sensors are tasked with functions ranging from fixed mass spectrometer based major constituents analysis to portable electrochemical sensor based combustion product monitoring. An all optical multigas sensor is being developed that can provide the specificity of a mass spectrometer with the portability of an electrochemical cell. The technology, developed under the Small Business Innovation Research program, allows for an architecture that is rugged, compact and low power. A four gas version called the Multi-Gas Monitor was launched to ISS in November 2013 aboard Soyuz and activated in February 2014. The portable instrument is comprised of a major constituents analyzer (water vapor, carbon dioxide, oxygen) and high dynamic range real-time ammonia sensor. All species are sensed inside the same enhanced path length optical cell with a separate vertical cavity surface emitting laser (VCSEL) targeted at each species. The prototype is controlled digitally with a field-programmable gate array/microcontroller architecture. The optical and electronic approaches are designed for scalability and future versions could add three important acid gases and carbon monoxide combustion product gases to the four species already sensed. Results obtained to date from the technology demonstration on ISS are presented and discussed.
NASA Astrophysics Data System (ADS)
Hedley, Mikell Lynne
2008-10-01
The purpose of the study was to use geospatial technologies to improve the spatial abilities and specific atmospheric science content knowledge of students in high schools and junior highs in primarily high-needs schools. These technologies include remote sensing, geographic information systems, and global positioning systems. The program involved training the teachers in the use of the technologies at a five-day institute. Scientists who use the technologies in their research taught the basics of their use and scientific background. Standards-based activities were used to integrate the technologies in the classroom setting. Students were tested before any instruction in the technologies and then tested two other times. They used the technologies in field data collection and used that data in an inquiry-based project. Their projects were presented at a mini-science conference with scientists, teachers, parents, and other students in attendance. Significant differences were noted from pre-test to second post-test in the test in both the spatial abilities and science section. There was a gain in both spatial abilities and in specific atmospheric science content knowledge.
NASA Technical Reports Server (NTRS)
Wotring, Virginia E.; Southern, Sarka O.; Mentzer, Mark A.; Rodriquez-Chavez, Isaac
2014-01-01
The 2014 SPIE Sensing Technologies for Global Health, Military Medicine and Environmental Monitoring conference embraced a wealth of state-of-the-art information in basic and applied science. This event covered the latest developments in the following areas: Non-invasive Disease Diagnostics for Global Health- This opening series of two consecutive sessions focused on oral biospecimen based rapid assays and point-of-care devices for the detection of pathogens causing infectious diseases, biomarkers for cancer, and analytes for noncommunicable diseases such as diabetes. They also covered presentations on the human proteasome and microbiome with linkage to human diseases and diagnostic approaches. The sessions were built on the past experience and expertise of the National Institutes of Health, National Institutes of Dental and Craniofacial Research. Military Medicine I: Traumatic Brain Injury and PTSD-This assembly covered oral-biomarker based diagnostics for brain damage and TBI as well as prevention and rehabilitation technologies. Neurorehabilitation and noninvasive neuromodulation were also discussed as critical approaches for effective functioning. Military Medicine II: Physiology and Medicine of Extreme Environments and Spaceflight-This scientific segment showcased physiological, pharmacological and diagnostic sensing methodologies during spaceflight per the National Aeronautics and Space Administration as well as military-relevant toxicans and future sensing trends per the Department of Defense. It also included latest technologies to determine hydration status in warfighters, eye surgery using the latest laser technologies, and sensing tools for blood analysis. ? Sensing Technologies for Disease Diagnostics and Environmental Monitoring-This closing series of two consecutive sessions provided the venues to learn and discuss more results on the next generation of diagnostic tools and field technologies for diseases, including biomarker detection by digital imaging, multiplex technologies, capillary electrophoresis and molecular platforms serving as labs-on-chips. This conference allowed cross-fertilization of ideas, projects and collaborative work by a multidisciplinary audience of national and international colleagues from the academia, industry and federal government: The National Institutes of Health, National Aeronautics and Space Administration, and the Department of Defense.
Space Gator: a giant leap for fiber optic sensing
NASA Astrophysics Data System (ADS)
Evenblij, R. S.; Leijtens, J. A. P.
2017-11-01
Fibre Optic Sensing is a rapidly growing application field for Photonics Integrated Circuits (PIC) technology. PIC technology is regarded enabling for required performances and miniaturization of next generation fibre optic sensing instrumentation. So far a number of Application Specific Photonics Integrated Circuits (ASPIC) based interrogator systems have been realized as operational system-on-chip devices. These circuits have shown that all basic building blocks are working and complete interrogator on chip solutions can be produced. Within the Saristu (FP7) project several high reliability solutions for fibre optic sensing in Aeronautics are being developed, combining the specifically required performance aspects for the different sensing applications: damage detection, impact detection, load monitoring and shape sensing (including redundancy aspects and time division features). Further developments based on devices and taking into account specific space requirements (like radiation aspects) will lead to the Space Gator, which is a radiation tolerant highly integrated Fibre Bragg Grating (FBG) interrogator on chip. Once developed and qualified the Space Gator will be a giant leap for fibre optic sensing in future space applications.
NASA Astrophysics Data System (ADS)
Zhang, Xueliang; Meng, Zhou; Hu, Zhengliang; Yang, Huayong; Song, Zhangqi; Hu, Yongming
2008-12-01
A polarization maintaining fiber (PMF) magnetic field sensor based on a digital phase generated carrier (PGC) technology is presented. A magnetic sensor constructed with two magnetostrictive strips attached on the sensing fiber is joined in the sensing arm of a fiber Michelson interferometer. The fiber optic interferometric system is made of all PMF, which inhibits the polarization-induced signal fading. The light source is a fiber laser which can be modulated directly. The PGC metnod is used to demodulate magnetic field signal avoiding phase induced interferometric signal fading, and ensure the sensing partto be all fiber structure. A fiber optic magnetic field sensor with appreciate size for the fiber optic hydrophone towed array is obtained, which can be used to sense the enviromental magnetic field along the sensing direction.This sensor is a good choice for the directional angle measurement through sensing the Earth magnetic field in the array shape measurement of a fiber optic hydrophone towed array.
ERIC Educational Resources Information Center
Newman, Denis; Torzs, Frederic
Arguing that the development of a notion of sense-making is of critical importance to improving science learning, this paper examines science teaching in four Boston (Massachusetts)-area classrooms that participated in an experiment on ways of integrating technology into a sixth-grade science curriculum on the earth's seasons. The task of the…
End-to-end remote sensing at the Science and Technology Laboratory of John C. Stennis Space Center
NASA Technical Reports Server (NTRS)
Kelly, Patrick; Rickman, Douglas; Smith, Eric
1991-01-01
The Science and Technology Laboratory (STL) of Stennis Space Center (SSC) was developing an expertise in remote sensing for more than a decade. Capabilities at SSC/STL include all major areas of the field. STL includes the Sensor Development Laboratory (SDL), Image Processing Center, a Learjet 23 flight platform, and on-staff scientific investigators.
NASA Technical Reports Server (NTRS)
Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)
1999-01-01
Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.
Biomimetric sentinel reef structures for optical sensing and communications
NASA Astrophysics Data System (ADS)
Fries, David; Hutcheson, Tim; Josef, Noam; Millie, David; Tate, Connor
2017-05-01
Traditional artificial reef structures are designed with uniform cellular architectures and topologies and do not mimic natural reef forms. Strings and ropes are a proven, common fisheries and mariculture construction element throughout the world and using them as artificial reef scaffolding can enable a diversity of ocean sensing, communications systems including the goal of sentinel reefs. The architecture and packaging of electronics is key to enabling such structures and systems. The distributed sensor reef concept leads toward a demonstrable science-engineering-informed framework for 3D smart habitat designs critical to stock fish development and coastal monitoring and protection. These `nature-inspired' reef infrastructures, can enable novel instrumented `reef observatories' capable of collecting real-time ecosystem data. Embedding lighting and electronic elements into artificial reef systems are the first systems conceptualized. This approach of bringing spatial light to the underwater world for optical sensing, communication and even a new breed of underwater robotic vehicle is an interdisciplinary research activity which integrates principles of electronic packaging, and ocean technology with art/design.
NASA Astrophysics Data System (ADS)
Lieberman, Robert A.
Various paper on chemical, biochemical, and environmental fiber sensors are presented. Some of the individual topics addressed include: evanescent-wave fiber optic (FO) biosensor, refractive-index sensors based on coupling to high-index multimode overlays, advanced technique in FO sensors, design of luminescence-based temperature sensors, NIR fluorescence in FO applications, FO sensor based on microencapsulated reagents, emitters and detectors for optical gas and chemical sensing, tunable fiber laser source for methane detection at 1.68 micron, FO fluorometer based on a dual-wavelength laser excitation source, thin polymer films as active components of FO chemical sensors, submicron optical sources for single macromolecule detection, nanometer optical fiber pH sensor. Also discussed are: microfabrication of optical sensor array, luminescent FO sensor for the measurement of pH, time-domain fluorescence methods as applied to pH sensing, characterization of a sol-gel-entrapped artificial receptor, FO technology for nuclear waste cleanup, spectroscopic gas sensing with IR hollow waveguides, dissolved-oxygen quenching of in situ fluorescence measurements.
Charging the quantum capacitance of graphene with a single biological ion channel.
Wang, Yung Yu; Pham, Ted D; Zand, Katayoun; Li, Jinfeng; Burke, Peter J
2014-05-27
The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents.
Fast-responder: Rapid mobile-phone access to recent remote sensing imagery for first responders
NASA Astrophysics Data System (ADS)
Talbot, L. M.; Talbot, B. G.
We introduce Fast-Responder, a novel prototype data-dissemination application and architecture concept to rapidly deliver remote sensing imagery to smartphones to enable situational awareness. The architecture implements a Fast-Earth image caching system on the phone and interacts with a Fast-Earth server. Prototype evaluation successfully demonstrated that National Guard users could select a location, download multiple remote sensing images, and flicker between images, all in less than a minute on a 3G mobile commercial link. The Fast-Responder architecture is a significant advance that is designed to meet the needs of mobile users, such as National Guard response units, to rapidly access information during a crisis, such as a natural or man-made disaster. This paper focuses on the architecture design and advanced user interface concepts for small-screens for highly active mobile users. Novel Fast-Responder concepts can also enable rapid dissemination and evaluation of imagery on the desktop, opening new technology horizons for both desktop and mobile users.
BOREAS Landsat MSS Imagery: Digital Counts
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Strub, Richard; Newcomer, Jeffrey A.
2000-01-01
The Boreal Ecosystem-Atmospheric Study (BOREAS) Staff Science Satellite Data Acquisition Program focused on providing the research teams with the remotely sensed satellite data products they needed to compare and spatially extend point results. The Earth Resources Technology Satellite (ERTS) Program launched the first of a series of satellites (ERTS-1) in 1972. Part of the NASA Earth Resources Survey Program, the ERTS Program and the ERTS satellites were later renamed Landsat to better represent the civil satellite program's prime emphasis on remote sensing of land resources. Landsat satellites 1 through 5 carry the Multispectral Scanner (MSS) sensor. Canada for Remote Sensing (CCRS) and BOREAS personnel gathered a set of MSS images of the BOREAS region from Landsat satellites 1, 2, 4, and 5 covering the dates of 21 Aug 1972 to 05 Sep 1988. The data are provided in binary image format files of various formats. The Landsat MSS imagery is available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Charging the Quantum Capacitance of Graphene with a Single Biological Ion Channel
2015-01-01
The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents. PMID:24754625
Embryo adoption: Some further considerations
Patterson, Colin
2015-01-01
Recent discussions of embryo adoption have sought to make sense of the teaching of the Congregation for the Doctrine of the Faith (CDF) document Dignitas personae which appeared to provide a negative judgment on such a practice. This article aims to provide a personalist account of the process of fertilization and implantation that might serve as the basis for the negative judgment of the CDF document. In doing so, it relies upon the idea that a person, including an embryo, is not to be considered in isolation, but always in relation to God and to others. This approach extends the substantialist conceptualizations commonly employed in discussions of this issue. More generally, the article seeks to highlight the value of a personalist re-framing for an understanding of the moral questions surrounding the beginning of life. Lay summary: This article seeks to make sense of what appears to be a clear-cut rejection, set out in the Congregation for the Doctrine of the Faith (CDF) document Dignitas personae, of the proposal for women to “adopt” surplus frozen embryos. It draws upon more recently developed modes of philosophical/theological reasoning to argue that, in human procreation, both fertilization and implantation represent constitutive dimensions of divine creative activity and so must be protected from manipulative technological intervention. Since embryo adoption requires this kind of technology, it makes sense for the Church document not to approve it. PMID:25698841
New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems
NASA Astrophysics Data System (ADS)
Eckardt, Andreas; Börner, Anko; Lehmann, Frank
2007-10-01
The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.
Embryo adoption: Some further considerations.
Patterson, Colin
2015-02-01
Recent discussions of embryo adoption have sought to make sense of the teaching of the Congregation for the Doctrine of the Faith (CDF) document Dignitas personae which appeared to provide a negative judgment on such a practice. This article aims to provide a personalist account of the process of fertilization and implantation that might serve as the basis for the negative judgment of the CDF document. In doing so, it relies upon the idea that a person, including an embryo, is not to be considered in isolation, but always in relation to God and to others. This approach extends the substantialist conceptualizations commonly employed in discussions of this issue. More generally, the article seeks to highlight the value of a personalist re-framing for an understanding of the moral questions surrounding the beginning of life. Lay summary: This article seeks to make sense of what appears to be a clear-cut rejection, set out in the Congregation for the Doctrine of the Faith (CDF) document Dignitas personae, of the proposal for women to "adopt" surplus frozen embryos. It draws upon more recently developed modes of philosophical/theological reasoning to argue that, in human procreation, both fertilization and implantation represent constitutive dimensions of divine creative activity and so must be protected from manipulative technological intervention. Since embryo adoption requires this kind of technology, it makes sense for the Church document not to approve it.