Science.gov

Sample records for active separation control

  1. Amplitude Scaling of Active Separation Control

    NASA Technical Reports Server (NTRS)

    Stalnov, Oksana; Seifert, Avraham

    2010-01-01

    Three existing and two new excitation magnitude scaling options for active separation control at Reynolds numbers below one Million. The physical background for the scaling options was discussed and their relevance was evaluated using two different sets of experimental data. For F+ approx. 1, 2D excitation: a) The traditional VR and C(mu) - do not scale the data. b) Only the Re*C(mu) is valid. This conclusion is also limited for positive lift increment.. For F+ > 10, 3D excitation, the Re corrected C(mu), the St corrected velocity ratio and the vorticity flux coefficient, all scale the amplitudes equally well. Therefore, the Reynolds weighted C(mu) is the preferred choice, relevant to both excitation modes. Incidence also considered, using Ue from local Cp.

  2. Active-Adaptive Control of Inlet Separation Using Supersonic Microjets

    NASA Technical Reports Server (NTRS)

    Alvi, Farrukh S.

    2007-01-01

    Flow separation in internal and external flows generally results in a significant degradation in aircraft performance. For internal flows, such as inlets and transmission ducts in aircraft propulsion systems, separation is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control it. In this research, we extended our investigation of active separation control (under a previous NASA grant) where we explored the use of microjets for the control of boundary layer separation. The geometry used for the initial study was a simple diverging Stratford ramp, equipped with arrays of microjets. These early results clearly show that the activation of microjets eliminated flow separation. Furthermore, the velocity-field measurements, using PIV, also demonstrate that the gain in momentum due to the elimination of separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very little mass flow through the microjets. Based on our initial promising results this research was continued under the present grant, using a more flexible model. This model allows for the magnitude and extent of separation as well as the microjet parameters to be independently varied. The results, using this model were even more encouraging and demonstrated that microjet control completely eliminated significant regions of flow separation over a wide range of conditions with almost negligible mass flow. Detailed studies of the flowfield and its response to microjets were further examined using 3-component PIV and unsteady pressure measurements, among others. As the results presented this report will show, microjets were successfully used to control the separation of a much larger extent and magnitude than demonstrated in our earlier experiments. In fact, using the

  3. Active Flow Effectors for Noise and Separation Control

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2011-01-01

    New flow effector technology for separation control and enhanced mixing is based upon shape memory alloy hybrid composite (SMAHC) technology. The technology allows for variable shape control of aircraft structures through actively deformable surfaces. The flow effectors are made by embedding shape memory alloy actuator material in a composite structure. When thermally actuated, the flow effector def1ects into or out of the flow in a prescribed manner to enhance mixing or induce separation for a variety of applications, including aeroacoustic noise reduction, drag reduction, and f1ight control. The active flow effectors were developed for noise reduction as an alternative to fixed-configuration effectors, such as static chevrons, that cannot be optimized for airframe installation effects or variable operating conditions and cannot be retracted for off-design or fail-safe conditions. Benefits include: Increased vehicle control, overall efficiency, and reduced noise throughout all f1ight regimes, Reduced flow noise, Reduced drag, Simplicity of design and fabrication, Simplicity of control through direct current stimulation, autonomous re sponse to environmental heating, fast re sponse, and a high degree of geometric stability. The concept involves embedding prestrained SMA actuators on one side of the chevron neutral axis in order to generate a thermal moment and def1ect the structure out of plane when heated. The force developed in the host structure during def1ection and the aerodynamic load is used for returning the structure to the retracted position. The chevron design is highly scalable and versatile, and easily affords active and/or autonomous (environmental) control. The technology offers wide-ranging market applications, including aerospace, automotive, and any application that requires flow separation or noise control.

  4. Dynamics of Active Separation Control at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Pack, LaTunia G.; Seifert, Avi

    2000-01-01

    A series of active flow control experiments were recently conducted at high Reynolds numbers on a generic separated configuration. The model simulates the upper surface of a 20% thick Glauert-Goldschmied type airfoil at zero angle of attack. The flow is fully turbulent since the tunnel sidewall boundary layer flows over the model. The main motivation for the experiments is to generate a comprehensive data base for validation of unsteady numerical simulation as a first step in the development of a CFD design tool, without which it would not be possible to effectively utilize the great potential of unsteady flow control. This paper focuses on the dynamics of several key features of the baseline as well as the controlled flow. It was found that the thickness of the upstream boundary layer has a negligible effect on the flow dynamics. It is speculated that separation is caused mainly by the highly convex surface while viscous effects are less important. The two-dimensional separated flow contains unsteady waves centered on a reduced frequency of 0.8, while in the three dimensional separated flow, frequencies around a reduced frequency of 0.3 and 1 are active. Several scenarios of resonant wave interaction take place at the separated shear-layer and in the pressure recovery region. The unstable reduced frequency bands for periodic excitation are centered on 1.5 and 5, but these reduced frequencies are based on the length of the baseline bubble that shortens due to the excitation. The conventional swept wing-scaling works well for the coherent wave features. Reproduction of these dynamic effects by a numerical simulation would provide benchmark validation.

  5. Active Control of Flow Separation Over an Airfoil

    NASA Technical Reports Server (NTRS)

    Ravindran, S. S.

    1999-01-01

    Designing an aircraft without conventional control surfaces is of interest to aerospace community. In this direction, smart actuator devices such as synthetic jets have been proposed to provide aircraft maneuverability instead of control surfaces. In this article, a numerical study is performed to investigate the effects of unsteady suction and blowing on airfoils. The unsteady suction and blowing is introduced at the leading edge of the airfoil in the form of tangential jet. Numerical solutions are obtained using Reynolds-Averaged viscous compressible Navier-Stokes equations. Unsteady suction and blowing is investigated as a means of separation control to obtain lift on airfoils. The effect of blowing coefficients on lift and drag is investigated. The numerical simulations are compared with experiments from the Tel-Aviv University (TAU). These results indicate that unsteady suction and blowing can be used as a means of separation control to generate lift on airfoils.

  6. Separating active and passive influences on stomatal control of transpiration.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2014-04-01

    Motivated by studies suggesting that the stomata of ferns and lycophytes do not conform to the standard active abscisic acid (ABA) -mediated stomatal control model, we examined stomatal behavior in a conifer species (Metasequoia glyptostroboides) that is phylogenetically midway between the fern and angiosperm clades. Similar to ferns, daytime stomatal closure in response to moderate water stress seemed to be a passive hydraulic process in M. glyptostroboides immediately alleviated by rehydrating excised shoots. Only after prolonged exposure to more extreme water stress did active ABA-mediated stomatal closure become important, because foliar ABA production was triggered after leaf turgor loss. The influence of foliar ABA on stomatal conductance and stomatal aperture was highly predictable and additive with the passive hydraulic influence. M. glyptostroboides thus occupies a stomatal behavior type intermediate between the passively controlled ferns and the characteristic ABA-dependent stomatal closure described in angiosperm herbs. These results highlight the importance of considering phylogeny as a major determinant of stomatal behavior.

  7. Dielectric barrier plasma dynamics for active control of separated flows

    SciTech Connect

    Roy, Subrata; Singh, K.P.; Gaitonde, Datta V.

    2006-03-20

    The dynamics of separation mitigation with asymmetric dielectric barrier discharges is explored by considering the gas flow past a flat plate at an angle of attack. A self-consistent model utilizing motion of electrons, ions, and neutrals is employed to couple the electric force field to the momentum of the fluid. The charge separation and concomitant electric field yield a time-averaged body force which is oriented predominantly downstream, with a smaller transverse component towards the wall. This induces a wall-jet-like feature that effectively eliminates the separation bubble. The impact of several geometric and electrical operating parameters is elucidated.

  8. Closed Loop Active Flow Separation Detection and Control in a Multistage Compressor

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Culley, Dennis E.; Braunscheidel, Edward P.; Welch, Gerard E.

    2005-01-01

    Active closed loop flow control was successfully demonstrated on a full annulus of stator vanes in a low speed axial compressor. Two independent methods of detecting separated flow conditions on the vane suction surface were developed. The first technique detects changes in static pressure along the vane suction surface, while the second method monitors variation in the potential field of the downstream rotor. Both methods may feasibly be used in future engines employing embedded flow control technology. In response to the detection of separated conditions, injection along the suction surface of each vane was used. Injected mass flow on the suction surface of stator vanes is known to reduce separation and the resulting limitation on static pressure rise due to lowered diffusion in the vane passage. A control algorithm was developed which provided a proportional response of the injected mass flow to the degree of separation, thereby minimizing the performance penalty on the compressor system.

  9. Active control of Boundary Layer Separation & Flow Distortion in Adverse Pressure Gradient Flows via Supersonic Microjets

    NASA Technical Reports Server (NTRS)

    Alvi, Farrukh S.; Gorton, Susan (Technical Monitor)

    2005-01-01

    Inlets to aircraft propulsion systems must supply flow to the compressor with minimal pressure loss, flow distortion or unsteadiness. Flow separation in internal flows such as inlets and ducts in aircraft propulsion systems and external flows such as over aircraft wings, is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control this flow separation. In particular, the use of supersonic microjets as a means of controlling boundary layer separation was explored. The geometry used for the early part of this study was a simple diverging Stratford ramp, equipped with arrays of supersonic microjets. Initial results, based on the mean surface pressure distribution, surface flow visualization and Planar Laser Scattering (PLS) indicated a reverse flow region. We implemented supersonic microjets to control this separation and flow visualization results appeared to suggest that microjets have a favorable effect, at least to a certain extent. However, the details of the separated flow field were difficult to determine based on surface pressure distribution, surface flow patterns and PLS alone. It was also difficult to clearly determine the exact influence of the supersonic microjets on this flow. In the latter part of this study, the properties of this flow-field and the effect of supersonic microjets on its behavior were investigated in further detail using 2-component (planar) Particle Image Velocimetry (PIV). The results clearly show that the activation of microjets eliminated flow separation and resulted in a significant increase in the momentum of the fluid near the ramp surface. Also notable is the fact that the gain in momentum due to the elimination of flow separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very

  10. Sweep and Compressibility Effects on Active Separation Control at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Seifert, Avi; Pack, LaTunia G.

    2000-01-01

    This paper explores the effects of compressibility, sweep and excitation location on active separation control at high Reynolds numbers. The model, which was tested in a cryogenic pressurized wind tunnel, simulates the upper surface of a 20% thick GlauertGoldschmied type airfoil at zero angle of attack. The flow is fully turbulent since the tunnel sidewall boundary layer flows over the model. Without control, the flow separates at the highly convex area and a large turbulent separation bubble is formed. Periodic excitation is applied to gradually eliminate the separation bubble. Two alternative blowing slot locations as well as the effect of compressibility, sweep and steady suction or blowing were studied. During the test the Reynolds numbers ranged from 2 to 40 million and Mach numbers ranged from 0.2 to 0.7. Sweep angles were 0 and 30 deg. It was found that excitation must be introduced slightly upstream of the separation region regardless of the sweep angle at low Mach number. Introduction of excitation upstream of the shock wave is more effective than at its foot. Compressibility reduces the ability of steady mass transfer and periodic excitation to control the separation bubble but excitation has an effect on the integral parameters, which is similar to that observed in low Mach numbers. The conventional swept flow scaling is valid for fully and even partially attached flow, but different scaling is required for the separated 3D flow. The effectiveness of the active control is not reduced by sweep. Detailed flow field dynamics are described in the accompanying paper.

  11. Sweep and Compressibility Effects on Active Separation Control at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Seifert, Avi; Pack, LaTunia G.

    2000-01-01

    This paper explores the effects of compressibility, sweep and excitation location on active separation control at high Reynolds numbers. The model, which was tested in a cryogenic pressurized wind tunnel, simulates the upper surface of a 20% thick Glauert Goldschmied type airfoil at zero angle of attack. The flow is fully turbulent since the tunnel sidewall boundary layer flows over the model. Without control, the flow separates at the highly convex area and a large turbulent separation bubble is formed. Periodic excitation is applied to gradually eliminate the separation bubble. Two alternative blowing slot locations as well as the effect of compressibility, sweep and steady suction or blowing were studied. During the test the Reynolds numbers ranged from 2 to 40 million and Mach numbers ranged from 0.2 to 0.7. Sweep angles were 0 and 30 deg. It was found that excitation must be introduced slightly upstream of the separation region regardless of the sweep angle at low Mach number. Introduction of excitation upstream of the shock wave is more effective than at its foot. Compressibility reduces the ability of steady mass transfer and periodic excitation to control the separation bubble but excitation has an effect on the integral parameters, which is similar to that observed in low Mach numbers. The conventional swept flow scaling is valid for fully and even partially attached flow, but different scaling is required for the separated 3D flow. The effectiveness of the active control is not reduced by sweep. Detailed flow field dynamics are described in the accompanying paper.

  12. Active Control of Separation From the Flap of a Supercritical Airfoil

    NASA Technical Reports Server (NTRS)

    Melton, La Tunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2003-01-01

    Active flow control in the form of periodic zero-mass-flux excitation was applied at several regions on the leading edge and trailing edge flaps of a simplified high-lift system t o delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approx.= 10) and low frequency amplitude modulation (F(+)AM approx.= 1) of the high frequency excitation were used for control. Preliminary efforts to combine leading and trailing edge flap excitations are also reported.

  13. Active Flow Separation Control of a Stator Vane Using Surface Injection in a Multistage Compressor Experiment

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Bright, Michelle M.; Prahst, Patricia S.; Strazisar, Anthony J.

    2003-01-01

    Micro-flow control actuation embedded in a stator vane was used to successfully control separation and improve near stall performance in a multistage compressor rig at NASA Glenn. Using specially designed stator vanes configured with internal actuation to deliver pulsating air through slots along the suction surface, a research study was performed to identify performance benefits using this microflow control approach. Pressure profiles and unsteady pressure measurements along the blade surface and at the shroud provided a dynamic look at the compressor during microflow air injection. These pressure measurements lead to a tracking algorithm to identify the onset of separation. The testing included steady air injection at various slot locations along the vane. The research also examined the benefit of pulsed injection and actively controlled air injection along the stator vane. Two types of actuation schemes were studied, including an embedded actuator for on-blade control. Successful application of an online detection and flow control scheme will be discussed. Testing showed dramatic performance benefit for flow reattachment and subsequent improvement in diffusion through the use of pulsed controlled injection. The paper will discuss the experimental setup, the blade configurations, and preliminary CFD results which guided the slot location along the blade. The paper will also show the pressure profiles and unsteady pressure measurements used to track flow control enhancement, and will conclude with the tracking algorithm for adjusting the control.

  14. Active Flow Separation Control on a NACA 0015 Wing Using Fluidic Actuators

    NASA Technical Reports Server (NTRS)

    Melton, Latunia P.

    2014-01-01

    Results are presented from a recent set of wind tunnel experiments using sweeping jet actuators to control ow separation on the 30% chord trailing edge ap of a 30 deg. swept wing model with an aspect ratio (AR) of 4.35. Two sweeping jet actuator locations were examined, one on the flap shoulder and one on the trailing edge flap. The parameters that were varied included actuator momentum, freestream velocity, and trailing edge flap deflection (Delta f ) angle. The primary focus of this set of experiments was to determine the mass flow and momentum requirements for controlling separation on the flap, especially at large flap deflection angles which would be characteristic of a high lift system. Surface pressure data, force and moment data, and stereoscopic particle image velocimetry (PIV) data were acquired to evaluate the performance benefits due to applying active flow control. Improvements in lift over the majority of the wing span were obtained using sweeping jet actuator control. High momentum coefficient, Cu, levels were needed when using the actuators on the ap because they were located downstream of separation. Actuators on the flap shoulder performed slightly better but actuator size, orientation, and spacing still need to be optimized.

  15. The effect of large aspect ratio wing yaw on active separation control

    NASA Astrophysics Data System (ADS)

    Tewes, Philipp; Taubert, Lutz; Wygnanski, Israel

    2014-11-01

    The applicability of the boundary layer independence principle to turbulent boundary layers developing on infinitely yawed wings, suggested that active separation control might be carried out differently to the two presumably independent developing boundary layers. At low incidence or flap deflection the control of the spanwise component of the flow is effective provided the aggregate number of actuators is small. In this case the actuator jets provide jet-curtains that virtually eliminate the spanwise flow component of the flow in their vicinity. At higher incidence or flap deflection, the focus of the active separation control has to shift to the chordwise component that has to overcome a high adverse pressure gradient. The idea was proven experimentally on a flapped wing based on a NACA 0012 airfoil that could be swept back and forward while being suspended from a ceiling of a wind tunnel connected to a six-component balance. The experiments were carried out at Reynolds numbers varying between 300,000 and 500,000. The project was supported in part by a grant from AFOSR.

  16. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis.

    PubMed

    Uehara, Tsuyoshi; Parzych, Katherine R; Dinh, Thuy; Bernhardt, Thomas G

    2010-04-21

    During bacterial cytokinesis, hydrolytic enzymes are used to split wall material shared by adjacent daughter cells to promote their separation. Precise control over these enzymes is critical to prevent breaches in wall integrity that can cause cell lysis. How these potentially lethal hydrolases are regulated has remained unknown. Here, we investigate the regulation of cell wall turnover at the Escherichia coli division site. We show that two components of the division machinery with LytM domains (EnvC and NlpD) are direct regulators of the cell wall hydrolases (amidases) responsible for cell separation (AmiA, AmiB and AmiC). Using in vitro cell wall cleavage assays, we show that EnvC activates AmiA and AmiB, whereas NlpD activates AmiC. Consistent with these findings, we show that an unregulated EnvC mutant requires functional AmiA or AmiB but not AmiC to induce cell lysis, and that the loss of NlpD phenocopies an AmiC(-) defect. Overall, our results suggest that cellular amidase activity is regulated spatially and temporally by coupling their activation to the assembly of the cytokinetic ring.

  17. Active Control of Separation From the Flap of a Supercritical Airfoil

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2006-01-01

    Zero-mass-flux periodic excitation was applied at several regions on a simplified high-lift system to delay the occurrence of flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approximately equal to 10) and low frequency amplitude modulation (F(+) sub AM approximately equal to 1) of the high frequency excitation were used for control. It was noted that the same performance gains were obtained with amplitude modulation and required only 30% of the momentum input required by pure sine excitation.

  18. Control of a Separation bubble at Low Reynolds Numbers Using Electro-Active Polymers

    NASA Astrophysics Data System (ADS)

    Dell'Orso, Haley; Chang, Lucia; Zaremski, Sarah; Demauro, Edward; Leong, Chia; Amitay, Michael

    2013-11-01

    An experimental investigation was performed to study the effects of electro-active polymers (EAPs) on a 3-dimensional separation bubble on a two-dimensional NACA0009 airfoil at a Reynolds number of 20,000 and an angle of attack 5 deg. A single row of EAPs was placed at 20% chord and activated at 1500V and 50Hz, corresponding to the Kelvin-Helmholtz frequency of the separated mixing layer. Stereoscopic Particle Image Velocimetry data were collected in the vicinity of the EAPs for three cases: baseline (no EAP present), EAP present but not actuated, and EAP present and actuated. Data demonstrated that the presence of the EAP slightly reduced the magnitude of the separation bubble. When the EAPs were actuated at the chosen frequency and voltage, the separation bubble was almost completely mitigated.

  19. Effects of Elevated Free-Stream Turbulence on Active Control of a Separation Bubble

    NASA Technical Reports Server (NTRS)

    Ashpis, D. (Technical Monitor); Halfon, E.; Nishri, B.; Seifert, A.; Wygnanski, I.

    2004-01-01

    The Effects of elevated free-stream turbulence (FST) on the natural and periodically excited separation bubbles were studied experimentally, due to the relevance of this flow to low-pressure turbine blades at low Reynolds numbers. A bubble was formed at the leading edge of a flat plate and the FST level was altered by placing a grid across the flow at different locations upstream of the plate. The mixing across the separated shear-layer, forming the free boundary of the bubble, increased due to the elevated FST and due to nominally two-dimensional periodic excitation, both flattening and shortening the bubble. Periodic excitation at frequencies that were at least an order of magnitude lower than those associated with the initial shear-layer instability, were very effective at low FST, because the amplitudes of the excitation frequency and its harmonic were amplified over the bubble. High frequency excitation (F+ 3, based on the length of the baseline low FST bubble) had a major effect close to the separation location, while farther downstream the excited fluctuations rapidly decayed in the reattachment region. Low frequency excitation, that generated waves comparable to the length of the unperturbed bubble (F+ 1) were less effective and their magnitude decayed at a slower rate downstream of reattachment. An increase in the level of the FST reduced the net effect of the periodic excitation on the mixing enhancement and subsequent reattachment process, probably due to a destructive interference between the nominally 2D excitation and the random (in space and time) FST, reducing the spanwise coherence and therefore the effectiveness of the current control strategy. However, even at the reduced effectiveness of 2D periodic excitation at elevated FST, it accelerated the reattachment process and the recovery rate of the reattached boundary layer, enhancing the boundary layer resistance to repeat separation and reducing its momentum loss further downstream.

  20. Work control in separations facilities

    SciTech Connect

    Olson, L.D.

    1990-12-31

    The topic addressed in this technical review is the development and implementation of a work control program in one of the chemical separations facilities at the Savannah River Site (SRS) in Aiken, SC. This program will be used as a pilot for the Nuclear Materials Processing Division at the site. The SRS Work Control Pilot program is based on the Institute of Nuclear Power Operations (INPO) good practices and guidelines for the conduct of maintenance and complies with SRS quality assurance and DOE orders on maintenance management. The program follows a ten-step process for control of maintenance and maintenance-related activities in a chemical separations facility. The program took the existing maintenance planning and scheduling system and upgraded it to comply with all INPO work control and related guidelines for histories, post-maintenance testing and scheduling. The development process of adapting a nuclear-related- based plan to a batch/continuous chemical separations plant was a challenge. There were many opportunities to develop improvements in performance while being creative and realistic in applying reactor maintenance technology to chemical plant maintenance. This pilot program for work control in a nonreactor nuclear facility will provide valuable information for applying a controlled maintenance process to a multiphase chemical operating plant environment.

  1. Work control in separations facilities

    SciTech Connect

    Olson, L.D.

    1990-01-01

    The topic addressed in this technical review is the development and implementation of a work control program in one of the chemical separations facilities at the Savannah River Site (SRS) in Aiken, SC. This program will be used as a pilot for the Nuclear Materials Processing Division at the site. The SRS Work Control Pilot program is based on the Institute of Nuclear Power Operations (INPO) good practices and guidelines for the conduct of maintenance and complies with SRS quality assurance and DOE orders on maintenance management. The program follows a ten-step process for control of maintenance and maintenance-related activities in a chemical separations facility. The program took the existing maintenance planning and scheduling system and upgraded it to comply with all INPO work control and related guidelines for histories, post-maintenance testing and scheduling. The development process of adapting a nuclear-related- based plan to a batch/continuous chemical separations plant was a challenge. There were many opportunities to develop improvements in performance while being creative and realistic in applying reactor maintenance technology to chemical plant maintenance. This pilot program for work control in a nonreactor nuclear facility will provide valuable information for applying a controlled maintenance process to a multiphase chemical operating plant environment.

  2. Force interaction of high pressure glow discharge with fluid flow for active separation control

    NASA Astrophysics Data System (ADS)

    Roy, Subrata; Gaitonde, Datta V.

    2006-02-01

    Radio frequency based discharges at atmospheric pressures are the focus of increased interest in aerodynamics because of the wide range of potential applications including, specifically, actuation in flows at moderate speeds. Recent literature describing promising experimental observations, especially on separation control, has spurred efforts in the development of parallel theoretical modeling to lift limitations in the current understanding of the actuation mechanism. The present effort demonstrates higher fidelity first-principle models in a multidimensional finite-element framework to predict surface discharge-induced momentum exchange. The complete problem of a dielectric barrier discharge at high pressure with axially displaced electrodes is simulated in a self-consistent manner. Model predictions for charge densities, the electric field, and gas velocity distributions are shown to mimic trends reported in the experimental literature. Results show that a residual of electrons remains deposited on the dielectric surface downstream of the exposed powered electrode for the entire duration of the cycle and causes a net electric force in the direction from the electrode to the downstream surface. For the first time, results document the mitigation process of a separation bubble formed due to flow past a flat plate inclined at 12° angle of attack. This effort sets the basis for extending the formulation further to include polyphase power input in multidimensional settings, and to apply the simulation method to flows past common aerodynamic configurations.

  3. Force interaction of high pressure glow discharge with fluid flow for active separation control

    SciTech Connect

    Roy, Subrata; Gaitonde, Datta V.

    2006-02-15

    Radio frequency based discharges at atmospheric pressures are the focus of increased interest in aerodynamics because of the wide range of potential applications including, specifically, actuation in flows at moderate speeds. Recent literature describing promising experimental observations, especially on separation control, has spurred efforts in the development of parallel theoretical modeling to lift limitations in the current understanding of the actuation mechanism. The present effort demonstrates higher fidelity first-principle models in a multidimensional finite-element framework to predict surface discharge-induced momentum exchange. The complete problem of a dielectric barrier discharge at high pressure with axially displaced electrodes is simulated in a self-consistent manner. Model predictions for charge densities, the electric field, and gas velocity distributions are shown to mimic trends reported in the experimental literature. Results show that a residual of electrons remains deposited on the dielectric surface downstream of the exposed powered electrode for the entire duration of the cycle and causes a net electric force in the direction from the electrode to the downstream surface. For the first time, results document the mitigation process of a separation bubble formed due to flow past a flat plate inclined at 12 degree sign angle of attack. This effort sets the basis for extending the formulation further to include polyphase power input in multidimensional settings, and to apply the simulation method to flows past common aerodynamic configurations.

  4. Active control of massively separated high-speed/base flows with electric arc plasma actuators

    NASA Astrophysics Data System (ADS)

    DeBlauw, Bradley G.

    The current project was undertaken to evaluate the effects of electric arc plasma actuators on high-speed separated flows. Two underlying goals motivated these experiments. The first goal was to provide a flow control technique that will result in enhanced flight performance for supersonic vehicles by altering the near-wake characteristics. The second goal was to gain a broader and more sophisticated understanding of these complex, supersonic, massively-separated, compressible, and turbulent flow fields. The attainment of the proposed objectives was facilitated through energy deposition from multiple electric-arc plasma discharges near the base corner separation point. The control authority of electric arc plasma actuators on a supersonic axisymmetric base flow was evaluated for several actuator geometries, frequencies, forcing modes, duty cycles/on-times, and currents. Initially, an electric arc plasma actuator power supply and control system were constructed to generate the arcs. Experiments were performed to evaluate the operational characteristics, electromagnetic emission, and fluidic effect of the actuators in quiescent ambient air. The maximum velocity induced by the arc when formed in a 5 mm x 1.6 mm x 2 mm deep cavity was about 40 m/s. During breakdown, the electromagnetic emission exhibited a rise and fall in intensity over a period of about 340 ns. After breakdown, the emission stabilized to a near-constant distribution. It was also observed that the plasma formed into two different modes: "high-voltage" and "low-voltage". It is believed that the plasma may be switching between an arc discharge and a glow discharge for these different modes. The two types of plasma do not appear to cause substantial differences on the induced fluidic effects of the actuator. In general, the characterization study provided a greater fundamental understanding of the operation of the actuators, as well as data for computational model comparison. Preliminary investigations

  5. Separating Active and Passive Influences on Stomatal Control of Transpiration[OPEN

    PubMed Central

    McAdam, Scott A.M.; Brodribb, Timothy J.

    2014-01-01

    Motivated by studies suggesting that the stomata of ferns and lycophytes do not conform to the standard active abscisic acid (ABA) -mediated stomatal control model, we examined stomatal behavior in a conifer species (Metasequoia glyptostroboides) that is phylogenetically midway between the fern and angiosperm clades. Similar to ferns, daytime stomatal closure in response to moderate water stress seemed to be a passive hydraulic process in M. glyptostroboides immediately alleviated by rehydrating excised shoots. Only after prolonged exposure to more extreme water stress did active ABA-mediated stomatal closure become important, because foliar ABA production was triggered after leaf turgor loss. The influence of foliar ABA on stomatal conductance and stomatal aperture was highly predictable and additive with the passive hydraulic influence. M. glyptostroboides thus occupies a stomatal behavior type intermediate between the passively controlled ferns and the characteristic ABA-dependent stomatal closure described in angiosperm herbs. These results highlight the importance of considering phylogeny as a major determinant of stomatal behavior. PMID:24488969

  6. ISOTOPE SEPARATING APPARATUS CONTROL

    DOEpatents

    Barnes, S.W.

    1959-08-25

    An improved isotope separating apparatus of the electromagnetic type, commonly referred to as a calutron, is described. Improvements in detecting and maintaining optimum position and focus of the ion beam are given. The calutron collector is provided with an additional electrode insulated from and positioned between the collecting pockets. The ion beams are properly positioned and focused until the deionizing current which flows from ground to this additional electrode ts a minimum.

  7. Active Control of Separation on a Low Reynolds Number Airfoil Using Synthetic Jet Actuation

    NASA Astrophysics Data System (ADS)

    Feero, Mark

    Wind tunnel experiments were used to study the effect of excitation amplitude and frequency on flow separation using synthetic jet actuation. A synthetic jet actuator was located near the leading edge of a NACA0025 airfoil at a chord-based Reynolds number of 100,000 and angle-of-attack of 10°. Under these flow conditions, the boundary layer separated from the suction surface and failed to reattach. Low-frequency excitation was used to target flow instabilities, while high-frequency excitation was performed at time scales an order of magnitude smaller. Low-frequency excitation at the separated shear layer frequency was found to be the most effective technique for flow reattachment and drag reduction. The results suggested that flow reattachment depended on exceeding a threshold momentum coefficient that varied with excitation frequency. Furthermore, a local minimum in drag independent of excitation frequency was achieved when the momentum coefficient corresponded to an average jet velocity that matched the freestream velocity.

  8. Control of Separated Boundary Layers

    NASA Astrophysics Data System (ADS)

    Huang, Shao-Ching; Kim, John

    2003-11-01

    The control of separated boundary layers are numerically investigated. Two types of flow geometry are considered. The first case is flow separation on a flat plate caused by an imposed adverse pressure gradient. The second case is flow separation downstream of a curved leading edge. These cases represent laminar separation with turbulent reattachment with and without curvature effects. Open-loop control, with distributed surface blowing and suction as control input, is first applied to establish base-line cases. We then use a system identification approach to construct approximate system models for design of closed-loop control. The models are based on the input-output relationship obtained from numerical simulations. The linear quadratic Gaussian (LQG) control synthesis is applied to the models to produce feedback control laws. The distributed sensors and actuators are confined to the walls. The efficacy of the controllers are quantified by pressure distribution, separation bubble size and Reynolds stresses. Visualization of the controlled and uncontrolled flow fields will also be presented.

  9. Managing Flap Vortices via Separation Control

    NASA Technical Reports Server (NTRS)

    Greenblatt, David

    2006-01-01

    A pilot study was conducted on a flapped semi-span model to investigate the concept and viability of near-wake vortex management by means of boundary layer separation control. Passive control was achieved using a simple fairing and active control was achieved via zero mass-flux blowing slots. Vortex sheet strength, estimated by integrating surface pressures, was used to predict vortex characteristics based on inviscid rollup relations and vortices trailing the flaps were mapped using a seven-hole probe. Separation control was found to have a marked effect on vortex location, strength, tangential velocity, axial velocity and size over a wide range of angles of attack and control conditions. In general, the vortex trends were well predicted by the inviscid rollup relations. Manipulation of the separated flow near the flap edges exerted significant control over either outboard or inboard edge vortices while producing small lift and moment excursions. Unsteady surface pressures indicated that dynamic separation and attachment control can be exploited to perturb vortices at wavelengths shorter than a typical wingspan. In summary, separation control has the potential for application to time-independent or time-dependent wake alleviation schemes, where the latter can be deployed to minimize adverse effects on ride-quality and dynamic structural loading.

  10. Separating proteins with activated carbon.

    PubMed

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon. PMID:24898563

  11. Aversive control: A separate domain?

    PubMed Central

    Hineline, Philip N.

    1984-01-01

    Traditionally, aversive control has been viewed as a separate domain within behavior theory. Sometimes this separateness has been based upon a distinction between reinforcement and punishment, and sometimes upon a distinction between positive and negative reinforcement. The latter is regarded here as the more compelling basis, due to some inherent procedural asymmetries. An approach to the interpretation of negative reinforcement is presented, with indication of types of experiments that support it and that also point to promising directions for further work. However, most of the interpretive issues that arise here are relevant to positively reinforced behavior as well. These include: possible reformulation of the operant/respondent distinction; the place of emotional concepts in behavior analysis; the need for simultaneous, complementary analysis on differing time scales; the understanding of behavioral situations with rewarding or aversive properties that depend as much upon the contingencies that the situations involve as upon the primary rewarding or aversive stimuli that they include. Thus, an adequate understanding of this domain, which has been traditionally viewed as distinct, has implications for all domains of behavior-analytic theory. PMID:16812404

  12. Aversive control: A separate domain?

    PubMed

    Hineline, P N

    1984-11-01

    Traditionally, aversive control has been viewed as a separate domain within behavior theory. Sometimes this separateness has been based upon a distinction between reinforcement and punishment, and sometimes upon a distinction between positive and negative reinforcement. The latter is regarded here as the more compelling basis, due to some inherent procedural asymmetries. An approach to the interpretation of negative reinforcement is presented, with indication of types of experiments that support it and that also point to promising directions for further work. However, most of the interpretive issues that arise here are relevant to positively reinforced behavior as well. These include: possible reformulation of the operant/respondent distinction; the place of emotional concepts in behavior analysis; the need for simultaneous, complementary analysis on differing time scales; the understanding of behavioral situations with rewarding or aversive properties that depend as much upon the contingencies that the situations involve as upon the primary rewarding or aversive stimuli that they include. Thus, an adequate understanding of this domain, which has been traditionally viewed as distinct, has implications for all domains of behavior-analytic theory.

  13. Aversive control: A separate domain?

    PubMed

    Hineline, P N

    1984-11-01

    Traditionally, aversive control has been viewed as a separate domain within behavior theory. Sometimes this separateness has been based upon a distinction between reinforcement and punishment, and sometimes upon a distinction between positive and negative reinforcement. The latter is regarded here as the more compelling basis, due to some inherent procedural asymmetries. An approach to the interpretation of negative reinforcement is presented, with indication of types of experiments that support it and that also point to promising directions for further work. However, most of the interpretive issues that arise here are relevant to positively reinforced behavior as well. These include: possible reformulation of the operant/respondent distinction; the place of emotional concepts in behavior analysis; the need for simultaneous, complementary analysis on differing time scales; the understanding of behavioral situations with rewarding or aversive properties that depend as much upon the contingencies that the situations involve as upon the primary rewarding or aversive stimuli that they include. Thus, an adequate understanding of this domain, which has been traditionally viewed as distinct, has implications for all domains of behavior-analytic theory. PMID:16812404

  14. 29 CFR 779.220 - Unified operation may exist as to separately owned or controlled activities which are related.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... otherwise, they are so performed as to constitute a unified business system organized for a common business... their activities in such manner as to be for all intents and purposes a single business system except for the fact that the ownership and control of the individual segments of the business are...

  15. Active Control of Flow Separation on a High-Lift System with Slotted Flap at High Reynolds Number

    NASA Technical Reports Server (NTRS)

    Khodadoust, Abdollah; Washburn, Anthony

    2007-01-01

    The NASA Energy Efficient Transport (EET) airfoil was tested at NASA Langley's Low- Turbulence Pressure Tunnel (LTPT) to assess the effectiveness of distributed Active Flow Control (AFC) concepts on a high-lift system at flight scale Reynolds numbers for a medium-sized transport. The test results indicate presence of strong Reynolds number effects on the high-lift system with the AFC operational, implying the importance of flight-scale testing for implementation of such systems during design of future flight vehicles with AFC. This paper describes the wind tunnel test results obtained at the LTPT for the EET high-lift system for various AFC concepts examined on this airfoil.

  16. Cyclone separator having boundary layer turbulence control

    DOEpatents

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  17. Simultaneous Multiple-Location Separation Control

    NASA Technical Reports Server (NTRS)

    Greenblatt, David (Inventor)

    2009-01-01

    A method of controlling a shear layer for a fluid dynamic body introduces first periodic disturbances into the fluid medium at a first flow separation location. Simultaneously, second periodic disturbances are introduced into the fluid medium at a second flow separation location. A phase difference between the first and second periodic disturbances is adjusted to control flow separation of the shear layer as the fluid medium moves over the fluid dynamic body.

  18. Tangential synthetic jets for separation control

    NASA Astrophysics Data System (ADS)

    Esmaeili Monir, H.; Tadjfar, M.; Bakhtian, A.

    2014-02-01

    A numerical study of separation control has been made to investigate aerodynamic characteristics of a NACA23012 airfoil with a tangential synthetic jet. Simulations are carried out at the chord Reynolds number of Re=2.19×106. The present approach relies on solving the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. The turbulence model used in the present computation is the Spalart-Allmaras one-equation model. All computations are performed with a finite volume based code. Stall characteristics are significantly improved by controlling the formation of separation vortices in the flow. We placed the synthetic jet at the 12% chord, xj=0.12c, where we expected the separation to occur. Two distinct jet oscillating frequencies: Fj+=0.159 and Fj+=1 were considered. We studied the effect of blowing ratio, Vj/U∞, where it was varied from 0 to 5. The inclined angle of the synthetic jet was varied from αj=0° up to αj=83°. For the non-zero inclined angles, the local maximum in the aerodynamic performance, Cl/Cd, of 6.89 was found for the inclined angle of about 43°. In the present method, by means of creating a dent on the airfoil, linear momentum is transferred to the flow system in tangential direction to the airfoil surface. Thus the absolute maximum of 11.19 was found for the tangential synthetic jet at the inclined angle of the jet of 0°. The mechanisms involved for a tangential jet appear to behave linearly, as by multiplying the activation frequency of the jet by a factor produces the same multiplication factor in the resulting frequency in the flow. However, the mechanisms involved in the non-zero inclined angle cases behave nonlinearly when the activation frequency is multiplied.

  19. Light-controlled propulsion, aggregation and separation of water-fuelled TiO2/Pt Janus submicromotors and their ``on-the-fly'' photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Mou, Fangzhi; Kong, Lei; Chen, Chuanrui; Chen, Zhihong; Xu, Leilei; Guan, Jianguo

    2016-02-01

    In this work, water-fuelled TiO2/Pt Janus submicromotors with light-controlled motions have been developed by utilizing the asymmetrical photocatalytic water redox reaction over TiO2/Pt Janus submicrospheres under UV irradiation. The motion state, speed, aggregation and separation behaviors of the TiO2/Pt Janus submicromotor can be reversibly, wirelessly and remotely controlled at will by regulating the ``on/off'' switch, intensity and pulsed/continuous irradiation mode of UV light. The motion of the water-fuelled TiO2/Pt Janus submicromotor is governed by light-induced self-electrophoresis under the local electrical field generated by the asymmetrical water oxidation and reduction reactions on its surface. The TiO2/Pt Janus submicromotors can interact with each other through the light-switchable electrostatic forces, and hence continuous and pulsed UV irradiation can make the TiO2/Pt Janus submicromotors aggregate and separate at will, respectively. Because of the enhanced mass exchange between the environment and active submicromotors, the separated TiO2/Pt Janus submicromotors powered by the pulsed UV irradiation show a much higher activity for the photocatalytic degradation of the organic dye than the aggregated TiO2/Pt submicromotors. The water-fuelled TiO2/Pt Janus submicromotors developed here have some outstanding advantages as ``swimming'' photocatalysts for organic pollutant remediation in the macro or microenvironment (microchannels and microwells in microchips) because of their small size, long-term stability, wirelessly controllable motion behaviors and long life span.In this work, water-fuelled TiO2/Pt Janus submicromotors with light-controlled motions have been developed by utilizing the asymmetrical photocatalytic water redox reaction over TiO2/Pt Janus submicrospheres under UV irradiation. The motion state, speed, aggregation and separation behaviors of the TiO2/Pt Janus submicromotor can be reversibly, wirelessly and remotely controlled at will by

  20. "High specific activity" radiotracers for metallo-toxicological studies: cyclotron and nuclear reactor production, radiochemical separation and "quality control": platinum, iridium, gold, copper and gallium.

    PubMed

    Bonardi, Mauro; Groppi, Flavia; Birattari, Claudio; Arginelli, Dolores

    2002-09-01

    Very High Specific Activity RadioNuclides, HSARN, are a powerful tool to label a wide variety of chemical elements and compounds present in the biosphere in ultra-trace amounts. Medium and high Z radionuclides, can be produced by irradiation in light-ions accelerator and sometimes nuclear reactor. If the nuclear reaction product has atomic number different from irradiated target, it is possible separating the radioactive nuclide from irradiated target, without addition of isotopic carrier. These kinds of radionuclides are named No Carrier Added, NCA, and their specific activity is very high and can reach values close to the theoretical Carrier Free one. The true specific activity must be determined by use of very sensitive radioanalytical techniques. If a low isotopic dilution factor is obtained, these radiotracers are used to label inorganic species and complexes of elements, which are presently introduced into the echo-systems by human activities. New production methods for NCA Pt, Ir, Au, Cu and Ga radiotracers are presented, with some details on radiochemistry and quality controls.

  1. Amidase Activity of AmiC Controls Cell Separation and Stem Peptide Release and Is Enhanced by NlpD in Neisseria gonorrhoeae.

    PubMed

    Lenz, Jonathan D; Stohl, Elizabeth A; Robertson, Rosanna M; Hackett, Kathleen T; Fisher, Kathryn; Xiong, Kalia; Lee, Mijoon; Hesek, Dusan; Mobashery, Shahriar; Seifert, H Steven; Davies, Christopher; Dillard, Joseph P

    2016-05-13

    The human-restricted pathogen Neisseria gonorrhoeae encodes a single N-acetylmuramyl-l-alanine amidase involved in cell separation (AmiC), as compared with three largely redundant cell separation amidases found in Escherichia coli (AmiA, AmiB, and AmiC). Deletion of amiC from N. gonorrhoeae results in severely impaired cell separation and altered peptidoglycan (PG) fragment release, but little else is known about how AmiC functions in gonococci. Here, we demonstrated that gonococcal AmiC can act on macromolecular PG to liberate cross-linked and non-cross-linked peptides indicative of amidase activity, and we provided the first evidence that a cell separation amidase can utilize a small synthetic PG fragment as substrate (GlcNAc-MurNAc(pentapeptide)-GlcNAc-MurNAc(pentapeptide)). An investigation of two residues in the active site of AmiC revealed that Glu-229 is critical for both normal cell separation and the release of PG fragments by gonococci during growth. In contrast, Gln-316 has an autoinhibitory role, and its mutation to lysine resulted in an AmiC with increased enzymatic activity on macromolecular PG and on the synthetic PG derivative. Curiously, the same Q316K mutation that increased AmiC activity also resulted in cell separation and PG fragment release defects, indicating that activation state is not the only factor determining normal AmiC activity. In addition to displaying high basal activity on PG, gonococcal AmiC can utilize metal ions other than the zinc cofactor typically used by cell separation amidases, potentially protecting its ability to function in zinc-limiting environments. Thus gonococcal AmiC has distinct differences from related enzymes, and these studies revealed parameters for how AmiC functions in cell separation and PG fragment release.

  2. Amidase Activity of AmiC Controls Cell Separation and Stem Peptide Release and Is Enhanced by NlpD in Neisseria gonorrhoeae.

    PubMed

    Lenz, Jonathan D; Stohl, Elizabeth A; Robertson, Rosanna M; Hackett, Kathleen T; Fisher, Kathryn; Xiong, Kalia; Lee, Mijoon; Hesek, Dusan; Mobashery, Shahriar; Seifert, H Steven; Davies, Christopher; Dillard, Joseph P

    2016-05-13

    The human-restricted pathogen Neisseria gonorrhoeae encodes a single N-acetylmuramyl-l-alanine amidase involved in cell separation (AmiC), as compared with three largely redundant cell separation amidases found in Escherichia coli (AmiA, AmiB, and AmiC). Deletion of amiC from N. gonorrhoeae results in severely impaired cell separation and altered peptidoglycan (PG) fragment release, but little else is known about how AmiC functions in gonococci. Here, we demonstrated that gonococcal AmiC can act on macromolecular PG to liberate cross-linked and non-cross-linked peptides indicative of amidase activity, and we provided the first evidence that a cell separation amidase can utilize a small synthetic PG fragment as substrate (GlcNAc-MurNAc(pentapeptide)-GlcNAc-MurNAc(pentapeptide)). An investigation of two residues in the active site of AmiC revealed that Glu-229 is critical for both normal cell separation and the release of PG fragments by gonococci during growth. In contrast, Gln-316 has an autoinhibitory role, and its mutation to lysine resulted in an AmiC with increased enzymatic activity on macromolecular PG and on the synthetic PG derivative. Curiously, the same Q316K mutation that increased AmiC activity also resulted in cell separation and PG fragment release defects, indicating that activation state is not the only factor determining normal AmiC activity. In addition to displaying high basal activity on PG, gonococcal AmiC can utilize metal ions other than the zinc cofactor typically used by cell separation amidases, potentially protecting its ability to function in zinc-limiting environments. Thus gonococcal AmiC has distinct differences from related enzymes, and these studies revealed parameters for how AmiC functions in cell separation and PG fragment release. PMID:26984407

  3. Control of vortical separation on conical bodies

    NASA Technical Reports Server (NTRS)

    Mourtos, Nikos J.; Roberts, Leonard

    1987-01-01

    In a variety of aeronautical applications, the flow around conical bodies at incidence is of interest. Such applications include, but are not limited to, highly maneuverable aircraft with delta wings, the aerospace plane and nose portions of spike inlets. The theoretical model used has three parts. First, the single line vortex model is used within the framework of slender body theory, to compute the outer inviscid field for specified separation lines. Next, the three dimensional boundary layer is represented by a momentum equation for the cross flow, analogous to that for a plane boundary layer; a von Karman Pohlhausen approximation is applied to solve this equation. The cross flow separation for both laminar and turbulent layers is determined by matching the pressure at the upper and lower separation points. This iterative procedure yields a unique solution for the separation lines and consequently for the position of the vortices and the vortex lift on the body. Lastly, control of separation is achieved by blowing tangentially from a slot located along a cone generator. It is found that for very small blowing coefficients, the separation can be postponed or suppressedy completely.

  4. Control and Identification of Turbulent Boundary Layer Separation

    NASA Technical Reports Server (NTRS)

    Seifert, Avi; Pack-Melton, La Tunia

    2004-01-01

    Effective delay of turbulent boundary layer separation could be achieved via closed-loop control. Constructing such a system requires that sensor data be processed, real-time, and fed into the controller to determine the output. Current methods for detection of turbulent boundary layer separation are lacking the capability of localized, fast and reliable identification of the boundary layer state. A method is proposed for short-time FFT processing of time series, measured by hot-film sensors, with the purpose of identifying the alternation of the balance between small and large scales as the boundary layer separates, favoring the large scales. The method has been validated by comparison to other criteria of separation detection and over a range of baseline and controlled flow conditions on a simplified high-lift system, incorporating active flow control.

  5. Activation parameters of flow through battery separators

    SciTech Connect

    Blokhra, R.L.

    1983-05-01

    Studies of the hydrodynamic flow of water and 45 percent potassium hydroxide (KOH) solution through a microporous and an ion exchange separator are described. The permeability values are interpreted in terms of a pseudoactivation process. The enthalpy of activation deltaH* and the entropy of activation deltaS* were estimated from Eyring's rate equation.

  6. Activation parameters of flow through battery separators

    NASA Technical Reports Server (NTRS)

    Blokhra, R. L.

    1983-01-01

    Studies of the hydrodynamic flow of water and 45 percent potassium hydroxide (KOH) solution through a microporous and an ion exchange separator are described. The permeability values are interpreted in terms of a pseudoactivation process. The enthalpy of activation deltaH* and the entropy of activation deltaS* were estimated from Eyring's rate equation.

  7. Management of Vortices Trailing Flapped Wings via Separation Control

    NASA Technical Reports Server (NTRS)

    Greenblatt, David

    2005-01-01

    A pilot study was conducted on a flapped semi-span model to investigate the concept and viability of near-wake vortex management via separation control. Passive control was achieved by means of a simple fairing and active control was achieved via zero mass-flux blowing slots. Vortex sheet strength, estimated by integrating surface pressure ports, was used to predict vortex characteristics by means of inviscid rollup relations. Furthermore, vortices trailing the flaps were mapped using a seven-hole probe. Separation control was found to have a marked effect on vortex location, strength, tangential velocity, axial velocity and size over a wide range of angles of attack and control conditions. In general, the vortex trends were well predicted by the inviscid rollup relations. Manipulation of the separated flow near the flap edges exerted significant control over both outboard and inboard edge vortices while producing negligible lift excursions. Dynamic separation and attachment control was found to be an effective means for dynamically perturbing the vortex from arbitrarily long wavelengths down to wavelengths less than a typical wingspan. In summary, separation control has the potential for application to time-independent or time-dependent wake alleviation schemes, where the latter can be deployed to minimize adverse effects on ride-quality and dynamic structural loading.

  8. Control of Flow Separation Using Adaptive Airfoils

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)

    1996-01-01

    A novel way of controlling flow separation is reported. The approach involves using an adaptive airfoil geometry that changes its leading edge shape to adjust to the instantaneous flow at high angles of attack such that the flow over it remains attached. In particular, a baseline NACA 0012 airfoil, whose leading edge curvature could be changed dynamically by 400% was tested under quasi-steady compressible flow conditions. A mechanical drive system was used to produce a rounded leading edge to reduce the strong local flow acceleration around its nose and thus reduce the strong adverse pressure gradient that follows such a rapid acceleration. Tests in steady flow showed that at M = 0.3, the flow separated at about 14 deg. angle of attack for the NACA 0012 profile but could be kept attached up to an angle of about 18 deg by changing the nose curvature. No significant hysteresis effects were observed; the flow could be made to reattach from its separated state at high angles by changing the leading edge curvature. Interestingly, the flow over a nearly semicircular nosed airfoil was separated even at low angles.

  9. Identification and Control of Separated Shear Flows

    NASA Astrophysics Data System (ADS)

    Huang, Shao-Ching; Kim, John

    2002-11-01

    There has been increased interest in applying modern control theory to flow-control problems. For simple flows, such as turbulent channel and boundary layers, several investigators have constructed controllers based on linear optimal control theory, which requires certain information of the system to be controlled. However, for complex flows, such as separated flow past an airfoil, the required system information is not readily available, thus hindering the construction of controllers following the same procedure used for the simple flows. In this study, we use the system identification theory to construct a model of flow system for controller design. The model, as an approximation to the actual system, is based on the input-output relationship of the actual system. The locations of sensors and actuators are determined based on the spatial and temporal correlations of the flow field and practical measurement considerations. The system identification approach has been applied to both simple and complex flows. Linear and nonlinear disturbances to selected flow systems are considered to evaluate the performance of the constructed model. A series of numerical experiments have been performed to assess the validity of using linear approximations for nonlinear complex flows.

  10. Herbs and spices: characterization and quantitation of biologically-active markers for routine quality control by multiple headspace solid-phase microextraction combined with separative or non-separative analysis.

    PubMed

    Sgorbini, Barbara; Bicchi, Carlo; Cagliero, Cecilia; Cordero, Chiara; Liberto, Erica; Rubiolo, Patrizia

    2015-01-01

    Herbs and spices are used worldwide as food flavoring, thus determination of their identity, origin, and quality is mandatory for safe human consumption. An analysis strategy based on separative (HS-SPME-GC-MS) and non-separative (HS-SPME-MS) approaches is proposed for the volatile fraction of herbs and spices, for quality control and to quantify the aromatic markers with a single analysis directly on the plant material as such. Eight-to-ten lots of each of the following herbs/spices were considered: cloves (Syzygium aromaticum (L.) Merr. & Perry), American peppertree (Schinus molle L.), black pepper and white pepper (Piper nigrum L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.). Homogeneity, origin, and chemotypes of the investigated lots of each herb/spice were defined by fingerprinting, through statistical elaboration with principal component analysis (PCA). Characterizing aromatic markers were directly quantified on the solid matrix through multiple headspace extraction-HS-SPME (MHS-SPME). Reliable results were obtained with both separative and non-separative methods (where the latter were applicable); the two were in full agreement, RSD% ranging from 1.8 to 7.7% for eugenol in cloves, 2.2-18.4% for carvacrol+thymol in thyme, and 3.1-16.8% for thujones in sage. PMID:25541091

  11. Herbs and spices: characterization and quantitation of biologically-active markers for routine quality control by multiple headspace solid-phase microextraction combined with separative or non-separative analysis.

    PubMed

    Sgorbini, Barbara; Bicchi, Carlo; Cagliero, Cecilia; Cordero, Chiara; Liberto, Erica; Rubiolo, Patrizia

    2015-01-01

    Herbs and spices are used worldwide as food flavoring, thus determination of their identity, origin, and quality is mandatory for safe human consumption. An analysis strategy based on separative (HS-SPME-GC-MS) and non-separative (HS-SPME-MS) approaches is proposed for the volatile fraction of herbs and spices, for quality control and to quantify the aromatic markers with a single analysis directly on the plant material as such. Eight-to-ten lots of each of the following herbs/spices were considered: cloves (Syzygium aromaticum (L.) Merr. & Perry), American peppertree (Schinus molle L.), black pepper and white pepper (Piper nigrum L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.). Homogeneity, origin, and chemotypes of the investigated lots of each herb/spice were defined by fingerprinting, through statistical elaboration with principal component analysis (PCA). Characterizing aromatic markers were directly quantified on the solid matrix through multiple headspace extraction-HS-SPME (MHS-SPME). Reliable results were obtained with both separative and non-separative methods (where the latter were applicable); the two were in full agreement, RSD% ranging from 1.8 to 7.7% for eugenol in cloves, 2.2-18.4% for carvacrol+thymol in thyme, and 3.1-16.8% for thujones in sage.

  12. CONTROL SYSTEM FOR ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Barnes, S.W.

    1960-01-26

    A method is described for controlling the position of the ion beams in a calutron used for isotope separation. The U/sup 238/ beams is centered over the U/sup 235/ receiving pocket, the operator monitoring the beam until a maximum reading is achieved on the meter connected to that pocket. Then both beams are simultaneously shifted by a preselected amount to move the U/sup 235/ beam over the U/sup 235/ pocket. A slotted door is placed over the entrance to that pocket during the U/sup 238/ beam centering to reduce the contamination to the pocket, while allowing enough beam to pass for monitoring purposes.

  13. Control of Flow Separation Using Adaptive Airfoils

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)

    1996-01-01

    A novel way of controlling flow separation is reported. The approach involves using an adaptive airfoil geometry that changes its leading edge shape to adjust to the instantaneous flow at high angles of attack such that the flow over it remains attached. In particular, a baseline NACA 0012 airfoil, whose leading edge curvature could be changed dynamically by 400% was tested under quasi-steady compressible flow conditions. A mechanical drive system was used to produce a rounded leading edge to reduce the strong local flow acceleration around its nose and thus reduce the strong adverse pressure gradient that follows such a rapid acceleration. Tests in steady flow showed that at M = 0.3, the flow separated at about 14 deg. angle of attack for the NACA 0012 profile but could be kept attached up to an angle of about 18 deg by changing the nose curvature. No significant hysteresis effects were observed; the flow could be made to reattach from its separated state at high angles by changing the leading edge curvature.

  14. Shark Skin Bristling as a Passive Mechanism for Separation Control

    NASA Astrophysics Data System (ADS)

    Wheelus, Jennifer; Lang, Amy; Jones, Emily

    2011-11-01

    The skin of fast-swimming sharks is proposed to have mechanisms to reduce drag and delay flow separation. The skin of fast-swimming and agile sharks is covered with small teeth-like denticles on the order of 0.2 mm. The shortfin mako is one of the fastest and most agile ocean predators creating the need to minimize its pressure drag by controlling flow separation. Biological studies of the shortfin mako skin have shown the passive bristling angle of their denticles to exceed 50 degrees in areas on the flank corresponding to the locations likely to experience separation first. It is proposed that reversing flow, as occurs at the onset of separation in a turbulent boundary layer, would activate denticle bristling and hinder local separation from leading to global separation over the shark. This study focuses on the denticle reaction to various reversed flow conditions using a pulsating jet. Mako shark skin was subjected to numerous reversed flow velocities to determine the bristling onset velocity. Digital Particle Image Velocimetry (DPIV) and digital video were used to determine the flow conditions and denticle behavior. The effect of reversed flow velocity on denticle bristling and its relation to separation control will be discussed. Research funded by NSF (award 0932352).

  15. Activated Carbon Composites for Air Separation

    SciTech Connect

    Contescu, Cristian I; Baker, Frederick S; Tsouris, Costas; McFarlane, Joanna

    2008-03-01

    In continuation of the development of composite materials for air separation based on molecular sieving properties and magnetic fields effects, several molecular sieve materials were tested in a flow system, and the effects of temperature, flow conditions, and magnetic fields were investigated. New carbon materials adsorbents, with and without pre-loaded super-paramagnetic nanoparticles of Fe3O4 were synthesized; all materials were packed in chromatographic type columns which were placed between the poles of a high intensity, water-cooled, magnet (1.5 Tesla). In order to verify the existence of magnetodesorption effect, separation tests were conducted by injecting controlled volumes of air in a flow of inert gas, while the magnetic field was switched on and off. Gas composition downstream the column was analyzed by gas chromatography and by mass spectrometry. Under the conditions employed, the tests confirmed that N2 - O2 separation occurred at various degrees, depending on material's intrinsic properties, temperature and flow rate. The effect of magnetic fields, reported previously for static conditions, was not confirmed in the flow system. The best separation was obtained for zeolite 13X at sub-ambient temperatures. Future directions for the project include evaluation of a combined system, comprising carbon and zeolite molecular sieves, and testing the effect of stronger magnetic fields produced by cryogenic magnets.

  16. Impulsive Injection for Compressor Stator Separation Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Braunscheidel, Edward P.; Bright, Michelle M.

    2005-01-01

    Flow control using impulsive injection from the suction surface of a stator vane has been applied in a low speed axial compressor. Impulsive injection is shown to significantly reduce separation relative to steady injection for vanes that were induced to separate by an increase in vane stagger angle of 4 degrees. Injected flow was applied to the airfoil suction surface using spanwise slots pitched in the streamwise direction. Injection was limited to the near-hub region, from 10 to 36 percent of span, to affect the dominant loss due to hub leakage flow. Actuation was provided externally using high-speed solenoid valves closely coupled to the vane tip. Variations in injected mass, frequency, and duty cycle are explored. The local corrected total pressure loss across the vane at the lower span region was reduced by over 20 percent. Additionally, low momentum fluid migrating from the hub region toward the tip was effectively suppressed resulting in an overall benefit which reduced corrected area averaged loss through the passage by 4 percent. The injection mass fraction used for impulsive actuation was typically less than 0.1 percent of the compressor through flow.

  17. Demonstration of Separation Control Using Glow-Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    Active flow control of boundary-layer separation using glow-discharge plasma actuators is studied experimentally. Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modem low-pressure-turbine airfoil. The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2%) and high (2.5%) free-stream turbulence intensities are set using passive grids. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface-flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the base and controlled flows are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control.

  18. Perceptually controlled doping for audio source separation

    NASA Astrophysics Data System (ADS)

    Mahé, Gaël; Nadalin, Everton Z.; Suyama, Ricardo; Romano, João MT

    2014-12-01

    The separation of an underdetermined audio mixture can be performed through sparse component analysis (SCA) that relies however on the strong hypothesis that source signals are sparse in some domain. To overcome this difficulty in the case where the original sources are available before the mixing process, the informed source separation (ISS) embeds in the mixture a watermark, which information can help a further separation. Though powerful, this technique is generally specific to a particular mixing setup and may be compromised by an additional bitrate compression stage. Thus, instead of watermarking, we propose a `doping' method that makes the time-frequency representation of each source more sparse, while preserving its audio quality. This method is based on an iterative decrease of the distance between the distribution of the signal and a target sparse distribution, under a perceptual constraint. We aim to show that the proposed approach is robust to audio coding and that the use of the sparsified signals improves the source separation, in comparison with the original sources. In this work, the analysis is made only in instantaneous mixtures and focused on voice sources.

  19. Activated Carbon Composites for Air Separation

    SciTech Connect

    Baker, Frederick S; Contescu, Cristian I; Tsouris, Costas; Burchell, Timothy D

    2011-09-01

    Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.

  20. Two Opines Control Conjugal Transfer of an Agrobacterium Plasmid by Regulating Expression of Separate Copies of the Quorum-Sensing Activator Gene traR

    PubMed Central

    Oger, Philippe; Farrand, Stephen K.

    2002-01-01

    Conjugal transfer of Ti plasmids from Agrobacterium spp. is controlled by a hierarchical regulatory system designed to sense two environmental cues. One signal, a subset of the opines produced by crown gall tumors initiated on plants by the pathogen, serves to induce production of the second, an acyl-homoserine lactone quorum-sensing signal, the quormone, produced by the bacterium itself. This second signal activates TraR, and this transcriptional activator induces expression of the tra regulon. Opines control transfer because the traR gene is a member of an operon the expression of which is regulated by the conjugal opine. Among the Ti plasmid systems studied to date, only one of the two or more opine families produced by the associated tumor induces transfer. However, two chemically dissimilar opines, nopaline and agrocinopines A and B, induce transfer of the opine catabolic plasmid pAtK84b found in the nonpathogenic Agrobacterium radiobacter isolate K84. In this study we showed that this plasmid contains two copies of traR, and each is associated with a different opine-regulated operon. One copy, traRnoc, is the last gene of the nox operon and was induced by nopaline but not by agrocinopines A and B. Mutating traRnoc abolished induction of transfer by nopaline but not by the agrocinopines. A mutation in ocd, an upstream gene of the nox operon, abolished utilization of nopaline and also induction of transfer by this opine. The second copy, traRacc, is located in an operon of four genes and was induced by agrocinopines A and B but not by nopaline. Genetic analysis indicated that this gene is required for induction of transfer by agrocinopines A and B but not by nopaline. pAtK84b with mutations in both traR genes was not induced for transfer by either opine. However, expression of a traR gene in trans to this plasmid resulted in opine-independent transfer. The association of traRnoc with nox is unique, but the operon containing traRacc is related to the arc operons

  1. Optimal Control of Airfoil Flow Separation using Fluidic Excitation

    NASA Astrophysics Data System (ADS)

    Shahrabi, Arireza F.

    This thesis deals with the control of flow separation around a symmetric airfoils with the aid of multiple synthetic jet actuators (SJAs). CFD simulation methods have been implemented to uncover the flow separation regimes and associated properties such as frequencies and momentum ratio. In the first part of the study, the SJA was studied thoroughly. Large Eddy Simulations (LES) were performed for one individual cavity; the time history of SJA of the outlet velocity profile and the net momentum imparted to the flow were analyzed. The studied SJA is asymmetrical and operates with the aid of a piezoelectric (PZT) ceramic circular plate actuator. A three-dimensional mesh for the computational domain of the SJA and the surrounding volume was developed and was used to evaluate the details of the airflow conditions inside the SJA as well as at the outlet. The vibration of the PZT ceramic actuator was used as a boundary condition in the computational model to drive the SJA. Particular attention was given to developing a predictive model of the SJA outlet velocity. Results showed that the SJA velocity output is correlated to the PZT ceramic plate vibration, especially for the first frequency mode. SJAs are a particular class of zero net mass flux (ZNMF) fluidic devices with net imparted momentum to the flow. The net momentum imparted to the flow in the separated region is such that positive enhancement during AFC operations is achieved. Flows around the NACA 0015 airfoil were simulated for a range of operating conditions. Attention was given to the active open and closed loop control solutions for an airfoil with SJA at different angles of attack and flap angles. A large number of simulations using RANS & LES models were performed to study the effects of the momentum ratio (Cμ) in the range of 0 to 11% and of the non-dimensional frequency, F+, in the range of 0 to 2 for the control of flow separation at a practical angle of attack and flap angle. The optimum value of C

  2. Active Nematics Are Intrinsically Phase Separated

    NASA Astrophysics Data System (ADS)

    Mishra, Shradha; Ramaswamy, Sriram

    2006-09-01

    Two-dimensional nonequilibrium nematic steady states, as found in agitated granular-rod monolayers or films of orientable amoeboid cells, were predicted [Europhys. Lett. 62, 196 (2003)EULEEJ0295-507510.1209/epl/i2003-00346-7] to have giant number fluctuations, with the standard deviation proportional to the mean. We show numerically that the steady state of such systems is macroscopically phase separated, yet dominated by fluctuations, as in the Das-Barma model [Phys. Rev. Lett. 85, 1602 (2000)PRLTAO0031-900710.1103/PhysRevLett.85.1602]. We suggest experimental tests of our findings in granular and living-cell systems.

  3. Control of volume resistivity in inorganic organic separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.

    1979-01-01

    Control of resistivity in NASA inorganic-organic separators is achieved by incorporating small percentages of high surface area, fine particle silica with other ingredients in the separator coating. The volume resistivity is predictable from the surface area of filler particles in the coating. The approach is applied to two polymer- plasticizer -filler coating systems, where the filler content of each is below the generally acknowledged critical pigment volume concentration of the coating. Application of these coating systems to 0.0254 cm thick (10-mil) fuel cell grade asbestos sheet produces inexpensive, flexible, microporous separators that perform as well as the original inorganic-organic concept, the Astropower separator.

  4. Attosecond beamline with actively stabilized and spatially separated beam paths.

    PubMed

    Huppert, M; Jordan, I; Wörner, H J

    2015-12-01

    We describe a versatile and compact beamline for attosecond spectroscopy. The setup consists of a high-order harmonic source followed by a delay line that spatially separates and then recombines the extreme-ultraviolet (XUV) and residual infrared (IR) pulses. The beamline introduces a controlled and actively stabilized delay between the XUV and IR pulses on the attosecond time scale. A new active-stabilization scheme combining a helium-neon-laser and a white-light interferometer minimizes fluctuations and allows to control delays accurately (26 as rms during 1.5 h) over long time scales. The high-order-harmonic-generation region is imaged via optical systems, independently for XUV and IR, into an interaction volume to perform pump-probe experiments. As a consequence of the spatial separation, the pulses can be independently manipulated in intensity, polarization, and frequency content. The beamline can be combined with a variety of detectors for measuring attosecond dynamics in gases, liquids, and solids.

  5. Attosecond beamline with actively stabilized and spatially separated beam paths

    NASA Astrophysics Data System (ADS)

    Huppert, M.; Jordan, I.; Wörner, H. J.

    2015-12-01

    We describe a versatile and compact beamline for attosecond spectroscopy. The setup consists of a high-order harmonic source followed by a delay line that spatially separates and then recombines the extreme-ultraviolet (XUV) and residual infrared (IR) pulses. The beamline introduces a controlled and actively stabilized delay between the XUV and IR pulses on the attosecond time scale. A new active-stabilization scheme combining a helium-neon-laser and a white-light interferometer minimizes fluctuations and allows to control delays accurately (26 as rms during 1.5 h) over long time scales. The high-order-harmonic-generation region is imaged via optical systems, independently for XUV and IR, into an interaction volume to perform pump-probe experiments. As a consequence of the spatial separation, the pulses can be independently manipulated in intensity, polarization, and frequency content. The beamline can be combined with a variety of detectors for measuring attosecond dynamics in gases, liquids, and solids.

  6. Attosecond beamline with actively stabilized and spatially separated beam paths.

    PubMed

    Huppert, M; Jordan, I; Wörner, H J

    2015-12-01

    We describe a versatile and compact beamline for attosecond spectroscopy. The setup consists of a high-order harmonic source followed by a delay line that spatially separates and then recombines the extreme-ultraviolet (XUV) and residual infrared (IR) pulses. The beamline introduces a controlled and actively stabilized delay between the XUV and IR pulses on the attosecond time scale. A new active-stabilization scheme combining a helium-neon-laser and a white-light interferometer minimizes fluctuations and allows to control delays accurately (26 as rms during 1.5 h) over long time scales. The high-order-harmonic-generation region is imaged via optical systems, independently for XUV and IR, into an interaction volume to perform pump-probe experiments. As a consequence of the spatial separation, the pulses can be independently manipulated in intensity, polarization, and frequency content. The beamline can be combined with a variety of detectors for measuring attosecond dynamics in gases, liquids, and solids. PMID:26724005

  7. UTILITY OF MECHANISTIC MODELS FOR DIRECTING ADVANCED SEPARATIONS RESEARCH & DEVELOPMENT ACTIVITIES: Electrochemically Modulated Separation Example

    SciTech Connect

    Schwantes, Jon M.

    2009-06-01

    The objective for this work was to demonstrate the utility of mechanistic computer models designed to simulate actinide behavior for use in efficiently and effectively directing advanced laboratory R&D activities associated with developing advanced separations methods.

  8. Calcium Activities During Different Ion Exchange Separation Procedures

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Zhu, H.; Liu, Y.; Liu, F.; Zhang, C.; Sun, W.

    2014-12-01

    Calcium is a major element and participates in many geological processes. Investigations on stable calcium isotopic compositions of natural geological samples provide a great powerful tool to understand all kinds of those geological processes from a view of the field of isotope geochemistry. With the development of modern instruments and chemical separation techniques, calcium isotopic compositions could be determined even more precisely if the column chemistry brings no deviation. Usually, Calcium is separated from matrix elements using cation resin columns and the related chemical separation techniques seem to be robust. However, more detailed work still need to be done on matrix effects and calcium isotopic fractionations on column chemistry or during elution processes. If calcium is run on TIMS instruments, the interference effect could be lower and easier controlled, thus, the requirement to the chemistry is relatively not critic, but calcium fractionation on filaments could be much difficult to monitor. If calcium is run on MC-ICP-MS instruments, the interference effect could be huge and is really difficult to be recognized and subtracted, the requirement to the chemistry is much more critical in order to get a real result of the sample, but the instrument fractionation could be easier to monitor. Here we investigate calcium activities on several kinds of cation resins under different column/acid conditions. We seek to find a good balance between recovery and interference effect on column chemistry and are intend to set up a better chemical separation procedure to satisfy the instrument requirements for calcium. In addition, Calcium isotopic fractionation on column will also be discussed further here based on our previous and ongoing results.

  9. Debris control design achievements of the booster separation motors

    NASA Technical Reports Server (NTRS)

    Smith, G. W.; Chase, C. A.

    1985-01-01

    The stringent debris control requirements imposed on the design of the Space Shuttle booster separation motor are described along with the verification program implemented to ensure compliance with debris control objectives. The principal areas emphasized in the design and development of the Booster Separation Motor (BSM) relative to debris control were the propellant formulation and nozzle closures which protect the motors from aerodynamic heating and moisture. A description of the motor design requirements, the propellant formulation and verification program, and the nozzle closures design and verification are presented.

  10. Actively Controlled Components. Chapter 2

    NASA Technical Reports Server (NTRS)

    Horn, W.; Hiller, S.-J.; Pfoertner, H.; Schadow, K.; Rosenfeld, T.; Garg, S.

    2009-01-01

    Active Control can help to meet future engine requirements by an active improvement of the component characteristics. The concept is based on an intelligent control logic, which senses actual operating conditions and reacts with adequate actuator action. This approach can directly improve engine characteristics as performance, operability, durability and emissions on the one hand. On the other hand active control addresses the design constrains imposed by unsteady phenomena like inlet distortion, compressor surge, combustion instability, flow separations, vibration and noise, which only occur during exceptional operating conditions. The feasibility and effectiveness of active control technologies have been demonstrated in lab-scale tests. This chapter describes a broad range of promising applications for each engine component. Significant efforts in research and development remain to implement these technologies in engine rig and finally production engines and to demonstrate today s engine generation airworthiness, safety, reliability, and durability requirements. Active control applications are in particular limited by the gap between available and advanced sensors and actuators, which allow an operation in the harsh environment in an aero engine. The operating and performance requirements for actuators and sensors are outlined for each of the gas turbine sections from inlet to nozzle.

  11. Optimal control of an asymptotic model of flow separation

    NASA Astrophysics Data System (ADS)

    Qadri, Ubaid; Schmid, Peter; LFC-UK Team

    2015-11-01

    In the presence of surface imperfections, the boundary layer developing over an aircraft wing can separate and reattach, leading to a small separation bubble. We are interested in developing a low-order model that can be used to control the onset of separation at high Reynolds numbers typical of aircraft flight. In contrast to previous studies, we use a high Reynolds number asymptotic description of the Navier-Stokes equations to describe the motion of motion of the fluid. We obtain a steady solution to the nonlinear triple-deck equations for the separated flow over a small bump at high Reynolds numbers. We derive for the first time the adjoint of the nonlinear triple-deck equations and use it to study optimal control of the separated flow. We calculate the sensitivity of the properties of the separation bubble to local base flow modifications and steady forcing. We assess the validity of using this simplified asymptotic model by comparing our results with those obtained using the full Navier-Stokes equations.

  12. Closed-loop Separation Control Using Oscillatory Flow Excitation

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Juang, Jer-Nan; Raney, David L.; Seifert, Avi; Pack, latunia G.; Brown, Donald E.

    2000-01-01

    Design and implementation of a digital feedback controller for a flow control experiment was performed. The experiment was conducted in a cryogenic pressurized wind tunnel on a generic separated configuration at a chord Reynolds number of 16 million and a Mach number of 0.25. The model simulates the upper surface of a 20% thick airfoil at zero angle-of-attack. A moderate favorable pressure gradient, up to 55% of the chord, is followed by a severe adverse pressure gradient which is relaxed towards the trailing edge. The turbulent separation bubble, behind the adverse pressure gradient, is then reduced by introducing oscillatory flow excitation just upstream of the point of flow separation. The degree of reduction in the separation region can be controlled by the amplitude of the oscillatory excitation. A feedback controller was designed to track a given trajectory for the desired degree of flow reattachment and to improve the transient behavior of the flow system. Closed-loop experiments demonstrated that the feedback controller was able to track step input commands and improve the transient behavior of the open-loop response.

  13. Reticulated Nanoporous Polymers by Controlled Polymerization-Induced Microphase Separation

    SciTech Connect

    Seo, Myungeun; Hillmyer, Marc A.

    2013-04-08

    Materials with percolating mesopores are attractive for applications such as catalysis, nanotemplating, and separations. Polymeric frameworks are particularly appealing because the chemical composition and the surface chemistry are readily tunable. We report on the preparation of robust nanoporous polymers with percolating pores in the 4- to 8-nanometer range from a microphase-separated bicontinuous precursor. We combined polymerization-induced phase separation with in situ block polymer formation from a mixture of multifunctional monomers and a chemically etchable polymer containing a terminal chain transfer agent. This marriage results in microphase separation of the mixture into continuous domains of the etchable polymer and the emergent cross-linked polymer. Precise control over pore size distribution and mechanical integrity renders these materials particularly suited for various advanced applications.

  14. Low-Pressure Turbine Separation Control: Comparison With Experimental Data

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.

    2002-01-01

    The present work details a computational study, using the Glenn HT code, that analyzes the use of vortex generator jets (VGJs) to control separation on a low-pressure turbine (LPT) blade at low Reynolds numbers. The computational results are also compared with the experimental data for steady VGJs. It is found that the code determines the proper location of the separation point on the suction surface of the baseline blade (without any VGJ) for Reynolds numbers of 50,000 or less. Also, the code finds that the separated region on the suction surface of the blade vanishes with the use of VGJs. However, the separated region and the wake characteristics are not well predicted. The wake width is generally over-predicted while the wake depth is under-predicted.

  15. Novel platform for minimizing cell loss on separation process: Droplet-based magnetically activated cell separator.

    PubMed

    Kim, Youngho; Hong, Su; Lee, Sang Ho; Lee, Kangsun; Yun, Seok; Kang, Yuri; Paek, Kyeong-Kap; Ju, Byeong-Kwon; Kim, Byungkyu

    2007-07-01

    To reduce the problem of cell loss due to adhesion, one of the basic phenomena in microchannel, we proposed the droplet-based magnetically activated cell separator (DMACS). Based on the platform of the DMACS-which consists of permanent magnets, a coverslip with a circle-shaped boundary, and an injection tube-we could collect magnetically (CD45)-labeled (positive) cells with high purity and minimize cell loss due to adhesion. To compare separation efficiency between the MACS and the DMACS, the total number of cells before and after separation with both the separators was counted by flow cytometry. We could find that the number (3241/59 940) of cells lost in the DMACS is much less than that (22 360/59 940) in the MACS while the efficiency of cell separation in the DMACS (96.07%) is almost the same as that in the MACS (96.72%). Practically, with fluorescent images, it was visually confirmed that the statistical data are reliable. From the viability test by using Hoechst 33 342, it was also demonstrated that there was no cell damage on a gas-liquid interface. Conclusively, DMACS will be a powerful tool to separate rare cells and applicable as a separator, key component of lab-on-a-chip.

  16. Turbulent Boundary Layer Separation Control on a Convex Ramp using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Schatzman, David M.

    2005-11-01

    This work is focused toward the development of active feedback control of turbulent boundary layer separation from a convex ramp surface. The work reported here is performed in a subsonic wind tunnel facility and utilizes single dielectric barrier discharge plasma actuators for separation control. Smoke and oil surface flow visualization are used to characterize the separation in the absence of actuation. The surface mounted plasma actuators are positioned upstream of the flow separation locations. Plasma-induced blowing transfers additional momentum to the boundary layer along the ramp surface and has a beneficial effect on flow reattachment. Experimental results are presented which demonstrate the effects of both steady and unsteady actuation. The effectiveness of the active flow control is documented through surface pressure measurements, LDV measurements, and downstream wake surveys.

  17. Fluid Mechanics of Wing Adaptation for Separation Control

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)

    1997-01-01

    The unsteady fluid mechanics associated with use of a dynamically deforming leading edge airfoil for achieving compressible flow separation control has been experimentally studied. Changing the leading edge curvature at rapid rates dramatically alters the flow vorticity dynamics which is responsible for the many effects observed in the flow.

  18. Separation Control in a Multistage Compressor Using Impulsive Surface Injection

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.; Braunscheidel, Edward P.; Culley, Dennis E.; Bright, Michelle M.

    2006-01-01

    Control of flow separation using impulsive surface injection is investigated within the multistage environment of a low speed axial-flow compressor. Measured wake profiles behind a set of embedded stator vanes treated with suction-surface injection indicate significant reduction in flow separation at a variety of injection-pulse repetition rates and durations. The corresponding total pressure losses across the vanes reveal a bank of repetition rates at each pulse duration where the separation control remains nearly complete. This persistence allows for demands on the injected-mass delivery system to be economized while still achieving effective flow control. The response of the stator-vane boundary layers to infrequently applied short injection pulses is described in terms of the periodic excitation of turbulent strips whose growth and propagation characteristics dictate the lower bound on the band of optimal pulse repetition rates. The eventual falloff in separation control at higher repetition rates is linked to a competition between the benefits of pulse-induced mixing and the aggravation caused by the periodic introduction of low-momentum fluid. Use of these observations for impulsive actuator design is discussed and their impact on modeling the time-average effect of impulsive surface injection for multistage steady-flow simulation is considered.

  19. Flow Separation Control Over a Ramp Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Owens, Lewis R.

    2014-01-01

    Flow separation control on an adverse-pressure-gradient ramp model was investigated using various flow-control methods in the NASA Langley 15-Inch Wind Tunnel. The primary flow-control method studied used a sweeping jet actuator system to compare with more classic flow-control techniques such as micro-vortex generators, steady blowing, and steady- and unsteady-vortex generating jets. Surface pressure measurements and a new oilflow visualization technique were used to characterize the effects of these flow-control actuators. The sweeping jet actuators were run in three different modes to produce steady-straight, steady-angled, and unsteady-oscillating jets. It was observed that all of these flow-control methods are effective in controlling the separated flows on the ramp model. The steady-straight jet energizes the boundary layer by momentum addition and was found to be the least effective method for a fixed momentum coefficient. The steady-angled jets achieved better performance than the steady-straight jets because they generate streamwise vortices that energize the boundary layer by mixing high-momentum fluid with near wall low-momentum fluid. The unsteady-oscillating jets achieved the best performance by increasing the pressure recovery and reducing the downstream flow separation. Surface flow visualizations indicated that two out-of-phase counter-rotating vortices are generated per sweeping jet actuator, while one vortex is generated per vortex-generating jets. The extra vortex resulted in increased coverage, more pressure recovery, and reduced flow separation.

  20. Controller Design Based on Nonlinear Separation Control Method for OTEC Pilot Plant

    NASA Astrophysics Data System (ADS)

    Nakamura, Masatoshi; Sugi, Takenao; Ikegami, Yasuyuki; Uehara, Haruo

    An OTEC (Ocean Thermal Energy Conversion) pilot plant consists of two parts; an OTEC system of main part and a heat reservoir system of sub part. The nonlinear separation control method was applied to the controller design for the OTEC pilot plant. The nonlinear separation models were constructed for the OTEC system and the heat reservoir system. The controller for the OTEC system and the heat reservoir system was designed by using the both nonlinear separation models. A detail simulation study showed that the multi-layer controller for the OTEC pilot plant brought a satisfactory control performance by comparing a conventional PI control.

  1. Computation of a controlled store separation from a cavity

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1993-01-01

    Coupling of the Reynolds-averaged Navier-Stokes equations, rigid-body dynamics, and a pitch attitude control law is demonstrated in two- and three-dimensions. The application problem was the separation of a canard-controlled store from an open-flow rectangular cavity bay at a freestream Mach number of 1.2. The transient flowfield was computed using a diagonal scheme in an overset mesh framework, with the resultant aerodynamic loads used as the forcing functions in the nonlinear dynamics equations. The proportional and rate gyro sensitivities were computed a priori using pole placement techniques for the linearized dynamical equations. These fixed gain values were used in the controller for the nonlinear simulation. Reasonable comparison between the full and linearized equations for a perturbed two-dimensional missile was found. Also in two-dimensions, a controlled store was found to possess improved separation characteristics over a canard-fixed store. In three-dimensions, trajectory comparisons with wind-tunnel data for the canard-fixed case will be made. In addition, it will be determined if a canard-controlled store is an effective means of improving cavity store separation characteristics.

  2. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  3. Optimal Control Modification for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  4. Formation metrology and control for large separated optics space telescopes

    NASA Technical Reports Server (NTRS)

    Mettler, E.; Quadrelli, M.; Breckenridge, W.

    2002-01-01

    In this paper we present formation flying performance analysis initial results for a representative large space telescope composed of separated optical elements [Mett 02]. A virtual-structure construct (an equivalent rigid body) is created by unique metrology and control that combines both centralized and decentralized methods. The formation may be in orbit at GEO for super-resolution Earth observation, as in the case of Figure 1, or it may be in an Earth-trailing orbit for astrophysics, Figure 2. Extended applications are envisioned for exo-solar planet interferometric imaging by a formation of very large separated optics telescopes, Figure 3. Space telescopes, with such large apertures and f/10 to f/100 optics, are not feasible if connected by massive metering structures. Instead, the new virtual-structure paradigm of information and control connectivity between the formation elements provides the necessary spatial rigidity and alignment precision for the telescope.

  5. The use of gas separation membranes for pollution control

    SciTech Connect

    Logsdon, B.W.; Stull, D.; Pellegrino, J.

    1993-04-01

    Rocky Flats is considering the use of a fluidized bed oxidation unit (FBU) for the destruction of mixed waste. Public concerns about the health effects of such destruction have been intense. In order to allay such concerns and minimize the possible health impacts of the proposed mixed waste destruction, RFP has been investigating novel methods of air pollution control. Among the most promising of these techniques is the use of gas separation membranes, which is described in this report.

  6. Blow-up and control of marginally separated boundary layers.

    PubMed

    Braun, Stefan; Kluwick, Alfred

    2005-05-15

    Interactive solutions for steady two-dimensional laminar marginally separated boundary layers are known to exist up to a critical value Gamma(c) of the controlling parameter (e.g. the angle of attack of a slender airfoil) Gamma only. Here, we investigate three-dimensional unsteady perturbations of such boundary layers, assuming that the basic flow is almost critical, i.e. in the limit Gamma(c)-Gamma-->0. It is then shown that the interactive equations governing such perturbations simplify significantly, allowing, among others, a systematic study of the blow-up phenomenon observed in earlier investigations and the optimization of devices used in boundary-layer control.

  7. Control of flow separation and mixing by aerodynamic excitation

    NASA Technical Reports Server (NTRS)

    Rice, Edward J.; Abbott, John M.

    1990-01-01

    The recent research in the control of shear flows using unsteady aerodynamic excitation conducted at the NASA Lewis Research Center is reviewed. The program is of a fundamental nature, concentrating on the physics of the unsteady aerodynamic processes. This field of research is a fairly new development with great promise in the areas of enhanced mixing and flow separation control. Enhanced mixing research includes influence of core turbulence, forced pairing of coherent structures, and saturation of mixing enhancement. Separation flow control studies included are for a two-dimensional diffuser, conical diffusers, and single airfoils. Ultimate applications include aircraft engine inlet flow control at high angle of attack, wide angle diffusers, highly loaded airfoils as in turbomachinery, and ejector/suppressor nozzles for the supersonic transport. An argument involving the Coanda Effect is made that all of the above mentioned application areas really only involve forms of shear layer mixing enhancement. The program also includes the development of practical excitation devices which might be used in aircraft applications.

  8. Control of flow separation and mixing by aerodynamic excitation

    NASA Technical Reports Server (NTRS)

    Rice, Edward J.; Abbott, John M.

    1990-01-01

    The recent research progress in the control of shear flows using unsteady aerodynamic excitation conducted at the NASA Lewis Research Center is reviewed. The program is of fundamental nature concentrating on the physics of the unsteady aerodynamic processes. This field of research is a fairly new development with great promise in the areas of enhanced mixing and flow separation control. Enhanced mixing research reported in this paper include influence of core turbulence, forced pairing of coherent structures, and saturation of mixing enhancement. Separation flow control studies included are for a two-dimensional diffuser, conical diffusers, and single airfoils. Ultimate applications of this research include aircraft engine inlet flow control at high angle of attack, wide angle diffusers, highly loaded airfoils as in turbomachinery, and ejector/suppressor nozzles for the supersonic transport. An argument involving the Coanda Effect is made here that all of the above mentioned application areas really only involve forms of shear layer mixing enhancement. The program also includes the development of practical excitation devices which might be used in aircraft applications.

  9. Glow Discharge Plasma Demonstrated for Separation Control in the Low-Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Ashpis, David e.; Hultgren, Lennart S.

    2004-01-01

    Flow separation in the low-pressure turbine (LPT) is a major barrier that limits further improvements of aerodynamic designs of turbine airfoils. The separation is responsible for performance degradation, and it prevents the design of highly loaded airfoils. The separation can be delayed, reduced, or eliminated completely if flow control techniques are used. Successful flow control technology will enable breakthrough improvements in gas turbine performance and design. The focus of this research project was the development and experimental demonstration of active separation control using glow discharge plasma (GDP) actuators in flow conditions simulating the LPT. The separation delay was shown to be successful, laying the foundation for further development of the technologies to practical application in the LPT. In a fluid mechanics context, the term "flow control" means a technology by which a very small input results in a very large effect on the flow. In this project, the interest is to eliminate or delay flow separation on LPT airfoils by using an active flow control approach, in which disturbances are dynamically inserted into the flow, they interact with the flow, and they delay separation. The disturbances can be inserted using a localized, externally powered, actuating device, examples are acoustic, pneumatic, or mechanical devices that generate vibrations, flow oscillations, or pulses. A variety of flow control devices have been demonstrated in recent years in the context of the external aerodynamics of aircraft wings and airframes, where the incoming flow is quiescent or of a very low turbulence level. However, the flow conditions in the LPT are significantly different because there are high levels of disturbances in the incoming flow that are characterized by high free-stream turbulence intensity. In addition, the Reynolds number, which characterizes the viscous forces in the flow and is related to the flow speed, is very low in the LPT passages.

  10. Separation Control Over A Wall-Mounted Hump

    NASA Technical Reports Server (NTRS)

    Greenblatt, D.; Paschal, K. B.; Schaeffler, N. W.; Washburn, A. E.; Harris, J.; Yao, C. S.

    2007-01-01

    Separation control by means of steady suction or zero efflux oscillatory jets is known to be effective in a wide variety of flows under different flow conditions. Control is effective when applied in a nominally two-dimensional manner, for example, at the leading-edge of a wing or at the shoulder of a deflected flap. Despite intuitive understanding of the flow, at present there is no accepted theoretical model that can adequately explain or describe the observed effects of the leading parameters such as reduced suction-rate, or frequency and momentum input. This difficulty stems partly from the turbulent nature of the flows combined with superimposed coherent structures, which are usually driven by at least one instability mechanism. The ever increasing technological importance of these flows has spurned an urgent need to develop turbulence models with a predictive capability. Present attempts to develop such models are hampered in one way or another by incomplete data sets, uncertain or undocumented inflow and boundary conditions, or inadequate flow-field measurements. This paper attempts to address these issues by conducting an experimental investigation of a lowspeed separated flow over a wall-mounted hump model. The model geometry was designed by Seifert & Pack, who measured static and dynamic pressures on the model for a wide range of Reynolds and Mach numbers and control conditions. This paper describes the present experimental setup, as well as the types and range of data acquired. Sample data is presented and future work is discussed.

  11. Control of separation and quantitative analysis by GC-FTIR

    NASA Astrophysics Data System (ADS)

    Semmoud, A.; Huvenne, Jean P.; Legrand, P.

    1992-03-01

    Software for 3-D representations of the 'Absorbance-Wavenumber-Retention time' is used to control the quality of the GC separation. Spectral information given by the FTIR detection allows the user to be sure that a chromatographic peak is 'pure.' The analysis of peppermint essential oil is presented as an example. This assurance is absolutely required for quantitative applications. In these conditions, we have worked out a quantitative analysis of caffeine. Correlation coefficients between integrated absorbance measurements and concentration of caffeine are discussed at two steps of the data treatment.

  12. Nanocrystallization in Oxyfluoride Glasses Controlled by Amorphous Phase Separation.

    PubMed

    Lin, Changgui; Bocker, Christian; Rüssel, Christian

    2015-10-14

    Transparent bulk glass-ceramics containing ZnF2, K2SiF6, and KZnF3 nanocrystals are successfully obtained from xKF-xZnF2-(100 - 2x)SiO2 oxyfluoride glasses for the first time to the best of our knowledge. The glass transition temperatures of heat-treated samples increase with time and approach values that resemble the temperatures chosen for thermal treatment. During nucleation and crystal growth, the residual glass around the crystals is depleted in fluoride which as glass component usually leads to a decrease in viscosity. The crystallization behavior notably depends on the glass composition and changes within a small range from x = 20 to 22.5 mol %. The occurrence of liquid/liquid phase separation in dependence of the composition is responsible for the physicochemical changes. Two different microstructures of droplet and interpenetrating phase separation and their compositional evolution are observed by replica transmission electron microscopy technique in the multicomponent glassy system. This study suggests that the size and crystal phase of precipitated crystallites can be controlled by the initial phase separation.

  13. Passive Flow Separation Control Mechanism Inspired by Shark Skin

    NASA Astrophysics Data System (ADS)

    Oakley, India; Lang, Amy

    2015-11-01

    The following experimental work seeks to examine shark scales as passive flow-actuated separation control mechanisms. It is hypothesized that the actuation of these scales can in fact reduce pressure drag by inhibiting flow reversal and thereby prevent flow separation. In order to examine this mechanism at a fundamental level, three-dimensional sharkskin scales were simplified and modeled as two-dimensional flaps. To further simplify the experiment, the flaps were observed within a laminar boundary layer. The laminar boundary layer was grown over a long flat plate that was placed inside a water tunnel. A rotating cylinder was also used to induce an unsteady, increasing adverse pressure gradient, which generated a reversing flow. In order to visualize the potential actuation of the two-dimensional flaps DPIV (digital particle image velocimetry) was utilized. Three main objectives for this work included, the actuation of the two-dimensional flaps, the resistance to a reversed flow as a result of flap actuation and the prevention of flow separation. However once the experiment was conducted the flaps did not perform as previously hypothesized. The adverse pressure gradient induced by the rotating cylinder did not produce a reversing flow powerful enough to actuate the flaps. NSF REU Site Award 1358991.

  14. Laminar separation control effects of shortfin mako shark skin

    NASA Astrophysics Data System (ADS)

    Bradshaw, Michael Thomas

    Shark skin is investigated as a means of laminar flow separation control due to its preferential flow direction as well as the potential for scales to erect and obstruct low-momentum backflow resulting from an adverse pressure gradient acting on the boundary layer. In this study, the effect of the scales on flow reversal is observed in laminar flow conditions. This is achieved by comparing the flow over a pectoral fin from a shortfin mako shark to that over the same fin that is painted to neutralize the effect of the scales on the flow. The effect of the scales on flow reversal is also observed by comparing the flow over a smooth PVC cylinder to that over the same cylinder with samples of mako shark skin affixed to the entire circumference of the cylinder. These samples were taken from the flank region of the shark because the scales at this location have been shown to have the greatest angle of erection compared to the scales on the rest of the shark's body. Scales at this location have an average crown length of 220 microm with a maximum bristling angle of proximately 50 degrees. Because these scales have the highest bristling angle, they have the best potential for separation control. All data was taken using time-resolved Digital Particle Image Velocimetry. The flow over the pectoral fin was analyzed at multiple angles of attack. It was found that the shark skin had the effect of decreasing the size of the separated region over both the pectoral fin and the cylinder as well as decreasing the magnitudes of the reversing flow found in these regions. For all Reynolds numbers tested, drag reduction over 28% was found when applying the sharkskin to the cylinder.

  15. 20 CFR 404.1325 - Separation from active service under conditions other than dishonorable.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Separation from active service under... of the Uniformed Services Separation from Active Service § 404.1325 Separation from active service under conditions other than dishonorable. Separation from active service under conditions other...

  16. 20 CFR 404.1325 - Separation from active service under conditions other than dishonorable.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Separation from active service under... of the Uniformed Services Separation from Active Service § 404.1325 Separation from active service under conditions other than dishonorable. Separation from active service under conditions other...

  17. Active Flow Control Stator With Coanda Surface

    NASA Technical Reports Server (NTRS)

    Guendogdu; Vorreiter; Seume

    2010-01-01

    Active Flow Control increases the permissible aerodynamic loading. Curved surface near the trailing edge ("Coanda surface"): a) increases turning -> higher pressure ratio. b) controls boundary layer separation -> increased surge margin. Objective: Reduce the number of vanes or compressor stages. Constraints: 1. In a real compressor, the vane must still function entirely without blowing. 2. Maintain the flow exit angle of the reference stator despite the resulting increase in stator loading.

  18. Experimental study of airfoil separation control using synthetic jets

    NASA Astrophysics Data System (ADS)

    Xia, Xi; Mohseni, Kamran

    2010-11-01

    The flow control over an airfoil is studied experimentally in a wind tunnel. Synthetic jets are placed on the top surface of the airfoil as flow actuators. The position and the angle of the jet orifice, together with the frequency and jet strength could be varied in order to adjust the separation or reattachment points on the surface. An Array of hot-film sensors are located on the surface in order to detect the location of the reattachment point. The airfoil is mounted on a 6 d.o.f force balance system to dynamically measure the drag and lift forces on the airfoil. Results from the hot-film sensor array measurement are correlated to the measured drag and lift forces.

  19. Closed-loop separation control over a sharp edge ramp using genetic programming

    NASA Astrophysics Data System (ADS)

    Debien, Antoine; von Krbek, Kai A. F. F.; Mazellier, Nicolas; Duriez, Thomas; Cordier, Laurent; Noack, Bernd R.; Abel, Markus W.; Kourta, Azeddine

    2016-03-01

    We experimentally perform open and closed-loop control of a separating turbulent boundary layer downstream from a sharp edge ramp. The turbulent boundary layer just above the separation point has a Reynolds number Re_{θ }≈ 3500 based on momentum thickness. The goal of the control is to mitigate separation and early re-attachment. The forcing employs a spanwise array of active vortex generators. The flow state is monitored with skin-friction sensors downstream of the actuators. The feedback control law is obtained using model-free genetic programming control (GPC) (Gautier et al. in J Fluid Mech 770:442-457, 2015). The resulting flow is assessed using the momentum coefficient, pressure distribution and skin friction over the ramp and stereo PIV. The PIV yields vector field statistics, e.g. shear layer growth, the back-flow area and vortex region. GPC is benchmarked against the best periodic forcing. While open-loop control achieves separation reduction by locking-on the shedding mode, GPC gives rise to similar benefits by accelerating the shear layer growth. Moreover, GPC uses less actuation energy.

  20. Resource Constrained Planning of Multiple Projects with Separable Activities

    NASA Astrophysics Data System (ADS)

    Fujii, Susumu; Morita, Hiroshi; Kanawa, Takuya

    In this study we consider a resource constrained planning problem of multiple projects with separable activities. This problem provides a plan to process the activities considering a resource availability with time window. We propose a solution algorithm based on the branch and bound method to obtain the optimal solution minimizing the completion time of all projects. We develop three methods for improvement of computational efficiency, that is, to obtain initial solution with minimum slack time rule, to estimate lower bound considering both time and resource constraints and to introduce an equivalence relation for bounding operation. The effectiveness of the proposed methods is demonstrated by numerical examples. Especially as the number of planning projects increases, the average computational time and the number of searched nodes are reduced.

  1. 20 CFR 404.1370 - Evidence of active service and separation from active service.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Evidence of active service and separation from active service. 404.1370 Section 404.1370 Employees' Benefits SOCIAL SECURITY ADMINISTRATION... Uniformed Services Evidence of Active Service and Membership in A Uniformed Service § 404.1370 Evidence...

  2. 20 CFR 404.1370 - Evidence of active service and separation from active service.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Evidence of active service and separation from active service. 404.1370 Section 404.1370 Employees' Benefits SOCIAL SECURITY ADMINISTRATION... Uniformed Services Evidence of Active Service and Membership in A Uniformed Service § 404.1370 Evidence...

  3. 20 CFR 404.1370 - Evidence of active service and separation from active service.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Evidence of active service and separation from active service. 404.1370 Section 404.1370 Employees' Benefits SOCIAL SECURITY ADMINISTRATION... Uniformed Services Evidence of Active Service and Membership in A Uniformed Service § 404.1370 Evidence...

  4. 20 CFR 404.1370 - Evidence of active service and separation from active service.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Evidence of active service and separation from active service. 404.1370 Section 404.1370 Employees' Benefits SOCIAL SECURITY ADMINISTRATION... Uniformed Services Evidence of Active Service and Membership in A Uniformed Service § 404.1370 Evidence...

  5. 20 CFR 404.1370 - Evidence of active service and separation from active service.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Evidence of active service and separation from active service. 404.1370 Section 404.1370 Employees' Benefits SOCIAL SECURITY ADMINISTRATION... Uniformed Services Evidence of Active Service and Membership in A Uniformed Service § 404.1370 Evidence...

  6. Local flow control for active building facades

    NASA Astrophysics Data System (ADS)

    Kaligotla, Srikar; Chen, Wayne; Glauser, Mark

    2010-11-01

    Existing building facade designs are for a passive and an impermeable shell to prevent migration of outdoor air into the building and to control heat transfers between the exterior environment and the building interior. An active facade that can respond in real time to changing environmental conditions like wind speed and direction, pollutant load, temperature, humidity and light can lower energy use and maximize occupant comfort. With an increased awareness of cost and environmental effects of energy use, cross or natural ventilation has become an attractive method to lower energy use. Separated flow regions around such buildings are undesirable due to high concentration of pollutants, especially if the vents or dynamic windows for cross ventilation are situated in these regions. Outside pollutant load redistribution through vents can be regulated via flow separation control to minimize transport of pollutants into the building. Flow separation has been substantially reduced with the application of intelligent flow control tools developed at Syracuse University for flow around "silo" (turret) like structures. Similar flow control models can be introduced into buildings with cross ventilation for local external flow separation control. Initial experiments will be performed for turbulent flow over a rectangular block (scaled to be a mid-rise building) that has been configured with dynamic vents and unsteady suction actuators in a wind tunnel at various wind speeds.

  7. Separation Control at Flight Reynolds Numbers: Lessons Learned and Future Directions

    NASA Technical Reports Server (NTRS)

    Seifert, Avi; Pack, LaTunia G.

    2000-01-01

    Active separation control, using periodic excitation, was studied experimentally at high Reynolds numbers. The effects of compressibility, mild sweep, location o excitation slot and steady momentum transfer on the efficacy of the method were identified. Tests conducted at chord Reynolds numbers as high as 40 x 10(exp 6) demonstrated that active control using oscillatory flow excitation can effectively delay flow separation from and reattach separated flow to aerodynamic surfaces at flight conditions. The effective frequencies generate one to four vortices over the controlled region at all times, regardless of the Reynolds number. The vortices are initially amplified by the separated shear-layer, and after initiating reattachment, the strength of the vortices decay as they are convected downstream. Large amplitude, low frequency vortices break down to smaller ones upon introduction at the excitation slot. The effects of steady mass transfer were compared to those of periodic excitation. It was found that steady blowing is significantly inferior to periodic excitation in terms o performance benefits and that the response to steady blowing is abrupt, and therefore undesirable from a control point of view. Steady suction and periodic excitation are comparable in effectiveness and both exhibit a gradual response to changes in the magnitude of the control input. The combination of weak steady suction and periodic excitation is extremely effective while the addition of steady blowing could be detrimental. Compressibility effects are weak as long as separation is not caused by a shock-wave/boundary-layer interaction The undesirable effects of the shock-induced separation could be alleviated by the introduction of periodic excitation upstream of the shock wave, inside the region of supersonic flow. The effects of mild sweep were also studied and periodic excitation was found to be very effective in reattaching three-dimensional separated flow. Scaling laws that correlate 2D

  8. 3-D Separation Control using Spatially-Compact, Pulsed Actuation

    NASA Astrophysics Data System (ADS)

    Woo, George T. K.; Glezer, Ari

    2013-11-01

    The dynamics of controlled 3-D transitory attachment of stalled flow over a dynamically pitching 2-D airfoil are investigated in wind tunnel experiments. Pulsed actuation is effected over a spanwise fraction of the separated domain on a time scale that is an order of magnitude shorter than the airfoil's characteristic convective time scale using surface-integrated pulsed, combustion-driven actuator jets. The formation, evolution, and advection of vorticity concentrations over the airfoil and in its near wake are computed from high-resolution, phase-locked PIV measurements of the flow field in multiple cross-stream planes. It is shown that transitory attachment spreads toward the outboard, unactuated flow domains and exceeds the spanwise width of the actuation. The attachment is preceded by the formation of 3-D vortical structures that are advected and shed into the near wake. The effect of the actuation on the variation of the lift and pitching moment during the pitching cycle is altered significantly with its phase delay relative to the airfoil's pitching motion and can significantly mitigate the adverse aerodynamic effects of the dynamic stall. Supported by AFOSR.

  9. Footpoint Separation and Evershed Flow of Active Regions

    NASA Astrophysics Data System (ADS)

    Norton, Aimee Ann; Jones, E. H.

    2012-05-01

    The bipolar nature of active regions and sunspot groups within the Sun’s photosphere is generally attributed to the emergence of magnetic flux tubes that originate from shear and turbulent pumping at the base of the Sun’s convection zone. There is debate, however, as to exactly how well-connected active regions are to solar interior. A connection to the solar interior during the ascent of a flux tube through the convection zone is a requirement within numerical models designed to describe the observed characteristics of active regions, e.g. Joy’s law tilt and latitude emergence, however, these models also predict post-emergence behavior of sunspots that is not supported observationally (Schussler and Rempel, 1995; Fan, 2009; Toth and Gerlei, 2003). It has been suggested (Rubio et al., 2008; Schussler and Rempel, 1995) that a bipolar magnetic region might lose its connection quickly upon emergence. Using data from SDO/HMI, we examine the footpoint separation and the Evershed flow of a number of active regions over time to detect the disconnection process of a sunspot from its magnetic roots.

  10. Active control of convection

    SciTech Connect

    Bau, H.H.

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  11. Photocatalytically active titanium dioxide nanopowders: Synthesis, photoactivity and magnetic separation

    NASA Astrophysics Data System (ADS)

    Nikkanen, J.-P.; Heinonen, S.; Huttunen Saarivirta, E.; Honkanen, M.; Levänen, E.

    2013-12-01

    Two approaches were used to obtain nanocrystalline titanium dioxide (TiO2) photocatalyst powders. Firstly, low-temperature synthesis method and secondly liquid flame spraying. The structural properties of the produced powders were determined with X-ray diffraction, transmission electron microscopy and nitrogen adsorption tests. The photocatalytic properties of the powders were studied with methylene blue (MB) discoloration tests. After discolorations tests, TiO2 was coagulated with magnetite particles using FeCl3·6 H2O at a fixed pH value. Magnetic separation of coagulated TiO2 and magnetite was carried out by a permanent magnet. The obtained results showed that the particle size of the powders synthesized at low-temperature was very small and the specific surface area high. The phase content of the powder was also shown to depend greatly on the acidity of the synthesis solution. Powder synthesized by liquid flame spraying was mixture of anatase and rutile phases with essentially larger particle size and lower specific surface area than those of low-temperature synthesized powders. The MB discoloration test showed that photocatalytic activity depends on the phase structure as well as the specific surface area of the synthesized TiO2 powder. The magnetic separation of TiO2-magnetite coagulate from solution proved to be efficient around pH:8.

  12. Active weld control

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  13. Fundamental study of phosphor separation by controlling magnetic force

    NASA Astrophysics Data System (ADS)

    Wada, Kohei; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2013-11-01

    The phosphor wastes consist of phosphors with different emission colors, green (LAP), red (YOX), blue (BAM) and white (HP). It is required to recover and reuse the rare earth phosphors with high market value. In this study, we tried to separate the phosphor using the magnetic separation by HTS bulk magnet utilizing the differences of magnetic susceptibility by the type of phosphors. We succeeded in the successive separation of HP with low market value from YOX and BAM including the rare earth using the magnetic Archimedes method. In this method, vertical and radial components of the magnetic force were used.

  14. PMSM sensorless control with separate control strategies and smooth switch from low speed to high speed.

    PubMed

    Chen, SiYi; Luo, Ying; Pi, YouGuo

    2015-09-01

    This paper proposes a smooth switching scheme with separate control strategies on low speed mode and high speed mode for permanent magnet synchronous motor (PMSM) sensorless control to improve the overall performance in full speed range. Constant voltage/frequency tuning method is used on low speed mode because the rotor position can hardly be estimated precisely at low speed. Along with the increasing speed, the control strategy can be switched to high speed mode smoothly when current and speed meet the given requirements. In this high speed mode, the current tracking with a sliding mode observer (SMO) and speed tracking with a sliding mode controller (SMC) are handled, respectively. Experimental demonstration is presented to show the desired performance in full speed range of the PMSM sensorless control using the proposed control scheme in this paper.

  15. Flow Separation Control on A Full-Scale Vertical Tail Model Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Andino, Marlyn Y.; Lin, John C.; Washburn, Anthony E.; Whalen, Edward A.; Graff, Emilio C.; Wygnanski, Israel J.

    2015-01-01

    This paper describes test results of a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jets AFC was tested at the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The flow separation control optimization was performed at 100 knots, a maximum rudder deflection of 30deg, and sideslip angles of 0deg and -7.5deg. Greater than 20% increments in side force were achieved at the two sideslip angles with a 31-actuator AFC configuration. Flow physics and flow separation control associated with the AFC are presented in detail. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. The momentum coefficient (C sub mu) is shown to be a useful parameter to use for scaling-up sweeping jet AFC from sub-scale tests to full-scale applications. Reducing the number of actuators at a constant total C(sub mu) of approximately 0.5% and tripling the actuator spacing did not significantly affect the flow separation control effectiveness.

  16. Characterization and Control of Separated Entrance Flow in a Branched Channel

    NASA Astrophysics Data System (ADS)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2015-11-01

    The evolution of the flow downstream of the inlet of a rectangular channel that is branched along the entire span of the side wall of a primary channel of the same height is investigated experimentally in an air facility. Of particular interest is the formation and scaling of a separated flow domain downstream of the entrance plane into the secondary channel and its interaction with the flow surfaces at speeds up to M = 0 . 4 . The separation is actively controlled using a spanwise array of fluidic actuators on the primary channel's surface upstream of the inlet plane of the secondary duct. The effects of the actuation on the evolution of the separation and attachment of the vorticity layer between upstream surface of the primary duct and the surface of the secondary duct downstream of the branched inlet in the presence of a strong confined adverse pressure gradient are investigated using particle image velocimetry coupled with detailed static surface pressure distributions. The effects of the controlled separation within the secondary channel on the global flow within the primary duct and on flow split between primary and secondary channels are assessed, and it is demonstrated that actuation can effect significant changes in the flow fractions between the channels. Copyright 2015 Boeing. All rights reserved.

  17. Active Control of Environmental Noise

    NASA Astrophysics Data System (ADS)

    Wright, S. E.; Vuksanovic, B.

    1996-02-01

    Most of the current research on active noise control is confined to restricted spaces such as earphones, active silencers, air-conditioning ducts, truck cabins and aircraft fuselages. In this paper the basic concepts of environmental noise reduction by using active noise control in unconfined spaces are explored. The approach is to develop a controlled acoustic shadow, generated by a wall of secondary sources, to reduce unwanted sound in the direction of a complaint area. The basic acoustic theory is considered, followed by computer modelling, and some results to show the effectiveness of the approach. EA Technology and Yorkshire electric in the United Kingdom are supporting this work.

  18. Continuous flow system for controlling phases separation near λ transition

    SciTech Connect

    Chorowski, M.; Poliński, J.; Kempiński, W.; Trybuła, Z.; Łoś, Sz.; Chołast, K.; Kociemba, A.

    2014-01-29

    As demands on 3He are increasing and conventional 3He production through tritium decay is decreasing, alternative 3He production methods are becoming economically viable. One such possibility is to use entropy filters for extraction of the 3He isotope from natural gas. According to the phase diagram of the 3He, its solidification is impossible by only lowering of the temperature. Hence during the cooling process at stable pressure we can reach λ-point and pass to the special phase - He II. The total density of HeII is a sum of the two phases: normal the superfluid ones. It is possible to separate these two phases with an entropy filter - the barrier for the classically-behaving normal phase. This barrier can also be used to separate the two main isotopes of He: 4He and 3He, because at temperatures close to the 4He-λ-point the 3He isotope is part of the normal phase. The paper presents continuous flow schemes of different separation methods of 3He from helium commodity coming from natural gas cryogenic processing. An overall thermodynamic efficiency of the 3He/4He separation process is presented. A simplified model of continuous flow HeI -HeII recuperative heat exchanger is given. Ceramic and carbon porous plugs have been tested in entropy filter applications.

  19. 33 CFR 239.7 - Separation of flood control works from urban drainage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Separation of flood control works... COVERED FLOOD CONTROL CHANNELS § 239.7 Separation of flood control works from urban drainage. Covered channels are likely to be considered in boundary areas demarking urban drainage and flood...

  20. 33 CFR 239.7 - Separation of flood control works from urban drainage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Separation of flood control works... COVERED FLOOD CONTROL CHANNELS § 239.7 Separation of flood control works from urban drainage. Covered channels are likely to be considered in boundary areas demarking urban drainage and flood...

  1. 33 CFR 239.7 - Separation of flood control works from urban drainage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Separation of flood control works... COVERED FLOOD CONTROL CHANNELS § 239.7 Separation of flood control works from urban drainage. Covered channels are likely to be considered in boundary areas demarking urban drainage and flood...

  2. 33 CFR 239.7 - Separation of flood control works from urban drainage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Separation of flood control works... COVERED FLOOD CONTROL CHANNELS § 239.7 Separation of flood control works from urban drainage. Covered channels are likely to be considered in boundary areas demarking urban drainage and flood...

  3. 33 CFR 239.7 - Separation of flood control works from urban drainage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Separation of flood control works... COVERED FLOOD CONTROL CHANNELS § 239.7 Separation of flood control works from urban drainage. Covered channels are likely to be considered in boundary areas demarking urban drainage and flood...

  4. Controls Considerations for Turbine Active Clearance Control

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2004-01-01

    This presentation discusses active control of turbine tip clearance from a control systems perspective. It is a subset of charts that were presented at the 2003 meeting of the International Society of Air Breathing Engines which was held August 31 through September 5 in Cleveland, Ohio. The associated reference paper is cited at the end of the presentation. The presentation describes active tip clearance control research being conducted by NASA to improve turbine engine systems. The target application for this effort is commercial aircraft engines. However, it is believed that the technologies developed as part of this research will benefit a broad spectrum of current and future turbomachinery. The first part of the presentation discusses the concept of tip clearance, problems associated with it, and the benefits of controlling it. It lays out a framework for implementing tip clearance controls that enables the implementation to progress from purely analytical to hardware-in-the-loop to fully experimental. And it briefly discusses how the technologies developed will be married to the previously described ACC Test Rig for hardware-in-the-loop demonstrations. The final portion of the presentation, describes one of the key technologies in some detail by presenting equations and results for a functional dynamic model of the tip clearance phenomena. As shown, the model exhibits many of the clearance dynamics found in commercial gas turbine engines. However, initial attempts to validate the model identified limitations that are being addressed to make the model more realistic.

  5. Transitioning Resolution Responsibility between the Controller and Automation Team in Simulated NextGen Separation Assurance

    NASA Technical Reports Server (NTRS)

    Cabrall, C.; Gomez, A.; Homola, J.; Hunt, S..; Martin, L.; Merccer, J.; Prevott, T.

    2013-01-01

    As part of an ongoing research effort on separation assurance and functional allocation in NextGen, a controller- in-the-loop study with ground-based automation was conducted at NASA Ames' Airspace Operations Laboratory in August 2012 to investigate the potential impact of introducing self-separating aircraft in progressively advanced NextGen timeframes. From this larger study, the current exploratory analysis of controller-automation interaction styles focuses on the last and most far-term time frame. Measurements were recorded that firstly verified the continued operational validity of this iteration of the ground-based functional allocation automation concept in forecast traffic densities up to 2x that of current day high altitude en-route sectors. Additionally, with greater levels of fully automated conflict detection and resolution as well as the introduction of intervention functionality, objective and subjective analyses showed a range of passive to active controller- automation interaction styles between the participants. Not only did the controllers work with the automation to meet their safety and capacity goals in the simulated future NextGen timeframe, they did so in different ways and with different attitudes of trust/use of the automation. Taken as a whole, the results showed that the prototyped controller-automation functional allocation framework was very flexible and successful overall.

  6. Control of unsteady separated flow associated with the dynamic stall of airfoils

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.

    1994-01-01

    A unique active flow-control device is proposed for the control of unsteady separated flow associated with the dynamic stall of airfoils. The device is an adaptive-geometry leading-edge which will allow controlled, dynamic modification of the leading-edge profile of an airfoil while the airfoil is executing an angle-of-attack pitch-up maneuver. A carbon-fiber composite skin has been bench tested, and a wind tunnel model is under construction. A baseline parameter study of compressible dynamic stall was performed for flow over an NACA 0012 airfoil. Parameters included Mach number, pitch rate, pitch history, and boundary layer tripping. Dynamic stall data were recorded via point-diffraction interferometry and the interferograms were analyzed with in-house developed image processing software. A new high-speed phase-locked photographic image recording system was developed for real-time documentation of dynamic stall.

  7. Boundary layer and separation control on wings at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Yang, Shanling

    setup of pressure taps in wings in order to avoid acoustic resonance effects. Local acoustic forcing is achieved through the activation of internally embedded speakers in combination with thin diaphragms placed across the holes in the suction surface to eliminate Helmholtz resonance effects. Activating various speakers in different spanwise and chordwise distributions successfully controls local flow separation on the wing at Re = 40,000 and 60,000. The changes in aerodynamic performance differ from those observed through external acoustic forcing, indicating that internal acoustic forcing is facility-independent. Combining the effect of Helmholtz resonance and the effect of pure internal acoustic forcing yields a completely different set of performance improvements. Since the internal acoustic forcing studies in the literature did not separate these two effects, there is reason to question the validity of the true nominal performance of the wings in previously reported internal acoustic studies. Stability analysis is performed on experimental velocity profiles by means of a numerical Orr-Sommerfeld solver, which extracts the initially least stable frequencies in the boundary layer using parallel and 2-d flow assumptions. Velocity profiles of the E387 wing are chosen at a condition where acoustic excitation at various chordwise locations and frequencies promotes the originally separated, low-lift state flow into a reattached, high-lift state. Preliminary stability analysis of the flow at different chordwise stations for the wing in its nominal state (without acoustic excitation) indicates that the flow is initially stable. The least stable frequencies are found to be equal to, and sub harmonics of, the preferential acoustic forcing frequencies determined in experiments. However, potentially improper and oversimplified flow assumptions are most likely sources of inaccuracy since the Orr-Sommerfeld equation is not generally used for separated flows or for boundary layers

  8. Simulation of body force field effects on airfoil separation control and optimization of plasma actuator

    NASA Astrophysics Data System (ADS)

    Abdoli, A.; Mirzaee, I.; Anvari, A.; Purmahmod, N.

    2008-09-01

    Among all active flow control methods, EHD, MHD and EMHD are the only methods which operate on the basis of body force induction on flow field. The EHD plasma actuator is the proper method which has been used in various flow control applications recently. In this paper, the effects of different body force fields on different domains have been studied for separation control on NACA 0021 and the results have been discussed. The airflow velocity has been assumed to be 35 m s-1 at a post-stall angle of attack of 23°. Three different domains have been used around the airfoil to investigate body forces with different strengths and directions and those which give the best result in separation control have been obtained for each domain. It has been shown that the results could be used for optimizing the plasma actuator by manipulating its electrode configuration. Two non-dimensional numbers, Ab and Dc, have been obtained and validated by different applied body forces. These numbers have been defined for plasma actuators to show their efficiency in different applications.

  9. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  10. Demonstration of Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  11. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  12. Investigation of coherent structures generated by acoustic tube in turbulent flow separation control

    NASA Astrophysics Data System (ADS)

    Ma, Xingyu; Geisler, Reinhard; Agocs, Janos; Schröder, Andreas

    2015-02-01

    An acoustic tube was designed in order to control the turbulent flow separation downstream of a backward-facing step. The Reynolds number based on the free-stream velocity and the step height was Re h = 2.0 × 104. As an active flow control device, the acoustic tube generated periodic pressure perturbations at a frequency of f a = 100 Hz, which was close to the most amplified frequency of the shedding instability of the turbulent shear layer. Spanwise vortices rolled up due to the perturbations. 2D-2C particle image velocimetry was used to measure separated shear layer and the reattachment area downstream of the BFS. The flow control results show that the acoustic tube can suppress recirculation regions behind the step and reduce the reattachment length by 43.7 %. The roll-up and pairing processes of the vortices lead to an increase in the total Reynolds shear stress. The coherent structures are extracted by proper orthogonal decomposition and represented by two pairs of modes, of which the coherence is analyzed by the corresponding coefficients. Both the primary and secondary series of vortices are reconstructed as traveling waves with the fundamental frequency f a and the overtone frequency 2 f a, respectively.

  13. Pilot and Controller Evaluations of Separation Function Allocation in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Wing, David; Prevot, Thomas; Morey, Susan; Lewis, Timothy; Martin, Lynne; Johnson, Sally; Cabrall, Christopher; Como, Sean; Homola, Jeffrey; Sheth-Chandra, Manasi; Mercer, Joey

    2013-01-01

    Two human-in-the-loop simulation experiments were conducted in coordinated fashion to investigate the allocation of separation assurance functions between ground and air and between humans and automation. The experiments modeled a mixed-operations concept in which aircraft receiving ground-based separation services shared the airspace with aircraft providing their own separation service (i.e., self-separation). Ground-based separation was provided by air traffic controllers without automation tools, with tools, or by ground-based automation with controllers in a managing role. Airborne self-separation was provided by airline pilots using self-separation automation enabled by airborne surveillance technology. The two experiments, one pilot-focused and the other controller-focused, addressed selected key issues of mixed operations, assuming the starting point of current-day operations and modeling an emergence of NextGen technologies and procedures. In the controller-focused experiment, the impact of mixed operations on controller performance was assessed at four stages of NextGen implementation. In the pilot-focused experiment, the limits to which pilots with automation tools could take full responsibility for separation from ground-controlled aircraft were tested. Results indicate that the presence of self-separating aircraft had little impact on the controllers' ability to provide separation services for ground-controlled aircraft. Overall performance was best in the most automated environment in which all aircraft were data communications equipped, ground-based separation was highly automated, and self-separating aircraft had access to trajectory intent information for all aircraft. In this environment, safe, efficient, and highly acceptable operations could be achieved for twice today's peak airspace throughput. In less automated environments, reduced trajectory intent exchange and manual air traffic control limited the safely achievable airspace throughput and

  14. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2014-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  15. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2016-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  16. Extended active disturbance rejection controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2012-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  17. A fuzzy controlled three-phase centrifuge for waste separation

    SciTech Connect

    Parkinson, W.J.; Smith, R.E.; Miller, N.

    1998-02-01

    The three-phase centrifuge technology discussed in this paper was developed by Neal Miller, president of Centech, Inc. The three-phase centrifuge is an excellent device for cleaning up oil field and refinery wastes which are typically composed of hydrocarbons, water, and solids. The technology is unique. It turns the waste into salable oil, reusable water, and landfill-able solids. No secondary waste is produced. The problem is that only the inventor can set up and run the equipment well enough to provide an optimal cleanup. Demand for this device has far exceeded a one man operation. There is now a need for several centrifuges to be operated at different locations at the same time. This has produced a demand for an intelligent control system, one that could replace a highly skilled operator, or at least supplement the skills of a less experienced operator. The control problem is ideally suited to fuzzy logic, since the centrifuge is a highly complicated machine operated entirely by the skill and experience of the operator. A fuzzy control system was designed for and used with the centrifuge.

  18. Activity induced phase separation in particles and (bio)polymers

    NASA Astrophysics Data System (ADS)

    Grosberg, Alexander

    It was recently shown that the non-equilibrium steady state of the mixture of two types of particles exposed to two different thermostats can phase separate (A.Y.Grosberg, J.-F.Joanny, PRE, v. 91, 032118, 2015). similar result is valid also in the case when particles in question are monomers of two different polymer chains, or blocks of a co-polymer. We discuss the implications of these results for the physics of chromatin.

  19. AgI microplate monocrystals with polar {0001} facets: spontaneous photocarrier separation and enhanced photocatalytic activity.

    PubMed

    Kuang, Qin; Zheng, Xiaoli; Yang, Shihe

    2014-02-24

    Elucidating the facet-dependent photocatalytic activity of semiconductor photocatalysts is important in improving the overall efficiency of photocatalysis. Furthermore, combining facet control with selective deposition of oxidation and/or reduction cocatalysts on specific faces of semiconductor photocatalysts is potentially an effective strategy to synergistically optimize the functionality of photocatalysts. In the present study, high-purity wurtzite-type β-AgI platelet microcrystals with polar {0001} facets were prepared by a facile polyvinylpyrrolidone-assisted precipitation reaction. The polar-faceted AgI microplates were used as archetypes to demonstrate preferential diametric migration (i.e., effective separation) of photogenerated electrons and holes along the c axis. Such vectorial electron-hole separation stems from the asymmetric surface structures, which give rise to distinct photoexcited reaction behaviors on the ±(0001) polar facets of wurtzite-type semiconductors. Furthermore, on selective deposition of Ag and MnOx (1.5activity of the AgI microplates in degrading organic pollutants was dramatically enhanced thanks to the broad light-absorption range, strong dye-adsorption ability, and effective spatial separation of photocarriers. PMID:24449437

  20. Active Flow Control Strategies Using Surface Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Kumar, Vikas; Alvi, Farrukh S.

    2010-01-01

    Evaluate the efficacy of Microjets Can we eliminate/minimize flow separation? Is the flow unsteadiness reduced? Guidelines for an active control Search for an appropriate sensor. Examine for means to develop a flow model for identifying the state of flow over the surface Guidelines toward future development of a Simple and Robust control methodology

  1. Distribution of esterase activity in porcine ear skin, and the effects of freezing and heat separation.

    PubMed

    Lau, Wing Man; Ng, Keng Wooi; Sakenyte, Kristina; Heard, Charles M

    2012-08-20

    Porcine ear skin is widely used to study skin permeation and absorption of ester compounds, whose permeation and absorption profiles may be directly influenced by in situ skin esterase activity. Importantly, esterase distribution and activity in porcine ear skin following common protocols of skin handling and storage have not been characterised. Thus, we have compared the distribution and hydrolytic activity of esterases in freshly excised, frozen, heated and explanted porcine ear skin. Using an esterase staining kit, esterase activity was found to be localised in the stratum corneum and viable epidermis. Under frozen storage and a common heating protocol of epidermal sheet separation, esterase staining in the skin visibly diminished. This was confirmed by a quantitative assay using HPLC to monitor the hydrolysis of aspirin, in freshly excised, frozen or heated porcine ear skin. Compared to vehicle-only control, the rate of aspirin hydrolysis was approximately three-fold higher in the presence of freshly excised skin, but no different in the presence of frozen or heated skin. Therefore, frozen and heat-separated porcine ear skin should not be used to study the permeation of ester-containing permeants, in particular co-drugs and pro-drugs, whose hydrolysis or degradation can be modulated by skin esterases.

  2. Control and reduction of unsteady pressure loads in separated shock wave turbulent boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Dolling, David S.; Barter, John W.

    1995-01-01

    The focus was on developing means of controlling and reducing unsteady pressure loads in separated shock wave turbulent boundary layer interactions. Section 1 describes how vortex generators can be used to effectively reduce loads in compression ramp interaction, while Section 2 focuses on the effects of 'boundary-layer separators' on the same interaction.

  3. Novel Active Combustion Control Valve

    NASA Technical Reports Server (NTRS)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  4. Active controls for ride smoothing

    NASA Technical Reports Server (NTRS)

    Conner, D. W.; Thompson, G. O.

    1976-01-01

    Active controls technology offers great promise for significantly smoothing the ride, and thus improving public and air carrier acceptance, of certain types of transport aircraft. Recent findings which support this promise are presented in the following three pertinent areas: (1) Ride quality versus degree of traveler satisfaction; (2) significant findings from a feasibility study of a ride smoothing system; and (3) potential ride problems identified for several advanced transport concepts.

  5. Mineral separation and recycle in a Controlled Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.

    1982-01-01

    The background of the mineral nutrition needs of plants are examined along with the applicability of mineral control and separation to a controlled ecological life support system (CELSS). Steps that may be taken in a program to analytically define and experimentally test key mineral control concepts in the nutritional and waste processing loops of a CELSS are delineated.

  6. Evaluation of fructooligosaccharides separation using a fixed-bed column packed with activated charcoal.

    PubMed

    Kuhn, Raquel Cristine; Mazutti, Marcio A; Albertini, Lilian Buoro; Filho, Francisco Maugeri

    2014-05-25

    Recent studies have shown that the chromatographic separation of mixtures of saccharides may be improved by making use of activated charcoal, a promising low cost material for the separation of sugars, including fructooligosaccharides. In this work, the development of a methodology to separate fructooligosaccharides from glucose, fructose and sucrose, using a fixed bed column packed with activated charcoal is proposed. The influence of temperature, eluant concentration and step gradients were evaluated to increase the separation efficiency and fructooligosaccharide purity. The final degree of fructooligosaccharide purification and separation efficiency were about 94% and 3.03 respectively, using ethanol gradient concentration ranging from 3.5% to 15% (v/v) at 40°C. The fixed bed column packed with the activated charcoal was shown to be a promising alternative for sugar separation, mainly those rich in fructooligosaccharides, leading to solutions of acceptable degrees of purification.

  7. On the benefits of hysteresis effects for closed-loop separation control using plasma actuation

    NASA Astrophysics Data System (ADS)

    Benard, N.; Cattafesta, L. N.; Moreau, E.; Griffin, J.; Bonnet, J. P.

    2011-08-01

    Flow separation control by a non-thermal plasma actuator is considered for a NACA 0015 airfoil at a chord Reynolds number of 1.9 × 105. Static hysteresis in the lift coefficient is demonstrated for increasing and then decreasing sinusoidal voltage amplitude supplying a typical single dielectric barrier discharge actuator at the leading edge of the model. In addition to these open-loop experiments, unsteady surface pressure signals are examined for transient processes involving forced reattachment and natural separation. The results show that strong pressure oscillations in the relatively slow separation process, compared to reattachment, precede the ultimate massive flow separation. To enhance the contrast between the parts of the signal related to the attached flow and those related to the incipient separation, RMS estimate of filtered values of Cp is used to define a flow separation predictor that is implemented in feedback control. Two simple controllers are proposed, one based on a predefined threshold of the unsteady Cp and another that utilizes the flow separation predictor to identify incipient separation. The latter effectively leverages the hysteresis in the post-stall regime to reduce the electrical power consumed by the actuator while maintaining continuously attached flow.

  8. Further evaluation of the CSNI separate effect test activity

    SciTech Connect

    D`Auria, F.; Aksan, S.N.; Glaeser, H.

    1995-09-01

    An internationally agreed Separate Effect Test (SET) Validation Matrix for the thermalhydraulic system codes has been established by a subgroup of the Task Group on Thermalhydraulic System Behaviour as requested by OECD/NEA Committee on the Safety of Nuclear Installations (CSNI) Principal Working Group No. 2 on Coolant System Behavior. The construction of such matrix constituted an attempt to collect together in a systematic way the best sets of openly available test data to select for code validation. As a final result, 67 phenomena have been identified and characterized, roughly 200 facilities have been considered and more than 1000 experiments have been selected as useful for the validation of the codes. The objective of the present paper is to provide additional evaluation of the obtained data base and to supply an a-posteriori judgement in relation to (a) the data base adequacy, (b) the phenomenon, and (c) the need for additional experiments. This has been provided independently by each of the authors. The main conclusions are that large amount of data are available for certain popular phenomena e.g. heat transfer, but data are severely lacking in more esoteric areas e.g. for characterizing phenomena such as parallel channel instability and boron mixing and transport.

  9. Control of unsteady separated flow associated with the dynamic stall of airfoils

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.

    1995-01-01

    An effort to understand and control the unsteady separated flow associated with the dynamic stall of airfoils was funded for three years through the NASA cooperative agreement program. As part of this effort a substantial data base was compiled detailing the effects various parameters have on the development of the dynamic stall flow field. Parameters studied include Mach number, pitch rate, and pitch history, as well as Reynolds number (through two different model chord lengths) and the condition of the boundary layer at the leading edge of the airfoil (through application of surface roughness). It was found for free stream Mach numbers as low as 0.4 that a region of supersonic flow forms on the leading edge of the suction surface of the airfoil at moderate angles of attack. The shocks which form in this supersonic region induce boundary-layer separation and advance the dynamic stall process. Under such conditions a supercritical airfoil profile is called for to produce a flow field having a weaker leading-edge pressure gradient and no leading-edge shocks. An airfoil having an adaptive-geometry, or dynamically deformable leading edge (DDLE), is under development as a unique active flow-control device. The DDLE, formed of carbon-fiber composite and fiberglass, can be flexed between a NACA 0012 profile and a supercritical profile in a controllable fashion while the airfoil is executing an angle-of-attack pitch-up maneuver. The dynamic stall data were recorded using point diffraction interferometry (PDI), a noninvasive measurement technique. A new high-speed cinematography system was developed for recording interferometric images. The system is capable of phase-locking with the pitching airfoil motion for real-time documentation of the development of the dynamic stall flow field. Computer-aided image analysis algorithms were developed for fast and accurate reduction of the images, improving interpretation of the results.

  10. Neuronal activity controls transsynaptic geometry

    PubMed Central

    Glebov, Oleg O.; Cox, Susan; Humphreys, Lawrence; Burrone, Juan

    2016-01-01

    The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity. PMID:26951792

  11. Phase separation of biphasic mixture of active Janus colloids

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Han, Ming; Luijten, Erik; Granick, Steve

    2014-03-01

    Recently there is a surge of interest in the phase behavior of active matter in which building blocks display self-propelling motion. Although much has been known from theory and simulation, experimental examples are very rare. Specifically, the epitomic problem of a binary mixture of active matter defies any experiment or theory so far. Here we present an experimental realization of binary mixture of particles, which only acquires activity when they collisionally interact with the opposite kind. We used a system in which the only difference in the two particles is the phase in their cyclic motion, precluding any artifact due to difference in interparticle potential. We observe phenomena strikingly similar to spinodal decomposition of molecular system, in addition to new features due to the nonequilibrium nature of the system. We derived a general, effective Flory-Huggins theory for spinodal decomposition of bicomponent active system, and rationalized the 1/3 power law growth of the domain size in regions where thermodynamic analogy is valid. The system also presents a plethora of nonequilibrium phenomena such as critical fluctuation, lane formation, and dynamic absorbing state in different parameter space.

  12. Proinflammatory Activity and the Sensitization of Depressive-Like Behavior during Maternal Separation

    PubMed Central

    Hennessy, Michael B.; Paik, Kristopher D.; Caraway, Jessica D.; Schiml, Patricia A.; Deak, Terrence

    2011-01-01

    When guinea pig pups are isolated for a few hours in a novel environment, they exhibit a distinctive passive behavioral response that appears to be mediated by proinflammatory activity. Recently, we observed that pups separated on two consecutive days show an enhanced (sensitized) passive response on the second day. In Experiment 1, pups receiving intracerebroventricular infusion of 50 ng of the anti-inflammatory cytokine Interleukin-10 prior to a first separation failed to show a sensitized behavioral response to separation the next day. In Experiment 2, pups separated on Days 1 and 2, or just 2, showed an increase in passive responding during separation on Day 5. Pups injected with the bacterial antigen lipopolysacchride (LPS; 75μg/kg body weight, intraperitoneal) prior to separation on Day 1 showed an increase in passive behavior several days later not shown by pups injected with saline prior to Day 1 separation. However, injection of LPS without separation on the first day did not enhance responding during an initial separation on the second day. These results suggest that immune activation is necessary, but not sufficient, to account for the sensitization of passive behavior of isolated guinea pig pups the following day, that boosting proinflammatory activity during an initial separation may promote sensitization several days later, and that the sensitized response persists for at least several days. PMID:21500883

  13. Active load control using microtabs

    NASA Astrophysics Data System (ADS)

    Yen, Dora Te-Lun

    2001-11-01

    Micro-electro-mechanical (MEM) translational tabs are introduced for enhancing and controlling the aerodynamic loading on lifting surfaces. These microtabs are mounted near the trailing edge of lifting surfaces, retract and extend approximately normal to the surface and have a maximum deployment height on the order of the boundary-layer thickness. Deployment of the device effectively modifies the camber distribution of the lifting surface and hence, the lift generated. The effect of the microtabs on lift is shown to be as powerful as conventional control surfaces with lift changes of 30%--50% in the linear range of the lift curve using a tab with a height of 1% of airfoil chord placed at 5% of chord upstream of the trailing edge on the lower surface. A multi-disciplinary approach incorporating aspects of experimental and computational aerodynamics, mechanical design and microfabrication techniques has been taken to develop and test a "proof of concept" model. Flow simulations, using a Reynolds-averaged Navier Stokes solver, have been conducted to optimize the size and placement of the devices based on trailing edge volume constraints. Numerical and experimental wind tunnel results are in good agreement, and both confirm that these micro-scale devices create macro-scale changes in aerodynamic loading. Application of this rather simple but innovative lift control system based on microfabrication techniques introduces a robust, dynamic control device and will allow for the miniaturization of conventional high lift and control systems. The result is a significant reduction in typical control system weight, complexity and cost. Also due to the minute size of these tabs, their activation and response times are much faster than that of conventional trailing edge devices. The "proof of concept" tab design, fabrication techniques, computational and experimental setup, and test results using a representative airfoil are presented in this research. (For more information, see

  14. Interface control in organic heterojunction photovoltaic cells by phase separation processes

    NASA Astrophysics Data System (ADS)

    Heier, Jakob; Castro, Fernando A.; Nüesch, Frank; Hany, Roland

    2007-09-01

    Significant progress is being made in the photovoltaic energy conversion using organic semiconducting materials. One of the focuses of attention is the nanoscale morphology of the donor-acceptor mixture, to ensure efficient charge generation and loss-free charge transport at the same time. Using small molecule and polymer blend systems, recent efforts highlight the problems to ensure an optimized relationship between molecular structure, morphology and device properties. Here, we present two examples using a host/guest mixture approach for the controlled, sequential design of bilayer organic solar cell architectures that consist of a large interface area with connecting paths to the respective electrodes at the same time. In the first example, we employed polymer demixing during spin coating to produce a rough interface: surface directed spinodal decomposition leads to a 2-dimensional spinodal pattern with submicrometer features at the polymer-polymer interface. The second system consists of a solution of a blend of small molecules, where phase separation into a bilayer during spin coating is followed by dewetting. For both cases, the guest can be removed using a selective solvent after the phase separation process, and the rough host surface can be covered with a second active, semiconducting component. We explain the potential merits of the resulting interdigitated bilayer films, and explore to which extent polymer-polymer and surface interactions can be employed to create surface features in the nanometer range.

  15. Active flow management in preparative chromatographic separations: a preliminary investigation into enhanced separation using a curtain flow inlet fitting and segmented flow outlet fitting.

    PubMed

    Camenzuli, Michelle; Ritchie, Harald J; Ladine, James R; Shalliker, R Andrew

    2012-02-01

    Active flow management in the form of curtain flow sample introduction and segmented outlet flow control has been shown to enable sample to elute through a chromatography column under the principles of the "infinite diameter column". Such an elution process avoids the detrimental effects of the heterogeneity of particle-packed chromatographic columns by injecting the sample directly into the radial core region of the column, thus avoiding wall effects. The process described herein illustrates how the principles of the infinite diameter column can be applied using conventional injection devices suitable for long-term analysis that requires robust protocols. Using this approach, sensitivity in separation was 2.5 times greater than conventional chromatography, yielding a product at twice the concentration. Benefits of curtain flow injection are thus relevant to both preparative-scale and analytical-scale separations.

  16. Active optics control development at the LBT

    NASA Astrophysics Data System (ADS)

    Ashby, David S.; Biddick, Christopher; Hill, John M.

    2014-07-01

    The Large Binocular Telescope (LBT) is built around two 8.4 m-diameter primary mirrors placed with a centerline separation of 14.4 m in a common altitude/azimuth mount. Each side of the telescope can utilize a deployable prime focus instrument; alternatively, the beam can be directed to a Gregorian instrument by utilizing a deployable secondary mirror. The direct-Gregorian beam can be intercepted and redirected to several bent-Gregorian instruments by utilizing a deployable tertiary mirror. Two of the available bent-Gregorian instruments are interferometers, capable of coherently combining the beams from the two sides of the telescope. Active optics can utilize as many as 26 linearly independent degrees of freedom to position the primary, secondary and tertiary mirrors to control optical collimation while the telescope operates in its numerous observing modes. Additionally, by applying differential forces at 160 locations on each primary mirror, active optics controls the primary mirror figure. The authors explore the challenges associated with collimation and primary mirror figure control at the LBT and outline the ongoing related development aimed at optimizing image quality and preparing the telescope for interferometric operations.

  17. Separation of NADH-fumarate reductase and succinate dehydrogenase activities in Trypanosoma cruzi.

    PubMed

    Christmas, P B; Turrens, J F

    2000-02-15

    A recent review suggested that the activity of NADH-fumarate reductase from trypanosomatids could be catalyzed by succinate dehydrogenase working in reverse (Tielens and van Hellemond, Parasitol. Today 14, 265-271, 1999). The results reported in this study demonstrate that the two activities can easily be separated without any loss in either activity, suggesting that fumarate reductase and succinate dehydrogenase are separate enzymes.

  18. Principles for microscale separations based on redox-active surfactants and electrochemical methods.

    PubMed

    Rosslee, C A; Abbott, N L

    2001-10-15

    We report principles for microscale separations based on selective solubilization and deposition of sparingly water-soluble compounds by an aqueous solution of a redox-active surfactant. The surfactant, (11-ferrocenylundecyl)trimethylammonium bromide, undergoes a reversible change in micellization upon oxidation or reduction. This change in aggregation is exploited in a general scheme in which micelles of reduced surfactant are formed and then put in contact with a mixture of hydrophobic compounds leading to selective solubilization of the compounds. The micelles are then electrochemically disrupted, leading to the selective deposition of their contents. We measured the selectivity of the solubilization and deposition processes using mixtures of two model drug-like compounds, o-tolueneazo-beta-naphthol (I) and 1-phenylazo-2-naphthylamine (II). By repeatedly solubilizing and depositing a mixture that initially contained equal mole fractions of each compound, we demonstrate formation of a product that contains 98.4% of I after six cycles. Because the aggregation states of redox-active surfactants are easily controlled within simple microfabricated structures, including structures that define small stationary volumes (e.g., wells of a microtiter plate) or flowing volumes of liquids (e.g., microfabricated channels), we believe these principles may be useful for the purification or analysis of compounds in microscale chemical process systems. When used for purification, these principles provide separation of surfactant and product.

  19. A Separation Control CFD Validation Test Case. Part 1; Baseline and Steady Suction

    NASA Technical Reports Server (NTRS)

    Greenblatt, David; Paschal, Keith B.; Yao, Chung-Sheng; Harris, jerome; Schaeffler, Norman W.; Washburn, Anthony E.

    2004-01-01

    Low speed flow separation over a wall-mounted hump, and its control using steady suction, were studied experimentally in order to generate a data set for a workshop aimed at validating CFD turbulence models. The baseline and controlled data sets comprised static and dynamic surface pressure measurements, flow field measurements using Particle Image Velocimetry (PIV) and wall shear stress obtained via oil-film interferometry. In addition to the specific test cases studied, surface pressures for a wide variety of conditions were reported for different Reynolds numbers and suction rates. Stereoscopic PIV and oil-film flow visualization indicated that the baseline separated flow field was mainly two-dimensional. With the application of control, some three-dimensionality was evident in the spanwise variation of pressure recovery, reattachment location and spanwise pressure fluctuations. Part 2 of this paper, under preparation for the AIAA Meeting in Reno 2005, considers separation control by means of zero-efflux oscillatory blowing.

  20. Injection slot location for boundary-layer control in shock-induced separation

    NASA Technical Reports Server (NTRS)

    Viswanath, P. R.; Sankaran, L.; Sagdeo, P. M.; Narasimha, R.; Prabhu, A.

    1978-01-01

    An experimental investigation of the effect of tangential air injection, when the injection slot is located inside of what would otherwise have been the dead air zone in a separated flow, in controlling shock-induced turbulent boundary layer separation is presented. The experiments were carried out at a free-stream Mach number of 2.5 in the separated flow induced by a compression corner with a 20 deg angle. The observations made were wall static pressures, pitot profiles, and schlieren visualizations of the flow. The results show that the present location for injection is more effective in suppressing boundary-layer separation than the more conventional one, where the slot is located upstream of where separation would occur in the absence of injection.

  1. Residual matrix from different separation techniques impacts exosome biological activity

    PubMed Central

    Paolini, Lucia; Zendrini, Andrea; Noto, Giuseppe Di; Busatto, Sara; Lottini, Elisabetta; Radeghieri, Annalisa; Dossi, Alessandra; Caneschi, Andrea; Ricotta, Doris; Bergese, Paolo

    2016-01-01

    Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical techniques - including Western Blot, colloidal nanoplasmonics, atomic force microscopy (AFM) and scanning helium ion microscopy (HIM). The preparations obtained by iodixanol and sucrose gradients were highly pure. To the contrary, those achieved with limited processing (serial centrifugation or one step precipitation kit) resulted contaminated by a residual matrix, embedding the exosomes. The contaminated preparations showed lower ability to induce NfkB nuclear translocation in endothelial cells with respect to the pure ones, probably because the matrix prevents the interaction and fusion of the exosomes with the cell membrane. These findings suggest that exosome preparation purity must be carefully assessed since it may interfere with exosome biological activity. Contaminants can be reliably probed only by an integrated characterization approach aimed at both the molecular and the colloidal length scales. PMID:27009329

  2. Controllable Phase Separation by Boc-Modified Lipophilic Acid as a Multifunctional Extractant

    NASA Astrophysics Data System (ADS)

    Tao, Kai; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-12-01

    While phase separation of immiscible liquid-liquid systems has become increasingly significant in diverse areas, the irreversible nature limits their further application in controllable extraction-concentration or capture-release fields. There is a need for the development of simple, efficient and reversible methods for numerous research and industrial extraction and separation applications. We envisioned Boc-modified lipophilic acids as a simple model for such use based on the studies of the multi-phase transitions of Boc-modified supramolecular polymeric systems. Here, we demonstrate that in the presence of Boc-7-aminoheptanoic acid (Boc-7), phase separation occurs in mixtures of miscible organic solvent and water. The separation behavior was confirmed by differential colorimetric development in aqueous and organic phases using methyl orange staining assays. Component substitution experiments verified that the phase separation results from the subtle balance between the aggregation and the solvation forces of Boc-7, and is reversible by adjusting the solution pH. Owing to the intrinsic hydrophobic properties of the organic phase and the hydrogen bonding-forming ability of the carboxyl group of Boc-7, the phase separation system captures and releases Sudan Red, fluorescein, and streptavidin in a controllable manner. Consequently, a reversible and simple phase separation system can be designed as a multifunctional extractant.

  3. Controllable Phase Separation by Boc-Modified Lipophilic Acid as a Multifunctional Extractant

    PubMed Central

    Tao, Kai; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-01-01

    While phase separation of immiscible liquid-liquid systems has become increasingly significant in diverse areas, the irreversible nature limits their further application in controllable extraction-concentration or capture-release fields. There is a need for the development of simple, efficient and reversible methods for numerous research and industrial extraction and separation applications. We envisioned Boc-modified lipophilic acids as a simple model for such use based on the studies of the multi-phase transitions of Boc-modified supramolecular polymeric systems. Here, we demonstrate that in the presence of Boc-7-aminoheptanoic acid (Boc-7), phase separation occurs in mixtures of miscible organic solvent and water. The separation behavior was confirmed by differential colorimetric development in aqueous and organic phases using methyl orange staining assays. Component substitution experiments verified that the phase separation results from the subtle balance between the aggregation and the solvation forces of Boc-7, and is reversible by adjusting the solution pH. Owing to the intrinsic hydrophobic properties of the organic phase and the hydrogen bonding-forming ability of the carboxyl group of Boc-7, the phase separation system captures and releases Sudan Red, fluorescein, and streptavidin in a controllable manner. Consequently, a reversible and simple phase separation system can be designed as a multifunctional extractant. PMID:26627307

  4. Study of the Application of Separation Control by Unsteady Excitation to Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    McLean, J. D.; Crouch, J. D.; Stoner, R. C.; Sakurai, S.; Seidel, G. E.; Feifel, W. M.; Rush, H. M.

    1999-01-01

    This study provides a preliminary assessment of the potential benefits of applying unsteady separation control to transport aircraft. Estimates are given for some of the costs associated with a specific application to high-lift systems. High-leverage areas for future research were identified during the course of the study. The study was conducted in three phases. Phase 1 consisted of a coarse screening of potential applications within the aerodynamics discipline. Potential benefits were identified and in some cases quantified in a preliminary way. Phase 2 concentrated on the application to the wing high-lift system, deemed to have the greatest potential benefit for commercial transports. A team of experts, including other disciplines (i.e. hydraulic, mechanical, and electrical systems, structures, configurations, manufacturing, and finance), assessed the feasibility, benefits, and costs to arrive at estimates of net benefits. In both phases of the study, areas of concern and areas for future research were identified. In phase 3 of this study, the high-leverage areas for future research were prioritized as a guide for future efforts aimed at the application of active flow control to commercial transport aircraft.

  5. Active Spacecraft Potential Control Investigation

    NASA Astrophysics Data System (ADS)

    Torkar, K.; Nakamura, R.; Tajmar, M.; Scharlemann, C.; Jeszenszky, H.; Laky, G.; Fremuth, G.; Escoubet, C. P.; Svenes, K.

    2016-03-01

    In tenuous plasma the floating potential of sunlit spacecraft reaches tens of volts, positive. The corresponding field disturbs measurements of the ambient plasma by electron and ion sensors and can reduce micro-channel plate lifetime in electron detectors owing to large fluxes of attracted photoelectrons. Also the accuracy of electric field measurements may suffer from a high spacecraft potential. The Active Spacecraft Potential Control (ASPOC) neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for the Magnetospheric Multiscale (MMS) mission includes new developments in the design of the emitters and the electronics. New features include the use of capillaries instead of needles, new materials for the emitters and their internal thermal insulators, an extended voltage and current range of the electronics, both for ion emission and heating purposes, and a more capable control software. This enables lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Results from on-ground testing demonstrate compliance with requirements. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. Finally, the various operating modes to adapt to changing boundary conditions are described along with the main data products.

  6. Nest predation increases with parental activity: Separating nest site and parental activity effects

    USGS Publications Warehouse

    Martin, T.E.; Scott, J.; Menge, C.

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection.

  7. Active Vector Separation Using Induced Charge Electro-osmosis with Polarizable Obstacle Arrays

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2016-09-01

    Vector separation using obstacle post arrays is promising for various microfluidic applications. Here, we propose a novel active sieve using induced charge electro-osmosis (ICEO). By the multi-physics simulation technique based on the boundary element method combined with a thin electric double-layer approximation, we find that the active sieve having a polarizable post array shows excellent vector separation with dynamic size selectivity owing to the hydrodynamic interactions between the polarizable post array and the target particle. We consider that our separation device is useful for realizing innovative high-throughput biomedical systems with a simple structure.

  8. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    NASA Astrophysics Data System (ADS)

    Francioso, L.; De Pascali, C.; Pescini, E.; De Giorgi, M. G.; Siciliano, P.

    2016-06-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0-100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa-1 for the best devices.

  9. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    NASA Astrophysics Data System (ADS)

    Francioso, L.; De Pascali, C.; Pescini, E.; De Giorgi, M. G.; Siciliano, P.

    2016-06-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0–100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa‑1 for the best devices.

  10. Control of boundary layer separation and the wake of an airfoil using ns-DBD plasma actuators

    NASA Astrophysics Data System (ADS)

    Ashcraft, Timothy

    The efficacy of nanosecond pulse driven dielectric barrier discharge (ns-DBD) plasma actuators for boundary layer separation and wake control is investigated experimentally. A single ns-DBD plasma actuator is placed at the leading edge of a NACA 0012 airfoil model. Both baseline and controlled flow fields are studied using static pressure measurements, Particle Image Velocimetry (PIV) and Constant Temperature Anemometry (CTA). Experiments are primarily performed at Re = 0.74 x 106 and alpha = 18°. CP, PIV and CTA data show that a forcing frequency of F+ = 1.14 is optimal for separation control. CTA surveys of the wake at x/c = 7 indicate three approximate regimes of behavior. Forcing in the range 0.92< F+ < 1.52 results in the best conditions for separation control over the airfoil, but has no dominant signature in the wake at x/c = 7. Excitation in the range of 0.23 < F+ < 0.92 produces a single dominant frequency in the wake while F+ < 0.23 shows behavior representing a possible impulse response or nonlinear effects. PIV data confirm these observations in all three regimes. Cross-correlations of CTA data are also employed to evaluate the two-dimensionality of the excited wake. The initial results presented here are part of an ongoing effort to use active flow control (AFC), in the form of ns-DBDs, as an enabling technology for the study of unsteady aerodynamics and vortex-body interactions.

  11. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots made simulated instrument flight evaluations in light-to-moderate turbulence. They were favorably impressed with the system, particularly with the elimination of control force transients that accompanied configuration changes. For ride quality, quantitative data showed that the attitude command control system resulted in all cases of airplane motion being removed from the uncomfortable ride region.

  12. Separate elements control DJ and VDJ rearrangement in a transgenic recombination substrate.

    PubMed Central

    Ferrier, P; Krippl, B; Blackwell, T K; Furley, A J; Suh, H; Winoto, A; Cook, W D; Hood, L; Costantini, F; Alt, F W

    1990-01-01

    We describe transgenic mice that carry an antigen receptor gene minilocus comprised of germline T cell receptor (TCR) beta variable gene elements (V, D and J) linked to an immunoglobulin (Ig) C mu constant region gene with or without a DNA segment containing the Ig heavy chain transcriptional enhancer (E mu). Transgenic constructs lacking the E mu-containing segment did not undergo detectable rearrangement in any tissue of six independent transgenic lines. In contrast, transgenic constructs containing this DNA segment underwent rearrangement at high frequency in lymphoid tissues, but not other tissues, of four independent lines. Analyses of purified B and T cells, as well as B and T cell lines, from transgenic animals demonstrated that the E mu-containing segment within the construct allowed partial TCR gene assembly (D to J) in both B and T cells. However, complete TCR gene rearrangement within the construct (V to DJ) occurred only in T cells. Therefore, we have demonstrated elements that can control two separate aspects of TCR beta VDJ rearrangement within this construct. One lies within the E mu-containing DNA segment and represents a dominant, cis-acting element that initiates lymphoid cell-specific D beta to J beta rearrangement; various considerations suggest this activity may be related to that of the E mu element. The second element provides T cell-specific control of complete (V beta to DJ beta) variable region gene assembly; it correlates in activity with expression of the unrearranged V beta segment. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. PMID:2153073

  13. Control of volume resistivity in inorganic-organic separators. [for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.

    1980-01-01

    Control of resistivity in NASA inorganic-organic separators is achieved by incorporating small percentages of high surface area, fine-particle silica with other ingredients in the separator coating. The volume resistivity appears to be predictable from coating composition, that is, from the surface area of filler particles in the coating. The approach has been applied to two polymer-'plasticizer'-filler coating systems, where the filler content of each is below the generally acknowledged critical pigment volume concentration of the coating. Application of these coating systems to 0.0254 cm thick (10 mil) fuel-cell grade asbestos sheet produces inexpensive, flexible, microporous separators that perform at least as well as the original inorganic-organic concept, the Astropower separator.

  14. Active control of combustion instability

    SciTech Connect

    Lang, W.; Poinsot, T.; Candel, S.

    1987-12-01

    The principle of 'antisound' is used to construct a method for the suppression of combustion instabilities. This active instability control (AIC) method uses external acoustic excitation by a loudspeaker to suppress the oscillations of a flame. The excitation signal is provided by a microphone located upstream of the flame. This signal is filtered, processed, amplified, and sent to the loudspeaker. The AIC method is validated on a laboratory combustor. It allows the suppression of all unstable modes of the burner for any operating ratio. The influence of the microphone and loudspeaker locations on the performance of the AIC system is described. For a given configuration, domains of stability, i.e., domains where the AIC system parameters provide suppression of the oscillation, are investigated. Measurements of the electric input of the loudspeaker show that the energy consumption of the AIC system is almost negligible and suggest that this method could be used for industrial combustor stabilization. Finally, a simple model describing the effects of the AIC system is developed and its results compared to the experiment.

  15. Active thermal control system evolution

    NASA Technical Reports Server (NTRS)

    Petete, Patricia A.; Ames, Brian E.

    1991-01-01

    The 'restructured' baseline of the Space Station Freedom (SSF) has eliminated many of the growth options for the Active Thermal Control System (ATCS). Modular addition of baseline technology to increase heat rejection will be extremely difficult. The system design and the available real estate no longer accommodate this type of growth. As the station matures during its thirty years of operation, a demand of up to 165 kW of heat rejection can be expected. The baseline configuration will be able to provide 82.5 kW at Eight Manned Crew Capability (EMCC). The growth paths necessary to reach 165 kW have been identified. Doubling the heat rejection capability of SSF will require either the modification of existing radiator wings or the attachment of growth structure to the baseline truss for growth radiator wing placement. Radiator performance can be improved by enlarging the surface area or by boosting the operating temperature with a heat pump. The optimal solution will require both modifications. The addition of growth structure would permit the addition of a parallel ATCS using baseline technology. This growth system would simplify integration. The feasibility of incorporating these growth options to improve the heat rejection capacity of SSF is under evaluation.

  16. Experimental parametric study of jet vortex generators for flow separation control

    NASA Technical Reports Server (NTRS)

    Selby, Gregory

    1991-01-01

    A parametric wind-tunnel study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulence flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed). Dye flow visualization tests in a water tunnel indicated that the most effective jet vortex generator configurations produced streamwise co-rotating vortices.

  17. Correlation of Pectin Methylesterase Activity in Root Caps of Pea with Root Border Cell Separation.

    PubMed Central

    Stephenson, M. B.; Hawes, M. C.

    1994-01-01

    We tested predictions of the hypothesis that pectin methylesterase in the root cap plays a role in cell wall solubilization leading to separation of root border cells from the root tip. Root cap pectin methylesterase activity was detected only in species that release large numbers of border cells daily. In pea (Pisum sativum) root caps, enzyme activity is correlated with border cell separation during development: 6-fold more activity occurs during border cell separation than after cell separation is complete. Higher levels of enzyme activity are restored by experimental induction of border cell separation. A corresponding increase in transcription of a gene encoding root cap pectin methylesterase precedes the increase in enzyme activity. A dramatic increase in the level of soluble, de-esterified pectin in the root tip also is correlated with pectin methylesterase activity during border cell development. This increase in acidic, de-esterified pectin during development occurs in parallel with a decrease in cell wall/apoplastic pH of cells in the periphery of the root cap. PMID:12232366

  18. Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions

    NASA Technical Reports Server (NTRS)

    Ahmadi, G.; Marzocca, P.; Jha, R.; Alstorm, B.; Obied, S.; Kabir, P.; Shahrabi, A.

    2010-01-01

    The main objective is to develop effective control strategies for separation control of an airfoil with a single hinge flap. The specific objectives are: Develop an active control architecture for flow control around an airfoil with flap. Design, fabricate, a wind tunnel test of a high lift wing (with flap) with integrated actuators and sensors. Design, development and fabrication of synthetic jet actuators. Develop appropriate control strategy for application to the airfoil. Wind tunnel testing of the high lift wing at various angles of attack and flap positions with closed loop control.

  19. Movement Precision and Amplitude as Separate Factors in the Control of Movement.

    ERIC Educational Resources Information Center

    Kerr, Robert

    The purpose of this study was to assess Welford's dual controlling factor interpretation of Fitts' Law--describing movement time as being a linear function of movement distance (or amplitude) and the required precision of the movement (or target width). Welford's amplification of the theory postulates that two separate processes ought to be…

  20. Laminar and turbulent boundary layer separation control of Mako shark skin

    NASA Astrophysics Data System (ADS)

    Afroz, Farhana

    The Shortfin Mako shark (Isurus oxyrinchus) is one of the fastest swimmers in nature. They have an incredible turning agility and are estimated to achieve speeds as high as ten body lengths per second. Shark skin is known to contain flexible denticles or scales, capable of being actuated by the flow whereby a unique boundary layer control (BLC) method could reduce drag. It is hypothesized that shark scales bristle when the flow is reversed, and this bristling may serve to control flow separation by (1) inhibiting the localized flow reversal near the wall and (2) inducing mixing within the boundary layer by cavities formed between the scales that increases the momentum of the flow near the wall. To test this hypothesis, samples of Mako shark skin have been studied under various amounts of adverse pressure gradient (APG). These samples were collected from the flank region of a Shortfin Mako shark where the scales have the greatest potential for separation control due to the highest bristling angles. An easy technique for inducing boundary layer separation has been developed where an APG can be generated and varied using a rotating cylinder. Both the experimental and numerical studies showed that the amount of APG can be varied as a function of cylinder rotation speed or cylinder gap height for a wide range of Reynolds numbers. This method of generating an APG is used effectively for inducing both laminar and turbulent boundary layer separation over a flat plate. Laminar and turbulent boundary layer separation studies conducted over a smooth plate have been compared with the same setup repeated over shark skin. The time-averaged DPIV results showed that shark scale bristling controlled both laminar and turbulent boundary layer separation to a measurable extent. It shows that the shark scales cause an early transition to turbulence and reduce the degree of laminar separation. For turbulent separation, reverse flow near the wall and inside the boundary layer is

  1. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots who made simulated instrument flight evaluations experienced improvements in airplane handling qualities in the presence of turbulence and a reduction in pilot workload. For ride quality, quantitative data show that the attitude command control system results in all cases of airplane motion being removed from the uncomfortable ride region.

  2. Controlling phase separation of binary Bose-Einstein condensates via mixed-spin-channel Feshbach resonance

    SciTech Connect

    Tojo, Satoshi; Taguchi, Yoshihisa; Masuyama, Yuta; Hayashi, Taro; Hirano, Takuya; Saito, Hiroki

    2010-09-15

    We investigate controlled phase separation of a binary Bose-Einstein condensate in the proximity of a mixed-spin-channel Feshbach resonance in the |F=1,m{sub F}=+1> and |F=2,m{sub F}=-1> states of {sup 87}Rb at a magnetic field of 9.10 G. Phase separation occurs on the lower-magnetic-field side of the Feshbach resonance while the two components overlap on the higher-magnetic-field side. The Feshbach resonance curve of the scattering length is obtained from the shape of the atomic cloud by comparison with the numerical analysis of coupled Gross-Pitaevskii equations.

  3. Enhanced water vapor separation by temperature-controlled aligned-multiwalled carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Jeon, Wonjae; Yun, Jongju; Khan, Fakhre Alam; Baik, Seunghyun

    2015-08-01

    Here we present a new strategy of selectively rejecting water vapor while allowing fast transport of dry gases using temperature-controlled aligned-multiwalled carbon nanotubes (aligned-MWNTs). The mechanism is based on the water vapor condensation at the entry region of nanotubes followed by removing aggregated water droplets at the tip of the superhydrophobic aligned-MWNTs. The first condensation step could be dramatically enhanced by decreasing the nanotube temperature. The permeate-side relative humidity was as low as ~17% and the helium-water vapor separation factor was as high as 4.62 when a helium-water vapor mixture with a relative humidity of 100% was supplied to the aligned-MWNTs. The flow through the interstitial space of the aligned-MWNTs allowed the permeability of single dry gases an order of magnitude higher than the Knudsen prediction regardless of membrane temperature. The water vapor separation performance of hydrophobic polytetrafluoroethylene membranes could also be significantly enhanced at low temperatures. This work combines the membrane-based separation technology with temperature control to enhance water vapor separation performance.Here we present a new strategy of selectively rejecting water vapor while allowing fast transport of dry gases using temperature-controlled aligned-multiwalled carbon nanotubes (aligned-MWNTs). The mechanism is based on the water vapor condensation at the entry region of nanotubes followed by removing aggregated water droplets at the tip of the superhydrophobic aligned-MWNTs. The first condensation step could be dramatically enhanced by decreasing the nanotube temperature. The permeate-side relative humidity was as low as ~17% and the helium-water vapor separation factor was as high as 4.62 when a helium-water vapor mixture with a relative humidity of 100% was supplied to the aligned-MWNTs. The flow through the interstitial space of the aligned-MWNTs allowed the permeability of single dry gases an order of

  4. Depressive-like behavior in adolescents after maternal separation: sex differences, controllability, and GABA.

    PubMed

    Leussis, Melanie P; Freund, Nadja; Brenhouse, Heather C; Thompson, Britta S; Andersen, Susan L

    2012-01-01

    Exposure to adversity during development is an identified risk factor for depression later in life. In humans, early adversity accelerates the onset of depressive symptoms, which manifest during adolescence. Animal studies have used maternal separation as a model of early adversity to produce adult depressive-like behaviors, but have yet to examine these behaviors during adolescence. Moreover, the nature of depressive-like behaviors has not been well characterized in this model. Here, we used the triadic model of learned helplessness to understand controllability, helplessness, and motivational factors following maternal separation in male and female adolescent rats. We found sex-dependent changes in the effects of separation, with males demonstrating loss of controllability in an escapable shock condition, whereas females demonstrated motivational impairment in a no-shock condition. The effect, however, did not endure as adult females were no longer helpless. Reductions in parvalbumin, a GABAergic marker, in the prefrontal cortex of separated subjects relative to age-matched controls were evident and paralleled depressive-like behavior. Understanding the risk factors for depression, the nature of depressive-like behaviors, and their unique sex dependency may ultimately provide insight into improved treatments. PMID:22776911

  5. Shark Skin Bristling: A Passive Flow-Actuated Separation Control Mechanism

    NASA Astrophysics Data System (ADS)

    Lang, Amy; Smith, Jonathon; Bradshaw, Michael; Wheelus, Jennifer; Motta, Philip; Habegger, Maria; Davis, Jessica; Hueter, Robert

    2012-11-01

    A collaborative experimental effort between biologists and engineers has proven the separation control capability of shark skin, with a specific focus on the shortfin mako (Isurus oxyrinchus) known for its high speed and agility. Biological measurements of the denticles, or scales, as a function of body location (DOI:10.1002/jmor.20047) will be presented together with data on bristling angle of scales and the morphological implications. Results show key regions of high bristling capability to correspond with those most prone to flow separation; these include the tail, flank regions aft of the gills, and on pectoral fins with scale flexibility increasing towards the trailing edge. Fresh shark skin samples were also tested in a water tunnel facility using DPIV and evidence of flow separation control was observed under laminar and tripped boundary layer conditions. It was concluded that the experiments conducted in the Re ~ 105 range resulted in sufficiently strong backflow induced close to the surface such that the shear threshold to induce bristling on the real skin sample was achieved since flow control at lower Re was not as evident. It is hypothesized that backflow initiated close to the wall in a region of adverse pressure gradient induces localized scale bristling thereby interrupting the subsequent flow development that leads to global flow separation from the surface and increased drag. Funding from NSF CBET grant 0932352 and US DOD AMRDEC.

  6. Effects of boundary-layer separation controllers on a desktop fume hood.

    PubMed

    Huang, Rong Fung; Chen, Jia-Kun; Hsu, Ching Min; Hung, Shuo-Fu

    2016-10-01

    A desktop fume hood installed with an innovative design of flow boundary-layer separation controllers on the leading edges of the side plates, work surface, and corners was developed and characterized for its flow and containment leakage characteristics. The geometric features of the developed desktop fume hood included a rearward offset suction slot, two side plates, two side-plate boundary-layer separation controllers on the leading edges of the side plates, a slanted surface on the leading edge of the work surface, and two small triangular plates on the upper left and right corners of the hood face. The flow characteristics were examined using the laser-assisted smoke flow visualization technique. The containment leakages were measured by the tracer gas (sulphur hexafluoride) detection method on the hood face plane with a mannequin installed in front of the hood. The results of flow visualization showed that the smoke dispersions induced by the boundary-layer separations on the leading edges of the side plates and work surface, as well as the three-dimensional complex flows on the upper-left and -right corners of the hood face, were effectively alleviated by the boundary-layer separation controllers. The results of the tracer gas detection method with a mannequin standing in front of the hood showed that the leakage levels were negligibly small (≤0.003 ppm) at low face velocities (≥0.19 m/s). PMID:27104797

  7. Proceedings of the 2004 Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L. (Compiler)

    2007-01-01

    The papers presented here are from the Langley Research Center Workshop on Computational Fluid Dynamics (CFD) Validation of Synthetic Jets and Turbulent Separation Control (nicknamed "CFDVAL2004"), held March 2004 in Williamsburg, Virginia. The goal of the workshop was to bring together an international group of CFD practitioners to assess the current capabilities of different classes of turbulent flow solution methodologies to predict flow fields induced by synthetic jets and separation control geometries. The workshop consisted of three flow-control test cases of varying complexity, and participants could contribute to any number of the cases. Along with their workshop submissions, each participant included a short write-up describing their method for computing the particular case(s). These write-ups are presented as received from the authors with no editing. Descriptions of each of the test cases and experiments are also included.

  8. Phase separation as a strategy toward controlling dilution effects in macrocyclic Glaser-Hay couplings.

    PubMed

    Bédard, Anne-Catherine; Collins, Shawn K

    2011-12-14

    Macrocycles are abundant in numerous chemical applications, however the traditional strategy for the preparation of these compounds remains cumbersome and environmentally damaging; involving tedious reaction set-ups and extremely dilute reaction media. The development of a macrocyclization strategy conducted at high concentrations is described which exploits phase separation of the catalyst and substrate, as a strategy to control dilution effects. Sequestering a copper catalyst in a highly polar and/or hydrophilic phase can be achieved using a hydrophilic ligand, T-PEG(1900), a PEGylated TMEDA derivative. Similarly, phase separation is possible when suitable copper complexes are soluble in PEG(400), a green and efficient solvent which can be utilized in biphasic mixtures for promoting macrocyclization at high concentrations. The latter phase separation technique can be exploited for the synthesis of a wide range of industrially relevant macrocycles with varying ring sizes and functional groups. PMID:22029394

  9. Feasibility of electroflotation to separate solids and liquid in an activated sludge process.

    PubMed

    Chung, C M; Cho, K W; Hong, S W; Kim, Y J; Chung, T H

    2009-12-14

    In this study, electroflotation (EF) has been applied as a secondary clarification in the activated sludge process to improve the efficiency of the solids-liquid separation, which is essential in maintaining effluent quality. The effects of sludge settleability were examined through a series of batch and semi-continuous experiments. The results of the batch experiments revealed that thickening efficiencies using EF were 2.6 to 9.2 times higher than those with gravity settling (GS). In addition, clarification efficiencies were not significantly influenced by sludge settling properties, as compared with GS as a control. In the semi-continuous EF experiments, the concentrations of solids in the float layer were maintained above 10 g L(-1) during flotation, regardless of variations in sludge settleability. Furthermore, the volumetric gas proportion in the float layer increased as the gas to solids (G/S) ratio rose. This allowed the float layer to be more stably suspended against gravity at the top of the reactor. Based on the results obtained from these batch and semi-continuous experiments, an anoxic/oxic (AO) reactor combined with EF clarifier remained in successful continuous operation for four months. In comparison with conventional AO processes using a GS clarifier, enhanced clarification and thickening efficiencies were achieved through the EF-AO system. In addition, higher mixed liquor suspended solids concentrations (averaging 5300 mg L(-1)) in the bioreactor (EF-AO) were maintained via the return of highly concentrated sludge (averaging 16,400 mg L(-1)) from the EF clarifier. These findings suggest that EF could be a promising and effective alternative for the solids-liquid separation of poorly settling sludge.

  10. Modelling aspects regarding the control in 13C isotope separation column

    NASA Astrophysics Data System (ADS)

    Boca, M. L.

    2016-08-01

    Carbon represents the fourth most abundant chemical element in the world, having two stable and one radioactive isotope. The 13Carbon isotopes, with a natural abundance of 1.1%, plays an important role in numerous applications, such as the study of human metabolism changes, molecular structure studies, non-invasive respiratory tests, Alzheimer tests, air pollution and global warming effects on plants [9] A manufacturing control system manages the internal logistics in a production system and determines the routings of product instances, the assignment of workers and components, the starting of the processes on not-yet-finished product instances. Manufacturing control does not control the manufacturing processes themselves, but has to cope with the consequences of the processing results (e.g. the routing of products to a repair station). In this research it was fulfilled some UML (Unified Modelling Language) diagrams for modelling the C13 Isotope Separation column, implement in STARUML program. Being a critical process and needing a good control and supervising, the critical parameters in the column, temperature and pressure was control using some PLC (Programmable logic controller) and it was made some graphic analyze for this to observe some critical situation than can affect the separation process. The main parameters that need to be control are: -The liquid nitrogen (N2) level in the condenser. -The electrical power supplied to the boiler. -The vacuum pressure.

  11. Developing Internal Controls through Activities

    ERIC Educational Resources Information Center

    Barnes, F. Herbert

    2009-01-01

    Life events can include the Tuesday afternoon cooking class with the group worker or the Saturday afternoon football game, but in the sense that Fritz Redl thought of them, these activities are only threads in a fabric of living that includes all the elements of daily life: playing, working, school-based learning, learning through activities,…

  12. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    NASA Astrophysics Data System (ADS)

    Kang, Chen; Hua, Liang

    2016-02-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503302, 51207169, and 51276197), the China Postdoctoral Science Foundation (Grant No. 2014M562446), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JM1001).

  13. Orbiter active thermal control system description

    NASA Technical Reports Server (NTRS)

    Laubach, G. E.

    1975-01-01

    A brief description of the Orbiter Active Thermal Control System (ATCS) including (1) major functional requirements of heat load, temperature control and heat sink utilization, (2) the overall system arrangement, and (3) detailed description of the elements of the ATCS.

  14. Separation-Compliant, Optimal Routing and Control of Scheduled Arrivals in a Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.

    2013-01-01

    We address the problem of navigating a set (fleet) of aircraft in an aerial route network so as to bring each aircraft to its destination at a specified time and with minimal distance separation assured between all aircraft at all times. The speed range, initial position, required destination, and required time of arrival at destination for each aircraft are assumed provided. Each aircraft's movement is governed by a controlled differential equation (state equation). The problem consists in choosing for each aircraft a path in the route network and a control strategy so as to meet the constraints and reach the destination at the required time. The main contribution of the paper is a model that allows to recast this problem as a decoupled collection of problems in classical optimal control and is easily generalized to the case when inertia cannot be neglected. Some qualitative insight into solution behavior is obtained using the Pontryagin Maximum Principle. Sample numerical solutions are computed using a numerical optimal control solver. The proposed model is first step toward increasing the fidelity of continuous time control models of air traffic in a terminal airspace. The Pontryagin Maximum Principle implies the polygonal shape of those portions of the state trajectories away from those states in which one or more aircraft pair are at minimal separation. The model also confirms the intuition that, the narrower the allowed speed ranges of the aircraft, the smaller the space of optimal solutions, and that an instance of the optimal control problem may not have a solution at all (i.e., no control strategy that meets the separation requirement and other constraints).

  15. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1992-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: program objectives; program features; flight experiment features; current activities; MACE development model lab testing; MACE test article deployed on STS middeck; and development model testing.

  16. Optimal Control Modification Adaptive Law for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  17. Actuator fault tolerant multi-controller scheme using set separation based diagnosis

    NASA Astrophysics Data System (ADS)

    Seron, María M.; De Doná, José A.

    2010-11-01

    We present a fault tolerant control strategy based on a new principle for actuator fault diagnosis. The scheme employs a standard bank of observers which match the different fault situations that can occur in the plant. Each of these observers has an associated estimation error with distinctive dynamics when an estimator matches the current fault situation of the plant. Based on the information from each observer, a fault detection and isolation (FDI) module is able to reconfigure the control loop by selecting the appropriate control law from a bank of controllers, each of them designed to stabilise and achieve reference tracking for one of the given fault models. The main contribution of this article is to propose a new FDI principle which exploits the separation of sets that characterise healthy system operation from sets that characterise transitions from healthy to faulty behaviour. The new principle allows to provide pre-checkable conditions for guaranteed fault tolerance of the overall multi-controller scheme.

  18. NIRS-based neurofeedback learning systems for controlling activity of the prefrontal cortex.

    PubMed

    Sakatani, Kaoru; Takemoto, N; Tsujii, T; Yanagisawa, K; Tsunashima, H

    2013-01-01

    The aim of this study was to develop a NIRS-based neurofeedback system to modulate activity in the prefrontal cortex (PFC). We evaluated the effectiveness of the system in terms of separability of changes in oxy-Hb and its derivative. Training with neurofeedback resulted in higher separability than training without neurofeedback or no training, suggesting that the neurofeedback system could enhance self-control of PFC activity. Interestingly, the dorsolateral PFC exhibited enhanced activity and high separability after neurofeedback training. These observations suggest that the neurofeedback system might be useful for training subjects to regulate emotions by self-control of dorsolateral PFC activity.

  19. Insertion of interlayers in efficient polymer-based organic solar cells for control of phase separation

    NASA Astrophysics Data System (ADS)

    Taima, Tetsuya; Tanaka, Jun; Kuwabara, Takayuki; Takahashi, Kohshin

    2016-02-01

    To improve the solar cell performance of polymer-based organic solar cells, the control of phase separation in the bulk heterojunction (BHJ) layer is important. In the case of a thienothiophene-benzodithiophene-based polymer (PTB7)-based solar cell, 1,8-diiodoctane (DIO) is added into the chlorobenzene solvent. However, it is well known that DIO addition causes degradation in long-term operation. Here, we try to improve the performance of the PTB7-based BHJ solar cell by controlling the phase separation in the BHJ layer through the insertion of an inorganic semiconducting copper iodide (CuI) interlayer between the BHJ layer and indium tin oxide. The power conversion efficiency of the PTB7-based solar cell is improved from 3.5 to 3.9% upon inserting the CuI interlayer without DIO addition.

  20. Optically controllable dual-gate organic transistor produced via phase separation between polymer semiconductor and photochromic spiropyran molecules.

    PubMed

    Ishiguro, Yasushi; Hayakawa, Ryoma; Chikyow, Toyohiro; Wakayama, Yutaka

    2014-07-01

    We produced an optically controllable dual-gate organic field-effect transistor by a simple one-step spin-coating of a mixed solution of photochromic spiropyran (SP) and poly(3-hexylthiophene) (P3HT). Postannealing enhanced polymer chain ordering of P3HT to induce phase separation into an SP-rich lower layer and an SP-free upper layer. These layers worked independently as transistor channels with distinct optical responsivity. The top channel was optically inactive, but the bottom channel was optically active, because of the photoisomerization of SP. These results demonstrate the potential of our technique to produce a multifunctional photoactive organic transistor by a simple process.

  1. Recent advances in active noise control

    NASA Astrophysics Data System (ADS)

    Guicking, D.

    Advances in the field of active noise control over the last few years are reviewed. Some commercially available products and their technical applications are described, with particular attention given to broadband duct noise silencers, broadband active headphones, waveform synthesis, and LMS controllers. Recent theoretical and experimental research activities are then reviewed. These activities are concerned with duct noise, structural sound, interior spaces, algorithms, echo cancellation, and miscellaneous applications.

  2. Monoamine activity in anterior hypothalamus of guinea pig pups separated from their mothers.

    PubMed

    Harvey, A T; Moore, H; Lucot, J B; Hennessy, M B

    1994-02-01

    Brief isolation in a novel environment increased the ratios of 3-methoxy-4-hydroxyphenylethylene glycol to norepinephrine (MHPG:NE) and dihydroxyphenylacetic acid to dopamine (DOPAC:DA) in the anterior hypothalamus of guinea pig pups. Ratios were significantly elevated after 90 min of isolation and for MHPG:NE, after 30 min of isolation; changes were due to increases in MHPG and DOPAC. Home cage isolation produced no change in any measure of catecholamine activity. No changes in levels of serotonin or its metabolite were observed. In 1 experiment, resting levels of NE and DOPAC:DA were predictive of the rate of separation-induced vocalization. Maternal separation in the context of novelty increases hypothalamic NE and DA activity; however, both isolation and novelty are required because neither maternal separation in the home cage nor exposure to a novel cage together with the mother had any discernible effect. PMID:7514878

  3. Simulation and simulator development of a separate surface attitude command control system for light aircraft

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1976-01-01

    A detailed description is presented of the simulation philosophy and process used in the development of a Separate Surface Attitude Command control system (SSAC) for a Beech Model 99 Airliner. The intent of this system is to provide complete three axes stability augmentation at low cost and without the need for system redundancy. The system, although aimed at the general aviation market, also has applications to certain military airplanes as well as to miniature submarines.

  4. Propulsion-free separation and rendezvous of small shuttle free-flyers using controlled differential drag

    NASA Technical Reports Server (NTRS)

    King, J. C.

    1979-01-01

    A natural successor in the Shuttle era to many sounding rocket flights is the free-flyer mode of operation, in which the Shuttle Orbiter releases a subsatellite (with payloads), effects a desired separation, and approaches and retrieves the free-layer. The propulsive maneuvers required of the Orbiter by equivalent relative motions obtained through controlled differential drag (via changes in free-layer effective area and/or Orbiter attitude changes) are replaced. Simplified analytical techniques are developed and feasibility is verified.

  5. Aspects regarding at 13C isotope separation column control using Petri nets system

    NASA Astrophysics Data System (ADS)

    Boca, M. L.; Ciortea, M. E.

    2015-11-01

    This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13C Isotope Separation column using Petri nets. The major problem with 13C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times.

  6. The Middeck Active Control Experiment (MACE): Identification for robust control

    NASA Technical Reports Server (NTRS)

    Karlov, Valery I.

    1992-01-01

    Viewgraphs on identification for robust control for the Middeck Active Control Experiment (MACE) are presented. Topics covered include: identification for robust control; three levels of identification; basic elements of the approach; advantages of 'post-ID' model of uncertainty; advantages of optimization; and practical realization.

  7. Recent Observations on Shortfin Mako Scale Flexibility as a Mechanism for Separation Control

    NASA Astrophysics Data System (ADS)

    Lang, Amy; Motta, Philip; Habegger, Maria; Jones, Emily; Hueter, Robert

    2010-11-01

    Recent results obtained from examining the skin of the shortfin mako (Isurus oxyrinchus) suggest that scale flexibility may provide a passive, flow actuated mechanism for controlling flow separation. The shortfin mako is considered to be one of the fastest and most agile marine predators. High contragility, or the ability to change direction while already in a turn, requires minimal form drag and thus control of flow separation on body regions aft of the point of maximum girth. Recent biological observations have found that the shortfin mako has highly flexible scales, or denticles, particularly on the sides of the body downstream of the gills; in these regions scale crowns can be easily manipulated to angles in excess of 60 degrees. Histological data of the skin provides preliminary evidence that this flexibility is achieved due, in part, to a reduction in the size of the base of the scale where it is anchored into the skin. Experimental measurements of maximum angle of denticle bristling observed as a function of body location will be presented and a probable mechanism leading to separation control will be discussed.

  8. "Mommy! Don't Go Bye-Bye!": How Art Activities Can Ease Separation Anxiety.

    ERIC Educational Resources Information Center

    Muri, Simone Alter

    1996-01-01

    Explains how art, a nonverbal form of communication, can ease separation anxiety in young children, allowing them to express issues that are important to them. Gives practical tips for teachers to set up an open art area in the classroom and suggested activities include group puzzles and quilts, homemade books, collage art, and puppets. (ET)

  9. Student Activity Funds: Procedures & Controls.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles E.

    Student activity funds may create educational opportunities for students, but they frequently create problems for business administrators. The first part of this work reviews the types of organizational issues and transactions an organized student group is likely to encounter, including establishing a constitution, participant roles,…

  10. An instrument to control parallel plate separation for nanoscale flow control

    NASA Astrophysics Data System (ADS)

    White, J.; Ma, H.; Lang, J.; Slocum, A.

    2003-11-01

    The handling of extremely small samples of gases and liquids has long been a subject of research among biologists, chemists, and engineers. A few scientific instruments, notably the surface force apparatus, have been used extensively to investigate very short-range molecular phenomena. This article describes the design, fabrication, and characterization of an easily manufactured, gas and liquid flow control device called the Nanogate. The Nanogate controls liquid flows under very high planar confinement, wherein the liquid film is, in one dimension, on the scale of nanometers, but is on the scale of hundreds of microns in its other dimensions. The liquid film is confined between a silica (Pyrex) surface with a typical roughness of Ra≈6 nm and a gold-covered silicon surface with a typical roughness of Ra≈2 nm. During the manufacturing process, the Pyrex flows and conforms to the gold-covered silicon surface, improving the mating properties of the two surfaces. The fluid film thickness can be controlled within 2 Å, from sub-10 nm up to 1 μm. Control of helium gas flow rates in the 10-9 atm cm3/s range, and sub-nl/s flow rates of water and methanol have been predicted and experimentally verified.

  11. Effect of temperature and active biogas process on passive separation of digested manure.

    PubMed

    Kaparaju, P; Angelidaki, I

    2008-03-01

    The objective of the study was to identify the optimum time interval for effluent removal after temporarily stopping stirring in otherwise continuously stirred tank reactors. Influence of temperature (10 and 55 degrees C) and active biogas process on passive separation of digested manure, where no outside mechanical or chemical action was used, within the reactor was studied in three vertical settling columns (100 cm deep). Variations in solids and microbial distribution at top, middle and bottom layers of column were assessed over a 15 day settling period. Results showed that best solids separation was achieved when digested manure was allowed to settle at 55 degrees C with active biogas process (pre-incubated at 55 degrees C) compared to separation at 55 degrees C without active biogas process (autoclaved at 120 degrees C, for 20 min) or at 10 degrees C with active biogas process. Maximum solids separation was noticed 24h after settling in column incubated at 55 degrees C, with active biogas process. Microbiological analyses revealed that proportion of Archaea and Bacteria, absent in the autoclaved material, varied with incubation temperature, time and sampling depth. Short rod shaped bacteria dominated at 55 degrees C, while long rod shaped bacteria dominated at 10 degrees C. Methanosarcinaceae were seen more abundant in the surface layer at 55 degrees C while it was seen more common in the top and bottom layers at 10 degrees C. Thus, passive separation of digester contents within the reactor can be used effectively as an operating strategy to optimize biogas production by increasing the solids and biomass retention times. A minimum of 1-2h "non-stirring" period appears to be optimal time before effluent removal in plants where extraction is batch-wise 2-4 times a day.

  12. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    Actively controlled mechanical seals have recently been developed for industrial use. This study investigates the feasibility of using such seals for aerospace applications. In a noncontacting mechanical seal, the film thickness depends on the geometry of the seal interface. The amount of coning, which is a measure of the radial convergence or divergence of the seal interface, has a primary effect on the film thickness. Active control of the film thickness is established by controlling the coning with a piezoelectric material. A mathematical model has been formulated to predict the performance of an actively controlled mechanical seal.

  13. Application of chromatography technology in the separation of active components from nature derived drugs.

    PubMed

    Zhao, H-Y; Jiang, J-G

    2010-11-01

    Chromatography technology has been widely applied in various aspects of the pharmacy research on traditional Chinese medicine (TCM). This paper reviews literatures, published in the past decades, on the separation of active component from TCM using chromatography technology. Ultra-performance liquid chromatography (UPLC), high-speed counter-current chromatography (HSCCC), rapid resolution liquid chromatography (RRLC), supercritical fluid chromatography (SFC), affinity chromatography (AC), and bio-chromatography (BC) are introduced in detail. Compared to high performance of high-performance liquid chromatography (HPLC), analysis time and solvent loss are significantly reduced by UPLC with increase in resolution and sensitivity. Some ingredients from nature derived drugs can be separated more completely by HSCCC, which has remarkable characteristics such as low cost, simple operation and no pollution. Trace components from complex systems can be selectively and efficiently separated and purified by AC, This feature makes it effective in isolation and identification of active components of Chinese herbs. Interference of some impurities could be excluded by BC. Active ingredients that are difficult to be separated by normal method can be acquired by SFC. Currently, application of novel chromatography techniques in TCM is still in the exploratory stage and many problems, such as preparation of stationary phase and detection, need to be solved.

  14. An Experimental Study of Flow Separation Control by Shortfin Mako Shark Skin

    NASA Astrophysics Data System (ADS)

    Afroz, Farhana; Lang, Amy; Motta, Philip; Habegger, Maria

    2013-11-01

    The shortfin mako shark (Isurus oxyrinchus) is a fast swimmer and has incredible turning agility. Shark skin is covered with flexible scales and this bristling capability may result in a unique Boundary Layer Control (BLC) method to reduce drag. It is hypothesized that scales bristle when the flow above it is reversed, and between the bristled scales embedded micro-vortices form in the cavities which induce boundary layer mixing and aid in delaying flow separation. To testify this hypothesis, samples of mako shark skin have been tested in a water tunnel under various strengths of adverse pressure gradient (APG). Laminar and turbulent separation over shark skin was studied experimentally using Time-Resolved Digital Particle Image Velocimetry (TR-DPIV) system, where the APG was generated and varied using a rotating cylinder. Then shark skin results were compared with that of a flat plate data for a given amount of APG. The study reveals that shark skin is capable of controlling both laminar and turbulent flow separation. Support under NSF grant 0932352 is gratefully acknowledged. First author Farhana Afroz was also supported by a scholarship through the Alabama EPSCoR Graduate Research Scholars Program.

  15. A frequency-control particle separation device based on resultant effects of electroosmosis and dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Lin, Shiang-Chi; Tung, Yi-Chung; Lin, Chih-Ting

    2016-08-01

    Particle separation plays an important role in microfluidic sample preparation for various biomedical applications. In this paper, we report a particle manipulation and separation scheme using a microfluidic device based on low-volume/low-voltage electrokinetic frequency modulation. Utilizing a circular micro-electrode array, both electroosmosis and dielectrophoresis can be contributed to manipulate particles in the device by controlling the frequency of applied sinusoidal travelling wave signals. Theoretical simulations based on finite-element methods are employed to establish fundamental understanding of the developed scheme. For experimental demonstration, polystyrene beads (6 μm in diameter) and human promyelocytic leukaemia cells (HL-60) are used to validate the frequency-modulation effect. Furthermore, different diameter polystyrene beads (6 μm and 10 μm in diameter) are mixed to show potentials of precise particle separations (˜90% efficiency) by the reported frequency-controlled electrokinetic device. The developed technique can be exploited as an actuation scheme and particle manipulation method for microfluidic sample preparations of low ionic concentration samples.

  16. Control and optimization of apheresis procedures in a COBE 2997 cell separator.

    PubMed

    Wooten, S L; Petersen, J N; Van Wie, B J

    1991-02-01

    To obtain more efficient operation of a COBE Model 2997 clinical cell separator using either a Single Stage II (SS II) or a Dual Stage separation chamber, modifications were made to allow complete computer control. Product cell density was detected using an optical sensor and controlled by automatic feedback through a microcomputer interface. Control was accomplished by automatically adjusting the red blood cell (RBC) and plasma product flow rates using a proportional-integral (PI) algorithm. Results show that, using either chamber, the product cell density can be maintained at a preselected value for extended periods of time without operator intervention. This system allowed investigation of optimal operating regions for plateletpheresis and leukapheresis procedures. The effects of centrifuge rpm and controller set point on centrifuge operation were investigated using a second order factorial experimental design. Theoretical significance of model parameters was assessed with the aid of a hindered settling model and simple reasoning about the interface position relative to the collection port. The results suggest that, in either chamber, the optimum operating region for plateletpheresis procedures occurs at moderate controller set points and high centrifuge rpm. The resultant operating efficiency and product purity values are approximately 63 percent and 0.65 respectively in the SS II chamber and approximately 70 percent and 0.70 respectively in the Dual Chamber. In the SS II, the optimum operating region for leukapheresis procedures occurred at high controller set point values for any centrifuge rpm above 1200 with an operating efficiency near 100 percent. However, in the Dual Chamber, the optimum operating region for leukapheresis procedures occurred at high controller set points and high centrifuge rpm's, again providing an operating efficiency near 100 percent.

  17. Generation of optical vortices with the same topological charges and controllable separation distances using diffraction gratings

    NASA Astrophysics Data System (ADS)

    Ghasempour Ardakani, Abbas; Safarzadeh, Fatemeh

    2016-08-01

    In this paper, we first generate optical vortices with different topological charges, using the method of computer-generated holograms. Then, we separate one of the optical vortices from others with a special topological charge and pass it through a diffraction grating with a specified line spacing. It is observed that the vortex beam, after passing through the grating, converts to several separated vortices with the same topological charge whose value is similar to the topological charge of the input vortex. Finally, we show that the distance between generated vortices can be controlled with the variation of spacing between grating lines. So, the proposed setup in this paper can be exploited as an optical vortex divider which is useful in communication and trapping systems.

  18. Controlling Directionality and Dimensionality of Radiation by Perturbing Separable Bound States in the Continuum.

    PubMed

    Rivera, Nicholas; Hsu, Chia Wei; Zhen, Bo; Buljan, Hrvoje; Joannopoulos, John D; Soljačić, Marin

    2016-01-01

    A bound state in the continuum (BIC) is an unusual localized state that is embedded in a continuum of extended states. Here, we present the general condition for BICs to arise from wave equation separability. Then we show that by exploiting perturbations of certain symmetry such BICs can be turned into resonances that radiate with a tailorable directionality and dimensionality. Using this general framework, we construct new examples of separable BICs and resonances that can exist in optical potentials for ultracold atoms, photonic systems, and systems described by tight binding. Such resonances with easily reconfigurable radiation allow for applications such as the storage and release of waves at a controllable rate and direction, as well systems that switch between different dimensions of confinement. PMID:27641540

  19. Separation Control for Wing Surface Flow using Dielectric-barrier Discharge

    NASA Astrophysics Data System (ADS)

    Tanaka, Motofumi; Hayashi, Kazuo; Otomo, Fumio; Matsuda, Hisashi; Noda, Etsuo; Yasui, Hiroyuki; Shimura, Naohiko; Niizeki, Yoshiki; Noda, Shinichi

    The effect of momentum addition by a dielectric-barrier discharge was experimentally investigated. At first, flow induced by the discharge on a flat plate was investigated. Velocity profile was visualized by the smoke-wire technique and measured by a hot-wire anemometer. Maximum velocity was several meters per second at 1mm above the plate. Induced flow affect the velocity profile of boundary layer on the plate. Secondary, separation control for wing surface flow was investigated using a 9cm chord NACA0015 in a wind tunnel at 20m/s of air stream velocity (Re˜105). Barrier discharge electrode was set on the leading edge of the wing. Separation angle was increased by 4 degrees and the maximum of the lift coefficient was improved by 17% with discharge power of 0.4W.

  20. Controlling Directionality and Dimensionality of Radiation by Perturbing Separable Bound States in the Continuum

    NASA Astrophysics Data System (ADS)

    Rivera, Nicholas; Hsu, Chia Wei; Zhen, Bo; Buljan, Hrvoje; Joannopoulos, John D.; Soljačić, Marin

    2016-09-01

    A bound state in the continuum (BIC) is an unusual localized state that is embedded in a continuum of extended states. Here, we present the general condition for BICs to arise from wave equation separability. Then we show that by exploiting perturbations of certain symmetry such BICs can be turned into resonances that radiate with a tailorable directionality and dimensionality. Using this general framework, we construct new examples of separable BICs and resonances that can exist in optical potentials for ultracold atoms, photonic systems, and systems described by tight binding. Such resonances with easily reconfigurable radiation allow for applications such as the storage and release of waves at a controllable rate and direction, as well systems that switch between different dimensions of confinement.

  1. Controlling Directionality and Dimensionality of Radiation by Perturbing Separable Bound States in the Continuum

    PubMed Central

    Rivera, Nicholas; Hsu, Chia Wei; Zhen, Bo; Buljan, Hrvoje; Joannopoulos, John D.; Soljačić, Marin

    2016-01-01

    A bound state in the continuum (BIC) is an unusual localized state that is embedded in a continuum of extended states. Here, we present the general condition for BICs to arise from wave equation separability. Then we show that by exploiting perturbations of certain symmetry such BICs can be turned into resonances that radiate with a tailorable directionality and dimensionality. Using this general framework, we construct new examples of separable BICs and resonances that can exist in optical potentials for ultracold atoms, photonic systems, and systems described by tight binding. Such resonances with easily reconfigurable radiation allow for applications such as the storage and release of waves at a controllable rate and direction, as well systems that switch between different dimensions of confinement. PMID:27641540

  2. Formation of asymmetrical structured silica controlled by a phase separation process and implication for biosilicification.

    PubMed

    Shi, Jia-Yuan; Yao, Qi-Zhi; Li, Xi-Ming; Zhou, Gen-Tao; Fu, Sheng-Quan

    2013-01-01

    Biogenetic silica displays intricate patterns assembling from nano- to microsize level and interesting non-spherical structures differentiating in specific directions. Several model systems have been proposed to explain the formation of biosilica nanostructures. Of them, phase separation based on the physicochemical properties of organic amines was considered to be responsible for the pattern formation of biosilica. In this paper, using tetraethyl orthosilicate (TEOS, Si(OCH2CH3)4) as silica precursor, phospholipid (PL) and dodecylamine (DA) were introduced to initiate phase separation of organic components and influence silica precipitation. Morphology, structure and composition of the mineralized products were characterized using a range of techniques including field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), infrared spectra (IR), and nitrogen physisorption. The results demonstrate that the phase separation process of the organic components leads to the formation of asymmetrically non-spherical silica structures, and the aspect ratios of the asymmetrical structures can be well controlled by varying the concentration of PL and DA. On the basis of the time-dependent experiments, a tentative mechanism is also proposed to illustrate the asymmetrical morphogenesis. Therefore, our results imply that in addition to explaining the hierarchical porous nanopatterning of biosilica, the phase separation process may also be responsible for the growth differentiation of siliceous structures in specific directions. Because organic amine (e.g., long-chair polyamines), phospholipids (e.g., silicalemma) and the phase separation process are associated with the biosilicification of diatoms, our results may provide a new insight into the mechanism of biosilicification.

  3. Formation of Asymmetrical Structured Silica Controlled by a Phase Separation Process and Implication for Biosilicification

    PubMed Central

    Shi, Jia-Yuan; Yao, Qi-Zhi; Li, Xi-Ming; Zhou, Gen-Tao; Fu, Sheng-Quan

    2013-01-01

    Biogenetic silica displays intricate patterns assembling from nano- to microsize level and interesting non-spherical structures differentiating in specific directions. Several model systems have been proposed to explain the formation of biosilica nanostructures. Of them, phase separation based on the physicochemical properties of organic amines was considered to be responsible for the pattern formation of biosilica. In this paper, using tetraethyl orthosilicate (TEOS, Si(OCH2CH3)4) as silica precursor, phospholipid (PL) and dodecylamine (DA) were introduced to initiate phase separation of organic components and influence silica precipitation. Morphology, structure and composition of the mineralized products were characterized using a range of techniques including field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), infrared spectra (IR), and nitrogen physisorption. The results demonstrate that the phase separation process of the organic components leads to the formation of asymmetrically non-spherical silica structures, and the aspect ratios of the asymmetrical structures can be well controlled by varying the concentration of PL and DA. On the basis of the time-dependent experiments, a tentative mechanism is also proposed to illustrate the asymmetrical morphogenesis. Therefore, our results imply that in addition to explaining the hierarchical porous nanopatterning of biosilica, the phase separation process may also be responsible for the growth differentiation of siliceous structures in specific directions. Because organic amine (e.g., long-chair polyamines), phospholipids (e.g., silicalemma) and the phase separation process are associated with the biosilicification of diatoms, our results may provide a new insight into the mechanism of biosilicification. PMID:23585878

  4. Activity of fuel batches processed through Hanford separations plants, 1944 through 1989

    SciTech Connect

    Watrous, R.A.; Wootan, D.W.

    1997-07-29

    This document provides a printout of the ``Fuel Activity Database`` (version U6) generated by the Hanford DKPRO code and transmitted to the Los Alamos National Laboratory for input to their ``Hanford Defined Waste`` model of waste tank inventories. This fuel activity file consists of 1,276 records--each record representing the activity associated with a batch of spent reactor fuel processed by month (or shorter period) through individual Hanford separations plants between 1944 and 1989. Each record gives the curies for 46 key radionuclides, decayed to a common reference date of January 1, 1994.

  5. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    PubMed

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out.

  6. Removal of micropollutants with coarse-ground activated carbon for enhanced separation with hydrocyclone classifiers.

    PubMed

    Otto, N; Platz, S; Fink, T; Wutscherk, M; Menzel, U

    2016-01-01

    One key technology to eliminate organic micropollutants (OMP) from wastewater effluent is adsorption using powdered activated carbon (PAC). To avoid a discharge of highly loaded PAC particles into natural water bodies a separation stage has to be implemented. Commonly large settling tanks and flocculation filters with the application of coagulants and flocculation aids are used. In this study, a multi-hydrocyclone classifier with a downstream cloth filter has been investigated on a pilot plant as a space-saving alternative with no need for a dosing of chemical additives. To improve the separation, a coarser ground PAC type was compared to a standard PAC type with regard to elimination results of OMP as well as separation performance. With a PAC dosing rate of 20 mg/l an average of 64.7 wt% of the standard PAC and 79.5 wt% of the coarse-ground PAC could be separated in the hydrocyclone classifier. A total average separation efficiency of 93-97 wt% could be reached with a combination of both hydrocyclone classifier and cloth filter. Nonetheless, the OMP elimination of the coarse-ground PAC was not sufficient enough to compete with the standard PAC. Further research and development is necessary to find applicable coarse-grained PAC types with adequate OMP elimination capabilities.

  7. Removal of micropollutants with coarse-ground activated carbon for enhanced separation with hydrocyclone classifiers.

    PubMed

    Otto, N; Platz, S; Fink, T; Wutscherk, M; Menzel, U

    2016-01-01

    One key technology to eliminate organic micropollutants (OMP) from wastewater effluent is adsorption using powdered activated carbon (PAC). To avoid a discharge of highly loaded PAC particles into natural water bodies a separation stage has to be implemented. Commonly large settling tanks and flocculation filters with the application of coagulants and flocculation aids are used. In this study, a multi-hydrocyclone classifier with a downstream cloth filter has been investigated on a pilot plant as a space-saving alternative with no need for a dosing of chemical additives. To improve the separation, a coarser ground PAC type was compared to a standard PAC type with regard to elimination results of OMP as well as separation performance. With a PAC dosing rate of 20 mg/l an average of 64.7 wt% of the standard PAC and 79.5 wt% of the coarse-ground PAC could be separated in the hydrocyclone classifier. A total average separation efficiency of 93-97 wt% could be reached with a combination of both hydrocyclone classifier and cloth filter. Nonetheless, the OMP elimination of the coarse-ground PAC was not sufficient enough to compete with the standard PAC. Further research and development is necessary to find applicable coarse-grained PAC types with adequate OMP elimination capabilities. PMID:27232411

  8. Active vibration control of lightweight floor systems

    NASA Astrophysics Data System (ADS)

    Baader, J.; Fontana, M.

    2016-04-01

    Wide-span and lightweight floors are often prone to structural vibrations due to their low resonance frequency and poor material damping. Their dynamic behaviour can be improved using passive, semi-active or active vibration control devices. The following article proposes a novel method for the controller synthesis for active vibration control. An existing passive TMD (tuned mass damper) is modelled and equipped with an actuator in order to provide more efficient damping. Using an iterative optimization approach under constraints, an optimal controller is found which minimizes a quadratic cost function in frequency domain. A simulation of an existing test bench shows that the active vibration control device is able to provide increased damping compared to the passive TMD.

  9. Shape control and compartmentalization in active colloidal cells

    PubMed Central

    Spellings, Matthew; Engel, Michael; Klotsa, Daphne; Sabrina, Syeda; Drews, Aaron M.; Nguyen, Nguyen H. P.; Bishop, Kyle J. M.; Glotzer, Sharon C.

    2015-01-01

    Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core–shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble–crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non–momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier–Stokes equation. PMID:26253763

  10. Evaluation of Force Degradation Pattern of Elastomeric Ligatures and Elastomeric Separators in Active Tieback State.

    PubMed

    Mohammadi, Amir; Mahmoodi, Farhang

    2015-01-01

    Background and aims. The purpose of this study was to evaluate initial force and force decay of commercially available elastomeric ligatures and elastomeric separators in active tieback state in a simulated oral environment. Materials and methods. A total of 288 elastomeric ligatures and elastomeric separators from three manufacturers (Dentaurum, RMO, 3M Unitek) were stretched to 100% and 150% of their original inner diameter. Force levels were measured initially and at 3-minute, 24-hour, and 1-, 2-, 3- and 4-week intervals. Data were analyzed by univariate analysis of variance and a post hoc Tukey test. Results. The means of initial forces of elastomeric ligatures and separators from three above-mentioned companies, when stretched to 100% of their inner diameters, were 199, 305 and 284 g, and 330, 416, 330 g; when they were stretched to 150% of their inner diameters the values were 286, 422 and 375 g, and 433, 540 and 504 g, respectively. In active tieback state, 11-18% of the initial force of the specimens was lost within the first 3 minutes and 29-63% of the force decay occurred in the first 24 hours; then force decay rate decreased. 62-81% of the initial force was lost in 4 weeks. Although force decay pattern was identical in all the products, the initial force and force decay of Dentaurum elastomeric products were less than the similar products of other companies (P<0.05). Under the same conditions, the force of elastomeric separators was greater than elastomeric ligatures of the same company. Conclusion. Regarding the force pattern of elastomeric ligatures and separators and optimal force for tooth movement, many of these products can be selected for applying orthodontic forces in active tieback state.

  11. Evaluation of Force Degradation Pattern of Elastomeric Ligatures and Elastomeric Separators in Active Tieback State

    PubMed Central

    Mohammadi, Amir; Mahmoodi, Farhang

    2015-01-01

    Background and aims. The purpose of this study was to evaluate initial force and force decay of commercially available elastomeric ligatures and elastomeric separators in active tieback state in a simulated oral environment. Materials and methods. A total of 288 elastomeric ligatures and elastomeric separators from three manufacturers (Dentaurum, RMO, 3M Unitek) were stretched to 100% and 150% of their original inner diameter. Force levels were measured initially and at 3-minute, 24-hour, and 1-, 2-, 3- and 4-week intervals. Data were analyzed by univariate analysis of variance and a post hoc Tukey test. Results. The means of initial forces of elastomeric ligatures and separators from three above-mentioned companies, when stretched to 100% of their inner diameters, were 199, 305 and 284 g, and 330, 416, 330 g; when they were stretched to 150% of their inner diameters the values were 286, 422 and 375 g, and 433, 540 and 504 g, respectively. In active tieback state, 11-18% of the initial force of the specimens was lost within the first 3 minutes and 29-63% of the force decay occurred in the first 24 hours; then force decay rate decreased. 62-81% of the initial force was lost in 4 weeks. Although force decay pattern was identical in all the products, the initial force and force decay of Dentaurum elastomeric products were less than the similar products of other companies (P<0.05). Under the same conditions, the force of elastomeric separators was greater than elastomeric ligatures of the same company. Conclusion. Regarding the force pattern of elastomeric ligatures and separators and optimal force for tooth movement, many of these products can be selected for applying orthodontic forces in active tieback state. PMID:26889363

  12. Control of active sites in selective flocculation: I -- Mathematical model

    SciTech Connect

    Behl, S.; Moudgil, B.M.; Prakash, T.S. . Dept. of Materials Science and Engineering)

    1993-12-01

    Heteroflocculation has been determined to be another major reason for loss in selectivity for flocculation process. In a mathematical model developed earlier, conditions for controlling heteroflocculation were discussed. Blocking active sites to control selective adsorption of a flocculant oil a desirable solid surface is discussed. It has been demonstrated that the lower molecular weight fraction of a flocculant which is incapable of flocculating the particles is an efficient site blocking agent. The major application of selective flocculation has been in mineral processing but many potential uses exist in biological and other colloidal systems. These include purification of ceramic powders, separating hazardous solids from chemical waste, and removal of deleterious components from paper pulp.

  13. Reliable and Affordable Control Systems Active Combustor Pattern Factor Control

    NASA Technical Reports Server (NTRS)

    McCarty, Bob; Tomondi, Chris; McGinley, Ray

    2004-01-01

    Active, closed-loop control of combustor pattern factor is a cooperative effort between Honeywell (formerly AlliedSignal) Engines and Systems and the NASA Glenn Research Center to reduce emissions and turbine-stator vane temperature variations, thereby enhancing engine performance and life, and reducing direct operating costs. Total fuel flow supplied to the engine is established by the speed/power control, but the distribution to individual atomizers will be controlled by the Active Combustor Pattern Factor Control (ACPFC). This system consist of three major components: multiple, thin-film sensors located on the turbine-stator vanes; fuel-flow modulators for individual atomizers; and control logic and algorithms within the electronic control.

  14. Summary of the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Gatski, T. B.; Sellers, W. L., III; Vatsa, V. N.; Viken, S. A.

    2004-01-01

    A CFD validation workshop for synthetic jets and turbulent separation control (CFDVAL2004) was held in Williamsburg, Virginia in March 2004. Three cases were investigated: synthetic jet into quiescent air, synthetic jet into a turbulent boundary layer crossflow, and flow over a hump model with no-flow-control, steady suction, and oscillatory control. This paper is a summary of the CFD results from the workshop. Although some detailed results are shown, mostly a broad viewpoint is taken, and the CFD state-of-the-art for predicting these types of flows is evaluated from a general point of view. Overall, for synthetic jets, CFD can only qualitatively predict the flow physics, but there is some uncertainty regarding how to best model the unsteady boundary conditions from the experiment consistently. As a result. there is wide variation among CFD results. For the hump flow, CFD as a whole is capable of predicting many of the particulars of this flow provided that tunnel blockage is accounted for, but the length of the separated region compared to experimental results is consistently overpredicted.

  15. Control of Chemical Effects in the Separation Process of a Differential Mobility / Mass Spectrometer System

    PubMed Central

    Schneider, Bradley B.; Coy, Stephen L.; Krylov, Evgeny V.; Nazarov, Erkinjon G.

    2013-01-01

    Differential mobility spectrometry (DMS) separates ions on the basis of the difference in their migration rates under high versus low electric fields. Several models describing the physical nature of this field mobility dependence have been proposed but emerging as a dominant effect is the clusterization model sometimes referred to as the dynamic cluster-decluster model. DMS resolution and peak capacity is strongly influenced by the addition of modifiers which results in the formation and dissociation of clusters. This process increases selectivity due to the unique chemical interactions that occur between an ion and neutral gas phase molecules. It is thus imperative to bring the parameters influencing the chemical interactions under control and find ways to exploit them in order to improve the analytical utility of the device. In this paper we describe three important areas that need consideration in order to stabilize and capitalize on the chemical processes that dominate a DMS separation. The first involves means of controlling the dynamic equilibrium of the clustering reactions with high concentrations of specific reagents. The second area involves a means to deal with the unwanted heterogeneous cluster ion populations emitted from the electrospray ionization process that degrade resolution and sensitivity. The third involves fine control of parameters that affect the fundamental collision processes, temperature and pressure. PMID:20065515

  16. Investigating the Complexity of Transitioning Separation Assurance Tools into NextGen Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Gomez, Ashley Nicole; Martin, Lynne Hazel; Homola, Jeffrey; Morey, Susan; Cabrall, Christopher; Mercer, Joey; Prevot, Thomas

    2013-01-01

    In a study, that introduced ground-based separation assurance automation through a series of envisioned transitional phases of concept maturity, it was found that subjective responses to scales of workload, situation awareness, and acceptability in a post run questionnaire revealed as-predicted results for three of the four study conditions but not for the third, Moderate condition. The trend continued for losses of separation (LOS) where the number of LOS events were far greater than expected in the Moderate condition. To offer an account of why the Moderate condition was perceived to be more difficult to manage than predicted, researchers examined the increase in amount and complexity of traffic, increase in communication load, and increased complexities as a result of the simulation's mix of aircraft equipage. Further analysis compared the tools presented through the phases, finding that controllers took advantage of the informational properties of the tools presented but shied away from using their decision support capabilities. Taking into account similar findings from other studies, it is suggested that the Moderate condition represented the first step into a "shared control" environment, which requires the controller to use the automation as a decision making partner rather than just a provider of information. Viewed in this light, the combination of tools offered in the Moderate condition was reviewed and some tradeoffs that may offset the identified complexities were suggested.

  17. Summary of the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Gatski, T. B.; Sellers, W. L., III; Vatsa, V. N.; Viken, S. A.

    2006-01-01

    A computational fluid dynamics (CFD) validation workshop for synthetic jets and turbulent separation control (CFDVAL2004) was held in Williamsburg, Virginia in March 2004. Three cases were investigated: synthetic jet into quiescent air, synthetic jet into a turbulent boundary layer crossflow, and flow over a hump model with no-flow-control, steady suction, and oscillatory control. This paper is a summary of the CFD results from the workshop. Although some detailed results are shown, mostly a broad viewpoint is taken, and the CFD state-of-the-art for predicting these types of flows is evaluated from a general point of view. Overall, for synthetic jets, CFD can only qualitatively predict the flow physics, but there is some uncertainty regarding how to best model the unsteady boundary conditions from the experiment consistently. As a result, there is wide variation among CFD results. For the hump flow, CFD as a whole is capable of predicting many of the particulars of this flow provided that tunnel blockage is accounted for, but the length of the separated region compared to experimental results is consistently overpredicted.

  18. Control of chemical effects in the separation process of a differential mobility mass spectrometer system.

    PubMed

    Schneider, Bradley B; Covey, Thomas R; Coy, Stephen L; Krylov, Evgeny V; Nazarov, Erkinjon G

    2010-01-01

    Differential mobility spectrometry (DMS) separates ions on the basis of the difference in their migration rates under high versus low electric fields. Several models describing the physical nature of this field mobility dependence have been proposed but emerging as a dominant effect is the clusterization model sometimes referred to as the dynamic cluster-decluster model. DMS resolution and peak capacity is strongly influenced by the addition of modifiers which results in the formation and dissociation of clusters. This process increases selectivity due to the unique chemical interactions that occur between an ion and neutral gas-phase molecules. It is thus imperative to bring the parameters influencing the chemical interactions under control and find ways to exploit them in order to improve the analytical utility of the device. In this paper, we describe three important areas that need consideration in order to stabilize and capitalize on the chemical processes that dominate a DMS separation. The first involves means of controlling the dynamic equilibrium of the clustering reactions with high concentrations of specific reagents. The second area involves a means to deal with the unwanted heterogeneous cluster ion populations emitted from the electrospray ionization process that degrade resolution and sensitivity. The third involves fine control of parameters that affect the fundamental collision processes, temperature and pressure.

  19. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    SciTech Connect

    Paulenova, Alena; Vandegrift, III, George F.

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  20. Dissipative production of controllable steady-state entanglement of two superconducting qubits in separated resonators

    NASA Astrophysics Data System (ADS)

    Ma, Sheng-Li; Liao, Zeyang; Li, Fu-Li; Zubairy, M. Suhail

    2015-05-01

    We propose an efficient method for dissipative preparation of controllable steady-state entanglement of two superconducting qubits coupled to spatially separated transmission line resonators, which are linked by an additional superconducting qubit acting as a tunable coupler. The quantum-state production process is based on a form of reservoir engineering, i.e., the dissipation of the coupler is utilized to steer the system into the desired state at stationary state. The distinct feature of our scheme is that neither initial state preparation nor unitary dynamics are required. These make the present protocol more feasible in the experimental implementation.

  1. Active Control by Conservation of Energy Concept

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2000-01-01

    Three unrelated experiments are discussed; each was extremely sensitive to initial conditions. The initial conditions are the beginnings of the origins of the information that nonlinearity displays. Initial conditions make the phenomenon unstable and unpredictable. With the knowledge of the initial conditions, active control requires far less power than that present in the system response. The first experiment is on the control of shocks from an axisymmetric supersonic jet; the second, control of a nonlinear panel response forced by turbulent boundary layer and sound; the third, control of subharmonic and harmonics of a panel forced by sound. In all three experiments, control is achieved by redistribution of periodic energy response such that the energy is nearly preserved from a previous uncontrolled state. This type of active control improves the performance of the system being controlled.

  2. Impact of membrane solid-liquid separation on design of biological nutrient removal activated sludge systems.

    PubMed

    Ramphao, M; Wentzel, M C; Merritt, R; Ekama, G A; Young, T; Buckley, C A

    2005-03-20

    Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only in the design of the BNR system itself, but also in the design approach for the whole wastewater treatment plant (WWTP). In multizone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic, and aerobic zones (i.e., fixed volume fractions), the mass fractions can be controlled (within a range) with the interreactor recycle ratios. This zone mass fraction flexibility is a significant advantage in membrane BNR systems over conventional BNR systems with SSTs, because it allows for changing of the mass fractions to optimize biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios in the upper range (f(q) approximately 2.0), aerobic mass fractions in the lower range (f(maer) < 0.60), and high (usually raw) wastewater strengths, the indicated mode of operation of MBR BNR systems is as extended aeration WWTPs. Although the volume reduction compared with equivalent conventional BNR systems with secondary settling tanks is not as large (40% to 60%), the cost of the membranes can be offset against sludge thickening and stabilization costs. Moving from a flow-unbalanced raw wastewater system to a flow-balanced (f(q) = 1), low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes from extended aeration to include primary sludge stabilization. The cost of primary sludge treatment then has to be paid from the savings from the increased WWTP capacity.

  3. A comparison of BNR activated sludge systems with membrane and settling tank solid-liquid separation.

    PubMed

    Ramphao, M C; Wentzel, M C; Ekama, G A; Alexander, W V

    2006-01-01

    Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only to the design of the membrane bio-reactor (MBR) BNR system itself, but also to the design approach for the whole wastewater treatment plant (WWTP). In multi-zone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic and aerobic zones (i.e. fixed volume fractions), the mass fractions can be controlled (within a range) with the inter-reactor recycle ratios. This zone mass fraction flexibility is a significant advantage of MBR BNR systems over BNR systems with secondary settling tanks (SSTs), because it allows changing the mass fractions to optimise biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios (fq) in the upper range (fq approximately 2.0), aerobic mass fractions in the lower range (f(maer) < 0.60) and high (usually raw) wastewater strengths, the indicated mode of operation of MBR BNR systems is as extended aeration WWTPs (no primary settling and long sludge age). However, the volume reduction compared with equivalent BNR systems with SSTs will not be large (40-60%), but the cost of the membranes can be offset against sludge thickening and stabilisation costs. Moving from a flow unbalanced raw wastewater system to a flow balanced (fq = 1) low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes away from extended aeration to include primary sludge stabilisation. The cost of primary sludge treatment then has to be offset against the savings of the increased WWTP capacity.

  4. A comparison of BNR activated sludge systems with membrane and settling tank solid-liquid separation.

    PubMed

    Ramphao, M C; Wentzel, M C; Ekama, G A; Alexander, W V

    2006-01-01

    Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only to the design of the membrane bio-reactor (MBR) BNR system itself, but also to the design approach for the whole wastewater treatment plant (WWTP). In multi-zone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic and aerobic zones (i.e. fixed volume fractions), the mass fractions can be controlled (within a range) with the inter-reactor recycle ratios. This zone mass fraction flexibility is a significant advantage of MBR BNR systems over BNR systems with secondary settling tanks (SSTs), because it allows changing the mass fractions to optimise biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios (fq) in the upper range (fq approximately 2.0), aerobic mass fractions in the lower range (f(maer) < 0.60) and high (usually raw) wastewater strengths, the indicated mode of operation of MBR BNR systems is as extended aeration WWTPs (no primary settling and long sludge age). However, the volume reduction compared with equivalent BNR systems with SSTs will not be large (40-60%), but the cost of the membranes can be offset against sludge thickening and stabilisation costs. Moving from a flow unbalanced raw wastewater system to a flow balanced (fq = 1) low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes away from extended aeration to include primary sludge stabilisation. The cost of primary sludge treatment then has to be offset against the savings of the increased WWTP capacity. PMID:16889266

  5. Impact of membrane solid-liquid separation on design of biological nutrient removal activated sludge systems.

    PubMed

    Ramphao, M; Wentzel, M C; Merritt, R; Ekama, G A; Young, T; Buckley, C A

    2005-03-20

    Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only in the design of the BNR system itself, but also in the design approach for the whole wastewater treatment plant (WWTP). In multizone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic, and aerobic zones (i.e., fixed volume fractions), the mass fractions can be controlled (within a range) with the interreactor recycle ratios. This zone mass fraction flexibility is a significant advantage in membrane BNR systems over conventional BNR systems with SSTs, because it allows for changing of the mass fractions to optimize biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios in the upper range (f(q) approximately 2.0), aerobic mass fractions in the lower range (f(maer) < 0.60), and high (usually raw) wastewater strengths, the indicated mode of operation of MBR BNR systems is as extended aeration WWTPs. Although the volume reduction compared with equivalent conventional BNR systems with secondary settling tanks is not as large (40% to 60%), the cost of the membranes can be offset against sludge thickening and stabilization costs. Moving from a flow-unbalanced raw wastewater system to a flow-balanced (f(q) = 1), low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes from extended aeration to include primary sludge stabilization. The cost of primary sludge treatment then has to be paid from the savings from the increased WWTP capacity. PMID:15696540

  6. Study of Periodic Forcing with a Dielectric Barrier Discharge Device for the Control of Flow Separation on a NACA 0012

    NASA Astrophysics Data System (ADS)

    Dygert, Joseph P.

    the flow control results were compared to another active flow control scheme known as dynamic roughness (DR) which consists of surface mounted time dependent deforming elements that operate as a periodic forcing device that energizes the boundary layer. The potential use of DBDs for application to existing UAVs and aircraft was also evaluated based on applicability, power consumption, and other relevant factors. Results of this work indicate that low power gapless DBD actuators are an effective form of separation control at low Reynolds numbers Ohorn (10 4) near the angle of attack where separation begins to occur. However, testing seems to indicate that gapless low power DBDs are underpowered to have any substantial flow control authority at higher Reynolds numbers and angles of attack. With improved materials for DBD construction and more testing, DBDs could potentially be an effective form of flow control on UAVs and manned aircraft in the future.

  7. Upgrading of PVC rich wastes by magnetic density separation and hyperspectral imaging quality control.

    PubMed

    Luciani, Valentina; Bonifazi, Giuseppe; Rem, Peter; Serranti, Silvia

    2015-11-01

    Polyvinylchloride (PVC) is one of the most produced polymers in Europe, with a share of 11% in terms of mass (8 milliontons) of total polymer consumption, but in 2010 only 5% of the total PVC production came from recycled materials, where other polymer recycling achieves a level of 15% on average. In order to find an innovative process to extract PVC from window frames waste, a combination of two innovative technologies was tested: magnetic density separation (MDS) and hyperspectral imaging (HSI). By its nature, MDS is a flexible high precision density separation technology that is applicable to any mixture of polymers and contaminants with non-overlapping densities. As PVC has a very distinctive high density, this technology was tested to obtain high-grade PVC pre-concentrates from window frame waste. HSI was used to perform a quality control of the products obtained by MDS showing that PVC was clearly discriminated from unwanted rubber particles of different colors. The results showed that the combined application of MDS and HSI techniques allowed to separate and to check the purity of PVC from window frame waste.

  8. Controlling turbulent boundary layer separation using biologically inspired 2D transverse grooves

    NASA Astrophysics Data System (ADS)

    Lang, Amy; Jones, Emily; Afroz, Farhana

    2013-11-01

    It is theorized that the presence of grooves, such as the sinusoidal ones found on dolphin skin or the cavities that form between bristled shark skin scales, can lead to induced boundary layer mixing and result in the control of turbulent boundary layer separation. To test this hypothesis, a series of water tunnel experiments using DPIV studied the characteristics of a flat plate turbulent boundary layer whereby a rotating cylinder was used to induce an adverse pressure gradient and resulting flow separation. The experiments were repeated with the use of a plate covered with two types of grooves, rectangular and sinusoidal, with a spacing of 2 mm in size. Flow similarity of the cavity flow was preserved between the experiments and flow over bristled shark skin scales. Both geometries resulted in a reduction of flow separation as measured by backflow coefficient. In addition, Reynolds stress profiles showed that as the pressure gradient was increased, the sinusoidal geometry outperformed the rectangular grooves in terms of increased mixing close to the wall. The sinusoidal plate also generated a lower momentum deficit within the boundary layer which would indicate a smaller drag penalty. Support from NSF grant CBET 0932352 and a UA Graduate Council Fellowship is gratefully acknowledged.

  9. Lower critical solution temperature (LCST) phase separation of glycol ethers for forward osmotic control.

    PubMed

    Nakayama, Daichi; Mok, Yeongbong; Noh, Minwoo; Park, Jeongseon; Kang, Sunyoung; Lee, Yan

    2014-03-21

    Lower critical solution temperature (LCST) phase transition of glycol ether (GE)-water mixtures induces an abrupt change in osmotic pressure driven by a mild temperature change. The temperature-controlled osmotic change was applied for the forward osmosis (FO) desalination. Among three GEs evaluated, di(ethylene glycol) n-hexyl ether (DEH) was selected as a potential FO draw solute. A DEH-water mixture with a high osmotic pressure could draw fresh water from a high-salt feed solution such as seawater through a semipermeable membrane at around 10 °C. The water-drawn DEH-water mixture was phase-separated into a water-rich phase and a DEH-rich phase at around 30 °C. The water-rich phase with a much reduced osmotic pressure released water into a low-salt solution, and the DEH-rich phase was recovered into the initial DEH-water mixture. The phase separation behaviour, the residual GE concentration in the water-rich phase, the osmotic pressure of the DEH-water mixture, and the osmotic flux between the DEH-water mixture and salt solutions were carefully analysed for FO desalination. The liquid-liquid phase separation of the GE-water mixture driven by the mild temperature change between 10 °C and 30 °C is very attractive for the development of an ideal draw solute for future practical FO desalination.

  10. Controlling Phase Separation of Interpenetrating Polymer Networks by Addition of Block Copolymers

    NASA Astrophysics Data System (ADS)

    Rohde, Brian; Krishnamoorti, Ramanan; Robertson, Megan

    2015-03-01

    Interpenetrating polymer networks (IPNs) offer a unique way to produce mechanically superior thermoset blends relative to the neat components. In this study, IPNs were prepared consisting of polydicyclopentadiene (polyDCPD), contributing high fracture toughness, and an epoxy resin (the diglycidyl ether of bisphenol A cured with nadic methyl anhydride), contributing high tensile strength and modulus. In the absence of compatibilization, the simultaneous curing of the networks leads to a macroscopically phase separated blend that exhibits poor mechanical behavior. To control phase separation and drive the system towards more mechanically robust nanostructured IPNs, block copolymers were designed to compatibilize this system, where one block possesses affinity to polyDCPD (polynorbornene in this study) and the other block possesses affinity to DGEBA (poly(ɛ-caprolactone) in this study). The influence of the block copolymer composition on the degree of phase separation and interfacial adhesion in the IPN was studied using a combination of small-angle scattering and imaging techniques. The resultant mechanical properties were explored and structure-property relationships were developed in this blend system.

  11. Controlling Phase Separation of Tough Interpenetrating Polymer Networks via Addition of Amphiphilic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Rohde, Brian; Krishnamoorti, Ramanan; Robertson, Megan

    Interpenetrating polymer networks (IPNs) offer a unique way to combine the mechanical properties of two thermoset systems. Often used to create a material that possesses both high toughness and tensile properties, here we use polydicyclopentadiene, cured via ring opening metathesis polymerization, to contribute high toughness and diglycidyl ether of bisphenol A cured via anhydride chemistry to contribute high tensile strength and modulus. As the uncompatibilized system reacts in the presence of one another, mesoscopic phase separation occurs and dictates the overall efficacy of combining mechanical properties. To control phase separation and drive the system towards more mechanically robust nanostructed IPNs, amphiphilic block copolymers of polybutadiene- b-polyethylene oxide, where one block possesses strong affinity to polyDCPD and the other the DGEBA, were added to the system. Here we present a systematic study of the influence of block copolymer composition in the overall blend on degree of phase separation and morphology using a combination of small-angle x-ray scattering (SAXS) and scanning electron microscopy (SEM) techniques. The resultant mechanical properties are then explored in an effort to link mechanical properties to blend morphology.

  12. Active control of buildings during earthquakes

    NASA Technical Reports Server (NTRS)

    Vance, Vicki L.

    1993-01-01

    The objective of this report is to provide an overview of the different types of control systems used in buildings, to discuss the problems associated with current active control mechanisms, and to show the cost-effectiveness of applying active control to buildings. In addition, a small case study investigates the feasibility and benefits of using embedded actuators in buildings. Use of embedded actuators could solve many of the current problems associated with active control by providing a wider bandwidth of control, quicker speed of response, increased reliability and reduced power requirement. Though embedded actuators have not been developed for buildings, they have previously been used in space structures. Many similarities exist between large civil and aerospace structures indicating that direct transfer of concepts between the two disciplines may be possible. In particular, much of the Controls-Structures Interaction (CSI) technology currently being developed could be beneficially applied to civil structures. While several buildings with active control systems have been constructed in Japan, additional research and experimental verification are necessary before active control systems become widely accepted and implemented.

  13. AMPLITUDE DISCRIMINATOR HAVING SEPARATE TRIGGERING AND RECOVERY CONTROLS UTILIZING AUTOMATIC TRIGGERING

    DOEpatents

    Chase, R.L.

    1962-01-23

    A transistorized amplitude discriminator circuit is described in which the initial triggering sensitivity and the recovery threshold are separately adjustable in a convenient manner. The discriminator is provided with two independent bias components, one of which is for circuit hysteresis (recovery) and one of which is for trigger threshold level. A switching circuit is provided to remove the second bias component upon activation of the trigger so that the recovery threshold is always at the point where the trailing edge of the input signal pulse goes through zero or other desired value. (AEC)

  14. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1991-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: science program objectives and rationale; science requirements; capturing the essential physics; science development approach; development model hardware; development model test plan; and flight hardware and operations.

  15. Phase separation and rotor self-assembly in active particle suspensions

    PubMed Central

    Schwarz-Linek, J.; Valeriani, C.; Cacciuto, A.; Cates, M. E.; Marenduzzo, D.; Morozov, A. N.; Poon, W. C. K.

    2012-01-01

    Adding a nonadsorbing polymer to passive colloids induces an attraction between the particles via the “depletion” mechanism. High enough polymer concentrations lead to phase separation. We combine experiments, theory, and simulations to demonstrate that using active colloids (such as motile bacteria) dramatically changes the physics of such mixtures. First, significantly stronger interparticle attraction is needed to cause phase separation. Secondly, the finite size aggregates formed at lower interparticle attraction show unidirectional rotation. These micro-rotors demonstrate the self-assembly of functional structures using active particles. The angular speed of the rotating clusters scales approximately as the inverse of their size, which may be understood theoretically by assuming that the torques exerted by the outermost bacteria in a cluster add up randomly. Our simulations suggest that both the suppression of phase separation and the self-assembly of rotors are generic features of aggregating swimmers and should therefore occur in a variety of biological and synthetic active particle systems. PMID:22392986

  16. Droplet activation, separation, and compositional analysis: Laboratory studies and atmospheric measurements

    SciTech Connect

    Hiranuma, Naruki; Kohn, Monika; Pekour, Mikhail S.; Nelson, Danny A.; Shilling, John E.; Cziczo, Daniel J.

    2011-01-24

    Droplets produced in a cloud condensation nucleus chamber as a function of supersaturation have been separated from unactivated aerosol particles using counterflow virtual impaction. Residual material after droplets were evaporated was chemically analyzed with an Aerodyne Aerosol Mass Spectrometer and the Particle Analysis by Laser Mass Spectrometry instrument. Experiments were initially conducted to verify activation conditions for monodisperse ammonium sulfate particles and to determine the resulting droplet size distribution as a function of supersaturation. Based on the observed droplet size, the counterflow virtual impactor cut-size was set to differentiate droplets from unactivated interstitial particles. Validation experiments were then performed to verify that only droplets with sufficient size passed through the counterflow virtual impactor for subsequent analysis. A two-component external mixture of monodisperse particles was also exposed to a supersaturation which would activate one of the types (ammonium sulfate) but not the other (polystyrene latex spheres). The mass spectrum observed after separation indicated only the former, validating separation of droplets from unactivated particles. Results from atmospheric measurements using this technique indicate that aerosol particles often activate predominantly as a function of particle size. Chemical composition is not irrelevant, however, and we observed enhancement of sulfate in droplet residuals using single particle analysis.

  17. Droplet activation, separation, and compositional analysis: laboratory studies and atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Kohn, M.; Pekour, M. S.; Nelson, D. A.; Shilling, J. E.; Cziczo, D. J.

    2011-10-01

    Droplets produced in a cloud condensation nuclei chamber (CCNC) as a function of supersaturation have been separated from unactivated aerosol particles using counterflow virtual impaction. Residual material after droplets were evaporated was chemically analyzed with an Aerodyne Aerosol Mass Spectrometer (AMS) and the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Experiments were initially conducted to verify activation conditions for monodisperse ammonium sulfate particles and to determine the resulting droplet size distribution as a function of supersaturation. Based on the observed droplet size, the counterflow virtual impactor cut-size was set to differentiate droplets from unactivated interstitial particles. Validation experiments were then performed to verify that only droplets with sufficient size passed through the counterflow virtual impactor for subsequent analysis. A two-component external mixture of monodisperse particles was also exposed to a supersaturation which would activate one of the types (hygroscopic salts) but not the other (polystyrene latex spheres or adipic acid). The mass spectrum observed after separation indicated only the former, validating separation of droplets from unactivated particles. Results from ambient measurements using this technique and AMS analysis were inconclusive, showing little chemical differentiation between ambient aerosol and activated droplet residuals, largely due to low signal levels. When employing as single particle mass spectrometer for compositional analysis, however, we observed enhancement of sulfate in droplet residuals.

  18. Droplet activation, separation, and compositional analysis: laboratory studies and atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Kohn, M.; Pekour, M. S.; Nelson, D. A.; Shilling, J. E.; Cziczo, D. J.

    2011-01-01

    Droplets produced in a cloud condensation nucleus chamber as a function of supersaturation have been separated from unactivated aerosol particles using counterflow virtual impaction. Residual material after droplets were evaporated was chemically analyzed with an Aerodyne Aerosol Mass Spectrometer and the Particle Analysis by Laser Mass Spectrometry instrument. Experiments were initially conducted to verify activation conditions for monodisperse ammonium sulfate particles and to determine the resulting droplet size distribution as a function of supersaturation. Based on the observed droplet size, the counterflow virtual impactor cut-size was set to differentiate droplets from unactivated interstitial particles. Validation experiments were then performed to verify that only droplets with sufficient size passed through the counterflow virtual impactor for subsequent analysis. A two-component external mixture of monodisperse particles was also exposed to a supersaturation which would activate one of the types (ammonium sulfate) but not the other (polystyrene latex spheres). The mass spectrum observed after separation indicated only the former, validating separation of droplets from unactivated particles. Results from atmospheric measurements using this technique indicate that aerosol particles often activate predominantly as a function of particle size. Chemical composition is not irrelevant, however, and we observed enhancement of sulfate in droplet residuals using single particle analysis.

  19. Active control of turbomachine discrete tones

    NASA Astrophysics Data System (ADS)

    Fleeter, Sanford

    This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.

  20. Magnetic Tilts and Polarity Separations in Sunspot Groups and Active Regions the Cycle 23

    NASA Astrophysics Data System (ADS)

    Zharkov, S. I.; Zharkova, V. V.

    2006-08-01

    We present the analysis of magnetic tilts in active regions and sunspot groups for 1996-2005 that are automatically extracted from the Solar Feature Catalogues (http://solar.inf.brad.ac.uk ). We investigate the statistical variations of magnetic field tilt in sunspot groups and whole active regions, their longitudinal and latitudinal distributions, drifts and daily polarity separation during different phases of the solar cycle 23. The classification results are compared with the similar research for the previous cycles and the specifics on the cycle 23 is discussed in conjunction to the solar dynamo theory.

  1. Impact of redox-active polymer molecular weight on the electrochemical properties and transport across porous separators in nonaqueous solvents.

    PubMed

    Nagarjuna, Gavvalapalli; Hui, Jingshu; Cheng, Kevin J; Lichtenstein, Timothy; Shen, Mei; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2014-11-19

    Enhancing the ionic conductivity across the electrolyte separator in nonaqueous redox flow batteries (NRFBs) is essential for improving their performance and enabling their widespread utilization. Separating redox-active species by size exclusion without greatly impeding the transport of supporting electrolyte is a potentially powerful alternative to the use of poorly performing ion-exchange membranes. However, this strategy has not been explored possibly due to the lack of suitable redox-active species that are easily varied in size, remain highly soluble, and exhibit good electrochemical properties. Here we report the synthesis, electrochemical characterization, and transport properties of redox-active poly(vinylbenzyl ethylviologen) (RAPs) with molecular weights between 21 and 318 kDa. The RAPs reported here show very good solubility (up to at least 2.0 M) in acetonitrile and propylene carbonate. Ultramicroelectrode voltammetry reveals facile electron transfer with E1/2 ∼ -0.7 V vs Ag/Ag(+)(0.1 M) for the viologen 2+/+ reduction at concentrations as high as 1.0 M in acetonitrile. Controlled potential bulk electrolysis indicates that 94-99% of the nominal charge on different RAPs is accessible and that the electrolysis products are stable upon cycling. The dependence of the diffusion coefficient on molecular weight suggests the adequacy of the Stokes-Einstein formalism to describe RAPs. The size-selective transport properties of LiBF4 and RAPs across commercial off-the-shelf (COTS) separators such as Celgard 2400 and Celgard 2325 were tested. COTS porous separators show ca. 70 times higher selectivity for charge balancing ions (Li(+)BF4(-)) compared to high molecular weight RAPs. RAPs rejection across these separators showed a strong dependence on polymer molecular weight as well as the pore size; the rejection increased with both increasing polymer molecular weight and reduction in pore size. Significant rejection was observed even for rpoly/rpore (polymer

  2. Impact of redox-active polymer molecular weight on the electrochemical properties and transport across porous separators in nonaqueous solvents.

    PubMed

    Nagarjuna, Gavvalapalli; Hui, Jingshu; Cheng, Kevin J; Lichtenstein, Timothy; Shen, Mei; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2014-11-19

    Enhancing the ionic conductivity across the electrolyte separator in nonaqueous redox flow batteries (NRFBs) is essential for improving their performance and enabling their widespread utilization. Separating redox-active species by size exclusion without greatly impeding the transport of supporting electrolyte is a potentially powerful alternative to the use of poorly performing ion-exchange membranes. However, this strategy has not been explored possibly due to the lack of suitable redox-active species that are easily varied in size, remain highly soluble, and exhibit good electrochemical properties. Here we report the synthesis, electrochemical characterization, and transport properties of redox-active poly(vinylbenzyl ethylviologen) (RAPs) with molecular weights between 21 and 318 kDa. The RAPs reported here show very good solubility (up to at least 2.0 M) in acetonitrile and propylene carbonate. Ultramicroelectrode voltammetry reveals facile electron transfer with E1/2 ∼ -0.7 V vs Ag/Ag(+)(0.1 M) for the viologen 2+/+ reduction at concentrations as high as 1.0 M in acetonitrile. Controlled potential bulk electrolysis indicates that 94-99% of the nominal charge on different RAPs is accessible and that the electrolysis products are stable upon cycling. The dependence of the diffusion coefficient on molecular weight suggests the adequacy of the Stokes-Einstein formalism to describe RAPs. The size-selective transport properties of LiBF4 and RAPs across commercial off-the-shelf (COTS) separators such as Celgard 2400 and Celgard 2325 were tested. COTS porous separators show ca. 70 times higher selectivity for charge balancing ions (Li(+)BF4(-)) compared to high molecular weight RAPs. RAPs rejection across these separators showed a strong dependence on polymer molecular weight as well as the pore size; the rejection increased with both increasing polymer molecular weight and reduction in pore size. Significant rejection was observed even for rpoly/rpore (polymer

  3. Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Huang, Yong; Wang, WanBo; Wang, XunNian; Li, HuaXing

    2014-06-01

    The present paper described an experimental investigation of separation control of an Unmanned Aerial Vehicle (UAV) at high wind speeds. The plasma actuator was based on Dielectric Barrier Discharge (DBD) and operated in a steady manner. The flow over a wing of UAV was performed with smoke flow visualization in the ϕ0.75 m low speed wind tunnel to reveal the flow structure over the wing so that the locations of plasma actuators could be optimized. A full model of the UAV was experimentally investigated in the ϕ3.2 m low speed wind tunnel using a six-component internal strain gauge balance. The effects of the key parameters, including the locations of the plasma actuators, the applied voltage amplitude and the operating frequency, were obtained. The whole test model was made of aluminium and acted as a cathode of the actuator. The results showed that the plasma acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the high wind speeds. It was found that the maximum lift coefficient of the UAV was increased by 2.5% and the lift/drag ratio was increased by about 80% at the wind speed of 100 m/s. The control mechanism of the plasma actuator at the test configuration was also analyzed.

  4. Construction of macroscopic cytomimetic vesicle aggregates based on click chemistry: controllable vesicle fusion and phase separation.

    PubMed

    Jin, Haibao; Huang, Wei; Zheng, Yongli; Zhou, Yongfeng; Yan, Deyue

    2012-07-01

    Vesicle-vesicle aggregation to mimic cell-cell aggregation has attracted much attention. Here, hyperbranched polymer vesicles (branched-polymersomes, BPs) with a cell-like size were selected as model membranes, and the vesicle aggregation process, triggered by click chemistry of the copper-catalysed azide-alkyne cycloaddition reaction, was systematically studied. For this purpose, azide and alkynyl groups were loaded on the membranes of BPs through the co-assembly method to obtain N(3)-BPs and Alk-BPs, respectively. Subsequently, macroscopic vesicle aggregates were obtained when these two kinds of functional BPs were mixed together with the ratio of azide to alkynyl groups of about 1:1. Both the vesicle fusion events and lateral phase separation on the vesicle membrane occurred during such a vesicle aggregation process, and the fusion rate and phase-separation degree could be controlled by adjusting the clickable group content. The vesicle aggregation process with N(3) -micelles as desmosome mimics to connect with Alk-BPs through click-chemistry reaction was also studied, and large-scale vesicle aggregates without vesicle fusion were obtained in this process. The present work has extended the controllable cytomimetic vesicle aggregation process with the use of covalent bonds, instead of noncovalent bonds, as the driving force.

  5. Active load control techniques for wind turbines.

    SciTech Connect

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  6. The Effects of Sweeping Jet Actuator Parameters on Flow Separation Control

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti

    2015-01-01

    A parametric experimental study was performed with sweeping jet actuators (fluidic oscillators) to determine their effectiveness in controlling flow separation on an adverse pressure gradient ramp. Actuator parameters that were investigated include blowing coefficients, operation mode, pitch and spreading angles, streamwise location, aspect ratio, and scale. Surface pressure measurements and surface oil flow visualization were used to characterize the effects of these parameters on the actuator performance. 2D Particle Image Velocimetry measurements of the flow field over the ramp and hot-wire measurements of the actuator's jet flow were also obtained for selective cases. In addition, the sweeping jet actuators were compared to other well-known flow control techniques such as micro-vortex generators, steady blowing, and steady vortex-generating jets. The results confirm that the sweeping jet actuators are more effective than steady blowing and steady vortex-generating jets. The results also suggest that an actuator with a larger spreading angle placed closer to the location where the flow separates provides better performance. For the cases tested, an actuator with an aspect ratio, which is the width/depth of the actuator throat, of 2 was found to be optimal. For a fixed momentum coefficient, decreasing the aspect ratio to 1 produced weaker vortices while increasing the aspect ratio to 4 reduced coverage area. Although scaling down the actuator (based on the throat dimensions) from 0.25 inch x 0.125 inch to 0.15 inch x 0.075 inch resulted in similar flow control performance, scaling down the actuator further to 0.075 inch x 0.0375 inch reduced the actuator efficiency by reducing the coverage area and the amount of mixing in the near-wall region. The results of this study provide insight that can be used to design and select the optimal sweeping jet actuator configuration for flow control applications.

  7. Student Activity Funds: Procedures and Controls.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles E.

    2000-01-01

    An effective internal-control system can help school business administrators meet the challenges of accounting for student activity funds. Such a system should include appropriate policies and procedures, identification of key control points, self-assessments, audit trails, and internal and external audits. (MLH)

  8. Mission control activity during STS-61 EVA

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Flight controller Susan P. Rainwater observes as two astronauts work through a lengthy period of extravehicular activity (EVA) in the cargo bay of the Earth-looking Space Shuttle Endeavour. Rainwater's EVA console was one of Mission Control's busiest during this eleven-day Hubble Space Telescope (HST) servicing mission in Earth orbit.

  9. Actively Controlled Magnetic Vibration-Isolation System

    NASA Technical Reports Server (NTRS)

    Grodsinky, Carlos M.; Logsdon, Kirk A.; Wbomski, Joseph F.; Brown, Gerald V.

    1993-01-01

    Prototype magnetic suspension system with active control isolates object from vibrations in all six degrees of freedom at frequencies as low as 0.01 Hz. Designed specifically to protect instruments aboard spacecraft by suppressing vibrations to microgravity levels; basic control approach used for such terrestrial uses as suppression of shocks and other vibrations in trucks and railroad cars.

  10. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    NASA Astrophysics Data System (ADS)

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  11. A Novel Separation Method of Microthrix parvicella Filaments from Activated Sludge by a Hydrophobic Plate.

    PubMed

    Fei, Xuening; Li, Songya; Cao, Lingyun; Yan, Weiguo; Ma, Huaji; Jia, Guozhi

    2015-10-01

    The aim of this paper is to develop a novel method to separate Microthrix parvicella (M. parvicella) filaments from activated sludge easily and quickly, as there are a few difficulties in the isolation of M. parvicella filaments, such as complicated isolation process, time consuming, etc. In this work, a series of hydrophobic plate with and without microchannels have been prepared for the separation of M. parvicella filaments. The results showed that the presence of microchannels and hydrophobic property of the hydrophobic plates affected the separation efficiency of M. parvicella significantly. The scanning electron microscope and Keyence Digital Microscope analysis results showed that the diameter of microchannels was similar to the width of M. parvicella filament, which was beneficial for the fastening of M. parvicella filaments on the plate. The hydrophobic property of the prepared plates was tested by contact angle of water droplets, and the results displayed that the polydimethylsiloxane (PDMS) plate possessed the highest contact angle compared with that of other plates, like polymethylmethacrylate, polystyrene plate, and PDMS plate with no hydrophobic microchannels. Thus, it was concluded that the high separation efficiency of PDMS plates to M. parvicella filaments was due to its best hydrophobic property.

  12. Nanoporous separators for supercapacitor using activated carbon monolith electrode from oil palm empty fruit bunches

    SciTech Connect

    Nor, N. S. M. Deraman, M. Omar, R. Basri, N. H.; Dolah, B. N. M.; Taer, E.; Awitdrus,; Farma, R.

    2014-02-24

    Activated porous carbon electrode prepared from fibres of oil palm empty fruit bunches was used for preparing the carbon based supercapacitor cells. The symmetrical supercapacitor cells were fabricated using carbon electrodes, stainless steel current collector, H{sub 2}SO{sub 4} electrolyte, and three types of nanoporous separators. Cells A, B and C were fabricated using polypropylene, eggshell membrane, and filter paper, respectively. Electrochemical characterizations data from Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Galvanic Charge Discharge techniques showed that specific capacitance, specific power and specific energy for cell A were 122 F g{sup −1}, 177 W kg{sup −1}, 3.42 Wh kg{sup −1}, cell B; 125 F g{sup −1}, 179 W kg{sup −1}, and 3.64 Wh kg{sup −1}, and cell C; 180 F g{sup −1}, 178 W kg{sup −1}, 4.27 Wh kg{sup −1}. All the micrographs from Field Emission Scanning Electron Microscope showed that the different in nanoporous structure of the separators lead to a significant different in influencing the values of specific capacitance, power and energy of supercapacitors, which is associated with the mobility of ion into the pore network. These results indicated that the filter paper was superior than the eggshell membrane and polypropylene nanoporous separators. However, we found that in terms of acidic resistance, polypropylene was the best nanoporous separator for acidic medium.

  13. Controlled shear affinity filtration (CSAF): a new technology for integration of cell separation and protein isolation from mammalian cell cultures.

    PubMed

    Vogel, Jens H; Anspach, Birger; Kroner, Karl-Heinz; Piret, James M; Haynes, Charles A

    2002-06-30

    Controlled shear affinity filtration (CSAF) integrates animal cell separation and product isolation in a single unit operation through the use of a specifically designed rotating disk filter with incorporated membrane chromatography column. Because of the decoupling of shear force and pressure generation and the specific hydrodynamics of the system, shear rates can be easily optimized and precisely controlled to maximize filtration performance while viability of the shear sensitive animal cells is maintained. In this study, the general methodology is demonstrated using the integration of Chinese hamster ovary cell separation and isolation of recombinant tissue plasminogen activator (t-PA) as a model example. Direct capture of t-PA from cell culture broth was realized by using custom-made affinity membranes with lysine as a robust, small molecular weight affinity ligand. Small-scale t-PA adsorption experiments, as well as microfiltration experiments, were used to design the integrated CSAF process. A Chinese hamster ovary batch culture was processed with a lab-scale prototype, yielding 86% of the t-PA in the concentrated, particle-free eluate, whereas 95% of the bulk protein was removed. Because the viability of the cells is not significantly affected and high specific flux rates can be achieved, the CSAF technology should also be well suited for continuous perfusion with integrated product isolation. A truly continuous operation could be realized with two systems in tandem configuration. PMID:12001173

  14. [Septal Activation and Control of Limbic Structures].

    PubMed

    Fedotova, I R; Frolov, A A

    2015-01-01

    Coherent activation of limbic system structures as the main function of theta-rhythm is widely discussed in the literature. However until now does not exist the common view on its generation in these brain structures. The model of septal theta-rhythmic activation and control of limbic structures is suggested basing on the literature and own experimental data.

  15. Active route learning in virtual environments: disentangling movement control from intention, instruction specificity, and navigation control.

    PubMed

    von Stülpnagel, Rul; Steffens, Melanie C

    2013-09-01

    Active navigation research examines how physiological and psychological involvement in navigation benefits spatial learning. However, existing conceptualizations of active navigation comprise separable, distinct factors. This research disentangles the contributions of movement control (i.e., self-contained vs. observed movement) as a central factor from learning intention (Experiment 1), instruction specificity and instruction control (Experiment 2), as well as navigation control (Experiment 3) to spatial learning in virtual environments. We tested the effects of these factors on landmark recognition (landmark knowledge), tour-integration and route navigation (route knowledge). Our findings suggest that movement control leads to robust advantages in landmark knowledge as compared to observed movement. Advantages in route knowledge do not depend on learning intention, but on the need to elaborate spatial information. Whenever the necessary level of elaboration is assured for observed movement, too, the development of route knowledge is not inferior to that for self-contained movement.

  16. Vehicle active steering control research based on two-DOF robust internal model control

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Liu, Yahui; Wang, Fengbo; Bao, Chunjiang; Sun, Qun; Zhao, Youqun

    2016-07-01

    Because of vehicle's external disturbances and model uncertainties, robust control algorithms have obtained popularity in vehicle stability control. The robust control usually gives up performance in order to guarantee the robustness of the control algorithm, therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness. The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties. In order to separate the design process of model tracking from the robustness design process, the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization. Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm, on the basis of a nonlinear vehicle simulation model with a magic tyre model. Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance, which can enhance the vehicle stability and handling, regardless of variations of the vehicle model parameters and the external crosswind interferences. Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.

  17. Effect of melatonin implants on sexual activity in Mediterranean goat females without separation from males.

    PubMed

    Zarazaga, L A; Gatica, M C; Celi, I; Guzmán, J L; Malpaux, B

    2009-10-15

    This work was designed to determine whether melatonin treatment at the spring equinox can induce reproductive activity in goats without separation from males (separation being the normal practice in Spanish farming systems) and whether this treatment modifies the onset of the natural breeding season. Twenty-nine entire does were distributed into two groups (Group M, n=14; Group C, n=15). A third group of ovariectomized, estradiol-treated goats (OVX group, n=5) was used to study the effect of melatonin on reproductive activity. On March 18, Groups M and OVX received a subcutaneous melatonin implant. In entire females, estrus was tested daily using entire aproned males, and ovulation rate was assessed after identification of estrus. Plasma progesterone in entire goats, plasma luteinizing hormone (LH) in the OVX group, and live weight and body condition score for all animals were recorded once a week. In entire goats, a clear treatment by time interaction was observed for progesterone concentrations (P<0.001), with a period of high progesterone concentrations during the natural seasonal anestrus in Group M. A similar period of high LH concentrations was observed in the OVX group. Whereas all females of Group M presented ovarian activity during this period, no female of Group C did. The resumption of the natural breeding season was retarded in Group M in comparison with that in Group C (P<0.05). We can conclude that in Mediterranean goats, melatonin implants can induce reproductive activity without separation from males, and it causes a small retardation in the reactivation of reproductive activity in the natural breeding season. PMID:19631371

  18. Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hoon; Kim, Jung-Hwan; Choi, Eun-Sun; Yu, Hyung Kyun; Kim, Jong Hun; Wu, Qinglin; Chun, Sang-Jin; Lee, Sun-Young; Lee, Sang-Young

    2013-11-01

    Porous structure-tuned cellulose nanofiber paper separators (designated as S-CNP separators) are demonstrated as a promising alternative to commercial polyolefin separators for use in lithium-ion batteries. A new architectural strategy based on colloidal silica (SiO2) nanoparticle-assisted structural control is presented to overcome the difficulty in forming controllable porous structure of pure cellulose nanofiber paper separators (designated as CNP separators) from densely-packed cellulose nanofibers (CNFs). The new S-CNP separators proposed herein incorporate SiO2 nanoparticles as a CNF-disassembling agent (i.e., as non-conductive spacer particles). This structural uniqueness allows loose packing of CNFs, thereby facilitating the evolution of more porous structure. The unusual porous structure of S-CNP separators can be fine-tuned by varying SiO2 contents in the CNF suspension. Notably, the S-CNP separator (fabricated with 5 wt.% SiO2 content) exhibits the highest ionic conduction due to the well-balanced combination of nanoporous structure and separator thickness, thus contributing to excellent cell performance. This study underlines that the colloidal SiO2 nanoparticle-directed structural tuning of CNPs offers a promising route for the fabrication of advanced paper separators with optimized attributes and functionality.

  19. Effects of early life stress on brain activity: implications from maternal separation model in rodents.

    PubMed

    Nishi, Mayumi; Horii-Hayashi, Noriko; Sasagawa, Takayo; Matsunaga, Wataru

    2013-01-15

    Adverse experiences in early life can affect the formation of neuronal circuits during postnatal development and exert long-lasting influences on neural function. Many studies have shown that daily repeated maternal separation (RMS), an animal model of early life stress, can modulate the hypothalamic-pituitary-adrenal axis (HPA-axis) and can affect subsequent brain function and emotional behavior during adulthood. However, the molecular basis of the long-lasting effects of early life stress on brain function has not been completely elucidated. In this mini-review, we introduce various cases of maternal separation in rodents and illustrate the alterations in HPA-axis activity by focusing on corticosterone (CORT), an end-product of the HPA-axis in rodents. We then present the characterization of the brain regions affected by various patterns of MS, including RMS and single time maternal separation (SMS) at various stages before weaning, by investigating c-Fos expression, a biological marker of neuronal activity. These CORT and c-Fos studies suggest that repeated early life stress may affect neuronal function in region- and temporal-specific manners, indicating a critical period for habituation to early life stress. Furthermore, we introduce changes in behavioral aspects and gene expression in adult mice exposed to RMS.

  20. Control of nucleus accumbens activity with neurofeedback.

    PubMed

    Greer, Stephanie M; Trujillo, Andrew J; Glover, Gary H; Knutson, Brian

    2014-08-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as "neurofeedback." In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive aroused affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function.

  1. Control of nucleus accumbens activity with neurofeedback

    PubMed Central

    Greer, Stephanie M.; Trujillo, Andrew J.; Glover, Gary H.; Knutson, Brian

    2014-01-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as “neurofeedback.” In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive arousal affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function. PMID:24705203

  2. Active vibration control of civil structures

    SciTech Connect

    Farrar, C.; Baker, W.; Fales, J.; Shevitz, D.

    1996-11-01

    This is a final report of a one year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Active vibration control (AVC) of structural and mechanical systems is one of the rapidly advancing areas of engineering research. The multifaceted nature of AVC covers many disciplines, such as sensors and instrumentation, numerical modeling, experimental mechanics, and advanced power systems. This work encompassed a review of the literature on active control of structures focusing both on active control hardware and on control algorithms, a design of an isolation systems using magneto-rheological fluid-filled (MRF) dampers and numerical simulations to study the enhanced vibration mitigation effects of this technology.

  3. Active thermal figure control for the TOPS II primary mirror

    NASA Astrophysics Data System (ADS)

    Angel, Roger; Kang, Tae; Cuerden, Brian; Guyon, Olivier; Stahl, Phil

    2007-09-01

    TOPS (Telescope to Observe Planetary Systems) is the first coronagraphic telescope concept designed specifically to take advantage of Guyon's method of Phase Induced Amplitude Apodization PIAA).1 The TOPS primary mirror may incorporates active figure control to help achieve the desired wavefront control to approximately 1 angstrom RMS accurate across the spectral bandwidth. Direct correction of the primary figure avoids the need for a separate small deformable mirror. Because of Fresnel propagation, correction at a separate surface can introduce serious chromatic errors unless it is precisely conjugated to the primary. Active primary control also reduces complexity and mass and increases system throughput, and will likely enable a full system test to the 10-10 level in the 1 g environment before launch. We plan to use thermal actuators with no mechanical disturbance, using radiative heating or cooling fingers distributed inside the cells of a honeycomb mirror. The glass would have very small but finite coefficient of expansion of ~ 5x10 -8/C. Low order modes would be controlled by front-to-back gradients and high order modes by local rib expansion and contraction. Finite element models indicate that for a mirror with n cells up to n Zernike modes can be corrected to better than 90% fidelity, with still higher accuracy for the lower modes. An initial demonstration has been made with a borosilicate honeycomb mirror. Interferometric measurements show a single cell influence function with 300 nm stroke and ~5 minute time constant.

  4. A Resonant Pulse Detonation Actuator for High-Speed Boundary Layer Separation Control

    NASA Technical Reports Server (NTRS)

    Beck, B. T.; Cutler, A. D.; Drummond, J. P.; Jones, S. B.

    2004-01-01

    A variety of different types of actuators have been previously investigated as flow control devices. Potential applications include the control of boundary layer separation in external flows, as well as jet engine inlet and diffuser flow control. The operating principles for such devices are typically based on either mechanical deflection of control surfaces (which include MEMS flap devices), mass injection (which includes combustion driven jet actuators), or through the use of synthetic jets (diaphragm devices which produce a pulsating jet with no net mass flow). This paper introduces some of the initial flow visualization work related to the development of a relatively new type of combustion-driven jet actuator that has been proposed based on a pulse detonation principle. The device is designed to utilize localized detonation of a premixed fuel (Hydrogen)-air mixture to periodically inject a jet of gas transversely into the primary flow. Initial testing with airflow successfully demonstrated resonant conditions within the range of acoustic frequencies expected for the design. Schlieren visualization of the pulsating air jet structure revealed axially symmetric vortex flow, along with the formation of shocks. Flow visualization of the first successful sustained oscillation condition is also demonstrated for one configuration of the current test section. Future testing will explore in more detail the onset of resonant combustion and the approach to conditions of sustained resonant detonation.

  5. Vector control activities: Fiscal Year, 1986

    SciTech Connect

    Not Available

    1987-04-01

    The program is divided into two major components - operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems requiring TVA attention and study. Nonchemical methods of control are emphasized and are supplemented with chemical measures as needed. TVA also cooperates with various concerned municipalities in identifying blood-sucking arthropod pest problems and demonstrating control techniques useful in establishing abatement programs, and provides technical assistance to other TVA programs and organizations. The program also helps Land Between The Lakes (LBL) plan and conduct vector control operations and tick control research. Specific program control activities and support studies are discussed.

  6. Proteasome activity and proteasome subunit transcripts in human spermatozoa separated by a discontinuous Percoll gradient.

    PubMed

    Rosales, O; Opazo, C; Diaz, E S; Villegas, J V; Sanchez, R; Morales, P

    2011-04-01

    Human semen is composed of a heterogeneous population of spermatozoa with varying degrees of structural and functional differentiation and normality, which result in subpopulations of different quality. Using a discontinuous Percoll gradient, we separated three subsets of spermatozoa (65/45%, 90/65% and 90% fractions) from normozoospermic semen samples from healthy donors and proceeded to characterise their morphology, viability, motility and proteasome activity. In addition, the presence of proteasome subunit transcripts was investigated using reverse transcription-polymerase chain reaction (RT-PCR). The results obtained showed significant differences in sperm motility, viability and morphology between the cells collected from each of the fractions. In particular, normal sperm morphology was 4.5 times higher in the 90% pellet in comparison with the 65/45% interface. In addition, there were significant differences in proteasomal activity between spermatozoa recovered from the 90% pellet and spermatozoa recovered from the 65/45% interface. Finally, there was a positive correlation between sperm proteasomal enzymatic activity and sperm motility and normal morphology after separation by a discontinuous Percoll gradient. The results of the RT-PCR revealed the presence of transcripts for the proteasome subunits β1, β2 and β5 in the human spermatozoa analysed. In conclusion, poor quality spermatozoa isolated from a Percoll gradient display an intrinsic proteasome activity deficiency, which may be associated with their low fertilising potential.

  7. Separation, characterization and anticancer activities of a sulfated polysaccharide from Undaria pinnatifida.

    PubMed

    Han, Yun; Wu, Jun; Liu, Tingting; Hu, Youdong; Zheng, Qiusheng; Wang, Binsheng; Lin, Haiyan; Li, Xia

    2016-02-01

    The purpose of this paper was to investigate separation, characterization and anticancer activities of a sulfated polysaccharide (SPUP) from Undaria pinnatifida. Firstly, polysaccharide from U. pinnatifida was separated by DEAE-52 cellulose and Sephacryl S-400 column chromatography. As results, SPUP was obtained with the yield of 19.42%. Then, SPUP was characterized using chemical analysis, gas chromatography, size-exclusion HPLC chromatography, UV-vis spectra and FT-IR spectrum. The content of total sugar, uronic acid, protein and sulfate radical were 80.48%, 3.21%, 7.12% and 29.14%, respectively. SPUP was a heteropolysaccharide composed of fucose, glucose and galactose in a molar percentage of 27.15:19.34:53.51 with molecular weight of 97.9 kDa. Finally, the strongly against breast cancer activity of SPUP was confirmed by DMBA-induced breast cancer rats model. AS results, SPUP can significantly restrain breast abnormal enlargement, prolong tumor latency and reduced tumor incidence. Immunomodulatory activity and regulating abnormal sex hormones level might contribute to its anticancer activities. PMID:26616455

  8. Implementation of active magnetic bearing digital controller

    NASA Astrophysics Data System (ADS)

    Liu, Hu; Fang, Jiancheng; Liu, Gang

    2006-11-01

    An active magnetic bearing digital controller is presented. This system is based on high-speed floating-point digital signal processor (DSP) and field programmable gate array (FPGA). The active vibration control algorithms are coded in C language where is possible to reduce the probabilities of software errors occurring and to reduce the debugging time for those errors and are executed by the high-speed floating-point DSP. This paper describes the implementation of the controller. The proposed digital control system can meet the requirement of enough throughput which is difficult using a single fixed-pointing DSP, realize integration of magnetic bearings controller and have the merits of easily to maintain and be applied in other magnetic bearings systems. The system has been applied successfully in several actual magnetic bearings systems at Beijing University of Aeronautics and Astronautics and the experimental results verify its feasibility.

  9. CFD Modeling for Active Flow Control

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.

    2001-01-01

    This presentation describes current work under UEET Active Flow Control CFD Research Tool Development. The goal of this work is to develop computational tools for inlet active flow control design. This year s objectives were to perform CFD simulations of fully gridded vane vortex generators, micro-vortex genera- tors, and synthetic jets, and to compare flowfield results with wind tunnel tests of simple geometries with flow control devices. Comparisons are shown for a single micro-vortex generator on a flat plate, and for flow over an expansion ramp with sidewall effects. Vortex core location, pressure gradient and oil flow patterns are compared between experiment and computation. This work lays the groundwork for evaluating simplified modeling of arrays of devices, and provides the opportunity to test simple flow control device/sensor/ control loop interaction.

  10. Active vibration control in microgravity environment

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.

    1987-01-01

    The low gravity environment of the space station is suitable for experiments or manufacturing processes which require near zero gravity. An experiment was fabricated to test the validity of the active control process and to verify the flow and control parameters identified in a theoretical model. Zero gravity is approximated in the horizontal plane using a low friction air bearing table. An analog control system was designed to activate calibrated air jets when displacement of the test mass is sensed. The experiment demonstrates that an air jet control system introduces an effective damping factor to control oscillatory response. The amount of damping as well as the flow parameters, such as pressure drop across the valve and flow rate of air, are verified by the analytical model.

  11. Active control of robot manipulator compliance

    NASA Technical Reports Server (NTRS)

    Nguyen, C. C.; Pooran, F. J.

    1986-01-01

    Work performed at Catholic University on the research grant entitled Active Control of Robot Manipulator Compliance, supported by NASA/Goddard space Flight Center during the period of May 15th, 1986 to November 15th, 1986 is described. The modelling of the two-degree-of-freedom robot is first presented. Then the complete system including the robot and the hybrid controller is simulated on an IBM-XT Personal Computer. Simulation results showed that proper adjustments of controller gains enable the robot to perform successful operations. Further research should focus on developing a guideline for the controller gain design to achieve system stability.

  12. Open-loop control of noise amplification in a separated boundary layer flow

    SciTech Connect

    Boujo, E. Gallaire, F.; Ehrenstein, U.

    2013-12-15

    Linear optimal gains are computed for the subcritical two-dimensional separated boundary-layer flow past a bump. Very large optimal gain values are found, making it possible for small-amplitude noise to be strongly amplified and to destabilize the flow. The optimal forcing is located close to the summit of the bump, while the optimal response is the largest in the shear layer. The largest amplification occurs at frequencies corresponding to eigenvalues which first become unstable at higher Reynolds number. Nonlinear direct numerical simulations show that a low level of noise is indeed sufficient to trigger random flow unsteadiness, characterized here by large-scale vortex shedding. Next, a variational technique is used to compute efficiently the sensitivity of optimal gains to steady control (through source of momentum in the flow, or blowing/suction at the wall). A systematic analysis at several frequencies identifies the bump summit as the most sensitive region for control with wall actuation. Based on these results, a simple open-loop control strategy is designed, with steady wall suction at the bump summit. Linear calculations on controlled base flows confirm that optimal gains can be drastically reduced at all frequencies. Nonlinear direct numerical simulations also show that this control allows the flow to withstand a higher level of stochastic noise without becoming nonlinearly unstable, thereby postponing bypass transition. In the supercritical regime, sensitivity analysis of eigenvalues supports the choice of this control design. Full restabilization of the flow is obtained, as evidenced by direct numerical simulations and linear stability analysis.

  13. Development of high-power, compact synthetic jet actuators for flow separation control

    NASA Astrophysics Data System (ADS)

    Gilarranz Runge, Jose Luis

    This work presents the development of high-power, compact synthetic jet actuators (SJA) for flow separation control. The developed actuator is compact enough to fit in the interior of a NACA0015 profiled wing with a chord of 0.375 in. Test bench experiments showed that the multi-piston actuator array was capable of producing exit velocities of up to 90 m/s for an actuator frequency of 130 Hz. The actuator was placed in a NACA 0015 wing and tested in a wind tunnel. An experimental investigation into the effects of a synthetic jet actuator on the performance of the wing is described. Emphasis is placed on the capabilities of the actuator to control the separation of the flow over the wing at high angles of attack. The investigation included the use of force balance measurements, on-surface flow visualization with oil and tufts, off-surface flow visualizations with smoke, surface pressure distribution measurements and wake surveys. In addition to flow separation control data, results corresponding to hot wire measurements at the exit of the slot, are also presented and are used for the characterization of the flowfield generated by the synthetic jet actuators. Most of the tests were performed at a freestream velocity of 35 m/s, corresponding to a Reynolds number of 8.96 x 105. The angle of attack was varied from -2.0 to 29 degrees. For the tests presented here, at angles of attack lower than 10 degrees the actuator tends to increase the lift curve slope as the actuation frequency is increased. At higher angles of attack, the SJA extends the range of angle of attack for which the wing may be operated without stalling. The use of the actuator causes an 80% increase in the value of maximum lift coefficient, and the angle at which stall occurs is increased from 12 to 18 degrees (for the Reynolds number range of the test). The drag on the wing is decreased as a consequence of SJA actuation. This was verified with the force balance measurements and by analysis of the wake

  14. Separable roles for attentional control sub-systems in reading tasks: a combined behavioral and fMRI study.

    PubMed

    Ihnen, S K Z; Petersen, Steven E; Schlaggar, Bradley L

    2015-05-01

    Attentional control is important both for learning to read and for performing difficult reading tasks. A previous study invoked 2 mechanisms to explain reaction time (RT) differences between reading tasks with variable attentional demands. The present study combined behavioral and neuroimaging measures to test the hypotheses that there are 2 mechanisms of interaction between attentional control and reading; that these mechanisms are dissociable both behaviorally and neuro-anatomically; and that the 2 mechanisms involve functionally separable control systems. First, RT evidence was found in support of the 2-mechanism model, corroborating the previous study. Next, 2 sets of brain regions were identified as showing functional magnetic resonance imaging blood oxygen level-dependent activity that maps onto the 2-mechanism distinction. One set included bilateral Cingulo-opercular regions and mostly right-lateralized Dorsal Attention regions (CO/DA+). This CO/DA+ region set showed response properties consistent with a role in reporting which processing pathway (phonological or lexical) was biased for a particular trial. A second set was composed primarily of left-lateralized Frontal-parietal (FP) regions. Its signal properties were consistent with a role in response checking. These results demonstrate how the subcomponents of attentional control interact with subcomponents of reading processes in healthy young adults.

  15. Simulation studies for multichannel active vibration control

    NASA Astrophysics Data System (ADS)

    Prakash, Shashikala; Balasubramaniam, R.; Praseetha, K. K.

    2003-10-01

    Traditional approach to vibration control uses passive techniques, which are relatively large, costly and ineffective at low frequencies. Active Vibration Control (AVC) is used to overcome these problems & in AVC additional sources (secondary) are used to cancel vibration from primary source based on the principle of superposition theorem Since the characteristics of the vibration source and environment are time varying, the AVC system must be adaptive. Adaptive systems have the ability to track time varying disturbances and provide optimal control over a much broader range of conditions than conventional fixed control systems. In multi channel AVC vibration fields in large dimensions are controlled & is more complicated. Therefore to actively control low frequency vibrations on large structures, multi channel AVC requires a control system that uses multiple secondary sources to control the vibration field simultaneously at multiple error sensor locations. The error criterion that can be directly measured is the sum of squares of outputs of number of sensors. The adaptive algorithm is designed to minimize this & the algorithm implemented is the "Multiple error LMS algorithm." The best known applications of multiple channel FXLMS algorithm is in real time AVC and system identification. More wider applications are in the control of propeller induced noise in flight cabin interiors. In the present paper the results of simulation studies carried out in MATLAB as well as on TMS320C32 DSP processor will be brought out for a two-channel case.

  16. Active control of buckling of flexible beams

    NASA Technical Reports Server (NTRS)

    Baz, A.; Tampe, L.

    1989-01-01

    The feasibility of using the rapidly growing technology of the shape memory alloys actuators in actively controlling the buckling of large flexible structures is investigated. The need for such buckling control systems is becoming inevitable as the design trends of large space structures have resulted in the use of structural members that are long, slender, and very flexible. In addition, as these truss members are subjected mainly to longitudinal loading they become susceptible to structural instabilities due to buckling. Proper control of such instabilities is essential to the effective performance of the structures as stable platforms for communication and observation. Mathematical models are presented that simulate the dynamic characteristics of the shape memory actuator, the compressive structural members, and the associated active control system. A closed-loop computer-controlled system is designed, based on the developed mathematical models, and implemented to control the buckling of simple beams. The performance of the computer-controlled system is evaluated experimentally and compared with the theoretical predictions to validate the developed models. The obtained results emphasize the importance of buckling control and suggest the potential of the shape memory actuators as attractive means for controlling structural deformation in a simple and reliable way.

  17. Optimum Duty Cycle of Unsteady Plasma Aerodynamic Actuation for NACA0015 Airfoil Stall Separation Control

    NASA Astrophysics Data System (ADS)

    Sun, Min; Yang, Bo; Peng, Tianxiang; Lei, Mingkai

    2016-06-01

    Unsteady dielectric barrier discharge (DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA0015 airfoil by measuring the surface pressure distribution of the airfoil. The performance of the DBD aerodynamic actuation for airfoil stall separation suppression is evaluated under DBD voltages from 2000 V to 4000 V and the duty cycles varied in the range of 0.1 to 1.0. It is found that higher lift coefficients and lower threshold voltages are achieved under the unsteady DBD aerodynamic actuation with the duty cycles less than 0.5 as compared to that of the steady plasma actuation at the same free-stream speeds and attack angles, indicating a better flow control performance. By comparing the lift coefficients and the threshold voltages, an optimum duty cycle is determined as 0.25 by which the maximum lift coefficient and the minimum threshold voltage are obtained at the same free-stream speed and attack angle. The non-uniform DBD discharge with stronger discharge in the positive half cycle due to electrons deposition on the dielectric slabs and the suppression of opposite momentum transfer due to the intermittent discharge with cutoff of the negative half cycle are responsible for the observed optimum duty cycle. supported by National Natural Science Foundation of China (No. 21276036), Liaoning Provincial Natural Science Foundation of China (No. 2015020123) and the Fundamental Research Funds for the Central Universities of China (No. 3132015154)

  18. Morphology control of phase separated ferroelectric-semiconductor polymer blends for organic memory

    NASA Astrophysics Data System (ADS)

    Su, Gregory; Jacobs, Andrew; Kramer, Edward; Chabinyc, Michael

    2014-03-01

    The ability to store memory is essential for many electronic applications. All-organic memory devices based on a blend of a ferroelectric polymer and a semiconducting polymer have recently shown great promise for low-cost memory technology based on ferroelectricity. The thin film morphology of the phase separated ferroelectric-semiconductor polymer blend is critically important for working devices and improved operation. However, precise morphology control has so far been relatively unattainable. Here, we report on a new semiconducting polythiophene with a modified side chain structure (PEPT) that demonstrates a greatly improved phase separated morphology with the well-studied ferroelectric polymer poly[(vinylidenefluoride-co-trifluoroethylene] (PVDF-TrFE). Thin film surface and bulk characterization via microscopy, soft X-ray spectroscopy, and X-ray scattering experiments reveal that PEPT:PVDF-TrFE blends exhibit domain sizes that are easily tunable through simple parameters such as blend ratio. These results demonstrate progress toward achieving organic ferroelectric-semiconductor memory with optimized morphology and the techniques required for thorough thin film surface and bulk characterization.

  19. Numerical study of three-dimensional separation and flow control at a wing/body junction

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Lakshmanan, Balakrishnan

    1989-01-01

    The problem of three-dimensional separation and flow control at a wing/body junction has been investigated numerically using a three-dimensional Navier-Stokes code. The numerical code employs an algebraic grid generation technique for generating the grid for unmodified junction and an elliptic grid generation technique for filleted fin junction. The results for laminar flow past a blunt fin/flat plate junction demonstrate that after grid refinement, the computations agree with experiment and reveal a strong dependency of the number of vortices at the junction on Mach number and Reynolds number. The numerical results for pressure distribution, particle paths and limiting streamlines for turbulent flow past a swept fin show a decrease in the peak pressure and in the extent of the separated flow region compared to the laminar case. The results for a filleted juncture indicate that the streamline patterns lose much of their vortical character with proper filleting. Fillets with a radius of three and one-half times the fin leading edge diameter or two times the incoming boundary layer thickness, significantly weaken the usual necklace interaction vortex for the Mach number and Reynolds number considered in the present study.

  20. Overview of Active Flow Control at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Pack, L. G.; Joslin, R. D.

    1998-01-01

    The paper summarizes Active Flow Control projects currently underway at the NASA Langley Research Center. Technology development is being pursued within a multidisciplinary, cooperative approach, involving the classical disciplines of fluid mechanics, structural mechanics, material science, acoustics, and stability and control theory. Complementing the companion papers in this session, the present paper will focus on projects that have the goal of extending the state-of-the-art in the measurement, prediction, and control of unsteady, nonlinear aerodynamics. Toward this goal, innovative actuators, micro and macro sensors, and control strategies are considered for high payoff flow control applications. The target payoffs are outlined within each section below. Validation of the approaches range from bench-top experiments to wind-tunnel experiments to flight tests. Obtaining correlations for future actuator and sensor designs are implicit in the discussion. The products of the demonstration projects and design tool development from the fundamental NASA R&D level technology will then be transferred to the Applied Research components within NASA, DOD, and US Industry. Keywords: active flow control, separation control, MEMS, review

  1. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1994-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100 C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changed suddenly.

  2. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Wyatt, J. K.; Czeisler, C. A.; Dijk, D. J.

    2002-01-01

    The separate contribution of circadian rhythmicity and elapsed time awake on electroencephalographic (EEG) activity during wakefulness was assessed. Seven men lived in an environmental scheduling facility for 4 weeks and completed fourteen 42.85-h 'days', each consisting of an extended (28.57-h) wake episode and a 14.28-h sleep opportunity. The circadian rhythm of plasma melatonin desynchronized from the 42.85-h day. This allowed quantification of the separate contribution of circadian phase and elapsed time awake to variation in EEG power spectra (1-32 Hz). EEG activity during standardized behavioral conditions was markedly affected by both circadian phase and elapsed time awake in an EEG frequency- and derivation-specific manner. The nadir of the circadian rhythm in alpha (8-12 Hz) activity in both fronto-central and occipito-parietal derivations occurred during the biological night, close to the crest of the melatonin rhythm. The nadir of the circadian rhythm of theta (4.5-8 Hz) and beta (20-32 Hz) activity in the fronto-central derivation was located close to the onset of melatonin secretion, i.e. during the wake maintenance zone. As time awake progressed, delta frequency (1-4.5 Hz) and beta (20-32 Hz) activity rose monotonically in frontal derivations. The interaction between the circadian and wake-dependent increase in frontal delta was such that the intrusion of delta was minimal when sustained wakefulness coincided with the biological day, but pronounced during the biological night. Our data imply that the circadian pacemaker facilitates frontal EEG activation during the wake maintenance zone, by generating an arousal signal that prevents the intrusion of low-frequency EEG components, the propensity for which increases progressively during wakefulness.

  3. Numerical study of boundary layer separation control using magnetogasdynamic plasma actuators

    SciTech Connect

    Kalra, Chiranjeev S.; Shneider, Mikhail N.; Miles, Richard B.

    2009-10-15

    In this study, an efficient, time dependent, two-dimensional Navier-Stokes numerical code for shockwave boundary layer interaction in air is developed. Nonthermal surface plasma actuation is evaluated for effective shockwave induced boundary layer separation control within supersonic inlets. Specifically, high speed magnetogasdynamic plasma actuators are of interest. In these, localized ionization is produced close to the wall surface and then the flow is accelerated using strong magnetic fields. To replicate the experiments done at large boundary layer thickness, the code is divided into time independent and time dependent regimes to significantly reduce computation time. Computational results are in good agreement with experiments in terms of the flow structure as shown by Schlieren imaging, acetone planar laser scattering, and the static pressure profile on the test section wall.

  4. The effects of actuation frequency on the separation control over an airfoil using a synthetic jet

    NASA Astrophysics Data System (ADS)

    Abe, Y.; Okada, K.; Nonomura, T.; Fujii, K.

    2015-06-01

    The simulation of separation control using a synthetic jet (SJ) is conducted around an NACA (National Advisory Committee for Aeronautics) 0015 airfoil by large-eddy simulation (LES) with a compact difference scheme. The synthetic jet is installed at the leading edge of the airfoil and the effects of an actuation frequency F+ (normalized by chord length and velocity of freestream) are observed. The lift-drag coefficient is recovered the most for F+ = 6. The relationship between momentum addition by turbulent mixing and large vortex structures is investigated using a phase-averaging procedure based on F+. The Reynolds shear stress is decomposed into periodic and turbulent components where the turbulent components are found to be dominant on the airfoil. The strong turbulent components appear near the large vortex structures that are observed in phase- and span-averaged flow fields.

  5. [Experimental research of oil vapor pollution control for gas station with membrane separation technology].

    PubMed

    Zhu, Ling; Chen, Jia-Qing; Zhang, Bao-Sheng; Wang, Jian-Hong

    2011-12-01

    Two kinds of membranes modules, vapor retained glassy membrane based on PEEK hollow fiber membrane modules and vapor permeated rubbery membrane system based on GMT plate-and-frame membrane modules, were used to control the oil vapor pollution during the course of receiving and transferring gasoline in oil station. The efficiencies of the membrane module and the membrane system of them were evaluated and compared respectively in the facilities which were developed by ourselves. It was found that both the two kinds of membranes modules had high efficiency for the separation of VOCs-air mixed gases, and the outlet vapor after treatment all can meet the national standard. When the vapor-enriched gas was returned to the oil tank to simulate the continuously cycle test, the concentration of VOCs in the outlet was also below 25 g x m(-3).

  6. [Experimental research of oil vapor pollution control for gas station with membrane separation technology].

    PubMed

    Zhu, Ling; Chen, Jia-Qing; Zhang, Bao-Sheng; Wang, Jian-Hong

    2011-12-01

    Two kinds of membranes modules, vapor retained glassy membrane based on PEEK hollow fiber membrane modules and vapor permeated rubbery membrane system based on GMT plate-and-frame membrane modules, were used to control the oil vapor pollution during the course of receiving and transferring gasoline in oil station. The efficiencies of the membrane module and the membrane system of them were evaluated and compared respectively in the facilities which were developed by ourselves. It was found that both the two kinds of membranes modules had high efficiency for the separation of VOCs-air mixed gases, and the outlet vapor after treatment all can meet the national standard. When the vapor-enriched gas was returned to the oil tank to simulate the continuously cycle test, the concentration of VOCs in the outlet was also below 25 g x m(-3). PMID:22468544

  7. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control Plumes

    NASA Technical Reports Server (NTRS)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  8. Vector control activities. Fiscal year, 1982

    SciTech Connect

    Pickard, E.; Cooney, J.C.; McDuff, B.R.

    1983-06-01

    The goal of the TVA Vector Control Program is to protect the public from potential vectors of disease by controlling medically-important arthropod pests that are propagated on TVA lands or waters. In addition, freedom from annoying mosquitoes and other blood-sucking pests permits the development, use, and full enjoyment of the vast recreational opportunities offered by the many miles of freshwater lakes. To attain this goal the program is divided into operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems that require TVA attention and study. Specifically, activities concerning water level management of TVA lakes, dewatering projects, plant growth control, drainage and insect control programs are detailed. Further, report is made of post-impoundment surveys, soil sampling studies of Mosquite larvae and ecological mosquito management studies.

  9. Enhanced Design of Turbo-jet LPT by Separation Control Using Phased Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Ashpis, David (Technical Monitor); Corke, Thomas C.; Thomas, Flint O.

    2003-01-01

    This work deals with the documentation and control of flow separation that occurs over turbine blades in the low-pressure turbine stage at low Reynolds numbers that exist at high altitude cruise. We utilize a specially constructed linear cascade that is designed to study the flow field over a generic LPT cascade consisting of Pratt & Whitney 'Pak B' shaped blades. This facility was constructed under a previous one-year NASA Glenn RC initiative. The center blade in the cascade is instrumented to measure the surface pressure coefficient distribution. Optical access allows two-component LDV measurement for boundary layer profiles. Experimental conditions have been chosen to give a range of chord Reynolds numbers from 10 to 100K, and a range of free-stream turbulence levels from u'/U(sub infinity)= 0.08 to 3 percent. The surface pressure measurements were used to define a region of separation and reattachment that depend on the free-stream conditions. The location of separation was found to be relatively insensitive to the experimental conditions. However, reattachment location was very sensitive to the turbulence level and Reynolds number. Excellent agreement was found between the measured pressure distributions and predictions from Euler and RANS simulations. Two-component LDV measurements are presently underway to document the mean and fluctuating velocity components in the boundary layer over the center blade for the range of experimental conditions. The fabrication of the plasma actuator is underway. These are designed to produce either streamwise vortices, or a downstream-directed wall jet. A precursor experiment for the former approach was performed with an array of vortex generators placed just upstream of the separation line. These led to reattachment except for the lowest Reynolds number. Progress has also been made on the proposed concept for a laterally moving wake. This involved constructing a smaller wind tunnel and molding an array of symmetric airfoils

  10. Actively Controlling Buffet-Induced Excitations

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Pototzky, Anthony S.; Henderson, Douglas A.; Galea, Stephen C.; Manokaran, Donald S.; Zimcik, David G.; Wickramasinghe, Viresh; Pitt, Dale M.; Gamble, Michael A.

    2005-01-01

    High performance aircraft, especially those with twin vertical tails, encounter unsteady buffet loads when flying at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. An international collaborative research activity among Australia, Canada and the United States, conducted under the auspices of The Technical Cooperation Program (TTCP) contributed resources toward a program that coalesced a broad range of technical knowledge and expertise into a single investigation to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration. The research team investigated the use of active structural control to alleviate the damaging structural response to these loads by applying advanced directional piezoelectric actuators, the aircraft rudder, switch mode amplifiers, and advanced control strategies on an F/A-18 aircraft empennage. Some results of the full-scale investigation are presented herein.

  11. Line active hybrid lipids determine domain size in phase separation of saturated and unsaturated lipids.

    PubMed

    Brewster, Robert; Safran, Samuel A

    2010-03-17

    A simple model of the line activity of a hybrid lipid (e.g., POPC) with one fully saturated chain and one partially unsaturated chain demonstrates that these lipids preferentially pack at curved interfaces between phase-separated saturated and unsaturated domains. We predict that the domain sizes typically range from tens to hundreds of nm, depending on molecular interactions and parameters such as molecular volume and area per headgroup in the bulk fluid phase. The role of cholesterol is taken into account by an effective change in the headgroup areas and the domain sizes are predicted to increase with cholesterol concentration.

  12. Line Active Hybrid Lipids Determine Domain Size in Phase Separation of Saturated and Unsaturated Lipids

    PubMed Central

    Brewster, Robert; Safran, Samuel A.

    2010-01-01

    A simple model of the line activity of a hybrid lipid (e.g., POPC) with one fully saturated chain and one partially unsaturated chain demonstrates that these lipids preferentially pack at curved interfaces between phase-separated saturated and unsaturated domains. We predict that the domain sizes typically range from tens to hundreds of nm, depending on molecular interactions and parameters such as molecular volume and area per headgroup in the bulk fluid phase. The role of cholesterol is taken into account by an effective change in the headgroup areas and the domain sizes are predicted to increase with cholesterol concentration. PMID:20303848

  13. Discovery of active components in herbs using chromatographic separation coupled with online bioassay.

    PubMed

    De-Qiang, Li; Zhao, Jing; Wu, Dong; Shao-Ping, Li

    2016-05-15

    Discovery of bioactive compounds from complex mixtures is a challenge. In past decades, several strategies were developed and implemented for rapid and effective screening and characterization of bioactive components in complex matrices. This review mainly focused on the online strategies, which integrated the separation science, mass spectrometry, and bioactivity screening in a single platform, allowing simultaneous screening and characterization of active compounds from complex matrices, especially from the herbs. The online screening methodologies, including pre-column affinity-based screening and post-column bioassay, were discussed and their applied examples were also presented to illustrate the strengths and limitations of these approaches.

  14. An integrated dielectrophoresis-active hydrophoretic microchip for continuous particle filtration and separation

    NASA Astrophysics Data System (ADS)

    Yan, Sheng; Zhang, Jun; Pan, Chao; Yuan, Dan; Alici, Gursel; Du, Haiping; Zhu, Yonggang; Li, Weihua

    2015-08-01

    Microfluidic manipulation of biological objects from mixture has a significant application in sample preparation and clinical diagnosis. This work presents a dielectrophoresis-active hydrophoretic device for continuous label-free particle separation and filtration. This device comprises interdigitated electrodes and a hydrophoretic channel. According to the difference of lateral positions of polystyrene particles, the device can run at separation or filtration modes by altering the power supply voltages. With an applied voltage of 24 Vp-p, both 3 and 10 μm beads had close lateral positions and were redirected to the same outlet. Under a voltage of 36 Vp-p, beads with the diameters of 3 and 10 μm had different lateral positions and were collected from the different outlets. Separation of 5 and 10 μm particles was achieved to demonstrate the relatively small size difference of the beads. This device has great potential in a range of lab-on-a-chip applications.

  15. Method of Separating Oxygen From Spacecraft Cabin Air to Enable Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2013-01-01

    Extravehicular activities (EVAs) require high-pressure, high-purity oxygen. Shuttle EVAs use oxygen that is stored and transported as a cryogenic fluid. EVAs on the International Space Station (ISS) presently use the Shuttle cryo O2, which is transported to the ISS using a transfer hose. The fluid is compressed to elevated pressures and stored as a high-pressure gas. With the retirement of the shuttle, NASA has been searching for ways to deliver oxygen to fill the highpressure oxygen tanks on the ISS. A method was developed using low-pressure oxygen generated onboard the ISS and released into ISS cabin air, filtering the oxygen from ISS cabin air using a pressure swing absorber to generate a low-pressure (high-purity) oxygen stream, compressing the oxygen with a mechanical compressor, and transferring the high-pressure, high-purity oxygen to ISS storage tanks. The pressure swing absorber (PSA) can be either a two-stage device, or a single-stage device, depending on the type of sorbent used. The key is to produce a stream with oxygen purity greater than 99.5 percent. The separator can be a PSA device, or a VPSA device (that uses both vacuum and pressure for the gas separation). The compressor is a multi-stage mechanical compressor. If the gas flow rates are on the order of 5 to 10 lb (.2.3 to 4.6 kg) per day, the compressor can be relatively small [3 16 16 in. (.8 41 41 cm)]. Any spacecraft system, or other remote location that has a supply of lowpressure oxygen, a method of separating oxygen from cabin air, and a method of compressing the enriched oxygen stream, has the possibility of having a regenerable supply of highpressure, high-purity oxygen that is compact, simple, and safe. If cabin air is modified so there is very little argon, the separator can be smaller, simpler, and use less power.

  16. Active disturbance rejection controller for chemical reactor

    SciTech Connect

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I.

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  17. Effect of source-separated urine storage on estrogenic activity detected using bioluminescent yeast Saccharomyces cerevisiae.

    PubMed

    Jaatinen, Sanna; Kivistö, Anniina; Palmroth, Marja R T; Karp, Matti

    2016-09-01

    The objective was to demonstrate that a microbial whole cell biosensor, bioluminescent yeast, Saccharomyces cerevisiae (BMAEREluc/ERα) can be applied to detect overall estrogenic activity from fresh and stored human urine. The use of source-separated urine in agriculture removes a human originated estrogen source from wastewater influents, subsequently enabling nutrient recycling. Estrogenic activity in urine should be diminished prior to urine usage in agriculture in order to prevent its migration to soil. A storage period of 6 months is required for hygienic reasons; therefore, estrogenic activity monitoring is of interest. The method measured cumulative female hormone-like activity. Calibration curves were prepared for estrone, 17β-estradiol, 17α- ethinylestradiol and estriol. Estrogen concentrations of 0.29-29,640 μg L(-1) were detectable while limit of detection corresponded to 0.28-35 μg L(-1) of estrogens. The yeast sensor responded well to fresh and stored urine and gave high signals corresponding to 0.38-3,804 μg L(-1) of estrogens in different urine samples. Estrogenic activity decreased during storage, but was still higher than in fresh urine implying insufficient storage length. The biosensor was suitable for monitoring hormonal activity in urine and can be used in screening anthropogenic estrogen-like compounds interacting with the receptor.

  18. Active Control of Cryogenic Propellants in Space

    NASA Technical Reports Server (NTRS)

    Notardonato, William

    2011-01-01

    A new era of space exploration is being planned. Exploration architectures under consideration require the long term storage of cryogenic propellants in space. This requires development of active control systems to mitigate the effect of heat leak. This work summarizes current state of the art, proposes operational design strategies and presents options for future architectures. Scaling and integration of active systems will be estimated. Ideal long range spacecraft systems will be proposed with Exploration architecture benefits considered.

  19. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  20. Piezoelectric Power Requirements for Active Vibration Control

    NASA Technical Reports Server (NTRS)

    Brennan, Matthew C.; McGowan, Anna-Maria Rivas

    1997-01-01

    This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate that for a perfectly-controlled system, the power consumption is a function of the quantity and type of piezoelectric actuators and the voltage and frequency of the control law output signal. Furthermore, as control effectiveness decreases, the power consumption of the piezoelectric actuators decreases. In addition, experimental results revealed a non-linear behavior in the material properties of piezoelectric actuators. The material non- linearity displayed a significant increase in capacitance with an increase in excitation voltage. Tests show that if the non-linearity of the capacitance was accounted for, a conservative estimate of the power can easily be determined.

  1. Actively Controlled Shaft Seals for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.; Wolff, Paul

    1995-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed

  2. Neural predictive control for active buffet alleviation

    NASA Astrophysics Data System (ADS)

    Pado, Lawrence E.; Lichtenwalner, Peter F.; Liguore, Salvatore L.; Drouin, Donald

    1998-06-01

    The adaptive neural control of aeroelastic response (ANCAR) and the affordable loads and dynamics independent research and development (IRAD) programs at the Boeing Company jointly examined using neural network based active control technology for alleviating undesirable vibration and aeroelastic response in a scale model aircraft vertical tail. The potential benefits of adaptive control includes reducing aeroelastic response associated with buffet and atmospheric turbulence, increasing flutter margins, and reducing response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and thus loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Wind tunnel tests were undertaken on a rigid 15% scale aircraft in Boeing's mini-speed wind tunnel, which is used for testing at very low air speeds up to 80 mph. The model included a dynamically scaled flexible fail consisting of an aluminum spar with balsa wood cross sections with a hydraulically powered rudder. Neural predictive control was used to actuate the vertical tail rudder in response to strain gauge feedback to alleviate buffeting effects. First mode RMS strain reduction of 50% was achieved. The neural predictive control system was developed and implemented by the Boeing Company to provide an intelligent, adaptive control architecture for smart structures applications with automated synthesis, self-optimization, real-time adaptation, nonlinear control, and fault tolerance capabilities. It is designed to solve complex control problems though a process of automated synthesis, eliminating costly control design and surpassing it in many instances by accounting for real world non-linearities.

  3. Dielectric elastomer actuators for active microfluidic control

    NASA Astrophysics Data System (ADS)

    McCoul, David; Murray, Coleman; Di Carlo, Dino; Pei, Qibing

    2013-04-01

    Dielectric elastomers with low modulus and large actuation strain have been investigated for applications in which they serve as "active" microfluidic channel walls. Anisotropically prestrained acrylic elastomer membranes are bonded to cover open trenches formed on a silicone elastomer substrate. Actuation of the elastomer membranes increases the cross-sectional area of the resulting channels, in turn controlling hydraulic flow rate and pressure. Bias voltage increases the active area of the membranes, allowing intrachannel pressure to alter channel geometry. The channels have also demonstrated the ability to actively clear a blockage. Applications may include adaptive microfilters, micro-peristaltic pumps, and reduced-complexity lab-on-a-chip devices.

  4. Static Enforcement of Static Separation-of-Duty Policies in Usage Control Authorization Models

    NASA Astrophysics Data System (ADS)

    Lu, Jianfeng; Li, Ruixuan; Hu, Jinwei; Xu, Dewu

    Separation-of-Duty (SoD) is a fundamental security principle for prevention of fraud and errors in computer security. It has been studied extensively in traditional access control models. However, the research of SoD policy in the recently proposed usage control (UCON) model has not been well studied. This paper formulates and studies the fundamental problem of static enforcement of static SoD (SSoD) policies in the context of UCONA, a sub-model of UCON only considering authorizations. Firstly, we define a set-based specification of SSoD policies, and the safety checking problem for SSoD in UCONA. Secondly, we study the problem of determining whether an SSoD policy is enforceable. Thirdly, we show that it is intractable (coNP-complete) to direct statically enforce SSoD policies in UCONA, while checking whether a UCONA state satisfies a set of static mutually exclusive attribute (SMEA) constraints is efficient, which provides a justification for using SMEA constraints to enforce SSoD policies. Finally, we introduce a indirect static enforcement for SSoD policies in UCONA. We show how to generate the least restrictive SMEA constraints for enforcing SSoD policies in UCONA, by using the attribute-level SSoD requirement as an intermediate step. The results are fundamental to understanding SSoD policies in UCON.

  5. Experimental closed-loop control of separated-flow over a plain flap using extremum seeking

    NASA Astrophysics Data System (ADS)

    Chabert, Timothée; Dandois, Julien; Garnier, Éric

    2016-03-01

    The lift coefficient of a configuration made of a flat plate with a trailing-edge plain flap is maximized at post-stall conditions by driving automatically the forcing frequency of a fluidic control system to an optimal value. The flap is equipped with pulsed blowing slots whose actuation frequency can be varied at constant actuation amplitude. The post-stall flow over the deflected flap is fully separated and organized around the natural vortex shedding at St=0.2. It appears to be sensitive to the forcing frequency so that the lift coefficient is maximized if actuation is precisely the Strouhal number. Since this frequency depends on the flap deflection angle and the upstream velocity, an extremum seeking algorithm is implemented in order to drive the forcing frequency and thus guarantees that lift remains maximum whatever the geometric configuration is. Finally, a fuzzy-logic regulator is synthesized and integrated into the extremum seeking control scheme in order to speed up the convergence while maintaining stability and accuracy.

  6. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    EPA Science Inventory

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  7. Active control of automotive fan noise

    NASA Astrophysics Data System (ADS)

    Gerard, Anthony; Berry, Alain; Masson, Patrice

    2002-11-01

    Active control for globally reducing the noise radiated by automotive axial engine cooling fans is investigated. First, an aeroacoutic model of the fan is combined with acoustic directivity measurements to derive a distribution of equivalent dipole sources on the fan surface. The results reveal that the fan behaves like a distributed dipole at blade passage tones when the upstream flow through the fan is spatially nonuniform. Numerical simulations of active noise control in the free field have been carried out using the previous aeroacoustic model of the fan and a dipole secondary source in front of the fan. The numerical results show that a single dipole control source is effective in globally controlling the sound radiation of the fan at the blade passage frequency and its first harmonic. Last, an experimental investigation of active control is presented. It consists of a SISO feedforward configuration with either a LMS algorithm (for FIR filters) or a back-retropopagation algorithm (for neural networks) using the Simulink/Dspace environment for real-time implementation.

  8. DNA-based control of protein activity

    PubMed Central

    Engelen, W.; Janssen, B. M. G.

    2016-01-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  9. Active Noise Control for Dishwasher noise

    NASA Astrophysics Data System (ADS)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  10. Modelling of electrokinetic phenomena involving confined polymers: Applications to DNA separation and electroosmotic flow control

    NASA Astrophysics Data System (ADS)

    Tessier, Frederic

    Microfluidic and nanofluidic technology is revolutionizing experimental practices in analytical chemistry, molecular biology and medicine. Indeed, the development of systems of small dimensions for the processing of fluids heralds the miniaturization of traditional, cumbersome laboratory equipment onto robust, portable and efficient microchip devices (similar to the electronic microchips found in computers). Moreover, the conjunction of scale between the smallest man-made device and the largest macromolecules evolved by Nature is fertile ground for the blooming of our knowledge about the key processes of life. In fact, the conjunction is threefold, because modern computational resources also allow us to contemplate a rather explicit modelling of physical systems between the nanoscale and the microscale. In the five articles comprising this thesis, we present the results of computer simulations that address specific questions concerning the operation of two different model systems relevant to the development of small-scale fluidic devices for the manipulation and analysis of biomolecules. First, we use a Bond-Fluctuation Monte Carlo approach to study the electrophoretic drift of macromolecules across an entropic trap array built for the length separation of long, double-stranded DNA molecules. We show that the motion of the molecules is consistent with a simple balance between electric and entropic forces, in terms of a single characteristic parameter. We also extract detailed information on polymer deformation during migration, predict the separation of topoisomers, and investigate innovative ratchet driving regimes. Secondly, we present theoretical derivations, numerical calculations and Molecular Dynamics simulation results for an electrolyte confined in a capillary of nanoscopic dimensions. In particular, we study the effectiveness of neutral grafted polymer chains in reducing the magnitude of electroosmotic flow (fluid flow induced by an external electric field

  11. Micro vortex generator control of axisymmetric high-speed laminar boundary layer separation

    NASA Astrophysics Data System (ADS)

    Estruch-Samper, D.; Vanstone, L.; Hillier, R.; Ganapathisubramani, B.

    2015-09-01

    Interest in the development of micro vortex generators (MVGs) to control high-speed flow separation has grown in the last decade. In contrast to conventional vortex generators, MVGs are fully submerged in the boundary layer and have the potential of inducing surface flow mixing with marginal drag penalty when suitably designed. Also, they do not result in undesired reduced mass flow such as with suction methods. The flow mechanisms at the location of MVGs are not yet fully understood, and optimal designs are difficult to establish given that both numerical predictions and experiments are particularly challenged for short element heights, yet optimal MVGs are generally expected to be at least shorter than half the local boundary layer thickness. The present work aims at investigating experimentally the fundamental flow physics concerning an individual MVG element (of `canonical' or simplified geometry) at a range of near-wall heights. A fully laminar base flow is considered so as to isolate the effect of incoming turbulence as well as the more complex physics that may occur when specific and/or multiple elements are used. Tests were performed in a gun tunnel at a freestream Mach number of 8.9 and Reynolds number of /m, and the basic test model consisted of a blunt-nosed cylinder which produced an axisymmetric laminar boundary layer with an edge Mach number of 3.4 and Reynolds number of /m at the MVG location. A laminar shock-wave/boundary layer interaction with separation was induced by a flare located further downstream on the model. Measurements consisted of time-resolved surface heat transfer obtained in the axial direction immediately downstream of the MVG and along the interaction, together with simultaneous high-speed schlieren imaging. The height () of the MVG element used in a `diamond' configuration (square planform with one vertex facing the flow) was adjusted between tests ranging from = 0.03 to 0.58, where the local undisturbed boundary layer thickness

  12. Control of Dual-Opposed Stirling Convertors with Active Power Factor Correction Controllers

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.; Schreiber, Jeffrey G.

    2006-01-01

    When using recently-developed active power factor correction (APFC) controllers in power systems comprised of dual-opposed free-piston Stirling convertors, a variety of configurations of the convertors and controller(s) can be considered, with configuration ultimately selected based on benefits of efficiency, reliability, and robust operation. The configuration must not only achieve stable control of the two convertors, but also synchronize and regulate motion of the pistons to minimize net dynamic forces. The NASA Glenn Research Center (GRC) System Dynamic Model (SDM) was used to study ten configurations of dual-opposed convertor systems. These configurations considered one controller with the alternators connected in series or in parallel, and two controllers with the alternators not connected (isolated). For the configurations where the alternators were not connected, several different approaches were evaluated to synchronize the two convertors. In addition, two thermodynamic configurations were considered: two convertors with isolated working spaces and convertors with a shared expansion space. Of the ten configurations studied, stable operating modes were found for four. Three of those four had a common expansion space. One stable configuration was found for the dual-opposed convertors with separate working spaces. That configuration required isochronous control of both convertors, and two APFC controllers were used to accomplish this. A frequency/phase control loop was necessary to allow each APFC controller to synchronize its associated convertor with a common frequency.

  13. Control of Dual-Opposed Stirling Convertors with Active Power Factor Correction Controllers

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.; Schreiber, Jeffrey G.

    2007-01-01

    When using recently-developed active power factor correction (APFC) controllers in power systems comprised of dual-opposed free-piston Stirling convertors, a variety of configurations of the convertors and controller(s) can be considered, with configuration ultimately selected based on benefits of efficiency, reliability, and robust operation. The configuration must not only achieve stable control of the two convertors, but also synchronize and regulate motion of the pistons to minimize net dynamic forces. The NASA Glenn Research Center (GRC) System Dynamic Model (SDM) was used to study ten configurations of dual-opposed convertor systems. These configurations considered one controller with the alternators connected in series or in parallel, and two controllers with the alternators not connected (isolated). For the configurations where the alternators were not connected, several different approaches were evaluated to synchronize the two convertors. In addition, two thermodynamic configurations were considered: two convertors with isolated working spaces and convertors with a shared expansion space. Of the ten configurations studied, stable operating modes were found for four. Three of those four had a common expansion space. One stable configuration was found for the dual-opposed convertors with separate working spaces. That configuration required isochronous control of both convertors, and two APFC controllers were used to accomplish this. A frequency/phase control loop was necessary to allow each APFC controller to synchronize its associated convertor with a common frequency.

  14. Active control of transmitted sound in buildings

    NASA Astrophysics Data System (ADS)

    Thompsett, Russell Harvey George

    The problem of noise from neighbours has increased dramatically over the last few years. Many of the noise complaints are due to the high level, low frequency noise from modern stereo equipment, and are often described in terms of the low frequency characteristics of the music; the repetitive, booming, bass beat. The objective of this research was to establish the feasibility of applying active noise control to alleviate this problem. The initial approach was to evaluate the possibility of exploiting the dominance of individual modes in the response of rooms at low frequency to effect global control. However, initial investigations using a modal model of the sound field revealed that this would be difficult due to the contribution of many acoustic modes excited off resonance. This conclusion was supported by measurements of acoustic room responses in typical buildings, illustrating a non-resonant characteristic. Consequently, attention was turned to the feasibility of using local active control systems to create zones of quiet by concentrating control at a specific location near the observers ears, for example in a seat headrest, or near the pillows of a bed. The lack of a reference signal in either approach requires the use of a feedback control strategy. With a typically non-resonant system, the predictability in the disturbance necessary for successful feedback control must be contained in the primary excitation, namely the music. Examples of different music styles were investigated and of those with the potential to be a nuisance surprisingly few were significantly more predictable than a random disturbance. As expected the most encouraging control performance simulations were found for modern dance music, with a strong repetitive beat. A real-time, local controller was demonstrated in the laboratory with such a disturbance signal and the properties of the quiet zone were measured. The subjective response when hearing the controller in operation was found to be

  15. Active control of multiple resistive wall modes

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Bolzonella, T.; Cecconello, M.; Drake, J. R.; Kuldkepp, M.; Manduchi, G.; Marchiori, G.; Marrelli, L.; Martin, P.; Menmuir, S.; Ortolani, S.; Rachlew, E.; Spizzo, G.; Zanca, P.

    2005-12-01

    A two-dimensional array of saddle coils at Mc poloidal and Nc toroidal positions is used on the EXTRAP T2R reversed-field pinch (Brunsell P R et al 2001 Plasma Phys. Control. Fusion 43 1457) to study active control of resistive wall modes (RWMs). Spontaneous growth of several RWMs with poloidal mode number m = 1 and different toroidal mode number n is observed experimentally, in agreement with linear MHD modelling. The measured plasma response to a controlled coil field and the plasma response computed using the linear circular cylinder MHD model are in quantitive agreement. Feedback control introduces a linear coupling of modes with toroidal mode numbers n, n' that fulfil the condition |n - n'| = Nc. Pairs of coupled unstable RWMs are present in feedback experiments with an array of Mc × Nc = 4 × 16 coils. Using intelligent shell feedback, the coupled modes are generally not controlled even though the field is suppressed at the active coils. A better suppression of coupled modes may be achieved in the case of rotating modes by using the mode control feedback scheme with individually set complex gains. In feedback with a larger array of Mc × Nc = 4 × 32 coils, the coupling effect largely disappears, and with this array, the main internal RWMs n = -11, -10, +5, +6 are all simultaneously suppressed throughout the discharge (7 8 wall times). With feedback there is a two-fold extension of the pulse length, compared to discharges without feedback.

  16. Separate and Combined Effects of Cue-Controlled Relaxation and Cognitive Restructuring in the Treatment of Musical Performance Anxiety.

    ERIC Educational Resources Information Center

    Sweeney, Gladys Acevedo; Horan, John J.

    1982-01-01

    Music students with reactive and adaptive anxieties participated in a musical performance anxiety reduction program. Cue-controlled relaxation (CCR) and cognitive restructuring (CR) were examined separately and in combination in comparison with a standard treatment control condition. The CCR and CR treatments were each effective in reducing state…

  17. Longitudinal spin separation of light and its performance in three-dimensionally controllable spin-dependent focal shift.

    PubMed

    Liu, Sheng; Li, Peng; Zhang, Yi; Gan, Xuetao; Wang, Meirong; Zhao, Jianlin

    2016-01-01

    Spin Hall effect of light, which is normally explored as a transverse spin-dependent separation of a light beam, has attracted enormous research interests. However, it seems there is no indication for the existence of the longitudinal spin separation of light. In this paper, we propose and experimentally realize the spin separation along the propagation direction by modulating the Pancharatnam-Berry (PB) phase. Due to the spin-dependent divergence and convergence determined by the PB phase, a focused Gaussian beam could split into two opposite spin states, and focuses at different distances, representing the longitudinal spin separation. By combining this longitudinal spin separation with the transverse one, we experimentally achieve the controllable spin-dependent focal shift in three dimensional space. This work provides new insight on steering the spin photons, and is expected to explore novel applications of optical trapping, manipulating, and micromachining with higher degree of freedom. PMID:26882995

  18. Longitudinal spin separation of light and its performance in three-dimensionally controllable spin-dependent focal shift

    PubMed Central

    Liu, Sheng; Li, Peng; Zhang, Yi; Gan, Xuetao; Wang, Meirong; Zhao, Jianlin

    2016-01-01

    Spin Hall effect of light, which is normally explored as a transverse spin-dependent separation of a light beam, has attracted enormous research interests. However, it seems there is no indication for the existence of the longitudinal spin separation of light. In this paper, we propose and experimentally realize the spin separation along the propagation direction by modulating the Pancharatnam-Berry (PB) phase. Due to the spin-dependent divergence and convergence determined by the PB phase, a focused Gaussian beam could split into two opposite spin states, and focuses at different distances, representing the longitudinal spin separation. By combining this longitudinal spin separation with the transverse one, we experimentally achieve the controllable spin-dependent focal shift in three dimensional space. This work provides new insight on steering the spin photons, and is expected to explore novel applications of optical trapping, manipulating, and micromachining with higher degree of freedom. PMID:26882995

  19. Control Systems Cyber Security Standards Support Activities

    SciTech Connect

    Robert Evans

    2009-01-01

    The Department of Homeland Security’s Control Systems Security Program (CSSP) is working with industry to secure critical infrastructure sectors from cyber intrusions that could compromise control systems. This document describes CSSP’s current activities with industry organizations in developing cyber security standards for control systems. In addition, it summarizes the standards work being conducted by organizations within the sector and provides a brief listing of sector meetings and conferences that might be of interest for each sector. Control systems cyber security standards are part of a rapidly changing environment. The participation of CSSP in the development effort for these standards has provided consistency in the technical content of the standards while ensuring that information developed by CSSP is included.

  20. Actively controlled vibration welding system and method

    DOEpatents

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  1. Dissecting galaxies: spatial and spectral separation of emission excited by star formation and AGN activity

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Groves, Brent; Kewley, Lisa J.; Dopita, Michael A.; Hampton, Elise J.; Shastri, Prajval; Scharwächter, Julia; Sutherland, Ralph; Kharb, Preeti; Bhatt, Harish; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-10-01

    The optical spectra of Seyfert galaxies are often dominated by emission lines excited by both star formation and active galactic nucleus (AGN) activity. Standard calibrations (such as for the star formation rate) are not applicable to such composite (mixed) spectra. In this paper, we describe how integral field data can be used to spectrally and spatially separate emission associated with star formation from emission associated with accretion on to an AGN. We demonstrate our method using integral field data for two AGN host galaxies (NGC 5728 and NGC 7679) from the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). The spectra of NGC 5728 and NGC 7679 form clear sequences of AGN fraction on standard emission line ratio diagnostic diagrams. We show that the emission line luminosities of the majority (>85 per cent) of spectra along each AGN fraction sequence can be reproduced by linear superpositions of the emission line luminosities of one AGN dominated spectrum and one star formation dominated spectrum. We separate the Hα, Hβ, [N II]λ6583, [S II]λλ6716, 6731, [O III]λ5007 and [O II]λλ3726, 3729 luminosities of every spaxel into contributions from star formation and AGN activity. The decomposed emission line images are used to derive the star formation rates and AGN bolometric luminosities for NGC 5728 and NGC 7679. Our calculated values are mostly consistent with independent estimates from data at other wavelengths. The recovered star-forming and AGN components also have distinct spatial distributions which trace structures seen in high-resolution imaging of the galaxies, providing independent confirmation that our decomposition has been successful.

  2. Optogenetic feedback control of neural activity

    PubMed Central

    Newman, Jonathan P; Fong, Ming-fai; Millard, Daniel C; Whitmire, Clarissa J; Stanley, Garrett B; Potter, Steve M

    2015-01-01

    Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the ‘optoclamp’, a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner. DOI: http://dx.doi.org/10.7554/eLife.07192.001 PMID:26140329

  3. Separated Carbon Nanotube Macroelectronics for Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Fu, Yue; Zhang, Jialu; Wang, Chuan; Chen, Pochiang; Zhou, Chongwu

    2012-02-01

    Active matrix organic light-emitting diode (AMOLED) display holds great potential for the next generation visual technologies due to its high light efficiency, flexibility, lightweight, and low-temperature processing. However, suitable thin-film transistors (TFTs) are required to realize the advantages of AMOLED. Pre-separated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose because of their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report, for the first time, the demonstration of AMOLED displays driven by separated nanotube thin-film transistors (SN-TFTs) including key technology components such as large-scale high-yield fabrication of devices with superior performance, carbon nanotube film density optimization, bilayer gate dielectric for improved substrate adhesion to the deposited nanotube film, and the demonstration of monolithically integrated AMOLED display elements with 500 pixels driven by 1000 SN-TFTs. Our approach can serve as the critical foundation for future nanotube-based thin-film display electronics.

  4. Extraction chromatographic separation of promethium from high active waste solutions of Purex origin

    SciTech Connect

    Ramanujam, A.; Achuthan, P.V.; Dhami, P.S.; Gopalakrishnan, V.; Kannan, R.; Mathur, J.N.

    1995-03-01

    An extraction chromatographic procedure for the separation of {sup 147}Pm from High Active Waste solutions of Purex process has been developed. Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide(CMPO) and 2-ethylhexyl-2-ethylhexylphosphonic acid (KSM-17), both sorbed separately on an inert support(chromosorb-102) have been sequentially employed for this purpose. In the CMPO column, the rare earths and the trivalent actinides are sorbed together with uranium, plutonium and traces of few other fission products. The elution of this column with 0.04 M HNO{sub 3} gives an eluate containing trivalent actinides and lanthanides. This solution, after adjusting the pH to 2.0, is used as feed for the second extraction chromatographic column based on KSM-17. All the trivalent metal ions are sorbed on the column leaving the trace impurities in the effluent. Fractional elution of the metal ions from this column is carried out with nitric acid of varying concentrations. At 0.09 M HNO{sub 3}, the pure beta emitting fraction of {sup 147}Pm has been obtained. 16 refs., 3 figs., 2 tabs.

  5. Controlled evaporation of superfluid helium in a porous plug phase separator

    NASA Astrophysics Data System (ADS)

    Lages, Christopher R.

    1998-12-01

    regime beyond the critical mass flow rate separating this regime from the unpredictable and hysteretic 'choked' flow regime of the plug. The mass flow increase is stable, and all heat utilized in heating the downstream surface goes into evaporation of liquid helium. Data show the mass flow increase can be obtained while the thermodynamic conditions on either side of the plug are measurably unchanged. This indicates the mechanism providing the additional mass flow of liquid helium is decoupled from counterflow of its normal and superfluid components. This is consistent with the effects of parasitic heat leaking into the downstream side of a porous plug. Further results presented in this thesis include thermodynamic-based computations of liquid helium phase separation in capillaries and discussion of how computational models can be used to bind the flow regimes of porous plugs. These computational models coupled with the controlled evaporation technique simplify the flight porous plug selection process for a mission. (Abstract shortened by UMI.)

  6. Superhydrophobic film fabricated by controlled microphase separation of PEO-PLA mixture and its transparence property

    NASA Astrophysics Data System (ADS)

    Pi, Pihui; Mu, Wei; Fei, George; Deng, Yulin

    2013-05-01

    Instead of block copolymers that have been widely used in controlling thin film morphology, a mixture of two homopolymers has been used in this study to create desired nano- to microporous structure. By further modifying the nano-sized porous structured surface, a superhydrophobic surface was obtained. Experimentally, a chloroform solution containing a mixture of polylactic acid (PLA) and polyethylene oxide (PEO) was first coated on glass slides. Because of the dissimilarity of PLA and PEO, a microphase separation happened and the PEO formed microdomains in the coating layer during the film drying. Because PEO is water soluble but PLA is water-insoluble, the PEO microdomains could be washed out with water but PLA remained, resulted in a porous and rough PLA film. By two or three layer coating and washing, nano-sized roughness was obtained. A thin layer of fluorinated acrylic resin was further deposited on the rough surface. Because of the synergistic effect of surface roughness and hydrophobic, a superhydrophobicicity layer was obtained.

  7. Sensor-based control in eddy current separation of incinerator bottom ash.

    PubMed

    Rahman, Md Abdur; Bakker, M C M

    2013-06-01

    A sensor unit was placed online in the particle stream produced by an eddy current separator (ECS) to investigate its functionality in non-ferrous metals recovery. The targeted feed was the 1-6mm size fraction bottom ash from a municipal waste incinerator. The sensor unit was attached to the ECS splitter, where it counted in real-time metal and mineral particles and accurately measured the grade of the stream in the metals product. Influence of segregation (e.g. due to particle size or density) on the metals concentrate were detected and studied using the sensor data collected at different splitter distances. Tests were performed in the laboratory and in a bottom ash processing plant with two different types of ECS and two sources of bottom ash with different moisture content. The measured metal grades matched the manual analyses with errors 0%, 1.5% and 3.1% for moist, dry and very wet feed, respectively. For very wet feed the ECS metals recovery dropped, which was observed from the strongly reduced particle counts and the large changes in cumulative particle properties. The measured sample proved representative for the whole metals concentrate if it is collected at a representative position within the metals particle trajectory fan produced by the ECS. ECS-performance proved sensitively dependent on splitter distance, since a 10mm shift may result in 10% change in metal recovery and 18% change in grade. The main functionalities of the sensor unit are determined as online quality control and facilitation of automatic control over the ECS splitter distance. These functionalities translate in significant improvements in ECS metals recovery which in turn is linked to economic benefits, increased recycling rate of scrap metals and a further reduction of the ecological drawbacks of incinerator bottom ash. PMID:23490354

  8. What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends.

    PubMed

    Jakowetz, Andreas C; Böhm, Marcus L; Zhang, Jiangbin; Sadhanala, Aditya; Huettner, Sven; Bakulin, Artem A; Rao, Akshay; Friend, Richard H

    2016-09-14

    In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE. PMID:27538341

  9. What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends.

    PubMed

    Jakowetz, Andreas C; Böhm, Marcus L; Zhang, Jiangbin; Sadhanala, Aditya; Huettner, Sven; Bakulin, Artem A; Rao, Akshay; Friend, Richard H

    2016-09-14

    In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE.

  10. Hybrid Architecture Active Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Hyde, Tupper

    2010-01-01

    A method was developed for performing relatively high-speed wavefront sensing and control to overcome thermal instabilities in a segmented primary mirror telescope [e.g., James Webb Space Telescope (JWST) at L2], by using the onboard fine guidance sensor (FGS) to minimize expense and complexity. This FGS performs centroiding on a bright star to feed the information to the pointing and control system. The proposed concept is to beam split the image of the guide star (or use a single defocused guide star image) to perform wavefront sensing using phase retrieval techniques. Using the fine guidance sensor star image for guiding and fine phasing eliminates the need for other, more complex ways of achieving very accurate sensing and control that is needed for UV-optical applications. The phase retrieval occurs nearly constantly, so passive thermal stability over fourteen days is not required. Using the FGS as the sensor, one can feed segment update information to actuators on the primary mirror that can update the primary mirror segment fine phasing with this frequency. Because the thermal time constants of the primary mirror are very slow compared to this duration, the mirror will appear extremely stable during observations (to the level of accuracy of the sensing and control). The sensing can use the same phase retrieval techniques as the JWST by employing an additional beam splitter, and having each channel go through a weak lens (one positive and one negative). The channels can use common or separate detectors. Phase retrieval can be performed onboard. The actuation scheme would include a coarse stage able to achieve initial alignment of several millimeters of range (similar to JWST and can use a JWST heritage sensing approach in the science camera) and a fine stage capable of continual updates.

  11. A new dynamic voltage restorer with separating active and reactive power circuit design

    NASA Astrophysics Data System (ADS)

    Pai, Fu-Sheng

    2015-05-01

    Conventional dynamic voltage restorers (DVRs) install parallel battery and capacitor sets at the DC bus to supply the required power for voltage sag compensation. However, the reactive power output of a DVR may increase the ripple voltage at the inner DC bus, possibly resulting in a higher operating temperature of the battery and thus decreased battery life. This paper proposes a DVR system that uses a cascade power module to effectively compensate voltage sag. By separating the active and reactive compensation powers, the proposed DVR provides a lower ripple DC link for extending battery life and offers a flexible way to design the capacitor bank. To confirm the effectiveness of the proposed design, theoretical analysis and experimental validation were conducted under various scenarios. Test results confirm the feasibility and practicality of the proposed method.

  12. The moderating impact of temporal separation on the association between intention and physical activity: a meta-analysis.

    PubMed

    McDermott, Máirtín S; Sharma, Rajeev; Andrews, Megan; Akter, Shahriar; Iverson, Donald; Caputi, Peter; Coltman, Tim; Safadi, Murad

    2016-07-01

    Previous meta-analyses have estimated that the intention-behaviour association in physical activity (PA) is large in magnitude. However, these prior meta-analyses have also revealed a large degree of heterogeneity, suggesting the presence of moderating variables. This study examines the impact of one such moderator, testing the hypothesis that the magnitude of the association between intention and behaviour decreases as the temporal separation between the two increases. A systematic literature search was used to identify published and unpublished studies that met the inclusion criteria. A random-effects meta-regression was conducted to test the study hypothesis. A total of 78 journal articles and 11 unpublished dissertations were identified, yielding 109 effect sizes. The mean number of weeks between the measurement of intention and behaviour was 5.4 (SD = 6.6, range = .43, 26). The average correlation between intention and behaviour was r = 0.51. In line with theoretical predictions, temporal separation was a significant moderator of the intention-behaviour correlation (B = -.014, p < .001) and explained 24% of the between-study variance. This result remained unchanged when entered simultaneously with several control variables. The results of this analysis have important implications both for researchers and for intervention designers aiming to increase rates of PA. PMID:26325473

  13. Unsteady aerodynamic modeling and active aeroelastic control

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.

  14. Active control of locomotion facilitates nonvisual navigation.

    PubMed

    Philbeck, J W; Klatzky, R L; Behrmann, M; Loomis, J M; Goodridge, J

    2001-02-01

    In some navigation tasks, participants are more accurate if they view the environment beforehand. To characterize the benefits associated with visual previews, 32 blindfolded participants were guided along simple paths and asked to walk unassisted to a specified destination (e.g., the origin). Paths were completed without vision, with or without a visual preview of the environment. Previews did not necessarily improve nonvisual navigation. When previewed landmarks stood near the origin or at off-path locations, they provided little benefit; by contrast, when they specified intermediate destinations (thereby increasing the degree of active control), performance was greatly enhanced. The results suggest that the benefit of a visual preview stems from the information it supplies for actively controlled locomotion. Accuracy in reaching the final destination, however, is strongly contingent upon the destination's location during the preview.

  15. The Process of Separating Bovine Serum Albumin Using Hydroxyapatite and Active Babassu Coal (Orbignya martiana)

    PubMed Central

    Zuñiga, Abraham Damian Giraldo; Sousa, Rita de Cássia Superbi; Zacchi Scolforo, Carmelita

    2016-01-01

    Bovine serum albumin is one of the major serum proteins; it plays an important role as a result of its functional and nutritional properties which have bioactive peptides. Adsorption method was used to separate protein, which involves hydroxyapatite, synthetic hydroxyapatite, and active babassu coal. Initially, characterization was carried out using the zeta potential of the adsorbents. Kinetic pseudo-first- and pseudo-second-order models were applied. For isotherms, equilibrium data studies were carried out using the Langmuir and Freundlich models, in addition to determining the efficiency of adsorptive process. The results of the zeta potential showed loads ranging from +6.9 to −42.8 mV. The kinetic data were better represented in the pseudo-second-order model with chemisorption characteristics. The adsorption capacity of the adsorbents decreased as pH increased, indicating that the electrostatic bonds and some functional groups of active babassu coal contributed to the reduction of adsorption, especially oxygen linked to carbon atoms. The value of pH 4.0 showed the best results of adsorption, being obtained as the maximum adsorption capacity (qm) and yield (%) (where qm = 87.95 mg g−1 and 74.2%; 68.26 mg g−1 and 68.6%; and 36.18 mg g−1, 37.4%) of hydroxyapatite, synthetic hydroxyapatite, and active babassu coal, respectively. PMID:27376149

  16. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  17. Active Thermal Control System Development for Exploration

    NASA Technical Reports Server (NTRS)

    Westheimer, David

    2007-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  18. Distributed control system for active mirrors

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ramos, Luis F.; Williams, Mark R.; Castro, Javier; Cruz, A.; Gonzalez, Juan C.; Mack, Brian; Martin, Carlos; Pescador, German; Sanchez, Vicente; Sosa, Nicolas A.

    1994-06-01

    This paper presents the IAC (Instituto de Astrofisica de Canaries, Spain) proposal of a distributed control system intended for the active support of a 8 m mirror. The system incorporates a large number of compact `smart' force actuators, six force definers, and a mirror support computer (MSC) for interfacing with the telescope control system and for general housekeeping. We propose the use of a network for the interconnection of the actuators, definers and the MSC, which will minimize the physical complexity of the interface between the mirror support system and the MSC. The force actuator control electronics are described in detail, as is the system software architecture of the actuator and the MSC. As the network is a key point for the system, we also detail the evaluation of three candidates, before electing the CAN bus.

  19. 9 CFR 318.24 - Product prepared using advanced meat/bone separation machinery; process control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., may be derived by mechanically separating skeletal muscle tissue from the bones of livestock, other... mechanical separation of skeletal muscle tissue from livestock bones, the operator of an establishment must... establishment has verified and documented the ratio of iron content to protein content in the skeletal...

  20. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Sepe, Raymond B.; Rey, Daniel; Saarmaa, Erik; Crawley, Edward F.

    1993-01-01

    The Middeck Active Control Experiment (MACE) is a NASA In-Step and Control Structure Interaction (CSI) Office funded Shuttle middeck experiment. The objective is to investigate the extent to which closed-loop behavior of flexible spacecraft in zero-gravity (0-g) can be predicted. This prediction becomes particularly difficult when dynamic behavior during ground testing exhibits extensive suspension and direct gravity coupling. On-orbit system identification and control reconfiguration is investigated to improve performance which would otherwise be limited due to errors in prediction. The program is presently in its preliminary design phase with launch expected in the summer of 1994. The MACE test article consists of three attitude control torque wheels, a two axis gimballing payload, inertial sensors and a flexible support structure. With the acquisition of a second payload, this will represent a multiple payload platform with significant structural flexibility. This paper presents on-going work in the areas of modelling and control of the MACE test article in the zero and one-gravity environments. Finite element models, which include suspension and gravity effects, and measurement models, derived from experimental data, are used as the basis for Linear Quadratic Gaussian controller designs. Finite element based controllers are analytically used to study the differences in closed-loop performance as the test article transitions between the 0-g and 1-g environments. Measurement based controllers are experimentally applied to the MACE test article in the 1-g environment and achieve over an order of magnitude improvement in payload pointing accuracy when disturbed by a broadband torque disturbance. The various aspects of the flight portion of the experiment are also discussed.

  1. Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation

    SciTech Connect

    Park, Jae-Hong; Khoo, Iam Choon; Yu, Chang-Jae; Jung, Min-Sik; Lee, Sin-Doo

    2005-01-10

    We report on formation of binary phase gratings in photopolymer-liquid crystal (PLC) composites using a surface-controlled phase separation method. The binary nature of the PLC phase gratings is produced by employing a single step photo-ablation through an amplitude photomask which precisely controls the interfacial interactions between the LC and the photopolymer on the alignment layer. A subsequent illumination of the ultraviolet light onto the whole PLC promotes an anisotropic phase separation resulting in the formation of distinct binary patterns for the PLC structure. The electrically tunable diffraction properties of the binary phase gratings are presented.

  2. Middeck Active Control Experiment (MACE), phase A

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Deluis, Javier; Miller, David W.

    1989-01-01

    A rationale to determine which structural experiments are sufficient to verify the design of structures employing Controlled Structures Technology was derived. A survey of proposed NASA missions was undertaken to identify candidate test articles for use in the Middeck Active Control Experiment (MACE). The survey revealed that potential test articles could be classified into one of three roles: development, demonstration, and qualification, depending on the maturity of the technology and the mission the structure must fulfill. A set of criteria was derived that allowed determination of which role a potential test article must fulfill. A review of the capabilities and limitations of the STS middeck was conducted. A reference design for the MACE test article was presented. Computing requirements for running typical closed-loop controllers was determined, and various computer configurations were studied. The various components required to manufacture the structure were identified. A management plan was established for the remainder of the program experiment development, flight and ground systems development, and integration to the carrier. Procedures for configuration control, fiscal control, and safety, reliabilty, and quality assurance were developed.

  3. Mechanisms for laminar separated-flow control using dielectric-barrier-discharge plasma actuator at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Sato, Makoto; Nonomura, Taku; Okada, Koichi; Asada, Kengo; Aono, Hikaru; Yakeno, Aiko; Abe, Yoshiaki; Fujii, Kozo

    2015-11-01

    Large-eddy simulations have been conducted to investigate the mechanisms of separated-flow control using a dielectric barrier discharge plasma actuator at a low Reynolds number. In the present study, the mechanisms are classified according to the means of momentum injection to the boundary layer. The separated flow around the NACA 0015 airfoil at a Reynolds number of 63 000 is used as the base flow for separation control. Both normal and burst mode actuations are adopted in separation control. The burst frequency non-dimensionalized by the freestream velocity and the chord length (F+) is varied from 0.25 to 25, and we discuss the control mechanism through the comparison of the aerodynamic performance and controlled flow-fields in each normal and burst case. Lift and drag coefficients are significantly improved for the cases of F+ = 1, 5, and 15 due to flow reattachment associated with a laminar-separation bubble. Frequency and linear stability analyses indicate that the F+ = 5 and 15 cases effectively excite the natural unstable frequency at the separated shear layer, which is caused by the Kelvin-Helmholtz instability. This excitation results in earlier flow reattachment due to earlier turbulent transition. Furthermore, the Reynolds stress decomposition is conducted in order to identify the means of momentum entrainment resulted from large-scale spanwise vortical structure or small-scale turbulent vortices. For the cases with flow reattachment, the large-scale spanwise vortices, which shed from the separated shear layer through plasma actuation, significantly increase the periodic component of the Reynolds stress near the leading edge. These large-scale vortices collapse to small-scale turbulent vortices, and the turbulent component of the Reynolds stress increases around the large-scale vortices. In these cases, although the combination of momentum entrainment by both Reynolds stress components results in flow reattachment, the dominant component is identified as

  4. Seismic body wave separation in volcano-tectonic activity inferred by the Convolutive Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; De Lauro, Enza; De Martino, Salvatore; Falanga, Mariarosaria; Petrosino, Simona

    2015-04-01

    One of the main challenge in volcano-seismological literature is to locate and characterize the source of volcano/tectonic seismic activity. This passes through the identification at least of the onset of the main phases, i.e. the body waves. Many efforts have been made to solve the problem of a clear separation of P and S phases both from a theoretical point of view and developing numerical algorithms suitable for specific cases (see, e.g., Küperkoch et al., 2012). Recently, a robust automatic procedure has been implemented for extracting the prominent seismic waveforms from continuously recorded signals and thus allowing for picking the main phases. The intuitive notion of maximum non-gaussianity is achieved adopting techniques which involve higher-order statistics in frequency domain., i.e, the Convolutive Independent Component Analysis (CICA). This technique is successful in the case of the blind source separation of convolutive mixtures. In seismological framework, indeed, seismic signals are thought as the convolution of a source function with path, site and the instrument response. In addition, time-delayed versions of the same source exist, due to multipath propagation typically caused by reverberations from some obstacle. In this work, we focus on the Volcano Tectonic (VT) activity at Campi Flegrei Caldera (Italy) during the 2006 ground uplift (Ciaramella et al., 2011). The activity was characterized approximately by 300 low-magnitude VT earthquakes (Md < 2; for the definition of duration magnitude, see Petrosino et al. 2008). Most of them were concentrated in distinct seismic sequences with hypocenters mainly clustered beneath the Solfatara-Accademia area, at depths ranging between 1 and 4 km b.s.l.. The obtained results show the clear separation of P and S phases: the technique not only allows the identification of the S-P time delay giving the timing of both phases but also provides the independent waveforms of the P and S phases. This is an enormous

  5. Gas turbine engine active clearance control

    NASA Technical Reports Server (NTRS)

    Deveau, Paul J. (Inventor); Greenberg, Paul B. (Inventor); Paolillo, Roger E. (Inventor)

    1985-01-01

    Method for controlling the clearance between rotating and stationary components of a gas turbine engine are disclosed. Techniques for achieving close correspondence between the radial position of rotor blade tips and the circumscribing outer air seals are disclosed. In one embodiment turbine case temperature modifying air is provided in flow rate, pressure and temperature varied as a function of engine operating condition. The modifying air is scheduled from a modulating and mixing valve supplied with dual source compressor air. One source supplies relatively low pressure, low temperature air and the other source supplies relatively high pressure, high temperature air. After the air has been used for the active clearance control (cooling the high pressure turbine case) it is then used for cooling the structure that supports the outer air seal and other high pressure turbine component parts.

  6. Control concepts for active magnetic bearings

    NASA Technical Reports Server (NTRS)

    Siegwart, Roland; Vischer, D.; Larsonneur, R.; Herzog, R.; Traxler, Alfons; Bleuler, H.; Schweitzer, G.

    1992-01-01

    Active Magnetic Bearings (AMB) are becoming increasingly significant for various industrial applications. Examples are turbo-compressors, centrifuges, high speed milling and grinding spindles, vibration isolation, linear guides, magnetically levitated trains, vacuum and space applications. Thanks to the rapid progress and drastic cost reduction in power- and micro-electronics, the number of AMB applications is growing very rapidly. Industrial uses of AMBs leads to new requirements for AMB-actuators, sensor systems, and rotor dynamics. Especially desirable are new and better control concepts to meet demand such as low cost AMB, high stiffness, high performance, high robustness, high damping up to several kHz, vibration isolation, force-free rotation, and unbalance cancellation. This paper surveys various control concepts for AMBs and discusses their advantages and disadvantages. Theoretical and experimental results are presented.

  7. Understanding the brain by controlling neural activity

    PubMed Central

    Krug, Kristine; Salzman, C. Daniel; Waddell, Scott

    2015-01-01

    Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been combined with electrical devices, targeted genetically encoded tools and neurochemical approaches to manipulate information processing in the brain. The ability to control brain activity in these ways not only deepens our understanding of brain function but also provides new avenues for clinical intervention, particularly in conditions where brain processing has gone awry. PMID:26240417

  8. Control of Shock-Induced Boundary Layer Separation by using Pulsed Plasma Jets

    NASA Astrophysics Data System (ADS)

    Greene, Benton R.; Clemens, Noel T.; Micka, Daniel

    2012-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic flow including flow instability, fatigue of structural panels, and unstart in supersonic inlets. Pulsed plasma jets (or ``spark jets''), which are characterized by high bandwidth and the ability to direct momentum into the flow, are one promising method of reducing shock-induced separation. The current study is focused on investigating the efficacy of plasma jets to reduce the separated flow induced by a compression ramp in a Mach 3 flow. Three different 3-jet actuator configurations are tested: 20° pitched, 45° pitched, and 22° pitched and 45° skewed. The jets are pulsed at frequencies between 2 kHz and 4 kHz with duty cycles between 5 and 15%. The shock wave is generated using a 20° compression ramp, and the location of the shock-induced separation is visualized using surface oil streak visualization as well as particle image velocimetry. The results of the study show that of the three configurations, the plasma jets pitched at 20° from the streamwise direction cause the greatest reduction in separation, and when pulsed at a frequency of 3.2 kHz and 12% duty cycle can reduce the size of the separation region by up to 40%. This work is supported by AFRL under SBIR contract.

  9. PVDF-HFP/ether-modified polysiloxane membranes obtained via airbrush spraying as active separators for application in lithium ion batteries.

    PubMed

    Seidel, S M; Jeschke, S; Vettikuzha, P; Wiemhöfer, H-D

    2015-08-01

    Improved hybrid polymer electrolyte membranes are introduced based on ether-modified polysiloxanes and poly(vinylidene fluoride-co-hexafluoropropylene) yielding a safe separator membrane, which is able to be sprayed directly onto lithium ion battery active materials, with an active role for enhanced ion transport.

  10. Active Displacement Control of Active Magnetic Bearing System

    NASA Astrophysics Data System (ADS)

    Kertész, Milan; Kozakovič, Radko; Magdolen, Luboš; Masaryk, Michal

    2014-12-01

    The worldwide energy production nowadays is over 3400 GW while storage systems have a capacity of only 90 GW [1]. There is a good solution for additional storage capacity in flywheel energy storage systems (FES). The main advantage of FES is its relatively high efficiency especially with using the active magnetic bearing system. Therefore there exist good reasons for appropriate simulations and for creating a suitable magneto-structural control system. The magnetic bearing, including actuation, is simulated in the ANSYS parametric design language (APDL). APDL is used to create the loops of transient simulations where boundary conditions (BC) are updated based upon a "gap sensor" which controls the nodal position values of the centroid of the shaft and the current density inputs onto the copper windings.

  11. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)

    2015-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  12. Nanomechanics of Actively Controlled Deployable Optics

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.

    2000-01-01

    This document is the interim, annual report for the research grant entitled "Nanomechanics of Actively Controlled Deployed Optics." It is supported by NASA Langley Research Center Cooperative Agreement NCC-1 -281. Dr. Mark S. Lake is the technical monitor of the research program. This document reports activities for the year 1998, beginning 3/11/1998, and for the year 1999. The objective of this report is to summarize the results and the status of this research. This summary appears in Section 2.0. Complete details of the results of this research have been reported in several papers, publications and theses. Section 3.0 lists these publications and, when available, presents their abstracts. Each publication is available in electronic form from a web site identified in Section 3.0.

  13. Fluidic actuators for active flow control on airframe

    NASA Astrophysics Data System (ADS)

    Schueller, M.; Weigel, P.; Lipowski, M.; Meyer, M.; Schlösser, P.; Bauer, M.

    2016-04-01

    One objective of the European Projects AFLoNext and Clean Sky 2 is to apply Active Flow Control (AFC) on the airframe in critical aerodynamic areas such as the engine/wing junction or the outer wing region for being able to locally improve the aerodynamics in certain flight conditions. At the engine/wing junction, AFC is applied to alleviate or even eliminate flow separation at low speeds and high angle of attacks likely to be associated with the integration of underwing- mounted Ultra High Bypass Ratio (UHBR) engines and the necessary slat-cut-outs. At the outer wing region, AFC can be used to allow more aggressive future wing designs with improved performance. A relevant part of the work on AFC concepts for airframe application is the development of suitable actuators. Fluidic Actuated Flow Control (FAFC) has been introduced as a Flow Control Technology that influences the boundary layer by actively blowing air through slots or holes out of the aircraft skin. FAFC actuators can be classified by their Net Mass Flux and accordingly divided into ZNMF (Zero Net Mass Flux) and NZNMF (Non Zero Net-Mass-Flux) actuators. In the frame of both projects, both types of the FAFC actuator concepts are addressed. In this paper, the objectives of AFC on the airframe is presented and the actuators that are used within the project are discussed.

  14. SEPARABLE RESPONSES TO ERROR, AMBIGUITY, AND REACTION TIME IN CINGULO-OPERCULAR TASK CONTROL REGIONS

    PubMed Central

    Neta, Maital; Schlaggar, Bradley L.; Petersen, Steven E.

    2014-01-01

    The dorsal anterior cingulate (dACC), along with the closely affiliated anterior insula/frontal operculum have been demonstrated to show three types of task control signals across a wide variety of tasks. One of these signals, a transient signal that is thought to represent performance feedback, shows greater activity to error than correct trials. Other work has found similar effects for uncertainty/ambiguity or conflict, though some argue that dACC activity is, instead, modulated primarily by other processes more reflected in reaction time. Here, we demonstrate that, rather than a single explanation, multiple information processing operations are crucial to characterizing the function of these brain regions, by comparing operations within a single paradigm. Participants performed two tasks in an fMRI experimental session: (1) deciding whether or not visually presented word pairs rhyme, and (2) rating auditorily presented single words as abstract or concrete. A pilot was used to identify ambiguous stimuli for both tasks (e.g., word pair: BASS/GRACE; single word: CHANGE). We found greater cingulo-opercular activity for errors and ambiguous trials than clear/correct trials, with a robust effect of reaction time. The effects of error and ambiguity remained when reaction time was regressed out, although the differences decreased. Further stepwise regression of response consensus (agreement across participants for each stimulus; a proxy for ambiguity) decreased differences between ambiguous and clear trials, but left error-related differences almost completely intact. These observations suggest that trial-wise responses in cinguloopercular regions monitor multiple performance indices, including accuracy, ambiguity, and reaction time. PMID:24887509

  15. Acetaminophen Versus Liquefied Ibuprofen for Control of Pain During Separation in Orthodontic Patients: A Randomized Triple Blinded Clinical Trial.

    PubMed

    Hosseinzadeh Nik, Tahereh; Shahsavari, Negin; Ghadirian, Hannaneh; Ostad, Seyed Nasser

    2016-07-01

    The aim of this randomized clinical study was to investigate the effectiveness of acetaminophen 650 mg or liquefied ibuprofen 400 mg in pain control of orthodontic patients during separation with an elastic separator. A total of 101 patients with specific inclusion criteria were divided randomly into three groups (acetaminophen, liquefied ibuprofen, and placebo). They were instructed to take their drugs one hour before separator placement and every six hours afterward (five doses in total). They recorded their discomfort on visual analog scales immediately after separator placement, 2 hours later, 6 hours later, at bedtime, and 24 hours after separator placement. Repeated measure analysis of variance (ANOVA) was used to compare the mean pain scores between the three groups. Data were collected from 89 patients. The pain increased with time in all groups. Pain scores were statistically lower in the analgesic groups compared with the placebo group (P.value<0.001), but no statistically significant difference was found in mean pain scores between the two drug groups (acetaminophen and liquefied ibuprofen) (P.value=1). Acetaminophen and liquefied ibuprofen have similar potential in pain reduction during separation. PMID:27424011

  16. Chemical Shift Separation with Controlled Aliasing for Hyperpolarized 13C Metabolic Imaging

    PubMed Central

    Shin, Peter J.; Larson, Peder E.Z.; Uecker, Martin; Reed, Galen D.; Kerr, Adam B.; Tropp, James; Ohliger, Michael A.; Nelson, Sarah J.; Pauly, John M.; Lustig, Michael; Vigneron, Daniel B.

    2014-01-01

    Purpose A chemical shift separation technique for hyperpolarized 13C metabolic imaging with high spatial and temporal resolution was developed. Specifically, a fast 3D pulse sequence and a reconstruction method were implemented to acquire signals from multiple 13C species simultaneously with subsequent separation into individual images. Methods A stack of flyback-EPI readouts and a set of multiband excitation RF pulses were designed to spatially modulate aliasing patterns of the acquired metabolite images, which translated the chemical shift separation problem into parallel imaging reconstruction problem. An eight-channel coil array was used for data acquisition and a parallel imaging method based on nonlinear inversion was developed to separate the aliased images. Results Simultaneous acquisitions of pyruvate and lactate in a phantom study and in vivo rat experiments were performed. The results demonstrated successful separation of the metabolite distributions into individual images having high spatial resolution. Conclusion This method demonstrated the ability to provide accelerated metabolite imaging in hyperpolarized 13C MR utilizing multi-channel coils, tailored readout, and specialized RF pulses. PMID:25298086

  17. Online SERS Detection and Characterization of Eight Biologically-Active Peptides Separated by Capillary Zone Electrophoresis

    PubMed Central

    Negri, Pierre; Sarver, Scott A.; Schiavone, Nicole M.; Dovichi, Norman J.; Schultz, Zachary D.

    2015-01-01

    There is a need for low cost, sensitive and chemical specific detectors for routine characterization of biomolecules. In this study, we utilize sheath-flow surface-enhanced Raman scattering (SERS) to analyze a mixture of eight biologically-active peptides separated by capillary zone electrophoresis (CZE). Analysis of the SERS electropherogram resulting from online detection resolves the characteristic Raman bands attributed to the amino acid constituents of each peptide, which enables identification. The detection limit by SERS was found to be 10−8 M. Our results suggest that the structural information obtained from the detected vibrational modes provides complementary characterization to other chemically specific detectors like mass spectrometry and improved chemical identification over other commonly used optical-based post-chromatographic detection methods. In addition, the sheath-flow SERS detection results in band narrowing in the observed electropherogram that enables distinction of closely migrating species. The results presented here indicate that online SERS detection can provide fast, robust, reproducible, and chemical specific detection to facilitate the characterization of peptides. PMID:25599104

  18. Easily separated silver nanoparticle-decorated magnetic graphene oxide: Synthesis and high antibacterial activity.

    PubMed

    Zhang, Huai-Zhi; Zhang, Chang; Zeng, Guang-Ming; Gong, Ji-Lai; Ou, Xiao-Ming; Huan, Shuang-Yan

    2016-06-01

    Silver nanoparticle-decorated magnetic graphene oxide (MGO-Ag) was synthesized by doping silver and Fe3O4 nanoparticles on the surface of GO, which was used as an antibacterial agent. MGO-Ag was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray (EDS), X-ray diffraction (XRD), Raman spectroscopy and magnetic property tests. It can be found that magnetic iron oxide nanoparticles and nano-Ag was well dispersed on graphene oxide; and MGO-Ag exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. Several factors were investigated to study the antibacterial effect of MGO-Ag, such as temperature, time, pH and bacterial concentration. We also found that MGO-Ag maintained high inactivation rates after use six times and can be separated easily after antibacterial process. Moreover, the antibacterial mechanism is discussed and the synergistic effect of GO, Fe3O4 nanoparticles and nano-Ag accounted for high inactivation of MGO-Ag. PMID:26994349

  19. Easily separated silver nanoparticle-decorated magnetic graphene oxide: Synthesis and high antibacterial activity.

    PubMed

    Zhang, Huai-Zhi; Zhang, Chang; Zeng, Guang-Ming; Gong, Ji-Lai; Ou, Xiao-Ming; Huan, Shuang-Yan

    2016-06-01

    Silver nanoparticle-decorated magnetic graphene oxide (MGO-Ag) was synthesized by doping silver and Fe3O4 nanoparticles on the surface of GO, which was used as an antibacterial agent. MGO-Ag was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray (EDS), X-ray diffraction (XRD), Raman spectroscopy and magnetic property tests. It can be found that magnetic iron oxide nanoparticles and nano-Ag was well dispersed on graphene oxide; and MGO-Ag exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. Several factors were investigated to study the antibacterial effect of MGO-Ag, such as temperature, time, pH and bacterial concentration. We also found that MGO-Ag maintained high inactivation rates after use six times and can be separated easily after antibacterial process. Moreover, the antibacterial mechanism is discussed and the synergistic effect of GO, Fe3O4 nanoparticles and nano-Ag accounted for high inactivation of MGO-Ag.

  20. Separable solutions of force-free spheres and applications to solar active regions

    SciTech Connect

    Prasad, A.; Mangalam, A.; Ravindra, B. E-mail: mangalam@iiap.res.in

    2014-05-10

    We present a systematic study of the force-free field equation for simple axisymmetric configurations in spherical geometry and apply it to the solar active regions. The condition of separability of solutions in the radial and angular variables leads to two classes of solutions: linear and nonlinear force-free fields (NLFF). We have studied these linear solutions and extended the nonlinear solutions for the radial power law index to the irreducible rational form n = p/q, which is allowed for all cases of odd p and cases of q > p for even p, where the poloidal flux ψ∝1/r{sup n} and the field B∝1/r {sup n+2}. We apply these solutions to simulate photospheric vector magnetograms obtained using the spectropolarimeter on board Hinode. The effectiveness of our search strategy is first demonstrated on test inputs of dipolar, axisymmetric, and nonaxisymmetric linear force-free fields. Using the best fit, we build three-dimensional axisymmetric field configurations and calculate the energy and relative helicity with two independent methods, which are in agreement. We have analyzed five magnetograms for AR 10930 spanning a period of three days during which two X-class flares occurred and found the free energy and relative helicity of the active region before and after the flare; our analysis indicates a peak in these quantities before the flare events, which is consistent with the other results. We also analyzed single-polarity regions AR 10923 and 10933, which showed very good fits to potential fields. This method provides useful reconstruction of NLFF and input fields for other numerical techniques.

  1. Vortex generators for control of shock-induced separation. Part 3: Examples of applications of vortex generators to aircraft

    NASA Astrophysics Data System (ADS)

    1993-12-01

    ESDU 93026 illustrates by case studies the use of the information in Parts 1 and 2 on the use of vortex generators to control shock-induced separation. The examples are the control of internal noise by the application of vortex generators on the forward cabin roof of a business aircraft (Gulfstream III), the control of separation associated with a three-shock pattern near the tip of a highly swept and tapered model wing in a wind-tunnel, and the improvement of the buffet maneuver boundary on a straight wing interceptor aircraft of the fifties. In each case the geometric details of the arrays of vortex generators tested are provided, the results obtained are described, and the aerodynamic principles involved that influence those results are assessed.

  2. Synthetic Vortex Generator Jets Used to Control Separation on Low-Pressure Turbine Airfoils

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Volino, Ralph J.

    2005-01-01

    Low-pressure turbine (LPT) airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and lower cost by reducing the number of airfoils in an engine. When the adverse pressure gradient on the suction side of these airfoils becomes strong enough, the boundary layer will separate. Separation bubbles, particularly those that fail to reattach, can result in a significant loss of lift and a subsequent degradation of engine efficiency. The problem is particularly relevant in aircraft engines. Airfoils optimized to produce maximum power under takeoff conditions may still experience boundary layer separation at cruise conditions because of the thinner air and lower Reynolds numbers at altitude. Component efficiency can drop significantly between takeoff and cruise conditions. The decrease is about 2 percent in large commercial transport engines, and it could be as large as 7 percent in smaller engines operating at higher altitudes. Therefore, it is very beneficial to eliminate, or at least reduce, the separation bubble.

  3. Active Control of a Flapping Wing in a Gust Setup

    NASA Astrophysics Data System (ADS)

    Wallace, Ryan; Anderson, Mark; Glauser, Mark

    2006-11-01

    The aim of this experiment is to determine the response of a flapping Micro Air Vehicle wing to a wind gust while in forward and hovering flight and apply an active control to respond to the wind gust. The flapping wing is driven by a DC brushless motor which is geared to allow for flapping at frequencies up to 3 Hz. The wing is set up vertically in the wind tunnel, and can flap up to angles of 120 degrees. To simulate a wind gust perpendicular to the free stream flow a diffuser is set up on top of the wind tunnel. Strain gages are attached to the wing. It has been shown while simultaneously measuring the dynamical strain and the velocity field with a PIV system, that a realistic estimate of the wake flow field can obtained using low dimensional tools (POD, mLSE). The wing and the flapping mechanism are mounted directly on a force balance to calculate the lift being produced. In order to prevent flow separation on the wing during a sudden wind gust the wing is actively deformed by an attached piezoelectric actuator. The end result is to have closed loop control to produce stable hovering and forward flight.

  4. Experiment based Reduced-Order Modeling for Feedback Flow Control: Application to Flow Separation and Jet Aeroacoustics

    NASA Astrophysics Data System (ADS)

    Glauser, Mark

    2005-11-01

    Under AFOSR support we have been developing closed loop flow control methods for flow separation control over a NACA 4412 airfoil and for jet noise reduction. The methods employ the Proper Orthogonal Decomposition along with Stochastic Measurement to extract the low-dimensional flow characteristics. We have made substantial progress on the NACA 4412 problem wherein we have closed the loop using estimates (obtained form wall pressure via the Stochastic Measurement) of the first time dependent POD coefficient as our feedback signal in a simple proportional controller. Our results to date show that with the feedback we can delay separation from 15 degrees AoA (without any control) to greater than 18 degrees AoA with the feedback control. These initial exciting results will be presented along with our experimental based dynamical models that are being developed so we can incorporate some flow dynamics into the feedback as well as design controllers offline. For the jet aeroacoustics problem we are not yet at the stage were we are closing the loop. However, we will present results that show that substantial progress has been made in our understanding of the relationship between the low-dimensional velocity fields and the far field noise. This is providing us a starting point for eventual implementation of feedback flow control (of the near field jet plume) for far field noise reduction.

  5. Separation of active laccases from Pleurotus sapidus culture supernatant using aqueous two-phase systems in centrifugal partition chromatography.

    PubMed

    Schwienheer, C; Prinz, A; Zeiner, T; Merz, J

    2015-10-01

    For the production of bio active compounds, e.g., active enzymes or antibodies, a conserved purification process with a minimum loss of active compounds is necessary. In centrifugal partition chromatography (CPC), the separation effect is based on the different distribution of the components to be separated between two immiscible liquid phases. Thereby, one liquid phase is kept stationary in chambers by a centrifugal field and the mobile phase is pumped through via connecting ducts. Aqueous two phase systems (ATPS) are known to provide benign conditions for biochemical products and seem to be promising when used in CPC for purification tasks. However, it is not known if active biochemical compounds can "survive" the conditions in a CPC where strong shear forces can occur due to the two-phasic flow under centrifugal forces. Therefore, this aspect has been faced within this study by the separation of active laccases from a fermentation broth of Pleurotus sapidus. After selecting a suitable ATPS and operating conditions, the activity yield was calculated and the preservation of the active enzymes could be observed. Therefore, CPC could be shown as potentially suitable for the purification of bio-active compounds.

  6. Ribosome-dependent activation of stringent control.

    PubMed

    Brown, Alan; Fernández, Israel S; Gordiyenko, Yuliya; Ramakrishnan, V

    2016-06-01

    In order to survive, bacteria continually sense, and respond to, environmental fluctuations. Stringent control represents a key bacterial stress response to nutrient starvation that leads to rapid and comprehensive reprogramming of metabolic and transcriptional patterns. In general, transcription of genes for growth and proliferation is downregulated, while those important for survival and virulence are upregulated. Amino acid starvation is sensed by depletion of the aminoacylated tRNA pools, and this results in accumulation of ribosomes stalled with non-aminoacylated (uncharged) tRNA in the ribosomal A site. RelA is recruited to stalled ribosomes and activated to synthesize a hyperphosphorylated guanosine analogue, (p)ppGpp, which acts as a pleiotropic secondary messenger. However, structural information about how RelA recognizes stalled ribosomes and discriminates against aminoacylated tRNAs is missing. Here we present the cryo-electron microscopy structure of RelA bound to the bacterial ribosome stalled with uncharged tRNA. The structure reveals that RelA utilizes a distinct binding site compared to the translational factors, with a multi-domain architecture that wraps around a highly distorted A-site tRNA. The TGS (ThrRS, GTPase and SpoT) domain of RelA binds the CCA tail to orient the free 3' hydroxyl group of the terminal adenosine towards a β-strand, such that an aminoacylated tRNA at this position would be sterically precluded. The structure supports a model in which association of RelA with the ribosome suppresses auto-inhibition to activate synthesis of (p)ppGpp and initiate the stringent response. Since stringent control is responsible for the survival of pathogenic bacteria under stress conditions, and contributes to chronic infections and antibiotic tolerance, RelA represents a good target for the development of novel antibacterial therapeutics. PMID:27279228

  7. Active Control of Wind Tunnel Noise

    NASA Technical Reports Server (NTRS)

    Hollis, Patrick (Principal Investigator)

    1991-01-01

    The need for an adaptive active control system was realized, since a wind tunnel is subjected to variations in air velocity, temperature, air turbulence, and some other factors such as nonlinearity. Among many adaptive algorithms, the Least Mean Squares (LMS) algorithm, which is the simplest one, has been used in an Active Noise Control (ANC) system by some researchers. However, Eriksson's results, Eriksson (1985), showed instability in the ANC system with an ER filter for random noise input. The Restricted Least Squares (RLS) algorithm, although computationally more complex than the LMS algorithm, has better convergence and stability properties. The ANC system in the present work was simulated by using an FIR filter with an RLS algorithm for different inputs and for a number of plant models. Simulation results for the ANC system with acoustic feedback showed better robustness when used with the RLS algorithm than with the LMS algorithm for all types of inputs. Overall attenuation in the frequency domain was better in the case of the RLS adaptive algorithm. Simulation results with a more realistic plant model and an RLS adaptive algorithm showed a slower convergence rate than the case with an acoustic plant as a delay plant. However, the attenuation properties were satisfactory for the simulated system with the modified plant. The effect of filter length on the rate of convergence and attenuation was studied. It was found that the rate of convergence decreases with increase in filter length, whereas the attenuation increases with increase in filter length. The final design of the ANC system was simulated and found to have a reasonable convergence rate and good attenuation properties for an input containing discrete frequencies and random noise.

  8. Active Shielding and Control of Environmental Noise

    NASA Technical Reports Server (NTRS)

    Tsynkov, S. V.

    2001-01-01

    In the framework of the research project supported by NASA under grant # NAG-1-01064, we have studied the mathematical aspects of the problem of active control of sound, i.e., time-harmonic acoustic disturbances. The foundations of the methodology are described in our paper [1]. Unlike. many other existing techniques, the approach of [1] provides for the exact volumetric cancellation of the unwanted noise on a given predetermined region airspace, while leaving unaltered those components of the total acoustic field that are deemed as friendly. The key finding of the work is that for eliminating the unwanted component of the acoustic field in a given area, one needs to know relatively little; in particular, neither the locations nor structure nor strength of the exterior noise sources need to be known. Likewise, there is no need to know the volumetric properties of the supporting medium across which the acoustic signals propagate, except, maybe, in a narrow area of space near the perimeter of the protected region. The controls are built based solely on the measurements performed on the perimeter of the domain to be shielded; moreover, the controls themselves (i.e., additional sources) are concentrated also only on or near this perimeter. Perhaps as important, the measured quantities can refer to the total acoustic field rather than to its unwanted component only, and the methodology can automatically distinguish between the two. In [1], we have constructed the general solution for controls. The apparatus used for deriving this general solution is closely connected to the concepts of generalized potentials and boundary projections of Calderon's type. For a given total wave field, the application of a Calderon's projection allows one to definitively tell between its incoming and outgoing components with respect to a particular domain of interest, which may have arbitrary shape. Then, the controls are designed so that they suppress the incoming component for the domain

  9. Discovering the active sites for C3 separation in MIL-100(Fe) by using operando IR spectroscopy.

    PubMed

    Wuttke, Stefan; Bazin, Philippe; Vimont, Alexandre; Serre, Christian; Seo, You-Kyong; Hwang, Young Kyu; Chang, Jong-San; Férey, Gérard; Daturi, Marco

    2012-09-17

    A reducible MIL-100(Fe) metal-organic framework (MOF) was investigated for the separation of a propane/propene mixture. An operando methodology was applied (for the first time in the case of a MOF) in order to shed light on the separation mechanism. Breakthrough curves were obtained as in traditional separation column experiments, but monitoring the material surface online, thus providing evidences on the adsorption sites. The qualitative and quantitative analyses of Fe(II) and, to some extent, Fe(III) sites were possible, upon different activation protocols. Moreover, it was possible to identify the nature and the role of the active sites in the separation process by selective poisoning of one family of sites: it was clearly evidenced that the unsaturated Fe(II) sites are mainly responsible for the separation effect of the propane/propene mixture, thanks to their affinity for the unsaturated bonds, such as the C=C entities in propene. The activity of the highly concentrated Fe(III) sites was also highlighted.

  10. The management challenge for household waste in emerging economies like Brazil: realistic source separation and activation of reverse logistics.

    PubMed

    Fehr, M

    2014-09-01

    Business opportunities in the household waste sector in emerging economies still evolve around the activities of bulk collection and tipping with an open material balance. This research, conducted in Brazil, pursued the objective of shifting opportunities from tipping to reverse logistics in order to close the balance. To do this, it illustrated how specific knowledge of sorted waste composition and reverse logistics operations can be used to determine realistic temporal and quantitative landfill diversion targets in an emerging economy context. Experimentation constructed and confirmed the recycling trilogy that consists of source separation, collection infrastructure and reverse logistics. The study on source separation demonstrated the vital difference between raw and sorted waste compositions. Raw waste contained 70% biodegradable and 30% inert matter. Source separation produced 47% biodegradable, 20% inert and 33% mixed material. The study on collection infrastructure developed the necessary receiving facilities. The study on reverse logistics identified private operators capable of collecting and processing all separated inert items. Recycling activities for biodegradable material were scarce and erratic. Only farmers would take the material as animal feed. No composting initiatives existed. The management challenge was identified as stimulating these activities in order to complete the trilogy and divert the 47% source-separated biodegradable discards from the landfills.

  11. LES of turbulent separated flow over NACA0015 at Reynolds number 1,600,000-toward the separation control by a DBD plasma actuator

    NASA Astrophysics Data System (ADS)

    Sato, Makoto; Asada, Kengo; Nonomura, Taku; Kawai, Soshi; Aono, Hikaru; Yakeno, Aiko; Fujii, Kozo

    2013-11-01

    Large eddy simulation of a separated flow over NACA0015 at Reynolds number 1,600,000 with angle of attack 20.1 deg. is conducted to clarify the feature of turbulent separation at high Reynolds number. The grid point is approximately 1 billion, and a high order scheme is used in this simulation. The LES result agrees with experiment data in terms of the laminar-separation bubble region, the locations of reattachment point and second separation point and Cp distribution. In the turbulent separated flow of this simulation, the laminar-separation bubble is formed near the leading edge with turbulent transition, then turbulent boundary layer develops over the airfoil surface and the flow is separated as turbulent separation. Here, streamwise velocities in the attached region correspond to the profile of turbulent boundary layer. In addition, flow structures at Re = 1,600,000 are compared to those at Re = 63,000 about the turbulent transition, separation behavior, the space scale, time scale and so on. The most unstable frequency of the laminar separation flow at Re = 1,600,000 is 10-20 times of that of Re = 63,000 The flow scale at transition point of Re = 1,600,000 is about 1/15 times of that of Re = 63,000.

  12. Mind the gap: the minimal detectable separation distance between two objects during active electrolocation.

    PubMed

    Fechler, K; Holtkamp, D; Neusel, G; Sanguinetti-Scheck, J I; Budelli, R; von der Emde, G

    2012-12-01

    In a food-rewarded two-alternative forced-choice procedure, it was determined how well the weakly electric elephantnose fish Gnathonemus petersii can sense gaps between two objects, some of which were placed in front of complex backgrounds. The results show that at close distances, G. petersii is able to detect gaps between two small metal cubes (2 cm × 2 cm × 2 cm) down to a width of c. 1·5 mm. When larger objects (3 cm × 3 cm × 3 cm) were used, gaps with a width of 2-3 mm could still be detected. Discrimination performance was better (c. 1 mm gap size) when the objects were placed in front of a moving background consisting of plastic stripes or plant leaves, indicating that movement in the environment plays an important role for object identification. In addition, the smallest gap size that could be detected at increasing distances was determined. A linear relationship between object distance and gap size existed. Minimal detectable gap sizes increased from c. 1·5 mm at a distance of 1 cm, to 20 mm at a distance of 7 cm. Measurements and simulations of the electric stimuli occurring during gap detection revealed that the electric images of two close objects influence each other and superimpose. A large gap of 20 mm between two objects induced two clearly separated peaks in the electric image, while a 2 mm gap caused just a slight indentation in the image. Therefore, the fusion of electric images limits spatial resolution during active electrolocation. Relative movements either between the fish and the objects or between object and background might improve spatial resolution by accentuating the fine details of the electric images. PMID:23252738

  13. Sensor Development for Active Flow Control

    NASA Technical Reports Server (NTRS)

    Kahng, Seun K.; Gorton, Susan A.; Mau, Johnney C.; Soto, Hector L.; Hernandez, Corey D.

    2001-01-01

    Presented are the developmental efforts for MEMS sensors for a closed-loop active flow control in a low-speed wind tunnel evaluation. The MEMS sensors are designed in-house and fabricated out of house, and the shear sensors are a thermal type that are collocated with temperature and pressure sensors on a flexible polyimide sheet, which conforms to surfaces of a simple curvature. A total of 6 sensors are located within a 1.5 by 3 mm area as a cluster with each sensor being 300 pm square. The thickness of this sensor cluster is 75 pm. Outputs from the shear sensors have been compared with respect to those of the Preston tube for evaluation of the sensors on a flat plate. Pressure sensors are the absolute type and have recorded pressure measurements within 0.05 percent of the tunnel ESP pressure sensor readings. The sensors and signal conditioning electronics have been tested on both a flat plate and a ramp in Langley s 15-Inch Low-Turbulence Tunnel. The system configuration and control PC is configured with LabView, where calibration constants are stored for desired compensation and correction. The preliminary test results are presented within.

  14. Active controlled studies in antibiotic drug development.

    PubMed

    Dane, Aaron

    2011-01-01

    The increasing concern of antibacterial resistance has been well documented, as has the relative lack of antibiotic development. This paradox is in part due to challenges with clinical development of antibiotics. Because of their rapid progression, untreated bacterial infections are associated with significant morbidity and mortality. As a consequence, placebo-controlled studies of new agents are unethical. Rather, pivotal development studies are mostly conducted using non-inferiority designs versus an active comparator. Further, infections because of comparator-resistant isolates must usually be excluded from the trial programme. Unfortunately, the placebo-controlled data classically used in support of non-inferiority designs are largely unavailable for antibiotics. The only available data are from the 1930s and 1940s and their use is associated with significant concerns regarding constancy and assay sensitivity. Extended public debate on this challenge has led to proposed solutions by some in which these concerns are addressed by using very conservative approaches to trial design, endpoints and non-inferiority margins, in some cases leading to potentially impractical studies. To compound this challenge, different Regulatory Authorities seem to be taking different approaches to these key issues. If harmonisation does not occur, antibiotic development will become increasingly challenging, with the risk of further decreases in the amount of antibiotic drug development. However with clarity on Regulatory requirements and an ability to feasibly conduct global development programmes, it should be possible to bring much needed additional antibiotics to patients.

  15. Actively controlled thin-shell space optics

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Flint, Eric M.; Main, John A.; Lindler, Jason E.

    2003-08-01

    Increasingly, scientific and military missions require the use of space-based optical systems. For example, new capabilities are required for imaging terrestrial like planets, for surveillance, and for directed energy applications. Given the difficulties in producing and launching large optics, it is doubtful that refinements of conventional technology will meet future needs, particularly in a cost-effective manner. To meet this need, recent research has been investigating the feasibility of a new class of ultra-lightweight think-skin optical elements that combine recent advances in lightweight thermally formed materials, active materials, and novel sensing and control architectures. If successful, the approach may lead to an order of magnitude reduction in space optics areal density, improved large scale manufacturing capability, and dramatic reductions in manufacturing and launch costs. In a recent effort, a one meter thin-film mirror like structure was fabricated. This paper provides an overview of tools used to model and simulate this structure as well as results from structural dynamic testing. In addition, progress in the area of non-contact global shape control using smart materials is presented.

  16. High performance composites with active stiffness control.

    PubMed

    Tridech, Charnwit; Maples, Henry A; Robinson, Paul; Bismarck, Alexander

    2013-09-25

    High performance carbon fiber reinforced composites with controllable stiffness could revolutionize the use of composite materials in structural applications. Here we describe a structural material, which has a stiffness that can be actively controlled on demand. Such a material could have applications in morphing wings or deployable structures. A carbon fiber reinforced-epoxy composite is described that can undergo an 88% reduction in flexural stiffness at elevated temperatures and fully recover when cooled, with no discernible damage or loss in properties. Once the stiffness has been reduced, the required deformations can be achieved at much lower actuation forces. For this proof-of-concept study a thin polyacrylamide (PAAm) layer was electrocoated onto carbon fibers that were then embedded into an epoxy matrix via resin infusion. Heating the PAAm coating above its glass transition temperature caused it to soften and allowed the fibers to slide within the matrix. To produce the stiffness change the carbon fibers were used as resistance heating elements by passing a current through them. When the PAAm coating had softened, the ability of the interphase to transfer load to the fibers was significantly reduced, greatly lowering the flexural stiffness of the composite. By changing the moisture content in PAAm fiber coating, the temperature at which the PAAm softens and the composites undergo a reduction in stiffness can be tuned. PMID:23978266

  17. Cortical control of thermoregulatory sympathetic activation.

    PubMed

    Fechir, M; Klega, A; Buchholz, H G; Pfeifer, N; Balon, S; Schlereth, T; Geber, C; Breimhorst, M; Maihöfner, C; Birklein, F; Schreckenberger, M

    2010-06-01

    Thermoregulation enables adaptation to different ambient temperatures. A complex network of central autonomic centres may be involved. In contrast to the brainstem, the role of the cortex has not been clearly evaluated. This study was therefore designed to address cerebral function during a whole thermoregulatory cycle (cold, neutral and warm stimulation) using 18-fluordeoxyglucose-PET (FDG-PET). Sympathetic activation parameters were co-registered. Ten healthy male volunteers were examined three times on three different days in a water-perfused whole-body suit. After a baseline period (32 degrees C), temperature was either decreased to 7 degrees C (cold), increased to 50 degrees C (warm) or kept constant (32 degrees C, neutral), thereafter the PET examination was performed. Cerebral glucose metabolism was increased in infrapontine brainstem and cerebellar hemispheres during cooling and warming, each compared with neutral temperature. Simultaneously, FDG uptake decreased in the bilateral anterior/mid-cingulate cortex during warming, and in the right insula during cooling and warming. Conjunction analyses revealed that right insular deactivation and brainstem activation appeared both during cold and warm stimulation. Metabolic connectivity analyses revealed positive correlations between the cortical activations, and negative correlations between these cortical areas and brainstem/cerebellar regions. Heart rate changes negatively correlated with glucose metabolism in the anterior cingulate cortex and in the middle frontal gyrus/dorsolateral prefrontal cortex, and changes of sweating with glucose metabolism in the posterior cingulate cortex. In summary, these results suggest that the cerebral cortex exerts an inhibitory control on autonomic centres located in the brainstem or cerebellum. These findings may represent reasonable explanations for sympathetic hyperactivity, which occurs, for example, after hemispheric stroke.

  18. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles.

    PubMed

    Speck, Thomas; Menzel, Andreas M; Bialké, Julian; Löwen, Hartmut

    2015-06-14

    Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.

  19. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles

    SciTech Connect

    Speck, Thomas; Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut

    2015-06-14

    Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.

  20. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles.

    PubMed

    Speck, Thomas; Menzel, Andreas M; Bialké, Julian; Löwen, Hartmut

    2015-06-14

    Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results. PMID:26071703

  1. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles

    NASA Astrophysics Data System (ADS)

    Speck, Thomas; Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut

    2015-06-01

    Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.

  2. Separation and Enrichment of the Active Component of Carbon Based Paramagnetic Materials for Use in EPR Oximetry

    NASA Astrophysics Data System (ADS)

    Liu, K. J.; Miyake, M.; James, P. E.; Swartz, H. M.

    1998-08-01

    Carbon based paramagnetic materials are frequently used for EPR oximetry, especiallyin vivo,but the EPR spectra of these materials often have more than one paramagnetic center and/or relatively low signal intensity. To determine whether the multi-components of carbon based materials could be separated and enriched in the active component, we used density gradient centrifugation to separate the materials into several fractions. We studied two types of coals, gloxy and Pocahontas, and found these materials to have large density distribution. The separated density fractions had very different EPR spectra and intensities. The active component from the coal material had a more homogeneous EPR signal and significantly increased EPR signal intensity, whereas for India ink, only slight changes were observed. This result can be very useful in the development of better probes for EPR oximetry.

  3. Separation and enrichment of the active component of carbon based paramagnetic materials for use in EPR oximetry.

    PubMed

    Liu, K J; Miyake, M; James, P E; Swartz, H M

    1998-08-01

    Carbon based paramagnetic materials are frequently used for EPR oximetry, especially in vivo, but the EPR spectra of these materials often have more than one paramagnetic center and/or relatively low signal intensity. To determine whether the multi-components of carbon based materials could be separated and enriched in the active component, we used density gradient centrifugation to separate the materials into several fractions. We studied two types of coals, gloxy and Pocahontas, and found these materials to have large density distribution. The separated density fractions had very different EPR spectra and intensities. The active component from the coal material had a more homogeneous EPR signal and significantly increased EPR signal intensity, whereas for India ink, only slight changes were observed. This result can be very useful in the development of better probes for EPR oximetry.

  4. Robust controllers for the Middeck Active Control Experiment using Popov controller synthesis

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Hall, Steven R.

    1993-01-01

    Recent work in robust control with real parameter uncertainties has focused on absolute stability and its connections to real mu theory. In particular, the research has investigated the Popov stability criterion and its associated Lur'e-Postnikov Liapunov functions. State space representations of this Popov stability analysis tests are included in an H2 design formulation to provide a powerful technique for robust controller synthesis. This synthesis approach uses a state space optimization procedure to design controllers that minimize an overbound of an H2 cost functional and satisfy stability analysis tests based on the Popov multiplier. The controller and stability multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K algorithm of mu synthesis. While previous work has demonstrated this synthesis approach on benchmark control problems, the purpose of this paper is to use Popov controller synthesis to design robust compensators for the Middeck Active Control Experiment (MACE).

  5. Experiences in control system design aided by interactive computer programs: temperature control of the laser isotope separation vessel

    SciTech Connect

    Gavel, D.T.; Pittenger, L.C.; McDonald, J.S.; Cramer, P.G.; Herget, C.J.

    1985-01-01

    A robust control system has been designed to regulate temperature in a vacuum vessel. The thermodynamic process is modeled by a set of nonlinear, implicit differential equations. The control design and analysis task exercised many of the computer-aided control systems design software packages, including MATLAB, DELIGHT, and LSAP. The working environment is a VAX computer. Advantages and limitations of the software and environment, and the impact on final controller design is discussed.

  6. CENTRIFUGAL SEPARATORS

    DOEpatents

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  7. LES of High-Reynolds-Number Coanda Flow Separating from a Rounded Trailing Edge of a Circulation Control Airfoil

    NASA Technical Reports Server (NTRS)

    Nichino, Takafumi; Hahn, Seonghyeon; Shariff, Karim

    2010-01-01

    This slide presentation reviews the Large Eddy Simulation of a high reynolds number Coanda flow that is separated from a round trailing edge of a ciruclation control airfoil. The objectives of the study are: (1) To investigate detailed physics (flow structures and statistics) of the fully turbulent Coanda jet applied to a CC airfoil, by using LES (2) To compare LES and RANS results to figure out how to improve the performance of existing RANS models for this type of flow.

  8. Presentation of flight control design and handling quality commonality by separate surface stability augmentation for the family of commuter airplanes

    NASA Technical Reports Server (NTRS)

    Hensley, Douglas; Creighton, Thomas; Haddad, Raphael; Hendrich, Louis; Morgan, Louise; Russell, Mark; Swift, Gerald

    1987-01-01

    The methodology and results for a flight control design and implementation for common handling qualities by Separate Surface Stability Augmentation (SSSA) for the family of commuter airplanes are contained. The open and closed loop dynamics and the design results of augmenting for common handling qualities are presented. The physical and technology requirements are presented for implementing the SSSA system. The conclusion of this report and recommendations for changes or improvement are discussed.

  9. Army Active Duty Members' Linkage to Veterans Health Administration Services After Deployments to Iraq or Afghanistan and Following Separation.

    PubMed

    Vanneman, Megan E; Harris, Alex H S; Chen, Cheng; Mohr, Beth A; Adams, Rachel Sayko; Williams, Thomas V; Larson, Mary Jo

    2015-10-01

    This study described the rate and predictors of Operation Enduring Freedom/Operation Iraqi Freedom active duty Army members' enrollment in and use of Veterans Health Administration (VHA) services (linkage), as well as variation in linkage rates by VHA facility. We used a multivariate mixed effect regression model to predict linkage to VHA, and also calculated linkage rates in the catchment areas of each facility (n = 158). The sample included 151,122 active duty members who deployed to Iraq or Afghanistan and then separated from the Army between fiscal years 2008 and 2012. Approximately 48% of the active duty members separating utilized VHA as an enrollee within one year. There was significant variation in linkage rates by VHA facilities (31-72%). The most notable variables associated with greater linkage included probable serious injury during index deployment (odds ratio = 1.81), separation because of disability (odds ratio = 2.86), and various measures of receipt of VHA care before and after separation. Information about the individual characteristics that predict greater or lesser linkage to VHA services can be used to improve delivery of health care services at VHA as well as outreach efforts to active duty Army members. PMID:26444467

  10. Magnetically separable nanocomposites with photocatalytic activity under visible light for the selective transformation of biomass-derived platform molecules

    EPA Science Inventory

    Novel magnetically separable TiO2-guanidine-(Ni,Co)Fe2O4 nanomaterials were prepared and characterised by a series of techniques including XRD, SEM, TEM, N2 physisorption as well as XPS and subsequently tested for their photocatalytic activities in the selective transformation of...

  11. Active control of shocks and sonic boom ground signal

    NASA Astrophysics Data System (ADS)

    Yagiz, Bedri

    The manipulation of a flow field to obtain a desired change is a much heightened subject. Active flow control has been the subject of the major research areas in fluid mechanics for the past two decades. It offers new solutions for mitigation of shock strength, sonic boom alleviation, drag minimization, reducing blade-vortex interaction noise in helicopters, stall control and the performance maximization of existing designs to meet the increasing requirements of the aircraft industries. Despite the wide variety of the potential applications of active flow control, the majority of studies have been performed at subsonic speeds. The active flow control cases were investigated in transonic speed in this study. Although the active flow control provides significant improvements, the sensibility of aerodynamic performance to design parameters makes it a nontrivial and expensive problem, so the designer has to optimize a number of different parameters. For the purpose of gaining understanding of the active flow control concepts, an automated optimization cycle process was generated. Also, the optimization cycle reduces cost and turnaround time. The mass flow coefficient, location, width and angle were chosen as design parameters to maximize the aerodynamic performance of an aircraft. As the main contribution of this study, a detailed parametric study and optimization process were presented. The second step is to appraise the practicability of weakening the shock wave and thereby reducing the wave drag in transonic flight regime using flow control devices such as two dimensional contour bump, individual jet actuator, and also the hybrid control which includes both control devices together, thereby gaining the desired improvements in aerodynamic performance of the air-vehicle. After this study, to improve the aerodynamic performance, the flow control and shape parameters are optimized separately, combined, and in a serial combination. The remarkable part of all these

  12. Experimental study of flow separation control on a low- Re airfoil using leading-edge protuberance method

    NASA Astrophysics Data System (ADS)

    Zhang, M. M.; Wang, G. F.; Xu, J. Z.

    2014-04-01

    An experimental study of flow separation control on a low- Re c airfoil was presently investigated using a newly developed leading-edge protuberance method, motivated by the improvement in the hydrodynamics of the giant humpback whale through its pectoral flippers. Deploying this method, the control effectiveness of the airfoil aerodynamics was fully evaluated using a three-component force balance, leading to an effectively impaired stall phenomenon and great improvement in the performances within the wide post-stall angle range (22°-80°). To understand the flow physics behind, the vorticity field, velocity field and boundary layer flow field over the airfoil suction side were examined using a particle image velocimetry and an oil-flow surface visualization system. It was found that the leading-edge protuberance method, more like low-profile vortex generator, effectively modified the flow pattern of the airfoil boundary layer through the chordwise and spanwise evolutions of the interacting streamwise vortices generated by protuberances, where the separation of the turbulent boundary layer dominated within the stall region and the rather strong attachment of the laminar boundary layer still existed within the post-stall region. The characteristics to manipulate the flow separation mode of the original airfoil indicated the possibility to further optimize the control performance by reasonably designing the layout of the protuberances.

  13. Switchgrass water extracts: extraction, separation and biological activity of rutin and quercitrin.

    PubMed

    Uppugundla, Nirmal; Engelberth, Abigail; Vandhana Ravindranath, Sathya; Clausen, Edgar C; Lay, Jackson O; Gidden, Jennifer; Carrier, Danielle Julie

    2009-09-01

    Switchgrass (Panicum virgatum L.) has recently received significant attention as a possible feedstock for the production of liquid fuels such as ethanol. In addition, switchgrass may also be a source of valuable co-products, such as antioxidants, and our laboratory recently reported that switchgrass contains policosanols and alpha-tocopherol. Motivation for this work began when a switchgrass sample was extracted with water at 50 degrees C and was then tested for low-density lipoprotein (LDL) oxidation inhibition activity using the Thiobarbituric Acid Reactive Substances (TBARS) assay. The TBARS results showed that the switchgrass water extracts inhibited LDL oxidation by as much as 70% in comparison to the control. Liquid chromatography coupled with mass spectrometry (LC-MS) and high performance liquid chromatography (HPLC) were used to identify the compounds that were responsible for LDL oxidation inhibition activity as flavonoids: quercitrin (quercetin-3-O-rhamnoside) and rutin (quercetin-3-O-rutinoside). To maximize flavonoid concentrations, switchgrass was then extracted with water and 60% methanol at different temperatures. The 60% methanol treatment resulted in higher rutin and quercitrin yields when compared to water-only extraction; however, the use of this solvent would not be practical with current biorefinery technology. Centrifugal partition chromatography (CPC) was then used to purify rutin and quercitrin from the switchgrass water extract, which were then tested via the TBARS assay and shown to exhibit lipid peroxidation inhibition activity similar to that obtained with pure flavonoid standards. This is the first report on the presence of rutin and quercitrin in switchgrass. The results support the extraction of viable coproducts from switchgrass prior to conversion to liquid fuel.

  14. Test Cases for the Benchmark Active Controls: Spoiler and Control Surface Oscillations and Flutter

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Scott, Robert C.; Wieseman, Carol D.

    2000-01-01

    sets from the first two tests have been chosen for Test Cases for computational comparisons concentrating on static conditions and cases with harmonically oscillating control surfaces. Several flutter Test Cases from both tests have also been included. Some aerodynamic comparisons with the BACT data have been made using computational fluid dynamics codes at the Navier-Stokes level (and in the accompanying chapter SC). Some mechanical and active control studies have been presented. In this report several Test Cases are selected to illustrate trends for a variety of different conditions with emphasis on transonic flow effects. Cases for static angles of attack, static trailing-edge and upper-surface spoiler deflections are included for a range of conditions near those for the oscillation cases. Cases for trailing-edge control and upper-surface spoiler oscillations for a range of Mach numbers, angle of attack, and static control deflections are included. Cases for all three types of flutter instability are selected. In addition some cases are included for dynamic response measurements during forced oscillations of the controls on the flexible mount. An overview of the model and tests is given, and the standard formulary for these data is listed. Some sample data and sample results of calculations are presented. Only the static pressures and the first harmonic real and imaginary parts of the pressures are included in the data for the Test Cases, but digitized time histories have been archived. The data for the Test Cases are also available as separate electronic files.

  15. Active Dihedral Control System for a Torisionally Flexible Wing

    NASA Technical Reports Server (NTRS)

    Kendall, Greg T. (Inventor); Lisoski, Derek L. (Inventor); Morgan, Walter R. (Inventor); Griecci, John A. (Inventor)

    2015-01-01

    A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.

  16. An automatic closed-loop control system of boiler load for combined joint and separate combustion of gases

    NASA Astrophysics Data System (ADS)

    Ismatkhodzhaev, S. K.

    2014-10-01

    A system for automatic closed-loop control of drum boiler heat load for combined joint and separate combustion of blast-furnace, coke, and natural gases under the conditions of randomly changed flow rates of blast-furnace and coke gases is considered. For achieving more efficient operation of the automatic control system, it is proposed to introduce circuits for compensating random disturbances in the flow rates of these gases in addition to the standard automatic control system using the heat signal. The estimated parameters of the control channels transfer functions are presented for different ratios between the flow rates of fired gases and boiler loads. The results obtained from an investigation of the combined system are described, and its effectiveness with the boiler operating in different modes is demonstrated.

  17. Simultaneous blind separation and clustering of coactivated EEG/MEG sources for analyzing spontaneous brain activity.

    PubMed

    Hirayama, Jun-ichiro; Ogawa, Takeshi; Hyvärinen, Aapo

    2014-01-01

    Analysis of the dynamics (non-stationarity) of functional connectivity patterns has recently received a lot of attention in the neuroimaging community. Most analysis has been using functional magnetic resonance imaging (fMRI), partly due to the inherent technical complexity of the electro- or magnetoencephalography (EEG/MEG) signals, but EEG/MEG holds great promise in analyzing fast changes in connectivity. Here, we propose a method for dynamic connectivity analysis of EEG/MEG, combining blind source separation with dynamic connectivity analysis in a single probabilistic model. Blind source separation is extremely useful for interpretation of the connectivity changes, and also enables rejection of artifacts. Dynamic connectivity analysis is performed by clustering the coactivation patterns of separated sources by modeling their variances. Experiments on resting-state EEG show that the obtained clusters correlate with physiologically meaningful quantities. PMID:25571098

  18. 9 CFR 318.24 - Product prepared using advanced meat/bone separation machinery; process control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... than skulls or vertebral column bones of cattle 30 months of age and older as provided in § 310.22 of... control. (1) The production process is not in control if the skulls entering the AMR system contain any...) Brain or trigeminal ganglia. Skulls that enter the AMR system have tissues of brain or...

  19. Local Control, Democracy, and the Separation in the Public Opinion of School Finance Reform

    ERIC Educational Resources Information Center

    Shelly, Bryan

    2007-01-01

    What role does a person's support for local educational control play in determining her attitude towards equity-minded school finance reform? This article reports estimations of binary and ordered probit models of two state public opinion polls and discusses newspaper coverage from the same two states to determine if and how local control has such…

  20. Microphase Separation Controlled beta-Sheet Crystallization Kinetics in Fibrous Proteins

    SciTech Connect

    Hu, X.; Lu, Q; Kaplan, D; Cebe, P

    2009-01-01

    Silk is a naturally occurring fibrous protein with a multiblock chain architecture. As such, it has many similarities with synthetic block copolymers, including the possibility for e-sheet crystallization restricted within the crystallizable blocks. The mechanism of isothermal crystallization kinetics of e-sheet crystals in silk multiblock fibrous proteins is reported in this study. Kinetics theories, such as Avrami analysis which was established for studies of synthetic polymer crystal growth, are for the first time extended to investigate protein self-assembly in e-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and synchrotron real-time wide-angle X-ray scattering (WAXS). The Avrami exponent, n, was close to 2 for all methods and crystallization temperatures, indicating formation of e-sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic polymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to block copolymers: crystallization of e-sheets occurs under conditions of geometrical restriction caused by phase separation of the crystallizable and uncrystallizable blocks. This crystallization model could be widely applicable in other proteins with multiblock (i.e., crystallizable and noncrystallizable) domains.

  1. An INDEHISCENT-Controlled Auxin Response Specifies the Separation Layer in Early Arabidopsis Fruit.

    PubMed

    van Gelderen, Kasper; van Rongen, Martin; Liu, An'an; Otten, Anne; Offringa, Remko

    2016-06-01

    Seed dispersal is an important moment in the life cycle of a plant species. In Arabidopsis thaliana, it is dependent on transcription factor INDEHISCENT (IND)-mediated specification of a separation layer in the dehiscence zone found in the margin between the valves (carpel walls) and the central replum of the developing fruit. It was proposed that IND specifies the separation layer by inducing a local auxin minimum at late stages of fruit development. Here we show that morphological differences between the ind mutant and wild-type fruit already arise at early stages of fruit development, coinciding with strong IND expression in the valve margin. We show that IND-reduced PIN-FORMED3 (PIN3) auxin efflux carrier abundance leads to an increased auxin response in the valve margin during early fruit development, and that the concomitant cell divisions that form the dehiscence zone are lacking in ind mutant fruit. Moreover, IND promoter-driven ectopic expression of the AGC kinases PINOID (PID) and WAG2 induced indehiscence by expelling auxin from the valve margin at stages 14-16 of fruit development through increased PIN3 abundance. Our results show that IND, besides its role at late stages of Arabidopsis fruit development, functions at early stages to facilitate the auxin-triggered cell divisions that form the dehiscence zone. PMID:26995296

  2. Internal sample attenuator counting (ISAC). A new technique for separating and measuring bound and free activity in radioimmunoassays

    SciTech Connect

    Thorell, J.I.

    1981-12-01

    A new method for the separation counting of bound and free activity in radioimmunoassays is described. Particles containing a radiation-abosrbing (attenuating) material are added to the assay. They shield the radiation from either the antibody-bound or the free radioligand. This obviates such manipulations conventionally involved in the separation and counting steps of radioimmunoassays as centrifugation decanting. Bismuth oxide is used as the attenuator. Particles with different properties are described. In one type, bismuth oxide is combined with active charcoal in an agarose matrix and serves as an absorbant for the free radioligand. In another type bismuth oxide is trapped within a polyacrylamide matrix to which antibodies are coupled. This particle can be used with a first- or a second-antibody bound activity. Application of the technique is illustrated with radioimmunoassays for thyroxin, triiodothyronine, human choriogonadotropin, and lutropin (luteinizing hormone).

  3. Turbulent boundary layer separation over a rearward facing ramp and its control through mechanical excitation

    NASA Technical Reports Server (NTRS)

    Mckinzie, Daniel J., Jr.

    1991-01-01

    A vane oscillating about a fixed point at the inlet to a two-dimensional 20 degree rearward facing ramp has proven effective in delaying the separation of a turbulent boundary layer. Measurements of the ramp surface static pressure coefficient obtained under the condition of vane oscillation and constant inlet velocity revealed that two different effects occurred with surface distance along the ramp. In the vicinity of the oscillating vane, the pressure coefficients varied as a negative function of the vane's trailing edge rms velocity; the independent variable on which the rms velocity depends are the vane's oscillation frequency and its displacement amplitude. From a point downstream of the vane to the exit of the ramp; however, the pressure coefficient varied as a more complex function of the two independent variables. That is, it was found to vary as a function of the vane's oscillation frequency throughout the entire range of frequencies covered during the test, but over only a limited range of the trailing edge displacement amplitudes covered. More specifically, the value of the pressure coefficient was independent of increases in the vane's displacement amplitude above approximately 35 inner wall units of the boundary layer. Below this specific amplitude it varied as a function of the vane's trailing edge rms velocity. This height is close to the upper limit of the buffer layer. A parametric study was made to determine the variation of the maximum static pressure recovery as a function of the vane's oscillation frequency, for several ramp inlet velocities and a constant displacement amplitude of the vane's trailing edge. The results indicate that the phenomenon producing the optimum delay of separation may be Strouhal number dependent. Corona anemometer measurements obtained in the inner wall regions of the boundary layer for the excited case reveal a large range of unsteadiness in the local velocities. These measurements imply the existence of inflections

  4. Self-Control and Grit: Related but Separable Determinants of Success

    PubMed Central

    Duckworth, Angela; Gross, James J.

    2015-01-01

    Other than talent and opportunity, what makes some people more successful than others? One important determinant of success is self-control – the capacity to regulate attention, emotion, and behavior in the presence of temptation. A second important determinant of success is grit – the tenacious pursuit of a dominant superordinate goal despite setbacks. Self-control and grit are strongly correlated, but not perfectly so. This means that some people with high levels of self-control capably handle temptations but do not consistently pursue a dominant goal. Likewise, some exceptional achievers are prodigiously gritty but succumb to temptations in domains other than their chosen life passion. Understanding how goals are hierarchically organized clarifies how self-control and grit are related but distinct: Self-control entails aligning actions with any valued goal despite momentarily more-alluring alternatives; grit, in contrast, entails having and working assiduously toward a single challenging superordinate goal through thick and thin, on a timescale of years or even decades. Although both self-control and grit entail aligning actions with intentions, they operate in different ways and at different time scales. This hierarchical goal framework suggests novel directions for basic and applied research on success. PMID:26855479

  5. An apodized Kepler periodogram for separating planetary and stellar activity signals

    PubMed Central

    Gregory, Philip C.

    2016-01-01

    A new apodized Keplerian (AK) model is proposed for the analysis of precision radial velocity (RV) data to model both planetary and stellar activity (SA) induced RV signals. A symmetrical Gaussian apodization function with unknown width and centre can distinguish planetary signals from SA signals on the basis of the span of the apodization window. The general model for m AK signals includes a linear regression term between RV and the SA diagnostic log (R′hk), as well as an extra Gaussian noise term with unknown standard deviation. The model parameters are explored using a Bayesian fusion Markov chain Monte Carlo code. A differential version of the generalized Lomb–Scargle periodogram that employs a control diagnostic provides an additional way of distinguishing SA signals and helps guide the choice of new periods. Results are reported for a recent international RV blind challenge which included multiple state-of-the-art simulated data sets supported by a variety of SA diagnostics. In the current implementation, the AK method achieved a reduction in SA noise by a factor of approximately 6. Final parameter estimates for the planetary candidates are derived from fits that include AK signals to model the SA components and simple Keplerians to model the planetary candidates. Preliminary results are also reported for AK models augmented by a moving average component that allows for correlations in the residuals. PMID:27346979

  6. Pest control industry and vector control activities in Taiwan.

    PubMed

    Wang, C H; Lin, C H; Liao, M J

    1994-12-01

    At the end of 1993, there were 117 private pest control companies in Taiwan, with 438 technical managers and 274 technicians. Their business includes the control of mosquitoes, cockroaches, fleas, rodents, termites, houseflies, etc. Pyrethroids and some organophosphates are employed. At present, no applications of insect growth regulators or microbial agents are used by private pest control operators. During dengue epidemics they assist the government in space spraying with insecticides. The Environmental Protection Administration, Executive Yuan, R.O.C., is responsible for the training and management of pest control operators. In addition, the Administration is also in charge of affairs concerning the manufacture, import, registration and sale of environmental pesticides and microbial agents. It establishes protocols for testing the efficacy of insecticides and promotes pest control on the community level.

  7. An experimental study of separation control on ultra-highly-loaded low pressure turbine blade by surface roughness

    NASA Astrophysics Data System (ADS)

    Sun, Shuang; Lei, Zhijun; Lu, Xingen; Zhao, Shengfeng; Zhu, Junqiang

    2015-06-01

    An experimental study is conducted to improve an aft-loaded ultra-high-lift low pressure turbine (LPT) blade at low Reynolds number (Re) in steady state. The objective is to investigate the effect of blade roughness on the performance of LPT blade. The roughness is used as a passive flow control method which is to reduce total pressure loss and expand LPT operating margin. The experiment is performed on a low-speed cascade facility. 3 roughness heights and 3 deposit positions are investigated in the experiment which forms a large test matrix. A three-hole probe is used to detect flow aerodynamic performance and a hotwire probe is used to detect the characteristic of suction boundary layer. Regional roughness can suppress separation loss and bring fairly low turbulent dissipation loss. Detailed surveys near the blade surface shows that the loss reduction is due to the disappearance of separation bubble from the early transition onset.

  8. Platelet and growth factor concentrations in activated platelet-rich plasma: a comparison of seven commercial separation systems.

    PubMed

    Kushida, Satoshi; Kakudo, Natsuko; Morimoto, Naoki; Hara, Tomoya; Ogawa, Takeshi; Mitsui, Toshihito; Kusumoto, Kenji

    2014-06-01

    Platelet-rich plasma (PRP) is blood plasma that has been enriched with platelets. It holds promise for clinical use in areas such as wound healing and regenerative medicine, including bone regeneration. This study characterized the composition of PRP produced by seven commercially available separation systems (JP200, GLO PRP, Magellan Autologous Platelet Separator System, KYOCERA Medical PRP Kit, SELPHYL, MyCells, and Dr. Shin's System THROMBO KIT) to evaluate the platelet, white blood cell, red blood cell, and growth factor concentrations, as well as platelet-derived growth factor-AB (PDGF-AB), transforming growth factor beta-1 (TGF-β1), and vascular endothelial growth factor (VEGF) concentrations. PRP prepared using the Magellan Autologous Platelet Separator System and the KYOCERA Medical PRP Kit contained the highest platelet concentrations. The mean PDGF-AB concentration of activated PRP was the highest from JP200, followed by the KYOCERA Medical PRP Kit, Magellan Autologous Platelet Separator System, MyCells, and GLO PRP. TGF-β1 and VEGF concentrations varied greatly among individual samples, and there was almost no significant difference among the different systems, unlike for PDGF. The SELPHYL system produced PRP with low concentrations of both platelets and growth factors. Commercial PRP separation systems vary widely, and familiarity with their individual advantages is important to extend their clinical application to a wide variety of conditions.

  9. Carrier separation and charge transport characteristics of reduced graphene oxide supported visible-light active photocatalysts.

    PubMed

    Vinoth, Ramalingam; Karthik, Peramaiah; Muthamizhchelvan, Chellamuthu; Neppolian, Bernaurdshaw; Ashokkumar, Muthupandian

    2016-02-21

    Extending the absorption to the visible region by tuning the optical band-gap of semiconductors and preventing charge carrier recombination are important parameters to achieve a higher efficiency in the field of photocatalysis. The inclusion of reduced graphene oxide (rGO) support in photocatalysts is one of the key strategies to address the above-mentioned issues. In this study, rGO supported AgI-mesoTiO2 photocatalysts were synthesized using a sonochemical approach. The physical effects of ultrasound not only improved the crystallinity of AgI-mesoTiO2 but also increased the surface area and loading of the AgI-mesoTiO2 nanocomposite on rGO sheets. The low intense oxygen functionalities (C-O-C and COOH groups) peak observed in the high resolution C1s spectrum of a hybrid AgI-mesoTiO2-rGO photocatalyst clearly confirmed the successful reduction of graphene oxide (GO) to rGO. The interfacial charge transfer between the rGO and the p-n junction of heterostructured photocatalysts has decreased the band-gap of the photocatalyst from 2.80 to 2.65 eV. Importantly, the integration of rGO into AgI-mesoTiO2 composites serves as a carrier separation centre and provides further insight into the electron transfer pathways of heterostructured nanocomposites. The individual effects of photo-generated electrons and holes over rGO on the photocatalytic degradation efficiency of rhodamine (RhB) and methyl orange (MO) using AgI-mesoTiO2-rGO photocatalysts were also studied. Our experimental results revealed that photo-generated superoxide (O2(-)˙) radicals are the main reactive species for the degradation of MO, whereas photo-generated holes (h(+)) are responsible for the degradation of RhB. As a result, 60% enhancement in MO degradation was observed in the presence of rGO in comparison to that of the pure AgI-mesoTiO2 photocatalyst. This is due to the good electron acceptor and the ultrafast electron transfer properties of rGO that can effectively reduce the molecular oxygen to

  10. A grit separation module for inorganic matter removal from activated sludge: investigation on characteristics of split sludge from the module.

    PubMed

    Chen, You-Peng; Guo, Jin-Song; Wang, Jing; Yan, Peng; Ji, Fang-Ying; Fang, Fang; Dong, Yang

    2016-12-01

    A grit separation module was developed to prevent the accumulation of inorganic solids in activated sludge systems, and it achieved effective separation of organic matter and inorganic solids. To provide technical and theoretical support for further comprehensive utilization of split sludge (underflow and overflow sludge from the separation module), the characteristics of split sludge were investigated. The settling and dewatering properties of the underflow sludge were excellent, and it had high inorganic matter content, whereas the overflow sludge had higher organic matter content. The most abundant inorganic constituent was SiO2 (59.34%), and SiO2, Al2O3, and Fe2O3 together accounted for 79.53% of the inorganic matter in the underflow sludge. The mass ratio of Fe2O3, CaO, and MgO to SiO2 and Al2O3 was 0.245 in the inorganic component of the underflow sludge. The underflow sludge had the beneficial characteristics of simple treatment and disposal, and it was suitable for use as a base raw material for ceramsite production. The overflow sludge with higher organic matter content was constantly returned from the separation module to the wastewater treatment system, gradually improving the volatile suspended solid/total suspended solid ratio of the activated sludge in the wastewater treatment system.

  11. Separate but equal? A system comparison study of MEDLINE's controlled vocabulary MeSH.

    PubMed Central

    Hallett, K S

    1998-01-01

    This study tested the effect of controlled vocabulary search feature implementation on two online systems. Specifically, the study examined retrieval rates using four unique controlled vocabulary search features (explode, major descriptor, descriptor, subheadings). Each search feature was applied to nine search queries obtained from a medical reference librarian. The same queries were searched in the complete MEDLINE file on the Dialog and Ovid systems. The unique records, i.e., those records retrieved in only one of the two systems, were identified and analyzed. Dialog produced equal or more records than Ovid in nearly 20% of the queries. The study demonstrated that users need to be aware of system-specific designs that may require differing input strategies across different systems for the same unique controlled vocabulary search features. The paper concludes by making recommendations and suggestions for future research. PMID:9803290

  12. Active flutter control for flexible vehicles, volume 1

    NASA Technical Reports Server (NTRS)

    Mahesh, J. K.; Garrard, W. L.; Stones, C. R.; Hausman, P. D.

    1979-01-01

    An active flutter control methodology based on linear quadratic gaussian theory and its application to the control of a super critical wing is presented. Results of control surface and sensor position optimization are discussed. Both frequency response matching and residualization used to obtain practical flutter controllers are examined. The development of algorithms and computer programs for flutter modeling and active control design procedures is reported.

  13. 40 CFR 63.1044 - Standards-Separator vented to control device.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operator shall inspect and monitor the air emission control equipment in accordance with the procedures... device. 63.1044 Section 63.1044 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  14. Psychological Separation, Self-Control, and Weight Preoccupation among Elite Women Athletes.

    ERIC Educational Resources Information Center

    Skowron, Elizabeth A.; Friedlander, Myrna L.

    1994-01-01

    Examined weight preoccupation among 55 elite women swimmers from 5 universities. Results showed that 10.9% of respondents could be characterized as "weight preoccupied," a percentage comparable to general population of college women. Athletes reported using significantly more benign than punitive self-control strategies, suggesting for them,…

  15. Guide to good practices for control area activities

    SciTech Connect

    1998-12-01

    This Guide to Good Practices is written to enhance understanding of, and provide direction for, Control Area Activities, Chapter III of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The practices in this guide should be considered for controlling the activities in control areas. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19. Control Area Activities is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for maintaining a formal environment in operational control areas to promote safe and efficient operations.

  16. Active flow control over a backward-facing step using plasma actuation

    NASA Astrophysics Data System (ADS)

    Ruisi, R.; Zare-Behtash, H.; Kontis, K.; Erfani, R.

    2016-09-01

    Due to the more stringent aviation regulations on fuel consumption and noise reduction, the interest for smaller and mechanically less complex devices for flow separation control has increased. Plasma actuators are currently among the most studied typology of devices for active flow control purposes due to their small size and lightweight. In this study, a single dielectric barrier discharge (SDBD) actuator is used on a backward-facing step to assess its effects on the separated turbulent shear layer and its reattachment location. A range of actuating modulation frequencies, related to the natural frequencies of shear layer instability (flapping) and vortex shedding instability, are examined. The particle image velocimetry technique is used to analyse the flow over the step and the reattachment location. The bulk-flow experiments show negligible effects both on the shear layer and on the reattachment location for every frequency considered, and the actuator is not able to induce a sufficient velocity increase at the step separation point.

  17. Surface electrochemical control for fine coal and pyrite separation. Final report

    SciTech Connect

    Wadsworth, M.E.; Bodily, D.M.; Hu, Weibai; Chen, Wanxiong; Huang, Qinping; Liang, Jun; Riley, A.M.; Li, Jun; Wann, Jyi-Perng; Zhong, Tingke; Zhu, Ximeng

    1993-01-20

    Laboratory flotation tests were carried out on three coals and on coal pyrite. Floatability measurements included natural floatability, flotation with a xanthate collector and salt flotation. The ranking of the floatability of the three coals were: Upper Freeport > Pittsburgh > Illinois. The floatability of mineral pyrite and coal pyrite increased markedly with xanthate concentration, but decreased with increased pH. In general, coal pyrite was more difficult to float than mineral pyrite. This was attributed to the presence of surface carbonaceous and mineral matter, since floatability of coal pyrite improved by acid pretreatment. Flotation tests demonstrated that the floatability of coal and mineral pyrite was greatly enhanced by the presence of an electrolyte. Flotation was also enhanced by the addition of modifiers such as CuSO{sub 4}, Na{sub 2}S, CO{sub 2} and EDTA. Lime additions markedly reduced the floatability of coal pyrite. Enhanced floatability of coal pyrite resulted when the pyrite was anodically oxidized in a specially constructed electrochemical flotation cell Pretreatment in potential ranges previously observed for polysulfide and sulfur film formation resulted in the enhanced floatability. While interesting trends and influences, both chemical and electrochemical, markedly improved the floatability of coal, there is little hope for reverse flotation as an effective technology for coal/coal-pyrite separations. The effects of poor liberation and entrainment appear overriding.

  18. Facet-controlled phase separation in supersaturated Au-Ni nanoparticles upon shape equilibration

    SciTech Connect

    Herz, A. E-mail: dong.wang@tu-ilmenau.de; Rossberg, D.; Hentschel, M.; Theska, F.; Wang, D. E-mail: dong.wang@tu-ilmenau.de; Schaaf, P.; Friák, M.; Holec, D.; Šob, M.; Schneeweiss, O.

    2015-08-17

    Solid-state dewetting is used to fabricate supersaturated, submicron-sized Au-Ni solid solution particles out of thin Au/Ni bilayers by means of a rapid thermal annealing technique. Phase separation in such particles is studied with respect to their equilibrium crystal (or Wulff) shape by subsequent annealing at elevated temperature. It is found that (100) faceting planes of the equilibrated particles are enriched with Ni and (111) faces with Au. Both phases are considered by quantum-mechanical calculations in combination with an error-reduction scheme that was developed to compensate for a missing exchange-correlation potential that would reliably describe both Au and Ni. The observed phase configuration is then related to the minimization of strongly anisotropic elastic energies of Au- and Ni-rich phases and results in a rather unique nanoparticle composite state that is characterized by nearly uniform value of elastic response to epitaxial strains all over the faceted surface. The same conclusion is yielded also by evaluating bi-axial elastic moduli when employing interpolated experimental elastic constants. This work demonstrates a useful route for studying features of physical metallurgy at the mesoscale.

  19. Separation and determination of nimesulide related substances for quality control purposes by micellar electrokinetic chromatography.

    PubMed

    Zacharis, Constantinos K; Tzanavaras, Paraskevas D; Notou, Maria; Zotou, Anastasia; Themelis, Demetrius G

    2009-02-20

    A micellar electrokinetic chromatography (MEKC) method has been developed and validated for the determination of nimesulide related compounds in pharmaceutical formulations. Electrophoretic separation of six European Pharmacopoeia (EP) impurities (A-F) was performed using a fused silica capillary (L(eff.)=50 cm, L(tot.)=57 cm, 50 microm i.d.) with a background electrolyte (BGE) containing 25 mM borate buffer (pH 9.5), 30 mM sodium dodecyl sulphate and phi=3% (v/v) acetonitrile. The influence of several factors (surfactant and buffer concentration, pH, organic modifier, applied voltage, capillary temperature and injection time) was studied. The method was suitably validated with respect to linearity, limit of detection and quantification, accuracy, precision and selectivity. The calibration curves obtained for the six compounds were linear over the range 5-12 microgml(-1) (0.05-0.12%). The relative standard deviations (s(r)) of intra- and inter-day experiments were less than 5.0%. The detection limits ranged between 0.7 and 1.6 microgml(-1) depending on the impurity. The proposed method was applied successfully to the quantification of nimesulide impurities in its pharmaceutical formulation.

  20. Unique battery with an active membrane separator having uniform physico-chemically functionalized ion channels and a method making the same

    DOEpatents

    Gerald, II, Rex E.; Ruscic, Katarina J.; Sears, Devin N.; Smith, Luis J.; Klingler, Robert J.; Rathke, Jerome W.

    2012-02-21

    The invention relates to a unique battery having an active, porous membrane and method of making the same. More specifically the invention relates to a sealed battery system having a porous, metal oxide membrane with uniform, physicochemically functionalized ion channels capable of adjustable ionic interaction. The physicochemically-active porous membrane purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  1. Active parallel redundancy for electronic integrator-type control circuits

    NASA Technical Reports Server (NTRS)

    Peterson, R. A.

    1971-01-01

    Circuit extends concept of redundant feedback control from type-0 to type-1 control systems. Inactive channels are slaves to the active channel, if latter fails, it is rejected and slave channel is activated. High reliability and elimination of single-component catastrophic failure are important in closed-loop control systems.

  2. Psychosocial Effects of Reverse-Integrated Basketball Activity Compared to Separate and No Physical Activity in Young People with Physical Disability

    ERIC Educational Resources Information Center

    Hutzler, Yeshayahu; Chacham-Guber, Anat; Reiter, Shunit

    2013-01-01

    The purpose of this study was to examine the impact of participation in different sport modalities on quality of life (QOL) and perceived social competence (PSC) in young people with physical disability. Ninety participants (33 females and 57 males) were monitored across four conditions: competitive separate physical activity (COSPA), recreational…

  3. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Active Control Design Applications

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1998-01-01

    This report describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind tunnel model for active control design and analysis applications. The model is formed by combining the equations of motion for the BACT wind tunnel model with actuator models and a model of wind tunnel turbulence. The primary focus of this report is the development of the equations of motion from first principles by using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated by making use of parameters obtained from both experiment and analysis. Comparisons between experimental and analytical data obtained from the numerical model show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind tunnel model. The equations of motion developed herein have been used to aid in the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  4. Activity mediated phase separation: Can we understand phase behavior of the nonequilibrium problem from an equilibrium approach?

    PubMed

    Trefz, Benjamin; Das, Subir K; Egorov, Sergei A; Virnau, Peter; Binder, Kurt

    2016-04-14

    We present results for structure and dynamics of mixtures of active and passive particles, from molecular dynamics (MD) simulations and integral equation theory (IET) calculations, for a physically motivated model. The perfectly passive limit of the model corresponds to the phase-separating Asakura-Oosawa model for colloid-polymer mixtures in which, for the present study, the colloids are made self-propelling by introducing activity in accordance with the well known Vicsek model. Such activity facilitates phase separation further, as confirmed by our MD simulations and IET calculations. Depending upon the composition of active and passive particles, the diffusive motion of the active species can only be realized at large time scales. Despite this, we have been able to construct an equilibrium approach to obtain the structural properties of such inherently out-of-equilibrium systems. In this method, effective inter-particle potentials were constructed via IET by taking structural inputs from the MD simulations of the active system. These potentials in turn were used in passive MD simulations, results from which are observed to be in fair agreement with the original ones. PMID:27083747

  5. Activity mediated phase separation: Can we understand phase behavior of the nonequilibrium problem from an equilibrium approach?

    NASA Astrophysics Data System (ADS)

    Trefz, Benjamin; Das, Subir K.; Egorov, Sergei A.; Virnau, Peter; Binder, Kurt

    2016-04-01

    We present results for structure and dynamics of mixtures of active and passive particles, from molecular dynamics (MD) simulations and integral equation theory (IET) calculations, for a physically motivated model. The perfectly passive limit of the model corresponds to the phase-separating Asakura-Oosawa model for colloid-polymer mixtures in which, for the present study, the colloids are made self-propelling by introducing activity in accordance with the well known Vicsek model. Such activity facilitates phase separation further, as confirmed by our MD simulations and IET calculations. Depending upon the composition of active and passive particles, the diffusive motion of the active species can only be realized at large time scales. Despite this, we have been able to construct an equilibrium approach to obtain the structural properties of such inherently out-of-equilibrium systems. In this method, effective inter-particle potentials were constructed via IET by taking structural inputs from the MD simulations of the active system. These potentials in turn were used in passive MD simulations, results from which are observed to be in fair agreement with the original ones.

  6. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1986-01-01

    The utility of augmenting displays to aid the human operator in controlling high order complex systems is well known. Analytical evaluation of various display designs for a simple k/s sup 2 plant in a compensatory tracking task using an optimal Control Model (OCM) of human behavior is carried out. This analysis reveals that significant improvement in performance should be obtained by skillful integration of key information into the display dynamics. The cooperative control synthesis technique previously developed to design pilot-optimal control augmentation is extended to incorporate the simultaneous design of performance enhancing augmented displays. The application of the cooperative control synthesis technique to the design of augmented displays is discussed for the simple k/s sup 2 plant. This technique is intended to provide a systematic approach to design optimally augmented displays tailored for specific tasks.

  7. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Gary, Sanjay; Schmidt, David K.

    1987-01-01

    A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/(s squared) plant, and then to an F-15 type aircraft in a multichannel task. Utilizing the closed-loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.

  8. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1985-01-01

    The utility of augmenting displays to aid the human operator in controlling high order complex systems is well known. Analytical evaluations of various display designs for a simple k/s-squared plant in a compensatory tracking task using an Optimal Control Model (OCM) of human behavior is carried out. This analysis reveals that significant improvement in performance should be obtained by skillful integration of key information into the display dynamics. The cooperative control synthesis technique previously developed to design pilot-optimal control augmentation is extended to incorporate the simultaneous design of performance enhancing augmented displays. The application of the cooperative control synthesis technique to the design of augmented displays is discussed for the simple k/s-squared plant. This technique is intended to provide a systematic approach to design optimally augmented displays tailored for specific tasks.

  9. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1985-01-01

    A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/s(2) plant, and then to an F-15 type aircraft in a multi-channel task. Utilizing the closed loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.

  10. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets.

    PubMed

    Hong, Weizhe; Kim, Dong-Wook; Anderson, David J

    2014-09-11

    Animals display a range of innate social behaviors that play essential roles in survival and reproduction. While the medial amygdala (MeA) has been implicated in prototypic social behaviors such as aggression, the circuit-level mechanisms controlling such behaviors are not well understood. Using cell-type-specific functional manipulations, we find that distinct neuronal populations in the MeA control different social and asocial behaviors. A GABAergic subpopulation promotes aggression and two other social behaviors, while neighboring glutamatergic neurons promote repetitive self-grooming, an asocial behavior. Moreover, this glutamatergic subpopulation inhibits social interactions independently of its effect to promote self-grooming, while the GABAergic subpopulation inhibits self-grooming, even in a nonsocial context. These data suggest that social versus repetitive asocial behaviors are controlled in an antagonistic manner by inhibitory versus excitatory amygdala subpopulations, respectively. These findings provide a framework for understanding circuit-level mechanisms underlying opponency between innate behaviors, with implications for their perturbation in psychiatric disorders.

  11. Numerical Investigation of the Control of Separation from Curved and Blunt Trailing Edges Using DNS and LES

    NASA Astrophysics Data System (ADS)

    Fasel, Hermann F.

    2002-07-01

    Wall jets over a curved wall geometry (Coanda flows) are investigated using DNS and turbulence modeling. In experiments large coherent structures have enhanced the effectiveness of wall jets in delaying or preventing flow separation on airfoils. Understanding the behavior of these structures is essential for utilizing wall jets for separation control. The research objective is to investigate curvature effects on large coherent structures, in particular the development of longitudinal (Goertler-type) vortices and their interaction with 2D vortices. The focus is on Coanda cylinders using two computational approaches. With the Flow Simulation Methodology (FSM), a turbulent wall jet is computed over a cylinder segment on a body-fitted grid. In FSM, the contribution of the turbulence model depends on the grid resolution relative to a local turbulent length scale. For a flat-plate reference case, FSM is employed as DNS, LES, and URANS. In all cases the large 2D vortices are captured. For the curved-wall geometry, FSM is employed as a DNS. Goertler-type vortices emerge in the simulation but remain weak due to the narrow computational domain. In the second approach, Coanda flows including nozzle and separated region are computed using immersed boundary techniques (IBT). The feasibility of IBT for Coanda Flows is established.

  12. Removal of bacteria from coastal seawater by foam separation using dispersed bubbles and surface-active substances.

    PubMed

    Suzuki, Yoshihiro; Hanagasaki, Nobuaki; Furukawa, Takashi; Yoshida, Terutoyo

    2008-04-01

    The removal of bacteria from rearing water and washing water in aquaculture systems, aquariums and fishing port facilities is the most important means of diminishing the risk of fish diseases, improving public health and ensuring high food quality. However, there are few methods of bacterial elimination, e.g., disinfection. Thus, it is necessary to develop a technology for bacterial removal from coastal seawater. In this study, the removal efficiency for several groups of bacteria by foam separation using dispersed bubbles and surface-active substances was determined using both batch equipment and a continuous-flow unit. By batch processing with only 1 mg/l milk casein added as a surface-active substance and by supplying bubbles, viable bacteria, enterococci, Vibrio, and Salmonella-like bacteria were removed effectively at removal efficiencies of 80% or greater. In addition, suspended solids were also removed from coastal seawater. However, fecal coliforms were difficult to remove by foam separation. The removal efficiency for viable bacteria was greater than 70% using a continuous system. Bacteria were concentrated in a very small amount of generated foam and removed from the water. The foam separation using dispersed bubbles and surface-active substances is a feasible convenient technology for seawater purification as a treatment prior to membrane filtration or ultraviolet irradiation.

  13. Enantiomeric separations of illicit drugs and controlled substances using cyclofructan-based (LARIHC) and cyclobond I 2000 RSP HPLC chiral stationary phases.

    PubMed

    Padivitage, Nilusha L T; Dodbiba, Edra; Breitbach, Zachary S; Armstrong, Daniel W

    2014-06-01

    Recently a novel class of chiral stationary phases (CSPs) based on cyclofructan (CF) has been developed. Cyclofructans are cyclic oligosaccharides that possess a crown ether core and pendent fructofuranose moieties. Herein, we evaluate the applicability of these novel CSPs for the enantiomeric separation of chiral illicit drugs and controlled substances directly without any derivatization. A set of 20 racemic compounds were used to evaluate these columns including 8 primary amines, 5 secondary amines, and 7 tertiary amines. Of the new cyclofructan-based LARIHC columns, 14 enantiomeric separations were obtained including 7 baseline and 7 partial separations. The LARIHC CF6-P column proved to be the most useful in separating illicit drugs and controlled substances accounting for 11 of the 14 optimized separations. The polar organic mode containing small amounts of methanol in acetonitrile was the most useful solvent system for the LARIHC CF6-P CSP. Furthermore, the LARIHC CF7-DMP CSP proved to be valuable for the separation of the tested chiral drugs resulting in four of the optimized enantiomeric separations, whereas the CF6-RN did not yield any optimum separations. The broad selectivity of the LARIHC CF7-DMP CSP is evident as it separated primary, secondary and tertiary amine containing chiral drugs. The compounds that were partially or un-separated using the cyclofructan based columns were screened with a Cyclobond I 2000 RSP column. This CSP provided three baseline and six partial separations.

  14. Electrospun Polymer Blend Nanofibers for Tunable Drug Delivery: The Role of Transformative Phase Separation on Controlling the Release Rate.

    PubMed

    Tipduangta, Pratchaya; Belton, Peter; Fábián, László; Wang, Li Ying; Tang, Huiru; Eddleston, Mark; Qi, Sheng

    2016-01-01

    Electrospun fibrous materials have a wide range of biomedical applications, many of them involving the use of polymers as matrices for incorporation of therapeutic agents. The use of polymer blends improves the tuneability of the physicochemical and mechanical properties of the drug loaded fibers. This also benefits the development of controlled drug release formulations, for which the release rate can be modified by altering the ratio of the polymers in the blend. However, to realize these benefits, a clear understanding of the phase behavior of the processed polymer blend is essential. This study reports an in depth investigation of the impact of the electrospinning process on the phase separation of a model partially miscible polymer blend, PVP K90 and HPMCAS, in comparison to other conventional solvent evaporation based processes including film casting and spin coating. The nanoscale stretching and ultrafast solvent removal of electrospinning lead to an enhanced apparent miscibility between the polymers, with the same blends showing micronscale phase separation when processed using film casting and spin coating. Nanoscale phase separation in electrospun blend fibers was confirmed in the dry state. Rapid, layered, macroscale phase separation of the two polymers occurred during the wetting of the fibers. This led to a biphasic drug release profile from the fibers, with a burst release from PVP-rich phases and a slower, more continuous release from HPMCAS-rich phases. It was noted that the model drug, paracetamol, had more favorable partitioning into the PVP-rich phase, which is likely to be a result of greater hydrogen bonding between PVP and paracetamol. This led to higher drug contents in the PVP-rich phases than the HPMCAS-rich phases. By alternating the proportions of the PVP and HPMCAS, the drug release rate can be modulated.

  15. Electrospun Polymer Blend Nanofibers for Tunable Drug Delivery: The Role of Transformative Phase Separation on Controlling the Release Rate.

    PubMed

    Tipduangta, Pratchaya; Belton, Peter; Fábián, László; Wang, Li Ying; Tang, Huiru; Eddleston, Mark; Qi, Sheng

    2016-01-01

    Electrospun fibrous materials have a wide range of biomedical applications, many of them involving the use of polymers as matrices for incorporation of therapeutic agents. The use of polymer blends improves the tuneability of the physicochemical and mechanical properties of the drug loaded fibers. This also benefits the development of controlled drug release formulations, for which the release rate can be modified by altering the ratio of the polymers in the blend. However, to realize these benefits, a clear understanding of the phase behavior of the processed polymer blend is essential. This study reports an in depth investigation of the impact of the electrospinning process on the phase separation of a model partially miscible polymer blend, PVP K90 and HPMCAS, in comparison to other conventional solvent evaporation based processes including film casting and spin coating. The nanoscale stretching and ultrafast solvent removal of electrospinning lead to an enhanced apparent miscibility between the polymers, with the same blends showing micronscale phase separation when processed using film casting and spin coating. Nanoscale phase separation in electrospun blend fibers was confirmed in the dry state. Rapid, layered, macroscale phase separation of the two polymers occurred during the wetting of the fibers. This led to a biphasic drug release profile from the fibers, with a burst release from PVP-rich phases and a slower, more continuous release from HPMCAS-rich phases. It was noted that the model drug, paracetamol, had more favorable partitioning into the PVP-rich phase, which is likely to be a result of greater hydrogen bonding between PVP and paracetamol. This led to higher drug contents in the PVP-rich phases than the HPMCAS-rich phases. By alternating the proportions of the PVP and HPMCAS, the drug release rate can be modulated. PMID:26655957

  16. Physical fitness and activity as separate heart disease risk factors: a meta-analysis

    PubMed Central

    Williams, Paul T.

    2010-01-01

    Objective Public health policies for physical activity presume that the greatest health benefits are achieved by increasing physical activity among the least active. This presumption is based largely on studies of cardiorespiratory fitness. To assess whether studies of cardiorespiratory fitness are germane to physical activity guidelines, we compared the dose-response relationships between cardiovascular disease endpoints with leisure-time physical activity and fitness from published studies. Data Sources Twenty-three sex-specific cohorts of physical activity or fitness (representing 1,325,004 person-years of follow-up), cited in Tables 4-1 and 4-2 of the Surgeon General's Report. Data Synthesis Relative risks were plotted as a function of the cumulative percentages of the samples when ranked from least fit or active, to most fit or active. To combine study results, a weighted average of the relative risks over the 16 physical activity or seven fitness cohorts was computed at every 5th percentile between the 5% and 100%. The analyses show that the risks of coronary heart disease or cardiovascular disease decrease linearly in association with increasing percentiles of physical activity. In contrast, there is a precipitous drop in risk occurring before the 25th percentile of the fitness distribution. As a consequence of this drop, there is a significant difference in the risk reduction associated with being more physically active or physically fit (P ≤ 0.04). Conclusions Being unfit warrants consideration as a risk factor, distinctly from inactivity, and worthy of screening and intervention. Formulating physical activity recommendations on the basis of fitness studies may inappropriately demote the status of physical fitness as a risk factor while exaggerating the public health benefits of moderate amounts of physical activity. PMID:11323544

  17. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  18. PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...

  19. 15. INTERIOR OVERVIEW TO SOUTHEAST. ACTIVE CONTROL PANEL AND GENERATORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR OVERVIEW TO SOUTHEAST. ACTIVE CONTROL PANEL AND GENERATORS AT LEFT, HISTORIC CONTROL PANEL AT RIGHT. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  20. Separable transcriptional regulatory domains within Otd control photoreceptor terminal differentiation events

    PubMed Central

    McDonald, Elizabeth C.; Xie, Baotong; Workman, Michael; Charlton-Perkins, Mark; Terrell, David A.; Reischl, Joachim; Wimmer, Ernst A.; Gebelein, Brian A.

    2010-01-01

    Summary Orthodenticle (Otd)-related transcription factors are essential for anterior patterning and brain morphogenesis from Cnidaria to Mammals, and genetically underlie several human retinal pathologies. Despite their key developmental functions, relatively little is known regarding the molecular basis of how these factors regulate downstream effectors in a cell- or tissue-specific manner. Many invertebrate and vertebrate species encode two to three Otd proteins, whereas Drosophila encodes a single Otd protein. In the fly retina, Otd controls rhabdomere morphogenesis of all photoreceptors and regulates distinct Rhodopsin-encoding genes in a photoreceptor subtype-specific manner. Here, we performed a structure-function analysis of Otd during Drosophila eye development using in vivo rescue experiments and in vitro transcriptional regulatory assays. Our findings indicate that Otd requires at least three distinct transcriptional regulatory domains to control photoreceptor-specific rhodopsin gene expression and photoreceptor morphogenesis. Our results also uncover a previously unknown role for Otd in preventing co-expression of sensory receptors in blue vs. green-sensitive R8 photoreceptors. Sequence analysis indicates that many of the transcriptional regulatory domains identified here are conserved in multiple Diptera Otd-related proteins. Thus, these studies provide a basis for identifying shared molecular pathways involved in a wide range of developmental processes. PMID:20732315

  1. Separation of the prodigiosin-localizing crude vesicles which retain the activity of protease and nuclease in Serratia marcescens.

    PubMed

    Kobayashi, N; Ichikawa, Y

    1991-01-01

    Crude vesicles in which prodigiosin is localized were separated from pigmented Serratia marcescens. The bacteria were grown on peptone-glycerol agar plate, suspended in saline, and fractionated into cells, vesicles, and supernatant by differential centrifugation. Electron microscopic observations showed that the fractionation was conducted properly and the separated vesicles were lysed in distilled water. The vesicles suspended in saline retained 100 kilodalton protein of which amount is correlated with prodigiosin level, but the 100 kDa protein was found in the supernatant when the vesicles were lysed in distilled water. The vesicle fraction retained few colony-forming units and little detectable activity of NADH oxidase, but showed much higher activities of protease and nuclease than the cell fraction. The profiles of the activities of the protease and the nuclease in the fractions were different from each other, that is, the protease activity in the vesicle fraction was lower than that in the supernatant fraction, whereas the nuclease activity in the vesicle fraction was higher than that in the supernatant fraction, suggesting that the two extracellular enzymes were released from the pigmented bacteria by different mechanisms.

  2. Active control of flexural vibrations in beams

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.

    1987-01-01

    The feasibility of using piezoelectric actuators to control the flexural oscillations of large structures in space is investigated. Flexural oscillations are excited by impulsive loads. The vibratory response can degrade the pointing accuracy of cameras and antennae, and can cause high stresses at structural node points. Piezoelectric actuators have the advantage of exerting localized bending moments. In this way, vibration is controlled without exciting rigid body modes. The actuators are used in collocated sensor/driver pairs to form a feedback control system. The sensor produces a voltage that is proportional to the dynamic stress at the sensor location, and the driver produces a force that is proportional to the voltage applied to it. The analog control system amplifies and phase shifts the sensor signal to produce the voltage signal that is applied to the driver. The feedback control is demonstrated to increase the first mode damping in a cantilever beam by up to 100 percent, depending on the amplifier gain. The damping efficiency of the control system when the piezoelectrics are not optimally positioned at points of high stress in the beam is evaluated.

  3. Active chatter control in a milling machine

    SciTech Connect

    Dohner, J.L.; Hinnerichs, T.D.; Lauffer, J.P.

    1997-08-01

    The use of active feedback compensation to mitigate cutting instabilities in an advanced milling machine is discussed in this paper. A linear structural model delineating dynamics significant to the onset of cutting instabilities was combined with a nonlinear cutting model to form a dynamic depiction of an existing milling machine. The model was validated with experimental data. Modifications made to an existing machine model were used to predict alterations in dynamics due to the integration of active feedback compensation. From simulations, subcomponent requirements were evaluated and cutting enhancements were predicted. Active compensation was shown to enable more than double the metal removal rate over conventional milling machines. 25 refs., 10 figs., 1 tab.

  4. Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances

    NASA Astrophysics Data System (ADS)

    Doinikov, Alexander A.; Bouakaz, Ayache

    2015-10-01

    Both in vitro and in vivo, contrast agent microbubbles move near bounding surfaces, such as the wall of an experimental container or the wall of a blood vessel. This problem inspires interest in theoretical models that predict the effect of a wall on the dynamics of a contrast microbubble. There are models for a bubble at a large distance from a wall and for a bubble adherent to a wall. The aim of the present study is to develop a generalized model that describes the dynamics of a contrast microbubble at arbitrary distances from a wall and thereby make it possible to simulate the acoustic response of the bubble starting from large separation distances up to contact between the bubble and the wall. The wall is assumed to be a plane. Therefore, the developed model applies for in vitro investigations of contrast agents in experimental containers. It can also be used as a first approximation to the case of a contrast microbubble within a large blood vessel. The derivation of the model is based on the multipole expansion of the bubble velocity potential, the image source method, and the Lagrangian formalism. The model consists of two coupled equations, one of which describes the bubble radial oscillation and the second describes the translation of the bubble center. Numerical simulations are performed to determine how the acoustic response of a contrast microbubble depends on the separation distance near walls of different types: rigid, plastic, arterial, etc. The dynamics of the bubble encapsulation is described by the Marmottant shell model. The properties of the plastic wall correspond to OptiCell chambers commonly used in experiments. The results of the simulations show that the bubble resonance frequency near a wall depends on both the separation distance and the wall material properties. In particular, the rigid wall makes the resonance frequency decrease with decreasing separation distance, whereas in the vicinity of the OptiCell wall and the arterial wall, the

  5. Controlling synchrony in oscillatory networks with a separate stimulation-registration setup

    NASA Astrophysics Data System (ADS)

    Pyragas, K.; Popovych, O. V.; Tass, P. A.

    2007-11-01

    We present a demand-controlled method for desynchronization of globally coupled oscillatory networks utilizing a configuration with an observed and stimulated subsystem. The stimulated subsystem is subjected to a proportional-integro-differential (PID) feedback derived from the mean field of the observed subsystem. Our method enables to restore desynchronized states in both subsystems in a robust way. We develop an analytical theory for the Kuramoto model and analytically derive a threshold of the stimulation parameters for the desynchronization transition in ensembles of phase and van der Pol oscillators. We also numerically demonstrate the efficacy of the approach for ensembles of globally coupled Landau-Stuart and relaxation van der Pol oscillators. Our approach is particularly important for applications to physical and biological systems which do not allow for a simultaneous registration and stimulation of the whole network, as in the case of electrical brain stimulation.

  6. Susceptibility to ozone-induced inflammation. II. Separate loci control responses to acute and subacute exposures

    SciTech Connect

    Kleeberger, S.R.; Levitt, R.C.; Zhang, L.Y. )

    1993-01-01

    We demonstrated previously that inbred strains of mice are differentially susceptible to acute (3 h) and subacute (48 h) exposures to 2 parts per million (ppm) ozone (O3) and 0.30 ppm O3, respectively. Genetic studies with O3-resistant C3H/HeJ and O3-susceptible C57BL/6J strains have indicated that susceptibility to each of these O3 exposures is under Mendelian (single gene) control. In the present study, we hypothesized that the same gene controls susceptibility to the airway inflammatory responses to 2 ppm and 0.30 ppm O3 exposures. To test this hypothesis, airway inflammation was induced in 10 BXH and 16 BXD recombinant inbred (RI) strains of mice by acute as well as subacute O3 exposures. Airway inflammation was assessed by counting the number of polymorphonuclear leukocytes (PMNs) in bronchoalveolar lavage (BAL) returns obtained immediately after 48-h subacute exposure to 0.30 ppm O3, or 6 h after 3 h acute exposure to 2 ppm O3. Each RI strain was classified as susceptible or resistant to each exposure, based on a comparison of mean numbers of PMNs with those of the respective progenitor strains. For each RI set, a phenotypic strain distribution pattern (SDP) was thus derived for each exposure regimen, and the SDPs were then compared for concordance. Among the BXH RI strains, 4 of 10 responded discordantly to the two exposures: 3 were susceptible to acute exposure and resistant to subacute exposure, whereas 1 was conversely susceptible. Among the BXD RI strains, 4 of 16 were discordant: 1 was susceptible to acute exposure, and resistant to subacute exposure, whereas 3 were conversely susceptible.

  7. Unmanned Aircraft Systems Human-in-the-Loop Controller and Pilot Acceptability Study: Collision Avoidance, Self-Separation, and Alerting Times (CASSAT)

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; Ghatas, Rania W.; Vincent, Michael J.; Consiglio, Maria C.; Munoz, Cesar; Chamberlain, James P.; Volk, Paul; Arthur, Keith E.

    2016-01-01

    The Federal Aviation Administration (FAA) has been mandated by the Congressional funding bill of 2012 to open the National Airspace System (NAS) to Unmanned Aircraft Systems (UAS). With the growing use of unmanned systems, NASA has established a multi-center "UAS Integration in the NAS" Project, in collaboration with the FAA and industry, and is guiding its research efforts to look at and examine crucial safety concerns regarding the integration of UAS into the NAS. Key research efforts are addressing requirements for detect-and-avoid (DAA), self-separation (SS), and collision avoidance (CA) technologies. In one of a series of human-in-the-loop experiments, NASA Langley Research Center set up a study known as Collision Avoidance, Self-Separation, and Alerting Times (CASSAT). The first phase assessed active air traffic controller interactions with DAA systems and the second phase examined reactions to the DAA system and displays by UAS Pilots at a simulated ground control station (GCS). Analyses of the test results from Phase I and Phase II are presented in this paper. Results from the CASSAT study and previous human-in-the-loop experiments will play a crucial role in the FAA's establishment of rules, regulations, and procedures to safely, efficiently, and effectively integrate UAS into the NAS.

  8. The Ability To Activate and Inhibit Speeded Responses: Separate Developmental Trends.

    ERIC Educational Resources Information Center

    Band, Guido P. H.; van der Molen, Maurits W.; Overtoom, Carin C. E.; Verbaten, Marinus N.

    2000-01-01

    Compared 5-, 8-, and 11-year-olds and young adults on 6 speeded performance tasks, 4 requiring an inhibition of response activation. Analyzed reaction and inhibition times; found support for hypothesis of generalized developmental changes in response activation, but revealed less pronounced development of inhibition. Concluded that a nonselective…

  9. Innovated application of mechanical activation to separate lead from scrap cathode ray tube funnel glass.

    PubMed

    Yuan, Wenyi; Li, Jinhui; Zhang, Qiwu; Saito, Fumio

    2012-04-01

    The disposal of scrap cathode ray tube (CRT) funnel glass has become a global environmental problem due to the rapid shrinkage of new CRT monitor demand, which greatly reduces the reuse for remanufacturing. To detoxificate CRT funnel glass by lead recovery with traditional metallurgical methods, mechanical activation by ball milling was introduced to pretreat the funnel glass. As a result, substantial physicochemical changes have been observed after mechanical activation including chemical breakage and defects formation in glass inner structure. These changes contribute to the easy dissolution of the activated sample in solution. High yield of 92.5% of lead from activated CRT funnel glass by diluted nitric acid leaching and successful formation of lead sulfide by sulfur sulfidization in water have also been achieved. All the results indicate that the application of mechanical activation on recovering lead from CRT funnel glass is efficient and promising, which is also probably appropriate to detoxificate any other kind of leaded glass.

  10. Broadband radiation modes: Estimation and active control

    NASA Astrophysics Data System (ADS)

    Berkhoff, Arthur P.

    2002-03-01

    In this paper we give a formulation of the most efficiently radiating vibration patterns of a vibrating body, the radiation modes, in the time domain. The radiation modes can be used to arrive at efficient weighting schemes for an array of sensors in order to reduce the controller dimensionality. Because these particular radiation modes are optimum in a broadband sense, they are termed broadband radiation modes. Methods are given to obtain these modes from measured data. The broadband radiation modes are used for the design of an actuator array in a feedback control system to reduce the sound power radiated from a plate. Three methods for the design of the actuator are compared, taking into account the reduction of radiated sound power in the controlled frequency range, but also the possible increase of radiated sound power in the uncontrolled frequency range.

  11. Active flow control of subsonic flow in an adverse pressure gradient using synthetic jets and passive micro flow control devices

    NASA Astrophysics Data System (ADS)

    Denn, Michael E.

    Several recent studies have shown the advantages of active and/or passive flow control devices for boundary layer flow modification. Many current and future proposed air vehicles have very short or offset diffusers in order to save vehicle weight and create more optimal vehicle/engine integration. Such short coupled diffusers generally result in boundary layer separation and loss of pressure recovery which reduces engine performance and in some cases may cause engine stall. Deployment of flow control devices can alleviate this problem to a large extent; however, almost all active flow control devices have some energy penalty associated with their inclusion. One potential low penalty approach for enhancing the diffuser performance is to combine the passive flow control elements such as micro-ramps with active flow control devices such as synthetic jets to achieve higher control authority. The goal of this dissertation is twofold. The first objective is to assess the ability of CFD with URANS turbulence models to accurately capture the effects of the synthetic jets and micro-ramps on boundary layer flow. This is accomplished by performing numerical simulations replicating several experimental test cases conducted at Georgia Institute of Technology under the NASA funded Inlet Flow Control and Prediction Technologies Program, and comparing the simulation results with experimental data. The second objective is to run an expanded CFD matrix of numerical simulations by varying various geometric and other flow control parameters of micro-ramps and synthetic jets to determine how passive and active control devices interact with each other in increasing and/or decreasing the control authority and determine their influence on modification of boundary layer flow. The boundary layer shape factor is used as a figure of merit for determining the boundary layer flow quality/modification and its tendency towards separation. It is found by a large number of numerical experiments and

  12. Separate activation of fast and slow inhibitory postsynaptic potentials in rat neocortex in vitro.

    PubMed Central

    Benardo, L S

    1994-01-01

    Synaptic inhibition was investigated by stimulating inhibitory neurones with focal microapplications of glutamate, while recording from layer V pyramidal neurones of rat somatosensory cortical slices. One class of inhibitory postsynaptic potentials (IPSPs) thus elicited was characterized as a fast, chloride-mediated, GABAA IPSP in part by its fast time-to-peak (mean 2.5 ms) and brief duration, but primarily on the basis of its reversal potential at -68 mV, and its blockade by picrotoxin. The average peak amplitude for these fast IPSPs was -1.5 mV, measured at -60 mV. The peak conductance calculated for these events was about 10 nS. The conductance change associated with the maximal fast inhibitory postsynaptic potential resulting from electrical stimulation of afferent pathways ranged up to 116 nS. A second class of IPSP was encountered much less frequently. These glutamate-triggered events were characterized as slow, potassium-mediated GABAB IPSPs partly because of their longer times-to-peak (mean, 45 ms) and duration, but especially because of their extrapolated equilibrium potential at about -89 mV and blockade by 2-hydroxysaclofen. The average peak amplitude for these slow IPSPs was -2.3 mV, measured at -60 mV. The peak conductance for these events was about 8 nS. IPSPs resulting from the excitation of individual inhibitory interneurones were elicited by glutamate microapplication at particular locations relative to recording sites. Both fast and slow IPSPs were generated, but these occurred as separate events, and mixed responses were never seen. Thus, the two mechanistically distinct types of IPSPs which result from GABA interaction at GABAA and GABAB receptors on neocortical neurones may be mediated by separate classes of inhibitory neurones. PMID:7913968

  13. Numerical Simulations of Flow Separation Control in Low-Pressure Turbines using Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.

    2007-01-01

    A recently introduced phenomenological model to simulate flow control applications using plasma actuators has been further developed and improved in order to expand its use to complicated actuator geometries. The new modeling approach eliminates the requirement of an empirical charge density distribution shape by using the embedded electrode as a source for the charge density. The resulting model is validated against a flat plate experiment with quiescent environment. The modeling approach incorporates the effect of the plasma actuators on the external flow into Navier Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. The model solves the Maxwell equation to obtain the electric field due to the applied AC voltage at the electrodes and an additional equation for the charge density distribution representing the plasma density. The new modeling approach solves the charge density equation in the computational domain assuming the embedded electrode as a source therefore automatically generating a charge density distribution on the surface exposed to the flow similar to that observed in the experiments without explicitly specifying an empirical distribution. The model is validated against a flat plate experiment with quiescent environment.

  14. Pulley With Active Antifriction Actuator And Control

    NASA Technical Reports Server (NTRS)

    Ih, Che-Hang C.; Vivian, Howard C.

    1994-01-01

    Torque actuator and associated control system minimizes effective friction of rotary bearing. Motor exerts compensating torque in response to feedback from external optical sensor. Compensation torque nearly cancels frictional torque of shaft bearings. Also useful in reducing bearing friction in gyro-scopes, galvanometers, torquemeters, accelerometers, earth-motion detectors, and balances.

  15. Selective Activation and Disengagement of Moral Control.

    ERIC Educational Resources Information Center

    Bandura, Albert

    1990-01-01

    Analyzes psychological mechanisms by which moral control is selectively disengaged from inhumane conduct in ordinary and unusual circumstances. Explores the symptoms of moral exclusion as described in the literature. Presents categories that unify theory on moral exclusion and contribute practical classifications for use in empirical studies. (JS)

  16. Charge separation promoted activation of molecular oxygen by neutral gold clusters.

    PubMed

    Woodham, Alex P; Meijer, Gerard; Fielicke, André

    2013-02-01

    Gold nanoparticles and sub-nanoparticles famously act as highly efficient and selective low-temperature oxidation catalysts with molecular oxygen, in stark contrast to the nobility of the bulk phase. The origins of this activity and the nature of the active species remain open questions. Gas-phase studies of isolated gold clusters hold promise for disentangling these problems. Here we address the interaction of neutral gold clusters (Au(n); 4 ≤ n ≤ 21) with molecular oxygen by probing the highly characteristic O-O vibrational stretch frequencies. This reveals that for selected cluster sizes the oxygen is highly activated with respect to the free moiety. Complementary quantum chemical calculations provide evidence for substantial electron transfer to the O(2) unit and concomitant rearrangement of the parent gold cluster structure upon binding and activation. This gives evidence for a model of the interaction between neutral gold clusters and molecular oxygen.

  17. 20 CFR 404.1325 - Separation from active service under conditions other than dishonorable.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... States, or by the active service of an allied country during the World War II period; (c) A dishonorable discharge issued by the United States Public Health Service or the United States Coast and Geodetic...

  18. 20 CFR 404.1325 - Separation from active service under conditions other than dishonorable.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... States, or by the active service of an allied country during the World War II period; (c) A dishonorable... by a civil court for treason, sabotage, espionage, murder, rape, arson, burglary, robbery,...

  19. neutron activation analysis using thermochromatography. II. thermochromatographic separation of elements in the analysis of geological samples

    SciTech Connect

    Sattarov, G.; Davydov, A.V.; Khamatov, S.; Kist, A.A.

    1986-07-01

    The use of gas thermochromatography (GTC) in the radioactivation analysis of difficulty soluble samples with a strongly activating substrate is discussed. The effect of sample coarseness and ore type on the rate of extraction of gold and accompanying elements was studied. The limits of detection of 22 elements were compared using neutron activation analysis with GTC and INAA. The analytical parameters of the procedure were estimated.

  20. Microbial respiration activities correlated to sequentially separated, particulate and water-soluble organic matter fractions from arable and forest topsoils

    NASA Astrophysics Data System (ADS)

    Kaiser, M.; Wirth, S.; Ellerbrock, R.; Sommer, M.

    2009-12-01

    Michael Kaiser1, Stephan Wirth2, Ruth H. Ellerbrock3, Michael Sommer3,4 1University of California Merced, Natural Science, 4225 N. Hospital Rd., Atwater, CA 95301 2,3 Leibniz-Center for Agricultural Research (ZALF) e. V. 2 Institute of Landscape Matter Dynamics 3 Institute of Soil Landscape Research Eberswalder Str. 84, D-15374 Muencheberg, Germany 4University of Potsdam, Institute of Geoecology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany Microbial respiration activities correlated to sequentially separated, particulate and water-soluble organic matter fractions from arable and forest topsoils Microbial decomposition of soil organic matter (SOM) accounts for roughly half of CO2 evolution from vegetated soil surfaces and plays a crucial role in the ability of soil to mitigate the greenhouse effect. The separation and identification of labile (i.e., easily decomposable) organic matter (OM) fractions from bulk SOM is of particular importance for a mechanistic understanding of microbial decomposition processes and for predicting the response of SOM to changes in land use, management, and climate. This work aimed to reveal differences in the relevance of particulate as well as water-soluble organic matter (OM) fractions from topsoils to the easily biodegradable soil organic matter (SOM). We selected eight paired sites with quite different soil types (Udorthent, Paleudalf, Glossudalf, Aquept, Hapludalf, Aquert, Udert, Haplorthod) and soil properties (e.g., clay content: 28 to 564 g kg-1). For each of these sites, we took samples from adjacent arable and forest topsoils. Physically uncomplexed, macro-, and micro-aggregate-occluded organic particle, as well as water-soluble OM fractions were sequentially separated by a combination of electrostatic attraction, ultrasonic treatment, density separation, sieving, and water extraction. The easily biodegradable SOM of the topsoil samples was determined by measuring microbial respiration during a short-term incubation

  1. Rapid separation and characterization of active flavonolignans of Silybum marianum by ultra-performance liquid chromatography coupled with electrospray tandem mass spectrometry.

    PubMed

    Wang, Kuiwu; Zhang, Hong; Shen, Lianqing; Du, Qizhen; Li, Jianrong

    2010-12-01

    Ultra-performance liquid chromatography (UPLC) interfaced with the electrospray ionization (ESI) tandem mass spectrometer (MS(n)) was developed for the simultaneous determination of silychristins A (1) and B (2), silydianin (3), silybins A (4) and B (5), and isosilybins A (6) and B (7), major bioactive flavonolignans in silymarin, a herbal remedy derived from the milk thistle Silybum marianum. In this study, the seven major active flavonolignans including the diastereomers 1/2, 4/5, and 6/7 were completely separated using UPLC with an ACQUITY UPLC C(18) column and a MeOH/water/formic acid mobile phase system. The collision-induced dissociation (CID) MS(n) spectra of these flavonolignans were studied systematically using ESI-MS. The results with the present methodology show that UPLC-MS(n) can be useful for general screening of active natural products from plant extracts and for the specific quality control of silymarin.

  2. Genetic Control of Active Neural Circuits

    PubMed Central

    Reijmers, Leon; Mayford, Mark

    2009-01-01

    The use of molecular tools to study the neurobiology of complex behaviors has been hampered by an inability to target the desired changes to relevant groups of neurons. Specific memories and specific sensory representations are sparsely encoded by a small fraction of neurons embedded in a sea of morphologically and functionally similar cells. In this review we discuss genetics techniques that are being developed to address this difficulty. In several studies the use of promoter elements that are responsive to neural activity have been used to drive long-lasting genetic alterations into neural ensembles that are activated by natural environmental stimuli. This approach has been used to examine neural activity patterns during learning and retrieval of a memory, to examine the regulation of receptor trafficking following learning and to functionally manipulate a specific memory trace. We suggest that these techniques will provide a general approach to experimentally investigate the link between patterns of environmentally activated neural firing and cognitive processes such as perception and memory. PMID:20057936

  3. Effects of incentives, age, and behavior on brain activation during inhibitory control: a longitudinal fMRI study.

    PubMed

    Paulsen, David J; Hallquist, Michael N; Geier, Charles F; Luna, Beatriz

    2015-02-01

    We investigated changes in brain function supporting inhibitory control under age-controlled incentivized conditions, separating age- and performance-related activation in an accelerated longitudinal design including 10- to 22-year-olds. Better inhibitory control correlated with striatal activation during neutral trials, while Age X Behavior interactions in the striatum indicated that in the absence of extrinsic incentives, younger subjects with greater reward circuitry activation successfully engage in greater inhibitory control. Age was negatively correlated with ventral amygdala activation during Loss trials, suggesting that amygdala function more strongly mediates bottom-up processing earlier in development when controlling the negative aspects of incentives to support inhibitory control. Together, these results indicate that with development, reward-modulated cognitive control may be supported by incentive processing transitions in the amygdala, and from facilitative to obstructive striatal function during inhibitory control. PMID:25284272

  4. Effects of incentives, age, and behavior on brain activation during inhibitory control: A longitudinal fMRI study

    PubMed Central

    Paulsen, David J.; Hallquist, Michael N.; Geier, Charles F.; Luna, Beatriz

    2014-01-01

    We investigated changes in brain function supporting inhibitory control under age-controlled incentivized conditions, separating age- and performance-related activation in an accelerated longitudinal design including 10- to 22-year-olds. Better inhibitory control correlated with striatal activation during neutral trials, while Age × Behavior interactions in the striatum indicated that in the absence of extrinsic incentives, younger subjects with greater reward circuitry activation successfully engage in greater inhibitory control. Age was negatively correlated with ventral amygdala activation during Loss trials, suggesting that amygdala function more strongly mediates bottom-up processing earlier in development when controlling the negative aspects of incentives to support inhibitory control. Together, these results indicate that with development, reward-modulated cognitive control may be supported by incentive processing transitions in the amygdala, and from facilitative to obstructive striatal function during inhibitory control. PMID:25284272

  5. Interactive MRI Segmentation with Controlled Active Vision

    PubMed Central

    Karasev, Peter; Kolesov, Ivan; Chudy, Karol; Muller, Grant; Xerogeanes, John; Tannenbaum, Allen

    2013-01-01

    Partitioning Magnetic-Resonance-Imaging (MRI) data into salient anatomic structures is a problem in medical imaging that has continued to elude fully automated solutions. Implicit functions are a common way to model the boundaries between structures and are amenable to control-theoretic methods. In this paper, the goal of enabling a human to obtain accurate segmentations in a short amount of time and with little effort is transformed into a control synthesis problem. Perturbing the state and dynamics of an implicit function’s driving partial differential equation via the accumulated user inputs and an observer-like system leads to desirable closed-loop behavior. Using a Lyapunov control design, a balance is established between the influence of a data-driven gradient flow and the human’s input over time. Automatic segmentation is thus smoothly coupled with interactivity. An application of the mathematical methods to orthopedic segmentation is shown, demonstrating the expected transient and steady state behavior of the implicit segmentation function and auxiliary observer. PMID:24584213

  6. Active control for turbulent premixed flame simulations

    SciTech Connect

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.

    2004-03-26

    Many turbulent premixed flames of practical interest are statistically stationary. They occur in combustors that have anchoring mechanisms to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. As a result, typical detailed simulations are performed in simplified model configurations such as decaying isotropic turbulence or inflowing turbulence. In these configurations, the turbulence seen by the flame either decays or, in the latter case, increases as the flame accelerates toward the turbulent inflow. This limits the duration of the eddy evolutions experienced by the flame at a given level of turbulent intensity, so that statistically valid observations cannot be made. In this paper, we apply a feedback control to computationally stabilize an otherwise unstable turbulent premixed flame in two dimensions. For the simulations, we specify turbulent in flow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm. We use the simulations to study the propagation and the local chemical variability of turbulent flame chemistry.

  7. Advanced Study for Active Noise Control in Aircraft (ASANCA)

    NASA Technical Reports Server (NTRS)

    Borchers, Ingo U.; Emborg, Urban; Sollo, Antonio; Waterman, Elly H.; Paillard, Jacques; Larsen, Peter N.; Venet, Gerard; Goeransson, Peter; Martin, Vincent

    1992-01-01

    Aircraft interior noise and vibration measurements are included in this paper from ground and flight tests. In addition, related initial noise calculations with and without active noise control are conducted. The results obtained to date indicate that active noise control may be an effective means for reducing the critical low frequency aircraft noise.

  8. 40 CFR 194.41 - Active institutional controls.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification Assurance Requirements § 194.41 Active institutional controls. (a) Any compliance application shall include... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Active institutional controls....

  9. 40 CFR 194.41 - Active institutional controls.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification Assurance Requirements § 194.41 Active institutional controls. (a) Any compliance application shall include... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Active institutional controls....

  10. 40 CFR 194.41 - Active institutional controls.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification Assurance Requirements § 194.41 Active institutional controls. (a) Any compliance application shall include... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Active institutional controls....

  11. 40 CFR 194.41 - Active institutional controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification Assurance Requirements § 194.41 Active institutional controls. (a) Any compliance application shall include... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Active institutional controls....

  12. 40 CFR 194.41 - Active institutional controls.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification Assurance Requirements § 194.41 Active institutional controls. (a) Any compliance application shall include... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Active institutional controls....

  13. An electronic control for an electrohydraulic active control landing gear for the F-4 aircraft

    NASA Technical Reports Server (NTRS)

    Ross, I.

    1982-01-01

    A controller for an electrohydraulic active control landing gear was developed for the F-4 aircraft. A controller was modified for this application. Simulation results indicate that during landing and rollout over repaired bomb craters the active gear effects a force reduction, relative to the passive gear, or approximately 70%.

  14. Improving the efficiency of case-based reasoning to deal with activated sludge solids separation problems.

    PubMed

    Martínez, M; Mérida-Campos, C; Sánchez-Marré, M; Comas, J; Rodríguez-Roda, I

    2006-06-01

    The potential of Case-Based Reasoning to use the knowledge gained from past experiences to solve problematic situations has made this Artificial Intelligence technique a useful decision support tool in different environmental domains such as wastewater treatment. Case-Based Reasoning tools automatically identify similarities between present and previous situations (cases) and reuse the experiences gained from the previous situations to solve current problems. Case retrieval can be considered to be the most important step in the process of Case-Based Reasoning. In the present study we propose incorporating a relevance network in order to increase the accuracy and the efficiency of case retrieval. The result is a context-sensitive feature-weighting methodology capable of defining the model of relationships between the different attributes or features that define the context in which Case-Based Reasoning is applied. These features affect the retrieval procedure directly. The feature's degree of relevance in the network is easily translated into a set of simple rules and applied during case retrieval, specifically during the similarity calculation. The results obtained in the present study show significant improvements in the accuracy of case retrieval. With the approach presented here experts considered more than 90% of the retrieved cases to be completely relevant according to the knowledge these cases provided for dealing with solids separation problems.

  15. Charge Separation and Catalytic Activity of Fe3 O4 @Ag "Nanospheres".

    PubMed

    Hemmateenejad, Bahram; Shamsipur, Mojtaba; Jalili-Jahani, Naser

    2016-01-01

    Nanospheres of Ag-coated Fe3 O4 were successfully synthesized and characterized. Photocatalytic properties of Fe3 O4 @Ag composites have been investigated using steady-state studies and laser pulse excitations. Accumulation of the electrons in the Ag shell was detected from the shift in the surface plasmon band from 430 to 405 nm, which was discharged when an electron acceptor such as O2 , Thionine (TH) or C60 was introduced into the system. Charge equilibration with redox couple such as C60 (●-) /C60 indicated the ability of these core-shell structures to carry out photocatalytic reduction reactions. As well, outer Ag layer could boost charge separation in magnetic core through dual effects of Schottky junction and localized surface plasmonic resonance (LSPR)-powered band gap breaking effect under sunlight irradiation; resulted in higher photocatalytic degradation of diphenylamine (DPA). The maximum photocatalytic degradation rate was achieved at optimum amount of Ag-NP loading to products. Adsorption studies confirmed that degradation of DPA dominantly occurred in solution. Moderately renewability of the nanocatalysts under sunlight was due to oxidation and dissolution of the outer Ag layer.

  16. Physical Performance and Physical Activity in Older Adults: Associated but Separate Domains of Physical Function in Old Age

    PubMed Central

    van Lummel, Rob C.; Walgaard, Stefan; Pijnappels, Mirjam; Elders, Petra J. M.; Garcia-Aymerich, Judith; van Dieën, Jaap H.; Beek, Peter J.

    2015-01-01

    Background Physical function is a crucial factor in the prevention and treatment of health conditions in older adults and is usually measured objectively with physical performance tests and/or physical activity monitoring. Objective To examine whether 1) physical performance (PP) and physical activity (PA) constitute separate domains of physical function; 2) differentiation of PA classes is more informative than overall PA. Design Cross-sectional study to explore the relationships within and among PP and PA measures. Methods In 49 older participants (83±7 years; M±SD), performance-based tests were conducted and PA was measured for one week. Activity monitor data were reduced in terms of duration, periods, and mean duration of periods of lying, sitting, standing and locomotion. The relation between and within PP scores and PA outcomes were analysed using rank order correlation and factor analysis. Results Factor structure after varimax rotation revealed two orthogonal factors explaining 78% of the variance in the data: one comprising all PA variables and one comprising all PP variables. PP scores correlated moderately with PA in daily life. Differentiation of activity types and quantification of their duration, intensity and frequency of occurrence provided stronger associations with PP, as compared to a single measure of acceleration expressing overall PA. Limitations For independent validation, the conclusions about the validity of the presented conceptual framework and its clinical implications need to be confirmed in other studies. Conclusions PP and PA represent associated but separate domains of physical function, suggesting that an improvement of PP does not automatically imply an increase of PA, i.e. a change to a more active lifestyle. Differentiation of activity classes in the analysis of PA provides more insights into PA and its association with PP than using a single overall measure of acceleration. PMID:26630268

  17. A reduced energy supply strategy in active vibration control

    NASA Astrophysics Data System (ADS)

    Ichchou, M. N.; Loukil, T.; Bareille, O.; Chamberland, G.; Qiu, J.

    2011-12-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings.

  18. Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO.

    PubMed

    Xingling, Shao; Honglun, Wang

    2015-07-01

    This paper proposes a novel composite integrated guidance and control (IGC) law for missile intercepting against unknown maneuvering target with multiple uncertainties and control constraint. First, by using back-stepping technique, the proposed IGC law design is separated into guidance loop and control loop. The unknown target maneuvers and variations of aerodynamics parameters in guidance and control loop are viewed as uncertainties, which are estimated and compensated by designed model-assisted reduced-order extended state observer (ESO). Second, based on the principle of active disturbance rejection control (ADRC), enhanced feedback linearization (FL) based control law is implemented for the IGC model using the estimates generated by reduced-order ESO. In addition, performance analysis and comparisons between ESO and reduced-order ESO are examined. Nonlinear tracking differentiator is employed to construct the derivative of virtual control command in the control loop. Third, the closed-loop stability for the considered system is established. Finally, the effectiveness of the proposed IGC law in enhanced interception performance such as smooth interception course, improved robustness against multiple uncertainties as well as reduced control consumption during initial phase are demonstrated through simulations.

  19. Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO.

    PubMed

    Xingling, Shao; Honglun, Wang

    2015-07-01

    This paper proposes a novel composite integrated guidance and control (IGC) law for missile intercepting against unknown maneuvering target with multiple uncertainties and control constraint. First, by using back-stepping technique, the proposed IGC law design is separated into guidance loop and control loop. The unknown target maneuvers and variations of aerodynamics parameters in guidance and control loop are viewed as uncertainties, which are estimated and compensated by designed model-assisted reduced-order extended state observer (ESO). Second, based on the principle of active disturbance rejection control (ADRC), enhanced feedback linearization (FL) based control law is implemented for the IGC model using the estimates generated by reduced-order ESO. In addition, performance analysis and comparisons between ESO and reduced-order ESO are examined. Nonlinear tracking differentiator is employed to construct the derivative of virtual control command in the control loop. Third, the closed-loop stability for the considered system is established. Finally, the effectiveness of the proposed IGC law in enhanced interception performance such as smooth interception course, improved robustness against multiple uncertainties as well as reduced control consumption during initial phase are demonstrated through simulations. PMID:25776190

  20. A Hybrid Nonlinear Control Scheme for Active Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Xia, F.; Albritton, N. G.; Hung, J. Y.; Nelms, R. M.

    1996-01-01

    A nonlinear control scheme for active magnetic bearings is presented in this work. Magnet winding currents are chosen as control inputs for the electromechanical dynamics, which are linearized using feedback linearization. Then, the desired magnet currents are enforced by sliding mode control design of the electromagnetic dynamics. The overall control scheme is described by a multiple loop block diagram; the approach also falls in the class of nonlinear controls that are collectively known as the 'integrator backstepping' method. Control system hardware and new switching power electronics for implementing the controller are described. Various experiments and simulation results are presented to demonstrate the concepts' potentials.