Science.gov

Sample records for active serine proteases

  1. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    SciTech Connect

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-09-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: > Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. > Bt-VSP activates prothrombin. > Bt-VSP directly degrades fibrinogen into fibrin degradation products. > Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  2. Serine protease activation of near-silent epithelial Na+ channels.

    PubMed

    Caldwell, Ray A; Boucher, Richard C; Stutts, M Jackson

    2004-01-01

    The regulation of epithelial Na+ channel (ENaC) function is critical for normal salt and water balance. This regulation is achieved through cell surface insertion/retrieval of channels, by changes in channel open probability (Po), or through a combination of these processes. Epithelium-derived serine proteases, including channel activating protease (CAP) and prostasin, regulate epithelial Na+ transport, but the molecular mechanism is unknown. We tested the hypothesis that extracellular serine proteases activate a near-silent ENaC population resident in the plasma membrane. Single-channel events were recorded in outside-out patches from fibroblasts (NIH/3T3) stably expressing rat alpha-, beta-, and gamma-subunits (rENaC), before and during exposure to trypsin, a serine protease homologous to CAP and prostasin. Under baseline conditions, near-silent patches were defined as having rENaC activity (NPo) < 0.03, where N is the number of channels. Within 1-5 min of 3 microg/ml bath trypsin superfusion, NPo increased approximately 66-fold (n = 7). In patches observed to contain a single functional channel, trypsin increased Po from 0.02 +/- 0.01 to 0.57 +/- 0.03 (n = 3, mean +/- SE), resulting from the combination of an increased channel open time and decreased channel closed time. Catalytic activity was required for activation of near-silent ENaC. Channel conductance and the Na+/Li+ current ratio with trypsin were similar to control values. Modulation of ENaC Po by endogenous epithelial serine proteases is a potentially important regulator of epithelial Na+ transport, distinct from the regulation achieved by hormone-induced plasma membrane insertion of channels. PMID:12967915

  3. Cloning, expression and activity analysis of a novel fibrinolytic serine protease from Arenicola cristata

    NASA Astrophysics Data System (ADS)

    Zhao, Chunling; Ju, Jiyu

    2015-06-01

    The full-length cDNA of a protease gene from a marine annelid Arenicola cristata was amplified through rapid amplification of cDNA ends technique and sequenced. The size of the cDNA was 936 bp in length, including an open reading frame encoding a polypeptide of 270 amino acid residues. The deduced amino acid sequnce consisted of pro- and mature sequences. The protease belonged to the serine protease family because it contained the highly conserved sequence GDSGGP. This protease was novel as it showed a low amino acid sequence similarity (< 40%) to other serine proteases. The gene encoding the active form of A. cristata serine protease was cloned and expressed in E. coli. Purified recombinant protease in a supernatant could dissolve an artificial fibrin plate with plasminogen-rich fibrin, whereas the plasminogen-free fibrin showed no clear zone caused by hydrolysis. This result suggested that the recombinant protease showed an indirect fibrinolytic activity of dissolving fibrin, and was probably a plasminogen activator. A rat model with venous thrombosis was established to demonstrate that the recombinant protease could also hydrolyze blood clot in vivo. Therefore, this recombinant protease may be used as a thrombolytic agent for thrombosis treatment. To our knowledge, this study is the first of reporting the fibrinolytic serine protease gene in A. cristata.

  4. Proteolytic Activation of the Protease-activated Receptor (PAR)-2 by the Glycosylphosphatidylinositol-anchored Serine Protease Testisin*

    PubMed Central

    Driesbaugh, Kathryn H.; Buzza, Marguerite S.; Martin, Erik W.; Conway, Gregory D.; Kao, Joseph P. Y.; Antalis, Toni M.

    2015-01-01

    Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca2+ mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. PMID:25519908

  5. Serine Protease Activation Essential for Endothelial-Mesenchymal Transition in Vascular Calcification

    PubMed Central

    Yao, Jiayi; Guihard, Pierre J.; Blazquez-Medela, Ana M.; Guo, Yina; Moon, Jeremiah H.; Jumabay, Medet; Boström, Kristina I.; Yao, Yucheng

    2015-01-01

    Rationale Endothelial cells have the ability to undergo endothelial-mesenchymal transitions (EndMTs), by which they acquire a mesenchymal phenotype and stem-cell like characteristics. We previously found that EndMTs ocurred in the endothelium deficient in matrix Gla protein (MGP) enabling endothelial cells to contribute cells to vascular calcification. However, the mechanism responsible for initiating EndMTs is not fully understood. Objective To determine the role of specific serine proteases and sex determining region Y-box 2 (Sox2) in the initiation of EndMTs. Methods and Results In this study, we used in vivo and in vitro models of vascular calcification to demonstrate that serine proteases and Sox2 are essential for the initiation of EndMTs in MGP-deficient endothelium. We showed that expression of a group of specific serine proteases was highly induced in endothelial cells at sites of vascular calcification in Mgp null aortas. Treatment with serine protease inhibitors decreased both stem-cell marker expression and vascular calcification. In human aortic endothelial cells, this group of serine proteases also induced EndMTs, and the activation of proteases was mediated by Sox2. Knockdown of the serine proteases or Sox2 diminished EndMTs and calcification. Endothelial-specific deletion of Sox2 decreased expression of stem-cell markers and aortic calcification in MGP-deficient mice. Conclusions Our results suggest that Sox2-mediated activation of specific serine proteases is essential for initiating EndMTs, and thus, may provide new therapeutic targets for treating vascular calcification. PMID:26265629

  6. Unexpected Activity of a Novel Kunitz-type Inhibitor: INHIBITION OF CYSTEINE PROTEASES BUT NOT SERINE PROTEASES.

    PubMed

    Smith, David; Tikhonova, Irina G; Jewhurst, Heather L; Drysdale, Orla C; Dvořák, Jan; Robinson, Mark W; Cwiklinski, Krystyna; Dalton, John P

    2016-09-01

    Kunitz-type (KT) protease inhibitors are low molecular weight proteins classically defined as serine protease inhibitors. We identified a novel secreted KT inhibitor associated with the gut and parenchymal tissues of the infective juvenile stage of Fasciola hepatica, a helminth parasite of medical and veterinary importance. Unexpectedly, recombinant KT inhibitor (rFhKT1) exhibited no inhibitory activity toward serine proteases but was a potent inhibitor of the major secreted cathepsin L cysteine proteases of F. hepatica, FhCL1 and FhCL2, and of human cathepsins L and K (Ki = 0.4-27 nm). FhKT1 prevented the auto-catalytic activation of FhCL1 and FhCL2 and formed stable complexes with the mature enzymes. Pulldown experiments from adult parasite culture medium showed that rFhKT1 interacts specifically with native secreted FhCL1, FhCL2, and FhCL5. Substitution of the unusual P1 Leu(15) within the exposed reactive loop of FhKT1 for the more commonly found Arg (FhKT1Leu(15)/Arg(15)) had modest adverse effects on the cysteine protease inhibition but conferred potent activity against the serine protease trypsin (Ki = 1.5 nm). Computational docking and sequence analysis provided hypotheses for the exclusive binding of FhKT1 to cysteine proteases, the importance of the Leu(15) in anchoring the inhibitor into the S2 active site pocket, and the inhibitor's selectivity toward FhCL1, FhCL2, and human cathepsins L and K. FhKT1 represents a novel evolutionary adaptation of KT protease inhibitors by F. hepatica, with its prime purpose likely in the regulation of the major parasite-secreted proteases and/or cathepsin L-like proteases of its host.

  7. Gastrointestinal absorption and biological activities of serine and cysteine proteases of animal and plant origin: review on absorption of serine and cysteine proteases.

    PubMed

    Lorkowski, Gerhard

    2012-01-01

    Research has confirmed that peptides and larger protein molecules pass through the mucosal barrier of the gastrointestinal tract. Orally administered serine and cysteine proteases of plant and animal origin also reach blood and lymph as intact, high molecular weight and physiologically active protein molecules. Their absorption may be supported by a self-enhanced paracellular transport mechanism resulting in sub-nanomolar concentration of transiently free protease molecules or, in a complex with anti-proteases, at higher concentrations. Data from pharmacokinetic investigations reveals dose linearity for maximum plasma levels of free proteases not unusual for body proteases and a high inter-individual variability. There is no interference with each other after oral administration of protease combinations, and absorption follows an unusual invasion and elimination kinetic due to slow velocity of absorption and a fast 100% protein binding to anti-proteases. Oral application of proteases leads to increased proteolytic serum activity and increased plasma concentrations of the corresponding anti-proteases. Their biological activity is determined by their proteolytic activity as free proteases on soluble peptides/proteins or cell surface receptors (e.g. protease activated receptors) and their activity in the complex formed with their specific and/or unspecific anti-proteases. The anti-protease-complexes, during immune reaction and injuries often loaded with different cytokines, are cleared from body fluids and tissue by receptor mediated endocytosis on hepatocytes and/or blood cells. Oral administration of enteric coated tablets containing proteolytic enzymes of plant and animal origin may be a safe method to stabilize, positively influence or enhance physiological and immunological processes during disease processes and in healthy consumers.

  8. Gastrointestinal absorption and biological activities of serine and cysteine proteases of animal and plant origin: review on absorption of serine and cysteine proteases

    PubMed Central

    Lorkowski, Gerhard

    2012-01-01

    Research has confirmed that peptides and larger protein molecules pass through the mucosal barrier of the gastrointestinal tract. Orally administered serine and cysteine proteases of plant and animal origin also reach blood and lymph as intact, high molecular weight and physiologically active protein molecules. Their absorption may be supported by a self-enhanced paracellular transport mechanism resulting in sub-nanomolar concentration of transiently free protease molecules or, in a complex with anti-proteases, at higher concentrations. Data from pharmacokinetic investigations reveals dose linearity for maximum plasma levels of free proteases not unusual for body proteases and a high inter-individual variability. There is no interference with each other after oral administration of protease combinations, and absorption follows an unusual invasion and elimination kinetic due to slow velocity of absorption and a fast 100% protein binding to anti-proteases. Oral application of proteases leads to increased proteolytic serum activity and increased plasma concentrations of the corresponding anti-proteases. Their biological activity is determined by their proteolytic activity as free proteases on soluble peptides/proteins or cell surface receptors (e.g. protease activated receptors) and their activity in the complex formed with their specific and/or unspecific anti-proteases. The anti-protease-complexes, during immune reaction and injuries often loaded with different cytokines, are cleared from body fluids and tissue by receptor mediated endocytosis on hepatocytes and/or blood cells. Oral administration of enteric coated tablets containing proteolytic enzymes of plant and animal origin may be a safe method to stabilize, positively influence or enhance physiological and immunological processes during disease processes and in healthy consumers. PMID:22461953

  9. Cleavage and activation of human factor IX by serine proteases

    SciTech Connect

    Enfield, D.L.; Thompson, A.R.

    1984-10-01

    Human factor IX circulates as a single-chain glycoprotein. Upon activation in vitro, it is cleaved into disulfide-linked light and heavy chains and an activation peptide. After reduction of activated /sup 125/I-factor IX, the heavy and light chains are readily identified by gel electrophoresis. A direct, immunoradiometric assay for factor IXa was developed to assess activation of factor IX for proteases that cleaved it. The assay utilized radiolabeled antithrombin III with heparin to identify the active site and antibodies to distinguish factor IX. After cleavage of factor IX by factor XIa, factor VIIa-tissue thromboplastin complex, or the factor X-activating enzyme from Russell's viper venom, antithrombin III bound readily to factor IXa. Cleavage of /sup 125/I-factor IX by trypsin, chymotrypsin, and granulocyte elastase in the presence of calcium yielded major polypeptide fragments of the sizes of the factor XIa-generated light and heavy chains. When the immunoradiometric assay was used to assess trypsin-cleaved factor IX, the product bound antithrombin III, but not maximally. After digesting with insolubilized trypsin, clotting activity confirmed activation. In evaluating activation of factor IX, physical evidence of activation cleavages does not necessarily correlate with generation of an active site.

  10. Alternaria-derived serine protease activity drives IL-33–mediated asthma exacerbations

    PubMed Central

    Snelgrove, Robert J.; Gregory, Lisa G.; Peiró, Teresa; Akthar, Samia; Campbell, Gaynor A.; Walker, Simone A.; Lloyd, Clare M.

    2014-01-01

    Background The fungal allergen Alternaria alternata is implicated in severe asthma and rapid onset life-threatening exacerbations of disease. However, the mechanisms that underlie this severe pathogenicity remain unclear. Objective We sought to investigate the mechanism whereby Alternaria was capable of initiating severe, rapid onset allergic inflammation. Methods IL-33 levels were quantified in wild-type and ST2−/− mice that lacked the IL-33 receptor given inhaled house dust mite, cat dander, or Alternaria, and the effect of inhibiting allergen-specific protease activities on IL-33 levels was assessed. An exacerbation model of allergic airway disease was established whereby mice were sensitized with house dust mite before subsequently being challenged with Alternaria (with or without serine protease activity), and inflammation, remodeling, and lung function assessed 24 hours later. Results Alternaria, but not other common aeroallergens, possessed intrinsic serine protease activity that elicited the rapid release of IL-33 into the airways of mice through a mechanism that was dependent upon the activation of protease activated receptor-2 and adenosine triphosphate signaling. The unique capacity of Alternaria to drive this early IL-33 release resulted in a greater pulmonary inflammation by 24 hours after challenge relative to the common aeroallergen house dust mite. Furthermore, this Alternaria serine protease–IL-33 axis triggered a rapid, augmented inflammation, mucus release, and loss of lung function in our exacerbation model. Conclusion Alternaria-specific serine protease activity causes rapid IL-33 release, which underlies the development of a robust TH2 inflammation and exacerbation of allergic airway disease. PMID:24636086

  11. A novel serine protease secreted by medicinal maggots enhances plasminogen activator-induced fibrinolysis.

    PubMed

    van der Plas, Mariena J A; Andersen, Anders S; Nazir, Sheresma; van Tilburg, Nico H; Oestergaard, Peter R; Krogfelt, Karen A; van Dissel, Jaap T; Hensbergen, Paul J; Bertina, Rogier M; Nibbering, Peter H

    2014-01-01

    Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As haemostatic processes play an important role in wound healing, this study focused on the effects of maggot secretions on coagulation and fibrinolysis. The results showed that maggot secretions enhance plasminogen activator-induced formation of plasmin and fibrinolysis in a dose- and time-dependent manner. By contrast, coagulation was not affected by secretions. Biochemical studies indicated that a novel serine protease within secretions, designated Sericase, cleaved plasminogen to several fragments. Recombinant Sericase degraded plasminogen leading amongst others to the formation of the mini-plasminogen like fragment Val454-plasminogen. In addition, the presence of a non-proteolytic cofactor in secretions was discovered, which plays a role in the enhancement of plasminogen activator-induced fibrinolysis by Sericase. We conclude from our in vitro studies that the novel serine protease Sericase, with the aid of a non-proteolytic cofactor, enhances plasminogen activator-induced fibrinolysis.

  12. A novel serine protease with human fibrino(geno)lytic activities from Artocarpus heterophyllus latex.

    PubMed

    Siritapetawee, Jaruwan; Thumanu, Kanjana; Sojikul, Punchapat; Thammasirirak, Sompong

    2012-07-01

    A protease was isolated and purified from Artocarpus heterophyllus (jackfruit) latex and designated as a 48-kDa antimicrobial protease (AMP48) in a previous publication. In this work, the enzyme was characterized for more biochemical and medicinal properties. Enzyme activity of AMP48 was strongly inhibited by phenylmethanesulfonyl fluoride and soybean trypsin inhibitor, indicating that the enzyme was a plant serine protease. The N-terminal amino acid sequences (A-Q-E-G-G-K-D-D-D-G-G) of AMP48 had no sequence similarity matches with any sequence databases of BLAST search and other plant serine protease. The secondary structure of this enzyme was composed of high α-helix (51%) and low β-sheet (9%). AMP48 had fibrinogenolytic activity with maximal activity between 55 and 60°C at pH 8. The enzyme efficiently hydrolyzed α followed by partially hydrolyzed β and γ subunits of human fibrinogen. In addition, the fibrinolytic activity was observed through the degradation products by SDS-PAGE and emphasized its activity by monitoring the alteration of secondary structure of fibrin clot after enzyme digestion using ATR-FTIR spectroscopy. This study presented the potential role to use AMP48 as antithrombotic for treatment thromboembolic disorders such as strokes, pulmonary emboli and deep vein thrombosis.

  13. Serine proteases of parasitic helminths.

    PubMed

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-02-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  14. Serine Proteases of Parasitic Helminths

    PubMed Central

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-01-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  15. Intestinal protease-activated receptor-2 and fecal serine protease activity are increased in canine inflammatory bowel disease and may contribute to intestinal cytokine expression.

    PubMed

    Maeda, Shingo; Ohno, Koichi; Uchida, Kazuyuki; Igarashi, Hirotaka; Goto-Koshino, Yuko; Fujino, Yasuhito; Tsujimoto, Hajime

    2014-08-01

    Serine proteases elicit cellular responses via protease-activated receptor-2 (PAR-2) which is known to regulate inflammation and the immune response. Although the gastrointestinal tract is exposed to large amounts of proteolytic enzymes, the role of PAR-2 in canine inflammatory bowel disease (IBD) remains unclear. The objective of this study was to investigate the effects of PAR-2 activation on inflammatory cytokine/chemokine gene expression in canine intestine and the expression of intestinal PAR-2 and fecal serine protease activity in dogs with IBD. Duodenal biopsies from healthy dogs were cultured and treated ex vivo with trypsin or PAR-2 agonist peptide, and inflammatory cytokine/chemokine gene expression in the tissues was then quantified by real-time PCR. PAR-2 mRNA and protein expression levels in the duodenal mucosa were examined by real-time PCR and immunohistochemistry, respectively. Fecal serine protease activity was determined by azocasein assay. In ex vivo-cultured duodenum, trypsin and PAR-2 agonist peptide induced significant up-regulation of mRNA expression levels of interleukin-1 β (IL-1β), IL-8, mucosae-associated epithelial chemokine (MEC) and fractalkine, and this up-regulation was inhibited by a serine protease inhibitor. Duodenal PAR-2 mRNA and protein expression levels were higher in dogs with IBD than in healthy control dogs. Fecal serine protease activity was significantly elevated in dogs with IBD, and the level of activity correlated positively with the clinical severity score. These results suggest that PAR-2 may contribute to the pathogenesis of canine IBD by inducing expression of inflammatory mediators in response to luminal serine proteases.

  16. Broad Spectrum Activity of a Lectin-Like Bacterial Serine Protease Family on Human Leukocytes

    PubMed Central

    Ayala-Lujan, Jorge Luis; Vijayakumar, Vidhya; Gong, Mei; Smith, Rachel; Santiago, Araceli E.; Ruiz-Perez, Fernando

    2014-01-01

    The serine protease autotransporter from Enterobacteriaceae (SPATE) family, which number more than 25 proteases with apparent diverse functions, have been phylogenetically divided into two distinct classes, designated 1 and 2. We recently demonstrated that Pic and Tsh, two members of the class-2 SPATE family produced by intestinal and extraintestinal pathogenic E. coli, were able to cleave a number of O-glycosylated proteins on neutrophils and lymphocytes resulting in impaired leukocyte functions. Here we show that most members of the class-2 SPATE family have lectin-like properties and exhibit differential protease activity reliant on glycoprotein type and cell lineage. Protease activity was seen in virtually all tested O-glycosylated proteins including CD34, CD55, CD164, TIM1, TIM3, TIM4 and C1-INH. We also show that although SPATE proteins bound and cleaved glycoproteins more efficiently on granulocytes and monocytes, they also targeted glycoproteins on B, T and natural killer lymphocytes. Finally, we found that the characteristic domain-2 of class-2 SPATEs is not required for glycoprotease activity, but single amino acid mutations in Pic domain-1 to those residues naturally occurring in domain-1 of SepA, were sufficient to hamper Pic glycoprotease activity. This study shows that most class-2 SPATEs have redundant activities and suggest that they may function as immunomodulators at several levels of the immune system. PMID:25251283

  17. Collagenolytic activity related to metalloproteases (and serine proteases) in the fish parasite Hysterothylacium aduncum (Nematoda: Anisakidae).

    PubMed

    Malagón, David; Adroher, Francisco Javier; Díaz-López, Manuel; Benítez, Rocío

    2010-06-11

    Proteases play a vital role in both the life cycle of parasites and the parasite-host relationship and are considered important virulence factors. In the present study, the presence of proteases with collagenolytic activity was investigated in the fish nematode Hysterothylacium aduncum during in vitro development. Collagenolytic activity was found in all studied developmental stages of the nematode (third [L3] and fourth [L4] larval stages and adults). In L3, the activity was maximum at pH 6.5 and, in the other stages, at 7.0. Pepsin is known to favour in vitro development of the worm, but, in this study, collagenolytic activity was shown to be significantly greater when no pepsin was added to the culture medium (at pH 6.5, p = 0.011). At pH 7.0, most activity was observed in the immature adult, after the final moult, suggesting that the collagenolytic activity may be involved in remodelling of the cuticle and in sexual maturity. On the other hand, at pH 6.5, activity may be related to tissue migration by L3 within the host. Using specific inhibitors, it was demonstrated that most of the collagenolytic activity detected in all the developmental stages was due to metalloproteases (40 to 100%), although serine proteases were also detected in L4 and adults (10 to 30%). PMID:20662369

  18. A Novel Serine Protease Secreted by Medicinal Maggots Enhances Plasminogen Activator-Induced Fibrinolysis

    PubMed Central

    van der Plas, Mariena J. A.; Andersen, Anders S.; Nazir, Sheresma; van Tilburg, Nico H.; Oestergaard, Peter R.; Krogfelt, Karen A.; van Dissel, Jaap T.; Hensbergen, Paul J.

    2014-01-01

    Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As haemostatic processes play an important role in wound healing, this study focused on the effects of maggot secretions on coagulation and fibrinolysis. The results showed that maggot secretions enhance plasminogen activator-induced formation of plasmin and fibrinolysis in a dose- and time-dependent manner. By contrast, coagulation was not affected by secretions. Biochemical studies indicated that a novel serine protease within secretions, designated Sericase, cleaved plasminogen to several fragments. Recombinant Sericase degraded plasminogen leading amongst others to the formation of the mini-plasminogen like fragment Val454-plasminogen. In addition, the presence of a non-proteolytic cofactor in secretions was discovered, which plays a role in the enhancement of plasminogen activator-induced fibrinolysis by Sericase. We conclude from our in vitro studies that the novel serine protease Sericase, with the aid of a non-proteolytic cofactor, enhances plasminogen activator-induced fibrinolysis. PMID:24647546

  19. Characterization of a Kunitz-type serine protease inhibitor from Solanum tuberosum having lectin activity.

    PubMed

    Shah, Kunal R; Patel, Dhaval K; Pappachan, Anju; Prabha, C Ratna; Singh, Desh Deepak

    2016-02-01

    Plant lectins and protease inhibitors constitute a class of proteins which plays a crucial role in plant defense. In our continuing investigations on lectins from plants, we have isolated, purified and characterized a protein of about 20 kDa, named PotHg, showing hemagglutination activity from tubers of Indian potato, Solanum tuberosum. De novo sequencing and MS/MS analysis confirmed that the purified protein was a Kunitz-type serine protease inhibitor having two chains (15 kDa and 5 kDa). SDS and native PAGE analysis showed that the protein was glycosylated and was a heterodimer of about 15 and 5 kDa subunits. PotHg agglutinated rabbit erythrocytes with specific activity of 640 H.U./mg which was inhibited by complex sugars like fetuin. PotHg retained hemagglutination activity over a pH range 4-9 and up to 80°C. Mannose and galactose interacted with the PotHg with a dissociation constant (Kd) of 1.5×10(-3) M and 2.8×10(-3) M, respectively as determined through fluorescence studies. Fluorescence studies suggested the involvement of a tryptophan in sugar binding which was further confirmed through modification of tryptophan residues using N-bromosuccinimide. Circular dichroism (CD) studies showed that PotHg contains mostly β sheets (∼45%) and loops which is in line with previously characterized protease inhibitors and modeling studies. There are previous reports of Kunitz-type protease inhibitors showing lectin like activity from Peltophorum dubium and Labramia bojeri. This is the first report of a Kunitz-type protease inhibitor showing lectin like activity from a major crop plant and this makes PotHg an interesting candidate for further investigation. PMID:26645142

  20. Characterization of a Kunitz-type serine protease inhibitor from Solanum tuberosum having lectin activity.

    PubMed

    Shah, Kunal R; Patel, Dhaval K; Pappachan, Anju; Prabha, C Ratna; Singh, Desh Deepak

    2016-02-01

    Plant lectins and protease inhibitors constitute a class of proteins which plays a crucial role in plant defense. In our continuing investigations on lectins from plants, we have isolated, purified and characterized a protein of about 20 kDa, named PotHg, showing hemagglutination activity from tubers of Indian potato, Solanum tuberosum. De novo sequencing and MS/MS analysis confirmed that the purified protein was a Kunitz-type serine protease inhibitor having two chains (15 kDa and 5 kDa). SDS and native PAGE analysis showed that the protein was glycosylated and was a heterodimer of about 15 and 5 kDa subunits. PotHg agglutinated rabbit erythrocytes with specific activity of 640 H.U./mg which was inhibited by complex sugars like fetuin. PotHg retained hemagglutination activity over a pH range 4-9 and up to 80°C. Mannose and galactose interacted with the PotHg with a dissociation constant (Kd) of 1.5×10(-3) M and 2.8×10(-3) M, respectively as determined through fluorescence studies. Fluorescence studies suggested the involvement of a tryptophan in sugar binding which was further confirmed through modification of tryptophan residues using N-bromosuccinimide. Circular dichroism (CD) studies showed that PotHg contains mostly β sheets (∼45%) and loops which is in line with previously characterized protease inhibitors and modeling studies. There are previous reports of Kunitz-type protease inhibitors showing lectin like activity from Peltophorum dubium and Labramia bojeri. This is the first report of a Kunitz-type protease inhibitor showing lectin like activity from a major crop plant and this makes PotHg an interesting candidate for further investigation.

  1. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement

    PubMed Central

    Ortmann, Weronika; Kolaczkowska, Elzbieta

    2016-01-01

    Formation of extracellular traps (ETs) capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA), histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i) facilitating decondensation of chromatin by citrullination of histones, and (ii) serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS)-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27) and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates. PMID:27416067

  2. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement.

    PubMed

    Homa, Joanna; Ortmann, Weronika; Kolaczkowska, Elzbieta

    2016-01-01

    Formation of extracellular traps (ETs) capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA), histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i) facilitating decondensation of chromatin by citrullination of histones, and (ii) serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS)-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27) and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates. PMID:27416067

  3. Serine protease inhibitors of parasitic helminths.

    PubMed

    Molehin, Adebayo J; Gobert, Geoffrey N; McManus, Donald P

    2012-05-01

    Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships. PMID:22310379

  4. Neutral serine proteases of neutrophils.

    PubMed

    Kettritz, Ralph

    2016-09-01

    Neutrophil serine proteases (NSPs) exercise tissue-degrading and microbial-killing effects. The spectrum of NSP-mediated functions grows continuously, not least because of methodological progress. Sensitive and specific FRET substrates were developed to study the proteolytic activity of each NSP member. Advanced biochemical methods are beginning to characterize common and specific NSP substrates. The resulting novel information indicates that NSPs contribute not only to genuine inflammatory neutrophil functions but also to autoimmunity, metabolic conditions, and cancer. Tight regulatory mechanisms control the proteolytic potential of NSPs. However, not all NSP functions depend on their enzymatic activity. Proteinase-3 (PR3) is somewhat unique among the NSPs for PR3 functions as an autoantigen. Patients with small-vessel vasculitis develop autoantibodies to PR3 that bind their target antigens on the neutrophil surface and trigger neutrophil activation. These activated cells subsequently contribute to vascular necrosis with life-threatening multiorgan failure. This article discusses various aspects of NSP biology and highlights translational aspects with strong clinical implications. PMID:27558338

  5. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior.

    PubMed

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H; Muyldermans, Serge; Declerck, Paul J; Huang, Mingdong; Andreasen, Peter A; Ngo, Jacky Chi Ki

    2016-07-15

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors.

  6. Cordysobin, a novel alkaline serine protease with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Cordyceps sobolifera.

    PubMed

    Wang, Shou-Xian; Liu, Yu; Zhang, Guo-Qing; Zhao, Shuang; Xu, Feng; Geng, Xiao-Li; Wang, He-Xiang

    2012-01-01

    A novel serine protease, designated as cordysobin, was purified from dried fruiting bodies of the mushroom Cordyceps sobolifera. The isolation procedure utilized ion exchange chromatography on DEAE-cellulose and SP-Sepharose followed by gel filtration on Superdex 75. The protease did not adsorb on DEAE-cellulose but bound to SP-Sepharose. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the protease resolved as a single band with an apparent molecular mass of 31 kDa. Its optimal pH was 10.0, and the optimal temperature was 65°C. The protease displayed a K(m) value of 0.41 μM and 13.44 μM·min⁻¹ using Suc-Leu-Leu-Val-Tyr-MCA as substrate at pH 10.0 and 37°C. Protease activity was enhanced by the Fe²⁺ ion at low concentration range of 1.25-10 mM and was strongly inhibited by Hg²⁺ up to 1.25 mM. The protease was strongly inhibited by chymostatin and phenylmethylsulfonyl fluoride (PMSF), suggesting that it is a serine protease. It manifested significant inhibitory activity toward HIV-1 reverse transcriptase (RT) with an IC₅₀ value of 8.2×10⁻³ μM, which is the highest anti-HIV-1 RT activity of reported mushroom proteins. PMID:22014786

  7. Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple.

    PubMed

    Banani, Houda; Spadaro, Davide; Zhang, Dianpeng; Matic, Slavica; Garibaldi, Angelo; Gullino, Maria Lodovica

    2014-07-16

    The yeast-like fungus Aureobasidium pullulans PL5 is a microbial antagonist against postharvest pathogens of fruits. The strain is able to produce hydrolases, including glucanases, chitinases and proteases. The alkaline serine protease gene ALP5 from A. pullulans was cloned, inserted into the vector pPIC9 to construct pPIC9/ALP5, and then expressed in Pichia pastoris strain KM71. ALP5 had a molecular mass of 42.9kDa after 5days growth with 1% methanol induction at 28°C. The recombinant protease expressed in P. pastoris showed its highest activity under alkaline conditions (at pH10) and a temperature of 50°C. The antifungal activity of the recombinant protease was investigated against Penicillium expansum, Botrytis cinerea, Monilinia fructicola and Alternaria alternata in vitro and on apple. The recombinant protease reduced significantly the spore germination and the germ tube length of the tested pathogens in PDB medium. The highest level of protease efficacy was observed against M. fructicola and B. cinerea, whereas a lower efficacy was observed against P. expansum and A. alternata indicating a possible effect of the pathogen cell wall composition on the proteolytic activity of the recombinant protease. The presence of protease was able to cause the swelling of the hyphae of B. cinerea, under an optical microscope. The recombinant protease expressed in P. pastoris was more active against the pathogens in vitro than the same enzyme expressed in E. coli in previous studies. The efficacy of ALP5 was also evaluated against the pathogens in vivo on cv Golden Delicious apples. The protease was more efficient in controlling M. fructicola, B. cinerea and P. expansum than A. alternata. However, the extent of the activity was dependent on the enzyme concentration and the length of fruit storage. This study demonstrated the capacity of the alkaline serine protease to keep its enzymatic activity for some days in the unfavorable environment of the fruit wounds. The alkaline

  8. The circadian Clock gene regulates acrosin activity of sperm through serine protease inhibitor A3K

    PubMed Central

    Cheng, Shuting; Liang, Xin; Wang, Yuhui; Jiang, Zhou; Liu, Yanyou; Hou, Wang; Li, Shiping; Zhang, Jing

    2015-01-01

    Our previous study found that CLOCK knockdown in the testes of male mice led to a reduced fertility, which might be associated with the lower acrosin activity. In this present study, we examined the differential expression in proteins of CLOCK knockdown sperm. Clock gene expression was knocked down in cells to confirm those differentially expressions and serine protease inhibitor SERPINA3K was identified as a potential target. The up-regulated SERPINA3K revealed an inverse relationship with Clock knockdown. Direct treatment of normal sperm with recombinant SERPINA3K protein inhibited the acrosin activity and reduced in vitro fertilization rate. The luciferase reporter gene assay showed that the down-regulated of Clock gene could activate the Serpina3k promoter, but this activation was not affected by the mutation of E-box core sequence. Co-IP demonstrated a natural interaction between SERPIAN3K and RORs (α and β). Taken together, these results demonstrated that SERPINA3K is involved in the Clock gene-mediated male fertility by regulating acrosin activity and provide the first evidence that SERPINA3K could be regulated by Clock gene via retinoic acid-related orphan receptor response elements. PMID:26264441

  9. Type II Transmembrane Serine Proteases*

    PubMed Central

    Bugge, Thomas H.; Antalis, Toni M.; Wu, Qingyu

    2009-01-01

    Analysis of genome and expressed sequence tag data bases at the turn of the millennium unveiled a new protease family named the type II transmembrane serine proteases (TTSPs) in a Journal of Biological Chemistry minireview (Hooper, J. D., Clements, J. A., Quigley, J. P., and Antalis, T. M. (2001) J. Biol. Chem. 276, 857–860). Since then, the number of known TTSPs has more than doubled, and more importantly, our understanding of the physiological functions of individual TTSPs and their contribution to human disease has greatly increased. Progress has also been made in identifying molecular substrates and endogenous inhibitors. This minireview summarizes the current knowledge of the rapidly advancing TTSP field. PMID:19487698

  10. Transcriptional activation of the human cytotoxic serine protease gene CSP-B in T lymphocytes.

    PubMed Central

    Hanson, R D; Ley, T J

    1990-01-01

    The cytotoxic serine protease B (CSP-B) gene is activated during cytotoxic T-lymphocyte maturation. In this report, we demonstrate that the PEER T-cell line (bearing gamma/delta T-cell receptors) accumulates CSP-B mRNA following exposure to 12-O-tetradecanoylphorbol-13-acetate (TPA) and N6-2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (bt2cAMP) because of transcriptional activation of the CSP-B gene. TPA and bt2cAMP act synergistically to induce CSP-B expression, since neither agent alone causes activation of CSP-B transcription or mRNA accumulation. Chromatin upstream from the CSP-B gene is resistant to DNase I digestion in untreated PEER cells, but becomes sensitive following TPA-bt2cAMP treatment. Upon activation of PEER cells, a DNase I-hypersensitive site forms upstream from the CSP-B gene within a region that is highly conserved in the mouse. Transient transfection of CSP-B promoter constructs identified two regulatory regions in the CSP-B 5'-flanking sequence, located at positions -609 to -202 and positions -202 to -80. The region from -615 to -63 is sufficient to activate a heterologous promoter in activated PEER cells, but activation is orientation specific, suggesting that this region behaves as an upstream promoter element rather than a classical enhancer. Consensus AP-1, AP-2, and cAMP response elements are found upstream from the CSP-B gene (as are several T-cell-specific consensus elements), but the roles of these elements in CSP-B gene activation have yet to be determined. Images PMID:2233710

  11. Structural Insights into the Protease-like Antigen Plasmodium falciparum SERA5 and Its Noncanonical Active-Site Serine

    SciTech Connect

    Hodder, Anthony N.; Malby, Robyn L.; Clarke, Oliver B.; Fairlie, W. Douglas; Colman, Peter M.; Crabb, Brendan S.; Smith, Brian J.

    2009-08-28

    The sera genes of the malaria-causing parasite Plasmodium encode a family of unique proteins that are maximally expressed at the time of egress of parasites from infected red blood cells. These multi-domain proteins are unique, containing a central papain-like cysteine-protease fragment enclosed between the disulfide-linked N- and C-terminal domains. However, the central fragment of several members of this family, including serine repeat antigen 5 (SERA5), contains a serine (S596) in place of the active-site cysteine. Here we report the crystal structure of the central protease-like domain of Plasmodium falciparum SERA5, revealing a number of anomalies in addition to the putative nucleophilic serine: (1) the structure of the putative active site is not conducive to binding substrate in the canonical cysteine-protease manner; (2) the side chain of D594 restricts access of substrate to the putative active site; and (3) the S{sub 2} specificity pocket is occupied by the side chain of Y735, reducing this site to a small depression on the protein surface. Attempts to determine the structure in complex with known inhibitors were not successful. Thus, despite having revealed its structure, the function of the catalytic domain of SERA5 remains an enigma.

  12. Serine Protease Autotransporters of Enterobacteriaceae (SPATEs): Biogenesis and Function

    PubMed Central

    Dautin, Nathalie

    2010-01-01

    Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) constitute a large family of proteases secreted by Escherichia coli and Shigella. SPATEs exhibit two distinct proteolytic activities. First, a C-terminal catalytic site triggers an intra-molecular cleavage that releases the N-terminal portion of these proteins in the extracellular medium. Second, the secreted N-terminal domains of SPATEs are themselves proteases; each contains a canonical serine-protease catalytic site. Some of these secreted proteases are toxins, eliciting various effects on mammalian cells. Here, we discuss the biogenesis of SPATEs and their function as toxins. PMID:22069633

  13. A bumblebee (Bombus ignitus) venom serine protease inhibitor that acts as a microbial serine protease inhibitor.

    PubMed

    Wan, Hu; Kim, Bo Yeon; Lee, Kwang Sik; Yoon, Hyung Joo; Lee, Kyung Yong; Jin, Byung Rae

    2014-01-01

    Serine protease inhibitors from bumblebee venom have been shown to block plasmin activity. In this study, we identified the protein BiVSPI from the venom of Bombus ignitus to be a serine protease inhibitor and an antimicrobial factor. BiVSPI is a 55-amino acid mature peptide with ten conserved cysteine residues and a P1 methionine residue. BiVSPI is expressed in the venom gland and also found in the venom as an 8-kDa peptide. Recombinant BiVSPI that was expressed in baculovirus-infected insect cells exhibited inhibitory activity against chymotrypsin but not trypsin. BiVSPI also inhibited microbial serine proteases, such as subtilisin A (Ki=6.57nM) and proteinase K (Ki=7.11nM). In addition, BiVSPI was shown to bind directly to Bacillus subtilis, Bacillus thuringiensis, and Beauveria bassiana but not to Escherichia coli. Consistent with these results, BiVSPI exhibited antimicrobial activity against Gram-positive bacteria and fungi. These findings provide evidence for a novel serine protease inhibitor in bumblebee venom that has antimicrobial functions.

  14. Role of the backbone conformation at position 7 in the structure and activity of marinostatin, an ester-linked serine protease inhibitor.

    PubMed

    Taichi, Misako; Yamazaki, Toshimasa; Nishiuchi, Yuji

    2012-09-01

    Rational design of inhibitors: The cis-amide backbone at position 7 in the serine protease inhibitor marinostatin was replaced with an E or Z olefin. The E olefin analogue was not active, but the Z analogue was. The cis conformation might play a critical role in organizing a canonical structure for binding to proteases.

  15. The pro-coagulant fibrinogenolytic serine protease isoenzymes purified from Daboia russelii russelii venom coagulate the blood through factor V activation: role of glycosylation on enzymatic activity.

    PubMed

    Mukherjee, Ashis K

    2014-01-01

    Proteases from Russell's viper venom (RVV) induce a variety of toxic effects in victim. Therefore, four new RVV protease isoenzymes of molecular mass 32901.044 Da, 333631.179 Da, 333571.472 Da, and 34594.776 Da, were characterized in this study. The first 10 N-terminal residues of these serine protease isoenzymes showed significant sequence homology with N-terminal sequences of snake venom thrombin-like and factor V-activating serine proteases, which was reconfirmed by peptide mass fingerprinting analysis. These proteases were found to be different from previously reported factor V activators isolated from snake venoms. These proteases showed significantly different fibrinogenolytic, BAEE-esterase and plasma clotting activities but no fibrinolytic, TAME-esterase or amidolytic activity against the chromogenic substrate for trypsin, thrombin, plasmin and factor Xa. Their Km and Vmax values towards fibrinogen were determined in the range of 6.6 to 10.5 µM and 111.0 to 125.5 units/mg protein, respectively. On the basis of fibrinogen degradation pattern, they may be classified as A/B serine proteases isolated from snake venom. These proteases contain ∼ 42% to 44% of N-linked carbohydrates by mass whereas partially deglycosylated enzymes showed significantly less catalytic activity as compared to native enzymes. In vitro these protease isoenzymes induce blood coagulation through factor V activation, whereas in vivo they provoke dose-dependent defibrinogenation and anticoagulant activity in the mouse model. At a dose of 5 mg/kg, none of these protease isoenzymes were found to be lethal in mice or house geckos, suggesting therapeutic application of these anticoagulant peptides for the prevention of thrombosis. PMID:24520323

  16. A Serine Protease Isolated from the Bristles of the Amazonic Caterpillar, Premolis semirufa, Is a Potent Complement System Activator

    PubMed Central

    Villas Boas, Isadora Maria; Pidde-Queiroz, Giselle; Magnoli, Fabio Carlos; Gonçalves-de-Andrade, Rute M.; van den Berg, Carmen W.; Tambourgi, Denise V.

    2015-01-01

    Background The caterpillar of the moth Premolis semirufa, commonly named pararama, is found in the Brazilian Amazon region. Accidental contact with the caterpillar bristles causes an intense itching sensation, followed by symptoms of an acute inflammation, which last for three to seven days after the first incident. After multiple accidents a chronic inflammatory reaction, called “Pararamose”, characterized by articular synovial membrane thickening with joint deformities common to chronic synovitis, frequently occurs. Although complement mediated inflammation may aid the host defense, inappropriate or excessive activation of the complement system and generation of anaphylatoxins can lead to inflammatory disorder and pathologies. The aim of the present study was to evaluate, in vitro, whether the Premolis semirufa’s bristles extract could interfere with the human complement system. Results The bristles extract was able to inhibit the haemolytic activity of the alternative pathway, as well as the activation of the lectin pathway, but had no effect on the classical pathway, and this inhibition seemed to be caused by activation and consumption of complement components. The extract induced the production of significant amounts of all three anaphylatoxins, C3a, C4a and C5a, promoted direct cleavage of C3, C4 and C5 and induced a significant generation of terminal complement complexes in normal human serum. By using molecular exclusion chromatography, a serine protease of 82 kDa, which activates complement, was isolated from P. semirufa bristles extract. The protease, named here as Ps82, reduced the haemolytic activity of the alternative and classical pathways and inhibited the lectin pathway. In addition, Ps82 induced the cleavage of C3, C4 and C5 and the generation of C3a and C4a in normal human serum and it was capable to cleave human purified C5 and generate C5a. The use of Phenanthroline, metalloprotease inhibitor, in the reactions did not significantly

  17. Enzyme specificity and effects of gyroxin, a serine protease from the venom of the South American rattlesnake Crotalus durissus terrificus, on protease-activated receptors.

    PubMed

    Yonamine, Camila M; Kondo, Marcia Y; Nering, Marcela B; Gouvêa, Iuri E; Okamoto, Débora; Andrade, Douglas; da Silva, José Alberto A; Prieto da Silva, Alvaro R B; Yamane, Tetsuo; Juliano, Maria A; Juliano, Luiz; Lapa, Antônio J; Hayashi, Mirian A F; Lima-Landman, Maria Teresa R

    2014-03-01

    Gyroxin is a serine protease displaying a thrombin-like activity found in the venom of the South American rattlesnake Crotalus durissus terrificus. Typically, intravenous injection of purified gyroxin induces a barrel rotation syndrome in mice. The serine protease thrombin activates platelets aggregation by cleaving and releasing a tethered N-terminus peptide from the G-protein-coupled receptors, known as protease-activated receptors (PARs). Gyroxin also presents pro-coagulant activity suggested to be dependent of PARs activation. In the present work, the effects of these serine proteases, namely gyroxin and thrombin, on PARs were comparatively studied by characterizing the hydrolytic specificity and kinetics using PARs-mimetic FRET peptides. We show for the first time that the short (sh) and long (lg) peptides mimetizing the PAR-1, -2, -3, and -4 activation sites are all hydrolyzed by gyroxin exclusively after the Arg residues. Thrombin also hydrolyzes PAR-1 and -4 after the Arg residue, but hydrolyzes sh and lg PAR-3 after the Lys residue. The kcat/KM values determined for gyroxin using sh and lg PAR-4 mimetic peptides were at least 2150 and 400 times smaller than those determined for thrombin, respectively. For the sh and lg PAR-2 mimetic peptides the kcat/KM values determined for gyroxin were at least 6500 and 2919 times smaller than those determined for trypsin, respectively. The kcat/KM values for gyroxin using the PAR-1 and -3 mimetic peptides could not be determined due to the extreme low hydrolysis velocity. Moreover, the functional studies of the effects of gyroxin on PARs were conducted in living cells using cultured astrocytes, which express all PARs. Despite the ability to cleavage the PAR-1, -2, -3, and -4 peptides, gyroxin was unable to activate the PARs expressed in astrocytes as determined by evaluating the cytosolic calcium mobilization. On the other hand, we also showed that gyroxin is able to interfere with the activation of PAR-1 by thrombin or

  18. Highly potent fibrinolytic serine protease from Streptomyces.

    PubMed

    Uesugi, Yoshiko; Usuki, Hirokazu; Iwabuchi, Masaki; Hatanaka, Tadashi

    2011-01-01

    We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis.

  19. Staphylococcal SplB Serine Protease Utilizes a Novel Molecular Mechanism of Activation*

    PubMed Central

    Pustelny, Katarzyna; Zdzalik, Michal; Stach, Natalia; Stec-Niemczyk, Justyna; Cichon, Przemyslaw; Czarna, Anna; Popowicz, Grzegorz; Mak, Pawel; Drag, Marcin; Salvesen, Guy S.; Wladyka, Benedykt; Potempa, Jan; Dubin, Adam; Dubin, Grzegorz

    2014-01-01

    Staphylococcal SplB protease belongs to the chymotrypsin family. Chymotrypsin zymogen is activated by proteolytic processing at the N terminus, resulting in significant structural rearrangement at the active site. Here, we demonstrate that the molecular mechanism of SplB protease activation differs significantly and we characterize the novel mechanism in detail. Using peptide and protein substrates we show that the native signal peptide, or any N-terminal extension, has an inhibitory effect on SplB. Only precise N-terminal processing releases the full proteolytic activity of the wild type analogously to chymotrypsin. However, comparison of the crystal structures of mature SplB and a zymogen mimic show no rearrangement at the active site whatsoever. Instead, only the formation of a unique hydrogen bond network, distant form the active site, by the new N-terminal glutamic acid of mature SplB is observed. The importance of this network and influence of particular hydrogen bond interactions at the N terminus on the catalytic process is demonstrated by evaluating the kinetics of a series of mutants. The results allow us to propose a consistent model where changes in the overall protein dynamics rather than structural rearrangement of the active site are involved in the activation process. PMID:24713703

  20. Vanadium inhibition of serine and cysteine proteases.

    PubMed

    Guerrieri, N; Cerletti, P; De Vincentiis, M; Salvati, A; Scippa, S

    1999-03-01

    A study was made on the effect of vanadium, in both the tetravalent state in vanadyl sulphate and in the pentavalent state in sodium meta-vanadate, and ortho-vanadate, on the proteolysis of azocasein by two serine proteases, trypsin and subtilisin and two cysteine proteases bromelain and papain. Also the proteolysis of bovine azoalbumin by serine proteases was considered. An inhibitory effect was present in all cases, except meta-vanadate with subtilisin. The oxidation level of vanadium by itself did not determine the inhibition kinetics, which also depended on the type and composition of the vanadium containing molecule and on the enzyme assayed. The pattern of inhibition was similar for proteases belonging to the same class. The highest inhibition was obtained with meta-vanadate on papain and with vanadyl sulphate on bromelain.

  1. Purification and characterization of a serine protease with fibrinolytic activity from Tenodera sinensis (praying mantis).

    PubMed

    Hahn, B S; Cho, S Y; Wu, S J; Chang, I M; Baek, K; Kim, Y C; Kim, Y S

    1999-03-19

    Mantis egg fibrolase (MEF) was purified from the egg cases of Tenodera sinensis using ammonium sulfate fractionation, gel filtration on Bio-Gel P-60 and affinity chromatography on DEAE Affi-Gel blue gel. The protease was assessed homogeneous by SDS-polyacrylamide gel electrophoresis and has a molecular mass of 31500 Da. An isoelectric point of 6.1 was determined by isoelectric focusing. Amino acid sequencing of the N-terminal region established a primary structure composed of Ala-Asp-Val-Val-Gln-Gly-Asp-Ala-Pro-Ser. MEF readily digested the Aalpha- and Bbeta-chains of fibrinogen and more slowly the gamma-chain. The nonspecific action of the enzyme results in extensive hydrolysis of fibrinogen and fibrin releasing a variety of fibrinopeptide. The enzyme is inactivated by Cu2+ and Zn2+ and inhibited by PMSF and chymostatin, yet elastinal, aprotinin, TLCK, TPCK, EDTA, EGTA, cysteine, beta-mercaptoethanol, iodoacetate, E64, benzamidine and soybean trypsin inhibitor do not affect activity. Antiplasmin was not sensitive to MEF but antithrombin III inhibited the enzymatic activity of MEF. Among chromogenic protease substrates, the most sensitive to MEF hydrolysis was benzoyl-Phe-Val-Arg-p-nitroanilide with maximal activity at pH 7.0 and 30 degrees C. MEF preferentially cleaved the oxidized B-chain of insulin between Leu15 and Tyr16. D-Dimer concentrations increased on incubation of cross-linked fibrin with MEF, indicating the enzyme has a strong fibrinolytic activity. PMID:10082965

  2. Activation of mannan-binding lectin-associated serine proteases leads to generation of a fibrin clot

    PubMed Central

    Gulla, Krishana C; Gupta, Kshitij; Krarup, Anders; Gal, Peter; Schwaeble, Wilhelm J; Sim, Robert B; O’Connor, C David; Hajela, Krishnan

    2010-01-01

    The lectin pathway of complement is activated upon binding of mannan-binding lectin (MBL) or ficolins (FCNs) to their targets. Upon recognition of targets, the MBL-and FCN-associated serine proteases (MASPs) are activated, allowing them to generate the C3 convertase C4b2a. Recent findings indicate that the MASPs also activate components of the coagulation system. We have previously shown that MASP-1 has thrombin-like activity whereby it cleaves and activates fibrinogen and factor XIII. MASP-2 has factor Xa-like activity and activates prothrombin through cleavage to form thrombin. We now report that purified L-FCN-MASPs complexes, bound from serum to N-acetylcysteine-Sepharose, or MBL-MASPs complexes, bound to mannan-agarose, generate clots when incubated with calcified plasma or purified fibrinogen and factor XIII. Plasmin digestion of the clot and analysis using anti-D-dimer antibodies revealed that the clot was made up of fibrin and was similar to that generated by thrombin in normal human plasma. Fibrinopeptides A and B (FPA and FPB, respectively) were released after fibrinogen cleavage by L-FCN-MASPs complexes captured on N-acetylcysteine-Sepharose. Studies of inhibition of fibrinopeptide release indicated that the dominant pathway for clotting catalysed by the MASPs is via MASP-2 and prothrombin activation, as hirudin, a thrombin inhibitor that does not inhibit MASP-1 and MASP-2, substantially inhibits fibrinopeptide release. In the light of their potent chemoattractant effects on neutrophil and fibroblast recruitment, the MASP-mediated release of FPA and FPB may play a role in early immune activation. Additionally, MASP-catalysed deposition and polymerization of fibrin on the surface of micro-organisms may be protective by limiting the dissemination of infection. PMID:20002787

  3. Characterization of a chemostable serine alkaline protease from Periplaneta americana

    PubMed Central

    2013-01-01

    Background Proteases are important enzymes involved in numerous essential physiological processes and hold a strong potential for industrial applications. The proteolytic activity of insects’ gut is endowed by many isoforms with diverse properties and specificities. Thus, insect proteases can act as a tool in industrial processes. Results In the present study, purification and properties of a serine alkaline protease from Periplaneta americana and its potential application as an additive in various bio-formulations are reported. The enzyme was purified near to homogeneity by using acetone precipitation and Sephadex G-100 gel filtration chromatography. Enzyme activity was increased up to 4.2 fold after gel filtration chromatography. The purified enzyme appeared as single protein-band with a molecular mass of ~ 27.8 kDa in SDS-PAGE. The optimum pH and temperature for the proteolytic activity for purified protein were found around pH 8.0 and 60°C respectively. Complete inhibition of the purified enzyme by phenylmethylsulfonyl fluoride confirmed that the protease was of serine-type. The purified enzyme revealed high stability and compatibility towards detergents, oxidizing, reducing, and bleaching agents. In addition, enzyme also showed stability towards organic solvents and commercial detergents. Conclusion Several important properties of a serine protease from P. Americana were revealed. Moreover, insects can serve as excellent and alternative source of industrially important proteases with unique properties, which can be utilized as additives in detergents, stain removers and other bio-formulations. Properties of the P. americana protease accounted in the present investigation can be exploited further in various industrial processes. As an industrial prospective, identification of enzymes with varying essential properties from different insect species might be good approach and bioresource. PMID:24229392

  4. Exploring a new serine protease from Cucumis sativus L.

    PubMed

    Nafeesa, Zohara; Shivalingu, B R; Vivek, H K; Priya, B S; Swamy, S Nanjunda

    2015-03-01

    Coagulation is an important physiological process in hemostasis which is activated by sequential action of proteases. This study aims to understand the involvement of aqueous fruit extract of Cucumis sativus L. (AqFEC) European burp less variety in blood coagulation cascade. AqFEC hydrolyzed casein in a dose-dependent manner. The presence of protease activity was further confirmed by casein zymography which revealed the possible presence of two high molecular weight protease(s). The proteolytic activity was inhibited only by phenyl methyl sulphonyl fluoride suggesting the presence of serine protease(s). In a dose-dependent manner, AqFEC also hydrolysed Aα and Bβ subunits of fibrinogen, whereas it failed to degrade the γ subunit of fibrinogen even at a concentration as high as 100 μg and incubation time up to 4 h. AqFEC reduced the clotting time of citrated plasma by 87.65%. The protease and fibrinogenolytic activity of AqFEC suggests its possible role in stopping the bleeding and ensuing wound healing process.

  5. Novel 2-oxoimidazolidine-4-carboxylic acid derivatives as Hepatitis C virus NS3-4A serine protease inhibitors: synthesis, activity, and X-ray crystal structure of an enzyme inhibitor complex

    SciTech Connect

    Arasappan, Ashok; Njoroge, F. George; Parekh, Tejal N.; Yang, Xiaozheng; Pichardo, John; Butkiewicz, Nancy; Prongay, Andrew; Yao, Nanhua; Girijavallabhan, Viyyoor

    2008-06-30

    Synthesis and HCV NS3 serine protease inhibitory activity of some novel 2-oxoimidazolidine-4-carboxylic acid derivatives are reported. Inhibitors derived from this new P2 core exhibited activity in the low {micro}M range. X-ray structure of an inhibitor, 15c bound to the protease is presented.

  6. Involvement of serine proteases in the excystation and metacystic development of Entamoeba invadens.

    PubMed

    Makioka, Asao; Kumagai, Masahiro; Kobayashi, Seiki; Takeuchi, Tsutomu

    2009-10-01

    Although the functions of cysteine proteases involved in the pathogenicity and differentiation of Entamoeba histolytica have been demonstrated, little is known about the functions of serine proteases. We examined the involvement of serine proteases in amoebic excystation and metacystic development using inhibitors specific for serine proteases. Entamoeba invadens IP-1 strain was used as the model of excystation and metacystic development of E. histolytica. Four serine protease inhibitors, phenylmethanesulfonyl fluoride (PMSF), 4-(2-aminoethyl) bezensulfonylfluoride hydrochloride, 3, 4-dichloroisocoumarin, and N-tosyl-phe-chloromethylketone, decreased the number of metacystic amoebae in a dose-dependent manner, without showing cytotoxicity to cysts. PMSF inhibited not only the increase but also the development of metacystic amoebae as determined by the change of nucleus number from four- to one-nucleate amoebae. The protease activity in cyst lysates was also inhibited by PMSF and the band of protease on gelatin sodium dodecyl sulfate polyacrylamide gel electrophoresis was weaker than controls when treated with PMSF. Three serine protease families, S28 (three types), S9 (two), and S26 (one) were retrieved from the database of E. invadens. Phylogenetic analysis revealed that amebic enzymes from the serine protease families formed different clades from those from other organisms. The expression levels of these serine proteases in cysts 5 h after the induction of excystation as assessed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) were higher than those observed prior to induction assayed by real-time RT-PCR; the increase in one type of S9 (named S9-3) expression was the highest. The expression of S9 enzymes also increased from cysts to trophozoites higher than the other family serine proteases. Thus, the results show that Entamoeba uses their serine proteases in the excystation and metacystic development, which leads to successful infection.

  7. Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens.

    PubMed

    Zhang, Dianpeng; Spadaro, Davide; Valente, Silvia; Garibaldi, Angelo; Gullino, Maria Lodovica

    2012-02-15

    An alkaline protease gene was amplified from genomic DNA and cDNA of the antagonistic yeast-like fungus Aureobasidium pullulans PL5, a biocontrol agent effective against Monilinia laxa on stone fruit and Botrytis cinerea and Penicillium expansum on pome fruits. An open reading frame of 1248 bp encoding a 415-amino acid (aa) protein with a calculated molecular weight (M(r)) of 42.9 kDa and an isoelectric point (pI) of 4.5 was characterized. The cDNAALP5 gene had an 18-amino acid signal peptide, one N-gylcosylation, one histidine active site, and one serine active site. The ALP5 gene with a M(r) of 1351 bp contained two introns. One intron was of 54 bp, while the other was of 50 bp. Protein BLAST and phylogenetic tree analysis of the deduced amino sequences from the cDNAALP5 gene showed that the encoded protein had 100% homology to a protease enzyme (ALP2) of a sea strain of A. pullulans, suggesting that the protein ALP5 was an alkaline serine protease. Expression of ALP5 in Escherichia coli BL21 (DE3), followed by identification with Western-blotting, purification with Ni-NTA and analysis of enzymatic activity, yielded an homogeneous recombinant ALP5 which hydrolysed the substrate casein and inhibited the mycelial growth of the pathogens. At its optimal pH of 10.0 and reaction temperature of 50°C, the recombinant protease exhibited the highest activity towards the substrate casein, though the highest stability was at lower temperatures and pH between 7.0 and 9.0. This study provided the direct evidence that extracellular proteases secreted by the antagonist A. pullulans PL5 played a role in the biocontrol activities against some postharvest pathogens of apple and peach.

  8. Dimerization-Induced Allosteric Changes of the Oxyanion-Hole Loop Activate the Pseudorabies Virus Assemblin pUL26N, a Herpesvirus Serine Protease

    PubMed Central

    Zühlsdorf, Martin; Werten, Sebastiaan; Klupp, Barbara G.; Palm, Gottfried J.; Mettenleiter, Thomas C.; Hinrichs, Winfried

    2015-01-01

    Herpesviruses encode a characteristic serine protease with a unique fold and an active site that comprises the unusual triad Ser-His-His. The protease is essential for viral replication and as such constitutes a promising drug target. In solution, a dynamic equilibrium exists between an inactive monomeric and an active dimeric form of the enzyme, which is believed to play a key regulatory role in the orchestration of proteolysis and capsid assembly. Currently available crystal structures of herpesvirus proteases correspond either to the dimeric state or to complexes with peptide mimetics that alter the dimerization interface. In contrast, the structure of the native monomeric state has remained elusive. Here, we present the three-dimensional structures of native monomeric, active dimeric, and diisopropyl fluorophosphate-inhibited dimeric protease derived from pseudorabies virus, an alphaherpesvirus of swine. These structures, solved by X-ray crystallography to respective resolutions of 2.05, 2.10 and 2.03 Å, allow a direct comparison of the main conformational states of the protease. In the dimeric form, a functional oxyanion hole is formed by a loop of 10 amino-acid residues encompassing two consecutive arginine residues (Arg136 and Arg137); both are strictly conserved throughout the herpesviruses. In the monomeric form, the top of the loop is shifted by approximately 11 Å, resulting in a complete disruption of the oxyanion hole and loss of activity. The dimerization-induced allosteric changes described here form the physical basis for the concentration-dependent activation of the protease, which is essential for proper virus replication. Small-angle X-ray scattering experiments confirmed a concentration-dependent equilibrium of monomeric and dimeric protease in solution. PMID:26161660

  9. Systematic functional analysis and application of a cold-active serine protease from a novel Chryseobacterium sp.

    PubMed

    Mageswari, Anbazhagan; Subramanian, Parthiban; Chandrasekaran, Suganthi; Karthikeyan, Sivashanmugam; Gothandam, Kodiveri Muthukaliannan

    2017-02-15

    Psychrotolerant bacteria isolated from natural and artificially cold environments were screened for synthesis of cold-active protease. The strain IMDY showing the highest protease production at 5°C was selected and phylogenetic analysis revealed that IMDY as novel bacterium with Chryseobacterium soli(T) as its nearest neighbor. Classical optimization enhanced the protease production from 18U/mg to 26U/mg and the enzyme was found to be active at low temperature, activity enhanced by CaCl2, inhibited by PMSF, stable against NaCl, and its activity retained in the presence of surfactants, organic solvents and detergents. On testing, the meat tenderization, myofibril fragmentation, pH, and TBA values were favorable in IMDY-protease treated meat compared to control. SDS profiling and SEM analysis also showed tenderization in meat samples. Hence, this study proposes to consider the cold-active protease from Chryseobacterium sp. IMDY as a pertinent candidate to develop potential applications in food processing industry. PMID:27664603

  10. Shedding of the germinal angiotensin I-converting enzyme (gACE) involves a serine protease and is activated by epididymal fluid.

    PubMed

    Thimon, Véronique; Métayer, Sonia; Belghazi, Maya; Dacheux, Françoise; Dacheux, Jean-Louis; Gatti, Jean-Luc

    2005-11-01

    The present report describes how the soluble germinal angiotensin I-converting enzyme (gACE) appears in the epididymal fluid, where it has been identified in some laboratory rodents and domestic ungulates. We showed that this gACE results from an active proteolytic process that releases the enzyme's extracellular domain from sperm in a precise spatiotemporal location during epididymal transit and that this process involves serine protease activity. Using polyclonal antibodies against the C-terminal intracellular sequence of ACE, a fragment of approximately 10 kDa was detected on the sperm extract only in the epididymal region, where the gACE release occurs. The fluid enzyme was purified, and the cleavage site was determined by mass spectrometry to be between Arg622 and Leu623 of the mature sheep gACE sequence (equivalent to Arg627 and Arg1203 of the human mature gACE and somatic ACE sequences, respectively). Thereafter, the C-terminal Arg was removed, leaving Ala621 as a C-terminal. Using an in vitro assay, gACE cleavage from sperm was strongly increased by the presence of epididymal fluid from the release zone, and this increase was inhibited specifically by the serine protease-inhibitor AEBSF but not by para-aminobenzamidine. None of the other inhibitors tested, such as metallo- or cystein-protease inhibitors, had a similar effect on release. It was also found that this process did not involve changes in gACE phosphorylation. PMID:15987822

  11. The serine protease motif of Pic mediates a dose-dependent mucolytic activity after binding to sugar constituents of the mucin substrate.

    PubMed

    Gutiérrez-Jiménez, Javier; Arciniega, Ivonne; Navarro-García, Fernando

    2008-08-01

    The pic gene is harbored on the chromosomes of three important pathogens: enteroaggregative Escherichia coli (EAEC), uropathogenic E. coli (UPEC), and Shigella flexneri. Since Pic is secreted into the intestinal lumen during EAEC infection, we sought to identify intestinal-mucosal substrates for Pic. Pic did not damage epithelial cells, cleave fodrin, or degrade host defense proteins embedded in the mucus layer (sIgA, lactoferrin and lysozyme). However, by using a solid-phase assay to evaluate the mucinolytic activity of EAEC Pic, we documented a specific, dose-dependent mucinolytic activity. A serine protease inhibitor and an enzymatically inactive variant of Pic were used to show that the Pic serine protease motif is required for mucinolytic activity. Pic binds mucin, and this binding was blocked in competition assays using monosaccharide constituents of the oligosaccharide side chains of mucin. Moreover, Pic mucinolytic activity decreased when sialic acid was removed from mucin. Thus, Pic is a mucinase with lectin-like activity that can be related to its reported hemagglutinin activity. Our results suggest that EAEC may secrete Pic into the intestinal lumen as a strategy for penetrating the gel-like mucus layer during EAEC colonization.

  12. Potent and specific inhibition of the biological activity of the type-II transmembrane serine protease matriptase by the cyclic microprotein MCoTI-II.

    PubMed

    Gray, K; Elghadban, S; Thongyoo, P; Owen, K A; Szabo, R; Bugge, T H; Tate, E W; Leatherbarrow, R J; Ellis, V

    2014-08-01

    Matriptase is a type-II transmembrane serine protease involved in epithelial homeostasis in both health and disease, and is implicated in the development and progression of a variety of cancers. Matriptase mediates its biological effects both via as yet undefined substrates and pathways, and also by proteolytic cleavage of a variety of well-defined protein substrates, several of which it shares with the closely-related protease hepsin. Development of targeted therapeutic strategies will require discrimination between these proteases. Here we have investigated cyclic microproteins of the squash Momordica cochinchinensis trypsin-inhibitor family (generated by total chemical synthesis) and found MCoTI-II to be a high-affinity (Ki 9 nM) and highly selective (> 1,000-fold) inhibitor of matriptase. MCoTI-II efficiently inhibited the proteolytic activation of pro-hepatocyte growth factor (HGF) by matriptase but not by hepsin, in both purified and cell-based systems, and inhibited HGF-dependent cell scattering. MCoTI-II also selectively inhibited the invasion of matriptase-expressing prostate cancer cells. Using a model of epithelial cell tight junction assembly, we also found that MCoTI-II could effectively inhibit the re-establishment of tight junctions and epithelial barrier function in MDCK-I cells after disruption, consistent with the role of matriptase in regulating epithelial integrity. Surprisingly, MCoTI-II was unable to inhibit matriptase-dependent proteolytic activation of prostasin, a GPI-anchored serine protease also implicated in epithelial homeostasis. These observations suggest that the unusually high selectivity afforded by MCoTI-II and its biological effectiveness might represent a useful starting point for the development of therapeutic inhibitors, and further highlight the role of matriptase in epithelial maintenance. PMID:24696092

  13. Potent and specific inhibition of the biological activity of the type-II transmembrane serine protease matriptase by the cyclic microprotein MCoTI-II.

    PubMed

    Gray, K; Elghadban, S; Thongyoo, P; Owen, K A; Szabo, R; Bugge, T H; Tate, E W; Leatherbarrow, R J; Ellis, V

    2014-08-01

    Matriptase is a type-II transmembrane serine protease involved in epithelial homeostasis in both health and disease, and is implicated in the development and progression of a variety of cancers. Matriptase mediates its biological effects both via as yet undefined substrates and pathways, and also by proteolytic cleavage of a variety of well-defined protein substrates, several of which it shares with the closely-related protease hepsin. Development of targeted therapeutic strategies will require discrimination between these proteases. Here we have investigated cyclic microproteins of the squash Momordica cochinchinensis trypsin-inhibitor family (generated by total chemical synthesis) and found MCoTI-II to be a high-affinity (Ki 9 nM) and highly selective (> 1,000-fold) inhibitor of matriptase. MCoTI-II efficiently inhibited the proteolytic activation of pro-hepatocyte growth factor (HGF) by matriptase but not by hepsin, in both purified and cell-based systems, and inhibited HGF-dependent cell scattering. MCoTI-II also selectively inhibited the invasion of matriptase-expressing prostate cancer cells. Using a model of epithelial cell tight junction assembly, we also found that MCoTI-II could effectively inhibit the re-establishment of tight junctions and epithelial barrier function in MDCK-I cells after disruption, consistent with the role of matriptase in regulating epithelial integrity. Surprisingly, MCoTI-II was unable to inhibit matriptase-dependent proteolytic activation of prostasin, a GPI-anchored serine protease also implicated in epithelial homeostasis. These observations suggest that the unusually high selectivity afforded by MCoTI-II and its biological effectiveness might represent a useful starting point for the development of therapeutic inhibitors, and further highlight the role of matriptase in epithelial maintenance.

  14. Decolorization of crude latex by activated charcoal, purification and physico-chemical characterization of religiosin, a milk-clotting serine protease from the latex of Ficus religiosa.

    PubMed

    Kumari, Moni; Sharma, Anurag; Jagannadham, M V

    2010-07-14

    The crude latex of Ficus religiosa is decolorized by activated charcoal. Decolorization follows the Freundlich and Langmuir equations. A serine protease, named religiosin, has been purified to homogeneity from the decolorized latex using anion exchange chromatography. Religiosin is a glycoprotein with a molecular mass of 43.4 kDa by MALDI-TOF. Religiosin is an acidic protein with a pI value of 3.8 and acts optimally at pH 8.0-8.5 and temperature 50 degrees C. The proteolytic activity of religiosin is strongly inhibited by PMSF and chymostatin indicating that the enzyme is a serine protease. The extinction coefficient (epsilon(1%)(280)) of religiosin is 29.47 M(-1) cm(-1)with 16 tryptophan, 26 tyrosine, and 11 cysteine residues per molecule. The enzyme shows broad substrate specificity against natural as well as synthetic substrates with an apparent K(m) of 0.066 mM and 6.25 mM using casein and Leu-pNA, respectively. MS/MS analysis confirms the novelty of the enzyme. Religiosin is highly stable against denaturants, metal ions, and detergents as well as over a wide range of pH and temperature. In addition, the enzyme exhibits milk-clotting as well as detergent activity. PMID:20560603

  15. Purification and characterization of a serine protease from Cucumis trigonus Roxburghi.

    PubMed

    Asif-Ullah, Mufti; Kim, Key-Sun; Yu, Yeon Gyu

    2006-05-01

    Kachri fruit, Cucumis trigonus Roxburghi, contains high protease activity and has been used as meat tenderizer in the Indian subcontinent. A 67 kDa serine protease from Kachri fruit was purified by DEAE-Sepharose and CM-Sepharose chromatography, whose optimum activity was at pH 11 and 70 degrees C. Its activity was strongly inhibited by PMSF, but not by EDTA, pepstatin, or cysteine protease inhibitors. The substrate specificity of the purified protease towards synthetic peptides was comparable to cucumisin, the first characterized subtilisin class plant protease from the sarcocarp of melon fruit (Cucumis melo). These characteristics, along with the N-terminal amino acid sequence, indicated that the isolated protease from Cucumis trigonus Roxburghi is a cucumisin homologue, which belongs to the serine protease family. PMID:16603211

  16. Enhancement of Experimental Cutaneous Leishmaniasis by Leishmania Molecules Is Dependent on Interleukin-4, Serine Protease/Esterase Activity, and Parasite and Host Genetic Backgrounds ▿

    PubMed Central

    Silva, Virgínia M. G.; Larangeira, Daniela F.; Oliveira, Pablo R. S.; Sampaio, Romina B.; Suzart, Paula; Nihei, Jorge S.; Teixeira, Márcia C. A.; Mengel, José O.; dos-Santos, Washington L. C.; Pontes-de-Carvalho, Lain

    2011-01-01

    Most inbred strains of mice, like the BALB/c strain, are susceptible to Leishmania amazonensis infections and resistant to Leishmania braziliensis infections. This parasite-related difference could result from the activity of an L. amazonensis-specific virulence factor. In agreement with this hypothesis, it is shown here that the intravenous injection of BALB/c mice with L. amazonensis amastigote extract (LaE) but not the L. braziliensis extract confers susceptibility to L. braziliensis infection. This effect was associated with high circulating levels of IgG1 anti-L. amazonensis antibodies and with an increase in interleukin-4 (IL-4) production and a decrease in gamma interferon production by draining lymph node cells. Moreover, the effect was absent in IL-4-knockout mice. The biological activity in the LaE was not mediated by amphiphilic molecules and was inhibited by pretreatment of the extract with irreversible serine protease inhibitors. These findings indicate that the LaE contains a virulence-related factor that (i) enhances the Leishmania infection by promoting Th2-type immune responses, (ii) is not one of the immunomodulatory Leishmania molecules described so far, and (iii) is either a serine protease or has an effect that depends on that protease activity. In addition to being Leishmania species specific, the infection-enhancing activity was also shown to depend on the host genetic makeup, as LaE injections did not affect the susceptibility of C57BL/6 mice to L. braziliensis infection. The identification of Leishmania molecules with infection-enhancing activity could be important for the development of a vaccine, since the up- or downmodulation of the immune response against a virulence factor could well contribute to controlling the infection. PMID:21173308

  17. Anti-Inflammatory Activity of Cyanobacterial Serine Protease Inhibitors Aeruginosin 828A and Cyanopeptolin 1020 in Human Hepatoma Cell Line Huh7 and Effects in Zebrafish (Danio rerio).

    PubMed

    Faltermann, Susanne; Hutter, Simon; Christen, Verena; Hettich, Timm; Fent, Karl

    2016-01-01

    Intensive growth of cyanobacteria in freshwater promoted by eutrophication can lead to release of toxic secondary metabolites that may harm aquatic organisms and humans. The serine protease inhibitor aeruginosin 828A was isolated from a microcystin-deficient Planktothrix strain. We assessed potential molecular effects of aeruginosin 828A in comparison to another cyanobacterial serine protease inhibitor, cyanopeptolin 1020, in human hepatoma cell line Huh7, in zebrafish embryos and liver organ cultures. Aeruginosin 828A and cyanopeptolin 1020 promoted anti-inflammatory activity, as indicated by transcriptional down-regulation of interleukin 8 and tumor necrosis factor α in stimulated cells at concentrations of 50 and 100 µmol·L(-1) aeruginosin 828A, and 100 µmol·L(-1) cyanopeptolin 1020. Aeruginosin 828A induced the expression of CYP1A in Huh7 cells but did not affect enzyme activity. Furthermore, hatched zebrafish embryos and zebrafish liver organ cultures were exposed to aeruginosin 828A. The transcriptional responses were compared to those of cyanopeptolin 1020 and microcystin-LR. Aeruginosin 828A had only minimal effects on endoplasmic reticulum stress. In comparison to cyanopeptolin 1020 our data indicate that transcriptional effects of aeruginosin 828A in zebrafish are very minor. The data further demonstrate that pathways that are influenced by microcystin-LR are not affected by aeruginosin 828A. PMID:27428998

  18. Anti-Inflammatory Activity of Cyanobacterial Serine Protease Inhibitors Aeruginosin 828A and Cyanopeptolin 1020 in Human Hepatoma Cell Line Huh7 and Effects in Zebrafish (Danio rerio)

    PubMed Central

    Faltermann, Susanne; Hutter, Simon; Christen, Verena; Hettich, Timm; Fent, Karl

    2016-01-01

    Intensive growth of cyanobacteria in freshwater promoted by eutrophication can lead to release of toxic secondary metabolites that may harm aquatic organisms and humans. The serine protease inhibitor aeruginosin 828A was isolated from a microcystin-deficient Planktothrix strain. We assessed potential molecular effects of aeruginosin 828A in comparison to another cyanobacterial serine protease inhibitor, cyanopeptolin 1020, in human hepatoma cell line Huh7, in zebrafish embryos and liver organ cultures. Aeruginosin 828A and cyanopeptolin 1020 promoted anti-inflammatory activity, as indicated by transcriptional down-regulation of interleukin 8 and tumor necrosis factor α in stimulated cells at concentrations of 50 and 100 µmol·L−1 aeruginosin 828A, and 100 µmol·L−1 cyanopeptolin 1020. Aeruginosin 828A induced the expression of CYP1A in Huh7 cells but did not affect enzyme activity. Furthermore, hatched zebrafish embryos and zebrafish liver organ cultures were exposed to aeruginosin 828A. The transcriptional responses were compared to those of cyanopeptolin 1020 and microcystin-LR. Aeruginosin 828A had only minimal effects on endoplasmic reticulum stress. In comparison to cyanopeptolin 1020 our data indicate that transcriptional effects of aeruginosin 828A in zebrafish are very minor. The data further demonstrate that pathways that are influenced by microcystin-LR are not affected by aeruginosin 828A. PMID:27428998

  19. Unconventional serine proteases: Variations on the catalytic Ser/His/Asp triad configuration

    PubMed Central

    Ekici, Özlem Doğan; Paetzel, Mark; Dalbey, Ross E.

    2008-01-01

    Serine proteases comprise nearly one-third of all known proteases identified to date and play crucial roles in a wide variety of cellular as well as extracellular functions, including the process of blood clotting, protein digestion, cell signaling, inflammation, and protein processing. Their hallmark is that they contain the so-called “classical” catalytic Ser/His/Asp triad. Although the classical serine proteases are the most widespread in nature, there exist a variety of “nonclassical” serine proteases where variations to the catalytic triad are observed. Such variations include the triads Ser/His/Glu, Ser/His/His, and Ser/Glu/Asp, and include the dyads Ser/Lys and Ser/His. Other variations are seen with certain serine and threonine peptidases of the Ntn hydrolase superfamily that carry out catalysis with a single active site residue. This work discusses the structure and function of these novel serine proteases and threonine proteases and how their catalytic machinery differs from the prototypic serine protease class. PMID:18824507

  20. Expression and characterization of Coprothermobacter proteolyticus alkaline serine protease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TECHNICAL ABSTRACT A putative protease gene (aprE) from the thermophilic bacterium Coprothermobacter proteolyticus was cloned and expressed in Bacillus subtilis. The enzyme was determined to be a serine protease based on inhibition by PMSF. Biochemical characterization demonstrated the enzyme had...

  1. Type II Secretion-Dependent Degradative and Cytotoxic Activities Mediated by Stenotrophomonas maltophilia Serine Proteases StmPr1 and StmPr2

    PubMed Central

    DuMont, Ashley L.; Karaba, Sara M.

    2015-01-01

    Stenotrophomonas maltophilia is an emerging opportunistic pathogen that primarily causes pneumonia and bacteremia in immunocompromised individuals. We recently reported that S. maltophilia strain K279a encodes the Xps type II secretion system and that Xps promotes rounding, actin rearrangement, detachment, and death in the human lung epithelial cell line A549. Here, we show that Xps-dependent cell rounding and detachment occur with multiple human and murine cell lines and that serine protease inhibitors block Xps-mediated rounding and detachment of A549 cells. Using genetic analysis, we determined that the serine proteases StmPr1 and StmPr2, which were confirmed to be Xps substrates, are predominantly responsible for secreted proteolytic activities exhibited by strain K279a, as well as the morphological and cytotoxic effects on A549 cells. Supernatants from strain K279a also promoted the degradation of type I collagen, fibrinogen, and fibronectin in a predominantly Xps- and protease-dependent manner, although some Xps-independent degradation of fibrinogen was observed. Finally, Xps, and predominantly StmPr1, degraded interleukin 8 (IL-8) secreted by A549 cells during coculture with strain K279a. Our findings indicate that while StmPr1 and StmPr2 are predominantly responsible for A549 cell rounding, extracellular matrix protein degradation, and IL-8 degradation, additional Xps substrates also contribute to these activities. Altogether, our data provide new insight into the virulence potential of the S. maltophilia Xps type II secretion system and its StmPr1 and StmPr2 substrates. PMID:26169274

  2. Evolutionary Analysis of Novel Serine Proteases in the Venom Gland Transcriptome of Bitis gabonica rhinoceros

    PubMed Central

    Vaiyapuri, Sakthivel; Wagstaff, Simon C.; Harrison, Robert A.; Gibbins, Jonathan M.; Hutchinson, E. Gail

    2011-01-01

    Background Serine proteases are major components of viper venom and target various stages of the blood coagulation system in victims and prey. A better understanding of the diversity of serine proteases and other enzymes present in snake venom will help to understand how the complexity of snake venom has evolved and will aid the development of novel therapeutics for treating snake bites. Methodology and Principal Findings Four serine protease-encoding genes from the venom gland transcriptome of Bitis gabonica rhinoceros were amplified and sequenced. Mass spectrometry suggests the four enzymes corresponding to these genes are present in the venom of B. g. rhinoceros. Two of the enzymes, rhinocerases 2 and 3 have substitutions to two of the serine protease catalytic triad residues and are thus unlikely to be catalytically active, though they may have evolved other toxic functions. The other two enzymes, rhinocerases 4 and 5, have classical serine protease catalytic triad residues and thus are likely to be catalytically active, however they have glycine rather than the more typical aspartic acid at the base of the primary specificity pocket (position 189). Based on a detailed analysis of these sequences we suggest that alternative splicing together with individual amino acid mutations may have been involved in their evolution. Changes within amino acid segments which were previously proposed to undergo accelerated change in venom serine proteases have also been observed. Conclusions and Significance Our study provides further insight into the diversity of serine protease isoforms present within snake venom and discusses their possible functions and how they may have evolved. These multiple serine protease isoforms with different substrate specificities may enhance the envenomation effects and help the snake to adapt to new habitats and diets. Our findings have potential for helping the future development of improved therapeutics for snake bites. PMID:21731776

  3. PLATELET-DERIVED GROWTH FACTOR-C (PDGF-C) ACTIVATION BY SERINE PROTEASES: IMPLICATIONS FOR BREAST CANCER PROGRESSION

    PubMed Central

    Hurst, Newton J.; Najy, Abdo J.; Ustach, Carolyn V.; Movilla, Lisa; Kim, Hyeong-Reh Choi

    2012-01-01

    The PDGF family members are potent mitogens for cells of mesenchymal origin and serve as important regulators of cell migration, survival, apoptosis, and transformation. Tumor-derived PDGF ligands are thought to function in both autocrine and paracrine manners, activating receptors on tumor and surrounding stromal cells. PDGF-C and -D are secreted as latent dimers, unlike PDGF-A and -B. Cleavage of the CUB domain from the PDGF-C and -D dimers is required for their biological activity. At present, little is known about the proteolytic processing of PDGF-C, the rate-limiting step in the regulation of PDGF-C activity. Here we show that the breast carcinoma cell line, MCF7, engineered to overexpress PDGF-C, produces proteases capable of cleaving PDGF-C to its active form. Increased PDGF-C expression enhances cell proliferation, anchorage independent cell growth, and tumor cell motility by autocrine signaling. In addition, MCF7-produced PDGF-C induces fibroblast cell migration in a paracrine manner. Interestingly, PDGF-C enhances tumor cell invasion in the presence of fibroblast, suggesting a role of tumor-derived PDGF-C in tumor-stromal interactions. In the present study, we identify tissue plasminogen activator (tPA) and matriptase as major proteases for processing of PDGF-C in MCF7 cells. In in vitro studies, we also show that urokinase plasminogen activator (uPA) is able to process PDGF-C. Furthermore, by site-directed mutagenesis, we identify the cleavage site for these proteases in PDGF-C. Lastly, we provide evidence suggesting a 2-step proteolytic processing of PDGF-C involving creation of a hemidimer, followed by growth factor domain dimer (GFD-D) generation. PMID:22035541

  4. Conservation of sequence and function in fertilization of the cortical granule serine protease in echinoderms.

    PubMed

    Oulhen, Nathalie; Xu, Dongdong; Wessel, Gary M

    2014-08-01

    Conservation of the cortical granule serine protease during fertilization in echinoderms was tested both functionally in sea stars, and computationally throughout the echinoderm phylum. We find that the inhibitor of serine protease (soybean trypsin inhibitor) effectively blocks proper transition of the sea star fertilization envelope into a protective sperm repellent, whereas inhibitors of the other main types of proteases had no effect. Scanning the transcriptomes of 15 different echinoderm ovaries revealed sequences of high conservation to the originally identified sea urchin cortical serine protease, CGSP1. These conserved sequences contained the catalytic triad necessary for enzymatic activity, and the tandemly repeated LDLr-like repeats. We conclude that the protease involved in the slow block to polyspermy is an essential and conserved element of fertilization in echinoderms, and may provide an important reagent for identification and testing of the cell surface proteins in eggs necessary for sperm binding.

  5. Dynamic properties of extremophilic subtilisin-like serine-proteases.

    PubMed

    Tiberti, Matteo; Papaleo, Elena

    2011-04-01

    The investigation of the structural determinants of enzymatic temperature adaptation is a crucial pre-requisite both in terms of fundamental research and industrial applications to develop new biocatalysts active at different temperature ranges. In several cases, the differences related to cold- or warm-adaptation are related to subtle structural and aminoacidic differences at the molecular level, often hard to detect. In this context, we present a comparative study of psychrophilic, mesophilic and thermophilic subtilisin-like serine proteases by all-atom molecular dynamics (MD) simulations in explicit solvent using a multiple-replica approach. Our results strongly enforce the current view on localized flexibility in crucial functional regions for cold-adapted serine proteases and point out a different optimization and usage of salt-bridge interactions and networks in cold- and warm-adapted enzymes. The analyses allow to identify a subset of structural and dynamic features strictly associated to cold adaptation and which change from cold- to heat-active subtilisins. In particular, the thermophilic subtilisin presents a high affinity calcium binding site which is not structurally conserved in the mesophilic and psychrophilic counterparts, which, as it turns out from the MD analyses, at the same position show a stable salt bridge network and no stabilizing intra-molecular interactions, respectively. These aspects, along with differential flexibility in regions close to the active site or substrate binding pocket, can be an indication of evolution at this protein site toward a lower stability moving from high to low temperature conditions.

  6. Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease.

    PubMed

    Doron, Lior; Coppenhagen-Glazer, Shunit; Ibrahim, Yara; Eini, Amir; Naor, Ronit; Rosen, Graciela; Bachrach, Gilad

    2014-01-01

    Fusobacterium nucleatum is an oral anaerobe associated with periodontal disease, adverse pregnancy outcomes and colorectal carcinoma. A serine endopeptidase of 61-65 kDa capable of damaging host tissue and of inactivating immune effectors was detected previously in F. nucleatum. Here we describe the identification of this serine protease, named fusolisin, in three oral F. nucleatum sub-species. Gel zymogram revealed fusobacterial proteolytic activity with molecular masses ranging from 55-101 kDa. All of the detected proteases were inhibited by the serine protease inhibitor PMSF. analysis revealed that all of the detected proteases are encoded by genes encoding an open reading frame (ORF) with a calculated mass of approximately 115 kDa. Bioinformatics analysis of the identified ORFs demonstrated that they consist of three domains characteristic of autotransporters of the type Va secretion system. Our results suggest that the F. nucleatum fusolisins are derived from a precursor of approximately 115 kDa. After crossing the cytoplasmic membrane and cleavage of the leader sequence, the C-terminal autotransporter domain of the remaining 96-113 kDa protein is embedded in the outer membrane and delivers the N-terminal S8 serine protease passenger domain to the outer cell surface. In most strains the N-terminal catalytic 55-65 kDa domain self cleaves and liberates itself from the autotransporter domain after its transfer across the outer cell membrane. In F. nucleatum ATCC 25586 this autocatalytic activity is less efficient resulting in a full length membrane-anchored serine protease. The mature serine protease was found to cleave after Thr, Gly, Ala and Leu residues at the P1 position. Growth of F. nucleatum in complex medium was inhibited when serine protease inhibitors were used. Additional experiments are needed to determine whether fusolisin might be used as a target for controlling fusobacterial infections. PMID:25357190

  7. Structural Mechanisms of Inactivation in Scabies Mite Serine Protease Paralogues

    SciTech Connect

    Fischer, Katja; Langendorf, Christopher G.; Irving, James A.; Reynolds, Simone; Willis, Charlene; Beckham, Simone; Law, Ruby H.P.; Yang, Sundy; Bashtannyk-Puhalovich, Tanya A.; McGowan, Sheena; Whisstock, James C.; Pike, Robert N.; Kemp, David J.; Buckle, Ashley M.

    2009-08-07

    The scabies mite (Sarcoptes scabiei) is a parasite responsible for major morbidity in disadvantaged communities and immuno-compromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by Streptococcal species via skin lesions, resulting in a high prevalence of rheumatic fever/heart disease in affected communities. The scabies mite produces 33 proteins that are closely related to those in the dust mite group 3 allergen and belong to the S1-like protease family (chymotrypsin-like). However, all but one of these molecules contain mutations in the conserved active-site catalytic triad that are predicted to render them catalytically inactive. These molecules are thus termed scabies mite inactivated protease paralogues (SMIPPs). The precise function of SMIPPs is unclear; however, it has been suggested that these proteins might function by binding and protecting target substrates from cleavage by host immune proteases, thus preventing the host from mounting an effective immune challenge. In order to begin to understand the structural basis for SMIPP function, we solved the crystal structures of SMIPP-S-I1 and SMIPP-S-D1 at 1.85 {angstrom} and 2.0 {angstrom} resolution, respectively. Both structures adopt the characteristic serine protease fold, albeit with large structural variations over much of the molecule. In both structures, mutations in the catalytic triad together with occlusion of the S1 subsite by a conserved Tyr200 residue is predicted to block substrate ingress. Accordingly, we show that both proteases lack catalytic function. Attempts to restore function (via site-directed mutagenesis of catalytic residues as well as Tyr200) were unsuccessful. Taken together, these data suggest that SMIPPs have lost the ability to bind substrates in a classical 'canonical' fashion, and instead have evolved alternative functions in the lifecycle of the scabies mite.

  8. IDENTIFICATION AND MOLECULAR CHARACTERIZATION OF TWO SERINE PROTEASES AND THEIR POTENTIAL INVOLVEMENT IN PROPHENOLOXIDASE ACTIVATION IN Plutella xylostella.

    PubMed

    Gao, Gang; Xu, Xiao-Xia; Yu, Jing; Li, Lin-Miao; Ju, Wen-Yan; Jin, Feng-Liang; Freed, Shoaib

    2016-09-01

    The proteolytic activation of prophenoloxidase (proPO) is a humoral defense mechanism in insects and crustaceans. Phenoloxidase (PO) is produced as an inactive precursor namely, proPO and is activated via specific proteolytic cleavage by proPO-activating proteinase. The current research reports two novel serine proteinase genes (PxSP1-768 bp and PxSP2-816 bp) from Plutella xylostella, encoding 255 and 271 amino acid residues, respectively. Tissue distribution analyses by semiquantitative reverse transcription-PCR (RT-PCR) revealed the resultant genes to be primarily expressed in the hemocytes, while quantitative-RT-PCR (qRT-PCR) assay showed that transcription level of PxSP1 and PxSP2 increased significantly after injection of the fungal pathogen Beauveria bassiana. Purified recombinant fusion proteins of PxSP2 and PxSP1 were injected to New Zealand white rabbits and polyclonal antibodies were generated with the titers of 1:12,800. After silencing the expression of PxSP2 by RNAi, the PO activity decreased significantly. The results show that PxSP2 is involved in prophenoloxidase activation in P. xylostella. PMID:27306978

  9. The macromolecular assembly of pathogen-recognition receptors is impelled by serine proteases, via their complement control protein modules.

    PubMed

    Le Saux, Agnès; Ng, Patricia Miang Lon; Koh, Joanne Jing Yun; Low, Diana Hooi Ping; Leong, Geraldine E-Ling; Ho, Bow; Ding, Jeak Ling

    2008-03-28

    Although the innate immune response is triggered by the formation of a stable assembly of pathogen-recognition receptors (PRRs) onto the pathogens, the driving force that enables this PRR-PRR interaction is unknown. Here, we show that serine proteases, which are activated during infection, participate in associating with the PRRs. Inhibition of serine proteases gravely impairs the PRR assembly. Using yeast two-hybrid and pull-down methods, we found that two serine proteases in the horseshoe crab Carcinoscorpius rotundicauda are able to bind to the following three core members of PRRs: galactose-binding protein, Carcinolectin-5 and C-reactive protein. These two serine proteases are (1) Factor C, which activates the coagulation pathway, and (2) C2/Bf, a protein from the complement pathway. By systematic molecular dissection, we show that these serine proteases interact with the core "pathogen-recognition complex" via their complement control protein modules. PMID:18279891

  10. A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins

    PubMed Central

    Geng, Ce; Nie, Xiangtao; Tang, Zhichao; Zhang, Yuyang; Lin, Jian; Sun, Ming; Peng, Donghai

    2016-01-01

    Plant-parasitic nematodes (PPNs) cause serious harm to agricultural production. Bacillus firmus shows excellent control of PPNs and has been produced as a commercial nematicide. However, its nematicidal factors and mechanisms are still unknown. In this study, we showed that B. firmus strain DS-1 has high toxicity against Meloidogyne incognita and soybean cyst nematode. We sequenced the whole genome of DS-1 and identified multiple potential virulence factors. We then focused on a peptidase S8 superfamily protein called Sep1 and demonstrated that it had toxicity against the nematodes Caenorhabditis elegans and M. incognita. The Sep1 protein exhibited serine protease activity and degraded the intestinal tissues of nematodes. Thus, the Sep1 protease of B. firmus is a novel biocontrol factor with activity against a root-knot nematode. We then used C. elegans as a model to elucidate the nematicidal mechanism of Sep1, and the results showed that Sep1 could degrade multiple intestinal and cuticle-associated proteins and destroyed host physical barriers. The knowledge gained in our study will lead to a better understanding of the mechanisms of B. firmus against PPNs and will aid in the development of novel bio-agents with increased efficacy for controlling PPNs. PMID:27118554

  11. Functional role of residue 193 (chymotrypsin numbering) in serine proteases: influence of side chain length and beta-branching on the catalytic activity of blood coagulation factor XIa.

    PubMed

    Schmidt, Amy E; Sun, Mao-fu; Ogawa, Taketoshi; Bajaj, S Paul; Gailani, David

    2008-02-01

    In serine proteases, Gly193 (chymotrypsin numbering) is conserved with rare exception. Mutants of blood coagulation proteases have been reported with Glu, Ala, Arg or Val substitutions for Gly193. To further understand the role of Gly193 in protease activity, we replaced it with Ala or Val in coagulation factor XIa (FXIa). For comparison to the reported FXIa Glu193 mutant, we prepared FXIa with Asp (short side chain) or Lys (opposite charge) substitutions. Binding of p-aminobenzamidine (pAB) and diisopropylfluorphosphate (DFP) were impaired 1.6-36-fold and 35-478-fold, respectively, indicating distortion of, or altered accessibility to, the S1 and oxyanion-binding sites. Val or Asp substitutions caused the most impairment. Salt bridge formation between the amino terminus of the mature protease moiety at Ile16 and Asp194, essential for catalysis, was impaired 1.4-4-fold. Mutations reduced catalytic efficiency of tripeptide substrate hydrolysis 6-280-fold, with Val or Asp causing the most impairment. Further studies were directed toward macromolecular interactions with the FXIa mutants. kcat for factor IX activation was reduced 8-fold for Ala and 400-1100-fold for other mutants, while binding of the inhibitors antithrombin and amyloid beta-precursor protein Kunitz domain (APPI) was impaired 13-2300-fold and 22-27000-fold, respectively. The data indicate that beta-branching of the side chain of residue 193 is deleterious for interactions with pAB, DFP and amidolytic substrates, situations where no S2'-P2' interactions are involved. When an S2'-P2' interaction is involved (factor IX, antithrombin, APPI), beta-branching and increased side chain length are detrimental. Molecular models indicate that the mutants have impaired S2' binding sites and that beta-branching causes steric conflicts with the FXIa 140-loop, which could perturb the local tertiary structure of the protease domain. In conclusion, enzyme activity is impaired in FXIa when Gly193 is replaced by a non

  12. Classification scheme for the design of serine protease targeted compound libraries.

    PubMed

    Lang, Stanley A; Kozyukov, Andrey V; Balakin, Konstantin V; Skorenko, Andrey V; Ivashchenko, Andrey A; Savchuk, Nikolay P

    2002-11-01

    The development of a scoring scheme for the classification of molecules into serine protease (SP) actives and inactives is described. The method employed a set of pre-selected descriptors for encoding the molecular structures, and a trained neural network for classifying the molecules. The molecular requirements were profiled and validated by using available databases of SP- and non-SP-active agents [1,439 diverse SP-active molecules, and 5,131 diverse non-SP-active molecules from the Ensemble Database (Prous Science, 2002)] and Sensitivity Analysis. The method enables an efficient qualification or disqualification of a molecule as a potential serine protease ligand. It represents a useful tool for constraining the size of virtual libraries that will help accelerate the development of new serine protease active drugs. PMID:12825792

  13. Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications.

    PubMed Central

    Bazan, J F; Fletterick, R J

    1988-01-01

    Proteases that are encoded by animal picornaviruses and plant como- and potyviruses form a related group of cysteine-active-center enzymes that are essential for virus maturation. We show that these proteins are homologous to the family of trypsin-like serine proteases. In our model, the active-site nucleophile of the trypsin catalytic triad, Ser-195, is changed to a Cys residue in these viral proteases. The other two residues of the triad, His-57 and Asp-102, are otherwise absolutely conserved in all the viral protease sequences. Secondary structure analysis of aligned sequences suggests the location of the component strands of the twin beta-barrel trypsin fold in the viral proteases. Unexpectedly, the 2a and 3c subclasses of viral cysteine proteases are, respectively, homologous to the small and large structural subclasses of trypsin-like serine proteases. This classification allows the molecular mapping of residues from viral sequences onto related tertiary structures; we precisely identify amino acids that are strong determinants of specificity for both small and large viral cysteine proteases. Images PMID:3186696

  14. Regulation of Adrenal Aldosterone Production by Serine Protease Prostasin

    PubMed Central

    Ko, Takehiro; Kakizoe, Yutaka; Wakida, Naoki; Hayata, Manabu; Uchimura, Kohei; Shiraishi, Naoki; Miyoshi, Taku; Adachi, Masataka; Aritomi, Shizuka; Konda, Tomoyuki; Tomita, Kimio; Kitamura, Kenichiro

    2010-01-01

    A serine protease prostasin has been demonstrated to have a pivotal role in the activation of the epithelial sodium channel. Systemic administration of adenovirus carrying human prostasin gene in rats resulted in an increase in plasma prostasin and aldosterone levels. However, the mechanism by which the elevation of prostasin levels in the systemic circulation stimulated the plasma aldosterone levels remains unknown. Therefore, we examined if prostasin increases the aldosterone synthesis in a human adrenocortical cell line (H295R cells). Luciferase assay using CYP11B2 promoter revealed that prostasin significantly increased the transcriptional activity of CYP11B2. Prostasin significantly increased both CYP11B2 mRNA expression and aldosterone production in a dose-dependent manner. Surprisingly, treatment with camostat mesilate, a potent prostasin inhibitor, had no effect on the aldosterone synthesis by prostasin and also a protease-dead mutant of prostasin significantly stimulated the aldosterone production. A T-type/L-type calcium channel blocker and a protein kinase C (PKC) inhibitor significantly reduced the aldosterone synthesis by prostasin. Our findings suggest a stimulatory effect of prostasin on the aldosterone synthesis by adrenal gland through the nonproteolytic action and indicate a new role of prostasin in the systemic circulation. PMID:20204133

  15. Membrane-anchored serine proteases in health and disease

    PubMed Central

    Bugge, Thomas; Wu, Qingyu

    2013-01-01

    Serine proteases of the trypsin-like family have long been recognized to be critical effectors of biological processes as diverse as digestion, blood coagulation, fibrinolysis, and immunity. In recent years, a subgroup of these enzymes has been identified that are anchored directly to plasma membranes, either by a carboxy-terminal transmembrane domain (Type I), an amino-terminal transmembrane domain with a cytoplasmic extension (Type II or TTSP), or through a glycosyl-phosphatidylinositol (GPI) linkage. Recent biochemical, cellular, and in vivo analyses have now established that membrane-anchored serine proteases are key pericellular contributors to processes vital for development and the maintenance of homeostasis. This chapter will review our current knowledge of the biological and physiological functions of these proteases, their molecular substrates, and their contributions to disease. PMID:21238933

  16. Proteolysis of cell adhesion molecules by serine proteases: a role in long term potentiation?

    PubMed

    Hoffman, K B; Martinez, J; Lynch, G

    1998-11-16

    Tissue plasminogen activator (tPA), a serine protease endogenous to hippocampal neurons, is shown to recognize a highly conserved sequence in the extracellular domain of cell adhesion molecules (CAMs). When added to brain homogenates, tPA generated a CAM fragment similar in size to that produced in hippocampal slices by brief periods of NMDA receptor stimulation. The serine protease inhibitor 4-(2-Aminoethyl)-benzenesulfonyl fluoride blocked the effects of tPA with an approximately 50% suppression at 250 microM. The inhibitor at this concentration had no evident effect on synaptic responses but caused long term potentiation to decay back to baseline over a 1 h period. These results suggest that extracellular breakdown of cell adhesion molecules initiated by NMDA receptors and mediated by serine proteases contributes to the formation of stable potentiation.

  17. Structural basis of profactor D activation: from a highly flexible zymogen to a novel self-inhibited serine protease, complement factor D.

    PubMed Central

    Jing, H; Macon, K J; Moore, D; DeLucas, L J; Volanakis, J E; Narayana, S V

    1999-01-01

    The crystal structure of profactor D, determined at 2.1 A resolution with an Rfree and an R-factor of 25.1 and 20.4%, respectively, displays highly flexible or disordered conformation for five regions: N-22, 71-76, 143-152, 187-193 and 215-223. A comparison with the structure of its mature serine protease, complement factor D, revealed major conformational changes in the similar regions. Comparisons with the zymogen-active enzyme pairs of chymotrypsinogen, trypsinogen and prethrombin-2 showed a similar distribution of the flexible regions. However, profactor D is the most flexible of the four, and its mature enzyme displays inactive, self-inhibited active site conformation. Examination of the surface properties of the N-terminus-binding pocket indicates that Ile16 may play the initial positioning role for the N-terminus, and Leu17 probably also helps in inducing the required conformational changes. This process, perhaps shared by most chymotrypsinogen-like zymogens, is followed by a factor D-unique step, the re-orientation of an external Arg218 to an internal position for salt-bridging with Asp189, leading to the generation of the self-inhibited factor D. PMID:10022823

  18. Planar integrated optical waveguide used as a transducer to yield chemical information: detection of the activity of proteolytic enzymes e.g. serine-proteases

    NASA Astrophysics Data System (ADS)

    Zhylyak, Gleb; Ramoz-Perez, Victor; Linnhoff, Michael; Hug, Thomas; Citterio, Daniel; Spichiger-Keller, Ursula E.

    2005-03-01

    The paper shows the very first results of a feasibility study where the activity of proteolytic enzymes towards dye-labelled artificial substrates immobilized on the surface of planar optical Ta2O5 waveguide was investigated. Within this project, a chromophore label was developed, synthesized and attached to the carboxy-terminus of specific tripeptides. The goal was to develop a highly sensitive optical assay in order to monitor the activity of serine-proteases by cleavage of the amide bond between peptide and chromophore. On the one hand, a strategy was developed to immobilize the labeled tripeptide unto integrated planar waveguides. On the other hand, an instrument, the so-called "chip-reader" was developed to detect the biological process on the surface of the integrated planar optical waveguide. Surface characteristics were analyzed by XPS, TOF-SIMS and contact angle measurements. A comparison between the effectivity of ATR-photometry on chip using TE0 mode and photometry in transmission mode is discussed.

  19. graal: a Drosophila gene coding for several mosaic serine proteases.

    PubMed

    Munier, Anne Isabelle; Medzhitov, Ruslan; Janeway, Charles A; Doucet, Daniel; Capovilla, Maria; Lagueux, Marie

    2004-10-01

    Serine proteases play vital roles in several biological processes such as development and immunity. We have characterized Graal, a large multi-domain serine protease from Drosophila. Graal is spliced in at least three transcripts that are present throughout development. The domains found in Graal proteins are: chitin-binding domains (CBD), scavenger receptor cysteine-rich (SRCR) domains, low density lipoprotein receptor cysteine-rich (LDLR-CR) domains, histidine and proline-rich domains, a NGGYQPP-repeat domain and a serine protease domain. The last 2370 nucleotides of these RNAs are identical and encode a His-rich domain, two SRCR domains, two LDLR-CR domains and a protease domain. The transcription of graal is upregulated after fungal or bacterial infection. Analysis of the Iso1 (y;cn,sp,bw) strain shows that graal transcription is impaired in this fly line due to the insertion of a retrotransposon in the sixth exon. However, no phenotype could be observed consecutive to the absence of graal full length transcripts, particularly in the context of an immune challenge.

  20. Serine Protease Catalysis: A Computational Study of Tetrahedral Intermediates and Inhibitory Adducts.

    PubMed

    Ngo, Phong D; Mansoorabadi, Steven O; Frey, Perry A

    2016-08-01

    Peptide boronic acids and peptidyl trifluoromethyl ketones (TFKs) inhibit serine proteases by forming monoanionic, tetrahedral adducts to serine in the active sites. Investigators regard these adducts as analogs of monoanionic, tetrahedral intermediates. Density functional theory (DFT) calculations and fractional charge analysis show that tetrahedral adducts of model peptidyl TFKs are structurally and electrostatically very similar to corresponding tetrahedral intermediates. In contrast, the DFT calculations show the structures and electrostatic properties of analogous peptide boronate adducts to be significantly different. The peptide boronates display highly electrostatically positive boron, with correspondingly negative ligands in the tetrahedra. In addition, the computed boron-oxygen and boron-carbon bond lengths in peptide boronates (which are identical or very similar to the corresponding bonds in a peptide boronate adduct of α-lytic protease determined by X-ray crystallography at subangstrom resolution) are significantly longer than the corresponding bond lengths in model tetrahedral intermediates. Since protease-peptidyl TFKs incorporate low-barrier hydrogen bonds (LBHBs) between an active site histidine and aspartate, while the protease-peptide boronates do not, these data complement the spectroscopic and chemical evidence for the participation of LBHBs in catalysis by serine proteases. Moreover, while the potency of these classes of inhibitors can be correlated to the structures of the peptide moieties, the present results indicate that the strength of their bonds to serine contribute significantly to their inhibitory properties. PMID:27387593

  1. Crystal Structure of a Novel Viral Protease with a Serine/Lysine Catalytic Dyad Mechanism

    SciTech Connect

    Feldman,A.; Lee, J.; Delmas, B.; Paetzel, M.

    2006-01-01

    The blotched snakehead virus (BSNV), an aquatic birnavirus, encodes a polyprotein (NH2-pVP2-X-VP4-VP3-COOH) that is processed through the proteolytic activity of its own protease (VP4) to liberate itself and the viral proteins pVP2, X and VP3. The protein pVP2 is further processed by VP4 to give rise to the capsid protein VP2 and four structural peptides. We report here the crystal structure of a VP4 protease from BSNV, which displays a catalytic serine/lysine dyad in its active site. This is the first crystal structure of a birnavirus protease and the first crystal structure of a viral protease that utilizes a lysine general base in its catalytic mechanism. The topology of the VP4 substrate binding site is consistent with the enzymes substrate specificity and a nucleophilic attack from the si-face of the substrates scissile bond. Despite low levels of sequence identity, VP4 shows similarities in its active site to other characterized Ser/Lys proteases such as signal peptidase, LexA protease and Lon protease. Together, the structure of VP4 provides insights into the mechanism of a recently characterized clan of serine proteases that utilize a lysine general base and reveals the structure of potential targets for antiviral therapy, especially for other related and economically important viruses, such as infectious bursal disease virus in poultry and infectious pancreatic necrosis virus in aquaculture.

  2. The natural killer cell serine protease gene Lmet1 maps to mouse chromosome 10

    SciTech Connect

    Thia, K.Y.T.; Smyth, M.J.; Jenkins, N.A.; Gilbert, D.J.; Copeland, N.G.

    1995-01-01

    Cytotoxic lymphocytes play a key role in immune responses against viruses and tumors. Lymphocyte-mediated cytolysis by both cytotoxic T lymphocytes (CTL) and natural killer (NK) cells is often associated with the formation of membrane lesions on target cells caused by exocytosis of cytoplasmic granule serine proteases and a pore-forming protein, perforin. A variety of granzymes have been found to reside within the cytoplasmic granules of cytotoxic lymphocytes, but unlike perforin, isolated serine proteases are not intrinsically lytic. However, a role for serine proteases in cellular cytotoxicity has been supported by the ability of protease inhibitors to completely abrogate lymphocyte cytotoxicity, and the demonstration that serine proteases can initiate DNA fragmentation in target cells transfected or pretreated with a sublytic concentration of perforin. Granzymes cloned in human, mouse, and rat encode four granzyme activities and all are expressed in either T cells, their thymic precursors, and/or NK cells. In particular, a rat granzyme that cleaves after methionine residues, but not phenylalanine residues and its human equivalent, human Met-ase 1, are unique granzymes with restricted expression in CD3-NK cells. 24 refs., 2 figs.

  3. Serine Protease(s) Secreted by the Nematode Trichuris muris Degrade the Mucus Barrier

    PubMed Central

    Hasnain, Sumaira Z.; McGuckin, Michael A.; Grencis, Richard K.; Thornton, David J.

    2012-01-01

    The polymeric mucin component of the intestinal mucus barrier changes during nematode infection to provide not only physical protection but also to directly affect pathogenic nematodes and aid expulsion. Despite this, the direct interaction of the nematodes with the mucins and the mucus barrier has not previously been addressed. We used the well-established Trichuris muris nematode model to investigate the effect on mucins of the complex mixture of immunogenic proteins secreted by the nematode called excretory/secretory products (ESPs). Different regimes of T. muris infection were used to simulate chronic (low dose) or acute (high dose) infection. Mucus/mucins isolated from mice and from the human intestinal cell line, LS174T, were treated with ESPs. We demonstrate that serine protease(s) secreted by the nematode have the ability to change the properties of the mucus barrier, making it more porous by degrading the mucin component of the mucus gel. Specifically, the serine protease(s) acted on the N-terminal polymerising domain of the major intestinal mucin Muc2, resulting in depolymerisation of Muc2 polymers. Importantly, the respiratory/gastric mucin Muc5ac, which is induced in the intestine and is critical for worm expulsion, was protected from the depolymerising effect exerted by ESPs. Furthermore, serine protease inhibitors (Serpins) which may protect the mucins, in particular Muc2, from depolymerisation, were highly expressed in mice resistant to chronic infection. Thus, we demonstrate that nematodes secrete serine protease(s) to degrade mucins within the mucus barrier, which may modify the niche of the parasite to prevent clearance from the host or facilitate efficient mating and egg laying from the posterior end of the parasite that is in intimate contact with the mucus barrier. However, during a TH2-mediated worm expulsion response, serpins, Muc5ac and increased levels of Muc2 protect the barrier from degradation by the nematode secreted protease(s). PMID

  4. Genome-wide survey of prokaryotic serine proteases: Analysis of distribution and domain architectures of five serine protease families in prokaryotes

    PubMed Central

    Tripathi, Lokesh P; Sowdhamini, R

    2008-01-01

    Background Serine proteases are one of the most abundant groups of proteolytic enzymes found in all the kingdoms of life. While studies have established significant roles for many prokaryotic serine proteases in several physiological processes, such as those associated with metabolism, cell signalling, defense response and development, functional associations for a large number of prokaryotic serine proteases are relatively unknown. Current analysis is aimed at understanding the distribution and probable biological functions of the select serine proteases encoded in representative prokaryotic organisms. Results A total of 966 putative serine proteases, belonging to five families, were identified in the 91 prokaryotic genomes using various sensitive sequence search techniques. Phylogenetic analysis reveals several species-specific clusters of serine proteases suggesting their possible involvement in organism-specific functions. Atypical phylogenetic associations suggest an important role for lateral gene transfer events in facilitating the widespread distribution of the serine proteases in the prokaryotes. Domain organisations of the gene products were analysed, employing sensitive sequence search methods, to infer their probable biological functions. Trypsin, subtilisin and Lon protease families account for a significant proportion of the multi-domain representatives, while the D-Ala-D-Ala carboxypeptidase and the Clp protease families are mostly single-domain polypeptides in prokaryotes. Regulatory domains for protein interaction, signalling, pathogenesis, cell adhesion etc. were found tethered to the serine protease domains. Some domain combinations (such as S1-PDZ; LON-AAA-S16 etc.) were found to be widespread in the prokaryotic lineages suggesting a critical role in prokaryotes. Conclusion Domain architectures of many serine proteases and their homologues identified in prokaryotes are very different from those observed in eukaryotes, suggesting distinct roles

  5. Depeptidization efforts on P[subscript 3]-P[prime subscript 2] [alpha]-ketoamide inhibitors of HCV NS3-4A serine protease: Effect on HCV replicon activity

    SciTech Connect

    Bogen, Stephane L.; Ruan, Sumei; Liu, Rong; Agrawal, Sony; Pichardo, John; Prongay, Andrew; Baroudy, Bahige; Saksena, Anil K.; Girijavallabhan, Viyyoor; Njoroge, F. George

    2008-06-30

    Depeptidization efforts of the P{sub 3}-P{sub 2} region of P{sub 3} capped {alpha}-ketoamide inhibitor of HCV NS3 serine protease 1 are reported. We clearly established that N-methylation of the P{sub 2} nitrogen and modification of the P{prime}{sub 2} carboxylic acid terminus were essential for activity in the replicon assay.

  6. The HNF-4/HNF-1α transactivation cascade regulates gene activity and chromatin structure of the human serine protease inhibitor gene cluster at 14q32.1

    PubMed Central

    Rollini, Pierre; Fournier, R. E. K.

    1999-01-01

    Hepatocyte-specific expression of the α1-antitrypsin (α1AT) gene requires the activities of two liver-enriched transactivators, hepatocyte nuclear factors 1α and 4 (HNF-1α and HNF-4). The α1AT gene maps to a region of human chromosome 14q32.1 that includes a related serine protease inhibitor (serpin) gene encoding corticosteroid-binding globulin (CBG), and the chromatin organization of this ≈130-kb region, as defined by DNase I-hypersensitive sites, has been described. Microcell transfer of human chromosome 14 from fibroblasts to rat hepatoma cells results in activation of α1AT and CBG transcription and chromatin reorganization of the entire locus. To assess the roles of HNF-1α and HNF-4 in gene activation and chromatin remodeling, we transferred human chromosome 14 from fibroblasts to rat hepatoma cell variants that are deficient in expression of HNF-1α and HNF-4. The variant cells failed to activate either α1AT or CBG transcription, and chromatin remodeling failed to occur. However, α1AT and CBG transcription could be rescued by transfecting the cells with expression plasmids encoding HNF-1α or HNF-4. In these transfectants, the chromatin structure of the entire α1AT/CBG locus was reorganized to an expressing cell-typical state. Thus, HNF-1α and HNF-4 control both chromatin structure and gene activity of two cell-specific genes within the serpin gene cluster at 14q32.1. PMID:10468604

  7. Studies on alkaline serine protease produced by Bacillus clausii GMBE 22.

    PubMed

    Kazan, Dilek; Bal, Hulya; Denizci, Aziz Akin; Ozturk, Nurcin Celik; Ozturk, Hasan Umit; Dilgimen, Aydan Salman; Ozturk, Dilek Coskuner; Erarslan, Altan

    2009-01-01

    An alkali tolerant Bacillus strain having extracellular serine alkaline protease activity was newly isolated from compost and identified as Bacillus clausii GMBE 22. An alkaline protease (AP22) was 4.66-fold purified in 51.5% yield from Bacillus clausii GMBE 22 by ethanol precipitation and DEAE-cellulose anion exchange chromatography. The purified enzyme was identified as serine protease by LC-ESI-MS analysis. Its complete inhibition by phenylmethanesulfonylfluoride (PMSF) also justified that it is a serine alkaline protease. The molecular weight of the enzyme is 25.4 kDa. Optimal temperature and pH values are 60 degrees C and 12.0, respectively. The enzyme showed highest specificity to N-Suc-Ala-Ala-Pro-Phe-pNA. The K(m) and k(cat) values for hydrolysis of this substrate are 0.347 mM and 1141 min(-1) respectively. The enzyme was affected by surface active agents to varying extents. The enzyme is stable for 2 h at 30 degrees C and pH 10.5. AP22 is also stable for 5 days over the pH range 9.0-11.0 at room temperature. AP22 has good pH stability compared with the alkaline proteases belonging to other strains of Bacillus clausii reported in the literature. PMID:19431045

  8. Proteases in egg, miracidium and adult of Fasciola gigantica. Characterization of serine and cysteine proteases from adult.

    PubMed

    Mohamed, Saleh A; Fahmy, Afaf S; Mohamed, Tarek M; Hamdy, Soha M

    2005-10-01

    Proteolytic activity of 0-12 day old eggs, miracidium and adult worm of Fasciola gigantica was assessed and proteases were partially purified by DEAE-Sepharose and CM-cellulose columns. Four forms of protease were separated, PIa, PIb, PIc and PII. Purifications were completed for PIc and PII using Sephacryl S-200 chromatography. A number of natural and synthetic proteins were tested as substrates for F. gigantica PIc and PII. The two proteases had moderate activity levels toward azoalbumin and casein compared to azocasein, while gelatin, hemoglobin, albumin and fibrin had very low affinity toward the two enzymes. Amidolytic substrates are more specific to protease activity. PIc had higher affinity toward BAPNA-HCl (N-benzoyl-arginine-p-nitroanilide-HCl) and BTPNA-HCl (N-benzoyl-tyrosine-p-nitroanilide-HCl) at pH 8.0 indicating that the enzyme was a serine protease. However, PII had higher affinity toward BAPNA at pH 6.5 in the presence of sulfhydryl groups (beta-mercaptoethanol) indicating that the enzyme was a cysteine protease. The effect of specific protease inhibitors on these enzymes was studied. The results confirmed that proteases PIc and PII could be serine and cysteine proteases, respectively. The molecular weights of F. gigantica PIc and PII were 60,000 and 25,000, respectively. F. gigantica PIc and PII had pH optima at 7.5 and 5.5 and K(M) of 2 and 5 mg azocasein/mL, respectively. For amidolytic substrates, PIc had K(M) of 0.3 mM BAPNA/mL and 0.5 mM BTPNA/mL at pH 8.0 and PII had K(M) of 0.6 mM BAPNA/mL at pH 6.5 with reducing agent. F. gigantica PIc and PII had the same optimum temperature at 50 degrees C and were stable up to 40 degrees C. All examined metal cations tested had inhibitory effects toward the two enzymes. From substrate specificity and protease inhibitor studies, PIc and PII could be designated as serine PIc and cysteine PII, respectively. PMID:16102991

  9. Serine proteases of the human immune system in health and disease.

    PubMed

    Heutinck, Kirstin M; ten Berge, Ineke J M; Hack, C Erik; Hamann, Jörg; Rowshani, Ajda T

    2010-07-01

    Serine proteases form a large family of protein-cleaving enzymes that play an essential role in processes like blood coagulation, apoptosis and inflammation. Immune cells express a wide variety of serine proteases such as granzymes in cytotoxic lymphocytes, neutrophil elastase, cathepsin G and proteinase 3 in neutrophils and chymase and tryptase in mast cells. Regulation of proteolysis induced by these serine proteases is essential to prevent self-induced damage. Hence, there are specialized serine protease inhibitors, serpins, which are broadly distributed. Here, we discuss the function of human serine proteases in inflammation, apoptosis and tissue remodeling. Furthermore, we address their impact on development and progression of immune mediated-diseases. Understanding the mode of action of serine proteases will help to unravel molecular processes involved in immunological disorders and will facilitate the identification of new therapeutic targets.

  10. Identification and characterization of alkaline serine protease from goat skin surface metagenome.

    PubMed

    Pushpam, Paul Lavanya; Rajesh, Thangamani; Gunasekaran, Paramasamy

    2011-01-01

    Metagenomic DNA isolated from goat skin surface was used to construct plasmid DNA library in Escherichia coli DH10B. Recombinant clones were screened for functional protease activity on skim milk agar plates. Upon screening 70,000 clones, a clone carrying recombinant plasmid pSP1 exhibited protease activity. In vitro transposon mutagenesis and sequencing of the insert DNA in this clone revealed an ORF of 1890 bp encoding a protein with 630 amino acids which showed significant sequence homology to the peptidase S8 and S53 subtilisin kexin sedolisin of Shewanella sp. This ORF was cloned in pET30b and expressed in E. coli BL21 (DE3). Although the cloned Alkaline Serine protease (AS-protease) was overexpressed, it was inactive as a result of forming inclusion bodies. After solubilisation, the protease was purified using Ni-NTA chromatography and then refolded properly to retain protease activity. The purified AS-protease with a molecular mass of ~63 kDa required a divalent cation (Co2+ or Mn2+) for its improved activity. The pH and temperature optima for this protease were 10.5 and 42°C respectively. PMID:21906326

  11. An evaluation of chromogenic substrates for characterization of serine protease produced by pathogenic Vibrio alginolyticus.

    PubMed

    Chen, F R; Liu, P C; Lee, K K

    1999-01-01

    Four chromogenic substrates for characterizing serine protease of Vibrio alginolyticus were evaluated. The protease activity of bacterial extracellular products, or the fractions of 33 kD protease purified by the AKTA purifier system with various columns, was completely inhibited by ethylenediamine tetra-acetic acid, ethylene glycol-bis(beta-amino-ethyl ether) N,N,N',N'-tetraacetic acid (EGTA), antipain and phenylmethylsulphonyl fluoride (PMSF) using water-soluble substrates (azoalbumin and azocasein). It was only completely inhibited by antipain and PMSF using water-insoluble substrates (azocoll and hide powder azure). The protease activity was not, or only partially, inhibited by 1,10-phenanthroline and sodium dodecyl sulphate (SDS) using all four substrates. Since chelating agents and 1,10-phenanthroline are commonly employed as inhibitors to identify metalloprotease, the two water-soluble substrates may not be appropriate for this purpose, except for using 1,10-phenanthroline as an inhibitor. Chelating agents may be still applicable as inhibitors using water-insoluble substrates and 1,10-phenanthroline is highly recommended in the characterization for metalloprotease to avoid confusion. In the present study, the 33 kD protease was further confirmed as an SDS-resistant serine protease and not a metalloprotease. PMID:10413876

  12. Purification and Characterization of Serine Proteases That Exhibit Caspase-Like Activity and Are Associated with Programmed Cell Death in Avena sativa

    PubMed Central

    Coffeen, Warren C.; Wolpert, Thomas J.

    2004-01-01

    Victoria blight of Avena sativa (oat) is caused by the fungus Cochliobolus victoriae, which is pathogenic because of the production of the toxin victorin. The victorin-induced response in sensitive A. sativa has been characterized as a form of programmed cell death (PCD) and displays morphological and biochemical features similar to apoptosis, including chromatin condensation, DNA laddering, cell shrinkage, altered mitochondrial function, and ordered, substrate-specific proteolytic events. Victorin-induced proteolysis of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is shown to be prevented by caspase-specific and general protease inhibitors. Evidence is presented for a signaling cascade leading to Rubisco proteolysis that involves multiple proteases. Furthermore, two proteases that are apparently involved in the Rubisco proteolytic cascade were purified and characterized. These proteases exhibit caspase specificity and display amino acid sequences homologous to plant subtilisin-like Ser proteases. The proteases are constitutively present in an active form and are relocalized to the extracellular fluid after induction of PCD by either victorin or heat shock. The role of the enzymes as processive proteases involved in a signal cascade during the PCD response is discussed. PMID:15020745

  13. Structural basis of substrate specificity in the serine proteases.

    PubMed Central

    Perona, J. J.; Craik, C. S.

    1995-01-01

    Structure-based mutational analysis of serine protease specificity has produced a large database of information useful in addressing biological function and in establishing a basis for targeted design efforts. Critical issues examined include the function of water molecules in providing strength and specificity of binding, the extent to which binding subsites are interdependent, and the roles of polypeptide chain flexibility and distal structural elements in contributing to specificity profiles. The studies also provide a foundation for exploring why specificity modification can be either straightforward or complex, depending on the particular system. PMID:7795518

  14. Cloning and sequencing of the major intracellular serine protease gene of Bacillus subtilis.

    PubMed Central

    Koide, Y; Nakamura, A; Uozumi, T; Beppu, T

    1986-01-01

    A Bacillus subtilis 2.7-kilobase DNA fragment containing an intracellular protease gene was cloned into Escherichia coli. The transformants produced an intracellular protease of approximately 35,000 Mr whose activity was inhibited by both phenylmethylsulfonyl fluoride and EDTA. Introduction of the fragment on a multicopy vector, pUB110, into B. subtilis caused a marked increase in the level of the intracellular protease. The nucleotide sequence of the cloned fragment showed the presence of an open reading frame for a possible proenzyme of the major intracellular serine protease (ISP-I) of B. subtilis with an NH2-terminal 17- or 20-amino-acid extension. The total amino acid sequence of the protease deduced from the nucleotide sequence showed considerable homology with that of an extracellular serine protease, subtilisin. The transcriptional initiation site of the ISP-I gene was identified by nuclease S1 mapping. No typical conserved sequence for promoters was found upstream of the open reading frame. An ISP-I-negative mutant of B. subtilis was constructed by integration of artificially deleted gene into the chromosome. The mutant sporulated normally in a nutritionally rich medium but showed decreased sporulation in a synthetic medium. The chloramphenicol resistance determinant of a plasmid integrated at the ISP-I locus was mapped by PBS1 transduction and was found to be closely linked to metC (99.5%). Images PMID:3087947

  15. Modeling and structural analysis of evolutionarily diverse S8 family serine proteases.

    PubMed

    Laskar, Aparna; Rodger, Euan James; Chatterjee, Aniruddha; Mandal, Chhabinath

    2011-01-01

    Serine proteases are an abundant class of enzymes that are involved in a wide range of physiological processes and are classified into clans sharing structural homology. The active site of the subtilisin-like clan contains a catalytic triad in the order Asp, His, Ser (S8 family) or a catalytic tetrad in the order Glu, Asp and Ser (S53 family). The core structure and active site geometry of these proteases is of interest for many applications. The aim of this study was to investigate the structural properties of different S8 family serine proteases from a diverse range of taxa using molecular modeling techniques. In conjunction with 12 experimentally determined three-dimensional structures of S8 family members, our predicted structures from an archaeon, protozoan and a plant were used for analysis of the catalytic core. Amino acid sequences were obtained from the MEROPS database and submitted to the LOOPP server for threading based structure prediction. The predicted structures were refined and validated using PROCHECK, SCRWL and MODELYN. Investigation of secondary structures and electrostatic surface potential was performed using MOLMOL. Encompassing a wide range of taxa, our structural analysis provides an evolutionary perspective on S8 family serine proteases. Focusing on the common core containing the catalytic site of the enzyme, the analysis presented here is beneficial for future molecular modeling strategies and structure-based rational drug design.

  16. Identification and characterisation of the excreted/secreted serine proteases of larvae of the old world screwworm fly, Chrysomya bezziana.

    PubMed

    Muharsini, S; Sukarsih; Riding, G; Partoutomo, S; Hamilton, S; Willadsen, P; Wijffels, G

    2000-05-01

    Serine proteases are the major proteolytic activity excreted or secreted from Chrysomya bezziana larvae as demonstrated by gelatin gel analyses and the use of specific substrates, benzoyl-Arg-p-nitroanilide and succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. Serine proteases were identified through their inhibition by 4-(2-aminoethyl)-benzene sulphonyl fluoride and classified as trypsin- and chymotrypsin-like on the basis of inhibition by tosyl-L-lysine chloromethyl ketone and tosyl-L-phenylalanine chloromethyl ketone, respectively. Like most insect serine proteases, the C. bezziana enzymes were active over broad pH range from mildly acidic to alkaline. The excreted or secreted serine proteases were purified by affinity chromatography using soybean trypsin inhibitor. A different subset of the serine proteases was isolated by salt elution from washed larval peritrophic matrices. Amino-terminal sequencing identified both trypsin and chymotrypsin-like sequences in the excreted or secreted pool with the latter being the dominant protease, whereas trypsin was the dominant species in the peritrophic matrix eluant. These results suggest that trypsin was possibly preferably adsorbed by the peritrophic matrix and may act as a final proteolytic processing stage as partially digested and ingested polypeptides pass through the peritrophic matrix. Immunoblot analysis on dissected gut tissues indicated that the anterior and posterior midguts were the main source of the serine proteases, although a novel species of 32 kDa was predominantly associated with the peritrophic matrix. Proteases are a target for a partially protective immune response and understanding the complexity of the secreted and digestive proteases is a necessary part of understanding the mechanism of the host's immunological defence against the parasite.

  17. Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora.

    PubMed

    Tunlid, A; Rosén, S; Ek, B; Rask, L

    1994-07-01

    When grown in liquid cultures allowing the formation of nematode traps, the fungus Arthrobotrys oligospora produced two extracellular proteases hydrolysing the chromogenic substrate Azocoll. The protease activity was separated into two fractions (FI and FII) using anion-exchange chromatography. In bioassays, protease(s) present in FII immobilized the free-living nematode Panagrellus redivivus indicating that the enzyme(s) might be involved in the infection of nematodes. A protease designated PII was purified from FII to apparent homogeneity by hydrophobic interaction and size-exclusion chromatography, resulting in an approximately 15-fold increase in specific activity. The purified enzyme was glycosylated, had a molecular mass of approximately 35 kDa (gel filtration) and an isoelectric point of pH 4.6. PII immobilized P. redivivus in bioassays and hydrolysed proteins of the purified cuticle. The enzyme hydrolysed several protein substrates including casein, bovine serum albumin and gelatin, but not native collagen. Examination of substrate specificity with synthetic peptides showed that PII readily hydrolysed tripeptides with aromatic or basic amino acids including N-benzoyl-L-phenylalanyl-L-valyl-L-arginine-4-nitroanilide (Bz-Phe-Val-Arg-NA) and succinyl-glycyl-glycyl-L-phenylalanine-4-nitroanilide (Suc-Gly-Gly-Phe-NA). Mono-peptides were hydrolysed at considerably slower rates. PII had an optimum activity between pH 7 and 9 and was susceptible to autodegradation. PII was inhibited by several serine protease inhibitors including phenylmethylsulfonyl fluoride (PMSF), chymostatin and antipain. The protease was N-terminally blocked, but the sequence of one internal peptide showed a high homology with a region containing the active site histidine residue of the subtilisin family of serine proteases.

  18. Characterization and properties of a 1,3-beta-D-glucan pattern recognition protein of Tenebrio molitor larvae that is specifically degraded by serine protease during prophenoloxidase activation.

    PubMed

    Zhang, Rong; Cho, Hae Yun; Kim, Hyun Sic; Ma, Young Gerl; Osaki, Tsukasa; Kawabata, Shun-ichiro; Söderhäll, Kenneth; Lee, Bok Luel

    2003-10-24

    Although many different pattern recognition receptors recognizing peptidoglycan and 1,3-beta-D-glucan have been identified in vertebrates and insects, the molecular mechanism of these molecules in the pattern recognition and subsequent signaling is largely unknown. To gain insights into the action mechanism of 1,3-beta-D-glucan pattern recognition protein in the insect prophenoloxidase (proPO) activation system, we purified a 53-kDa 1,3-beta-D-glucan recognition protein (Tm-GRP) to homogeneity from the hemolymph of the mealworm, Tenebrio molitor, by using a 1,3-beta-d-glucan affinity column. The purified protein specifically bound to 1,3-beta-D-glucan but not to peptidoglycan. Subsequent molecular cloning revealed that Tm-GRP contains a region with close sequence similarity to bacterial glucanases. Strikingly, two catalytically important residues in glucanases are replaced with other nonhomologous amino acids in Tm-GRP. The finding suggests that Tm-GRP has evolved from an ancestral gene of glucanases but retained only the ability to recognize 1,3-beta-D-glucan. A Western blot analysis of the protein level of endogenous Tm-GRP showed that the protein was specifically degraded following the activation of proPO with 1,3-beta-D-glucan and calcium ion. The degradation was significantly retarded by the addition of serine protease inhibitors but not by cysteine or acidic protease inhibitor. These results suggest that 1,3-beta-D-glucan pattern recognition protein is specifically degraded by serine protease(s) during proPO activation, and we propose that this degradation is an important regulatory mechanism of the activation of the proPO system.

  19. Comprehensive Analysis of a Vibrio parahaemolyticus Strain Extracellular Serine Protease VpSP37

    PubMed Central

    Bennici, Carmelo; Quatrini, Paola; Catania, Valentina; Mazzola, Salvatore; Ghersi, Giulio; Cuttitta, Angela

    2015-01-01

    Proteases play an important role in the field of tissue dissociation combined with regenerative medicine. During the years new sources of proteolytic enzymes have been studied including proteases from different marine organisms both eukaryotic and prokaryotic. Herein we have purified a secreted component of an isolate of Vibrio parahaemolyticus, with electrophoretic mobilities corresponding to 36 kDa, belonging to the serine proteases family. Sequencing of the N-terminus enabled the in silico identification of the whole primary structure consisting of 345 amino acid residues with a calculated molecular mass of 37.4 KDa. The purified enzyme, named VpSP37, contains a Serine protease domain between residues 35 and 276 and a canonical Trypsin/Chimotrypsin 3D structure. Functional assays were performed to evaluate protease activity of purified enzyme. Additionally the performance of VpSP37 was evaluated in tissue dissociations experiments and the use of such enzyme as a component of enzyme blend for tissue dissociation procedures is strongly recommended. PMID:26162075

  20. Biochemical characterization of a detergent-stable serine alkaline protease from Caldicoprobacter guelmensis.

    PubMed

    Bouacem, Khelifa; Bouanane-Darenfed, Amel; Laribi-Habchi, Hassiba; Elhoul, Mouna Ben; Hmida-Sayari, Aïda; Hacene, Hocine; Ollivier, Bernard; Fardeau, Marie-Laure; Jaouadi, Bassem; Bejar, Samir

    2015-11-01

    Caldicoprobacter guelmensis isolated from the hydrothermal hot spring of Guelma (Algeria) produced high amounts of extracellular thermostable serine alkaline protease (called SAPCG) (23,000U/mL). The latter was purified by ammonium sulphate precipitation, UNO Q-6 FPLC and Zorbex PSM 300 HPLC, and submitted to biochemical characterization assays. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer, with a molecular mass of 55,824.19Da. The 19 N-terminal residue sequence of SAPCG showed high homology with those of microbial proteases. The enzyme was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP), which suggested its belonging to the serine protease family. It showed optimum protease activity at pH 10 and 70°C with casein as a substrate. The thermoactivity and thermostability of SAPCG were enhanced in the presence of 2mM Ca(2+). Its half-life times at 80 and 90°C were 180 and 60min, respectively. Interestingly, the SAPCG protease exhibited significant compatibility with iSiS and Persil, and wash performance analysis revealed that it could remove blood-stains effectively. Overall, SAPCG displayed a number of attractive properties that make it a promising candidate for future applications as an additive in detergent formulations.

  1. The Cytotoxic and Pro-Apoptotic Activities of the Novel Fluoropyrimidine F10 Towards Prostate Cancer Cells are Enhanced by Zn2+-Chelation and Inhibiting the Serine Protease Omi/HtrA2

    PubMed Central

    Gmeiner, William H.; Boyacioglu, Olcay; Stuart, Christopher H.; Jennings-Gee, Jamie; Balaji, K.C.

    2014-01-01

    BACKGROUND Intracellular Zn2+ levels decrease during prostate cancer progression and agents that modulate intracellular Zn2+ are cytotoxic to prostate cancer cells by an incompletely described mechanism. F10 is a new polymeric fluoropyrimidine drug-candidate that displays strong activity with minimal systemic toxicity in pre-clinical models of prostate cancer and other malignancies. The effects of exogenous Zn2+ or Zn2+ chelation for enhancing F10 cytotoxicity are investigated as is the role of Omi/HtrA2, a serine protease that promotes apoptosis in response to cellular stress. METHODS To test the hypothesis that the pro-apoptotic effects of F10 could be enhanced by modulating intracellular Zn2+ we investigated cell-permeable and cell-impermeable Zn2+ chelators and exogenous Zn2+ and evaluated cell viability and apoptosis in cellular models of castration-resistant prostate cancer (CRPC; PC3, C4-2). The role of Omi/HtrA2 for modulating apoptosis was evaluated by pharmacological inhibition and Western blotting. RESULTS Exogenous Zn2+ initially reduced prostate cancer cell viability but these effects were transitory and were ineffective at enhancing F10 cytotoxicity. The cell-permeable Zn2+-chelator tetrakis-(2-pyridylmethl)ethylenediamine (TPEN) induced apoptosis in prostate cancer cells and enhanced the pro-apoptotic effects of F10. The pro-apoptotic effects of Zn2+-chelation in combination with F10 treatment were enhanced by inhibiting Omi/HtrA2 implicating this serine protease as a novel target for prostate cancer treatment. CONCLUSIONS Zn2+-chelation enhances the pro-apoptotic effects of F10 and may be useful for enhancing the effectiveness of F10 for treatment of advanced prostate cancer. The serine protease Omi/HtrA2 modulates Zn2+-dependent apoptosis in prostate cancer cells and represents a new target for treatment of CRPC. PMID:25408502

  2. Molecular genetic analysis of midgut serine proteases in Aedes aegypti mosquitoes.

    PubMed

    Isoe, Jun; Rascón, Alberto A; Kunz, Susan; Miesfeld, Roger L

    2009-12-01

    Digestion of blood meal proteins by midgut proteases provides anautogenous mosquitoes with the nutrients required to complete the gonotrophic cycle. Inhibition of protein digestion in the midgut of blood feeding mosquitoes could therefore provide a strategy for population control. Based on recent reports indicating that the mechanism and regulation of protein digestion in blood fed female Aedes aegypti mosquitoes is more complex than previously thought, we used a robust RNAi knockdown method to investigate the role of four highly expressed midgut serine proteases in blood meal metabolism. We show by Western blotting that the early phase trypsin protein (AaET) is maximally expressed at 3 h post-blood meal (PBM), and that AaET is not required for the protein expression of three late phase serine proteases, AaLT (late trypsin), AaSPVI (5G1), and AaSPVII. Using the trypsin substrate analog BApNA to analyze in vitro enzyme activity in midgut extracts from single mosquitoes, we found that knockdown of AaSPVI expression caused a 77.6% decrease in late phase trypsin-like activity, whereas, knockdown of AaLT and AaSPVII expression had no significant effect on BApNA activity. In contrast, injection of AaLT, AaSPVI, and AaSPVII dsRNA inhibited degradation of endogenous serum albumin protein using an in vivo protease assay, as well as, significantly decreased egg production in both the first and second gonotrophic cycles (P < 0.001). These results demonstrate that AaLT, AaSPVI, and AaSPVII all contribute to blood protein digestion and oocyte maturation, even though AaSPVI is the only abundant midgut late phase serine protease that appears to function as a classic trypsin enzyme. PMID:19883761

  3. Adjustments of serine proteases of Daphnia pulex in response to temperature changes.

    PubMed

    Dölling, Ramona; Becker, Dörthe; Hawat, Susan; Koch, Marita; Schwarzenberger, Anke; Zeis, Bettina

    2016-01-01

    Elevated temperatures considerably challenge aquatic invertebrates, and enhanced energy metabolism and protein turnover require adjustments of digestion. In Daphnia, the serine proteases chymotrypsin and trypsin represent the major proteolytic enzymes. Daphnia pulex acclimated to different temperature conditions or subjected to acute heat stress showed increased expression level of serine proteases with rising temperatures. Transcripts of trypsin isoforms were always present in higher amounts than observed for chymotrypsin. Additionally, trypsin isoform transcripts were induced by elevated temperatures to a larger extent. Correspondingly, trypsin activity dominated in cold-acclimated animals. However, the enzymatic activity of chymotrypsin increased at elevated temperatures, whereas trypsin activity slightly decreased, resulting in a shift to dominating chymotrypsin activity in warm-acclimated animals. Zymograms revealed eight bands with proteolytic activity in the range of 20 to 86 kDa. The single bands were assigned to trypsin or chymotrypsin activity applying specific inhibitors or from casein cleavage products identified by mass spectrometric analysis. The total amount of proteolytic activity was elevated with acclimation temperature increase and showed a transient decrease under acute heat stress. The contribution of the different isoforms to protein digestion indicated induction of chymotrypsin with increasing acclimation temperature. For trypsin, the share of one isoform decreased with elevated temperature, while another isoform was enhanced. Thus differential expression of serine proteases was observed in response to chronic and acute temperature changes. The observed phenotypic plasticity adjusts the set of active proteases to the altered needs of protein metabolism optimizing protein digestion for the temperature conditions experienced in the habitat. PMID:26773656

  4. Subtilases: the superfamily of subtilisin-like serine proteases.

    PubMed Central

    Siezen, R. J.; Leunissen, J. A.

    1997-01-01

    Subtilases are members of the clan (or superfamily) of subtilisin-like serine proteases. Over 200 subtilases are presently known, more than 170 of which with their complete amino acid sequence. In this update of our previous overview (Siezen RJ, de Vos WM, Leunissen JAM, Dijkstra BW, 1991, Protein Eng 4:719-731), details of more than 100 new subtilases discovered in the past five years are summarized, and amino acid sequences of their catalytic domains are compared in a multiple sequence alignment. Based on sequence homology, a subdivision into six families is proposed. Highly conserved residues of the catalytic domain are identified, as are large or unusual deletions and insertions. Predictions have been updated for Ca(2+)-binding sites, disulfide bonds, and substrate specificity, based on both sequence alignment and three-dimensional homology modeling. PMID:9070434

  5. The roles of serine protease, intracellular and extracellular phenoloxidase in activation of prophenoloxidase system, and characterization of phenoloxidase from shrimp haemocytes induced by lipopolysaccharide or dopamine

    NASA Astrophysics Data System (ADS)

    Xie, Peng; Pan, Luqing; Xu, Wujie; Yue, Feng

    2013-09-01

    We investigated the effects of lipopolysaccharide (LPS) and dopamine (DA) on the activation of the prophenoloxidase (proPO) system of Litopenaeus vannamei. LPS and DA were shown with a negative dose-dependent effect on hyalne cells (HC), semi-granular cells (SGC), large granular cells (LGC), and total haemocyte count (THC). When haemocytes were treated with LPS or DA, serine proteinase activity and intracellular phenoloxidase (PO) activity were significantly reduced, but extracellular PO activity increased significantly. These findings indicated that the reduction in haemocyte counts was mainly because of the degranulation and activation of the proPO system from semi-granule and large granule cells. The PKC inhibitor, chelerythrine, and the TPK inhibitor, genistein, had an inhibitory effect on extracellular PO activity, while serine proteinase and intracellular PO activity increased. This suggests that the LPS and DA induce the activation of proPO in haemocytes via PKC and TPK-related signaling pathways, but serine proteinase may be activated only by PKC, as the genistein effects were not statistically significant. Electrophoresis analysis revealed that POs induced by LPS or DA have the same molecular mass and high diphenolase activity. Two PO bands at 526 kDa and 272 kDa were observed in PAGE, while in the haemocyte lysate supernatant (HLS), only a 272-kDa band was observed. This band was resolved after SDS-PAGE under non-reducing and reducing conditions into two groups of POs, 166 kDa and 126 kDa, and 78.1 kDa and 73.6 kDa, respectively, suggesting that PO in L. vannamei is an oligomer, which may have different compositions intra- and extracellularly.

  6. The Proteolytic Activation of (H3N2) Influenza A Virus Hemagglutinin Is Facilitated by Different Type II Transmembrane Serine Proteases

    PubMed Central

    Kühn, Nora; Bergmann, Silke; Kösterke, Nadine; Lambertz, Ruth L. O.; Keppner, Anna; van den Brand, Judith M. A.; Weiß, Siegfried; Hummler, Edith; Hatesuer, Bastian

    2016-01-01

    ABSTRACT Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is necessary for viral activation and infectivity. In humans and mice, members of the type II transmembrane protease family (TTSP), e.g., TMPRSS2, TMPRSS4, and TMPRSS11d (HAT), have been shown to cleave influenza virus HA for viral activation and infectivity in vitro. Recently, we reported that inactivation of a single HA-activating protease gene, Tmprss2, in knockout mice inhibits the spread of H1N1 influenza viruses. However, after infection of Tmprss2 knockout mice with an H3N2 influenza virus, only a slight increase in survival was observed, and mice still lost body weight. In this study, we investigated an additional trypsin-like protease, TMPRSS4. Both TMPRSS2 and TMPRSS4 are expressed in the same cell types of the mouse lung. Deletion of Tmprss4 alone in knockout mice does not protect them from body weight loss and death upon infection with H3N2 influenza virus. In contrast, Tmprss2−/− Tmprss4−/− double-knockout mice showed a remarkably reduced virus spread and lung pathology, in addition to reduced body weight loss and mortality. Thus, our results identified TMPRSS4 as a second host cell protease that, in addition to TMPRSS2, is able to activate the HA of H3N2 influenza virus in vivo. IMPORTANCE Influenza epidemics and recurring pandemics are responsible for significant global morbidity and mortality. Due to high variability of the virus genome, resistance to available antiviral drugs is frequently observed, and new targets for treatment of influenza are needed. Host cell factors essential for processing of the virus hemagglutinin represent very suitable drug targets because the virus is dependent on these host factors for replication. We reported previously that Tmprss2-deficient mice are protected against H1N1 virus infections, but only marginal protection against H3N2 virus infections was observed. Here we show that deletion of two host protease genes, Tmprss2 and

  7. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding

    PubMed Central

    Medeiros, Ane H.; Mingossi, Fabiana B.; Dias, Renata O.; Franco, Flávia P.; Vicentini, Renato; Mello, Marcia O.; Moura, Daniel S.; Silva-Filho, Marcio C.

    2016-01-01

    Sugarcane’s (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory. PMID:27598134

  8. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding.

    PubMed

    Medeiros, Ane H; Mingossi, Fabiana B; Dias, Renata O; Franco, Flávia P; Vicentini, Renato; Mello, Marcia O; Moura, Daniel S; Silva-Filho, Marcio C

    2016-09-01

    Sugarcane's (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory.

  9. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding.

    PubMed

    Medeiros, Ane H; Mingossi, Fabiana B; Dias, Renata O; Franco, Flávia P; Vicentini, Renato; Mello, Marcia O; Moura, Daniel S; Silva-Filho, Marcio C

    2016-01-01

    Sugarcane's (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory. PMID:27598134

  10. Purification and characterization of a novel serine protease from the mushroom Pholiota nameko.

    PubMed

    Guan, Gui-Ping; Zhang, Guo-Qing; Wu, Ying-Ying; Wang, He-Xiang; Ng, Tzi-Bun

    2011-06-01

    A novel serine protease, with a molecular mass of 19 kDa and the N-terminal sequence of ARTPEAPAEV, was isolated from dried fruiting bodies of the mushroom Pholiota nameko. The purification protocol comprised ion exchange chromatography on DEAE-cellulose, Q-Sepharose and SP-Sepharose, and gel filtration on Superdex 75. It was unadsorbed on DEAE-cellulose and Q-Sepharose but adsorbed on SP-Sepharose. It exhibited an optimum temperature at 50°C, an optimum pH at pH 8.8, a Km of 5.64 mg/mL and a Vmax of 0.98 μmol/min/mL against substrate casein. A number of metal ions inhibited the enzyme including Pb(2+), Mn(2+), Ca(2+), Hg(2+), Zn(2+), Cu(2+), Co(2+), Fe(3+) and Al(3+), with the inhibition of the last two cations being the most potent. K(+) and Mg(2+) slightly enhanced, while Li(+) moderately potentiated the activity of the protease. The protease was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), suggesting that it is a serine protease.

  11. Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in Manduca sexta.

    PubMed

    Cao, Xiaolong; He, Yan; Hu, Yingxia; Zhang, Xiufeng; Wang, Yang; Zou, Zhen; Chen, Yunru; Blissard, Gary W; Kanost, Michael R; Jiang, Haobo

    2015-07-01

    Serine protease (SP) and serine protease homolog (SPH) genes in insects encode a large family of proteins involved in digestion, development, immunity, and other processes. While 68 digestive SPs and their close homologs are reported in a companion paper (Kuwar et al., in preparation), we have identified 125 other SPs/SPHs in Manduca sexta and studied their structure, evolution, and expression. Fifty-two of them contain cystine-stabilized structures for molecular recognition, including clip, LDLa, Sushi, Wonton, TSP, CUB, Frizzle, and SR domains. There are nineteen groups of genes evolved from relatively recent gene duplication and sequence divergence. Thirty-five SPs and seven SPHs contain 1, 2 or 5 clip domains. Multiple sequence alignment and molecular modeling of the 54 clip domains have revealed structural diversity of these regulatory modules. Sequence comparison with their homologs in Drosophila melanogaster, Anopheles gambiae and Tribolium castaneum allows us to classify them into five subfamilies: A are SPHs with 1 or 5 group-3 clip domains, B are SPs with 1 or 2 group-2 clip domains, C, D1 and D2 are SPs with a single clip domain in group-1a, 1b and 1c, respectively. We have classified into six categories the 125 expression profiles of SP-related proteins in fat body, brain, midgut, Malpighian tubule, testis, and ovary at different stages, suggesting that they participate in various physiological processes. Through RNA-Seq-based gene annotation and expression profiling, as well as intragenomic sequence comparisons, we have established a framework of information for future biochemical research of nondigestive SPs and SPHs in this model species. PMID:25530503

  12. Inhibition of Aeromonas sobria serine protease (ASP) by α2-macroglobulin.

    PubMed

    Murakami, Yoji; Wada, Yoshihiro; Kobayashi, Hidetomo; Irie, Atsushi; Hasegawa, Makoto; Yamanaka, Hiroyasu; Okamoto, Keinosuke; Eto, Masatoshi; Imamura, Takahisa

    2012-10-01

    ASP is a serine protease secreted by Aeromonas sobria. ASP cleaves various plasma proteins, which is associated with onset of sepsis complications, such as shock and blood coagulation disorder. To investigate a host defense mechanism against this virulence factor, we examined the plasma for ASP inhibitor(s). Human plasma inhibited ASP activity for azocasein, which was almost completely abolished by treating plasma with methylamine, which inactivates α2-macroglobulin (α2-MG). The ASP-inhibitor complex in ASP-added plasma was not detected by immunoblotting using anti-ASP antibody; however, using gel filtration of the plasma ASP activity for an oligopeptide, the ASP substrate was eluted in the void fraction (Mw>200 000), suggesting ASP trapping by α2-MG. Indeed, human α2-MG inhibited ASP azocaseinolytic activity in a dose-dependent manner, rapidly forming a complex with the ASP. Fibrinogen degradation by ASP was completely inhibited in the presence of α2-MG. α1-Protease inhibitor, antithrombin, and α2-plasmin inhibitor neither inhibited ASP activity nor formed a complex with ASP. Surprisingly, ASP degraded these plasma serine protease inhibitors. Thus, α2-MG is the major ASP inhibitor in the human plasma and can limit ASP virulence activities in A. sobria infection sites. However, as shown by fluorescence correlation spectroscopy, slow ASP inhibition by α2-MG in plasma may indicate insufficient ASP control in vivo.

  13. Human prostate-specific antigen: structural and functional similarity with serine proteases.

    PubMed

    Watt, K W; Lee, P J; M'Timkulu, T; Chan, W P; Loor, R

    1986-05-01

    The complete amino acid sequence of the prostate-specific antigen (PA) from human seminal plasma has been determined from analyses of the peptides generated by cyanogen bromide, hydroxylamine, endoproteinases Arg-C and Lys-C. The single polypeptide chain of PA contains 240-amino acid residues and has a calculated Mr of 26,496. An N-linked carbohydrate side chain is predicted at asparagine-45, and O-linked carbohydrate side chains are possibly attached to serine-69, threonine-70, and serine-71. The primary structure of PA shows a high degree of sequence homology with other serine proteases of the kallikrein family. The active site residues of histidine, aspartic acid, and serine comprising the charge-relay system of typical serine proteases were found in similar positions in PA (histidine-41, aspartic acid-96, and serine-192). At pH 7.8, PA hydrolyzed insulin A and B chains, recombinant interleukin 2, and--to a lesser extent--gelatin, myoglobin, ovalbumin, and fibrinogen. The cleavage sites of these proteins by PA were chemically analyzed as the alpha-carboxyl side of some hydrophobic residues, tyrosine, leucine, valine, and phenylalanine, and of basic residues histidine, lysine, and arginine. The chymotrypsin-like activity of PA exhibited with the chromogenic substrate N-succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenylalanine p-nitroanilide yielded a specific activity of 9.21 microM per min per mg of PA and Km and kcat values of 15.3 mM and 0.075s-1, respectively. "Trypsin-like" activity of PA was also detected with N alpha-benzoyl-DL-arginine p-nitroanilide and gave a specific activity of 1.98 microM per min per mg of PA. Protease inhibitors such as phenylmethylsulfonyl fluoride, diisopropyl fluorophosphate, L-1-tosylamido-2-phenylethyl chloromethyl ketone, aprotinin, leupeptin, soybean trypsin inhibitor as well as Zn2+ and spermidine were effective inhibitors of PA enzymatic activity.

  14. Crystal structure of bovine duodenase, a serine protease, with dual trypsin and chymotrypsin-like specificities.

    PubMed

    Pletnev, V Z; Zamolodchikova, T S; Pangborn, W A; Duax, W L

    2000-10-01

    The three-dimensional structure of duodenase, a serine protease from bovine duodenum mucosa, has been determined at 2.4A resolution. The enzyme, which has both trypsin-like and chymotrypsin-like activities, most closely resembles human cathepsin G with which it shares 57% sequence identity and similar specificity. The catalytic Ser195 in duodenase adopts the energetically favored conformation typical of serine proteinases and unlike the strained state typical of lipase/esterases. Of several waters in the active site of duodenase, the one associated with Ser214 is found in all serine proteinases and most lipase/esterases. The conservation of the Ser214 residue in serine proteinase, its presence in the active site, and participation in a hydrogen water network involving the catalytic triad (His57, Asp107, and Ser195) argues for its having an important role in the mechanism of action. It may be referred to as a fourth member of the catalytic triad. Duodenase is one of a growing family of enzymes that possesses trypsin-like and chymotrypsin-like activity. Not long ago, these activities were considered to be mutually exclusive. Computer modeling reveals that the S1 subsite of duodenase has structural features compatible with effective accommodation of P1 residues typical of trypsin (Arg/Lys) and chymotrypsin (Tyr/Phe) substrates. The determination of structural features associated with functional variation in the enzyme family may permit design of enzymes with a specific ratio of trypsin and chymotrypsin activities. PMID:10944388

  15. BbrzSP-32, the first serine protease isolated from Bothrops brazili venom: Purification and characterization.

    PubMed

    Zaqueo, Kayena D; Kayano, Anderson M; Domingos, Thaisa F S; Moura, Laura A; Fuly, André L; da Silva, Saulo L; Acosta, Gerardo; Oliveira, Eliandre; Albericio, Fernando; Zanchi, Fernando B; Zuliani, Juliana P; Calderon, Leonardo A; Stábeli, Rodrigo G; Soares, Andreimar M

    2016-05-01

    Snake venom toxins are related not only in detention, death and the promotion of initial digestion of prey but also due to their different biochemical, structural and pharmacological effects they can result in new drugs. Among these toxins snake venom serine proteases (SVSPs) should be highlighted because they are responsible for inducing changes in physiological functions such as blood coagulation, fibrinolysis, and platelet aggregation. This article presents the first serine protease (SP) isolated from Bothrops brazili: BbrzSP-32. The new SP showed 36 kDa of relative molecular mass and its absolute mass was confirmed by mass spectrometry as 32,520 Da. It presents 79.48% identity when compared to other SVSPs and was able to degrade the α-chain of fibrinogen, in in vitro models, because of this it is considered a SVTLE-A. It showed dose-dependent activity in the process of degradation of fibrin networks demonstrating greater specificity for this activity when compared to its thrombolytic action. BbrzSP-32 demonstrated proteolytic activity on gelatin and chromogenic substrates for serine proteases and thrombin-like enzymes (S-2288 and S-2238 respectively), besides having coagulant activity on human plasma. After pre-incubation with PMSF and benzamidine the coagulant and proteolytic activities on the S-2288 and S-2238 substrates were reduced. BbrzSP-32 shows stability against pH and temperature variations, demonstrating optimum activity between 30 and 40 °C and in the pH range 7.5 to 8.5. A new SP with potential biotechnological application was isolated. PMID:26827743

  16. A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold.

    PubMed

    Rendón-Ramírez, Adela; Shukla, Manish; Oda, Masataka; Chakraborty, Sandeep; Minda, Renu; Dandekar, Abhaya M; Ásgeirsson, Bjarni; Goñi, Félix M; Rao, Basuthkar J

    2013-01-01

    Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.

  17. Serine protease inhibitors block priming of monocytes for enhanced release of superoxide.

    PubMed Central

    Megyeri, P; Pabst, K M; Pabst, M J

    1995-01-01

    Monocytes freshly isolated from human blood produced large amounts of superoxide when triggered by phorbol ester. After monocytes were cultured for 18-24 hr in endotoxin-free, non-adherent conditions, they produced low amounts of superoxide. Addition of lipopolysaccharide (LPS), interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha), or platelet-activating factor (PAF) at the beginning of culture 'primed' the monocytes, causing them to maintain a high superoxide response for at least 96 hr. Also, in response to LPS, monocytes secreted TNF-alpha. The ability of LPS, IFN-gamma, TNF-alpha or PAF to maintain the high superoxide response was blocked by addition of inhibitors of serine proteases, either 4-(2-aminoethyl)-benzenesulphonyl fluoride (AEBSF) or 3,4-dichloroisocoumarin. AEBSF was most effective at 200 microns, and required 6 hr for maximum effect. AEBSF did not affect phorbol-triggered superoxide release by unprimed monocytes. AEBSF did not affect cell viability, nor did it interfere with the TNF-alpha secretion in response to LPS. An analogue of AEBSF that lacked ability to inhibit proteases did not affect monocyte responses. 3,4-Dichloroisocoumarin blocked priming at a low concentration, 1 microM. We conclude that activity of a monocyte serine protease is required to maintain the high superoxide response in monocytes primed with LPS, IFN-gamma, TNF-alpha, or PAF. PMID:8567031

  18. High-level expression and characterization of two serine protease inhibitors from Trichinella spiralis.

    PubMed

    Zhang, Zhaoxia; Mao, Yixian; Li, Da; Zhang, Yvhan; Li, Wei; Jia, Honglin; Zheng, Jun; Li, Li; Lu, Yixin

    2016-03-30

    Serine protease inhibitors (SPIs) play important roles in tissue homeostasis, cell survival, development, and host defense. So far, SPIs have been identified from various organisms, such as animals, plants, bacteria, poxviruses, and parasites. In this study, two SPIs (Tsp03044 and TspAd5) were identified from the genome of Trichinella spiralis and expressed in Escherichia coli. Sequence analysis revealed that these two SPIs contained essential structural motifs, which were well conserved within the tumor-infiltrating lymphocytes (TIL) and serpin superfamily. Based on protease inhibition assays, the recombinant Tsp03044 showed inhibitory effects on trypsin, α-chymotrypsin, and pepsin, while the recombinant TspAd5 could effectively inhibit the activities of α-chymotrypsin and pepsin. Both these inhibitors showed activity between 28 and 48 °C. The expression levels of the two SPIs were also determined at different developmental stages of the parasite with real-time PCR. Our results indicate that Tsp03044 and TspAd5 are functional serine protease inhibitors. PMID:26921036

  19. Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors

    PubMed Central

    Stapels, Daphne A. C.; Ramyar, Kasra X.; Bischoff, Markus; von Köckritz-Blickwede, Maren; Milder, Fin J.; Ruyken, Maartje; Eisenbeis, Janina; McWhorter, William J.; Herrmann, Mathias; van Kessel, Kok P. M.; Geisbrecht, Brian V.; Rooijakkers, Suzan H. M.

    2014-01-01

    Neutrophils are indispensable for clearing infections with the prominent human pathogen Staphylococcus aureus. Here, we report that S. aureus secretes a family of proteins that potently inhibits the activity of neutrophil serine proteases (NSPs): neutrophil elastase (NE), proteinase 3, and cathepsin G. The NSPs, but not related serine proteases, are specifically blocked by the extracellular adherence protein (Eap) and the functionally orphan Eap homologs EapH1 and EapH2, with inhibitory-constant values in the low-nanomolar range. Eap proteins are together essential for NSP inhibition by S. aureus in vitro and promote staphylococcal infection in vivo. The crystal structure of the EapH1/NE complex showed that Eap molecules constitute a unique class of noncovalent protease inhibitors that occlude the catalytic cleft of NSPs. These findings increase our insights into the complex pathogenesis of S. aureus infections and create opportunities to design novel treatment strategies for inflammatory conditions related to excessive NSP activity. PMID:25161283

  20. Viscoelastic properties of pressure overload hypertrophied myocardium: effect of serine protease treatment

    NASA Technical Reports Server (NTRS)

    Stroud, Jason D.; Baicu, Catalin F.; Barnes, Mary A.; Spinale, Francis G.; Zile, Michael R.

    2002-01-01

    To determine whether and to what extent one component of the extracellular matrix, fibrillar collagen, contributes causally to abnormalities in viscoelasticity, collagen was acutely degraded by activation of endogenous matrix metalloproteinases (MMPs) with the serine protease plasmin. Papillary muscles were isolated from normal cats and cats with right ventricular pressure overload hypertrophy (POH) induced by pulmonary artery banding. Plasmin treatment caused MMP activation, collagen degradation, decreased the elastic stiffness constant, and decreased the viscosity constant in both normal and POH muscles. Thus, whereas many mechanisms may contribute to the abnormalities in myocardial viscoelasticity in the POH myocardium, changes in fibrillar collagen appear to play a predominant role.

  1. Bacterial serine proteases secreted by the autotransporter pathway: classification, specificity and role in virulence

    PubMed Central

    Ruiz-Perez, Fernando; Nataro, James P.

    2013-01-01

    Serine proteases exist in eukaryotic and prokaryotic organisms and have emerged during evolution as the most abundant and functionally diverse group. In gram-negative bacteria, there is a growing family of high molecular weight serine proteases secreted to the external milieu by a fascinating and widely employed bacterial secretion mechanism, known as the autotransporter pathway. They were initially found in Neisseria, Shigella, and pathogenic Escherichia coli, but have now been also identified in Citrobacter rodentium, Salmonella, and Edwarsiella species. Here, we focus on proteins belonging to the Serine Protease Autotransporter of Enterobacteriaceae (SPATEs) family. Recent findings regarding the predilection of serine proteases to host intracellular or extracellular protein-substrates involved in numerous biological functions, such as those implicated in cytoskeleton stability, autophagy or innate and adaptive immunity, have helped provide a better understanding of SPATEs’ contributions in pathogenesis. Here, we discuss their classification, substrate specificity, and potential roles in pathogenesis. PMID:23689588

  2. Importance of tetrahedral intermediate formation in the catalytic mechanism of the serine proteases chymotrypsin and subtilisin.

    PubMed

    Petrillo, Teodolinda; O'Donohoe, Catrina A; Howe, Nicole; Malthouse, J Paul G

    2012-08-01

    Two new inhibitors in which the terminal α-carboxyl groups of Z-Ala-Ala-Phe-COOH and Z-Ala-Pro-Phe-COOH have been replaced with a proton to give Z-Ala-Ala-Phe-H and Z-Ala-Pro-Phe-H, respectively, have been synthesized. Using these inhibitors, we estimate that for α-chymotrypsin and subtilisin Carlsberg the terminal carboxylate group decreases the level of inhibitor binding 3-4-fold while a glyoxal group increases the level of binding by 500-2000-fold. We show that at pH 7.2 the effective molarities of the catalytic hydroxyl group of the active site serine are 41000-229000 and 101000-159000 for α-chymotrypsin and subtilisin Carlsberg, respectively. It is estimated that oxyanion stabilization and the increased effective molarity of the catalytic serine hydroxyl group can account for the catalytic efficiency of the reaction. We argue that substrate binding induces the formation of a strong hydrogen bond or low-barrier hydrogen bond between histidine-57 and aspartate-102 that increases the pK(a) of the active site histidine, allowing it to be an effective general base catalyst for the formation of the tetrahedral intermediate and increasing the effective molarity of the catalytic hydroxyl group of serine-195. A catalytic mechanism for acyl intermediate formation in the serine proteases is proposed.

  3. Type II transmembrane serine proteases as potential targets for cancer therapy

    PubMed Central

    Murray, Andrew S.; Varela, Fausto A.

    2016-01-01

    Carcinogenesis is accompanied by increased protein and activity levels of extracellular cell-surface proteases that are capable of modifying the tumor micro-environment by directly cleaving the extracellular matrix, as well as activating growth factors and proinflammatory mediators involved in proliferation and invasion of cancer cells, and recruitment of inflammatory cells. These complex processes ultimately potentiate neoplastic progression leading to local tumor cell invasion, entry into the vasculature, and metastasis to distal sites. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression. In this review the knowledge collected over the past two decades about the molecular mechanisms underlying the pro-cancerous properties of selected TTSPs will be summarized. Furthermore, we will discuss how these insights may facilitate the translation into clinical settings in the future by specifically targeting TTSPs as part of novel cancer treatment regimens. PMID:27078673

  4. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets

    PubMed Central

    2014-01-01

    Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes are found in P. falciparum, of which serine proteases are of particular interest due to their involvement in parasite-specific processes of egress and invasion. In P. falciparum, a number of serine proteases belonging to chymotrypsin, subtilisin, and rhomboid clans are found. This review focuses on the potential of P. falciparum serine proteases as antimalarial drug targets. PMID:24799897

  5. Characterization and isolation of an extracellular serine protease from the tomato pathogen Colletotrichum coccodes, and it's role in pathogenicity

    USGS Publications Warehouse

    Redman, Regina S.; Rodriguez, Rusty J.

    2002-01-01

    Extracellular enzymes play an important role in the pathogenicity and virulence of phytopathogenic fungi. Several isolates of Colletotrichum coccodes causal agent of anthracnose on tomato, were screened to determine the relationship between protease activity and virulence. A direct relationship was observed between extracellular protease activity and the induction of disease symptoms of fruit and mortality in plants. Isolate Cc155 exhibited the highest protease activity after five days of growth in protease induction medium and produced an extracellular serine protease (sp78) that was 78 kDa, auto-degradative, glucose repressible, and non-glycosylated. To determine the role of sp78 in pathogenicity, a UV-induced extracellular protease deficient mutant (np155) was generated from the wildtype isolate Cc155. Np155 maintained growth rates comparable to Cc155 and produced wildtype levels of extracellular cellulase but did not produce extracellular protease. Unlike Cc155, np155 caused no disease symptoms on tomato fruit and 0% mortality on tomato seedlings. These results suggest that extracellular protease activity is required for pathogenicity and virulence of C. coccodes and that the elimination of protease activity transforms a virulent pathogen to a non-pathogenic endophyte.

  6. Characterization and isolation of an extracellular serine protease from the tomato pathogen Colletotrichum coccodes, and it's role in pathogenicity

    USGS Publications Warehouse

    Redman, R.S.; Rodriguez, R.J.

    2002-01-01

    Extracellular enzymes play an important role in the pathogenicity and virulence of phytopathogenic fungi. Several isolates of Colletotrichum coccodes, causal agent of anthracnose on tomato, were screened to determine the relationship between protease activity and virulence. A direct relationship was observed between extracellular protease activity and the induction of disease symptoms of fruit and mortality in plants. Isolate Cc155 exhibited the highest protease activity after five days of growth in protease induction medium and produced an extracellular serine protease (sp78) that was 78 kDa, auto-degradative, glucose repressible, and non-glycosylated. To determine the role of sp78 in pathogenicity, a uv-induced extracellular protease deficient mutant (np155) was generated from the wildtype isolate Cc155. Np155 maintained growth rates comparable to Cc155 and produced wildtype levels of extracellular cellulase but did not produce extracellular protease. Unlike Cc155, np155 caused no disease symptoms on tomato fruit and 0% mortality on tomato seedlings. These results suggest that extracellular protease activity is required for pathogenicity and virulence of C. coccodes, and that the elimination of protease activity transforms a virulent pathogen to a non-pathogenic endophyte.

  7. Optimization of serine protease purification from mango (Mangifera indica cv. Chokanan) peel in polyethylene glycol/dextran aqueous two phase system.

    PubMed

    Mehrnoush, Amid; Mustafa, Shuhaimi; Sarker, Md Zaidul Islam; Yazid, Abdul Manap Mohd

    2012-01-01

    Mango peel is a good source of protease but remains an industrial waste. This study focuses on the optimization of polyethylene glycol (PEG)/dextran-based aqueous two-phase system (ATPS) to purify serine protease from mango peel. The activity of serine protease in different phase systems was studied and then the possible relationship between the purification variables, namely polyethylene glycol molecular weight (PEG, 4000-12,000 g·mol(-1)), tie line length (-3.42-35.27%), NaCl (-2.5-11.5%) and pH (4.5-10.5) on the enzymatic properties of purified enzyme was investigated. The most significant effect of PEG was on the efficiency of serine protease purification. Also, there was a significant increase in the partition coefficient with the addition of 4.5% of NaCl to the system. This could be due to the high hydrophobicity of serine protease compared to protein contaminates. The optimum conditions to achieve high partition coefficient (84.2) purification factor (14.37) and yield (97.3%) of serine protease were obtained in the presence of 8000 g·mol(-1) of PEG, 17.2% of tie line length and 4.5% of NaCl at pH 7.5. The enzymatic properties of purified serine protease using PEG/dextran ATPS showed that the enzyme could be purified at a high purification factor and yield with easy scale-up and fast processing.

  8. Intramolecular Interactions between the Protease and Structural Domains Are Important for the Functions of Serine Protease Autotransporters▿ †

    PubMed Central

    Tsang, Casey; Malik, Huma; Nassman, Deana; Huang, Antony; Tariq, Fayha; Oelschlaeger, Peter; Stathopoulos, Christos

    2010-01-01

    Autotransporter (AT) is a protein secretion pathway found in Gram-negative bacteria featuring a multidomain polypeptide with a signal sequence, a passenger domain, and a translocator domain. An AT subfamily named serine protease ATs of the family Enterobacteriaceae (SPATEs) is characterized by the presence of a conserved serine protease motif in the passenger domain which contributes to bacterial pathogenesis. The goal of the current study is to determine the importance of the passenger domain conserved residues in the SPATE proteolytic and adhesive functions using the temperature-sensitive hemagglutinin (Tsh) protein as our model. To begin, mutations of 21 fully conserved residues in the four passenger domain conserved motifs were constructed by PCR-based site-directed mutagenesis. Seventeen mutants exhibited a wild-type secretion level; among these mutants, eight displayed reduced proteolytic activities in Tsh-specific oligopeptide and mucin cleavage assays. These eight mutants also demonstrated lower affinities to extracellular matrix proteins, collagen IV, and fibronectin. These eight conserved residues were analyzed by molecular graphics modeling to demonstrate their intramolecular interactions with the catalytic triad and other key residues. Additional mutations were made to confirm the above interactions in order to demonstrate their significance to the SPATE functions. Altogether our data suggest that certain conserved residues in the SPATE passenger domain are important for both the proteolytic and adhesive activities of SPATE by maintaining the proper protein structure via intramolecular interactions between the protease and β-helical domains. Here, we provide new insight into the structure-function relationship of the SPATEs and the functional roles of their conserved residues. PMID:20479079

  9. Isolation and Identification of an Extracellular Subtilisin-Like Serine Protease Secreted by the Bat Pathogen Pseudogymnoascus destructans

    PubMed Central

    Pannkuk, Evan L.; Risch, Thomas S.; Savary, Brett J.

    2015-01-01

    White nose syndrome (WNS) is a cutaneous fungal disease of bats. WNS is responsible for unprecedented mortalities in North American cave bat populations. There have been few descriptions of enzyme activities that may function in WNS host/pathogen interactions, while no study has isolated and described secreted proteases. To address the hypothesis that Pseudogymnoascus destructans secretes extracellular proteases that function in wing necrosis during WNS infection, the object of this study was to culture P. destructans on various media, then isolate and structurally identify those proteases accumulated stably in the culture medium. We found a single dominant protease activity on minimal nutrient broth enriched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluoride. This P. destructans serine protease (PdSP1) was isolated by preparative isoelectric focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular weight 27,900 (estimated by SDS-PAGE), broad pH optimum 6-8, and temperature optimum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein accession from the sequenced P. destructans genome that is further identified as a MEROPS family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3, were identified in the P. destructans genome with 90% and 53% homology, respectively. P. destructans S8A serine proteases showed closer sequence conservation to P. pannorum and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific polyclonal antibodies developed from the PdSP1 sequence detected the protein in western blots. These subtilisin-like serine proteases are candidates for further functional studies in WNS host-pathogen interaction. PMID:25785714

  10. Isolation and identification of an extracellular subtilisin-like serine protease secreted by the bat pathogen Pseudogymnoascus destructans.

    PubMed

    Pannkuk, Evan L; Risch, Thomas S; Savary, Brett J

    2015-01-01

    White nose syndrome (WNS) is a cutaneous fungal disease of bats. WNS is responsible for unprecedented mortalities in North American cave bat populations. There have been few descriptions of enzyme activities that may function in WNS host/pathogen interactions, while no study has isolated and described secreted proteases. To address the hypothesis that Pseudogymnoascus destructans secretes extracellular proteases that function in wing necrosis during WNS infection, the object of this study was to culture P. destructans on various media, then isolate and structurally identify those proteases accumulated stably in the culture medium. We found a single dominant protease activity on minimal nutrient broth enriched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluoride. This P. destructans serine protease (PdSP1) was isolated by preparative isoelectric focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular weight 27,900 (estimated by SDS-PAGE), broad pH optimum 6-8, and temperature optimum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein accession from the sequenced P. destructans genome that is further identified as a MEROPS family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3, were identified in the P. destructans genome with 90% and 53% homology, respectively. P. destructans S8A serine proteases showed closer sequence conservation to P. pannorum and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific polyclonal antibodies developed from the PdSP1 sequence detected the protein in western blots. These subtilisin-like serine proteases are candidates for further functional studies in WNS host-pathogen interaction. PMID:25785714

  11. The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis.

    PubMed

    Beers, Eric P; Jones, Alan M; Dickerman, Allan W

    2004-01-01

    The Arabidopsis thaliana genome has over 550 protease sequences representing all five catalytic types: serine, cysteine, aspartic acid, metallo and threonine (MEROPS peptidase database, http://merops.sanger.ac.uk/), which probably reflect a wide variety of as yet unidentified functions performed by plant proteases. Recent indications that the 26S proteasome, a T1 family-threonine protease, is a regulator of light and hormone responsive signal transduction highlight the potential of proteases to participate in many aspects of plant growth and development. Recent discoveries that proteases are required for stomatal distribution, embryo development and disease resistance point to wider roles for four additional multigene families that include some of the most frequently studied (yet poorly understood) plant proteases: the subtilisin-like, serine proteases (family S8), the papain-like, cysteine proteases (family C1A), the pepsin-like, aspartic proteases (family A1) and the plant matrixin, metalloproteases (family M10A). In this report, 54 subtilisin-like, 30 papain-like and 59 pepsin-like proteases from Arabidopsis, are compared with S8, C1A and A1 proteases known from other plant species at the functional, phylogenetic and gene structure levels. Examples of structural conservation between S8, C1A and A1 genes from rice, barley, tomato and soybean and those from Arabidopsis are noted, indicating that some common, essential plant protease roles were established before the divergence of monocots and eudicots. Numerous examples of tandem duplications of protease genes and evidence for a variety of restricted expression patterns suggest that a high degree of specialization exists among proteases within each family. We propose that comprehensive analysis of the functions of these genes in Arabidopsis will firmly establish serine, cysteine and aspartic proteases as regulators and effectors of a wide range of plant processes.

  12. Mast cells limit extracellular levels of IL-13 via a serglycin proteoglycan-serine protease axis.

    PubMed

    Waern, Ida; Karlsson, Iulia; Thorpe, Michael; Schlenner, Susan M; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Åbrink, Magnus; Hellman, Lars; Pejler, Gunnar; Wernersson, Sara

    2012-12-01

    Mast cell (MC) granules contain large amounts of proteases of the chymase, tryptase and carboxypeptidase A (MC-CPA) type that are stored in complex with serglycin,a proteoglycan with heparin side chains. Hence, serglycinprotease complexes are released upon MC degranulation and may influence local inflammation. Here we explored the possibility that a serglycin-protease axis may regulate levels of IL-13, a cytokine involved in allergic asthma. Indeed, we found that wild-type MCs efficiently degraded exogenous or endogenously produced IL-13 upon degranulation,whereas serglycin −/− MCs completely lacked this ability.Moreover, MC-mediated IL-13 degradation was blocked both by a serine protease inhibitor and by a heparin antagonist,which suggests that IL-13 degradation is catalyzed by serglycin-dependent serine proteases and that optimal IL-13 degradation is dependent on both the serglycin and the protease component of the serglycin-protease complex.Moreover, IL-13 degradation was abrogated in MC-CPA −/−MC cultures, but was normal in cultures of MCs with an inactivating mutation of MC-CPA, which suggests that the IL-13-degrading serine proteases rely on MC-CPA protein.Together, our data implicate a serglycin-serine protease axis in the regulation of extracellular levels of IL-13. Reduction of IL-13 levels through this mechanism possibly can provide a protective function in the context of allergic inflammation. PMID:23667909

  13. Development of Trypsin-Like Serine Protease Inhibitors as Therapeutic Agents: Opportunities, Challenges, and their Unique Structure-Based Rationales.

    PubMed

    Liang, Guyan; Bowen, J Phillip

    2016-01-01

    There has been a revolution in the development of effective, small-molecule anticoagulants and antiplatelet agents. Numerous trypsin-like serine proteases have been under active pursuit as therapeutic targets. Important examples include thrombin, factor VIIa, factor Xa, and β-tryptase with indications ranging from thrombosis and inflammation to asthma and chronic obstructive pulmonary disease (COPD). Trypsin-like serine proteases exhibit a highly similar tertiary folding pattern, especially for the region near the substrate binding pocket that includes the conserved catalytic triad consisting of histidine 57, aspartic acid 102, and serine 195. A rich collection of X-ray structures for many trypsin-like serine proteases is available, which greatly facilitated the optimization of small organic inhibitors as therapeutic agents. The present review surveyed those inhibitors disclosed in peer-reviewed scientific journals and patent publications with a special focus on structural features and protein-inhibitor interactions that implicated the inhibitor optimization process. The role played by the residue 190 of trypsin-like serine proteases is critical. While many inhibitors without a basic group have progressed into the clinic for ones with alanine 190, the task for those with serine 190 remains extremely challenging, if not impossible. In addition to warfarin, heparin, and low molecular weight heparins (LMWHs), treatment options have expanded with the development and approval of the new oral anticoagulants (NOACs). The NOACs are superior to vitamin K antagonists in terms of rapid onset, pharmacokinetics, drug/food interactions, and regular coagulation monitoring; but one serious drawback is the lack of an effective antidote at this time. Apixaban (Eliquis), rivaroxaban (Xarelto), and edoxaban (Savaysa) are the new Xa inhibitors that have been recently approved by the U.S. FDA and are in current clinical practice. These drugs bind to the active site of factor Xa (f

  14. Proteolytic cleavage of human acid-sensing ion channel 1 by the serine protease matriptase.

    PubMed

    Clark, Edlira B; Jovov, Biljana; Rooj, Arun K; Fuller, Catherine M; Benos, Dale J

    2010-08-27

    Acid-sensing ion channel 1 (ASIC1) is a H(+)-gated channel of the amiloride-sensitive epithelial Na(+) channel (ENaC)/degenerin family. ASIC1 is expressed mostly in the central and peripheral nervous system neurons. ENaC and ASIC function is regulated by several serine proteases. The type II transmembrane serine protease matriptase activates the prototypical alphabetagammaENaC channel, but we found that matriptase is expressed in glioma cells and its expression is higher in glioma compared with normal astrocytes. Therefore, the goal of this study was to test the hypothesis that matriptase regulates ASIC1 function. Matriptase decreased the acid-activated ASIC1 current as measured by two-electrode voltage clamp in Xenopus oocytes and cleaved ASIC1 expressed in oocytes or CHO K1 cells. Inactive S805A matriptase had no effect on either the current or the cleavage of ASIC1. The effect of matriptase on ASIC1 was specific, because it did not affect the function of ASIC2 and no matriptase-specific ASIC2 fragments were detected in oocytes or in CHO cells. Three matriptase recognition sites were identified in ASIC1 (Arg-145, Lys-185, and Lys-384). Site-directed mutagenesis of these sites prevented matriptase cleavage of ASIC1. Our results show that matriptase is expressed in glioma cells and that matriptase specifically cleaves ASIC1 in heterologous expression systems. PMID:20601429

  15. Ectopic expression of the serine protease inhibitor PI9 modulates death receptor-mediated apoptosis.

    PubMed

    Kummer, J A; Micheau, O; Schneider, P; Bovenschen, N; Broekhuizen, R; Quadir, R; Strik, M C M; Hack, C E; Tschopp, J

    2007-08-01

    Apoptosis is a highly controlled process, whose triggering is associated with the activation of caspases. Apoptosis can be induced via a subgroup of the tumor necrosis factor (TNF) receptor superfamily, which recruit and activate pro-caspase-8 and -10. Regulation of apoptosis is achieved by several inhibitors, including c-FLICE-inhibitory protein, which prevents apoptosis by inhibiting the pro-apoptotic activation of upstream caspases. Here we show that the human intracellular serine protease inhibitor (serpin), protease inhibitor 9 (PI9), inhibits TNF-, TNF-related apoptosis-inducing ligand- and Fas ligand-mediated apoptosis in certain TNF-sensitive cell lines. The reactive center P1 residue of PI9 was required for this inhibition since PI9 harboring a Glu --> Ala mutation in its reactive center failed to impair death receptor-induced cell death. This suggests a classical serpin-protease interaction. Indeed, PI9 inhibited apoptotic death by directly interacting with the intermediate active forms of caspase-8 and -10. This indicates that PI9 can regulate pro-apoptotic apical caspases.

  16. Structural Insight into Serine Protease Rv3671c that Protects M. tuberculosis from Oxidative and Acidic Stress

    SciTech Connect

    Biswas, Tapan; Small, Jennifer; Vandal, Omar; Odaira, Toshiko; Deng, Haiteng; Ehrt, Sabine; Tsodikov, Oleg V.

    2010-11-15

    Rv3671c, a putative serine protease, is crucial for persistence of Mycobacterium tuberculosis in the hostile environment of the phagosome. We show that Rv3671c is required for M. tuberculosis resistance to oxidative stress in addition to its role in protection from acidification. Structural and biochemical analyses demonstrate that the periplasmic domain of Rv3671c is a functional serine protease of the chymotrypsin family and, remarkably, that its activity increases on oxidation. High-resolution crystal structures of this protease in an active strained state and in an inactive relaxed state reveal that a solvent-exposed disulfide bond controls the protease activity by constraining two distant regions of Rv3671c and stabilizing it in the catalytically active conformation. In vitro biochemical studies confirm that activation of the protease in an oxidative environment is dependent on this reversible disulfide bond. These results suggest that the disulfide bond modulates activity of Rv3671c depending on the oxidative environment in vivo.

  17. Active Site Characterization of Proteases Sequences from Different Species of Aspergillus.

    PubMed

    Morya, V K; Yadav, Virendra K; Yadav, Sangeeta; Yadav, Dinesh

    2016-09-01

    A total of 129 proteases sequences comprising 43 serine proteases, 36 aspartic proteases, 24 cysteine protease, 21 metalloproteases, and 05 neutral proteases from different Aspergillus species were analyzed for the catalytically active site residues using MEROPS database and various bioinformatics tools. Different proteases have predominance of variable active site residues. In case of 24 cysteine proteases of Aspergilli, the predominant active site residues observed were Gln193, Cys199, His364, Asn384 while for 43 serine proteases, the active site residues namely Asp164, His193, Asn284, Ser349 and Asp325, His357, Asn454, Ser519 were frequently observed. The analysis of 21 metalloproteases of Aspergilli revealed Glu298 and Glu388, Tyr476 as predominant active site residues. In general, Aspergilli species-specific active site residues were observed for different types of protease sequences analyzed. The phylogenetic analysis of these 129 proteases sequences revealed 14 different clans representing different types of proteases with diverse active site residues.

  18. Improving production of extracellular proteases by random mutagenesis and biochemical characterization of a serine protease in Bacillus subtilis S1-4.

    PubMed

    Wang, X C; Zhao, H Y; Liu, G; Cheng, X J; Feng, H

    2016-01-01

    The feather is a valuable by-product with a huge annual yield produced by the poultry industry. Degradation of feathers by microorganisms is a prerequisite to utilize this insoluble protein resource. To improve the degrading efficiency of feathers, mutagenesis of the bacterium Bacillus subtilis S1-4 was performed. By combining ultraviolet irradiation and N-methyl-N'-nitro-N-nitrosoguanidine treatment for mutagenesis, a high protease-producing mutant (UMU4) of B. subtilis S1-4 was selected, which exhibited 2.5-fold higher extracellular caseinolytic activity than did the wild-type strain. UMU4 degraded chicken feathers more efficiently, particularly for the release of soluble proteins from the feathers, compared to the wild-type strain. Furthermore, an extracellular protease with a molecular weight of 45 kDa, as determined by SDS-PAGE, was purified from UMU4. Biochemical characterization indicated that the caseinolytic activity of the protease was largely inhibited by phenylmethanesulfonyl fluoride, suggesting that the purified enzyme is a serine protease. This protease was highly active over a wide range of pHs (6.0 to 12.0) and temperatures (50° to 75°C) with an optimal pH and temperature of 8.0 and 65°C, respectively. The purified enzyme exhibited good thermostability with a 72.2 min half-life of thermal denaturation at 60°C. In addition, this protease was not sensitive to heavy metal ions, surfactants, or oxidative reagents. In conclusion, strain improvement for protease production can serve as an alternative strategy to promote feather degradation. The UMU4 mutant of B. subtilis and its serine protease could be potentially used in various industries. PMID:27323184

  19. Purification and partial characterization of a myofibril-bound serine protease from ostrich skeletal muscle.

    PubMed

    Tshidino, Shonisani C; Krause, Jason; Adebiyi, Abayomi P; Muramoto, Koji; Naudé, Ryno J

    2009-10-01

    A myofibril-bound serine protease (MBSP) was partially purified from ostrich (Struthio camelus) skeletal muscle. MBSP was dissociated from the myofibrillar fraction by ethylene glycol treatment at pH 8.5, followed by partial purification via Toyopearl Super Q 650 S and p-aminobenzamidine column chromatographies. Ostrich MBSP revealed a major protein band of approximately 21 kDa on SDS-PAGE, showing proteolytic activity after casein zymography. Optima pH and temperature of ostrich MBSP were 8 and 40 degrees C, respectively. Substrate specificity analysis revealed that the enzyme cleaved synthetic fluorogenic substrates at the carboxyl side of arginine residues. Kinetic parameters (K(m) and V(max) values) were calculated from Lineweaver-Burk plots. The kinetic characteristics of ostrich MBSP were compared to values obtained for commercial bovine trypsin in this study, as well as those obtained for MBSP from mouse and various fish species. The results suggest that ostrich MBSP is a tryptic-like serine protease. Ostrich MBSP exhibited low sequence identity to commercial bovine trypsin (44%), MBSP from lizard fish skeletal muscle (33%) and trypsinogen from ostrich pancreas (22%). PMID:19559097

  20. Stepwise Versus Concerted Mechanisms in General-Base Catalysis by Serine Proteases.

    PubMed

    Uritsky, Neta; Shokhen, Michael; Albeck, Amnon

    2016-01-26

    General-base catalysis in serine proteases still poses mechanistic challenges despite decades of research. Whether proton transfer from the catalytic Ser to His and nucleophilic attack on the substrate are concerted or stepwise is still under debate, even for the classical Asp-His-Ser catalytic triad. To address these key catalytic steps, the transformation of the Michaelis complex to tetrahedral complex in the covalent inhibition of two prototype serine proteases was studied: chymotrypsin (with the catalytic triad) inhibition by a peptidyl trifluoromethane and GlpG rhomboid (with Ser-His dyad) inhibition by an isocoumarin derivative. The sampled MD trajectories of averaged pKa  values of catalytic residues were QM calculated by the MD-QM/SCRF(VS) method on molecular clusters simulating the active site. Differences between concerted and stepwise mechanisms are controlled by the dynamically changing pKa  values of the catalytic residues as a function of their progressively reduced water exposure, caused by the incoming ligand.

  1. The vacuolar serine protease, a cross-reactive allergen from Cladosporium herbarum.

    PubMed

    Pöll, Verena; Denk, Ursula; Shen, Horng-Der; Panzani, Raphael C; Dissertori, Oliver; Lackner, Peter; Hemmer, Wolfgang; Mari, Adriano; Crameri, Reto; Lottspeich, Friedrich; Rid, Raphaela; Richter, Klaus; Breitenbach, Michael; Simon-Nobbe, Birgit

    2009-04-01

    Subtilisin-like serine proteases make up one of the most important allergen-families regarding the number of individual allergens. Previously, fungal subtilisin-like serine proteases have been identified from Aspergillus-, Penicillium-, and Trichophyton-species having a prevalence of IgE-reactivity between 33% and 80%. Since IgE-cross-reactivity is a common phenomenon within fungal species we wanted to know whether this protein also represents an allergen in Cladosporium herbarum. Hence, a screening of a C. herbarum cDNA library was performed using the coding sequence of the Penicillium oxalicum vacuolar serine protease (Pen o 18) as hybridization probe, ending up with a full-length clone. Biochemical and immunological characterization of this clone revealed that C. herbarum vacuolar serine protease most likely is synthesized as a precursor with an N-terminal pro-enzyme sequence and represents a minor allergen (Cla h 9) with a prevalence of IgE-reactivity of 15.5%. Furthermore Cla h 9 specifically reacted with the two monoclonal antibodies FUM20 and PCM39, as do the vacuolar serine proteases from Aspergillus fumigatus and Penicillium species. Investigation of IgE-cross-reactivity between Cla h 9 and other fungal serine proteases revealed that cross-reactivity is higher between vacuolar than alkaline serine proteases. IgE-epitope mapping of Cla h 9 was done in order to test whether four Cla h 9-peptides having a high sequence homology to previously determined Pen ch 18-IgE-epitopes also harbour IgE-epitopes. Three-dimensional models of the vacuolar serine proteases from C. herbarum and Penicillium chrysogenum were generated for the three-dimensional localization of the Cla h 9- and Pen ch 18- IgE-reactive and -non-reactive peptides. Taken together a new C. herbarum allergen has been identified, which may be useful in a molecule-based approach of C. herbarum allergy-diagnosis and -therapy. Moreover, Cla h 9 represents a further member of the subtilisin-like serine

  2. Midgut serine proteases and alternative host plant utilization in Pieris brassicae L.

    PubMed Central

    Kumar, Rakesh; Bhardwaj, Usha; Kumar, Pawan; Mazumdar-Leighton, Sudeshna

    2015-01-01

    Pieris brassicae L. is a serious pest of cultivated crucifers in several parts of the world. Larvae of P. brassicae also feed prolifically on garden nasturtium (Tropaeolum majus L., of the family Tropaeolaceae). Proteolytic digestion was studied in larvae feeding on multiple hosts. Fourth instars were collected from cauliflower fields before transfer onto detached, aerial tissues of selected host plants in the lab. Variable levels of midgut proteases were detected in larvae fed on different hosts using protein substrates (casein and recombinant RBCL cloned from cauliflower) and diagnostic, synthetic substrates. Qualitative changes in midgut trypsin activities and quantitative changes in midgut chymotrypsin activities were implicated in physiological adaptation of larvae transferred to T. majus. Midgut proteolytic activities were inhibited to different extents by serine protease inhibitors, including putative trypsin inhibitors isolated from herbivore-attacked and herbivore-free leaves of cauliflower (CfTI) and T. majus (TpTI). Transfer of larvae to T. majus significantly influenced feeding parameters but not necessarily when transferred to different tissues of the same host. Results obtained are relevant for devising sustainable pest management strategies, including transgenic approaches using genes encoding plant protease inhibitors. PMID:25873901

  3. Overexpression and characterization of thermostable serine protease in Escherichia coli encoded by the ORF TTE0824 from Thermoanaerobacter tengcongensis.

    PubMed

    Koma, D; Yamanaka, H; Moriyoshi, K; Ohmoto, T; Sakai, K

    2007-11-01

    A novel extracellular serine protease derived from Thermoanaerobacter tengcongensis, designated tengconlysin, was successfully overexpressed in Escherichia coli as a soluble protein by recombination of an N-terminal Pel B leader sequence instead of the original presequence and C-terminal 6x histidine tags. The purified protein was activated by 0.1% sodium dodecyl sulfate (SDS) treatment but not by thermal treatment. The molecular weight of tengconlysin estimated by SDS-polyacrylamide gel electrophoresis analysis and gel filtration chromatography was 37.9 and 36.2 kDa, respectively, suggesting that the enzyme is monomeric. The N-terminal sequence of mature tengconlysin was LDTAT, suggesting that it is a preproprotein containing a 29 amino acid presequence (predicted from the SigP program) and a 117 amino acid prosequence in the N-terminus. The C-terminal putative propeptide (position 469-540 in the preproprotein) did not inhibit the protease activity. The optimum temperature for tengconlysin activity was 90 degrees C in the presence of 1 mM calcium ions and the optimum pH ranged from 6.5 to 7.0. Activity inhibition studies suggest that the protease is a serine protease. The protease was stable in 0.1% SDS and 1-4 M urea at 70 degrees C in the presence of calcium ions and was activated by the denaturing agents.

  4. Differential effects of serine proteases on the migration of normal and tumor cells: implications for tumor microenvironment.

    PubMed

    Elzer, Kirsten L; Heitzman, Deborah A; Chernin, Mitchell I; Novak, Josef F

    2008-12-01

    The supporting role of proteases in tumor progression and invasion is well known; however, the use of proteases as therapeutic agents has also been demonstrated. In this article, the authors report on the differential effects of exogenous serine proteases on the motility of tumor and normal cells. The treatment of normal and tumor cells with a single dose of pancreatic serine proteases, trypsin (TR) and chymotrypsin (CH), leads to a concentration-dependent response by cells, first accelerating and then slowing mobility. Tumor cells are 10 to 20 times more sensitive to exogenous TR/CH, suggesting that a single dose of proteases may cause discordant movements of normal and tumor cells within the tumor environment. The inhibitory effects of TR on cell motility are contradicted by thrombin (TH), particularly in the regulation of normal cells' migration. The purpose of this investigation was to ascertain the role of protease-activated receptors (PARs) in terms of normal and tumor cell motility. Duplicate treatments with proteases resulted in diminished mobility of both normal and tumor cells. Repeated application of TR and TH in 1-hour treatment intervals initially desensitizes cell surface PARs. However, cell surface PARs reappear regardless of subsequent protease treatments in both normal and tumor cells. The resensitization process is retarded in tumor cells when compared with normal cells. This is evidenced by lower expression of PARs as well as by their relocalization at the tumor cell surfaces. Under these conditions, normal cells remain responsive to exogenous proteases in terms of cell motility. Exogenous proteases do not modulate motility of repeatedly stimulated tumor cells, and consequently, the migration of tumor cells appears disconnected from the PAR signaling pathways. The use of activating peptides in lieu of the cognate proteases for a given PAR system indicated that proteases may act through additional targets not regulated by PAR signaling. We

  5. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease.

    PubMed Central

    Fuller, R S; Brake, A; Thorner, J

    1989-01-01

    The KEX2-encoded endoprotease was overproduced in yeast several hundred-fold and further purified to achieve a 10,000-fold enrichment in specific activity. The enzyme was (i) membrane-bound, but solubilized by detergents; (ii) able to cleave peptide substrates at both Lys-Arg and Arg-Arg sites; (iii) inhibited by EDTA and EGTA (but not o-phenanthroline), but fully reactivated by Ca2+; (iv) unaffected by 5-10 mM phenylmethylsulfonyl fluoride, N alpha-(ptosyl)lysine chloromethyl ketone, or L-1-tosylamido-2-phenylethyl chloromethyl ketone, but inactivated by 1-2 microM Ala-Lys-Arg-chloromethyl ketone; (v) labeled specifically by 125I-labeled Tyr-Ala-Lys-Arg-chloromethyl ketone; and (vi) resistant to trans-epoxysuccinate compounds (which inactivate thiol proteases), but inactivated by diisopropyl fluorophosphate (a diagnostic serine protease inhibitor). Mutant enzyme molecules lacking as many as 200 C-terminal residues still retained Ca2+-dependent protease activity and were labeled by 125I-labeled Tyr-Ala-Lys-Arg-chloromethyl ketone. Images PMID:2646633

  6. Structure and function of the serine-protease subcomponents of C1: protein engineering studies.

    PubMed

    Gál, P; Závodszky, P

    1998-08-01

    Our protein engineering studies on human C1r and C1s revealed important characteristics of the individual domains of these multidomain serine-proteases, and supplied evidence about the cooperation of the domains to create binding sites, and to control the activation process. We expressed the recombinant subcomponents in the baculovirus-insect cell system and checked the biological activity. Deletions and point mutants of C1r were constructed and C1r-C1s chimeras were also produced. Our deletion mutants demonstrated that the N-terminal CUB domain and the EGF-like domain of C1r together are responsible for the calcium dependent C1r-C1s interaction. It seems very likely that these two modules form the calcium-binding site of the C1r alpha-fragment and participate in the tetramer formation. The deletion mutants also demonstrated that the N-terminal region of the C1r molecule contains essential elements involved in the control of activation of the serine-protease module. The substrate specificity of the serine-protease is also determined by the five N-terminal noncatalytic domain of C1r/C1s chimera, which contains the catalytic domain of C1s preceded by the N-terminal region of C1r, could replace the C1r in the hemolytically active C1 complex. The C1s/C1r chimera, in which the alpha-fragment of the C1r was replaced for that of the C1s exibits both C1r- and C1s-like characteristics. We stabilized the zymogen form of human C1r by mutating the Arg(463)-Ile(464) bond. Using our stable zymogen C1r we showed that one active C1r in the C1 complex is sufficient for the full activity of the entire complex. Further experiment with this mutant could provide us with important information about the structure of the C1 complex. PMID:9777415

  7. Isolation and characterization of two serine proteases from metagenomic libraries of the Gobi and Death Valley deserts.

    PubMed

    Neveu, Julie; Regeard, Christophe; DuBow, Michael S

    2011-08-01

    The screening of environmental DNA metagenome libraries for functional activities can provide an important source of new molecules and enzymes. In this study, we identified 17 potential protease-producing clones from two metagenomic libraries derived from samples of surface sand from the Gobi and Death Valley deserts. Two of the proteases, DV1 and M30, were purified and biochemically examined. These two proteases displayed a molecular mass of 41.5 kDa and 45.7 kDa, respectively, on SDS polyacrylamide gels. Alignments with known protease sequences showed less than 55% amino acid sequence identity. These two serine proteases appear to belong to the subtilisin (S8A) family and displayed several unique biochemical properties. Protease DV1 had an optimum pH of 8 and an optimal activity at 55°C, while protease M30 had an optimum pH >11 and optimal activity at 40°C. The properties of these enzymes make them potentially useful for biotechnological applications and again demonstrate that metagenomic approaches can be useful, especially when coupled with the study of novel environments such as deserts.

  8. Degradation of the Disease-Associated Prion Protein by a Serine Protease from Lichens

    PubMed Central

    Johnson, Christopher J.; Bennett, James P.; Biro, Steven M.; Duque-Velasquez, Juan Camilo; Rodriguez, Cynthia M.; Bessen, Richard A.; Rocke, Tonie E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted. PMID:21589935

  9. Degradation of the disease-associated prion protein by a serine protease from lichens

    USGS Publications Warehouse

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J.C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.; Bartz, Jason C.

    2011-01-01

    The disease-associated prion protein (PrP(TSE)), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrP(TSE) inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrP(TSE). Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrP(TSE)-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrP(TSE) and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  10. Degradation of the disease-associated prion protein by a serine protease from lichens

    USGS Publications Warehouse

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J. C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  11. Degradation of the disease-associated prion protein by a serine protease from lichens.

    USGS Publications Warehouse

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J. C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  12. Degradation of the disease-associated prion protein by a serine protease from lichens.

    PubMed

    Johnson, Christopher J; Bennett, James P; Biro, Steven M; Duque-Velasquez, Juan Camilo; Rodriguez, Cynthia M; Bessen, Richard A; Rocke, Tonie E

    2011-05-11

    The disease-associated prion protein (PrP(TSE)), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrP(TSE) inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrP(TSE). Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrP(TSE)-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrP(TSE) and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  13. Contribution of Gelatinase, Serine Protease, and fsr to the Pathogenesis of Enterococcus faecalis Endophthalmitis

    PubMed Central

    Engelbert, Michael; Mylonakis, Eleftherios; Ausubel, Frederick M.; Calderwood, Stephen B.; Gilmore, Michael S.

    2004-01-01

    Gelatinase and serine protease were found to contribute in concert to pathogenesis in a rabbit model of endophthalmitis. However, a mutant defective in the fsr regulator was observed to be more attenuated than a mutant rendered defective in the expression of gelatinase and serine protease as the result of a polar transposon insertion into the former. This increased attenuation suggests that there are possible additional pleiotropic effects of the defect in fsr on expression of traits contributing to the pathogenesis of enterococcal infection. PMID:15155673

  14. Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway.

    PubMed

    Reynolds, Simone L; Pike, Robert N; Mika, Angela; Blom, Anna M; Hofmann, Andreas; Wijeyewickrema, Lakshmi C; Kemp, Dave; Fischer, Katja

    2014-05-01

    Scabies is an infectious skin disease caused by the mite Sarcoptes scabiei and has been classified as one of the six most prevalent epidermal parasitic skin diseases infecting populations living in poverty by the World Health Organisation. The role of the complement system, a pivotal component of human innate immunity, as an important defence against invading pathogens has been well documented and many parasites have an arsenal of anti-complement defences. We previously reported on a family of scabies mite proteolytically inactive serine protease paralogues (SMIPP-Ss) thought to be implicated in host defence evasion. We have since shown that two family members, SMIPP-S D1 and I1 have the ability to bind the human complement components C1q, mannose binding lectin (MBL) and properdin and are capable of inhibiting all three human complement pathways. This investigation focused on inhibition of the lectin pathway of complement activation as it is likely to be the primary pathway affecting scabies mites. Activation of the lectin pathway relies on the activation of MBL, and as SMIPP-S D1 and I1 have previously been shown to bind MBL, the nature of this interaction was examined using binding and mutagenesis studies. SMIPP-S D1 bound MBL in complex with MBL-associated serine proteases (MASPs) and released the MASP-2 enzyme from the complex. SMIPP-S I1 was also able to bind MBL in complex with MASPs, but MASP-1 and MASP-2 remained in the complex. Despite these differences in mechanism, both molecules inhibited activation of complement components downstream of MBL. Mutagenesis studies revealed that both SMIPP-Ss used an alternative site of the molecule from the residual active site region to inhibit the lectin pathway. We propose that SMIPP-Ss are potent lectin pathway inhibitors and that this mechanism represents an important tool in the immune evasion repertoire of the parasitic mite and a potential target for therapeutics. PMID:24854034

  15. 115 kDa serine protease confers sustained protection to visceral leishmaniasis caused by Leishmania donovani via IFN-γ induced down-regulation of TNF-α mediated MMP-9 activity.

    PubMed

    Choudhury, Rajdeep; Das, Partha; De, Tripti; Chakraborti, Tapati

    2013-01-01

    Visceral leishmaniasis caused by the intracellular parasite Leishmania donovani is a major public health problem in the developing world. The emergence of increasing number of L. donovani strains resistance to antimonial drugs recommended worldwide requires the intervention of effective vaccine strategy for treatment of VL. In the present study L. donovani culture derived, soluble, secretory serine protease (pSP) has been shown to be vaccine target of VL. Protection from VL could be achieved by the use of safer vaccine which generally requires an adjuvant for induction of strong Th1 response. To assess the safety, immunogenicity and efficacy of pSP as vaccine candidate in mouse model we used IL-12 as adjuvant. BALB/c mice immunized with pSP+IL-12 were protected significantly from challenged infection even after four months by reducing the parasite load in liver and spleen and suppressed the development of the disease along with an increase in IgG2a antibody level in serum, enhanced delayed type hypersensitivity and strong T-cell proliferation. Groups receiving pSP+IL-12 had an augmented pSP antigen specific Th1 cytokines like IFN-γ and TNF-α response with concomitant decrease of Th2 cytokines IL-4 and IL-10 after vaccination. In this study the vaccine efficacy of pSP was further assessed for its prophylactic potential by enumerating matrix metalloprotease-9 (MMP-9) profile which has been implicated in various diseases. MMP-9 associated with different microbial infections is controlled by their natural inhibitors (TIMPS) and by some cytokines. In this study pSP was found to regulate excessive inflammation by modulating the balance between MMP-9 and TIMP-1 expression. This modulatory effect has also been demonstrated by IFN-γ mediated down regulation of TNF-α induced MMP-9 expression in activated murine macrophages. This is the first report where a secretory L. donovani serine protease (pSP) adjuvanted with IL-12 could also act as protective imunogen by modifying

  16. The Evaluation of Dipeptidyl Peptidase (DPP)-IV, α-Glucosidase and Angiotensin Converting Enzyme (ACE) Inhibitory Activities of Whey Proteins Hydrolyzed with Serine Protease Isolated from Asian Pumpkin (Cucurbita ficifolia).

    PubMed

    Konrad, Babij; Anna, Dąbrowska; Marek, Szołtysik; Marta, Pokora; Aleksandra, Zambrowicz; Józefa, Chrzanowska

    2014-01-01

    In the present study, whey protein concentrate (WPC-80) and β-lactoglobulin were hydrolyzed with a noncommercial serine protease isolated from Asian pumpkin (Cucurbita ficifolia). Hydrolysates were further fractionated by ultrafiltration using membranes with cut-offs equal 3 and 10 kDa. Peptide fractions of molecular weight lower than 3 and 3-10 kDa were further subjected to the RP-HPLC. Separated preparations were investigated for their potential as the natural inhibitors of dipeptidyl peptidase (DPP-IV), α-glucosidase and angiotensin converting enzyme (ACE). WPC-80 hydrolysate showed higher inhibitory activities against the three tested enzymes than β-lactoglobulin hydrolysate. Especially high biological activities were exhibited by peptide fractions of molecular weight lower than 3 kDa, with ACE IC50 <0.64 mg/mL and DPP-IV IC50 <0.55 mg/mL. This study suggests that peptides generated from whey proteins may support postprandial glycemia regulation and blood pressure maintenance, and could be used as functional food ingredients in the diet of patients with type 2 diabetes.

  17. Identification, purification and characterization of a novel collagenolytic serine protease from fig (Ficus carica var. Brown Turkey) latex.

    PubMed

    Raskovic, Brankica; Bozovic, Olga; Prodanovic, Radivoje; Niketic, Vesna; Polovic, Natalija

    2014-12-01

    A novel collagenolytic serine protease was identified and then purified (along with ficin) to apparent homogeneity from the latex of fig (Ficus carica, var. Brown Turkey) by two step chromatographic procedure using gel and covalent chromatography. The enzyme is a monomeric protein of molecular mass of 41 ± 9 kDa as estimated by analytical gel filtration chromatography. It is an acidic protein with a pI value of approximately 5 and optimal activity at pH 8.0-8.5 and temperature 60°C. The enzymatic activity was strongly inhibited by PMSF and Pefabloc SC, indicating that the enzyme is a serine protease. The enzyme showed specificity towards gelatin and collagen (215 GDU/mg and 24.8 CDU/mg, respectively) and non-specific protease activity (0.18 U/mg against casein). The enzyme was stable and retained full activity over a broad range of pH and temperature. The fig latex collagenolytic protease is potentially useful as a non-microbial enzyme with collagenolytic activity for various applications in the fields of biochemistry, biotechnology and medicine. PMID:24982021

  18. Identification, purification and characterization of a novel collagenolytic serine protease from fig (Ficus carica var. Brown Turkey) latex.

    PubMed

    Raskovic, Brankica; Bozovic, Olga; Prodanovic, Radivoje; Niketic, Vesna; Polovic, Natalija

    2014-12-01

    A novel collagenolytic serine protease was identified and then purified (along with ficin) to apparent homogeneity from the latex of fig (Ficus carica, var. Brown Turkey) by two step chromatographic procedure using gel and covalent chromatography. The enzyme is a monomeric protein of molecular mass of 41 ± 9 kDa as estimated by analytical gel filtration chromatography. It is an acidic protein with a pI value of approximately 5 and optimal activity at pH 8.0-8.5 and temperature 60°C. The enzymatic activity was strongly inhibited by PMSF and Pefabloc SC, indicating that the enzyme is a serine protease. The enzyme showed specificity towards gelatin and collagen (215 GDU/mg and 24.8 CDU/mg, respectively) and non-specific protease activity (0.18 U/mg against casein). The enzyme was stable and retained full activity over a broad range of pH and temperature. The fig latex collagenolytic protease is potentially useful as a non-microbial enzyme with collagenolytic activity for various applications in the fields of biochemistry, biotechnology and medicine.

  19. A Spider-Derived Kunitz-Type Serine Protease Inhibitor That Acts as a Plasmin Inhibitor and an Elastase Inhibitor

    PubMed Central

    Wan, Hu; Lee, Kwang Sik; Kim, Bo Yeon; Zou, Feng Ming; Yoon, Hyung Joo; Je, Yeon Ho; Li, Jianhong; Jin, Byung Rae

    2013-01-01

    Kunitz-type serine protease inhibitors are involved in various physiological processes, such as ion channel blocking, blood coagulation, fibrinolysis, and inflammation. While spider-derived Kunitz-type proteins show activity in trypsin or chymotrypsin inhibition and K+ channel blocking, no additional role for these proteins has been elucidated. In this study, we identified the first spider (Araneus ventricosus) Kunitz-type serine protease inhibitor (AvKTI) that acts as a plasmin inhibitor and an elastase inhibitor. AvKTI possesses a Kunitz domain consisting of a 57-amino-acid mature peptide that displays features consistent with Kunitz-type inhibitors, including six conserved cysteine residues and a P1 lysine residue. Recombinant AvKTI, expressed in baculovirus-infected insect cells, showed a dual inhibitory activity against trypsin (Ki 7.34 nM) and chymotrypsin (Ki 37.75 nM), defining a role for AvKTI as a spider-derived Kunitz-type serine protease inhibitor. Additionally, AvKTI showed no detectable inhibitory effects on factor Xa, thrombin, or tissue plasminogen activator; however, AvKTI inhibited plasmin (Ki 4.89 nM) and neutrophil elastase (Ki 169.07 nM), indicating that it acts as an antifibrinolytic factor and an antielastolytic factor. These findings constitute molecular evidence that AvKTI acts as a plasmin inhibitor and an elastase inhibitor and also provide a novel view of the functions of a spider-derived Kunitz-type serine protease inhibitor. PMID:23308198

  20. Isolation of a thiol-dependent serine protease in peanut and investigation of its role in the complement and the allergic reaction.

    PubMed

    Javaux, Cédric; Stordeur, Patrick; Azarkan, Mohamed; Mascart, Françoise; Baeyens-Volant, Danielle

    2016-07-01

    A serine protease activity was detected in aqueous peanuts seeds extracts, partially purified and characterized as a thiol-dependent serine protease. The potential role of this proteolytic activity on allergic reaction to peanuts was prospected through complement activation studies in human plasma and serum, and MDCK cells to investigate a possible occludin degradation in tight junctions. The peanut protease activity induced the production of anaphylatoxins C3a and C5a, and of the terminal membrane attack complex SC5b-9 whatever the complement activation pathway. The protease activity was also involved in the partial digestion of occludin within tight junctions, with for result, an increase of the epithelial permeability to antigen absorption.

  1. The periplasmic serine protease inhibitor ecotin protects bacteria against neutrophil elastase.

    PubMed Central

    Eggers, Christopher T; Murray, Iain A; Delmar, Valerie A; Day, Anthony G; Craik, Charles S

    2004-01-01

    Ecotin is a dimeric periplasmic protein from Escherichia coli that has been shown to inhibit potently many trypsin-fold serine proteases of widely varying substrate specificity. To help elucidate the physiological function of ecotin, we examined the family of ecotin orthologues, which are present in a subset of Gram-negative bacteria. Phylogenetic analysis suggested that ecotin has an exogenous target, possibly neutrophil elastase. Recombinant protein was expressed and purified from E. coli, Yersinia pestis and Pseudomonas aeruginosa, all species that encounter the mammalian immune system, and also from the plant pathogen Pantoea citrea. Notably, the Pa. citrea variant inhibits neutrophil elastase 1000-fold less potently than the other orthologues. All four orthologues are dimeric proteins that potently inhibit (<10 pM) the pancreatic digestive proteases trypsin and chymotrypsin, while showing more variable inhibition (5 pM to 24 microM) of the blood proteases Factor Xa, thrombin and urokinase-type plasminogen activator. To test whether ecotin does, in fact, protect bacteria from neutrophil elastase, an ecotin-deficient strain was generated in E. coli. This strain is significantly more sensitive in cell-killing assays to human neutrophil elastase, which causes increased permeability of the outer membrane that persists even during renewed bacterial growth. Ecotin affects primarily the ability of E. coli to recover and grow following treatment with neutrophil elastase, rather than the actual rate of killing. This suggests that an important part of the antimicrobial mechanism of neutrophil elastase may be a periplasmic bacteriostatic effect of protease that has translocated across the damaged outer membrane. PMID:14705961

  2. A tandem Kunitz protease inhibitor (KPI106)-serine carboxypeptidase (SCP1) controls mycorrhiza establishment and arbuscule development in Medicago truncatula.

    PubMed

    Rech, Stefanie S; Heidt, Sven; Requena, Natalia

    2013-09-01

    Plant proteases and protease inhibitors are involved in plant developmental processes including those involving interactions with microbes. Here we show that a tandem between a Kunitz protease inhibitor (KPI106) and a serine carboxypeptidase (SCP1) controls arbuscular mycorrhiza development in the root cortex of Medicago truncatula. Both proteins are only induced during mycorrhiza formation and belong to large families whose members are also mycorrhiza-specific. Furthermore, the interaction between KPI106 and SCP1 analysed using the yeast two-hybrid system is specific, indicating that each family member might have a defined counterpart. In silico docking analysis predicted a putative P1 residue in KPI106 (Lys173) that fits into the catalytic pocket of SCP1, suggesting that KPI106 might inhibit the enzyme activity by mimicking the protease substrate. In vitro mutagenesis of the Lys173 showed that this residue is important in determining the strength and specificity of the interaction. The RNA interference (RNAi) inactivation of the serine carboxypeptidase SCP1 produces aberrant mycorrhizal development with an increased number of septated hyphae and degenerate arbuscules, a phenotype also observed when overexpressing KPI106. Protease and inhibitor are both secreted as observed when expressed in Nicotiana benthamiana epidermal cells. Taken together we envisage a model in which the protease SCP1 is secreted in the apoplast where it produces a peptide signal critical for proper fungal development within the root. KPI106 also at the apoplast would modulate the spatial and/or temporal activity of SCP1 by competing with the protease substrate.

  3. Purification and characterization of a serine alkaline protease from Bacillus clausii GMBAE 42.

    PubMed

    Kazan, Dilek; Denizci, Aziz Akin; Oner, Mine N Kerimak; Erarslan, Altan

    2005-08-01

    An extracellular serine alkaline protease of Bacillus clausii GMBAE 42 was produced in protein-rich medium in shake-flask cultures for 3 days at pH 10.5 and 37 degrees C. Highest alkaline protease activity was observed in the late stationary phase of cell cultivation. The enzyme was purified 16-fold from culture filtrate by DEAE-cellulose chromatography followed by (NH(4))(2)SO(4) precipitation, with a yield of 58%. SDS-PAGE analysis revealed the molecular weight of the enzyme to be 26.50 kDa. The optimum temperature for enzyme activity was 60 degrees C; however, it is shifted to 70 degrees C after addition of 5 mM Ca(2+) ions. The enzyme was stable between 30 and 40 degrees C for 2 h at pH 10.5; only 14% activity loss was observed at 50 degrees C. The optimal pH of the enzyme was 11.3. The enzyme was also stable in the pH 9.0--12.2 range for 24 h at 30 degrees C; however, activity losses of 38% and 76% were observed at pH values of 12.7 and 13.0, respectively. The activation energy of Hammarsten casein hydrolysis by the purified enzyme was 10.59 kcal mol(-1) (44.30 kJ mol(-1)). The enzyme was stable in the presence of the 1% (w/v) Tween-20, Tween-40,Tween-60, Tween-80, and 0.2% (w/v) SDS for 1 h at 30 degrees C and pH 10.5. Only 10% activity loss was observed with 1% sodium perborate under the same conditions. The enzyme was not inhibited by iodoacetate, ethylacetimidate, phenylglyoxal, iodoacetimidate, n-ethylmaleimidate, n-bromosuccinimide, diethylpyrocarbonate or n-ethyl-5-phenyl-iso-xazolium-3'-sulfonate. Its complete inhibition by phenylmethanesulfonylfluoride and relatively high k (cat) value for N-Suc-Ala-Ala-Pro-Phe-pNA hydrolysis indicates that the enzyme is a chymotrypsin-like serine protease. K (m) and k (cat) values were estimated at 0.655 microM N-Suc-Ala-Ala-Pro-Phe-pNA and 4.21 x 10(3) min(-1), respectively. PMID:15988584

  4. Molecular cloning, characterization and expression analysis of trypsin-like serine protease from triangle-shell pearl mussel (Hyriopsis cumingii).

    PubMed

    Wang, Hongquan; Liang, Jian; Zhao, Yurong; Liu, Qiaolin; Li, Yaoguo; Yi, Zili; Chen, Kaijian; Xiao, Tiaoyi

    2014-10-01

    Trypsin-like serine protease (TLS) is ubiquitous in animals and plays a number of diverse roles, including dietary protein digestion, hemolymph coagulation, antimicrobial activity and immune responses, among others. This study reports the isolation of a 1048 bp full-length cDNA sequence of TLS from triangle-shell pearl mussel (Hyriopsis cumingii), including a 12 bp 5' UTR (untranslated region), a 172 bp 3' UTR, and an open reading frame (ORF) of 864 bp by rapid amplification of cDNA ends (RACE). Bioinformatic analysis shows that the gene belongs to the trypsin-like serine protease superfamily, and contains a 15 residues N-terminal signal peptide and a conserved C-terminal domain. In comparison to other serine proteases, the catalytic triad were identified as His-98, Asp-149, and Ser-240. Quantitative real-time PCR (qPCR) showed a broad expression of the TLS gene in ten tested tissues. Time-course expression analysis demonstrated that the expression level of the TLS mRNA was significantly up-regulated in eight tested tissues (liver, intestine, gill, heart, axe foot, adductor muscle, kidney and gonad), but down-regulated in mantle and stomach after Aeromonas hydrophila injection. This is one of the results indicate that TLS may be involved in innate defense reactions against A. hydrophila in triangle-shell pearl mussel. PMID:25149589

  5. A cyclohexanecarboxamide derivative with inhibitory effects on Schistosoma mansoni cercarial serine protease and penetration of mice skin by the parasite.

    PubMed

    Bahgat, Mahmoud; Aboul-Enein, Mohamed N; El Azzouny, Aida A; Maghraby, Amany; Ruppel, Andreas; Soliman, Wael M

    2009-01-01

    A cyclohexanecarboxamide derivative, N-phenyl-N-[1-(piperidine-1-carbonyl)cyclohexyl] benzamide (MNRC-5), was evaluated for its inhibitory effects on Schistosoma mansoni cercarial serine protease activity and cercarial penetration. MNRC-5 exerted an inhibitory effect on S. mansoni cercarial serine protease at serial concentrations of the specific chromogenic substrate Boc-Val-Leu-Gly-Arg-PNA for such enzyme family and the inhibitory coefficient (Ki) value was deduced. Moreover, topical treatment of mice tails with the most potent inhibitory concentration of MNRC-5 formulated in jojoba oil successfully blocked cercarial penetration as demonstrated by a significant reduction (75%; p < 0.05) in the recovered S. mansoni worms from treated mice in comparison to control ones whose tails were painted with jojoba oil base containing no MNRC-5. In addition, the IgM and IgG reactivities to crude S. mansoni cercarial, worm and egg antigens were generally lower in sera from treated infected mice than untreated infected mice. In conclusion, we report on a new serine protease inhibitor capable for blocking penetration of host skin by S. mansoni cercariae as measured by lowering worm burden and decrease in the levels of both IgM and IgG towards different bilharzial antigens upon topical treatment.

  6. Cloning and expression of the gene encoding an extracellular alkaline serine protease from Vibrio alginolyticus strain HY9901, the causative agent of vibriosis in Lutjanus erythopterus (Bloch).

    PubMed

    Cai, S H; Wu, Z H; Jian, J C; Lu, Y S

    2007-08-01

    A 750-bp internal fragment of the alkaline serine protease gene (asp) from the Vibrio alginolyticus strain HY9901 was amplified by polymerase chain reaction (PCR). The flanking sequences of the 5'- and 3'- ends of the asp gene were characterized by reverse and nested PCR. Sequence analysis showed that the asp gene contained an 1893-bp ORF encoding 630 amino acids. The deduced amino acid sequence of the ASP (alkaline serine protease) precursor showed significant homology with several bacterial alkaline serine proteases. Expression of the asp gene in Escherichia coli and activity tests of the ASP indicated that the N-signal peptide of the ASP precursor was essential to autocatalyse and fold correctly the enzyme to obtain activity. The purified ASP was lethal for Lutjanus erythopterus with an LD(50) of 0.25 microg protein g(-1) body weight.

  7. Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases.

    PubMed

    Waldner, Birgit J; Fuchs, Julian E; Huber, Roland G; von Grafenstein, Susanne; Schauperl, Michael; Kramer, Christian; Liedl, Klaus R

    2016-01-21

    Members of the same protease family show different substrate specificity, even if they share identical folds, depending on the physiological processes they are part of. Here, we investigate the key factors for subpocket and global specificity of factor Xa, elastase, and granzyme B which despite all being serine proteases and sharing the chymotrypsin-fold show distinct substrate specificity profiles. We determined subpocket interaction potentials with GRID for static X-ray structures and an in silico generated ensemble of conformations. Subpocket interaction potentials determined for static X-ray structures turned out to be insufficient to explain serine protease specificity for all subpockets. Therefore, we generated conformational ensembles using molecular dynamics simulations. We identified representative binding site conformations using distance-based hierarchical agglomerative clustering and determined subpocket interaction potentials for each representative conformation of the binding site. Considering the differences in subpocket interaction potentials for these representative conformations as well as their abundance allowed us to quantitatively explain subpocket specificity for the nonprime side for all three example proteases on a molecular level. The methods to identify key regions determining subpocket specificity introduced in this study are directly applicable to other serine proteases, and the results provide starting points for new strategies in rational drug design.

  8. Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases

    PubMed Central

    2015-01-01

    Members of the same protease family show different substrate specificity, even if they share identical folds, depending on the physiological processes they are part of. Here, we investigate the key factors for subpocket and global specificity of factor Xa, elastase, and granzyme B which despite all being serine proteases and sharing the chymotrypsin-fold show distinct substrate specificity profiles. We determined subpocket interaction potentials with GRID for static X-ray structures and an in silico generated ensemble of conformations. Subpocket interaction potentials determined for static X-ray structures turned out to be insufficient to explain serine protease specificity for all subpockets. Therefore, we generated conformational ensembles using molecular dynamics simulations. We identified representative binding site conformations using distance-based hierarchical agglomerative clustering and determined subpocket interaction potentials for each representative conformation of the binding site. Considering the differences in subpocket interaction potentials for these representative conformations as well as their abundance allowed us to quantitatively explain subpocket specificity for the nonprime side for all three example proteases on a molecular level. The methods to identify key regions determining subpocket specificity introduced in this study are directly applicable to other serine proteases, and the results provide starting points for new strategies in rational drug design. PMID:26709959

  9. The serine protease autotransporter Tsh contributes to the virulence of Edwardsiella tarda.

    PubMed

    Hu, Yong-Hua; Zhou, Hai-Zhen; Jin, Qian-Wen; Zhang, Jian

    2016-06-30

    The temperature-sensitive hemagglutinin (Tsh), identified as serine protease autotransporters of the Enterobacteriaceae (SPATEs) proteins, is an important virulence factor for avian-pathogenic Escherichia coli (APEC) and uropathogenic E. coli. However, little is known about the role of Tsh as a virulence factor in Edwardsiella tarda, a severe fish pathogen. In this study, we characterized the Tsh of E. tarda (named TshEt) and examined its function and vaccine potential. TshEt is composed of 1224 residues and has three functional domains typical for autotransporters. Quantitative real-time reverse transcriptase-PCR analysis showed that expression of tshEt was upregulated under conditions of high temperature, increased cell density, high pH, and iron starvation and during the infection of host cells. A markerless tsh in-frame mutant strain, TX01Δtsh, was constructed to determine whether TshEt participates in the pathogenicity of E. tarda, Compared to the wild type TX01, TX01Δtsh exhibited (i) retarded biofilm growth, (ii) decreased resistance against serum killing, (iii) impaired ability to block the host immune response, (iv) attenuated tissue and cellular infectivity. Introduction of a trans-expressed tsh gene restored the lost virulence of TX01Δtsh. The passenger domain of TshEt contains a putative serine protease (PepS) that exhibits apparent proteolytic activity when expressed in and purified from E. coli as a recombinant protein (rPepS). When used as a subunit vaccine to immunize Japanese flounder, rPepS was able to induce effective immune protection. This is the first study of Tsh in a fish pathogen, and the results suggest that TshEt exerts pleiotropic effects on the pathogenesis of E. tarda. PMID:27259829

  10. Optimization of Serine Protease Purification from Mango (Mangifera indica cv. Chokanan) Peel in Polyethylene Glycol/Dextran Aqueous Two Phase System

    PubMed Central

    Mehrnoush, Amid; Mustafa, Shuhaimi; Sarker, Md. Zaidul Islam; Yazid, Abdul Manap Mohd

    2012-01-01

    Mango peel is a good source of protease but remains an industrial waste. This study focuses on the optimization of polyethylene glycol (PEG)/dextran-based aqueous two-phase system (ATPS) to purify serine protease from mango peel. The activity of serine protease in different phase systems was studied and then the possible relationship between the purification variables, namely polyethylene glycol molecular weight (PEG, 4000–12,000 g·mol−1), tie line length (−3.42–35.27%), NaCl (−2.5–11.5%) and pH (4.5–10.5) on the enzymatic properties of purified enzyme was investigated. The most significant effect of PEG was on the efficiency of serine protease purification. Also, there was a significant increase in the partition coefficient with the addition of 4.5% of NaCl to the system. This could be due to the high hydrophobicity of serine protease compared to protein contaminates. The optimum conditions to achieve high partition coefficient (84.2) purification factor (14.37) and yield (97.3%) of serine protease were obtained in the presence of 8000 g·mol−1 of PEG, 17.2% of tie line length and 4.5% of NaCl at pH 7.5. The enzymatic properties of purified serine protease using PEG/dextran ATPS showed that the enzyme could be purified at a high purification factor and yield with easy scale-up and fast processing. PMID:22489172

  11. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin

    PubMed Central

    Brunati, Martina; Perucca, Simone; Han, Ling; Cattaneo, Angela; Consolato, Francesco; Andolfo, Annapaola; Schaeffer, Céline; Olinger, Eric; Peng, Jianhao; Santambrogio, Sara; Perrier, Romain; Li, Shuo; Bokhove, Marcel; Bachi, Angela; Hummler, Edith; Devuyst, Olivier; Wu, Qingyu; Jovine, Luca; Rampoldi, Luca

    2015-01-01

    Uromodulin is the most abundant protein in the urine. It is exclusively produced by renal epithelial cells and it plays key roles in kidney function and disease. Uromodulin mainly exerts its function as an extracellular matrix whose assembly depends on a conserved, specific proteolytic cleavage leading to conformational activation of a Zona Pellucida (ZP) polymerisation domain. Through a comprehensive approach, including extensive characterisation of uromodulin processing in cellular models and in specific knock-out mice, we demonstrate that the membrane-bound serine protease hepsin is the enzyme responsible for the physiological cleavage of uromodulin. Our findings define a key aspect of uromodulin biology and identify the first in vivo substrate of hepsin. The identification of hepsin as the first protease involved in the release of a ZP domain protein is likely relevant for other members of this protein family, including several extracellular proteins, as egg coat proteins and inner ear tectorins. DOI: http://dx.doi.org/10.7554/eLife.08887.001 PMID:26673890

  12. Host Generated siRNAs Attenuate Expression of Serine Protease Gene in Myzus persicae

    PubMed Central

    Bhatia, Varnika; Bhattacharya, Ramcharan; Uniyal, Prem L.; Singh, Rajendra; Niranjan, Rampal S.

    2012-01-01

    Background Sap sucking hemipteran aphids damage diverse crop species. Although delivery of ds-RNA or siRNA through microinjection/feeding has been demonstrated, the efficacy of host-mediated delivery of aphid-specific dsRNA in developing aphid resistance has been far from being elucidated. Methodology/Principal Findings Transgenic Arabidopsis expressing ds-RNA of Myzus persicae serine protease (MySP) was developed that triggered the generation of corresponding siRNAs amenable for delivery to the feeding aphids. M. persicae when fed on the transgenic plants for different time intervals under controlled growth conditions resulted in a significant attenuation of the expression of MySP and a commensurate decline in gut protease activity. Although the survivability of these aphids was not affected, there was a noticeable decline in their fecundity resulting in a significant reduction in parthenogenetic population. Conclusions/Significance The study highlighted the feasibility of developing host based RNAi-mediated resistance against hemipteran pest aphids. PMID:23071558

  13. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    PubMed

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop.

  14. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    PubMed

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. PMID:27329566

  15. A novel detergent-stable solvent-tolerant serine thiol alkaline protease from Streptomyces koyangensis TN650.

    PubMed

    Ben Elhoul, Mouna; Zaraî Jaouadi, Nadia; Rekik, Hatem; Bejar, Wacim; Boulkour Touioui, Souraya; Hmidi, Maher; Badis, Abdelmalek; Bejar, Samir; Jaouadi, Bassem

    2015-08-01

    An alkaline proteinase (STAP) was produced from strain TN650 isolated from a Tunisian off-shore oil field and assigned as Streptomyces koyangensis strain TN650 based on physiological and biochemical properties and 16S rRNA gene sequencing. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer with a molecular mass of 45125.17-Da. The enzyme had an NH2-terminal sequence of TQSNPPSWGLDRIDQTTAFTKACSIKY, thus sharing high homology with those of Streptomyces proteases. The results showed that this protease was completely inhibited by phenylmethanesulfonyl fluoride (PMSF), diiodopropyl fluorophosphates (DFP), and partially inhibited by 5,5-dithio-bis-(2-nitro benzoic acid) (DTNB), which strongly suggested its belonging to the serine thiol protease family. Using casein as a substrate, the optimum pH and temperature values for protease activity were pH 10 and 70 °C, respectively. The protease was stable at pH 7-10 and 30-60 °C for 24 h. STAP exhibited high catalytic efficiency, significant detergent stability, and elevated organic solvent resistance compared to the SG-XIV proteases from S. griseus and KERAB from Streptomyces sp. AB1. The stap gene encoding STAP was isolated, and its DNA sequence was determined. These properties make STAP a potential candidate for future application in detergent formulations and non-aqueous peptide biocatalysis.

  16. Cleavage Specificity Analysis of Six Type II Transmembrane Serine Proteases (TTSPs) Using PICS with Proteome-Derived Peptide Libraries

    PubMed Central

    Béliveau, François; Leduc, Richard; Overall, Christopher M.

    2014-01-01

    Background Type II transmembrane serine proteases (TTSPs) are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors. Methodology/Principal Finding To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS). Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin) to simultaneously determine sequence preferences on the N-terminal non-prime (P) and C-terminal prime (P’) sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1′ position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived. Conclusions Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1′ positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity. PMID:25211023

  17. Protease Inhibitors from Plants with Antimicrobial Activity

    PubMed Central

    Kim, Jin-Young; Park, Seong-Cheol; Hwang, Indeok; Cheong, Hyeonsook; Nah, Jae-Woon; Hahm, Kyung-Soo; Park, Yoonkyung

    2009-01-01

    Antimicrobial proteins (peptides) are known to play important roles in the innate host defense mechanisms of most living organisms, including plants, insects, amphibians and mammals. They are also known to possess potent antibiotic activity against bacteria, fungi, and even certain viruses. Recently, the rapid emergence of microbial pathogens that are resistant to currently available antibiotics has triggered considerable interest in the isolation and investigation of the mode of action of antimicrobial proteins (peptides). Plants produce a variety of proteins (peptides) that are involved in the defense against pathogens and invading organisms, including ribosome-inactivating proteins, lectins, protease inhibitors and antifungal peptides (proteins). Specially, the protease inhibitors can inhibit aspartic, serine and cysteine proteinases. Increased levels of trypsin and chymotrypsin inhibitors correlated with the plants resistance to the pathogen. Usually, the purification of antimicrobial proteins (peptides) with protease inhibitor activity was accomplished by salt-extraction, ultrafiltration and C18 reverse phase chromatography, successfully. We discuss the relation between antimicrobial and anti-protease activity in this review. Protease inhibitors from plants potently inhibited the growth of a variety of pathogenic bacterial and fungal strains and are therefore excellent candidates for use as the lead compounds for the development of novel antimicrobial agents. PMID:19582234

  18. Purification and biochemical properties of SDS-stable low molecular weight alkaline serine protease from Citrullus colocynthis.

    PubMed

    Khan, Muhammad Bashir; Khan, Hidayatullah; Shah, Muhammad Usman; Khan, Sanaullah

    2016-01-01

    A low molecular weight serine protease from seeds of Citrullus colocynthis was purified to electrophoretic homogeneity with high level of catalytic efficiency (22,945 M(-1) S(-1)). The enzyme was a monomer with molecular mass of 25 kDa estimated by SDS-PAGE. The enzyme was highly active over a pH range of 6.5-9.0 and temperature range of 20-80 °C, with maximum activity at pH 7.5 and at 50 °C. The K(m) and K(cat) were 73 μg/mL and 67/s, respectively. The enzyme was strongly inhibited by PMSF, moderately by soybean trypsin inhibitor, indicating that the enzyme was a serine protease. The enzyme retained 86 and 73% of its activity in the presence of urea and DTT, respectively, and its activity was slightly enhanced in the presence of anionic detergent (SDS). Thus, the enzyme is a novel SDS-stable protease with high catalytic efficiency over wide ranges of pH and temperature which is commercially promising for various industrial applications. PMID:26942486

  19. Purification and biochemical properties of SDS-stable low molecular weight alkaline serine protease from Citrullus colocynthis.

    PubMed

    Khan, Muhammad Bashir; Khan, Hidayatullah; Shah, Muhammad Usman; Khan, Sanaullah

    2016-01-01

    A low molecular weight serine protease from seeds of Citrullus colocynthis was purified to electrophoretic homogeneity with high level of catalytic efficiency (22,945 M(-1) S(-1)). The enzyme was a monomer with molecular mass of 25 kDa estimated by SDS-PAGE. The enzyme was highly active over a pH range of 6.5-9.0 and temperature range of 20-80 °C, with maximum activity at pH 7.5 and at 50 °C. The K(m) and K(cat) were 73 μg/mL and 67/s, respectively. The enzyme was strongly inhibited by PMSF, moderately by soybean trypsin inhibitor, indicating that the enzyme was a serine protease. The enzyme retained 86 and 73% of its activity in the presence of urea and DTT, respectively, and its activity was slightly enhanced in the presence of anionic detergent (SDS). Thus, the enzyme is a novel SDS-stable protease with high catalytic efficiency over wide ranges of pH and temperature which is commercially promising for various industrial applications.

  20. Unleashing the therapeutic potential of human kallikrein-related serine proteases.

    PubMed

    Prassas, Ioannis; Eissa, Azza; Poda, Gennadiy; Diamandis, Eleftherios P

    2015-03-01

    Tissue kallikreins are a family of fifteen secreted serine proteases encoded by the largest protease gene cluster in the human genome. In the past decade, substantial progress has been made in characterizing the natural substrates, endogenous inhibitors and in vivo functions of kallikreins, and studies have delineated important pathophysiological roles for these proteases in a variety of tissues. Thus, kallikreins are now considered attractive targets for the development of novel therapeutics for airway, cardiovascular, tooth, brain, skin and neoplastic diseases. In this Review, we discuss recent advances in our understanding of the physiological functions and pathological implications of kallikrein proteases, and highlight progress in the identification of kallikrein inhibitors, which together are bringing us closer to therapeutically targeting kallikreins in selected disease settings.

  1. The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung.

    PubMed

    Twigg, Matthew S; Brockbank, Simon; Lowry, Philip; FitzGerald, S Peter; Taggart, Clifford; Weldon, Sinéad

    2015-01-01

    Cystic fibrosis (CF) lung disease is an inherited condition with an incidence rate of approximately 1 in 2500 new born babies. CF is characterized as chronic infection of the lung which leads to inflammation of the airway. Sputum from CF patients contains elevated levels of neutrophils and subsequently elevated levels of neutrophil serine proteases. In a healthy individual these proteases aid in the phagocytic process by degrading microbial peptides and are kept in homeostatic balance by cognate antiproteases. Due to the heavy neutrophil burden associated with CF the high concentration of neutrophil derived proteases overwhelms cognate antiproteases. The general effects of this protease/antiprotease imbalance are impaired mucus clearance, increased and self-perpetuating inflammation, and impaired immune responses and tissue. To restore this balance antiproteases have been suggested as potential therapeutics or therapeutic targets. As such a number of both endogenous and synthetic antiproteases have been trialed with mixed success as therapeutics for CF lung disease. PMID:26185359

  2. The Serine Protease Motif of EspC from Enteropathogenic Escherichia coli Produces Epithelial Damage by a Mechanism Different from That of Pet Toxin from Enteroaggregative E. coli

    PubMed Central

    Navarro-García, Fernando; Canizalez-Roman, Adrián; Sui, Bao Quan; Nataro, James P.; Azamar, Yenia

    2004-01-01

    EspC (Escherichia coli secreted protein C) of enteropathogenic E. coli (EPEC) shows the three classical domains of the autotransporter proteins and has a conserved serine protease motif belonging to the SPATE (serine protease autotransporters of Enterobacteriaceae) subfamily. EspC and its homolog Pet in enteroaggregative E. coli (EAEC) bear the same sequence within the serine protease motif, and both proteins produce enterotoxic effects, suggesting that like Pet, EspC could be internalized to reach and cleave the calmodulin-binding domain of fodrin, causing actin cytoskeleton disruption. Even though both proteins cause cytoskeleton damage by virtue of their serine protease motifs, the following evidence supports the hypothesis that the mechanisms are different. (i) To obtain similar cytotoxic and cytoskeletal effects, a threefold-higher EspC concentration and a twofold-higher exposure time are needed. (ii) EspC internalization into epithelial cells takes more time (6 h) than Pet internalization (30 min), and the distributions of the two proteins inside the cells are also different. (iii) Both proteins have affinity for fodrin and cleave it, but the cleavage sites are different; EspC produces two cleavages, while Pet produces just one. (iv) EspC does not cause fodrin redistribution within epithelial cells. (v) An EspC serine protease motif mutant, but not a Pet serine protease mutant, competes with EspC by blocking cytoskeletal damage. All these data suggest that the protein conformational structure is very important for the activity of the catalytic site, influencing its interaction with the target protein and its internalization. The differences between these proteins may explain the reduced ability of EspC to cause cytopathic effects. However, these differences may confer a specialized role on EspC in the pathogenesis of EPEC, which is different from that of Pet in EAEC pathogenesis. PMID:15155671

  3. Purification and amino acid sequence of halystase from snake venom of Agkistrodon halys blomhoffii, a serine protease that cleaves specifically fibrinogen and kininogen.

    PubMed

    Matsui, T; Sakurai, Y; Fujimura, Y; Hayashi, I; Oh-Ishi, S; Suzuki, M; Hamako, J; Yamamoto, Y; Yamazaki, J; Kinoshita, M; Titani, K

    1998-03-15

    We have isolated a serine protease, halystase, from Agkistrodon halys blomhoffii venom by chromatography on DEAE-Sepharose, heparin-Sepharose and Q-Sepharose columns, and have determined the complete amino acid sequence by Edman degradation and by mass spectral analysis of peptides generated by enzymatic and chemical cleavage. The 238-residue sequence of halystase, containing N-linked carbohydrates (about 13%) at two sites showed significant similarity to other thrombin-like snake venom serine proteases (66-72%), mammalian tissue kallikrein (42%) and thrombin (26%). Halystase contained the tentative catalytic triad of His43, Asp88 and Ser184 common to all serine proteases and Asp178 in the primary substrate-binding site. Although halystase contained an RGD sequence at residues 181-183, it did not inhibit platelet aggregation induced by ADP or collagen. It hydrolyzed most efficiently a tissue-kallikrein substrate, prolylphenylalanylarginyl-4-methyl-coumaryl-7-amide, and released bradykinin from bovine kininogen. Halystase did not coagulate human plasma, but it cleaved the fibrinogen B beta chain at the carboxyl side of Arg42 and cleaved slowly the fibrogen A alpha chain. Fibrinogen thus treated gradually became insensitive to thrombin. The proteolytic activity was inhibited with diisopropyl fluorophosphate, phenylmethylsulfonyl fluoride or leupeptin. These results indicate that halystase is a serine protease structurally similar to coagulating thrombin-like snake venom proteases, but it specifically cleaves fibrinogen at sites different from thrombin without inducing fibrin clotting, and hydrolyzes kininogen to produce bradykinin, resulting in the reduction of blood pressure.

  4. The occurrence of type S1A serine proteases in sponge and jellyfish.

    PubMed

    Rojas, Ana; Doolittle, Russell F

    2006-12-01

    Although serine proteases are found in all kinds of cellular organisms and many viruses, the classic "chymotrypsin family" (Group S1A by the 1998 Barrett nomenclature) has an unusual phylogenetic distribution, being especially common in animals, entirely absent from plants and protists, and rare among fungi. The distribution in Bacteria is largely restricted to the genus Streptomyces, although a few isolated occurrences in other bacteria have been reported. The family may be entirely absent from Archaea. Although more than a thousand sequences have been reported for enzymes of this type from animals, none of them have been from early diverging phyla like Porifera or Cnidaria. We now report the existence of Group S1A serine proteases in a sponge (phylum Porifera) and a jellyfish (phylum Cnidaria), making it safe to conclude that all animal groups possess these enzymes.

  5. The Occurrence of Type S1A Serine Proteases in Sponge and Jellyfish

    NASA Technical Reports Server (NTRS)

    Rojas, Ana; Doolittle, Russell F.

    2003-01-01

    Although serine proteases are found in all kinds of cellular organisms and many viruses, the classic "chymotrypsin family" (Group S1A by th e 1998 Barrett nomenclature) has an unusual phylogenetic distribution , being especially common in animals, entirely absent from plants and protists, and rare among fungi. The distribution in Bacteria is larg ely restricted to the genus Streptomyces, although a few isolated occ urrences in other bacteria have been reported. The family may be enti rely absent from Archaea. Although more than a thousand sequences have been reported for enzymes of this type from animals, none of them ha ve been from early diverging phyla like Porifera or Cnidaria, We now report the existence of Group SlA serine proteases in a sponge (phylu m Porifera) and a jellyfish (phylum Cnidaria), making it safe to conc lude that all animal groups possess these enzymes.

  6. An Unusual Subtilisin-like Serine Protease Is Essential for Biogenesis of Quinohemoprotein Amine Dehydrogenase*

    PubMed Central

    Nakai, Tadashi; Ono, Kazutoshi; Kuroda, Shun'ichi; Tanizawa, Katsuyuki; Okajima, Toshihide

    2012-01-01

    Quinohemoprotein amine dehydrogenase (QHNDH), an αβγ heterotrimer present in the periplasm of several Gram-negative bacteria, catalyzes the oxidative deamination of various aliphatic amines such as n-butylamine for assimilation as carbon and energy sources. The γ subunit of mature QHNDH contains a protein-derived quinone cofactor, cysteine tryptophylquinone, and three intrapeptidyl thioether cross-links between Cys and Asp or Glu residues. In its cytoplasmic nascent form, the γ subunit has a 28-residue N-terminal leader peptide that is necessary for the production of active QHNDH but must be removed in the following maturation process. Here, we describe the role of a subtilisin-like serine protease encoded in the fifth ORF of the n-butylamine-utilizing operon of Paracoccus denitrificans (termed ORF5) in QHNDH biogenesis. ORF5 disruption caused bacterial cell growth inhibition in n-butylamine-containing medium and production of inactive QHNDH, in which the γ subunit retained the leader peptide. Supply of plasmid-encoded ORF5 restored the cell growth and production of active QHNDH, containing the correctly processed γ subunit. ORF5 expressed in Escherichia coli but not its catalytic triad mutant cleaved synthetic peptides surrogating for the γ subunit leader peptide, although extremely slowly. The cleaved leader peptide remained unstably bound to ORF5, most likely as an acyl enzyme intermediate attached to the active-site Ser residue. These results demonstrate that ORF5 is essential for QHNDH biogenesis, serving as a processing protease to cleave the γ subunit leader peptide nearly in a disposable manner. PMID:22235135

  7. Characterization of cDNAs encoding serine proteases and their transcriptional responses to Cry1Ab protoxin in the gut of Ostrinia nubilalis larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serine proteases, such as trypsin and chymotrypsin, are the primary digestive enzymes in lepidopteran larvae, and are also involved in Bacillus thuringiensis (Bt) protoxin activation and protoxin/toxin degradation. We isolated and sequenced 34 cDNAs putatively encoding trypsins, chymotrypsins and th...

  8. In Vivo Anticoagulant and Thrombolytic Activities of a Fibrinolytic Serine Protease (Brevithrombolase) With the k-Carrageenan-Induced Rat Tail Thrombosis Model.

    PubMed

    Majumdar, Sourav; Chattopadhyay, Pronobesh; Mukherjee, Ashis K

    2016-09-01

    In the present study, in vivo thrombolysis efficiency of Brevithrombolase, a nontoxic fibrinolytic enzyme purified from Brevibacillus brevis strain FF02B, was affirmed by significant inhibition of thrombus formation in the k-carrageenan-induced rat tail, in a dose-dependent manner. Brevithrombolase at a dose of 600 µg/kg showed an efficacy that was comparable to streptokinase and plasmin, in dissolving in vivo thrombus of k-carrageenan-treated rats under identical conditions. The in vivo anticoagulant property of Brevithrombolase was demonstrated by its prolongation of activated partial thromboplastin time, prothrombin time, and thrombin time in Wistar rats. However, the Brevithrombolase-treated rats demonstrated an insignificant decrease in fibrinogen (Fg) level of plasma compared with Fg level of control group of rats corroborating in vivo as well as in vitro anticoagulant activity of Brevithrombolase is due to its hydrolytic action on thrombin. These findings unequivocally suggest that Brevithrombolase may serve a promising alternative to the commercial thrombolytic drugs.

  9. An isozyme of earthworm serine proteases acts on hydrolysis of triacylglycerol.

    PubMed

    Nakajima, Nobuyoshi; Sugimoto, Manabu; Tsuboi, Sadao; Tsuji, Hideaki; Ishihara, Kohji

    2005-10-01

    An enzyme catalyzing the hydrolysis of triacylglycerol was purified from an earthworm. The N-terminal amino acid sequence and the catalytic function of the purified enzyme were identical to those of Isozyme C, an isozyme of the earthworm-serine proteases. No other lipase proteins were found in the earthworm cells. The isozyme might act on the hydrolysis of triacylglycerol as well as the protein decomposition.

  10. Role of Corynebacterium glutamicum sprA Encoding a Serine Protease in glxR-Mediated Global Gene Regulation

    PubMed Central

    Hong, Eun-Ji; Park, Joon-Song; Kim, Younhee; Lee, Heung-Shick

    2014-01-01

    The global regulator glxR of Corynebacterium glutamicum is involved in many cellular activities. Considering its role, the GlxR protein likely interacts with other proteins to obtain, maintain, and control its activity. To isolate proteins interacting with GlxR, we used a two-hybrid system with GlxR as the bait. Subsequently, the partner, a subtilisin-like serine protease, was isolated from a C. glutamicum genomic library. Unlike glxR, which showed constitutive expression, the expression of sprA, encoding a serine protease, was maximal in the log phase. Purified His6-SprA protein underwent self-proteolysis and proteolyzed purified GlxR. The proteolytic action of SprA on GlxR was not observed in the presence of cyclic adenosine monophosphate, which modulates GlxR activity. The C. glutamicum sprA deletion mutant (ΔsprA) and sprA-overexpressing (P180-sprA) strains showed reduced growth. The activity of isocitrate dehydrogenase (a tricarboxylic acid cycle enzyme) in these strains decreased to 30–50% of that in the wild-type strain. In the P180-sprA strain, proteins involved in diverse cellular functions such as energy and carbon metabolism (NCgl2809), nitrogen metabolism (NCgl0049), methylation reactions (NCgl0719), and peptidoglycan biosynthesis (NCgl1267), as well as stress, starvation, and survival (NCgl0938) were affected and showed decreased transcription. Taken together, these data suggest that SprA, as a serine protease, performs a novel regulatory role not only in glxR-mediated gene expression but also in other areas of cell physiology. In addition, the tight control of SprA and GlxR availability may indicate their importance in global gene regulation. PMID:24691519

  11. p38 MAPK regulates PKAα and CUB-serine protease in Amphibalanus amphitrite cyprids

    PubMed Central

    Zhang, Gen; He, Li-Sheng; Him Wong, Yue; Xu, Ying; Zhang, Yu; Qian, Pei-Yuan

    2015-01-01

    The MKK3-p38 MAPK pathway has been reported to mediate larval settlement in Amphibalanus (=Balanus) amphitrite. To clarify the underlying molecular mechanism, we applied label-free proteomics to analyze changes in the proteome of cyprids treated with a p38 MAPK inhibitor. The results showed that the expression levels of 80 proteins were significantly modified (p < 0.05). These differentially expressed proteins were assigned to 15 functional groups according to the KOG database and 9 pathways were significantly enriched. Further analysis revealed that p38 MAPK might regulate the energy supply and metamorphosis. Two potential regulatory proteins, CUB-serine protease and PKAα, were both down-regulated in expression. CUB-serine protease localized to postaxial seta 2 and 3, as well as the 4 subterminal sensilla in the antennule. Importantly, it was co-localized with the neuron transmitter serotonin in the sections, suggesting that the CUB-serine protease was present in the neural system. PKAα was highly expressed during the cyprid and juvenile stages, and it was co-localized with phospho-p38 MAPK (pp38 MAPK) to the cement gland, suggesting that PKAα might have some functions in cement glands. Overall, p38 MAPK might regulate multiple functions in A. amphitrite cyprids, including the energy supply, metamorphosis, neural system and cement glands. PMID:26434953

  12. p38 MAPK regulates PKAα and CUB-serine protease in Amphibalanus amphitrite cyprids.

    PubMed

    Zhang, Gen; He, Li-Sheng; Him Wong, Yue; Xu, Ying; Zhang, Yu; Qian, Pei-Yuan

    2015-01-01

    The MKK3-p38 MAPK pathway has been reported to mediate larval settlement in Amphibalanus (=Balanus) amphitrite. To clarify the underlying molecular mechanism, we applied label-free proteomics to analyze changes in the proteome of cyprids treated with a p38 MAPK inhibitor. The results showed that the expression levels of 80 proteins were significantly modified (p < 0.05). These differentially expressed proteins were assigned to 15 functional groups according to the KOG database and 9 pathways were significantly enriched. Further analysis revealed that p38 MAPK might regulate the energy supply and metamorphosis. Two potential regulatory proteins, CUB-serine protease and PKAα, were both down-regulated in expression. CUB-serine protease localized to postaxial seta 2 and 3, as well as the 4 subterminal sensilla in the antennule. Importantly, it was co-localized with the neuron transmitter serotonin in the sections, suggesting that the CUB-serine protease was present in the neural system. PKAα was highly expressed during the cyprid and juvenile stages, and it was co-localized with phospho-p38 MAPK (pp38 MAPK) to the cement gland, suggesting that PKAα might have some functions in cement glands. Overall, p38 MAPK might regulate multiple functions in A. amphitrite cyprids, including the energy supply, metamorphosis, neural system and cement glands. PMID:26434953

  13. Serine protease variants encoded by Echis ocellatus venom gland cDNA: cloning and sequencing analysis.

    PubMed

    Hasson, S S; Mothana, R A; Sallam, T A; Al-balushi, M S; Rahman, M T; Al-Jabri, A A

    2010-01-01

    Envenoming by Echis saw-scaled viper is the leading cause of death and morbidity in Africa due to snake bite. Despite its medical importance, there have been few investigations into the toxin composition of the venom of this viper. Here, we report the cloning of cDNA sequences encoding four groups or isoforms of the haemostasis-disruptive Serine protease proteins (SPs) from the venom glands of Echis ocellatus. All these SP sequences encoded the cysteine residues scaffold that form the 6-disulphide bonds responsible for the characteristic tertiary structure of venom serine proteases. All the Echis ocellatus EoSP groups showed varying degrees of sequence similarity to published viper venom SPs. However, these groups also showed marked intercluster sequence conservation across them which were significantly different from that of previously published viper SPs. Because viper venom SPs exhibit a high degree of sequence similarity and yet exert profoundly different effects on the mammalian haemostatic system, no attempt was made to assign functionality to the new Echis ocellatus EoSPs on the basis of sequence alone. The extraordinary level of interspecific and intergeneric sequence conservation exhibited by the Echis ocellatus EoSPs and analogous serine proteases from other viper species leads us to speculate that antibodies to representative molecules should neutralise (that we will exploit, by epidermal DNA immunization) the biological function of this important group of venom toxins in vipers that are distributed throughout Africa, the Middle East, and the Indian subcontinent. PMID:20936075

  14. A novel organic solvent- and detergent-stable serine alkaline protease from Trametes cingulata strain CTM10101.

    PubMed

    Omrane Benmrad, Maroua; Moujehed, Emna; Ben Elhoul, Mouna; Zaraî Jaouadi, Nadia; Mechri, Sondes; Rekik, Hatem; Kourdali, Sidali; El Hattab, Mohamed; Badis, Abdelmalek; Sayadi, Sami; Bejar, Samir; Jaouadi, Bassem

    2016-10-01

    A protease-producing fungus was isolated from an alkaline wastewater of chemical industries and identified as Trametes cingulata strain CTM10101 on the basis of the ITS rDNA gene-sequencing. It was observed that the fungus strongly produce extracellular protease grown at 30°C in potato-dextrose-broth (PDB) optimized media (13500U/ml). The pure serine protease isolated by Trametes cingulata (designated SPTC) was purified by ammonium sulfate precipitation-dialysis followed by heat-treatment and UNO S-1 FPLC cation-exchange chromatography. The chemical characterization carried on include phisico-chemical determination and spectroscopie analysis. The MALDI-TOF/MS analysis revealed that the purified enzyme was a monomer with a molecular mass of 31405.16-Da. The enzyme had an NH2-terminal sequence of ALTTQTEAPWALGTVSHKGQAST, thus sharing high homology with those of fungal-proteases. The optimum pH and temperature values of its proteolytic activity were pH 9 and 60°C, respectively, and its half-life times at 60 and 70°C were 9 and 5-h, respectively. It was completely inhibited by PMSF and DFP, which strongly suggested its belonging to the serine protease family. Compared to Flavourzyme(®)500L from Aspergillus oryzae and Thermolysin typeX from Geobacillus stearothermophilus, SPTC displayed higher levels of hydrolysis, substrate specificity, and catalytic efficiency as well as elevated organic solvent tolerance and considerable detergent stability. Finally, SPTC could potentially be used in peptide synthesis and detergent formulations. PMID:27296442

  15. Gene structure of the P100 serine-protease component of the human Ra-reactive factor.

    PubMed

    Takayama, Y; Takada, F; Nowatari, M; Kawakami, M; Matsu-ura, N

    1999-06-01

    The Ra-reactive factor (RaRF) is a complement dependent anti-microbial factor that reacts with numerous microorganisms such as viruses, bacteria, fungi and protozoa. It is a complex of a mannan-binding lectin (MBL) and the serine protease, P100 (MASPI). P100 activates the C4 component of the complement system and its domain organization is similar to C1r and C1s. In this study, determination was made of the structure of the human P100 gene which was found longer than 67 kbp and to be comprised of 16 exons. Its non-protease region consisted of 10 exons, as in the case of C1r and C1s, and the introns were found present in the boundary separating two CUB domains, an EGF-like domain and two CCP domains and each CUB and CCP domain contained extra internal introns. The serine protease region was comprised of 6 exons in contrast to C1r and C1s, either of which consists of a single exon. The exon-intron structure was found to reflect the evolution of these molecules and P100 to have derived earlier in the stage of evolution than C1r or C1s. PMID:10475605

  16. Experiment K-7-29: Connective Tissue Studies. Part 2; Changes in Muscle Serine Proteases, Serpins and Matrix Molecules

    NASA Technical Reports Server (NTRS)

    Festoff, B. W.; Ilyina-Kakueva, E. I.; Rayford, A. R.; Burkovskaya, T. E.; Reddy, B. R.; Rao, J. S.

    1994-01-01

    In zero or micro-gravity, type 1 muscle fibers atrophy and lose predominance, especially in slow-twitch muscles. No increase in mononuclear cells has been observed, just as in simple denervation, where both types 1 and 2 fibers atrophy, again without infiltration of cells, but with clear satellite cell proliferation. However, extracellular matrix (ECM) degradation takes place after denervation and if re-innervation is encouraged, functional recovery to near control levels may be achieved. No information is available concerning the ECM milieu, the activation of serine proteases, their efficacy in degrading ECM components and the production of locally-derived natural protease inhibitors (serpins) in effecting surface proteolytic control. In addition, no studies are available concerning the activation of these enzymes in micro- or zero gravity or their response to muscle injury on the ground and what alterations, if any, occur in space. These studies were the basis for the experiments in Cosmos 2044.

  17. A Kazal-Type Serine Protease Inhibitor from the Defense Gland Secretion of the Subterranean Termite Coptotermes formosanus Shiraki

    PubMed Central

    Negulescu, Horia; Guo, Youzhong; Garner, Thomas P.; Goodwin, Octavia Y.; Henderson, Gregg; Laine, Roger A.; Macnaughtan, Megan A.

    2015-01-01

    Coptotermes formosanus is an imported, subterranean termite species with the largest economic impact in the United States. The frontal glands of the soldier caste termites comprising one third of the body mass, contain a secretion expelled through a foramen in defense. The small molecule composition of the frontal gland secretion is well-characterized, but the proteins remain to be identified. Herein is reported the structure and function of one of several proteins found in the termite defense gland secretion. TFP4 is a 6.9 kDa, non-classical group 1 Kazal-type serine protease inhibitor with activity towards chymotrypsin and elastase, but not trypsin. The 3-dimensional solution structure of TFP4 was solved with nuclear magnetic resonance spectroscopy, and represents the first structure from the taxonomic family, Rhinotermitidae. Based on the structure of TFP4, the protease inhibitor active loop (Cys8 to Cys16) was identified. PMID:25978745

  18. Cloning and characterization of a shrimp clip domain serine protease homolog (c-SPH) as a cell adhesion molecule.

    PubMed

    Lin, Chun-Yu; Hu, Kuang-Yu; Ho, Shih-Hu; Song, Yen-Ling

    2006-01-01

    Clip domain serine protease homologs (c-SPHs) are involved in various innate immune functions in arthropods such as antimicrobial activity, cell adhesion, pattern recognition, opsonization, and regulation of the prophenoloxidase system. In the present study, we cloned a c-SPH cDNA from tiger shrimp (Penaeus monodon) hemocytes. It is 1337 bp in length with a coding region of 1068 bp consisting a protein of 355 amino acid residues. The deduced protein includes one clip domain and one catalytically inactive serine protease-like (SP-like) domain. Its molecular weight is estimated to be 38 kDa with an isoelectric point of 7.9. The predicted cutting site of the signal peptide is located between Gly(21) and Gln(22). We aligned 15 single clip domain SPH protein sequences from 12 arthropod species; the identity of these clip domains is low and that of SP-like domains is from 34% to 46%. The conserved regions are located near the amino acid residues which served as substrate interaction sites in catalytically active serine protease. Phylogenetically, the tiger shrimp c-SPH is most similar to a low molecular mass masquerade-like protein of crayfish, but less similar to c-SPHs in Chelicerata and Insecta. Nested reverse transcription polymerase chain reaction (RT-PCR) revealed that c-SPH mRNA is expressed most in tissues with the highest hemocyte abundance. Antimicrobial and opsonization activities of the molecule were not detected. The expression of c-SPH mRNA in hemocytes was up-regulated at the 12-day post beta-glucan immersion. Recombinant c-SPH could significantly enhance hemocyte adhesion. The result suggests that the shrimp c-SPH protein plays a role in innate immunity.

  19. Specificity of proteinase K at P2 to P3' sub-sites and its comparison to other serine proteases.

    PubMed

    Qasim, Mohammad A

    2014-01-01

    Specificity of the commercially important serine protease, proteinase K, has been investigated by measuring free energies of association of proteinase K with turkey ovomucoid third domain inhibitor variants at contact positions P2, P1, P1', P2', and P3'. Correlations of these values were run with similar values that have been obtained for six other serine proteases. Among the six proteases, subtilisin Carlsberg shows a near perfect correlation (Pearson Product correlation coefficient = 0.93 to 0.99) with proteinase K at all of these positions. Proteinase K has only 35% sequence identity with subtilisin Carlsberg, yet, the two enzymes are nearly identical in their specificity at P2 to P3' positions. With other serine proteases such as bovine chymotrypsin, human leukocyte elastase, porcine pancreatic elastase, Streptomyces griseus protease A and B, proteinase K showed relatively poor or no correlation.

  20. Novel Potent Hepatitis C Virus NS3 Serine Protease Inhibitors Derived from Proline-Based Macrocycles

    SciTech Connect

    Chen, Kevin X.; Njoroge, F. George; Arasappan, Ashok; Venkatraman, Srikanth; Vibulbhan, Bancha; Yang, Weiying; Parekh, Tejal N.; Pichardo, John; Prongay, Andrew; Cheng, Kuo-Chi; Butkiewicz, Nancy; Yao, Nanhua; Madison, Vincent; Girijavallabhan, Viyyoor

    2008-06-30

    The hepatitis C virus (HCV) NS3 protease is essential for viral replication. It has been a target of choice for intensive drug discovery research. On the basis of an active pentapeptide inhibitor, 1, we envisioned that macrocyclization from the P2 proline to P3 capping could enhance binding to the backbone Ala156 residue and the S4 pocket. Thus, a number of P2 proline-based macrocyclic {alpha}-ketoamide inhibitors were prepared and investigated in an HCV NS3 serine protease continuous assay (K*{sub i}). The biological activity varied substantially depending on factors such as the ring size, number of amino acid residues, number of methyl substituents, type of heteroatom in the linker, P3 residue, and configuration at the proline C-4 center. The pentapeptide inhibitors were very potent, with the C-terminal acids and amides being the most active ones (24, K*{sub i} = 8 nM). The tetrapeptides and tripeptides were less potent. Sixteen- and seventeen-membered macrocyclic compounds were equally potent, while fifteen-membered analogues were slightly less active. gem-Dimethyl substituents at the linker improved the potency of all inhibitors (the best compound was 45, K*{sub i} = 6 nM). The combination of tert-leucine at P3 and dimethyl substituents at the linker in compound 47 realized a selectivity of 307 against human neutrophil elastase. Compound 45 had an IC{sub 50} of 130 nM in a cellular replicon assay, while IC{sub 50} for 24 was 400 nM. Several compounds had excellent subcutaneous AUC and bioavailability in rats. Although tripeptide compound 40 was 97% orally bioavailable, larger pentapeptides generally had low oral bioavailability. The X-ray crystal structure of compounds 24 and 45 bound to the protease demonstrated the close interaction of the macrocycle with the Ala156 methyl group and S4 pocket. The strategy of macrocyclization has been proved to be successful in improving potency (>20-fold greater than that of 1) and in structural depeptization.

  1. Biopotency of serine protease inhibitors from cowpea (Vigna unguiculata) seeds on digestive proteases and the development of Spodoptera littoralis (Boisduval).

    PubMed

    Abd El-latif, Ashraf Oukasha

    2015-05-01

    Serine protease inhibitors (PIs) have been described in many plant species and are universal throughout the plant kingdom, where trypsin inhibitors is the most common type. In the present study, trypsin and chymotrypsin inhibitory activity was detected in the seed flour extracts of 13 selected cultivars/accessions of cowpea. Two cowpea cultivars, Cream7 and Buff, were found to have higher trypsin and chymotrypsin inhibitory potential compared to other tested cultivars for which they have been selected for further purification studies using ammonium sulfate fractionation and DEAE-Sephadex A-25 column. Cream7-purified proteins showed two bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) corresponding to molecular mass of 17.10 and 14.90 kDa, while the purified protein from Buff cultivar showed a single band corresponding mass of 16.50 kDa. The purified inhibitors were stable at temperature below 60°C and were active at wide range of pH from 2 to 12. The kinetic analysis revealed noncompetitive type of inhibition for both inhibitors against both enzymes. The inhibitor constant (Ki ) values suggested high affinity between inhibitors and enzymes. Purified inhibitors were found to have deep and negative effects on the mean larval weight, larval mortality, pupation, and mean pupal weight of Spodoptera littoralis, where Buff PI was more effective than Cream7 PI. It may be concluded that cowpea PI gene(s) could be potential insect control protein for future studies in developing insect-resistant transgenic plants. PMID:25524889

  2. Biopotency of serine protease inhibitors from cowpea (Vigna unguiculata) seeds on digestive proteases and the development of Spodoptera littoralis (Boisduval).

    PubMed

    Abd El-latif, Ashraf Oukasha

    2015-05-01

    Serine protease inhibitors (PIs) have been described in many plant species and are universal throughout the plant kingdom, where trypsin inhibitors is the most common type. In the present study, trypsin and chymotrypsin inhibitory activity was detected in the seed flour extracts of 13 selected cultivars/accessions of cowpea. Two cowpea cultivars, Cream7 and Buff, were found to have higher trypsin and chymotrypsin inhibitory potential compared to other tested cultivars for which they have been selected for further purification studies using ammonium sulfate fractionation and DEAE-Sephadex A-25 column. Cream7-purified proteins showed two bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) corresponding to molecular mass of 17.10 and 14.90 kDa, while the purified protein from Buff cultivar showed a single band corresponding mass of 16.50 kDa. The purified inhibitors were stable at temperature below 60°C and were active at wide range of pH from 2 to 12. The kinetic analysis revealed noncompetitive type of inhibition for both inhibitors against both enzymes. The inhibitor constant (Ki ) values suggested high affinity between inhibitors and enzymes. Purified inhibitors were found to have deep and negative effects on the mean larval weight, larval mortality, pupation, and mean pupal weight of Spodoptera littoralis, where Buff PI was more effective than Cream7 PI. It may be concluded that cowpea PI gene(s) could be potential insect control protein for future studies in developing insect-resistant transgenic plants.

  3. Association of frailty with the serine protease HtrA1 in older adults.

    PubMed

    Lorenzi, Maria; Lorenzi, Teresa; Marzetti, Emanuele; Landi, Francesco; Vetrano, Davide L; Settanni, Silvana; Antocicco, Manuela; Bonassi, Stefano; Valdiglesias, Vanessa; Bernabei, Roberto; Onder, Graziano

    2016-08-01

    Frailty is a geriatric syndrome characterized by multi system dysregulation. It has been suggested that chronic inflammation may be involved in the pathogenesis of frailty. No study so far has identified accurate, specific and sensitive molecular biomarkers for frailty. High-temperature requirement serine protease A1 (HtrA1) is a secreted multidomain serine protease implicated in the inhibition of signaling of active transforming growth factor-β (TGF-β)1, a cytokine which has an important anti-inflammation role. The aim of the present study was to investigate the association of circulating levels of HtrA1 with frailty in a sample of older adults. The study was performed in 120 older adults aged >65years and admitted to a geriatric outpatient clinic. The frailty status of participants was assessed by both the Fried's criteria (physical frailty, PF) and a modified Rockwood's frailty index (FI). Plasma HtrA1 concentration was measured using commercial ELISA kit. Frailty was identified in 61/120 participants (50.8%) using PF, and in 60/118 subjects (50.8%) using FI. Plasma levels of HtrA1 were significantly higher in individuals classified as frail according to PF (75.9ng/mL, 95% CI 67.4-85.6) as compared with non-frail participants (48.4ng/mL, 95% CI 42.5-54.6, p<0.001). A significant association was also observed between frailty, assessed by FI, and HtrA1 levels (72.2ng/mL, 95% CI 63.4-82.3, vs. 50.4ng/mL, 95% CI 44.3-58.0, p<0.001). These associations were confirmed after adjusting for potential confounders. This study demonstrates for the first time the association of plasma levels of HtrA1 with frailty status. Future investigations are needed to validate the potential value of HtrA1 as possible biomarker for frailty.

  4. Purification and characterization of a serine protease (CESP) from mature coconut endosperm

    PubMed Central

    Panicker, Leelamma M; Usha, Rajamma; Roy, Samir; Mandal, Chhabinath

    2009-01-01

    Background In plants, proteases execute an important role in the overall process of protein turnover during seed development, germination and senescence. The limited knowledge on the proteolytic machinery that operates during seed development in coconut (Cocos nucifera L.) prompted us to search for proteases in the coconut endosperm. Findings We have identified and purified a coconut endosperm protease (CESP) to apparent homogeneity. CESP is a single polypeptide enzyme of approximate molecular mass of 68 kDa and possesses pH optimum of 8.5 for the hydrolysis of BAPNA. Studies relating to substrate specificity and pattern of inhibition by various protease inhibitors indicated that CESP is a serine protease with cleavage specificity to peptide bonds after arginine. Purified CESP was often autolysed to two polypeptides of 41.6 kDa (CESP1) and 26.7 kDa (CESP2) and is confirmed by immunochemistry. We have shown the expression of CESP in all varieties of coconut and in all stages of coconut endosperm development with maximum amount in fully matured coconut. Conclusion Since the involvement of proteases in the processing of pre-proteins and maintenance of intracellular protein levels in seeds are well known, we suspect this CESP might play an important role in the coconut endosperm development. However this need to be confirmed using further studies. PMID:19426537

  5. Alcaligenes faecalis ZD02, a Novel Nematicidal Bacterium with an Extracellular Serine Protease Virulence Factor

    PubMed Central

    Ju, Shouyong; Lin, Jian; Zheng, Jinshui; Wang, Shaoying; Zhou, Hongying

    2016-01-01

    Root knot nematodes (RKNs) are the world's most damaging plant-parasitic nematodes (PPNs), and they can infect almost all crops. At present, harmful chemical nematicides are applied to control RKNs. Using microbial nematicides has been proposed as a better management strategy than chemical control. In this study, we describe a novel nematicidal bacterium named Alcaligenes faecalis ZD02. A. faecalis ZD02 was isolated from Caenorhabditis elegans cadavers and has nematostatic and nematicidal activity, as confirmed by C. elegans growth assay and life span assay. In addition, A. faecalis ZD02 fermentation broth showed toxicity against C. elegans and Meloidogyne incognita. To identify the nematicidal virulence factor, the genome of strain ZD02 was sequenced. By comparing all of the predicted proteins of strain ZD02 to reported nematicidal virulence factors, we determined that an extracellular serine protease (Esp) has potential to be a nematicidal virulence factor, which was confirmed by bioassay on C. elegans and M. incognita. Using C. elegans as the target model, we found that both A. faecalis ZD02 and the virulence factor Esp can damage the intestines of C. elegans. The discovery that A. faecalis ZD02 has nematicidal activity provides a novel bacterial resource for the control of RKNs. PMID:26826227

  6. The serine protease Pic as a virulence factor of atypical enteropathogenic Escherichia coli.

    PubMed

    Abreu, Afonso G; Abe, Cecilia M; Nunes, Kamila O; Moraes, Claudia T P; Chavez-Dueñas, Lucia; Navarro-Garcia, Fernando; Barbosa, Angela S; Piazza, Roxane M F; Elias, Waldir P

    2016-01-01

    Autotransporter proteins (AT) are associated with bacterial virulence attributes. Originally identified in enteroaggregative Escherichia coli (EAEC), Shigella flexneri 2a and uropathogenic E. coli, the serine protease Pic is one of these AT. We have previously detected one atypical enteropathogenic E. coli strain (BA589) carrying the pic gene. In the present study, we characterized the biological activities of Pic produced by BA589 both in vitro and in vivo. Contrarily to other Pic-producers bacteria, pic in BA589 is located on a high molecular weight plasmid. PicBA589 was able to agglutinate rabbit erythrocytes, cleave mucin and degrade complement system molecules. BA589 was able to colonize mice intestines, and an intense mucus production was observed. The BA589Δpic mutant lost the capacity to colonize as well as the above-mentioned in vitro activities. Thus, Pic represents an additional virulence factor in aEPEC strain BA589, associated with adherence, colonization and evasion from the innate immune system.

  7. A cyclic peptidic serine protease inhibitor: increasing affinity by increasing peptide flexibility.

    PubMed

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang; Paaske, Berit; Kromann-Hansen, Tobias; Jensen, Jan K; Sørensen, Hans Peter; Liu, Zhuo; Nielsen, Jakob T; Christensen, Anni; Hosseini, Masood; Sørensen, Kasper K; Nielsen, Niels Christian; Jensen, Knud J; Huang, Mingdong; Andreasen, Peter A

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase-type plasminogen activator (uPA). We used X-ray crystal structure analysis, site-directed mutagenesis, liquid state NMR, surface plasmon resonance analysis, and isothermal titration calorimetry and wild type and engineered variants of murine and human uPA. We demonstrate that Arg6 inserts into the S1 specificity pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending on changes in both P1 - S1 and exosite interactions. Site-directed mutagenesis showed that exosite interactions, while still supporting high affinity binding, differed substantially between different uPA variants. Surprisingly, high affinity binding was facilitated by Ala-substitution of Asp9 of the peptide, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden. PMID:25545505

  8. Crystal versus solution structure of enzymes: NMR spectroscopy of a peptide boronic acid-serine protease complex in the crystalline state.

    PubMed Central

    Farr-Jones, S; Smith, S O; Kettner, C A; Griffin, R G; Bachovchin, W W

    1989-01-01

    The effectiveness of boronic acids as inhibitors of serine proteases has been widely ascribed to the ability of the boronyl group to form a tetrahedral adduct with the active-site serine that closely mimics the putative tetrahedral intermediate or transition state formed with substrates. However, recent 15N NMR studies of alpha-lytic protease (EC 3.4.21.12) in solution have shown that some boronic acids and peptide boronic acids form adducts with the active-site histidine instead of with the serine. Such histidine-boron adducts have not thus far been reported in x-ray diffraction studies of boronic acid-serine protease complexes. Here, we report an 15N NMR study of the MeOSuc-Ala-Ala-Pro-boroPhe complex of alpha-lytic protease in the crystalline state using magic-angle spinning. Previous 15N NMR studies have shown this complex involves the formation of a histidine-boron bond in solution. The 15N NMR spectra of the crystalline complex are essentially identical to those of the complex in solution, thereby showing that the structure of this complex is the same in solution and in the crystal and that both involve formation of a histidine-boron adduct. PMID:2780549

  9. Prevalence, Biogenesis, and Functionality of the Serine Protease Autotransporter EspP

    PubMed Central

    Weiss, André; Brockmeyer, Jens

    2012-01-01

    Enterohemorrhagic E. coli (EHEC) causes severe diseases in humans worldwide. One of its virulence factors is EspP, which belongs to the serine protease autotransporters of Enterobacteriaceae (SPATE) family. In this review we recapitulate the current data on prevalence, biogenesis, structural properties and functionality. EspP has been used to investigate mechanistic details of autotransport, and recent studies indicate that this transport mechanism is not autonomous but rather dependent on additional factors. Currently, five subtypes have been identified (EspPα-EspPε), with EspPα being associated with highly virulent EHEC serotypes and isolates from patients with severe disease. EspPα has been shown to degrade major proteins of the complement cascade, namely C3 and C5 and probably interferes with hemostasis by cleavage of coagulation factor V. Furthermore, EspPα is believed to contribute to biofilm formation perhaps by polymerization to rope-like structures. Together with the proteolytic activity, EspPα might ameliorate host colonization and interfere with host response. PMID:23274272

  10. A family of serine protease inhibitors (serpins) in the cattle tick Rhipicephalus (Boophilus) microplus.

    PubMed

    Tirloni, Lucas; Seixas, Adriana; Mulenga, Albert; Vaz, Itabajara da Silva; Termignoni, Carlos

    2014-02-01

    Proteins belonging to the serine protease inhibitor (serpin) superfamily play essential roles in many organisms. In arthropods these proteins are involved in innate immune system, morphogenesis and development. In mammals serpins regulate pathways that are essential to life such as blood coagulation, fibrinolysis, inflammation and complement activation, some of which are considered the host's first line of defense to hematophagous and/or blood dueling parasites. Thus, it is hypothesized that ticks use serpins to evade host defense, facilitating parasitism. This study describes eighteen full-length cDNA sequences encoding serpins identified in Rhipicephalus (Boophilus) microplus, here named RmS 1-18 (R. microplus serpin). Spatial and temporal transcriptional profiling demonstrated that R. microplus serpins are transcribed during feeding, suggesting their participation in tick physiology regulation. We speculate that the majority of R. microplus serpins are conserved in other ticks, as indicated by phylogeny analysis. Over half of the 18 RmSs are putatively functional in the extracellular environment, as indicated by putative signal peptides on 11 of 18 serpins. Comparative modeling and structural-based alignment revealed that R. microplus serpins in this study retain the consensus secondary of typical serpins. This descriptive study enlarges the knowledge on the molecular biology of R. microplus, an important tick species.

  11. Enterohaemorrhagic Escherichia coli haemolysin is cleaved and inactivated by serine protease EspPα

    PubMed Central

    Brockmeyer, Jens; Aldick, Thomas; Soltwisch, Jens; Zhang, Wenlan; Tarr, Philip I; Weiss, André; Dreisewerd, Klaus; Müthing, Johannes; Bielaszewska, Martina; Karch, Helge

    2011-01-01

    The haemolysin from enterohaemorrhagic Escherichia coli (EHEC-Hly) and the serine protease EspPα are putative virulence factors of EHEC. We investigated the interplay between these secreted factors and demonstrate that EspPα cleaves the 107 kDa large EHEC-Hly. Degradation was observed when purified EspPα was added to a growing culture of an EHEC-Hly-expressing strain, with isolated proteins and with coexpressing strains, and was independent of the EHEC serotype. EHEC-Hly breakdown occurred as a multistage process with the formation of characteristic fragments with relative molecular masses of ∼82 kDa and/or ∼84 kDa and ∼34 kDa. The initial cleavage occurred in the N-terminal hydrophobic domain of EHEC-Hly between Leu235 and Ser236 and abolished its haemolytic activity. In a cellular infection system, the cytolytic potential of EHEC-Hly-secreting recombinant strains was abolished when EspPα was coexpressed. EHEC in contact with human intestinal epithelial cells simultaneously upregulated their EHEC-Hly and EspP indicating that both molecules might interact under physiological conditions. We propose the concept of bacterial effector molecule interference (BEMI), reflecting the concerted interplay of virulence factors. Interference between effector molecules might be an additional way to regulate virulence functions and increases the complexity of monomolecular phenotypes. PMID:21352460

  12. Cloning and chromosomal assignment of a human cDNA encoding a T cell- and natural killer cell-specific trypsin-like serine protease.

    PubMed Central

    Gershenfeld, H K; Hershberger, R J; Shows, T B; Weissman, I L

    1988-01-01

    A cDNA clone encoding a human T cell- and natural killer cell-specific serine protease was obtained by screening a phage lambda gt10 cDNA library from phytohemagglutinin-stimulated human peripheral blood lymphocytes with the mouse Hanukah factor cDNA clone. In an RNA blot-hybridization analysis, this human Hanukah factor cDNA hybridized with a 1.3-kilobase band in allogeneic-stimulated cytotoxic T cells and the Jurkat cell line, but this transcript was not detectable in normal muscle, liver, tonsil, or thymus. By dot-blot hybridization, this cDNA hybridized with RNA from three cytolytic T-cell clones and three noncytolytic T-cell clones grown in vitro as well as with purified CD16+ natural killer cells and CD3+, CD16- T-cell large granular lymphocytes from peripheral blood lymphocytes (CD = cluster designation). The nucleotide sequence of this cDNA clone encodes a predicted serine protease of 262 amino acids. The predicted protein has a 22-amino acid presegment, a 6-amino acid prosegment, and an active enzyme of 234 amino acids with a calculated unglycosylated molecular weight of 25,820. The active enzyme is 71% and 77% similar to the mouse sequence at the amino acid and DNA level, respectively. The human and mouse sequences conserve the active site residues of serine proteases--the trypsin-specific Asp-189 and all 10 cysteine residues. The gene for the human Hanukah factor serine protease is located on human chromosome 5. We propose that this trypsin-like serine protease may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells. Images PMID:3257574

  13. Serine deprivation enhances antineoplastic activity of biguanides.

    PubMed

    Gravel, Simon-Pierre; Hulea, Laura; Toban, Nader; Birman, Elena; Blouin, Marie-José; Zakikhani, Mahvash; Zhao, Yunhua; Topisirovic, Ivan; St-Pierre, Julie; Pollak, Michael

    2014-12-15

    Metformin, a biguanide widely used in the treatment of type II diabetes, clearly exhibits antineoplastic activity in experimental models and has been reported to reduce cancer incidence in diabetics. There are ongoing clinical trials to evaluate its antitumor properties, which may relate to its fundamental activity as an inhibitor of oxidative phosphorylation. Here, we show that serine withdrawal increases the antineoplastic effects of phenformin (a potent biguanide structurally related to metformin). Serine synthesis was not inhibited by biguanides. Instead, metabolic studies indicated a requirement for serine to allow cells to compensate for biguanide-induced decrease in oxidative phosphorylation by upregulating glycolysis. Furthermore, serine deprivation modified the impact of metformin on the relative abundance of metabolites within the citric acid cycle. In mice, a serine-deficient diet reduced serine levels in tumors and significantly enhanced the tumor growth-inhibitory actions of biguanide treatment. Our results define a dietary manipulation that can enhance the efficacy of biguanides as antineoplastic agents that target cancer cell energy metabolism.

  14. Peripheral administration of a serine protease inhibitor blocks kindling.

    PubMed

    Hoffman, K B; Hwee, V; Larson, J; Lynch, G

    2000-04-01

    An inhibitor of tissue plasminogen activator (tPA) was tested for its effects on the rapid kindling induced by a series of afterdischarges (ADs) triggered in hippocampus over a 3-h period. Rats injected with vehicle prior to the session had prolonged ADs in tests carried out 10 days later. This was not the case for animals treated with the inhibitor. These findings support the hypothesis that activity-driven proteolysis contributes importantly to the production of long-lasting physiological changes.

  15. Gene expression and activity of digestive proteases in Daphnia: effects of cyanobacterial protease inhibitors

    PubMed Central

    2010-01-01

    Background The frequency of cyanobacterial blooms has increased worldwide, and these blooms have been claimed to be a major factor leading to the decline of the most important freshwater herbivores, i.e. representatives of the genus Daphnia. This suppression of Daphnia is partly attributed to the presence of biologically active secondary metabolites in cyanobacteria. Among these metabolites, protease inhibitors are found in almost every natural cyanobacterial bloom and have been shown to specifically inhibit Daphnia's digestive proteases in vitro, but to date no physiological responses of these serine proteases to cyanobacterial protease inhibitors in Daphnia have been reported in situ at the protein and genetic levels. Results Nine digestive proteases were detected in D. magna using activity-stained SDS-PAGE. Subsequent analyses by LC-MS/MS and database search led to the identification of respective protease genes. D. magna responded to dietary protease inhibitors by up-regulation of the expression of these respective proteases at the RNA-level and by the induction of new and less sensitive protease isoforms at the protein level. The up-regulation in response to dietary trypsin- and chymotrypsin-inhibitors ranged from 1.4-fold to 25.6-fold. These physiological responses of Daphnia, i.e. up-regulation of protease expression and the induction of isoforms, took place even after feeding on 20% cyanobacterial food for only 24 h. These physiological responses proved to be independent from microcystin effects. Conclusion Here for the first time it was shown in situ that a D. magna clone responds physiologically to dietary cyanobacterial protease inhibitors by phenotypic plasticity of the targets of these specific inhibitors, i.e. Daphnia gut proteases. These regulatory responses are adaptive for D. magna, as they increase the capacity for protein digestion in the presence of dietary protease inhibitors. The type and extent of these responses in protease expression might

  16. Characterization of the molecular features and expression patterns of two serine proteases in Hermetia illucens (Diptera: Stratiomyidae) larvae.

    PubMed

    Kim, Wontae; Bae, Sungwoo; Kim, Ayoung; Park, Kwanho; Lee, Sangbeom; Choi, Youngcheol; Han, Sangmi; Park, Younghan; Koh, Youngho

    2011-06-01

    To investigate the molecular scavenging capabilities of the larvae of Hermetia illucens, two serine proteases (SPs) were cloned and characterized. Multiple sequence alignments and phylogenetic tree analysis of the deduced amino acid sequences of Hi-SP1 and Hi-SP2 were suggested that Hi-SP1 may be a chymotrypsin- and Hi-SP2 may be a trypsin-like protease. Hi-SP1 and Hi-SP2 3-D homology models revealed that a catalytic triad, three disulfide bonds, and a substrate-binding pocket were highly conserved, as would be expected of a SP. E. coli expressed Hi-SP1 and Hi-SP2 showed chymotrypsin or trypsin activities, respectively. Hi-SP2 mRNAs were consistently expressed during larval development. In contrast, the expression of Hi-SP1 mRNA fluctuated between feeding and molting stages and disappeared at the pupal stages. These expression pattern differences suggest that Hi-SP1 may be a larval specific chymotrypsin-like protease involved with food digestion, while Hi-SP2 may be a trypsin-like protease with diverse functions at different stages.

  17. Mutations in SERPINB7, Encoding a Member of the Serine Protease Inhibitor Superfamily, Cause Nagashima-type Palmoplantar Keratosis

    PubMed Central

    Kubo, Akiharu; Shiohama, Aiko; Sasaki, Takashi; Nakabayashi, Kazuhiko; Kawasaki, Hiroshi; Atsugi, Toru; Sato, Showbu; Shimizu, Atsushi; Mikami, Shuji; Tanizaki, Hideaki; Uchiyama, Masaki; Maeda, Tatsuo; Ito, Taisuke; Sakabe, Jun-ichi; Heike, Toshio; Okuyama, Torayuki; Kosaki, Rika; Kosaki, Kenjiro; Kudoh, Jun; Hata, Kenichiro; Umezawa, Akihiro; Tokura, Yoshiki; Ishiko, Akira; Niizeki, Hironori; Kabashima, Kenji; Mitsuhashi, Yoshihiko; Amagai, Masayuki

    2013-01-01

    “Nagashima-type” palmoplantar keratosis (NPPK) is an autosomal recessive nonsyndromic diffuse palmoplantar keratosis characterized by well-demarcated diffuse hyperkeratosis with redness, expanding on to the dorsal surfaces of the palms and feet and the Achilles tendon area. Hyperkeratosis in NPPK is mild and nonprogressive, differentiating NPPK clinically from Mal de Meleda. We performed whole-exome and/or Sanger sequencing analyses of 13 unrelated NPPK individuals and identified biallelic putative loss-of-function mutations in SERPINB7, which encodes a cytoplasmic member of the serine protease inhibitor superfamily. We identified a major causative mutation of c.796C>T (p.Arg266∗) as a founder mutation in Japanese and Chinese populations. SERPINB7 was specifically present in the cytoplasm of the stratum granulosum and the stratum corneum (SC) of the epidermis. All of the identified mutants are predicted to cause premature termination upstream of the reactive site, which inhibits the proteases, suggesting a complete loss of the protease inhibitory activity of SERPINB7 in NPPK skin. On exposure of NPPK lesional skin to water, we observed a whitish spongy change in the SC, suggesting enhanced water permeation into the SC due to overactivation of proteases and a resultant loss of integrity of the SC structure. These findings provide an important framework for developing pathogenesis-based therapies for NPPK. PMID:24207119

  18. MamO Is a Repurposed Serine Protease that Promotes Magnetite Biomineralization through Direct Transition Metal Binding in Magnetotactic Bacteria.

    PubMed

    Hershey, David M; Ren, Xuefeng; Melnyk, Ryan A; Browne, Patrick J; Ozyamak, Ertan; Jones, Stephanie R; Chang, Michelle C Y; Hurley, James H; Komeili, Arash

    2016-03-01

    Many living organisms transform inorganic atoms into highly ordered crystalline materials. An elegant example of such biomineralization processes is the production of nano-scale magnetic crystals in magnetotactic bacteria. Previous studies implicated the involvement of two putative serine proteases, MamE and MamO, during the early stages of magnetite formation in Magnetospirillum magneticum AMB-1. Here, using genetic analysis and X-ray crystallography, we show that MamO has a degenerate active site, rendering it incapable of protease activity. Instead, MamO promotes magnetosome formation through two genetically distinct, noncatalytic activities: activation of MamE-dependent proteolysis of biomineralization factors and direct binding to transition metal ions. By solving the structure of the protease domain bound to a metal ion, we identify a surface-exposed di-histidine motif in MamO that contributes to metal binding and show that it is required to initiate biomineralization in vivo. Finally, we find that pseudoproteases are widespread in magnetotactic bacteria and that they have evolved independently in three separate taxa. Our results highlight the versatility of protein scaffolds in accommodating new biochemical activities and provide unprecedented insight into the earliest stages of biomineralization.

  19. MamO Is a Repurposed Serine Protease that Promotes Magnetite Biomineralization through Direct Transition Metal Binding in Magnetotactic Bacteria

    DOE PAGES

    Hershey, David M.; Ren, Xuefeng; Melnyk, Ryan A.; Browne, Patrick J.; Ozyamak, Ertan; Jones, Stephanie R.; Chang, Michelle C. Y.; Hurley, James H.; Komeili, Arash

    2016-03-16

    Many living organisms transform inorganic atoms into highly ordered crystalline materials. An elegant example of such biomineralization processes is the production of nano-scale magnetic crystals in magnetotactic bacteria. Previous studies have implicated the involvement of two putative serine proteases, MamE and MamO, during the early stages of magnetite formation in Magnetospirillum magneticum AMB-1. Here, using genetic analysis and X-ray crystallography, we show that MamO has a degenerate active site, rendering it incapable of protease activity. Instead, MamO promotes magnetosome formation through two genetically distinct, noncatalytic activities: activation of MamE-dependent proteolysis of biomineralization factors and direct binding to transition metal ions.more » By solving the structure of the protease domain bound to a metal ion, we identify a surface-exposed di-histidine motif in MamO that contributes to metal binding and show that it is required to initiate biomineralization in vivo. Finally, we find that pseudoproteases are widespread in magnetotactic bacteria and that they have evolved independently in three separate taxa. In conclusion, our results highlight the versatility of protein scaffolds in accommodating new biochemical activities and provide unprecedented insight into the earliest stages of biomineralization.« less

  20. MamO Is a Repurposed Serine Protease that Promotes Magnetite Biomineralization through Direct Transition Metal Binding in Magnetotactic Bacteria

    PubMed Central

    Hershey, David M.; Ren, Xuefeng; Melnyk, Ryan A.; Browne, Patrick J.; Ozyamak, Ertan; Jones, Stephanie R.; Chang, Michelle C. Y.; Hurley, James H.; Komeili, Arash

    2016-01-01

    Many living organisms transform inorganic atoms into highly ordered crystalline materials. An elegant example of such biomineralization processes is the production of nano-scale magnetic crystals in magnetotactic bacteria. Previous studies implicated the involvement of two putative serine proteases, MamE and MamO, during the early stages of magnetite formation in Magnetospirillum magneticum AMB-1. Here, using genetic analysis and X-ray crystallography, we show that MamO has a degenerate active site, rendering it incapable of protease activity. Instead, MamO promotes magnetosome formation through two genetically distinct, noncatalytic activities: activation of MamE-dependent proteolysis of biomineralization factors and direct binding to transition metal ions. By solving the structure of the protease domain bound to a metal ion, we identify a surface-exposed di-histidine motif in MamO that contributes to metal binding and show that it is required to initiate biomineralization in vivo. Finally, we find that pseudoproteases are widespread in magnetotactic bacteria and that they have evolved independently in three separate taxa. Our results highlight the versatility of protein scaffolds in accommodating new biochemical activities and provide unprecedented insight into the earliest stages of biomineralization. PMID:26981620

  1. Clonidine displacement from type 1 imidazoline receptor by p-aminobenzamidine, the prototype of trypsin-like serine protease inhibitors.

    PubMed

    Pallottini, Valentina; Marino, Maria; Ascenzi, Paolo

    2002-11-01

    p-Aminobenzamidine inhibits competitively the catalytic activity of enzymes that recognize preferentially the L-arginyl side chain and related structures. Notably, p-aminobenzamidine is considered as the prototype of trypsin-like serine protease inhibitors. Furthermore, p-aminobenzamidine inhibits the catalytic activity of nitric oxide synthase type I and type II as well as copper amine oxidase. Taking into account the structural similarity between p-aminobenzamidine, agmatine (the putative endogenous ligand of the membrane type 1 imidazoline receptor (I1-R)), and N-amidino-2-hydroxypyrrolidine (the product of agmatine oxidation by copper amine oxidase), the [3H]clonidine displacement from I1-R in rat heart membranes by p-aminobenzamidine was investigated. p-Aminobenzamidine is as effective as agmatine and N-amidino-2-hydroxypyrrolidine and more effective than the antihypertensive drug clonidine to displace [3H]clonidine from I1-R. Therefore, trypsin-like serine protease inhibitors structurally related to p-aminobenzamidine should be administrated under careful control. PMID:12587981

  2. The Serine Protease Autotransporter Pic Modulates Citrobacter rodentium Pathogenesis and Its Innate Recognition by the Host.

    PubMed

    Bhullar, Kirandeep; Zarepour, Maryam; Yu, Hongbing; Yang, Hong; Croxen, Matthew; Stahl, Martin; Finlay, B Brett; Turvey, Stuart E; Vallance, Bruce A

    2015-07-01

    Bacterial pathogens produce a number of autotransporters that possess diverse functions. These include the family of serine protease autotransporters of Enterobacteriaceae (SPATEs) produced by enteric pathogens such as Shigella flexneri and enteroaggregative Escherichia coli. Of these SPATEs, one termed "protein involved in colonization," or Pic, has been shown to possess mucinase activity in vitro, but to date, its role in in vivo enteric pathogenesis is unknown. Testing a pic null (ΔpicC) mutant in Citrobacter rodentium, a natural mouse pathogen, found that the C. rodentium ΔpicC strain was impaired in its ability to degrade mucin in vitro compared to the wild type. Upon infection of mice, the ΔpicC mutant exhibited a hypervirulent phenotype with dramatically heavier pathogen burdens found in intestinal crypts. ΔpicC mutant-infected mice suffered greater barrier disruption and more severe colitis and weight loss, necessitating their euthanization between 10 and 14 days postinfection. Notably, the virulence of the ΔpicC mutant was normalized when the picC gene was restored; however, a PicC point mutant causing loss of mucinase activity did not replicate the ΔpicC phenotype. Exploring other aspects of PicC function, the ΔpicC mutant was found to aggregate to higher levels in vivo than wild-type C. rodentium. Moreover, unlike the wild type, the C. rodentium ΔpicC mutant had a red, dry, and rough (RDAR) morphology in vitro and showed increased activation of the innate receptor Toll-like receptor 2 (TLR2). Interestingly, the C. rodentium ΔpicC mutant caused a degree of pathology similar to that of wild-type C. rodentium when infecting TLR2-deficient mice, showing that despite its mucinase activity, PicC's major role in vivo may be to limit C. rodentium's stimulation of the host's innate immune system.

  3. A Mycobacterium avium subsp. paratuberculosis Predicted Serine Protease Is Associated with Acid Stress and Intraphagosomal Survival

    PubMed Central

    Kugadas, Abirami; Lamont, Elise A.; Bannantine, John P.; Shoyama, Fernanda M.; Brenner, Evan; Janagama, Harish K.; Sreevatsan, Srinand

    2016-01-01

    The ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although, studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP), the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophages and MAC-T cells that coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc2 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increased bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5) conditions, compared to the parent strain. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted. PMID:27597934

  4. Human mast cell tryptase: Multiple cDNAs and genes reveal a multigene serine protease family

    SciTech Connect

    Vanderslice, P.; Ballinger, S.M., Tam, E.K.; Goldstein, S.M.; Craik, C.S.; Caughey, G.H. )

    1990-05-01

    Three different cDNAs and a gene encoding human skin mast cell tryptase have been cloned and sequenced in their entirety. The deduced amino acid sequences reveal a 30-amino acid prepropeptide followed by a 245-amino acid catalytic domain. The C-terminal undecapeptide of the human preprosequence is identical in dog tryptase and appears to be part of a prosequence unique among serine proteases. The differences among the three human tryptase catalytic domains include the loss of a consensus N-glycosylation site in one cDNA, which may explain some of the heterogeneity in size and susceptibility to deglycosylation seen in tryptase preparations. All three tryptase cDNAs are distinct from a recently reported cDNA obtained from a human lung mast cell library. A skin tryptase cDNA was used to isolate a human tryptase gene, the exons of which match one of the skin-derived cDNAs. The organization of the {approx}1.8-kilobase-pair tryptase gene is unique and is not closely related to that of any other mast cell or leukocyte serine protease. The 5{prime} regulatory regions of the gene share features with those of other serine proteases, including mast cell chymase, but are unusual in being separated from the protein-coding sequence by an intron. High-stringency hybridization of a human genomic DNA blot with a fragment of the tryptase gene confirms the presence of multiple tryptase genes. These findings provide genetic evidence that human mast cell tryptases are the products of a multigene family.

  5. A Mycobacterium avium subsp. paratuberculosis Predicted Serine Protease Is Associated with Acid Stress and Intraphagosomal Survival

    PubMed Central

    Kugadas, Abirami; Lamont, Elise A.; Bannantine, John P.; Shoyama, Fernanda M.; Brenner, Evan; Janagama, Harish K.; Sreevatsan, Srinand

    2016-01-01

    The ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although, studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP), the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophages and MAC-T cells that coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc2 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increased bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5) conditions, compared to the parent strain. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted.

  6. Isolation and characterization of a serine protease, Ba III-4, from Peruvian Bothrops atrox venom.

    PubMed

    Ponce-Soto, L A; Bonfim, V L; Novello, J C; Navarro Oviedo, R; Yarlequé Chocas, A; Marangoni, S

    2007-09-01

    A serine protease from Bothrops atrox (Peruvian specimen's venom) was isolated in two chromatographic steps in LC molecular exclusion and reverse phase-HPLC. This protein was denominated Ba III-4 (33,080.265 Da determinated by MALDI-TOF mass spectrometry) and showed pI of 5.06, Km 0.2 x 10(-1 ) M and the V (máx) 4.1 x 10(-1 )nmoles p-NA/lt/min on the synthetic substrate BapNA. Ba III-4 also showed ability to coagulate bovine fibrinogen. The serine protease was inhibited by soyben trypsin inhibitor and DA2II, which is an anti-hemorrhagic factor isolated from the opossum specie Didelphis albiventris. The primary structure of Ba III-4 showed the presence of His(44), Asp(94) and Ser(193) residues in the corresponding positions to the catalytic triad established in the serine proteases and Ser(193) are inhibited by phenylmethylsulfonylfluoride (PMSF). Amino acid analysis showed a high content of Asp, Glu, Gly, Ser, Ala and Pro, as well as 12 half-cysteine residues. Ba III-4 contained 293 amino acid residues and the primary structure of VIGGDECDIN EHPFLAFMYY SPRYFCGMTL INQEWVLTAA HCRYFCGMTL IHLGVHRESE KANYDEVRRF PKEKYFIFCD NNFTDDEVDK DIMLIRLDKP VSNSEHIAPL SLPSNPPSVG SVCRIMGWGQ TTTSPIDVLS PDEPHCANIN LFDNTVCHTA HPQVANTRTS TDTLCAGDLQ GGRDTCNGDS GGPLICNEQL HGILSWGGDP CAQPNKPAFY TKVYYFDHPW IKSIIAGNKK TVNFTCPPLR SDAKDDSTTY INQEWDWVLT AEHCDRTHMR NSFYDYSSIN SDS. Titration experiments did not show the presence of free sulfhydryl groups after 4 h incubation, nor were differences found in relation to titration kinetics in the presence of nondenaturating buffer. The isolation of this protein, Ba III-4, is of potential interest for the understanding of the pathomechanism of the snake venom action and for the identification of new blood coagulation enzymes of natural sources. PMID:17522968

  7. A Mycobacterium avium subsp. paratuberculosis Predicted Serine Protease Is Associated with Acid Stress and Intraphagosomal Survival.

    PubMed

    Kugadas, Abirami; Lamont, Elise A; Bannantine, John P; Shoyama, Fernanda M; Brenner, Evan; Janagama, Harish K; Sreevatsan, Srinand

    2016-01-01

    The ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although, studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP), the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophages and MAC-T cells that coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc(2) 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increased bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5) conditions, compared to the parent strain. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted. PMID:27597934

  8. Isolation, expression and characterization of a novel dual serine protease inhibitor, OH-TCI, from king cobra venom.

    PubMed

    He, Ying-Ying; Liu, Shu-Bai; Lee, Wen-Hui; Qian, Jin-Qiao; Zhang, Yun

    2008-10-01

    Snake venom Kunitz/BPTI members are good tools for understanding of structure-functional relationship between serine proteases and their inhibitors. A novel dual Kunitz/BPTI serine proteinase inhibitor named OH-TCI (trypsin- and chymotrypsin-dual inhibitor from Ophiophagus hannah) was isolated from king cobra venom by three chromatographic steps of gel filtration, trypsin affinity and reverse phase HPLC. OH-TCI is composed of 58 amino acid residues with a molecular mass of 6339Da. Successful expression of OH-TCI was performed as the maltose-binding fusion protein in E. coli DH5alpha. Much different from Oh11-1, the purified native and recombinant OH-TCI both had strong inhibitory activities against trypsin and chymotrypsin although the sequence identity (74.1%) between them is very high. The inhibitor constants (K(i)) of recombinant OH-TCI were 3.91 x 10(-7) and 8.46 x10(-8)M for trypsin and chymotrypsin, respectively. To our knowledge, it was the first report of Kunitz/BPTI serine proteinase inhibitor from snake venom that had equivalent trypsin and chymotrypsin inhibitory activities. PMID:18582511

  9. Isolation, expression and characterization of a novel dual serine protease inhibitor, OH-TCI, from king cobra venom.

    PubMed

    He, Ying-Ying; Liu, Shu-Bai; Lee, Wen-Hui; Qian, Jin-Qiao; Zhang, Yun

    2008-10-01

    Snake venom Kunitz/BPTI members are good tools for understanding of structure-functional relationship between serine proteases and their inhibitors. A novel dual Kunitz/BPTI serine proteinase inhibitor named OH-TCI (trypsin- and chymotrypsin-dual inhibitor from Ophiophagus hannah) was isolated from king cobra venom by three chromatographic steps of gel filtration, trypsin affinity and reverse phase HPLC. OH-TCI is composed of 58 amino acid residues with a molecular mass of 6339Da. Successful expression of OH-TCI was performed as the maltose-binding fusion protein in E. coli DH5alpha. Much different from Oh11-1, the purified native and recombinant OH-TCI both had strong inhibitory activities against trypsin and chymotrypsin although the sequence identity (74.1%) between them is very high. The inhibitor constants (K(i)) of recombinant OH-TCI were 3.91 x 10(-7) and 8.46 x10(-8)M for trypsin and chymotrypsin, respectively. To our knowledge, it was the first report of Kunitz/BPTI serine proteinase inhibitor from snake venom that had equivalent trypsin and chymotrypsin inhibitory activities.

  10. Immunisation against a serine protease inhibitor reduces intensity of Plasmodium berghei infection in mosquitoes.

    PubMed

    Williams, Andrew R; Zakutansky, Sara E; Miura, Kazutoyo; Dicks, Matthew D J; Churcher, Thomas S; Jewell, Kerry E; Vaughan, Aisling M; Turner, Alison V; Kapulu, Melissa C; Michel, Kristin; Long, Carole A; Sinden, Robert E; Hill, Adrian V S; Draper, Simon J; Biswas, Sumi

    2013-10-01

    The mosquito innate immune response is able to clear the majority of Plasmodium parasites. This immune clearance is controlled by a number of regulatory molecules including serine protease inhibitors (serpins). To determine whether such molecules could represent a novel target for a malaria transmission-blocking vaccine, we vaccinated mice with Anopheles gambiae serpin-2. Antibodies against Anopheles gambiae serpin-2 significantly reduced the infection of a heterologous Anopheles species (Anopheles stephensi) by Plasmodium berghei, however this effect was not observed with Plasmodium falciparum. Therefore, this approach of targeting regulatory molecules of the mosquito immune system may represent a novel approach to transmission-blocking malaria vaccines.

  11. Mutational Tail Loss Is an Evolutionary Mechanism for Liberating Marapsins and Other Type I Serine Proteases from Transmembrane Anchors*

    PubMed Central

    Raman, Kavita; Trivedi, Neil N.; Raymond, Wilfred W.; Ganesan, Rajkumar; Kirchhofer, Daniel; Verghese, George M.; Craik, Charles S.; Schneider, Eric L.; Nimishakavi, Shilpa; Caughey, George H.

    2013-01-01

    Human and mouse marapsins (Prss27) are serine proteases preferentially expressed by stratified squamous epithelia. However, mouse marapsin contains a transmembrane anchor absent from the human enzyme. To gain insights into physical forms, activities, inhibition, and roles in epithelial differentiation, we traced tail loss in human marapsin to a nonsense mutation in an ancestral ape, compared substrate preferences of mouse and human marapsins with those of the epithelial peptidase prostasin, designed a selective substrate and inhibitor, and generated Prss27-null mice. Phylogenetic analysis predicts that most marapsins are transmembrane proteins. However, nonsense mutations caused membrane anchor loss in three clades: human/bonobo/chimpanzee, guinea pig/degu/tuco-tuco/mole rat, and cattle/yak. Most marapsin-related proteases, including prostasins, are type I transmembrane proteins, but the closest relatives (prosemins) are not. Soluble mouse and human marapsins are tryptic with subsite preferences distinct from those of prostasin, lack general proteinase activity, and unlike prostasins resist antiproteases, including leupeptin, aprotinin, serpins, and α2-macroglobulin, suggesting the presence of non-canonical active sites. Prss27-null mice develop normally in barrier conditions and are fertile without overt epithelial defects, indicating that marapsin does not play critical, non-redundant roles in development, reproduction, or epithelial differentiation. In conclusion, marapsins are conserved, inhibitor-resistant, tryptic peptidases. Although marapsins are type I transmembrane proteins in their typical form, they mutated independently into anchorless forms in several mammalian clades, including one involving humans. Similar pathways appear to have been traversed by prosemins and tryptases, suggesting that mutational tail loss is an important means of evolving new functions of tryptic serine proteases from transmembrane ancestors. PMID:23447538

  12. Inhibitors of HGFA, Matriptase, and Hepsin Serine Proteases: A Nonkinase Strategy to Block Cell Signaling in Cancer.

    PubMed

    Han, Zhenfu; Harris, Peter K W; Jones, Darin E; Chugani, Ryan; Kim, Tommy; Agarwal, Manjula; Shen, Wei; Wildman, Scott A; Janetka, James W

    2014-11-13

    Hepatocyte growth factor activators (HGFA), matriptase, and hepsin are S1 family trypsin-like serine proteases. These proteases proteolytically cleave the single-chain zymogen precursors, pro-HGF (hepatocyte growth factor), and pro-MSP (macrophage stimulating protein) into active heterodimeric forms. HGF and MSP are activating ligands for the oncogenic receptor tyrosine kinases (RTKs), c-MET and RON, respectively. We have discovered the first substrate-based ketothiazole inhibitors of HGFA, matriptase and hepsin. The compounds were synthesized using a combination of solution and solid-phase peptide synthesis (SPPS). Compounds were tested for protease inhibition using a kinetic enzyme assay employing fluorogenic peptide substrates. Highlighted HGFA inhibitors are Ac-KRLR-kt (5g), Ac-SKFR-kt (6c), and Ac-SWLR-kt (6g) with K is = 12, 57, and 63 nM, respectively. We demonstrated that inhibitors block the conversion of native pro-HGF and pro-MSP by HGFA with equivalent potency. Finally, we show that inhibition causes a dose-dependent decrease of c-MET signaling in MDA-MB-231 breast cancer cells. This preliminary investigation provides evidence that HGFA is a promising therapeutic target in breast cancer and other tumor types driven by c-MET and RON. PMID:25408834

  13. Inhibitors of HGFA, Matriptase, and Hepsin Serine Proteases: A Nonkinase Strategy to Block Cell Signaling in Cancer

    PubMed Central

    2014-01-01

    Hepatocyte growth factor activators (HGFA), matriptase, and hepsin are S1 family trypsin-like serine proteases. These proteases proteolytically cleave the single-chain zymogen precursors, pro-HGF (hepatocyte growth factor), and pro-MSP (macrophage stimulating protein) into active heterodimeric forms. HGF and MSP are activating ligands for the oncogenic receptor tyrosine kinases (RTKs), c-MET and RON, respectively. We have discovered the first substrate-based ketothiazole inhibitors of HGFA, matriptase and hepsin. The compounds were synthesized using a combination of solution and solid-phase peptide synthesis (SPPS). Compounds were tested for protease inhibition using a kinetic enzyme assay employing fluorogenic peptide substrates. Highlighted HGFA inhibitors are Ac-KRLR-kt (5g), Ac-SKFR-kt (6c), and Ac-SWLR-kt (6g) with Kis = 12, 57, and 63 nM, respectively. We demonstrated that inhibitors block the conversion of native pro-HGF and pro-MSP by HGFA with equivalent potency. Finally, we show that inhibition causes a dose-dependent decrease of c-MET signaling in MDA-MB-231 breast cancer cells. This preliminary investigation provides evidence that HGFA is a promising therapeutic target in breast cancer and other tumor types driven by c-MET and RON. PMID:25408834

  14. Serine protease P-IIc is responsible for the digestion of yolk proteins at the late stage of silkworm embryogenesis.

    PubMed

    Wang, Dandan; Zhang, Yan; Dong, Zhaoming; Guo, Pengchao; Ma, Sanyuan; Guo, Kaiyu; Xia, Qingyou; Zhao, Ping

    2016-07-01

    In silkworms, yolk proteins comprise vitellin, egg-specific protein and 30K proteins, which are sequentially degraded by endogenous proteases strictly regulated during embryogenesis. Although the process has been extensively investigated, there is still a gap in the knowledge about the degradation of silkworm yolk proteins on the last two days of embryonic development. In the present study, we isolated and purified a gut serine protease P-IIc, which demonstrated optimal activity at 25 °C and pH 11. Semi-quantitative RT-PCR combined with western blotting showed that P-IIc was actively expressed and significantly accumulated in the gut on the last two days of embryogenesis. When natural yolk proteins were incubated with P-IIc in vitro, vitellin and ESP were selectively degraded. P-IIc also demonstrated activity towards 30K proteins as evidenced by rapid and complete digestion of BmLP1 and partial digestion of BmLP2 and BmLP3. Furthermore, RNAi knockdown of P-IIc in silkworm embryos significantly reduced the degradation rate of residual yolk proteins on embryonic day 10. Taken together, our results indicate that P-IIc represents an embryonic gut protease with a relatively broad substrate specificity, which plays an important role in the degradation of yolk proteins at the late stage of silkworm embryogenesis. PMID:27137459

  15. Transcriptional analysis of an immune-responsive serine protease from Indian malarial vector, Anopheles culicifacies

    PubMed Central

    Rodrigues, Janneth; Agrawal, Neema; Sharma, Anil; Malhotra, Pawan; Adak, Tridibes; Chauhan, Virander S; Bhatnagar, Raj K

    2007-01-01

    Background The main vector for transmission of malaria in India is the Anopheles culicifacies mosquito species, a naturally selected subgroup of which is completely refractory (R) to transmission of the malaria parasite, Plasmodium vivax; Results Here, we report the molecular characterization of a serine protease (acsp30)-encoding gene from A. culicifacies, which was expressed in high abundance in the refractory strain compared to the susceptible (S) strain. The transcriptional upregulation of acsp30 upon Plasmodium challenge in the refractory strain coincided with ookinete invasion of mosquito midgut. Gene organization and primary sequence of acsp30 were identical in the R and S strains suggesting a divergent regulatory status of acsp30 in these strains. To examine this further, the upstream regulatory sequences of acsp30 were isolated, cloned and evaluated for the presence of promoter activity. The 702 bp upstream region of acsp30 from the two strains revealed sequence divergence. The promoter activity measured by luciferase-based reporter assay was shown to be 1.5-fold higher in the R strain than in the S. Gel shift experiments demonstrated a differential recruitment of nuclear proteins to upstream sequences of acsp30 as well as a difference in the composition of nuclear proteins in the two strains, both of which might contribute to the relative abundance of acsp30 in the R strain; Conclusion The specific upregulation of acsp30 in the R strain only in response to Plasmodium infection is suggestive of its role in contributing the refractory phenotype to the A. culicifacies mosquito population. PMID:17502004

  16. Impact of oilseed rape expressing the insecticidal serine protease inhibitor, mustard trypsin inhibitor-2 on the beneficial predator Pterostichus madidus.

    PubMed

    Ferry, N; Jouanin, L; Ceci, L R; Mulligan, E A; Emami, K; Gatehouse, J A; Gatehouse, A M R

    2005-01-01

    Abstract Insect-resistant transgenic plants have been suggested to have deleterious effects on beneficial predators feeding on crop pests, through transmission of the transgene product by the pest to the predator. To test this hypothesis, effects of oilseed rape expressing the serine protease inhibitor, mustard trypsin inhibitor -2 (MTI-2), on the predatory ground beetle Pterostichus madidus were investigated, using diamondback moth, Plutella xylostella as the intermediary pest species. As expected, oilseed rape expressing MTI-2 had a deleterious effect on the development and survival of the pest. However, incomplete pest mortality resulted in survivors being available to predators at the next trophic level, and inhibition studies confirmed the presence of biologically active transgene product in pest larvae. Characterization of proteolytic digestive enzymes of P. madidus demonstrated that adults utilize serine proteases with trypsin-like and chymotrypsin-like specificities; the former activity was completely inhibited by MTI-2 in vitro. When P. madidus consumed prey reared on MTI-2 expressing plants over the reproductive period in their life cycle, no significant effects upon survival were observed as a result of exposure to the inhibitor. However, there was a short-term significant inhibition of weight gain in female beetles fed unlimited prey containing MTI-2, with a concomitant reduction of prey consumption. Biochemical analyses showed that the inhibitory effects of MTI-2 delivered via prey on gut proteolysis in the carabid decreased with time of exposure, possibly resulting from up-regulation of inhibitor-insensitive proteases. Of ecological significance, consumption of MTI-2 dosed prey had no detrimental effects on reproductive fitness of adult P. madidus.

  17. Lysosomal serine protease CLN2 regulates tumor necrosis factor-alpha-mediated apoptosis in a Bid-dependent manner.

    PubMed

    Autefage, Hélène; Albinet, Virginie; Garcia, Virginie; Berges, Hortense; Nicolau, Marie-Laure; Therville, Nicole; Altié, Marie-Françoise; Caillaud, Catherine; Levade, Thierry; Andrieu-Abadie, Nathalie

    2009-04-24

    Apoptosis is a highly organized, energy-dependent program by which multicellular organisms eliminate damaged, superfluous, and potentially harmful cells. Although caspases are the most prominent group of proteases involved in the apoptotic process, the role of lysosomes has only recently been unmasked. This study investigated the role of the lysosomal serine protease CLN2 in apoptosis. We report that cells isolated from patients affected with late infantile neuronal ceroid lipofuscinosis (LINCL) having a deficient activity of CLN2 are resistant to the toxic effect of death ligands such as tumor necrosis factor (TNF), CD95 ligand, or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not to receptor-independent stress agents. CLN2-deficient cells exhibited a defect in TNF-induced Bid cleavage, release of cytochrome c, and caspase-9 and -3 activation. Moreover, extracts from CLN2-overexpressing cells or a CLN2 recombinant protein were able to catalyze the in vitro cleavage of Bid. Noteworthy, correction of the lysosomal enzyme defect of LINCL fibroblasts using a medium enriched in CLN2 protein enabled restoration of TNF-induced Bid and caspase-3 processing and toxicity. Conversely, transfection of CLN2-corrected cells with small interfering RNA targeting Bid abrogated TNF-induced cell death. Altogether, our study demonstrates that genetic deletion of the lysosomal serine protease CLN2 and the subsequent loss of its catalytic function confer resistance to TNF in non-neuronal somatic cells, indicating that CLN2 plays a yet unsuspected role in TNF-induced cell death. PMID:19246452

  18. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency.

    PubMed

    Jaouadi, Bassem; Ellouz-Chaabouni, Semia; Rhimi, Moez; Bejar, Samir

    2008-09-01

    We have described previously the potential use of an alkaline protease from Bacillus pumilus CBS as an effective additive in laundry detergent formulations [B. Jaouadi, S. Ellouz-Chaabouni, M. Ben Ali, E. Ben Messaoud, B. Naili, A. Dhouib, S. Bejar, A novel alkaline protease from Bacillus pumilus CBS having a high compatibility with laundry detergent and a high feather-degrading activity, Process Biochem, submitted for publication]. Here, we purified this enzyme (named SAPB) and we cloned, sequenced and over-expressed the corresponding gene. The enzyme was purified to homogeneity using salt precipitation and gel filtration HPLC. The pure protease was found to be monomeric protein with a molecular mass of 34598.19Da as determined by MALDI-TOF mass spectrometry. The NH2-terminal sequence of first 21 amino acids (aa) of the purified SAPB was AQTVPYGIPQIKAPAVHAQGY and was completely identical to proteases from other Bacillus pumilus species. This protease is strongly inhibited by PMSF and DFP, showing that it belongs to the serine proteases superfamily. Interestingly, the optimum pH is 10.6 while the optimum temperature was determined to be 65 degrees C. The enzyme was completely stable within a wide range of pH (7.0-10.6) and temperature (30-55 degrees C). One of the distinguishing properties is its catalytic efficiency (kcat/Km) calculated to be 45,265min(-1)mM(-1) and 147,000min(-1)mM(-1) using casein and AAPF as substrates, respectively, which is higher than that of Subtilisin Carlsberg, Subtilisin BPN' and Subtilisin 309 determined under the same conditions. In addition, SAPB showed remarkable stability, for 24h at 40 degrees C, in the presence of 5% Tween-80, 1% SDS, 15% urea and 10% H2O2, which comprise the common bleach-based detergent formulation. The sapB gene encoding SAPB was cloned, sequenced and over-expressed in Escherichia coli. The purified recombinant enzyme (rSAPB) has the same physicochemical and kinetic properties as the native one. SapB gene had

  19. SPINK5 knockdown in organotypic human skin culture as a model system for Netherton syndrome: effect of genetic inhibition of serine proteases kallikrein 5 and kallikrein 7.

    PubMed

    Wang, Shirley; Olt, Sabine; Schoefmann, Nicole; Stuetz, Anton; Winiski, Anthony; Wolff-Winiski, Barbara

    2014-07-01

    Netherton syndrome (NS; OMIM 256500) is a genetic skin disease resulting from defects in the serine protease inhibitor Kazal-type 5 (SPINK5) gene, which encodes the protease inhibitor lympho-epithelial Kazal type inhibitor (LEKTI). We established a SPINK5 knockdown skin model by transfecting SPINK5 small interfering RNA (siRNA) into normal human epidermal keratinocytes, which were used together with fibroblast-populated collagen gels to generate organotypic skin cultures. This model recapitulates some of the NS skin morphology: thicker, parakeratotic stratum corneum frequently detached from the underlying epidermis and loss of corneodesmosomes. As enhanced serine protease activity has been implicated in the disease pathogenesis, we investigated the impact of the kallikreins KLK5 [stratum corneum trypsin-like enzyme (SCTE)] and KLK7 [stratum corneum chymotrypsin-like enzyme (SCCE)] on the SPINK5 knockdown phenotype by generating double knockdowns in the organotypic model. Knockdown of KLK5 or KLK7 partially ameliorated the epidermal architecture: increased epidermal thickness and expression of desmocollin 1 (DSC1), desmoglein 1 (DSG1) and (pro)filaggrin. Thus, inhibition of serine proteases KLK5 and KLK7 could be therapeutically beneficial in NS.

  20. Chlamydia Serine Protease Inhibitor, targeting HtrA, as a New Treatment for Koala Chlamydia infection.

    PubMed

    Lawrence, Amba; Fraser, Tamieka; Gillett, Amber; Tyndall, Joel D A; Timms, Peter; Polkinghorne, Adam; Huston, Wilhelmina M

    2016-01-01

    The koala, an iconic marsupial native to Australia, is a threatened species in many parts of the country. One major factor in the decline is disease caused by infection with Chlamydia. Current therapeutic strategies to treat chlamydiosis in the koala are limited. This study examines the effectiveness of an inhibitor, JO146, which targets the HtrA serine protease for treatment of C. pecorum and C. pneumoniae in vitro and ex vivo with the aim of developing a novel therapeutic for koala Chlamydia infections. Clinical isolates from koalas were examined for their susceptibility to JO146. In vitro studies demonstrated that treatment with JO146 during the mid-replicative phase of C. pecorum or C. pneumoniae infections resulted in a significant loss of infectious progeny. Ex vivo primary koala tissue cultures were used to demonstrate the efficacy of JO146 and the non-toxic nature of this compound on peripheral blood mononuclear cells and primary cell lines established from koala tissues collected at necropsy. Our results suggest that inhibition of the serine protease HtrA could be a novel treatment strategy for chlamydiosis in koalas. PMID:27530689

  1. Tryptogalinin Is a Tick Kunitz Serine Protease Inhibitor with a Unique Intrinsic Disorder

    PubMed Central

    Valdés, James J.; Schwarz, Alexandra; Cabeza de Vaca, Israel; Calvo, Eric; Pedra, Joao H. F.

    2013-01-01

    Background A salivary proteome-transcriptome project on the hard tick Ixodes scapularis revealed that Kunitz peptides are the most abundant salivary proteins. Ticks use Kunitz peptides (among other salivary proteins) to combat host defense mechanisms and to obtain a blood meal. Most of these Kunitz peptides, however, remain functionally uncharacterized, thus limiting our knowledge about their biochemical interactions. Results We discovered an unusual cysteine motif in a Kunitz peptide. This peptide inhibits several serine proteases with high affinity and was named tryptogalinin due to its high affinity for β-tryptase. Compared with other functionally described peptides from the Acari subclass, we showed that tryptogalinin is phylogenetically related to a Kunitz peptide from Rhipicephalus appendiculatus, also reported to have a high affinity for β-tryptase. Using homology-based modeling (and other protein prediction programs) we were able to model and explain the multifaceted function of tryptogalinin. The N-terminus of the modeled tryptogalinin is detached from the rest of the peptide and exhibits intrinsic disorder allowing an increased flexibility for its high affinity with its inhibiting partners (i.e., serine proteases). Conclusions By incorporating experimental and computational methods our data not only describes the function of a Kunitz peptide from Ixodes scapularis, but also allows us to hypothesize about the molecular basis of this function at the atomic level. PMID:23658744

  2. Chlamydia Serine Protease Inhibitor, targeting HtrA, as a New Treatment for Koala Chlamydia infection

    PubMed Central

    Lawrence, Amba; Fraser, Tamieka; Gillett, Amber; Tyndall, Joel D. A.; Timms, Peter; Polkinghorne, Adam; Huston, Wilhelmina M.

    2016-01-01

    The koala, an iconic marsupial native to Australia, is a threatened species in many parts of the country. One major factor in the decline is disease caused by infection with Chlamydia. Current therapeutic strategies to treat chlamydiosis in the koala are limited. This study examines the effectiveness of an inhibitor, JO146, which targets the HtrA serine protease for treatment of C. pecorum and C. pneumoniae in vitro and ex vivo with the aim of developing a novel therapeutic for koala Chlamydia infections. Clinical isolates from koalas were examined for their susceptibility to JO146. In vitro studies demonstrated that treatment with JO146 during the mid-replicative phase of C. pecorum or C. pneumoniae infections resulted in a significant loss of infectious progeny. Ex vivo primary koala tissue cultures were used to demonstrate the efficacy of JO146 and the non-toxic nature of this compound on peripheral blood mononuclear cells and primary cell lines established from koala tissues collected at necropsy. Our results suggest that inhibition of the serine protease HtrA could be a novel treatment strategy for chlamydiosis in koalas. PMID:27530689

  3. Chlamydia Serine Protease Inhibitor, targeting HtrA, as a New Treatment for Koala Chlamydia infection.

    PubMed

    Lawrence, Amba; Fraser, Tamieka; Gillett, Amber; Tyndall, Joel D A; Timms, Peter; Polkinghorne, Adam; Huston, Wilhelmina M

    2016-01-01

    The koala, an iconic marsupial native to Australia, is a threatened species in many parts of the country. One major factor in the decline is disease caused by infection with Chlamydia. Current therapeutic strategies to treat chlamydiosis in the koala are limited. This study examines the effectiveness of an inhibitor, JO146, which targets the HtrA serine protease for treatment of C. pecorum and C. pneumoniae in vitro and ex vivo with the aim of developing a novel therapeutic for koala Chlamydia infections. Clinical isolates from koalas were examined for their susceptibility to JO146. In vitro studies demonstrated that treatment with JO146 during the mid-replicative phase of C. pecorum or C. pneumoniae infections resulted in a significant loss of infectious progeny. Ex vivo primary koala tissue cultures were used to demonstrate the efficacy of JO146 and the non-toxic nature of this compound on peripheral blood mononuclear cells and primary cell lines established from koala tissues collected at necropsy. Our results suggest that inhibition of the serine protease HtrA could be a novel treatment strategy for chlamydiosis in koalas.

  4. Serine proteases as candidates for proteolytic processing of angiotensin-I converting enzyme.

    PubMed

    Aragão, Danielle S; de Andrade, Maria Claudina C; Ebihara, Fabiana; Watanabe, Ingrid K M; Magalhães, Dayane C B P; Juliano, Maria Aparecida; Hirata, Izaura Yoshico; Casarini, Dulce Elena

    2015-01-01

    Somatic angiotensin-I converting enzyme (sACE) is a broadly distributed peptidase which plays a role in blood pressure and electrolyte homeostasis by the conversion of angiotensin I into angiotensin II. N-domain isoforms (nACE) with 65 and 90 kDa have been described in body fluids, tissues and mesangial cells (MC), and a 90 kDa nACE has been described only in spontaneously hypertensive rats. The aim of this study was to investigate the existence of proteolytic enzymes that may act in the hydrolysis of sACE generating nACEs in MC. After the confirmation of the presence of ACE sheddases in Immortalized MC (IMC), we purified and characterized these enzymes using fluorogenic substrates specifically designed for ACE sheddases. Purified enzyme identified as a serine protease by N-terminal sequence was able to generate nACE. In the present study, we described for the first time the presence of ACE sheddases in IMC, identified as serine proteases able to hydrolyze sACE in vitro. Further investigations are necessary to elucidate the mechanisms responsible for the expression and regulation of ACE sheddases in MC and their roles in the generation of nACEs, especially the 90 kDa form possibly related to hypertension.

  5. Molecular Cloning and Functional Studies of Two Kazal-Type Serine Protease Inhibitors Specifically Expressed by Nasonia vitripennis Venom Apparatus

    PubMed Central

    Qian, Cen; Fang, Qi; Wang, Lei; Ye, Gong-Yin

    2015-01-01

    Two cDNA sequences of Kazal-type serine protease inhibitors (KSPIs) in Nasonia vitripennis, NvKSPI-1 and NvKSPI-2, were characterized and their open reading frames (ORFs) were 198 and 264 bp, respectively. Both NvKSPI-1 and NvKSPI-2 contained a typical Kazal-type domain. Real-time quantitative PCR (RT-qPCR) results revealed that NvKSPI-1 and NvKSPI-2 mRNAs were mostly detected specifically in the venom apparatus, while they were expressed at lower levels in the ovary and much lower levels in other tissues tested. In the venom apparatus, both NvKSPI-1 and NvKSPI-2 transcripts were highly expressed on the fourth day post eclosion and then declined gradually. The NvKSPI-1 and NvKSPI-2 genes were recombinantly expressed utilizing a pGEX-4T-2 vector, and the recombinant products fused with glutathione S-transferase were purified. Inhibition of recombinant GST-NvKSPI-1 and GST-NvKSPI-2 to three serine protease inhibitors (trypsin, chymotrypsin, and proteinase K) were tested and results showed that only NvKSPI-1 could inhibit the activity of trypsin. Meanwhile, we evaluated the influence of the recombinant GST-NvKSPI-1 and GST-NvKSPI-2 on the phenoloxidase (PO) activity and prophenoloxidase (PPO) activation of hemolymph from a host pupa, Musca domestica. Results showed PPO activation in host hemolymph was inhibited by both recombinant proteins; however, there was no significant inhibition on the PO activity. Our results suggested that NvKSPI-1 and NvKSPI-2 could inhibit PPO activation in host hemolymph and trypsin activity in vitro. PMID:26248077

  6. Ecological significance and some biotechnological application of an organic solvent stable alkaline serine protease from Bacillus subtilis strain DM-04.

    PubMed

    Rai, Sudhir K; Mukherjee, Ashis K

    2009-05-01

    An organic solvent stable, alkaline serine protease (Bsubap-I) with molecular mass of 33.1 kDa, purified from Bacillus subtilis DM-04 showed optimum activity at temperature and pH range of 37-45 degrees C and 10.0-10.5, respectively. The enzyme activity of Bsubap-I was significantly enhanced in presence of Fe(2+). The thermal resistance and stability and of Bsubap-I in presence of surfactants, detergents, and organic solvents, and its dehairing activity supported its candidature for application in laundry detergent formulations, ultrafiltration membrane cleaning, peptide synthesis and in leather industry. The broad substrate specificity and differential antibacterial property of Bsubap-I suggested the natural ecological role of this enzyme for the producing bacterium.

  7. Peptidyl inverse esters of p-methoxybenzoic acid: a novel class of potent inactivator of the serine proteases.

    PubMed Central

    Lynas, J; Walker, B

    1997-01-01

    A series of novel synthetic peptides, containing a C-terminal beta-amino alcohol linked to p-methoxybenzoic acid via an ester linkage, have been prepared and tested as inhibitors against typical members of the serine protease family. For example, the sequences Ac-Val-Pro-NH-CH-(CH2-C6H5)-CH2O-CO-C6H4-OCH3 (I) and Ac-Val-Pro-NH-CH-[CH-(CH3)2]-CH2O-CO-C6H4-OCH3 (II), which fulfil the known primary and secondary specificity requirements of chymotrypsin and elastase respectively, have been found to behave as exceptionally potent irreversible inactivators of their respective target protease. Thus I was found to inactivate chymotrypsin with an overall second-order rate constant (k2/Ki) of approx. 6.6x10(6) M-1. s-1, whereas II is an even more potent inactivator of human neutrophil elastase, exhibiting a second-order rate constant of inactivation of approx. 1.3x10(7) M-1.s-1. These values represent the largest rate constants ever reported for the inactivation of these proteases with synthetic peptide-based inactivators. On prolonged incubation in substrate-containing buffers, samples of the inactivated proteases were found to regain activity slowly. The first-order rate constants for the regeneration of enzymic activity from chymotrypsin and human neutrophil elastase inactivated by I and II respectively were determined to be approx. 5.8x10(-5) s-1 and approx. 4.3x10(-4) s-1. We believe that the most likely mechanism for the inactivation and regeneration of enzymic activity involves the formation and subsequent slow hydrolysis of long-lived acyl enzyme intermediates. PMID:9271079

  8. Purification and biochemical characterization of two detergent-stable serine alkaline proteases from Streptomyces sp. strain AH4.

    PubMed

    Touioui, Souraya Boulkour; Jaouadi, Nadia Zaraî; Boudjella, Hadjira; Ferradji, Fatma Zohra; Belhoul, Mouna; Rekik, Hatem; Badis, Abdelmalek; Bejar, Samir; Jaouadi, Bassem

    2015-07-01

    Streptomyces sp. strain AH4 exhibited a high ability to produce two extracellular proteases when cultured on a yeast malt-extract (ISP2)-casein-based medium. Pure proteins were obtained after heat treatment (30 min at 70 °C) and ammonium sulphate fractionation (30-60 %), followed by size exclusion HPLC column. Matrix assisted laser desorption ionization-time of flight mass spectrometry analysis revealed that the purified enzymes (named SAPS-P1 and SAPS-P2) were monomers with molecular masses of 36,417.13 and 21,099.10 Da, respectively. Their identified N-terminal amino acid displayed high homologies with those of Streptomyces proteases. While SAPS-P1 was optimally active at pH 12.0 and 70 °C, SAPS-P2 showed optimum activity at pH 10.0 and 60 °C. Both enzymes were completely stable within a wide range of temperature (45-75 °C) and pH (8.0-11.5). They were noted to be completely inhibited by phenylmethanesulfonyl fluoride and diisopropyl fluorophosphates, which confirmed their belonging to the serine proteases family. Compared to SAPS-P2, SAPS-P1 showed high thermostability and excellent stability towards bleaching, denaturing, and oxidizing agents. Both enzymes displayed marked stability and compatibility with a wide range of commercial laundry detergents and significant catalytic efficiencies compared to Subtilisin Carlsberg and Protease SG-XIV. Overall, the results indicated that SAPS-P1 and SAPS-P2 can be considered as potential promising candidates for future application as bioadditives in detergent formulations.

  9. Purification and characterization of thermostable serine proteases encoded by the genes ttha0099 and ttha01320 from Thermus thermophilus HB8.

    PubMed

    Li, Hui; Sun, Yajie; Jiao, Xue; Wang, Honglin; Zhu, Hu

    2016-07-01

    As an important class of proteases, serine proteases are required to show high activity under diverse conditions, especially at high temperatures. In the current study, two serine proteases SP348 and SP404 were analyzed by different bioinformatics tools. Both proteins are comprised of a trypsin domain and a PDZ domain, and belong to the trypsin family of proteases. The proteins were successfully expressed with Trx-tags as soluble proteins in the specialized Escherichia coli Rosetta-gami B(DE3)pLysS strain. A simple three-step purification protocol involving heat treatment, Ni-NTA purification and gel filtration was adopted to purify SP404. The molecular weight of recombinant SP404 was about 64 kDa. According to the circular dichroism spectroscopy analysis, SP404 is thermostable at 70 °C with alpha-helix, beta-sheet and random coil contents of about 8, 22 and 70 %, respectively. Our findings may broaden the range of microorganism-derived proteases and have a wide potential for industrial and fundamental studies. PMID:27215206

  10. The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction.

    PubMed

    Ronaghan, Natalie J; Shang, Judie; Iablokov, Vadim; Zaheer, Raza; Colarusso, Pina; Turner, Jerrold R; MacNaughton, Wallace K

    2016-09-01

    Barrier dysfunction is a characteristic of the inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Understanding how the tight junction is modified to maintain barrier function may provide avenues for treatment of IBD. We have previously shown that the apical addition of serine proteases to intestinal epithelial cell lines causes a rapid and sustained increase in transepithelial electrical resistance (TER), but the mechanisms are unknown. We hypothesized that serine proteases increase barrier function through trafficking and insertion of tight junction proteins into the membrane, and this could enhance recovery of a disrupted monolayer after calcium switch or cytokine treatment. In the canine epithelial cell line, SCBN, we showed that matriptase, an endogenous serine protease, could potently increase TER. Using detergent solubility-based cell fractionation, we found that neither trypsin nor matriptase treatment changed levels of tight junction proteins at the membrane. In a fast calcium switch assay, serine proteases did not enhance the rate of recovery of the junction. In addition, serine proteases could not reverse barrier disruption induced by IFNγ and TNFα. We knocked down occludin in our cells using siRNA and found this prevented the serine protease-induced increase in TER. Using fluorescence recovery after photobleaching (FRAP), we found serine proteases induce a greater mobile fraction of occludin in the membrane. These data suggest that a functional tight junction is needed for serine proteases to have an effect on TER, and that occludin is a crucial tight junction protein in this mechanism. PMID:27492333

  11. Expression of a new serine protease from Crotalus durissus collilineatus venom in Pichia pastoris and functional comparison with the native enzyme.

    PubMed

    Boldrini-França, Johara; Santos Rodrigues, Renata; Santos-Silva, Ludier Kesser; de Souza, Dayane Lorena Naves; Gomes, Mário Sérgio Rocha; Cologna, Camila Takeno; de Pauw, Edwin; Quinton, Loïc; Henrique-Silva, Flávio; de Melo Rodrigues, Veridiana; Arantes, Eliane Candiani

    2015-12-01

    Snake venom serine proteases (SVSPs) act primarily on plasma proteins related to blood clotting and are considered promising for the treatment of several hemostatic disorders. We report the heterologous expression of a serine protease from Crotalus durissus collilineatus, named collinein-1, in Pichia pastoris, as well as the enzymatic comparative characterization of the toxin in native and recombinant forms. The complementary DNA (cDNA) encoding collinein-1 was amplified from cDNA library of C. d. collilineatus venom gland and cloned into the pPICZαA vector. The recombinant plasmid was used to transform cells of KM71H P. pastoris. Heterologous expression was induced by methanol and yielded 56 mg of recombinant collinein-1 (rCollinein-1) per liter of culture. The native collinein-1 was purified from C. d. collilineatus venom, and its identity was confirmed by amino acid sequencing. The native and recombinant enzymes showed similar effects upon bovine fibrinogen by releasing preferentially fibrinopeptide A. Although both enzymes have induced plasma coagulation, native Colinein-1 has shown higher coagulant activity. The serine proteases were able to hydrolyze the chromogenic substrates S-2222, S-2238, and S2302. Both enzymes showed high stability on different pH and temperature, and their esterase activities were inhibited in the presence of Zn2+ and Cu2+. The serine proteases showed similar k cat/K m values in enzyme kinetics assays, suggesting no significant differences in efficiency of these proteins to hydrolyze the substrate. These results demonstrated that rCollinein-1 was expressed with functional integrity on the evaluated parameters. The success in producing a functionally active recombinant SVSP may generate perspectives to their future therapeutic applications.

  12. Expression of a new serine protease from Crotalus durissus collilineatus venom in Pichia pastoris and functional comparison with the native enzyme.

    PubMed

    Boldrini-França, Johara; Santos Rodrigues, Renata; Santos-Silva, Ludier Kesser; de Souza, Dayane Lorena Naves; Gomes, Mário Sérgio Rocha; Cologna, Camila Takeno; de Pauw, Edwin; Quinton, Loïc; Henrique-Silva, Flávio; de Melo Rodrigues, Veridiana; Arantes, Eliane Candiani

    2015-12-01

    Snake venom serine proteases (SVSPs) act primarily on plasma proteins related to blood clotting and are considered promising for the treatment of several hemostatic disorders. We report the heterologous expression of a serine protease from Crotalus durissus collilineatus, named collinein-1, in Pichia pastoris, as well as the enzymatic comparative characterization of the toxin in native and recombinant forms. The complementary DNA (cDNA) encoding collinein-1 was amplified from cDNA library of C. d. collilineatus venom gland and cloned into the pPICZαA vector. The recombinant plasmid was used to transform cells of KM71H P. pastoris. Heterologous expression was induced by methanol and yielded 56 mg of recombinant collinein-1 (rCollinein-1) per liter of culture. The native collinein-1 was purified from C. d. collilineatus venom, and its identity was confirmed by amino acid sequencing. The native and recombinant enzymes showed similar effects upon bovine fibrinogen by releasing preferentially fibrinopeptide A. Although both enzymes have induced plasma coagulation, native Colinein-1 has shown higher coagulant activity. The serine proteases were able to hydrolyze the chromogenic substrates S-2222, S-2238, and S2302. Both enzymes showed high stability on different pH and temperature, and their esterase activities were inhibited in the presence of Zn2+ and Cu2+. The serine proteases showed similar k cat/K m values in enzyme kinetics assays, suggesting no significant differences in efficiency of these proteins to hydrolyze the substrate. These results demonstrated that rCollinein-1 was expressed with functional integrity on the evaluated parameters. The success in producing a functionally active recombinant SVSP may generate perspectives to their future therapeutic applications. PMID:26227411

  13. Molecular Cloning and Characterization of a Subtilisin-Like Serine Protease Gene (Pr1) from the Medicinal Chinese Caterpillar Mushroom, Ophiocordyceps sinensis (Ascomycetes).

    PubMed

    Shi, Ping; Lu, Zenghui; He, Yuanchuan; Chen, Shijiang; Yan, Jun; Li, Junhong; Zhang, Xiaobing

    2015-01-01

    In the Chinese caterpillar mushroom Ophiocordyceps sinensis, a subtislin-like serine protease (Pr1) is one of the most important enzymes for its infection activity against insect cuticles. The Pr1 gene was isolated from the valuable Chinese medicinal fungus O. sinensis using rapid amplification of 5' and 3' complementary DNA ends. The 2079-bp full-length complementary DNA sequence containing the 1605-bp predicted open reading frame of the Pr1 gene was obtained (GenBank accession no. KF836756). The open reading frame encodes a protein comprising 534 amino acids. Protein sequence multiple alignment analysis revealed high homology with 16 other subtilisin serine proteases and exhibited the highly conserved catalytic domain (D195, H227, and S393). We also constructed a phylogenetic tree in this study. Further molecular studies are needed to elucidate the mechanisms of fungal infection. PMID:26853964

  14. The Kunitz-Type Protein ShPI-1 Inhibits Serine Proteases and Voltage-Gated Potassium Channels.

    PubMed

    García-Fernández, Rossana; Peigneur, Steve; Pons, Tirso; Alvarez, Carlos; González, Lidice; Chávez, María A; Tytgat, Jan

    2016-04-01

    The bovine pancreatic trypsin inhibitor (BPTI)-Kunitz-type protein ShPI-1 (UniProt: P31713) is the major protease inhibitor from the sea anemone Stichodactyla helianthus. This molecule is used in biotechnology and has biomedical potential related to its anti-parasitic effect. A pseudo wild-type variant, rShPI-1A, with additional residues at the N- and C-terminal, has a similar three-dimensional structure and comparable trypsin inhibition strength. Further insights into the structure-function relationship of rShPI-1A are required in order to obtain a better understanding of the mechanism of action of this sea anemone peptide. Using enzyme kinetics, we now investigated its activity against other serine proteases. Considering previous reports of bifunctional Kunitz-type proteins from anemones, we also studied the effect of rShPI-1A on voltage-gated potassium (Kv) channels. rShPI-1A binds Kv1.1, Kv1.2, and Kv1.6 channels with IC50 values in the nM range. Hence, ShPI-1 is the first member of the sea anemone type 2 potassium channel toxins family with tight-binding potency against several proteases and different Kv1 channels. In depth sequence analysis and structural comparison of ShPI-1 with similar protease inhibitors and Kv channel toxins showed apparent non-sequence conservation for known key residues. However, we detected two subtle patterns of coordinated amino acid substitutions flanking the conserved cysteine residues at the N- and C-terminal ends. PMID:27089366

  15. The Kunitz-Type Protein ShPI-1 Inhibits Serine Proteases and Voltage-Gated Potassium Channels

    PubMed Central

    García-Fernández, Rossana; Peigneur, Steve; Pons, Tirso; Alvarez, Carlos; González, Lidice; Chávez, María A.; Tytgat, Jan

    2016-01-01

    The bovine pancreatic trypsin inhibitor (BPTI)-Kunitz-type protein ShPI-1 (UniProt: P31713) is the major protease inhibitor from the sea anemone Stichodactyla helianthus. This molecule is used in biotechnology and has biomedical potential related to its anti-parasitic effect. A pseudo wild-type variant, rShPI-1A, with additional residues at the N- and C-terminal, has a similar three-dimensional structure and comparable trypsin inhibition strength. Further insights into the structure-function relationship of rShPI-1A are required in order to obtain a better understanding of the mechanism of action of this sea anemone peptide. Using enzyme kinetics, we now investigated its activity against other serine proteases. Considering previous reports of bifunctional Kunitz-type proteins from anemones, we also studied the effect of rShPI-1A on voltage-gated potassium (Kv) channels. rShPI-1A binds Kv1.1, Kv1.2, and Kv1.6 channels with IC50 values in the nM range. Hence, ShPI-1 is the first member of the sea anemone type 2 potassium channel toxins family with tight-binding potency against several proteases and different Kv1 channels. In depth sequence analysis and structural comparison of ShPI-1 with similar protease inhibitors and Kv channel toxins showed apparent non-sequence conservation for known key residues. However, we detected two subtle patterns of coordinated amino acid substitutions flanking the conserved cysteine residues at the N- and C-terminal ends. PMID:27089366

  16. Discovery of novel P3-oxo inhibitor of hepatitis C virus NS3/4A serine protease.

    PubMed

    Duan, Maosheng; Kazmierski, Wieslaw; Crosby, Renae; Gartland, Margaret; Ji, Jinjing; Tallant, Matt; Wang, Amy; Hamatake, Robert; Wright, Lois; Wu, Min; Zhang, Yong-Kang; Ding, Charles Z; Li, Xianfeng; Liu, Yang; Zhang, Suoming; Zhou, Yasheen; Plattner, Jacob J; Baker, Stephen J

    2012-04-15

    A novel series of P3 oxo-modified macrocyclic hepatitis C virus NS3/4A serine protease inhibitor was designed, synthesized and biologically evaluated. The hydroxy-substituted inhibitor 10 demonstrated high potency in genotype 1a and 1b replicon and in the panel of HCV protease mutants. Interestingly, the t-butyl carbonate analog 9c, while not the most potent one in this series, exhibited a virtually flat potency profile in the panel of HCV protease mutants, thus providing opportunity for further optimization. PMID:22425454

  17. Bumblebee venom serine protease increases fungal insecticidal virulence by inducing insect melanization.

    PubMed

    Kim, Jae Su; Choi, Jae Young; Lee, Joo Hyun; Park, Jong Bin; Fu, Zhenli; Liu, Qin; Tao, Xueying; Jin, Byung Rae; Skinner, Margaret; Parker, Bruce L; Je, Yeon Ho

    2013-01-01

    Insect-killing (entomopathogenic) fungi have high potential for controlling agriculturally harmful pests. However, their pathogenicity is slow, and this is one reason for their poor acceptance as a fungal insecticide. The expression of bumblebee, Bombus ignitus, venom serine protease (VSP) by Beauveria bassiana (ERL1170) induced melanization of yellow spotted longicorn beetles (Psacothea hilaris) as an over-reactive immune response, and caused substantially earlier mortality in beet armyworm (Spodopetra exigua) larvae when compared to the wild type. No fungal outgrowth or sporulation was observed on the melanized insects, thus suggesting a self-restriction of the dispersal of the genetically modified fungus in the environment. The research is the first use of a multi-functional bumblebee VSP to significantly increase the speed of fungal pathogenicity, while minimizing the dispersal of the fungal transformant in the environment. PMID:23626832

  18. Bumblebee Venom Serine Protease Increases Fungal Insecticidal Virulence by Inducing Insect Melanization

    PubMed Central

    Kim, Jae Su; Choi, Jae Young; Lee, Joo Hyun; Park, Jong Bin; Fu, Zhenli; Liu, Qin; Tao, Xueying; Jin, Byung Rae; Skinner, Margaret; Parker, Bruce L.; Je, Yeon Ho

    2013-01-01

    Insect-killing (entomopathogenic) fungi have high potential for controlling agriculturally harmful pests. However, their pathogenicity is slow, and this is one reason for their poor acceptance as a fungal insecticide. The expression of bumblebee, Bombus ignitus, venom serine protease (VSP) by Beauveria bassiana (ERL1170) induced melanization of yellow spotted longicorn beetles (Psacothea hilaris) as an over-reactive immune response, and caused substantially earlier mortality in beet armyworm (Spodopetra exigua) larvae when compared to the wild type. No fungal outgrowth or sporulation was observed on the melanized insects, thus suggesting a self-restriction of the dispersal of the genetically modified fungus in the environment. The research is the first use of a multi-functional bumblebee VSP to significantly increase the speed of fungal pathogenicity, while minimizing the dispersal of the fungal transformant in the environment. PMID:23626832

  19. Characterization of a novel filarial serine protease inhibitor, Ov-SPI-1, from Onchocerca volvulus, with potential multifunctional roles during development of the parasite.

    PubMed

    Ford, Louise; Guiliano, David B; Oksov, Yelena; Debnath, Asim K; Liu, Jing; Williams, Steven A; Blaxter, Mark L; Lustigman, Sara

    2005-12-01

    A novel filarial serine protease inhibitor (SPI) from the human parasitic nematode Onchocerca volvulus, Ov-SPI-1, was identified through the analysis of a molting third-stage larvae expressed sequence tag dataset. Subsequent analysis of the expressed sequence tag datasets of O. volvulus and other filariae identified four other members of this family. These proteins are related to the low molecular weight SPIs originally isolated from Ascaris suum where they are believed to protect the parasite from host intestinal proteases. The two Ov-spi transcripts are up-regulated in the molting larvae and adult stages of the development of the parasite. Recombinant Ov-SPI-1 is an active inhibitor of serine proteases, specifically elastase, chymotrypsin, and cathepsin G. Immunolocalization of the Ov-SPI proteins demonstrates that the endogenous proteins are localized to the basal layer of the cuticle of third-stage, molting third-stage, and fourth-stage larvae, the body channels and multivesicular bodies of third-stage larvae and the processed material found between the two cuticles during molting. In O. volvulus adult worms the Ov-SPI proteins are localized to the sperm and to eggshells surrounding the developing embryos. RNA interference targeting the Ov-spi genes resulted in the specific knockdown of the transcript levels of both Ov-spi-1 and Ov-spi-2, a loss of native proteins, and a significant reduction in both molting and viability of third-stage larvae. We suggest the Ov-SPI proteins play a vital role in nematode molting by controlling the activity of an endogenous serine protease(s). The localization data in adults also indicate that these inhibitors may be involved in other processes such as embryogenesis and spermatogenesis.

  20. Inhibition of elastase by a synthetic cotton-bound serine protease inhibitor: in vitro kinetics and inhibitor release.

    PubMed

    Edwards, J V; Bopp, A F; Batiste, S; Ullah, A J; Cohen, I K; Diegelmann, R F; Montante, S J

    1999-01-01

    A cotton-bound serine protease inhibitor of elastase (fiber-inhibitor) has been formulated for in vitro evaluation in chronic wound fluid. As a model to understand the properties of the inhibitor in wound dressings, the kinetic profile and in vitro release of the fiber-inhibitor formulation have been examined. The elastase inhibitor N-Methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone was modified onto cotton cellulose fibers and assayed as a colloidal system. Amino acid analysis and reversed phase high performance liquid chromatography were compared as semiquantitative methods to assess elastase inhibitor release from the cotton fibers. The kinetics of inhibition was assessed on treated fibers of synthetic dressings such that a colloidal suspension of the fiber-inhibitor and elastase was employed as an assay. A dose-response relationship was observed in the kinetics of substrate hydrolysis catalyzed by three elastases: porcine pancreatic elastase, which was employed to model this approach; human leukocyte elastase; and elastase in human chronic wound fluid. Both freely dissolved and fiber-bound inhibitors were studied. The initial rates of substrate hydrolysis were inversely linear with freely dissolved inhibitor dose. The apparent first order rate constants, kobs, for the elastase-inhibitor complex were calculated from the kinetic profiles. The kobs for inhibitor bound enzyme varied as a function of inhibitor vs. enzyme concentration and based on the order of mixing of substrate, inhibitor and enzyme in the assay. Enzyme inhibition by the fiber-inhibitor was measured as inhibitor concentration at 50% inhibition (I50). I50 values measured from the colloidal assay with fiber-released inhibitor were within the same range to those for freely dissolved inhibitor. Inhibition of elastase activity in chronic wound fluid was observed with 1-5 mg of fiber-inhibitor formulation. This approach constitutes an in vitro assessment of synthetic serine protease inhibitors on

  1. Serine proteases SP1 and SP13 mediate the melanization response of Asian corn borer, Ostrinia furnacalis, against entomopathogenic fungus Beauveria bassiana.

    PubMed

    Chu, Yuan; Liu, Yang; Shen, Dongxu; Hong, Fang; Wang, Guirong; An, Chunju

    2015-06-01

    Exposure to entomopathogenic fungi is one approach for insect pest control. Little is known about the immune interactions between fungus and its insect host. Melanization is a prominent immune response in insects in defending against pathogens such as bacteria and fungi. Clip domain serine proteases in insect plasma have been implicated in the activation of prophenoloxidase, a key enzyme in the melanization. The relationship between host melanization and the infection by a fungus needs to be established. We report here that the injection of entomopathogenic fungus Beauveria bassiana induced both melanin synthesis and phenoloxidase activity in its host insect, the Asian corn borer, Ostrinia furnacalis (Guenée). qRT-PCR analysis showed several distinct patterns of expression of 13 clip-domain serine proteases in response to the challenge of fungi, with seven increased, two decreased, and four unchanged. Of special interest among these clip-domain serine protease genes are SP1 and SP13, the orthologs of Manduca sexta HP6 and PAP1 which are involved in the prophenoloxidase activation pathway. Recombinant O. furnacalis SP1 was found to activate proSP13 and induce the phenoloxidase activity in corn borer plasma. Additionally, SP13 was determined to directly cleave prophenoloxidase and therefore act as the prophenoloxidase activating protease. Our work thus reveals a biochemical mechanism in the melanization in corn borer associated with the challenge by B. bassiana injection. These insights could provide valuable information for better understanding the immune responses of Asian corn borer against B. bassiana. PMID:25900291

  2. Inactivation of the serine proteinase operon (proMCD) of Staphylococcus warneri M: serine proteinase and cysteine proteases are involved in the autolysis.

    PubMed

    Yokoi, Ken-Ji; Kuzuwa, Shinya; Kondo, Mitsuru; Yamakawa, Ayanori; Taketo, Akira; Kodaira, Ken-Ichi

    2013-01-10

    Unlike other members of coagulase negative staphylococci (CNS), strain warneri has proMCD operon, a homologue of sspABC proteinase operon of S. aureus. The proM and proC encode serine glutamyl endopeptidase and cysteine protease respectively, whereas proD directs homologue of SspC, putative cytoplasmic inhibitor which protects the host bacterium from premature activation of SspB. We determined whole nucleotide sequence of proMCD operon of S. warneri M, succeeded in expression of these genes, and investigated their functions by gene inactivation and complementation experiments. In gelatin zymography of the culture supernatant, a 20-kDa band corresponding to PROC cysteine protease was detected. By Western blotting, PROD was also confirmed in the cytoplasmic protein fraction. PROC and PROD showed significant similarity to SspB and SspC of S. aureus (73% and 58%, respectively). Inactivation mutants of proMCD, proCD and proD genes were established, separately. In the proMCD mutant, degradation/processing of extracellular proteins was drastically reduced, suggesting that PROM was responsible for the cleavage of extracellular proteins. By the proD mutation, the growth profile was not affected, and secretion of PROC was retained. Extracellular protein profiles of the proCD and proD mutants were not so different each other, but autolysin profiles were slightly dissimilar, around 39-48 kDa and 20kDa bands in zymogram. Experiments in buffer systems showed that autolysis was significantly diminished in proMCD mutant, and was promoted by addition of purified PROM. The proC gene was cloned into a multicopy plasmid, and introduced into the proMCD mutant. Compared with the wild type, autolysis of the proC-complemented strain was definitely enhanced by addition of purified PROM. These results suggested that PROM and PROC affected the coccal autolysis, through processing of the autolysin.

  3. Purification and Characterization of a New Thermostable, Haloalkaline, Solvent Stable, and Detergent Compatible Serine Protease from Geobacillus toebii Strain LBT 77

    PubMed Central

    Riahi, Yosra; Belhadj, Omrane

    2016-01-01

    A new thermostable, haloalkaline, solvent stable SDS-induced serine protease was purified and characterized from a thermophilic Geobacillus toebii LBT 77 newly isolated from a Tunisian hot spring. This study reveals the potential of the protease from Geobacillus toebii LBT 77 as an additive to detergent with spectacular proprieties described for the first time. The protease was purified to homogeneity by ammonium sulfate precipitation followed by Sephadex G-75 and DEAE-Cellulose chromatography. It was a monomeric enzyme with molecular weight of 30 kDa. The optimum pH, temperature, and NaCl for maximum protease activity were 13.0, 95°C, and 30%, respectively. Activity was stimulated by Ca2+, Mg2+, DTNB, β-mercaptoethanol, and SDS. The protease was extremely stable even at pH 13.25, 90°C, and 30% NaCl and in the presence of hydrophilic, hydrophobic solvents at high concentrations. The high compatibility with ionic, nonionic, and commercial detergents confirms the utility as an additive to cleaning products. Kinetic and thermodynamic characterization of protease revealed Km = 1 mg mL−1,  Vmax = 217.5 U mL−1, Kcat/Km = 99 mg mL−1 S−1, Ea = 51.5 kJ mol−1, and ΔG⁎ = 56.5 kJ mol−1. PMID:27069928

  4. Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors

    PubMed Central

    Obbard, Darren J; Welch, John J; Little, Tom J

    2009-01-01

    Background Mosquitoes of the Anopheles gambiae species complex are the primary vectors of human malaria in sub-Saharan Africa. Many host genes have been shown to affect Plasmodium development in the mosquito, and so are expected to engage in an evolutionary arms race with the pathogen. However, there is little conclusive evidence that any of these mosquito genes evolve rapidly, or show other signatures of adaptive evolution. Methods Three serine protease inhibitors have previously been identified as candidate immune system genes mediating mosquito-Plasmodium interaction, and serine protease inhibitors have been identified as hot-spots of adaptive evolution in other taxa. Population-genetic tests for selection, including a recent multi-gene extension of the McDonald-Kreitman test, were applied to 16 serine protease inhibitors and 16 other genes sampled from the An. gambiae species complex in both East and West Africa. Results Serine protease inhibitors were found to show a marginally significant trend towards higher levels of amino acid diversity than other genes, and display extensive genetic structuring associated with the 2La chromosomal inversion. However, although serpins are candidate targets for strong parasite-mediated selection, no evidence was found for rapid adaptive evolution in these genes. Conclusion It is well known that phylogenetic and population history in the An. gambiae complex can present special problems for the application of standard population-genetic tests for selection, and this may explain the failure of this study to detect selection acting on serine protease inhibitors. The pitfalls of uncritically applying these tests in this species complex are highlighted, and the future prospects for detecting selection acting on the An. gambiae genome are discussed. PMID:19497100

  5. The Structural Basis of [beta]-Peptide-Specific Cleavage by the Serine Protease Cyanophycinase

    SciTech Connect

    Law, Adrienne M.; Lai, Sandy W.S.; Tavares, John; Kimber, Matthew S.

    2010-10-01

    Cyanophycin, or poly-L-Asp-multi-L-Arg, is a non-ribosomally synthesized peptidic polymer that is used for nitrogen storage by cyanobacteria and other select eubacteria. Upon synthesis, it self-associates to form insoluble granules, the degradation of which is uniquely catalyzed by a carboxy-terminal-specific protease, cyanophycinase. We have determined the structure of cyanophycinase from the freshwater cyanobacterium Synechocystis sp. PCC6803 at 1.5-{angstrom} resolution, showing that the structure is dimeric, with individual protomers resembling aspartyl dipeptidase. Kinetic characterization of the enzyme demonstrates that the enzyme displays Michaelis-Menten kinetics with a k{sub cat} of 16.5 s{sup -1} and a k{sub cat}/K{sub M} of 7.5 x 10{sup -6} M{sup -1} s{sup -1}. Site-directed mutagenesis experiments confirm that cyanophycinase is a serine protease and that Gln101, Asp172, Gln173, Arg178, Arg180 and Arg183, which form a conserved pocket adjacent to the catalytic Ser132, are functionally critical residues. Modeling indicates that cyanophycinase binds the {beta}-Asp-Arg dipeptide residue immediately N-terminal to the scissile bond in an extended conformation in this pocket, primarily recognizing this penultimate {beta}-Asp-Arg residue of the polymeric chain. Because binding and catalysis depend on substrate features unique to {beta}-linked aspartyl peptides, cyanophycinase is able to act within the cytosol without non-specific cleavage events disrupting essential cellular processes.

  6. Blockage of skin invasion by schistosome cercariae by serine protease inhibitors.

    PubMed

    Lim, K C; Sun, E; Bahgat, M; Bucks, D; Guy, R; Hinz, R S; Cullander, C; McKerrow, J H

    1999-03-01

    Invasion of skin by schistosome cercariae is facilitated by a serine protease secreted from the acetabular cells of cercariae in response to skin lipid. Specific inhibitors of the protease, when applied to human skin in formulations designed to retain the inhibitor on and in the upper stratum corneum layers, block cercarial invasion of human skin. Both peptide-based, irreversible inhibitors and non-peptide, reversible inhibitors block cercarial invasion when applied in a propylene glycol:isopropyl alcohol (3:1) formulation in vitro. Arrest of cercarial invasion could be achieved even after immersion of treated skin in water for 2 hr. Peptide-based irreversible inhibitors in the presence of three different Topicare Delivery Compounds optimized arrest of cercarial invasion. The three Topicare Delivery Compounds applied alone prevented 80-100% of cercarial invasion. With inclusion of the inhibitor, there was 97-100% inhibition in vitro. The optimal formulation with inhibitor was then applied to the tails of BALB/c mice, and the mice were exposed to 120 cercariae by tail immersion. With the carrier lotion alone, there was a 50% reduction in worm burden and a 70% reduction in egg burden. When inhibitor was included, an 80% reduction in worm burden and a 92% reduction in egg burden was observed.

  7. Immunogenic recombinant Burkholderia pseudomallei MprA serine protease elicits protective immunity in mice

    PubMed Central

    Chin, Chui-Yoke; Tan, Swee-Chen; Nathan, Sheila

    2012-01-01

    Burkholderia pseudomallei is resistant to a diverse group of antimicrobials including third generation cephalosporins whilst quinolones and aminoglycosides have no reliable effect. As therapeutic options are limited, development of more effective forms of immunotherapy is vital to avoid a fatal outcome. In an earlier study, we reported on the B. pseudomallei serine MprA protease, which is relatively stable over a wide pH and temperature range and digests physiological proteins. The present study was carried out to evaluate the immunogenicity and protective efficacy of the MprA as a potential vaccine candidate. In BALB/c mice immunized with recombinant MprA protease (smBpF4), a significantly high IgG titer was detectable. Isotyping studies revealed that the smBpF4-specific antibodies produced were predominantly IgG1, proposing that immunization with smBpF4 triggered a Th2 immune response. Mice were immunized with smBpF4 and subsequently challenged with B. pseudomallei via the intraperitoneal route. Whilst control mice succumbed to the infection by day 9, smBpF4-immunized mice were protected against the lethal challenge and survived beyond 25 days post-infection. In conclusion, MprA is immunogenic in melioidosis patients whilst also eliciting a strong immune response upon bacterial challenge in mice and presents itself as a potential vaccine candidate for the treatment of melioidosis. PMID:22919676

  8. Structural Basis for Dual-Inhibition Mechanism of a Non-Classical Kazal-Type Serine Protease Inhibitor from Horseshoe Crab in Complex with Subtilisin

    SciTech Connect

    Shenoy, Rajesh T.; Thangamani, Saravanan; Velazquez-Campoy, Adrian; Ho, Bow; Ding, Jeak Ling; Sivaraman, J.; Kursula, Petri

    2011-04-26

    Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki=1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysical interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1:2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation.

  9. Structural basis for dual-inhibition mechanism of a non-classical Kazal-type serine protease inhibitor from horseshoe crab in complex with subtilisin.

    PubMed

    Shenoy, Rajesh T; Thangamani, Saravanan; Velazquez-Campoy, Adrian; Ho, Bow; Ding, Jeak Ling; Sivaraman, J

    2011-01-01

    Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki = 1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysical interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1∶2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation.

  10. Temperature- and sex-related effects of serine protease alleles on larval development in the Glanville fritillary butterfly.

    PubMed

    Ahola, V; Koskinen, P; Wong, S C; Kvist, J; Paulin, L; Auvinen, P; Saastamoinen, M; Frilander, M J; Lehtonen, R; Hanski, I

    2015-12-01

    The body reserves of adult Lepidoptera are accumulated during larval development. In the Glanville fritillary butterfly, larger body size increases female fecundity, but in males fast larval development and early eclosion, rather than large body size, increase mating success and hence fitness. Larval growth rate is highly heritable, but genetic variation associated with larval development is largely unknown. By comparing the Glanville fritillary population living in the Åland Islands in northern Europe with a population in Nantaizi in China, within the source of the post-glacial range expansion, we identified candidate genes with reduced variation in Åland, potentially affected by selection under cooler climatic conditions than in Nantaizi. We conducted an association study of larval growth traits by genotyping the extremes of phenotypic trait distributions for 23 SNPs in 10 genes. Three genes in clip-domain serine protease family were associated with larval growth rate, development time and pupal weight. Additive effects of two SNPs in the prophenoloxidase-activating proteinase-3 (ProPO3) gene, related to melanization, showed elevated growth rate in high temperature but reduced growth rate in moderate temperature. The allelic effects of the vitellin-degrading protease precursor gene on development time were opposite in the two sexes, one genotype being associated with long development time and heavy larvae in females but short development time in males. Sexually antagonistic selection is here evident in spite of sexual size dimorphism.

  11. Complex formation between the hepatitis C virus serine protease and a synthetic NS4A cofactor peptide.

    PubMed

    Bianchi, E; Urbani, A; Biasiol, G; Brunetti, M; Pessi, A; De Francesco, R; Steinkühler, C

    1997-06-24

    The NS3 protein of the hepatitis C virus contains a serine protease that, upon binding to its cofactor, NS4A, is responsible for maturational cleavages that occur in the nonstructural region of the viral polyprotein. We have studied in vitro complex formation between the NS3 protease domain expressed in Escherichia coli and a synthetic peptide spanning the minimal domain of the NS4A cofactor. Complex dissociation constants in the low micromolar range were measured using different techniques such as activity titration, fluorescence titration, and pre-equilibrium analysis of complex formation. Cofactor binding was strictly dependent on the glycerol content of buffer solutions and was not significantly influenced by substrate saturation of the enzyme. NS4A peptide binding to NS3 was accompanied by changes in the circular dichroism spectrum in the region between 270 and 290 nm, as well as by an enhancement of tryptophan fluorescence. Conversely, no changes in the far UV region of the circular dichroism spectrum were detectable. These data are indicative of induced tertiary structure changes and suggest that the secondary structure content of the uncomplexed enzyme does not differ significantly from that of the NS3-cofactor complex. Pre-equilibrium measurements of complex formation showed very low values for k(on), suggesting conformational transitions to be rate limiting for the association reaction.

  12. Granule Associated Serine Proteases of Hematopoietic Cells – An Analysis of Their Appearance and Diversification during Vertebrate Evolution

    PubMed Central

    Akula, Srinivas; Thorpe, Michael; Boinapally, Vamsi; Hellman, Lars

    2015-01-01

    Serine proteases are among the most abundant granule constituents of several hematopoietic cell lineages including mast cells, neutrophils, cytotoxic T cells and NK cells. These proteases are stored in their active form in the cytoplasmic granules and in mammals are encoded from four different chromosomal loci: the chymase locus, the met-ase locus, the T cell tryptase and the mast cell tryptase locus. In order to study their appearance during vertebrate evolution we have performed a bioinformatic analysis of related genes and gene loci from a large panel of metazoan animals from sea urchins to placental mammals for three of these loci: the chymase, met-ase and granzyme A/K loci. Genes related to mammalian granzymes A and K were the most well conserved and could be traced as far back to cartilaginous fish. Here, the granzyme A and K genes were found in essentially the same chromosomal location from sharks to humans. However in sharks, no genes clearly identifiable as members of the chymase or met-ase loci were found. A selection of these genes seemed to appear with bony fish, but sometimes in other loci. Genes related to mammalian met-ase locus genes were found in bony fish. Here, the most well conserved member was complement factor D. However, genes distantly related to the neutrophil proteases were also identified in this locus in several bony fish species, indicating that this locus is also old and appeared at the base of bony fish. In fish, a few of the chymase locus-related genes were found in a locus with bordering genes other than the mammalian chymase locus and some were found in the fish met-ase locus. This indicates that a convergent evolution rather than divergent evolution has resulted in chymase locus-related genes in bony fish. PMID:26569620

  13. Human tryptase epsilon (PRSS22), a new member of the chromosome 16p13.3 family of human serine proteases expressed in airway epithelial cells.

    PubMed

    Wong, G W; Yasuda, S; Madhusudhan, M S; Li, L; Yang, Y; Krilis, S A; Sali, A; Stevens, R L

    2001-12-28

    Probing of the GenBank expressed sequence tag (EST) data base with varied human tryptase cDNAs identified two truncated ESTs that subsequently were found to encode overlapping portions of a novel human serine protease (designated tryptase epsilon or protease, serine S1 family member 22 (PRSS22)). The tryptase epsilon gene resides on chromosome 16p13.3 within a 2.5-Mb complex of serine protease genes. Although at least 7 of the 14 genes in this complex encode enzymatically active proteases, only one tryptase epsilon-like gene was identified. The trachea and esophagus were found to contain the highest steady-state levels of the tryptase epsilon transcript in adult humans. Although the tryptase epsilon transcript was scarce in adult human lung, it was present in abundance in fetal lung. Thus, the tryptase epsilon gene is expressed in the airways in a developmentally regulated manner that is different from that of other human tryptase genes. At the cellular level, tryptase epsilon is a major product of normal pulmonary epithelial cells, as well as varied transformed epithelial cell lines. Enzymatically active tryptase epsilon is also constitutively secreted from these cells. The amino acid sequence of human tryptase epsilon is 38-44% identical to those of human tryptase alpha, tryptase beta I, tryptase beta II, tryptase beta III, transmembrane tryptase/tryptase gamma, marapsin, and Esp-1/testisin. Nevertheless, comparative protein structure modeling and functional studies using recombinant material revealed that tryptase epsilon has a substrate preference distinct from that of its other family members. These data indicate that the products of the chromosome 16p13.3 complex of tryptase genes evolved to carry out varied functions in humans.

  14. High-level expression and characterization of a novel serine protease in Pichia pastoris by multi-copy integration.

    PubMed

    Shu, Min; Shen, Wei; Yang, Shihui; Wang, Xiaojuan; Wang, Fei; Wang, Yaping; Ma, Lixin

    2016-10-01

    A novel serine protease from Trichoderma koningii (SPTK) was synthesized and expressed in Pichia pastoris. The recombinant SPTK was completely inhibited by phenyl methyl sulfonyl fluoride (PMSF), suggesting that SPTK belonged to the subgroup of serine proteases. The optimum pH and temperature for the recombinant SPTK reaction were 6.0 and 55°C, respectively. SPTK performed a tolerance to most organic solvents and metal ions, and the addition of Triton X-100 exhibited an activation of SPTK up to 243% of its initial activity but SDS strongly inhibited. Moreover, our study showed that a portion of SPTK was N-glycosylated during fermentation. The activity and thermal stability of the recombinant SPTK were improved after the removal of glycosylation, and the N-glycosylation of SPTK could be efficiently removed through co-culture with P. pastoris strains expressing Endo-β-N-acetylglucosaminidase H. We constructed expression vectors harboring from one to four repeats of Sptk-expressing cassettes via an in vitro BioBrick assembly approach. And the result of quantitative polymerase chain reaction (qPCR) indicated that the tandem expression cassettes were integrated into the genome of P. pastoris through a single recombination event. These strains were used to study the correlation between the gene copy number and the expression level of SPTK. The results of qPCR and enzyme activity assays indicated that the copy number variation of Sptk gene generally had a positive effect on the expression level of SPTK, while an increase in integration of target gene did not guarantee its high expression. The maximum yield and specific activity of SPTK in P. pastoris were obtained from the recombinant yeast strain harboring two-copy tandem Sptk-expressing cassettes, the yield reached 0.48g/l after a 6-d induction using menthol in shake flasks and 3.2g/l in high-density fermentation with specific activity of 5200U/mg. In addition, the recombinant SPTK could efficiently degrade chicken

  15. High-level expression and characterization of a novel serine protease in Pichia pastoris by multi-copy integration.

    PubMed

    Shu, Min; Shen, Wei; Yang, Shihui; Wang, Xiaojuan; Wang, Fei; Wang, Yaping; Ma, Lixin

    2016-10-01

    A novel serine protease from Trichoderma koningii (SPTK) was synthesized and expressed in Pichia pastoris. The recombinant SPTK was completely inhibited by phenyl methyl sulfonyl fluoride (PMSF), suggesting that SPTK belonged to the subgroup of serine proteases. The optimum pH and temperature for the recombinant SPTK reaction were 6.0 and 55°C, respectively. SPTK performed a tolerance to most organic solvents and metal ions, and the addition of Triton X-100 exhibited an activation of SPTK up to 243% of its initial activity but SDS strongly inhibited. Moreover, our study showed that a portion of SPTK was N-glycosylated during fermentation. The activity and thermal stability of the recombinant SPTK were improved after the removal of glycosylation, and the N-glycosylation of SPTK could be efficiently removed through co-culture with P. pastoris strains expressing Endo-β-N-acetylglucosaminidase H. We constructed expression vectors harboring from one to four repeats of Sptk-expressing cassettes via an in vitro BioBrick assembly approach. And the result of quantitative polymerase chain reaction (qPCR) indicated that the tandem expression cassettes were integrated into the genome of P. pastoris through a single recombination event. These strains were used to study the correlation between the gene copy number and the expression level of SPTK. The results of qPCR and enzyme activity assays indicated that the copy number variation of Sptk gene generally had a positive effect on the expression level of SPTK, while an increase in integration of target gene did not guarantee its high expression. The maximum yield and specific activity of SPTK in P. pastoris were obtained from the recombinant yeast strain harboring two-copy tandem Sptk-expressing cassettes, the yield reached 0.48g/l after a 6-d induction using menthol in shake flasks and 3.2g/l in high-density fermentation with specific activity of 5200U/mg. In addition, the recombinant SPTK could efficiently degrade chicken

  16. Serine protease identification (in vitro) and molecular structure predictions (in silico) from a phytopathogenic fungus, Alternaria solani.

    PubMed

    Chandrasekaran, Murugesan; Chandrasekar, Raman; Sa, Tongmin; Sathiyabama, Muthukrishnan

    2014-07-01

    Serine proteases are involved in an enormous number of biological processes. The present study aims at characterizing three-dimensional (3D) molecular architecture of serine proteases from early blight pathogen, Alternaria solani that are hypothesized to be markers of phytopathogenicity. A serine protease was purified to homogeneity and MALDI-TOF-MS/MS analysis revealed that protease produced by A. solani belongs to alkaline serine proteases (AsP). AsP is made up of 403 amino acid residues with molecular weight of 42.1 kDa (Isoelectric point - 6.51) and its molecular formula was C1859 H2930 N516 O595 S4 . AsP structure model was built based on its comparative homology with serine protease using the program, MODELER. AsP had 16 β-sheets and 10 α-helices, with Ser(350) (G347-G357), Asp(158) (D158-H169), and His(193) (H193-G203) in separate turn/coil structures. Biological metal binding region situated near 6th-helix and His(193) residue is responsible for metal binding site. Also, calcium ion (Ca(2+)) is coordinated by the carboxyl groups of Lys(84), Ile(85), Lys(86), Asp(87), Phe(88), Ala(89), Ala(90) (K84-A90) for first Ca(2+) binding site and carbonyl oxygen atom of Lys(244), Gly(245), Arg(246), Thr(247), Lys(248), Lys(249), and Ala(250) (K244-A250), for second Ca(2+) binding site. Moreover, Ramachandran plot analysis of protein residues falling into most favored secondary structures were determined (83.3%). The predicted molecular 3D structural model was further verified using PROCHECK, ERRAT, and VADAR servers to confirm the geometry and stereo-chemical parameters of the molecular structural design. The functional analysis of AsP 3D molecular structure predictions familiar in the current study may provide a new perspective in the understanding and identification of antifungal protease inhibitor designing. PMID:24122785

  17. Serine protease identification (in vitro) and molecular structure predictions (in silico) from a phytopathogenic fungus, Alternaria solani.

    PubMed

    Chandrasekaran, Murugesan; Chandrasekar, Raman; Sa, Tongmin; Sathiyabama, Muthukrishnan

    2014-07-01

    Serine proteases are involved in an enormous number of biological processes. The present study aims at characterizing three-dimensional (3D) molecular architecture of serine proteases from early blight pathogen, Alternaria solani that are hypothesized to be markers of phytopathogenicity. A serine protease was purified to homogeneity and MALDI-TOF-MS/MS analysis revealed that protease produced by A. solani belongs to alkaline serine proteases (AsP). AsP is made up of 403 amino acid residues with molecular weight of 42.1 kDa (Isoelectric point - 6.51) and its molecular formula was C1859 H2930 N516 O595 S4 . AsP structure model was built based on its comparative homology with serine protease using the program, MODELER. AsP had 16 β-sheets and 10 α-helices, with Ser(350) (G347-G357), Asp(158) (D158-H169), and His(193) (H193-G203) in separate turn/coil structures. Biological metal binding region situated near 6th-helix and His(193) residue is responsible for metal binding site. Also, calcium ion (Ca(2+)) is coordinated by the carboxyl groups of Lys(84), Ile(85), Lys(86), Asp(87), Phe(88), Ala(89), Ala(90) (K84-A90) for first Ca(2+) binding site and carbonyl oxygen atom of Lys(244), Gly(245), Arg(246), Thr(247), Lys(248), Lys(249), and Ala(250) (K244-A250), for second Ca(2+) binding site. Moreover, Ramachandran plot analysis of protein residues falling into most favored secondary structures were determined (83.3%). The predicted molecular 3D structural model was further verified using PROCHECK, ERRAT, and VADAR servers to confirm the geometry and stereo-chemical parameters of the molecular structural design. The functional analysis of AsP 3D molecular structure predictions familiar in the current study may provide a new perspective in the understanding and identification of antifungal protease inhibitor designing.

  18. Proteases as Insecticidal Agents

    PubMed Central

    Harrison, Robert L.; Bonning, Bryony C.

    2010-01-01

    Proteases from a variety of sources (viruses, bacteria, fungi, plants, and insects) have toxicity towards insects. Some of these insecticidal proteases evolved as venom components, herbivore resistance factors, or microbial pathogenicity factors, while other proteases play roles in insect development or digestion, but exert an insecticidal effect when over-expressed from genetically engineered plants or microbial pathogens. Many of these proteases are cysteine proteases, although insect-toxic metalloproteases and serine proteases have also been examined. The sites of protease toxic activity range from the insect midgut to the hemocoel (body cavity) to the cuticle. This review discusses these insecticidal proteases along with their evaluation and use as potential pesticides. PMID:22069618

  19. Cloning, expression, and immunological evaluation of two putative secreted serine protease antigens of Mycobacterium tuberculosis.

    PubMed

    Skeiky, Y A; Lodes, M J; Guderian, J A; Mohamath, R; Bement, T; Alderson, M R; Reed, S G

    1999-08-01

    Culture filtrate proteins (CFP) of Mycobacterium tuberculosis have been shown to contain immunogenic components that elicit at least partial protective immunity against Mycobacterium infection. To clone genes encoding some of the immunogenic proteins, we made a high-titer rabbit anti-CFP serum and used it to screen an M. tuberculosis genomic expression library in Escherichia coli. In this paper, we describe the molecular cloning of two new protein components of CFP and identified them as members of the serine protease gene family. Their open reading frames contain N-terminal hydrophobic secretory signals consistent with their detection in CFP. The predicted molecular masses of the mature, fully processed forms of both antigens are approximately 32 kDa, in agreement with their observed sizes on immunoblots of CFP probed with polyclonal rabbit antisera made to the recombinant proteins. Thus, these proteins have been designated MTB32A and MTB32B. Interestingly, and despite 66% amino acid sequence homology between the two proteins, polyclonal rabbit antisera made to each of the recombinant proteins were found to be specific for the respective immunizing antigens. The recombinant proteins were also evaluated in in vitro assays with donor peripheral blood mononuclear cells (PBMC) from healthy purified protein derivative (PPD)-positive individuals of diverse ethnic backgrounds. MTB32A but not MTB32B stimulated PBMC from healthy PPD-positive donors but not from PPD-negative donors to proliferate and secrete gamma interferon. MTB32A is encoded by a single-copy gene which is present in both virulent and avirulent strains of the M. tuberculosis complex and the BCG strain of Mycobacterium bovis but absent in the environmental mycobacterial species tested. In addition, nucleotide sequence comparison of mtb32a of the avirulent H37Ra strain and the virulent Erdman strain, as well as with the corresponding sequences (identified in the databases) of strain H37Rv and the clinical

  20. Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: purification, characterization and potential application as a laundry detergent additive.

    PubMed

    Haddar, Anissa; Agrebi, Rym; Bougatef, Ali; Hmidet, Noomen; Sellami-Kamoun, Alya; Nasri, Moncef

    2009-07-01

    Two detergent stable alkaline serine-proteases (BM1 and BM2) from Bacillus mojavensis A21 were purified. The molecular weights of BM1 and BM2 enzymes determined by SDS-PAGE were approximately 29,00 Da and 15,50 Da, respectively. The optimum pH values of BM1 and BM2 proteases were shown to be 8.0-10.0 and 10.0, respectively. Both enzymes exhibited maximal activity at 60 degrees C, using casein as a substrate. The N-terminal amino acid sequences of BM1 and BM2 proteases were AQSVPYGISQIKA and AIPDQAATTLL, respectively. Both proteases showed high stability towards non-ionic surfactants. The enzymes were found to be relatively stable towards oxidizing agents. In addition, both enzymes showed excellent stability and compatibility with a wide range of commercial liquid and solid detergents. These properties and the high activity in high alkaline pH make these proteases an ideal choice for application in detergent formulations.

  1. Investigations on a hyper-proteolytic mutant of Beauveria bassiana: broad substrate specificity and high biotechnological potential of a serine protease.

    PubMed

    Borgi, Ines; Gargouri, Ali

    2014-02-01

    A new strain of Beauveria bassiana was identified on the basis of the 18S rRNA gene sequence homology. This strain, called P2, is a spontaneously arisen mutant that was isolated after successive sub-culturing the wild-type B. bassiana P1 strain. P2 showed hyper-production of extracellular protease(s) as much as ninefold more than P1. An extracellular protease (SBP) having a molecular weight of 32 kDa was purified from the P2 strain. SBP was completely inhibited by the phenyl methyl sulphonyl fluoride, which suggests that it belongs to the serine protease family. Based on the homology analysis of its N-terminal and the gene sequences, the enzyme was identified as subtilisin. The enzyme displays maximum activity at 60 °C and pH 8, and was stable at pH 6-12. The enzyme hydrolyses natural proteins such as keratin and is activated in presence of β-mercaptoethanol and Tween detergents. SBP was compatible with some laundry detergent formulations and showed high efficacy in the removal of blood stains from cotton fabric. Moreover, it was observed to degrade the melanised feathers and to hydrolyse the gelatine from X-ray films. All these results highlight the suitability of SBP protease as a very efficient microbial bio-resource.

  2. Serine Protease-mediated Host Invasion by the Parasitic Nematode Steinernema carpocapsae*

    PubMed Central

    Toubarro, Duarte; Lucena-Robles, Miguel; Nascimento, Gisela; Santos, Romana; Montiel, Rafael; Veríssimo, Paula; Pires, Euclides; Faro, Carlos; Coelho, Ana V.; Simões, Nelson

    2010-01-01

    Steinernema carpocapsae is an insect parasitic nematode used in biological control, which infects insects penetrating by mouth and anus and invading the hemocoelium through the midgut wall. Invasion has been described as a key factor in nematode virulence and suggested to be mediated by proteases. A serine protease cDNA from the parasitic stage was sequenced (sc-sp-1); the recombinant protein was produced in an Escherichia coli system, and a native protein was purified from the secreted products. Both proteins were confirmed by mass spectrometry to be encoded by the sc-sp-1 gene. Sc-SP-1 has a pI of 8.7, a molecular mass of 27.3 kDa, a catalytic efficiency of 22.2 × 104 s−1 m−1 against N-succinyl-Ala-Ala-Pro-Phe-pNA, and is inhibited by chymostatin (IC 0.07) and PMSF (IC 0.73). Sc-SP-1 belongs to the chymotrypsin family, based on sequence and biochemical analysis. Only the nematode parasitic stage expressed sc-sp-1. These nematodes in the midgut lumen, prepared to invade the insect hemocoelium, expressed higher levels than those already in the hemocoelium. Moreover, parasitic nematode sense insect peritrophic membrane and hemolymph more quickly than they do other tissues, which initiates sc-sp-1 expression. Ex vivo, Sc-SP-1 was able to bind to insect midgut epithelium and to cause cell detachment from basal lamina. In vitro, Sc-SP-1 formed holes in an artificial membrane model (Matrigel), whereas Sc-SP-1 treated with PMSF did not, very likely because it hydrolyzes matrix glycoproteins. These findings highlight the S. carpocapsae-invasive process that is a key step in the parasitism thus opening new perspectives for improving nematode virulence to use in biological control. PMID:20656686

  3. Differential protease activity augments polyphagy in Helicoverpa armigera.

    PubMed

    Chikate, Y R; Tamhane, V A; Joshi, R S; Gupta, V S; Giri, A P

    2013-06-01

    Helicoverpa armigera (Lepidoptera: Noctuidae) and other polyphagous agricultural pests are extending their plant host range and emerging as serious agents in restraining crop productivity. Dynamic regulation, coupled with a diversity of digestive and detoxifying enzymes, play a crucial role in the adaptation of polyphagous insects. To investigate the functional intricacy of serine proteases in the development and polyphagy of H. armigera, we profiled the expression of eight trypsin-like and four chymotrypsin-like phylogenetically diverse mRNAs from different life stages of H. armigera reared on nutritionally distinct host plants. These analyses revealed diet- and stage-specific protease expression patterns. The trypsins expressed showed structural variations, which might result in differential substrate specificity and interaction with inhibitors. Protease profiles in the presence of inhibitors and their mass spectrometric analyses revealed insight into their differential activity. These findings emphasize the differential expression of serine proteases and their consequences for digestive physiology in promoting polyphagy in H. armigera. PMID:23432026

  4. Biotechnology of Cold-Active Proteases

    PubMed Central

    Joshi, Swati; Satyanarayana, Tulasi

    2013-01-01

    The bulk of Earth’s biosphere is cold (<5 °C) and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes) have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth’s surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review. PMID:24832807

  5. Structural role of Gly(193) in serine proteases: investigations of a G555E (GLY193 in chymotrypsin) mutant of blood coagulation factor XI.

    PubMed

    Schmidt, Amy E; Ogawa, Taketoshi; Gailani, David; Bajaj, S Paul

    2004-07-01

    In serine proteases, Gly(193) is highly conserved with few exceptions. A patient with inherited deficiency of the coagulation serine protease factor XI (FXI) was reported to be homozygous for a Gly(555) --> Glu substitution. Gly(555) in FXI corresponds to Gly(193) in chymotrypsin, which is the numbering system used subsequently. To investigate the abnormality in FXI(G193E), we expressed and purified recombinant FXIa(G193E), activated it to FXIa(G193E), and compared its activity to wild type-activated FXI (FXIa(WT)). FXIa(G193E) activated FIX with approximately 300-fold reduced k(cat) and similar K(m), and hydrolyzed synthetic substrate with approximately 10-fold reduced K(m) and modestly reduced k(cat). Binding of antithrombin and the amyloid beta-precursor protein Kunitz domain inhibitor (APPI) to FXIa(G193E) was impaired approximately 8000- and approximately 100000-fold, respectively. FXIa(G193E) inhibition by diisopropyl fluoro-phosphate was approximately 30-fold slower and affinity for p-aminobenzamidine (S1 site probe) was 6-fold weaker than for FXIa(WT). The rate of carbamylation of NH(2)-Ile(16), which forms a salt bridge with Asp(194) in active serine proteases, was 4-fold faster for FXIa(G193E). These data indicate that the unoccupied active site of FXIa(G193E) is incompletely formed, and the amide N of Glu(193) may not point toward the oxyanion hole. Inclusion of saturating amounts of p-aminobenzamidine resulted in comparable rates of carbamylation for FXIa(WT) and FXIa(G193E), suggesting that the occupied active site has near normal conformation. Thus, binding of small synthetic substrates or inhibitors provides sufficient energy to allow the amide N of Glu(193) to point correctly toward the oxyanion hole. Homology modeling also indicates that the inability of FXIa(G193E) to bind antithrombin/APPI or activate FIX is caused, in part, by impaired accessibility of the S2' site because of a steric clash with Glu(193). Such arguments will apply to other

  6. Further theoretical insight into the reaction mechanism of the hepatitis C NS3/NS4A serine protease

    NASA Astrophysics Data System (ADS)

    Martínez-González, José Ángel; Rodríguez, Alex; Puyuelo, María Pilar; González, Miguel; Martínez, Rodrigo

    2015-01-01

    The main reactions of the hepatitis C virus NS3/NS4A serine protease are studied using the second-order Møller-Plesset ab initio method and rather large basis sets to correct the previously reported AM1/CHARMM22 potential energy surfaces. The reaction efficiencies measured for the different substrates are explained in terms of the tetrahedral intermediate formation step (the rate-limiting process). The energies of the barrier and the corresponding intermediate are so close that the possibility of a concerted mechanism is open (especially for the NS5A/5B substrate). This is in contrast to the suggested general reaction mechanism of serine proteases, where a two-step mechanism is postulated.

  7. In vivo and in vitro inhibition of Spodoptera littoralis gut-serine protease by protease inhibitors isolated from maize and sorghum seeds.

    PubMed

    El-latif, Ashraf Oukasha Abd

    2014-11-01

    Seeds of cereals (Gramineae) are a rich source of serine proteinase inhibitors of most of the several inhibitor families. In the present study, trypsin and chymotrypsin inhibitory activities was detected in the seed flour extracts of three varieties of maize (Zea maize) and six varieties of sorghum (Sorghum bicolor). The maize variety, Hi Teck 2031 and the sorghum variety, Giza 10 were found to have higher trypsin and chymotrypsin inhibitory potentials compared to other tested varieties for which they have been selected for further purification studies using ammonium sulfate fractionation and DEAE-Sephadex A-25 column. Maize and sorghum purified proteins showed a single band on SDS-PAGE corresponding to molecular mass of 20.0 and 15.2 kDa for maize and sorghum PIs respectively. The purified inhibitors were stable at temperature below 60 °C and were active at wide range of pH from 2 to 12 pH. The kinetic analysis revealed non-competitive type of inhibition for both inhibitors against both enzymes. The inhibitor constant (Ki) values suggested high affinity between inhibitors and enzymes. Purified inhibitors were found to have deep and negative effects on the mean larval weight, larval mortality, pupation and mean pupal weight of S.littoralis where maize PI was more effective than sorghum PI. It may be concluded that maize and sorghum protease inhibitor gene(s) could be potential targets for future studies in developing insect resistant transgenic plants.

  8. Endogenous Protease Activation of ENaC

    PubMed Central

    Adebamiro, Adedotun; Cheng, Yi; Johnson, John P.; Bridges, Robert J.

    2005-01-01

    Endogenous serine proteases have been reported to control the reabsorption of Na+ by kidney- and lung-derived epithelial cells via stimulation of electrogenic Na+ transport mediated by the epithelial Na+ channel (ENaC). In this study we investigated the effects of aprotinin on ENaC single channel properties using transepithelial fluctuation analysis in the amphibian kidney epithelium, A6. Aprotinin caused a time- and concentration-dependent inhibition (84 ± 10.5%) in the amiloride-sensitive sodium transport (INa) with a time constant of 18 min and half maximal inhibition constant of 1 μM. Analysis of amiloride analogue blocker–induced fluctuations in INa showed linear rate–concentration plots with identical blocker on and off rates in control and aprotinin-inhibited conditions. Verification of open-block kinetics allowed for the use of a pulse protocol method (Helman, S.I., X. Liu, K. Baldwin, B.L. Blazer-Yost, and W.J. Els. 1998. Am. J. Physiol. 274:C947–C957) to study the same cells under different conditions as well as the reversibility of the aprotinin effect on single channel properties. Aprotinin caused reversible changes in all three single channel properties but only the change in the number of open channels was consistent with the inhibition of INa. A 50% decrease in INa was accompanied by 50% increases in the single channel current and open probability but an 80% decrease in the number of open channels. Washout of aprotinin led to a time-dependent restoration of INa as well as the single channel properties to the control, pre-aprotinin, values. We conclude that protease regulation of INa is mediated by changes in the number of open channels in the apical membrane. The increase in the single channel current caused by protease inhibition can be explained by a hyperpolarization of the apical membrane potential as active Na+ channels are retrieved. The paradoxical increase in channel open probability caused by protease inhibition will require further

  9. Activation of intracellular serine proteinase in Bacillus subtilis cells during sporulation.

    PubMed Central

    Burnett, T J; Shankweiler, G W; Hageman, J H

    1986-01-01

    Cells of Bacillus subtilis 168 (trpC2) growing and sporulating in a single chemically defined medium carried out intracellular protein degradation and increased their levels of intracellular serine protease-1 in a manner very similar to what had previously been reported for cells sporulating in nutrient broth. The results were interpreted to mean that these processes are intrinsic to sporulation rather than medium dependent. To determine the cause of these increases in specific activity of proteinases, we purified the protease, prepared rabbit immunoglobulins directed against it, and monitored changes in protease antigen levels by performing rocket immunoelectrophoresis. In cells sporulating in nutrient broth, the protease antigen levels increased about 7-fold, whereas the specific activity increased about 150-fold, for an activation of about 20-fold. In cells sporulating in the single chemically defined sporulation medium, the protease antigen increased about 10-fold, whereas the specific activity increased at least 400-fold, for an activation of about 40-fold. These results were interpreted to mean that a posttranslational event activated the protease in vivo; a previously described endogenous proteinase inhibitor was confirmed to be present in the strain used. Chloramphenicol added to the cultures inhibited both the increases in antigen levels and in the specific activity of the proteinase. PMID:3079745

  10. Probing the substrate specificity of hepatitis C virus NS3 serine protease by using synthetic peptides.

    PubMed Central

    Zhang, R; Durkin, J; Windsor, W T; McNemar, C; Ramanathan, L; Le, H V

    1997-01-01

    We probed the substrate specificity of a recombinant noncovalent complex of the full-length hepatitis C virus (HCV) NS3 serine protease and NS4A cofactor, using a series of small synthetic peptides derived from the three trans-cleavage sites of the HCV nonstructural protein sequence. We observed a distinct cleavage site preference exhibited by the enzyme complex. The values of the turnover number (k(cat)) for the most efficient NS4A/4B, 4B/5A, and 5A/5B peptide substrates were 1.6, 11, and 8 min(-1), respectively, and the values for the corresponding Michaelis-Menten constants (Km) were 280, 160, and 16 microM, providing catalytic efficiency values (k(cat)/Km) of 92, 1,130, and 8,300 M(-1) s(-1). An alanine-scanning study for an NS5A/5B substrate (P6P4') revealed that P1 Cys and P3 Val were critical. Finally, substitutions at the scissile P1 Cys residue by homocysteine (Hcy), S-methylcysteine (Mcy), Ala, S-ethylcysteine (Ecy), Thr, Met, D-Cys, Ser, and penicillamine (Pen) produced progressively less efficient substrates, revealing a stringent stereochemical requirement for a Cys residue at this position. PMID:9223519

  11. Effect of the Solvent Temperatures on Dynamics of Serine Protease Proteinase K.

    PubMed

    Sang, Peng; Yang, Qiong; Du, Xing; Yang, Nan; Yang, Li-Quan; Ji, Xing-Lai; Fu, Yun-Xin; Meng, Zhao-Hui; Liu, Shu-Qun

    2016-01-01

    To obtain detailed information about the effect of the solvent temperatures on protein dynamics, multiple long molecular dynamics (MD) simulations of serine protease proteinase K with the solute and solvent coupled to different temperatures (either 300 or 180 K) have been performed. Comparative analyses demonstrate that the internal flexibility and mobility of proteinase K are strongly dependent on the solvent temperatures but weakly on the protein temperatures. The constructed free energy landscapes (FELs) at the high solvent temperatures exhibit a more rugged surface, broader spanning range, and higher minimum free energy level than do those at the low solvent temperatures. Comparison between the dynamic hydrogen bond (HB) numbers reveals that the high solvent temperatures intensify the competitive HB interactions between water molecules and protein surface atoms, and this in turn exacerbates the competitive HB interactions between protein internal atoms, thus enhancing the conformational flexibility and facilitating the collective motions of the protein. A refined FEL model was proposed to explain the role of the solvent mobility in facilitating the cascade amplification of microscopic motions of atoms and atomic groups into the global collective motions of the protein. PMID:26907253

  12. Serine protease inhibitor antithrombin III and its messenger RNA in the pathogenesis of Alzheimer's disease.

    PubMed Central

    Kalaria, R. N.; Golde, T.; Kroon, S. N.; Perry, G.

    1993-01-01

    The classical plasma protein antithrombin III (ATIII), an inhibitor of the blood coagulation cascade, is a member of the serpins that are gaining import in the nervous system. In this study, we examined the presence of ATIII in the pathological lesions of Alzheimer's disease (AD). Antibodies to ATIII consistently detected approximately 58-kd protein(s) on immunoblots of cerebral cortex and brain microvessels. Immunocytochemical studies showed ATIII reactivity within amyloid deposits, neurites associated with plaques, and neurofibrillary tangles in neocortex and hippocampus of virtually all the AD cases examined. In some cases, astrocytes were also stained, suggesting ATIII in these cells. ATIII immunoreactivity in neurofibrillary tangles was further defined by electron microscopy, which showed it to be associated with paired helical filaments. Using the polymerase chain reaction technique to amplify ATIII complementary DNA, we found low levels of messenger RNA expression, relative to liver, in control human brain samples, and these were increased in AD samples, particularly in the white matter. Our results suggest the increased presence of ATIII commensurate with astrogliosis and association with the neurofibrillary pathology of AD. We conclude that in concert with other amyloid-associated serine protease inhibitors, ATIII may play a role in the pathogenesis of cerebral amyloidosis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8362984

  13. Serine protease inhibitor 6 is required to protect dendritic cells from the kiss of death.

    PubMed

    Lovo, Elena; Zhang, Manling; Wang, Lihui; Ashton-Rickardt, Philip G

    2012-02-01

    How dendritic cells (DC) present Ag to cytotoxic T cells (CTL) without themselves being killed through contact-mediated cytotoxicity (so-called kiss of death) has proved to be controversial. Using mice deficient in serine protease inhibitor 6 (Spi6), we show that Spi6 protects DC from the kiss of death by inhibiting granzyme B (GrB) delivered by CTL. Infection of Spi6 knockout mice with lymphocytic choriomeningitis virus revealed impaired survival of CD8α DC. The impaired survival of Spi6 knockout CD8α DC resulted in impaired priming and expansion of both primary and memory lymphocytic choriomeningitis virus-specific CTL, which could be corrected by GrB deficiency. The rescue in the clonal burst obtained by GrB elimination demonstrated that GrB was the physiological target through which Spi6 protected DC from CTL. We conclude that the negative regulation of DC priming of CD8 T lymphocyte immunity by CTL killing is mitigated by the physiological inhibition of GrB by Spi6.

  14. Distribution of the Serine Protease Autotransporters of the Enterobacteriaceae among Extraintestinal Clinical Isolates of Escherichia coli

    PubMed Central

    Parham, Nick J.; Pollard, Samantha J.; Desvaux, Mickaël; Scott-Tucker, Anthony; Liu, Chengjie; Fivian, Amanda; Henderson, Ian R.

    2005-01-01

    Urinary tract infections continue to be among the most common extraintestinal diseases. Cystitis in women is by far the most common urinary tract infection; pyelonephritis in both sexes and prostatitis in men are more severe but less frequent complaints. Escherichia coli is by far the most common cause of urinary tract infection. It is believed that uropathogenic E. coli is adept at colonizing the urinary tract via the production of specific virulence factors. Recently, a novel virulence determinant, Vat, was described for the prototypical uropathogenic E. coli strain CFT073. Vat is a member of the SPATE (serine protease autotransporters of the Enterobacteriaceae) subfamily of the autotransporters. Previously, SPATEs have been described for all pathovars of E. coli, but until recently their presence had been noticeably absent in nonpathogenic E. coli. In this report we describe the prevalence and phylogenetic distribution of the SPATEs among uropathogenic E. coli and the ECOR collection, demonstrating an association between the presence of the SPATEs, including Vat, and uropathogenic E. coli phylogroups. In addition, we describe the distribution of SPATEs among nonpathogenic E. coli. PMID:16081954

  15. Structural Characterization of Mouse Neutrophil Serine Proteases and Identification of Their Substrate Specificities

    PubMed Central

    Kalupov, Timofey; Brillard-Bourdet, Michèle; Dadé, Sébastien; Serrano, Hélène; Wartelle, Julien; Guyot, Nicolas; Juliano, Luiz; Moreau, Thierry; Belaaouaj, Azzaq; Gauthier, Francis

    2009-01-01

    It is widely accepted that neutrophil serine proteases (NSPs) play a critical role in neutrophil-associated lung inflammatory and tissue-destructive diseases. To investigate NSP pathogenic role(s), various mouse experimental models have been developed that mimic acutely or chronically injured human lungs. We and others are using mouse exposure to cigarette smoke as a model for chronic obstructive pulmonary disease with or without exacerbation. However, the relative contribution of NSPs to lung disease processes as well as their underlying mechanisms remains still poorly understood. And the lack of purified mouse NSPs and their specific substrates have hampered advances in these studies. In this work, we compared mouse and human NSPs and generated three-dimensional models of murine NSPs based on three-dimensional structures of their human homologs. Analyses of these models provided compelling evidence that peptide substrate specificities of human and mouse NSPs are different despite their conserved cleft and close structural resemblance. These studies allowed us to synthesize for the first time novel sensitive fluorescence resonance energy transfer substrates for individual mouse NSPs. Our findings and the newly identified substrates should better our understanding about the role of NSPs in the pathogenesis of cigarette-associated chronic obstructive pulmonary disease as well as other neutrophils-associated inflammatory diseases. PMID:19833730

  16. Effect of the Solvent Temperatures on Dynamics of Serine Protease Proteinase K

    PubMed Central

    Sang, Peng; Yang, Qiong; Du, Xing; Yang, Nan; Yang, Li-Quan; Ji, Xing-Lai; Fu, Yun-Xin; Meng, Zhao-Hui; Liu, Shu-Qun

    2016-01-01

    To obtain detailed information about the effect of the solvent temperatures on protein dynamics, multiple long molecular dynamics (MD) simulations of serine protease proteinase K with the solute and solvent coupled to different temperatures (either 300 or 180 K) have been performed. Comparative analyses demonstrate that the internal flexibility and mobility of proteinase K are strongly dependent on the solvent temperatures but weakly on the protein temperatures. The constructed free energy landscapes (FELs) at the high solvent temperatures exhibit a more rugged surface, broader spanning range, and higher minimum free energy level than do those at the low solvent temperatures. Comparison between the dynamic hydrogen bond (HB) numbers reveals that the high solvent temperatures intensify the competitive HB interactions between water molecules and protein surface atoms, and this in turn exacerbates the competitive HB interactions between protein internal atoms, thus enhancing the conformational flexibility and facilitating the collective motions of the protein. A refined FEL model was proposed to explain the role of the solvent mobility in facilitating the cascade amplification of microscopic motions of atoms and atomic groups into the global collective motions of the protein. PMID:26907253

  17. Effect of the Solvent Temperatures on Dynamics of Serine Protease Proteinase K.

    PubMed

    Sang, Peng; Yang, Qiong; Du, Xing; Yang, Nan; Yang, Li-Quan; Ji, Xing-Lai; Fu, Yun-Xin; Meng, Zhao-Hui; Liu, Shu-Qun

    2016-02-19

    To obtain detailed information about the effect of the solvent temperatures on protein dynamics, multiple long molecular dynamics (MD) simulations of serine protease proteinase K with the solute and solvent coupled to different temperatures (either 300 or 180 K) have been performed. Comparative analyses demonstrate that the internal flexibility and mobility of proteinase K are strongly dependent on the solvent temperatures but weakly on the protein temperatures. The constructed free energy landscapes (FELs) at the high solvent temperatures exhibit a more rugged surface, broader spanning range, and higher minimum free energy level than do those at the low solvent temperatures. Comparison between the dynamic hydrogen bond (HB) numbers reveals that the high solvent temperatures intensify the competitive HB interactions between water molecules and protein surface atoms, and this in turn exacerbates the competitive HB interactions between protein internal atoms, thus enhancing the conformational flexibility and facilitating the collective motions of the protein. A refined FEL model was proposed to explain the role of the solvent mobility in facilitating the cascade amplification of microscopic motions of atoms and atomic groups into the global collective motions of the protein.

  18. Water miscible mono alcohols' effect on the proteolytic performance of Bacillus clausii serine alkaline protease.

    PubMed

    Duman, Yonca Avci; Kazan, Dilek; Denizci, Aziz Akin; Erarslan, Altan

    2014-01-01

    In this study, our investigations showed that the increasing concentrations of all examined mono alcohols caused a decrease in the Vm, kcat and kcat/Km values of Bacillus clausii GMBE 42 serine alkaline protease for casein hydrolysis. However, the Km value of the enzyme remained almost the same, which was an indicator of non-competitive inhibition. Whereas inhibition by methanol was partial non-competitive, inhibition by the rest of the alcohols tested was simple non-competitive. The inhibition constants (KI) were in the range of 1.32-3.10 M, and the order of the inhibitory effect was 1-propanol>2-propanol>methanol>ethanol. The ΔG(≠) and ΔG(≠)E-T values of the enzyme increased at increasing concentrations of all alcohols examined, but the ΔG(≠)ES value of the enzyme remained almost the same. The constant Km and ΔG(≠)ES values in the presence and absence of mono alcohols indicated the existence of different binding sites for mono alcohols and casein on enzyme the molecule. The kcat of the enzyme decreased linearly by increasing log P and decreasing dielectric constant (D) values, but the ΔG(≠) and ΔG(≠)E-T values of the enzyme increased by increasing log P and decreasing D values of the reaction medium containing mono alcohols. PMID:24092453

  19. Herbivore damage-induced production and specific anti-digestive function of serine and cysteine protease inhibitors in tall goldenrod, Solidago altissima L. (Asteraceae).

    PubMed

    Bode, Robert F; Halitschke, Rayko; Kessler, André

    2013-05-01

    Plant protease inhibitors (PIs) are among the most well-studied and widely distributed resistance traits that plants use against their herbivore attackers. There are different types of plant PIs which putatively function against the different types of proteases expressed in insect guts. Serine protease inhibitors (SPIs) and cysteine protease inhibitors (CPIs) are hypothesized to differentially function against the predominant gut proteases in lepidopteran and coleopteran herbivores, respectively. Here, we test the hypothesis that tall goldenrod, Solidago altissima, can specifically respond to damage by different herbivores and differentially induce SPIs and CPIs in response to damage by lepidopteran and coleopteran herbivores. Moreover, we ask if the concerted induction of different types of PIs accounts for variation in induced resistance to herbivory. We altered and optimized a rapid and effective existing methodology to quantitatively analyze both SPI and CPI activity simultaneously from a single tissue sample and to use the same plant extracts directly for characterization of inhibitory effects on insect gut protease activity. We found that both SPIs and CPIs are induced in S. altissima in response to damage, regardless of the damaging herbivore species. However, only SPIs were effective against Spodoptera exigua gut proteases. Our data suggest that plant PI responses are not necessarily specific to the identity of the attacking organism but that different components of generally induced defense traits can specifically affect different herbivore species. While providing an efficient and broadly applicable methodology to analyze multiple PIs extracted from the same tissue, this study furthers our understanding of specificity in induced plant resistance. PMID:23371287

  20. Crystallization of a Nonclassical Kazal-type Carcinoscorpius Rotundicauda Serine Protease Inhibitor, CrSPI-1, Complexed with Subtilisin

    SciTech Connect

    Tulsidas, S.; Thangamani, S; Ho, B; Sivaraman, J; Ding, J

    2009-01-01

    Serine proteases play a major role in host-pathogen interactions. The innate immune system is known to respond to invading pathogens in a nonspecific manner. The serine protease cascade is an essential component of the innate immune system of the horseshoe crab. The serine protease inhibitor CrSPI isoform 1 (CrSPI-1), a unique nonclassical Kazal-type inhibitor of molecular weight 9.3 kDa, was identified from the hepatopancreas of the horseshoe crab Carcinoscorpius rotundicauda. It potently inhibits subtilisin and constitutes a powerful innate immune defence against invading microbes. Here, the cloning, expression, purification and cocrystallization of CrSPI-1 with subtilisin are reported. The crystals diffracted to 2.6 {angstrom}resolution and belonged to space group P2{sub 1}, with unit-cell parameters a = 73.8, b = 65.0, c = 111.9 {angstrom}, {beta} = 95.4. The Matthews coefficient (VM = 2.64 {angstrom}3 Da-1, corresponding to 53% solvent content) and analysis of the preliminary structure solution indicated the presence of one heterotrimer (1:2 ratio of CrSPI-1:subtilisin) and one free subtilisin molecule in the asymmetric unit.

  1. GlyGly-CTERM and Rhombosortase: A C-Terminal Protein Processing Signal in a Many-to-One Pairing with a Rhomboid Family Intramembrane Serine Protease

    PubMed Central

    Haft, Daniel H.; Varghese, Neha

    2011-01-01

    The rhomboid family of serine proteases occurs in all domains of life. Its members contain at least six hydrophobic membrane-spanning helices, with an active site serine located deep within the hydrophobic interior of the plasma membrane. The model member GlpG from Escherichia coli is heavily studied through engineered mutant forms, varied model substrates, and multiple X-ray crystal studies, yet its relationship to endogenous substrates is not well understood. Here we describe an apparent membrane anchoring C-terminal homology domain that appears in numerous genera including Shewanella, Vibrio, Acinetobacter, and Ralstonia, but excluding Escherichia and Haemophilus. Individual genomes encode up to thirteen members, usually homologous to each other only in this C-terminal region. The domain's tripartite architecture consists of motif, transmembrane helix, and cluster of basic residues at the protein C-terminus, as also seen with the LPXTG recognition sequence for sortase A and the PEP-CTERM recognition sequence for exosortase. Partial Phylogenetic Profiling identifies a distinctive rhomboid-like protease subfamily almost perfectly co-distributed with this recognition sequence. This protease subfamily and its putative target domain are hereby renamed rhombosortase and GlyGly-CTERM, respectively. The protease and target are encoded by consecutive genes in most genomes with just a single target, but far apart otherwise. The signature motif of the Rhombo-CTERM domain, often SGGS, only partially resembles known cleavage sites of rhomboid protease family model substrates. Some protein families that have several members with C-terminal GlyGly-CTERM domains also have additional members with LPXTG or PEP-CTERM domains instead, suggesting there may be common themes to the post-translational processing of these proteins by three different membrane protein superfamilies. PMID:22194940

  2. Allosteric Regulation of Serine Protease HtrA2 through Novel Non-Canonical Substrate Binding Pocket

    PubMed Central

    Singh, Nitu; Gadewal, Nikhil; Chaganti, Lalith K.; Sastry, G. Madhavi; Bose, Kakoli

    2013-01-01

    HtrA2, a trimeric proapoptotic serine protease is involved in several diseases including cancer and neurodegenerative disorders. Its unique ability to mediate apoptosis via multiple pathways makes it an important therapeutic target. In HtrA2, C-terminal PDZ domain upon substrate binding regulates its functions through coordinated conformational changes the mechanism of which is yet to be elucidated. Although allostery has been found in some of its homologs, it has not been characterized in HtrA2 so far. Here, with an in silico and biochemical approach we have shown that allostery does regulate HtrA2 activity. Our studies identified a novel non-canonical selective binding pocket in HtrA2 which initiates signal propagation to the distal active site through a complex allosteric mechanism. This non-classical binding pocket is unique among HtrA family proteins and thus unfolds a novel mechanism of regulation of HtrA2 activity and hence apoptosis. PMID:23457469

  3. Detergent-, solvent- and salt-compatible thermoactive alkaline serine protease from halotolerant alkaliphilic Bacillus sp. NPST-AK15: purification and characterization.

    PubMed

    Ibrahim, Abdelnasser S S; Al-Salamah, Ali A; El-Badawi, Yahya B; El-Tayeb, Mohamed A; Antranikian, Garabed

    2015-09-01

    Alkaline protease produced by the halotolerant alkaliphilic Bacillus sp. strain NPST-AK15 was purified to homogeneity by the combination of ammonium sulfate precipitation, anion-exchange and gel permeation chromatography. The purified enzyme was a monomeric protein with an estimated molecular weight of 32 kDa. NPST-AK15 protease was highly active and stable over a wide pH range, with a maximal activity at pH 10.5. The enzyme showed optimum activity at 60 °C and was stable at 30-50 °C for at least 1 h. Thermal stability of the purified protease was substantially improved by CaCl2 (1.1- to 6.6-fold). The K m, V max and k cat values for the enzyme were 2.5 mg ml(-1), 42.5 µM min(-1) mg(-1), and 392.46 × 10(3) min(-1), respectively. NPST-AK15 protease activity was strongly inhibited by PMSF, suggesting that the enzyme is a serine protease. The enzyme was highly stable in NaCl up to 20 % (w/v). Moreover, the purified enzyme was stable in several organic solvents such as diethyl ether, benzene, toluene, and chloroform. In addition, it showed high stability and compatibility with a wide range of surfactants and commercial detergents and was slightly activated by hydrogen peroxide. These features of NPST-AK15 protease make this enzyme a promising candidate for application in the laundry and pharmaceutical industries.

  4. Structural and functional characterization of complex formation between two Kunitz-type serine protease inhibitors from Russell's Viper venom.

    PubMed

    Mukherjee, Ashis K; Dutta, Sumita; Kalita, Bhargab; Jha, Deepak K; Deb, Pritam; Mackessy, Stephen P

    2016-01-01

    Snake venom Kunitz-type serine protease inhibitors (KSPIs) exhibit various biological functions including anticoagulant activity. This study elucidates the occurrence and subunit stoichiometry of a putative complex formed between two KSPIs (Rusvikunin and Rusvikunin-II) purified from the native Rusvikunin complex of Pakistan Russell's Viper (Daboia russelii russelii) venom (RVV). The protein components of the Rusvikunin complex were identified by LC-MS/MS analysis. The non-covalent interaction between two major components of the complex (Rusvikunin and Rusvikunin-II) at 1:2 stoichiometric ratio to form a stable complex was demonstrated by biophysical techniques such as spectrofluorometric, classical gel-filtration, equilibrium gel-filtration, circular dichroism (CD), dynamic light scattering (DLS), RP-HPLC and SDS-PAGE analyses. CD measurement showed that interaction between Rusvikunin and Rusvikunin-II did not change their overall secondary structure; however, the protein complex exhibited enhanced hydrodynamic diameter and anticoagulant activity as compared to the individual components of the complex. This study may lay the foundation for understanding the basis of protein complexes in snake venoms and their role in pathophysiology of snakebite.

  5. Structural and functional characterization of complex formation between two Kunitz-type serine protease inhibitors from Russell's Viper venom.

    PubMed

    Mukherjee, Ashis K; Dutta, Sumita; Kalita, Bhargab; Jha, Deepak K; Deb, Pritam; Mackessy, Stephen P

    2016-01-01

    Snake venom Kunitz-type serine protease inhibitors (KSPIs) exhibit various biological functions including anticoagulant activity. This study elucidates the occurrence and subunit stoichiometry of a putative complex formed between two KSPIs (Rusvikunin and Rusvikunin-II) purified from the native Rusvikunin complex of Pakistan Russell's Viper (Daboia russelii russelii) venom (RVV). The protein components of the Rusvikunin complex were identified by LC-MS/MS analysis. The non-covalent interaction between two major components of the complex (Rusvikunin and Rusvikunin-II) at 1:2 stoichiometric ratio to form a stable complex was demonstrated by biophysical techniques such as spectrofluorometric, classical gel-filtration, equilibrium gel-filtration, circular dichroism (CD), dynamic light scattering (DLS), RP-HPLC and SDS-PAGE analyses. CD measurement showed that interaction between Rusvikunin and Rusvikunin-II did not change their overall secondary structure; however, the protein complex exhibited enhanced hydrodynamic diameter and anticoagulant activity as compared to the individual components of the complex. This study may lay the foundation for understanding the basis of protein complexes in snake venoms and their role in pathophysiology of snakebite. PMID:27523780

  6. Crystallization and preliminary crystallographic studies of human kallikrein 7, a serine protease of the multigene kallikrein family

    SciTech Connect

    Fernández, Israel S.; Ständker, Ludger; Forssmann, Wolf-Georg; Giménez-Gallego, Guillermo; Romero, Antonio

    2007-08-01

    The cloning, expression, purification and crystallization of recombinant human kallikrein 7, directly synthesized in the active form in E. coli, is described. Diffraction data were collected to 2.8 Å resolution from native crystals. Human kallikreins are a group of serine proteases of high sequence homology whose genes are grouped as a single cluster at chromosome 19. Although the physiological roles of kallikreins are generally still unknown, members of the kallikrein family have been clearly implicated in pathological situations such as cancer and psoriasis. Human kallikrein 7 (hK7) has been shown to be involved in pathological keratinization, psoriasis and ovarian cancer. In order to gain insight into the molecular structure of this protein, hK7 was crystallized after recombinant production in its folded and active form using a periplasmic secretion vector in Escherichia coli. The crystals belonged to the rhombohedral space group H32 and diffracted to 2.8 Å. The phase problem was solved by molecular replacement using the mouse kallikrein-related protein neuropsin. Completion of the model and structure refinement are under way.

  7. The Serine Protease Pic From Enteroaggregative Escherichia coli Mediates Immune Evasion by the Direct Cleavage of Complement Proteins.

    PubMed

    Abreu, Afonso G; Fraga, Tatiana R; Granados Martínez, Adriana P; Kondo, Marcia Y; Juliano, Maria A; Juliano, Luiz; Navarro-Garcia, Fernando; Isaac, Lourdes; Barbosa, Angela S; Elias, Waldir P

    2015-07-01

    Enteroaggregative and uropathogenic Escherichia coli, Shigella flexneri 2a, and the hybrid enteroaggregative/Shiga toxin-producing E. coli strain (O104:H4) are important pathogens responsible for intestinal and urinary tract infections, as well as sepsis and hemolytic uremic syndrome. They have in common the production of a serine protease called Pic. Several biological roles for Pic have been described, including protection of E. coli DH5α from complement-mediated killing. Hereby we showed that Pic significantly reduces complement activation by all 3 pathways. Pic cleaves purified C3/C3b and other proteins from the classic and lectin pathways, such as C4 and C2. Cleavage fragments of C3, C4, and C2 were also observed with HB101(pPic1) culture supernatants, and C3 cleavage sites were mapped by fluorescence resonance energy transfer peptides. Experiments using human serum as a source of complement proteins confirmed Pic proteolytic activity on these proteins. Furthermore, Pic works synergistically with the human complement regulators factor I and factor H, promoting inactivation of C3b. In the presence of both regulators, further degradation of C3 α' chain was observed. Therefore, Pic may contribute to immune evasion of E. coli and S. flexneri, favoring invasiveness and increasing the severity of the disorders caused by these pathogens.

  8. Mitochondrial serine protease HTRA2 p.G399S in a kindred with essential tremor and Parkinson disease.

    PubMed

    Unal Gulsuner, Hilal; Gulsuner, Suleyman; Mercan, Fatma Nazli; Onat, Onur Emre; Walsh, Tom; Shahin, Hashem; Lee, Ming K; Dogu, Okan; Kansu, Tulay; Topaloglu, Haluk; Elibol, Bulent; Akbostanci, Cenk; King, Mary-Claire; Ozcelik, Tayfun; Tekinay, Ayse B

    2014-12-23

    Essential tremor is one of the most frequent movement disorders of humans and can be associated with substantial disability. Some but not all persons with essential tremor develop signs of Parkinson disease, and the relationship between the conditions has not been clear. In a six-generation consanguineous Turkish kindred with both essential tremor and Parkinson disease, we carried out whole exome sequencing and pedigree analysis, identifying HTRA2 p.G399S as the allele likely responsible for both conditions. Essential tremor was present in persons either heterozygous or homozygous for this allele. Homozygosity was associated with earlier age at onset of tremor (P < 0.0001), more severe postural tremor (P < 0.0001), and more severe kinetic tremor (P = 0.0019). Homozygotes, but not heterozygotes, developed Parkinson signs in the middle age. Among population controls from the same Anatolian region as the family, frequency of HTRA2 p.G399S was 0.0027, slightly lower than other populations. HTRA2 encodes a mitochondrial serine protease. Loss of function of HtrA2 was previously shown to lead to parkinsonian features in motor neuron degeneration (mnd2) mice. HTRA2 p.G399S was previously shown to lead to mitochondrial dysfunction, altered mitochondrial morphology, and decreased protease activity, but epidemiologic studies of an association between HTRA2 and Parkinson disease yielded conflicting results. Our results suggest that in some families, HTRA2 p.G399S is responsible for hereditary essential tremor and that homozygotes for this allele develop Parkinson disease. This hypothesis has implications for understanding the pathogenesis of essential tremor and its relationship to Parkinson disease.

  9. Mitochondrial serine protease HTRA2 p.G399S in a kindred with essential tremor and Parkinson disease

    PubMed Central

    Unal Gulsuner, Hilal; Gulsuner, Suleyman; Mercan, Fatma Nazli; Onat, Onur Emre; Walsh, Tom; Shahin, Hashem; Lee, Ming K.; Dogu, Okan; Kansu, Tulay; Topaloglu, Haluk; Elibol, Bulent; Akbostanci, Cenk; King, Mary-Claire; Ozcelik, Tayfun; Tekinay, Ayse B.

    2014-01-01

    Essential tremor is one of the most frequent movement disorders of humans and can be associated with substantial disability. Some but not all persons with essential tremor develop signs of Parkinson disease, and the relationship between the conditions has not been clear. In a six-generation consanguineous Turkish kindred with both essential tremor and Parkinson disease, we carried out whole exome sequencing and pedigree analysis, identifying HTRA2 p.G399S as the allele likely responsible for both conditions. Essential tremor was present in persons either heterozygous or homozygous for this allele. Homozygosity was associated with earlier age at onset of tremor (P < 0.0001), more severe postural tremor (P < 0.0001), and more severe kinetic tremor (P = 0.0019). Homozygotes, but not heterozygotes, developed Parkinson signs in the middle age. Among population controls from the same Anatolian region as the family, frequency of HTRA2 p.G399S was 0.0027, slightly lower than other populations. HTRA2 encodes a mitochondrial serine protease. Loss of function of HtrA2 was previously shown to lead to parkinsonian features in motor neuron degeneration (mnd2) mice. HTRA2 p.G399S was previously shown to lead to mitochondrial dysfunction, altered mitochondrial morphology, and decreased protease activity, but epidemiologic studies of an association between HTRA2 and Parkinson disease yielded conflicting results. Our results suggest that in some families, HTRA2 p.G399S is responsible for hereditary essential tremor and that homozygotes for this allele develop Parkinson disease. This hypothesis has implications for understanding the pathogenesis of essential tremor and its relationship to Parkinson disease. PMID:25422467

  10. Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape.

    PubMed

    Poret, Marine; Chandrasekar, Balakumaran; van der Hoorn, Renier A L; Avice, Jean-Christophe

    2016-05-01

    Oilseed rape (Brassica napus L.) is a crop plant characterized by a poor nitrogen (N) use efficiency that is mainly due to low N remobilization efficiency during the sequential leaf senescence of the vegetative stage. As a high leaf N remobilization efficiency was strongly linked to a high remobilization of proteins during leaf senescence of rapeseed, our objective was to identify senescence-associated protease activities implicated in the protein degradation. To reach this goal, leaf senescence processes and protease activities were investigated in a mature leaf becoming senescent in plants subjected to ample or low nitrate supply. The characterization of protease activities was performed by using in vitro analysis of RuBisCO degradation with or without inhibitors of specific protease classes followed by a protease activity profiling using activity-dependent probes. As expected, the mature leaf became senescent regardless of the nitrate treatment, and nitrate limitation enhanced the senescence processes associated with an enhanced degradation of soluble proteins. The characterization of protease activities revealed that: (i) aspartic proteases and the proteasome were active during senescence regardless of nitrate supply, and (ii) the activities of serine proteases and particularly cysteine proteases (Papain-like Cys proteases and vacuolar processing enzymes) increased when protein remobilization associated with senescence was accelerated by nitrate limitation. Short statement: Serine and particularly cysteine proteases (both PLCPs and VPEs) seem to play a crucial role in the efficient protein remobilization when leaf senescence of oilseed rape was accelerated by nitrate limitation. PMID:26993244

  11. Modelling ligand selectivity of serine proteases using integrative proteochemometric approaches improves model performance and allows the multi-target dependent interpretation of features.

    PubMed

    Ain, Qurrat U; Méndez-Lucio, Oscar; Ciriano, Isidro Cortés; Malliavin, Thérèse; van Westen, Gerard J P; Bender, Andreas

    2014-11-01

    Serine proteases, implicated in important physiological functions, have a high intra-family similarity, which leads to unwanted off-target effects of inhibitors with insufficient selectivity. However, the availability of sequence and structure data has now made it possible to develop approaches to design pharmacological agents that can discriminate successfully between their related binding sites. In this study, we have quantified the relationship between 12,625 distinct protease inhibitors and their bioactivity against 67 targets of the serine protease family (20,213 data points) in an integrative manner, using proteochemometric modelling (PCM). The benchmarking of 21 different target descriptors motivated the usage of specific binding pocket amino acid descriptors, which helped in the identification of active site residues and selective compound chemotypes affecting compound affinity and selectivity. PCM models performed better than alternative approaches (models trained using exclusively compound descriptors on all available data, QSAR) employed for comparison with R(2)/RMSE values of 0.64 ± 0.23/0.66 ± 0.20 vs. 0.35 ± 0.27/1.05 ± 0.27 log units, respectively. Moreover, the interpretation of the PCM model singled out various chemical substructures responsible for bioactivity and selectivity towards particular proteases (thrombin, trypsin and coagulation factor 10) in agreement with the literature. For instance, absence of a tertiary sulphonamide was identified to be responsible for decreased selective activity (by on average 0.27 ± 0.65 pChEMBL units) on FA10. Among the binding pocket residues, the amino acids (arginine, leucine and tyrosine) at positions 35, 39, 60, 93, 140 and 207 were observed as key contributing residues for selective affinity on these three targets.

  12. Localization, expression and genomic structure of the gene encoding the human serine protease testisin.

    PubMed

    Hooper, J D; Bowen, N; Marshall, H; Cullen, L M; Sood, R; Daniels, R; Stuttgen, M A; Normyle, J F; Higgs, D R; Kastner, D L; Ogbourne, S M; Pera, M F; Jazwinska, E C; Antalis, T M

    2000-06-21

    Testisin is a recently identified human serine protease expressed by premeiotic testicular germ cells and is a candidate tumor suppressor for testicular cancer. Here, we report the characterization of the gene encoding testisin, designated PRSS21, and its localization on the short arm of human chromosome 16 (16p13.3) between the microsatellite marker D16S246 and the radiation hybrid breakpoint CY23HA. We have further refined the localization to cosmid 406D6 in this interval and have established that the gene is approximately 4. 5 kb in length, and contains six exons and five intervening introns. The structure of PRSS21 is very similar to the human prostasin gene (PRSS8) which maps nearby on 16p11.2, suggesting that these genes may have evolved through gene duplication. Sequence analysis showed that the two known isoforms of testisin are generated by alternative pre-mRNA splicing. A major transcription initiation site was identified 97 nucleotides upstream of the testisin translation start and conforms to a consensus initiator element. The region surrounding the transcription initiation site lacks a TATA consensus sequence, but contains a CCAAT sequence and includes a CpG island. The 5'-flanking region contains several consensus response elements including Sp1, AP1 and several testis-specific elements. Analysis of testisin gene expression in tumor cell lines shows that testisin is not expressed in testicular tumor cells but is aberrantly expressed in some tumor cell lines of non-testis origin. These data provide the basis for identifying potential genetic alterations of PRSS21 that may underlie both testicular abnormalities and tumorigenesis. PMID:11004480

  13. Species-Specific Serological Detection for Schistosomiasis by Serine Protease Inhibitor (SERPIN) in Multiplex Assay

    PubMed Central

    Tanigawa, Chihiro; Fujii, Yoshito; Miura, Masashi; Nzou, Samson Muuo; Mwangi, Anne Wanjiru; Nagi, Sachiyo; Hamano, Shinjiro; Njenga, Sammy M.; Mbanefo, Evaristus Chibunna; Hirayama, Kenji; Mwau, Matilu; Kaneko, Satoshi

    2015-01-01

    Background Both Schistosoma mansoni and Schistosoma haematobium cause schistosomiasis in sub-Saharan Africa. We assessed the diagnostic value of selected Schistosoma antigens for the development of a multiplex serological immunoassay for sero-epidemiological surveillance. Methodology/Principal Findings Diagnostic ability of recombinant antigens from S. mansoni and S. haematobium was assessed by Luminex multiplex immunoassay using plasma from school children in two areas of Kenya, endemic for different species of schistosomiasis. S. mansoni serine protease inhibitor (SERPIN) and Sm-RP26 showed significantly higher reactivity to patient plasma as compared to the control group. Sm-Filamin, Sm-GAPDH, Sm-GST, Sm-LAP1, Sm-LAP2, Sm-Sm31, Sm-Sm32 and Sm-Tropomyosin did not show difference in reactivity between S. mansoni infected and uninfected pupils. Sm-RP26 was cross-reactive to plasma from S. haematobium patients, whereas Sm-SERPIN was species-specific. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. ROC analysis for Sm-RP26, Sm-SERPIN and Sh-SERPIN showed AUC values of 0.833, 0.888 and 0.947, respectively. Using Spearman’s rank correlation coefficient analysis, we also found significant positive correlation between the number of excreted eggs and median fluorescence intensity (MFI) from the multiplex immunoassays for Sm-SERPIN (ρ = 0.430, p-value = 0.003) and Sh-SERPIN (ρ = 0.433, p-value = 0.006). Conclusions/Significance Sm-SERPIN is a promising species-specific diagnostic antigen. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. SERPINs showed correlation with the number of excreted eggs. These indicate prospects for inclusion of SERPINs in the multiplex serological immunoassay system. PMID:26291988

  14. An antigenic recombinant serine protease from Trichinella spiralis induces protective immunity in BALB/c mice.

    PubMed

    Li, Xin; Yao, Jian-ping; Pan, Ai-hua; Liu, Wei; Hu, Xu-chu; Wu, Zhong-dao; Zhou, Xing-wang

    2013-09-01

    In this study, we report the cloning and characterization of a cDNA encoding a Trichinella serine protease gene (TspSP-1.3) from GenBank. The recombinant TspSP-1.3 protein (rTspSP-1.3) was expressed in an Escherichia coli expression system and purified with Ni-affinity chromatography. Real-time quantitative PCR analysis revealed that TspSP-1.3 was expressed at significantly higher levels in muscle larvae and adult worms than in newborn larvae. TspSP-1.3 was detected in excretory-secretory proteins of Trichinella spiralis with western blotting. Immunization with the rTspSP-1.3 antigen induced humoral immune responses, which manifested as elevated specific anti-rTspSP-1.3 IgG and IgE antibodies and a mixed Th1/Th2 response. To determine whether purified rTspSP-1.3 had good antigenicity and could be a vaccine candidate for the control of T. spiralis infection, we immunized BALB/c mice with rTspSP-1.3 and subsequently challenged the mice with T. spiralis larvae. The results showed that mice vaccinated with rTspSP-1.3 exhibited an average reduction in the muscle larvae burden of 39 % relative to the control group. These results suggest that TspSP-1.3 could be a novel vaccine candidate for controlling Trichinella infection. PMID:23828191

  15. Role of class 1 serine protease autotransporter in the pathogenesis of Citrobacter rodentium colitis.

    PubMed

    Vijayakumar, Vidhya; Santiago, Araceli; Smith, Rachel; Smith, Mark; Robins-Browne, Roy M; Nataro, James P; Ruiz-Perez, Fernando

    2014-06-01

    A growing family of virulence factors called serine protease autotransporters of Enterobacteriaceae (SPATEs) are secreted by Shigella, Salmonella, and Escherichia coli pathotypes. SPATEs are subdivided into class 1 and class 2 based on structural features and phylogenetics. Class 1 SPATEs induce cytopathic effects in numerous epithelial cell lines, and several have been shown to cleave the cytoskeletal protein spectrin in vitro. However, to date the in vivo role of class 1 SPATEs in enteric pathogenesis is unknown. Citrobacter rodentium, a natural mouse pathogen, has recently been shown to harbor class 1 and class 2 SPATEs. To better understand the contribution of class 1 SPATEs in enteric infection, we constructed a class 1 SPATE null mutant (Δcrc1) in C. rodentium. Upon infection of C57BL/6 mice, the Δcrc1 mutant exhibited a hypervirulent, hyperinflammatory phenotype compared with its parent, accompanied by greater weight loss and a trend toward increased mortality in young mice; the effect was reversed when the crc1 gene was restored. Using flow cytometry, we observed increased infiltration of T cells, B cells, and neutrophils into the lamina propria of the distal colon in mice fed the Δcrc1 mutant, starting as early as 5 days after infection. No significant difference in epithelial cytotoxicity was observed. Reverse transcription-PCR (RT-PCR) analysis of distal colonic tissue on day 10 postinfection showed significant increases in mRNA encoding cytokines interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), IL-1β, and inducible nitric oxide synthase (iNOS) but not in mRNA encoding IL-17, IL-4, or IL-10 in the Δcrc1 mutant-infected mice. Our data suggest a previously unsuspected role for class 1 SPATEs in enteric infection.

  16. Biased Signaling of Protease-Activated Receptors

    PubMed Central

    Zhao, Peishen; Metcalf, Matthew; Bunnett, Nigel W.

    2014-01-01

    In addition to their role in protein degradation and digestion, proteases can also function as hormone-like signaling molecules that regulate vital patho-physiological processes, including inflammation, hemostasis, pain, and repair mechanisms. Certain proteases can signal to cells by cleaving protease-activated receptors (PARs), a family of four G protein-coupled receptors. PARs are expressed by almost all cell types, control important physiological and disease-relevant processes, and are an emerging therapeutic target for major diseases. Most information about PAR activation and function derives from studies of a few proteases, for example thrombin in the case of PAR1, PAR3, and PAR4, and trypsin in the case of PAR2 and PAR4. These proteases cleave PARs at established sites with the extracellular N-terminal domains, and expose tethered ligands that stabilize conformations of the cleaved receptors that activate the canonical pathways of G protein- and/or β-arrestin-dependent signaling. However, a growing number of proteases have been identified that cleave PARs at divergent sites to activate distinct patterns of receptor signaling and trafficking. The capacity of these proteases to trigger distinct signaling pathways is referred to as biased signaling, and can lead to unique patho-physiological outcomes. Given that a different repertoire of proteases are activated in various patho-physiological conditions that may activate PARs by different mechanisms, signaling bias may account for the divergent actions of proteases and PARs. Moreover, therapies that target disease-relevant biased signaling pathways may be more effective and selective approaches for the treatment of protease- and PAR-driven diseases. Thus, rather than mediating the actions of a few proteases, PARs may integrate the biological actions of a wide spectrum of proteases in different patho-physiological conditions. PMID:24860547

  17. Simplified preparation of crude and functional coagulogen by thermal inactivation of serine proteases in Limulus amebocyte lysate and its application for rapid endotoxin determination.

    PubMed

    Yabusaki, Katsumi; Aoyagi, Hideki

    2012-03-01

    The effects of thermal treatment on Limulus amebocyte lysate (LAL) reagent were studied. Thermal resistances of enzymes and coagulogen in LAL reagent were evaluated by aggregometry and SDS-PAGE. Although enzyme activities of LAL reagent were completely lost after heating at temperatures above 60 °C for 10 min, gelating activities of coagulogen were retained even over 80 °C. Phenylmethanesulfonyl fluoride (PMSF; 1 mmol/mL), a strong non-specific serine-protease inhibitor, did not completely inactivate serine-protease activities of LAL. As a result, complete hydrolysis of coagulogen to coagulin was unexpectedly obtained. Solvent treatment of LAL was similar in effect to thermal treatment of LAL, but there were 2 problems: complete removal of solvent from samples and increased solution turbidity during preparation. To study the application of thermal-treated LAL, we conjugated it with titania particles. LAL-conjugated titania particles were obtained as small aggregates between titania nanoparticles and thermal-treated LAL (LAL-conjugated microbeads; LCM). When the mixture of LCMs and fresh LAL reagent was reacted with endotoxin an acute aggregation of LCMs was induced prior to the aggregate formation of LAL as monitored by stirring turbidimetry. This method, endotoxin microbeads aggregometry (EMA) may provide a rapid and sensitive method for endotoxin determination. PMID:22143069

  18. Acquisition of complement inhibitor serine protease factor I and its cofactors C4b-binding protein and factor H by Prevotella intermedia.

    PubMed

    Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M

    2012-01-01

    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.

  19. Limiting the Number of Potential Binding Modes by Introducing Symmetry into Ligands: Structure-Based Design of Inhibitors for Trypsin-Like Serine Proteases.

    PubMed

    Furtmann, Norbert; Häußler, Daniela; Scheidt, Tamara; Stirnberg, Marit; Steinmetzer, Torsten; Bajorath, Jürgen; Gütschow, Michael

    2016-01-11

    In the absence of X-ray data, the exploration of compound binding modes continues to be a challenging task. For structure-based design, specific features of active sites in different targets play a major role in rationalizing ligand binding characteristics. For example, dibasic compounds have been reported as potent inhibitors of various trypsin-like serine proteases, the active sites of which contain several binding pockets that can be targeted by cationic moieties. This results in several possible orientations within the active site, complicating the binding mode prediction of such compounds by docking tools. Therefore, we introduced symmetry in bi- and tribasic compounds to reduce conformational space in docking calculations and to simplify binding mode selection by limiting the number of possible pocket occupations. Asymmetric bisbenzamidines were used as starting points for a multistage and structure-guided optimization. A series of 24 final compounds with either two or three benzamidine substructures was ultimately synthesized and evaluated as inhibitors of five serine proteases, leading to potent symmetric inhibitors for the pharmaceutical drug targets matriptase, matriptase-2, thrombin and factor Xa. This study underlines the relevance of ligand symmetry for chemical biology.

  20. Serine protease inhibitor 6 plays a critical role in protecting murine granzyme B-producing regulatory T cells.

    PubMed

    Azzi, Jamil; Skartsis, Nikolaos; Mounayar, Marwan; Magee, Ciara N; Batal, Ibrahim; Ting, Christopher; Moore, Robert; Riella, Leonardo V; Ohori, Shunsuke; Abdoli, Rozita; Smith, Brian; Fiorina, Paolo; Heathcote, Dean; Bakhos, Tannous; Ashton-Rickardt, Philip G; Abdi, Reza

    2013-09-01

    Regulatory T cells (Tregs) play a pivotal role in the maintenance of immune tolerance and hold great promise as cell therapy for a variety of immune-mediated diseases. However, the cellular mechanisms that regulate Treg maintenance and homeostasis have yet to be fully explored. Although Tregs express granzyme-B (GrB) to suppress effector T cells via direct killing, the mechanisms by which they protect themselves from GrB-mediated self-inflicted damage are unknown. To our knowledge, we show for the first time that both induced Tregs and natural Tregs (nTregs) increase their intracellular expression of GrB and its endogenous inhibitor, serine protease inhibitor 6 (Spi6) upon activation. Subcellular fractionation and measurement of GrB activity in the cytoplasm of Tregs show that activated Spi6(-/-) Tregs had significantly higher cytoplasmic GrB activity. We observed an increase in GrB-mediated apoptosis in Spi6(-/-) nTregs and impaired suppression of alloreactive T cells in vitro. Spi6(-/-) Tregs were rescued from apoptosis by the addition of a GrB inhibitor (Z-AAD-CMK) in vitro. Furthermore, adoptive transfer experiments showed that Spi6(-/-) nTregs were less effective than wild type nTregs in suppressing graft-versus-host disease because of their impaired survival, as shown in our in vivo bioluminescence imaging. Finally, Spi6-deficient recipients rejected MHC class II-mismatch heart allografts at a much faster rate and showed a higher rate of apoptosis among Tregs, as compared with wild type recipients. To our knowledge, our data demonstrate, for the first time, a novel role for Spi6 in Treg homeostasis by protecting activated Tregs from GrB-mediated injury. These data could have significant clinical implications for Treg-based therapy in immune-mediated diseases.

  1. Serine protease inhibitor-6 plays a critical role in protecting murine Granzyme B-producing regulatory T-cells

    PubMed Central

    Azzi, Jamil; Skartsis, Nikolaos; Mounayar, Marwan; Magee, Ciara N.; Batal, Ibrahim; Ting, Christopher; Moore, Robert; Riella, Leonardo V.; Ohori, Shunsuke; Abdoli, Rozita; Smith, Brian; Fiorina, Paolo; Heathcote, Dean; Bakhos, Tannous; Ashton-Rickardt, Philip G.; Abdi, Reza

    2013-01-01

    Regulatory T-cells (Tregs) play a pivotal role in the maintenance of immune tolerance and hold great promise as cell therapy for a variety of immune-mediated diseases. However, the cellular mechanisms that regulate Treg maintenance and homeostasis have yet to be fully explored. While Tregs express Granzyme-B (GrB) to suppress effector T-cells via direct-killing, the mechanisms by which they protect themselves from GrB-mediated self-inflicted damage are unknown. We show, for the first time, that both iTregs and nTregs increase their intracellular expression of GrB and its endogenous inhibitor, Serine Protease Inhibitor-6 (Spi6) upon activation. Sub-cellular fractionation and measurement of GrB activity in the cytoplasm of Tregs show that activated Spi6−/− Tregs had significantly higher cytoplasmic GrB activity. We observed an increase in GrB-mediated apoptosis in Spi6−/− nTregs and impaired suppression of alloreactive T-cells in vitro. Spi6−/− Tregs were rescued from apoptosis by the addition of a GrB inhibitor (Z-AAD-CMK) in vitro. Furthermore, adoptive transfer experiments showed that Spi6−/− nTregs were less effective than WT nTregs in suppressing Graft-versus-host-disease (GVHD) due to their impaired survival, as shown in our in vivo bioluminescence imaging. Finally, Spi6-deficient recipients rejected MHC class II-mismatch heart allografts at a much faster rate and showed a higher rate of apoptosis among Tregs, as compared to WT recipients. Our data demonstrate, for the first time, a novel role for Spi6 in Treg homeostasis by protecting activated Tregs from GrB-mediated injury. These data could have significant clinical implications for Treg-based therapy in immune-mediated diseases. PMID:23913965

  2. Reversal of mitochondrial defects with CSB-dependent serine protease inhibitors in patient cells of the progeroid Cockayne syndrome

    PubMed Central

    Chatre, Laurent; Biard, Denis S. F.; Sarasin, Alain; Ricchetti, Miria

    2015-01-01

    UV-sensitive syndrome (UVSS) and Cockayne syndrome (CS) are human disorders caused by CSA or CSB gene mutations; both conditions cause defective transcription-coupled repair and photosensitivity. Patients with CS also display neurological and developmental abnormalities and dramatic premature aging, and their cells are hypersensitive to oxidative stress. We report CSA/CSB-dependent depletion of the mitochondrial DNA polymerase-γ catalytic subunit (POLG1), due to HTRA3 serine protease accumulation in CS, but not in UVsS or control fibroblasts. Inhibition of serine proteases restored physiological POLG1 levels in either CS fibroblasts and in CSB-silenced cells. Moreover, patient-derived CS cells displayed greater nitroso-redox imbalance than UVSS cells. Scavengers of reactive oxygen species and peroxynitrite normalized HTRA3 and POLG1 levels in CS cells, and notably, increased mitochondrial oxidative phosphorylation, which was altered in CS cells. These data reveal critical deregulation of proteases potentially linked to progeroid phenotypes in CS, and our results suggest rescue strategies as a therapeutic option. PMID:26038566

  3. Autotransported Serine Protease A of Neisseria meningitidis: an Immunogenic, Surface-Exposed Outer Membrane, and Secreted Protein

    PubMed Central

    Turner, David P. J.; Wooldridge, Karl G.; Ala'Aldeen, Dlawer A. A.

    2002-01-01

    Several autotransporter proteins have previously been identified in Neisseria meningitidis. Using molecular features common to most members of the autotransporter family of proteins, we have identified an additional novel ca. 112-kDa autotransporter protein in the meningococcal genomic sequence data. This protein, designated autotransported serine protease A (AspA), has significant N-terminal homology to the secreted serine proteases (subtilases) from several organisms and contains a serine protease catalytic triad. The amino acid sequence of AspA is well-conserved in serogroup A, B, and C meningococci. In Neisseria gonorrhoeae, the AspA homologue appears to be a pseudogene. The gene encoding AspA was cloned and expressed from meningococcal strain MC58 (B15:P1.16b). Anti-AspA antibodies were detected in patients' convalescent-phase sera, suggesting that AspA is expressed in vivo during infection and is immunogenic and cross-reactive. Rabbit polyclonal monospecific anti-AspA serum was used to probe whole-cell proteins from a panel of wild-type meningococcal strains and two AspA mutant strains. Expression of the ca. 112-kDa precursor polypeptide was detected in 12 of 20 wild-type meningococcal strains examined, suggesting that AspA expression is phase variable. Immunogold electron microscopy and cellular fractionation studies showed that the AspA precursor is transported to the outer membrane and remains surface exposed. Western blot experiments confirmed that smaller, ca. 68- or 70-kDa components of AspA (AspA68 and AspA70, respectively) are then secreted into the meningococcal culture supernatant. Site-directed mutagenesis of S426 abolished secretion of both rAspA68 and rAspA70 in Escherichia coli, confirming that AspA is an autocleaved autotransporter protein. In conclusion, we characterized a novel, surface-exposed and secreted, immunogenic, meningococcal autotransporter protein. PMID:12117956

  4. Tri-domain Bifunctional Inhibitor of Metallocarboxypeptidases A and Serine Proteases Isolated from Marine Annelid Sabellastarte magnifica*

    PubMed Central

    Alonso-del-Rivero, Maday; Trejo, Sebastian A.; Reytor, Mey L.; Rodriguez-de-la-Vega, Monica; Delfin, Julieta; Diaz, Joaquin; González-González, Yamile; Canals, Francesc; Chavez, Maria Angeles; Aviles, Francesc X.

    2012-01-01

    This study describes a novel bifunctional metallocarboxypeptidase and serine protease inhibitor (SmCI) isolated from the tentacle crown of the annelid Sabellastarte magnifica. SmCI is a 165-residue glycoprotein with a molecular mass of 19.69 kDa (mass spectrometry) and 18 cysteine residues forming nine disulfide bonds. Its cDNA was cloned and sequenced by RT-PCR and nested PCR using degenerated oligonucleotides. Employing this information along with data derived from automatic Edman degradation of peptide fragments, the SmCI sequence was fully characterized, indicating the presence of three bovine pancreatic trypsin inhibitor/Kunitz domains and its high homology with other Kunitz serine protease inhibitors. Enzyme kinetics and structural analyses revealed SmCI to be an inhibitor of human and bovine pancreatic metallocarboxypeptidases of the A-type (but not B-type), with nanomolar Ki values. SmCI is also capable of inhibiting bovine pancreatic trypsin, chymotrypsin, and porcine pancreatic elastase in varying measures. When the inhibitor and its nonglycosylated form (SmCI N23A mutant) were overproduced recombinantly in a Pichia pastoris system, they displayed the dual inhibitory properties of the natural form. Similarly, two bi-domain forms of the inhibitor (recombinant rSmCI D1-D2 and rSmCI D2-D3) as well as its C-terminal domain (rSmCI-D3) were also overproduced. Of these fragments, only the rSmCI D1-D2 bi-domain retained inhibition of metallocarboxypeptidase A but only partially, indicating that the whole tri-domain structure is required for such capability in full. SmCI is the first proteinaceous inhibitor of metallocarboxypeptidases able to act as well on another mechanistic class of proteases (serine-type) and is the first of this kind identified in nature. PMID:22411994

  5. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets

    PubMed Central

    Verma, Sonia; Dixit, Rajnikant; Pandey, Kailash C.

    2016-01-01

    Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein–protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases. PMID:27199750

  6. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets.

    PubMed

    Verma, Sonia; Dixit, Rajnikant; Pandey, Kailash C

    2016-01-01

    Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases. PMID:27199750

  7. Subfamily-Specific Fluorescent Probes for Cysteine Proteases Display Dynamic Protease Activities during Seed Germination1

    PubMed Central

    Lu, Haibin; Chandrasekar, Balakumaran; Oeljeklaus, Julian; Misas-Villamil, Johana C.; Wang, Zheming; Shindo, Takayuki; Bogyo, Matthew; Kaiser, Markus; van der Hoorn, Renier A.L.

    2015-01-01

    Cysteine proteases are an important class of enzymes implicated in both developmental and defense-related programmed cell death and other biological processes in plants. Because there are dozens of cysteine proteases that are posttranslationally regulated by processing, environmental conditions, and inhibitors, new methodologies are required to study these pivotal enzymes individually. Here, we introduce fluorescence activity-based probes that specifically target three distinct cysteine protease subfamilies: aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes. We applied protease activity profiling with these new probes on Arabidopsis (Arabidopsis thaliana) protease knockout lines and agroinfiltrated leaves to identify the probe targets and on other plant species to demonstrate their broad applicability. These probes revealed that most commercially available protease inhibitors target unexpected proteases in plants. When applied on germinating seeds, these probes reveal dynamic activities of aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes, coinciding with the remobilization of seed storage proteins. PMID:26048883

  8. Characterisation of a secretory serine protease inhibitor (SjB6) from Schistosoma japonicum

    PubMed Central

    2014-01-01

    Background Proteins belonging to the serine protease inhibitor (serpin) superfamily play essential physiological roles in many organisms. In pathogens, serpins are thought to have evolved specifically to limit host immune responses by interfering with the host immune-stimulatory signals. Serpins are less well characterised in parasitic helminths, although some are thought to be involved in mechanisms associated with host immune modulation. In this study, we cloned and partially characterised a secretory serpin from Schistosoma japonicum termed SjB6, these findings provide the basis for possible functional roles. Methods SjB6 gene was identified through database mining of our previously published microarray data, cloned and detailed sequence and structural analysis and comparative modelling carried out using various bioinformatics and proteomics tools. Gene transcriptional profiling was determined by real-time PCR and the expression of native protein determined by immunoblotting. An immunological profile of the recombinant protein produced in insect cells was determined by ELISA. Results SjB6 contains an open reading frame of 1160 base pairs that encodes a protein of 387 amino acid residues. Detailed sequence analysis, comparative modelling and structural-based alignment revealed that SjB6 contains the essential structural motifs and consensus secondary structures typical of inhibitory serpins. The presence of an N-terminal signal sequence indicated that SjB6 is a secretory protein. Real-time data indicated that SjB6 is expressed exclusively in the intra-mammalian stage of the parasite life cycle with its highest expression levels in the egg stage (p < 0.0001). The native protein is approximately 60 kDa in size and recombinant SjB6 (rSjB6) was recognised strongly by sera from rats experimentally infected with S. japonicum. Conclusions The significantly high expression of SjB6 in schistosome eggs, when compared to other life cycle stages, suggests a possible

  9. Met-ase: Cloning and distinct chromosomal location of a serine protease preferentially expressed in human natural killer cells

    SciTech Connect

    Smyth, M.J.; Trapani, J.A. ); Sayers, T.J.; Wiltrout, T. ); Powers, J.C. )

    1993-12-01

    A cDNA clone encoding a human NK serine protease was obtained by screening a [lambda]-gt10 library from the Lopez NK leukemia with the rat natural killer Met-ase (RNK-Met-1) cDNA clone. In Northern blot analysis human Met-ase (Hu-Met-1) cDNA hybridized with a 0.9-kb mRNA in two human NK leukemia cell lines, unstimulated human PBMC, and untreated purified CD3[sup [minus

  10. Biochemical and molecular modeling analysis of the ability of two p-aminobenzamidine-based sorbents to selectively purify serine proteases (fibrinogenases) from snake venoms.

    PubMed

    De-Simone, S G; Correa-Netto, C; Antunes, O A C; De-Alencastro, R B; Silva, F P

    2005-08-01

    Snake venoms contain several trypsin-like enzymes with equivalent physicochemical characteristics and similar inhibition profiles. These are rather difficult to separate by classical purification procedures and therefore constitute a good model for affinity chromatography analysis. Some of these trypsin homologues present fibrinogenase activity, mimicking one or more features of the central mammalian coagulation enzyme, thrombin. It was previously demonstrated that a number of amidine derivatives are able to interact specifically with some of these serine proteases. To understand the enzyme-sorbent interactions we have investigated the ability of two commercially available benzamidine affinity matrices to purify thrombin-like serine proteases (TLSP) with similar biological properties from two snake venoms (Bothrops jararacussu and Lachesis muta rhombeata). Curiously, each sorbent retained a single but distinct TLSP from each venom with high yield. Molecular modeling analysis suggested that hydrophobic interactions within a specific region on the surface of these enzymes could be generated to explain this exquisite specificity. In addition, it was demonstrated that a specific tandem alignment of the two benzamidine sorbents enables the purification of three other enzymes from B. jararacussu venom. PMID:15994137

  11. Involvement of a Serpin serine protease inhibitor (OoSerpin) from mollusc Octopus ocellatus in antibacterial response.

    PubMed

    Wei, Xiumei; Xu, Jie; Yang, Jianmin; Liu, Xiangquan; Zhang, Ranran; Wang, Weijun; Yang, Jialong

    2015-01-01

    Serpin is an important member of serine protease inhibitors (SPIs), which is capable of regulating proteolytic events and involving in a variety of physiological processes. In present study, a Serpin homolog was identified from Octopus ocellatus (designated as OoSerpin). Full-length cDNA of OoSerpin was of 1735 bp, containing a 5' untranslated region of 214 bp, a 3' UTR of 282 bp, and an open reading frame of 1239 bp. The open reading frame encoded a polypeptide of 412 amino acids which has a predicted molecular weight of 46.5 kDa and an isoelectric point of 8.52. The OoSerpin protein shares 37% sequence identity with other Serpins from Mus musculus (NP_941373) and Ixodes scapularis (XP_002407493). The existence of a conserved SERPIN domain strongly suggested that OoSerpin was a member of the Serpin subfamily. Expression patterns of OoSerpin, both in tissues and towards bacterial stimulation, were then characterized. The mRNA of OoSerpin was constitutively expressed at different levels in all tested tissues of untreated O. ocellatus, including mantle (lowest), muscle, renal sac, gill, hemocyte, gonad, systemic heart, and hepatopancreas (highest). The transcriptional level of OoSerpin was significantly up-regulated (P<0.01) in O. ocellatus upon bacterial challenges with Vibrio anguillarum and Micrococcus luteus, indicating its involvement in the antibacterial immune response. Furthermore, rOoSerpin, the recombinant protein of OoSerpin, exhibited strong abilities to inhibit proteinase activities of trypsin and chymotrypsin as well as the growth of Escherichia coli. Our results demonstrate that OoSerpin is a potential antibacterial factor involved in the immune response of O. ocellatus against bacterial infection.

  12. Involvement of a Serpin serine protease inhibitor (OoSerpin) from mollusc Octopus ocellatus in antibacterial response.

    PubMed

    Wei, Xiumei; Xu, Jie; Yang, Jianmin; Liu, Xiangquan; Zhang, Ranran; Wang, Weijun; Yang, Jialong

    2015-01-01

    Serpin is an important member of serine protease inhibitors (SPIs), which is capable of regulating proteolytic events and involving in a variety of physiological processes. In present study, a Serpin homolog was identified from Octopus ocellatus (designated as OoSerpin). Full-length cDNA of OoSerpin was of 1735 bp, containing a 5' untranslated region of 214 bp, a 3' UTR of 282 bp, and an open reading frame of 1239 bp. The open reading frame encoded a polypeptide of 412 amino acids which has a predicted molecular weight of 46.5 kDa and an isoelectric point of 8.52. The OoSerpin protein shares 37% sequence identity with other Serpins from Mus musculus (NP_941373) and Ixodes scapularis (XP_002407493). The existence of a conserved SERPIN domain strongly suggested that OoSerpin was a member of the Serpin subfamily. Expression patterns of OoSerpin, both in tissues and towards bacterial stimulation, were then characterized. The mRNA of OoSerpin was constitutively expressed at different levels in all tested tissues of untreated O. ocellatus, including mantle (lowest), muscle, renal sac, gill, hemocyte, gonad, systemic heart, and hepatopancreas (highest). The transcriptional level of OoSerpin was significantly up-regulated (P<0.01) in O. ocellatus upon bacterial challenges with Vibrio anguillarum and Micrococcus luteus, indicating its involvement in the antibacterial immune response. Furthermore, rOoSerpin, the recombinant protein of OoSerpin, exhibited strong abilities to inhibit proteinase activities of trypsin and chymotrypsin as well as the growth of Escherichia coli. Our results demonstrate that OoSerpin is a potential antibacterial factor involved in the immune response of O. ocellatus against bacterial infection. PMID:25449372

  13. Outer membrane-associated serine protease involved in adhesion of Shewanella oneidensis to Fe(III) oxides.

    PubMed

    Burns, Justin L; Ginn, Brian R; Bates, David J; Dublin, Steven N; Taylor, Jeanette V; Apkarian, Robert P; Amaro-Garcia, Samary; Neal, Andrew L; Dichristina, Thomas J

    2010-01-01

    The facultative anaerobe Shewanella oneidensis MR-1 respires a variety of anaerobic electron acceptors, including insoluble Fe(III) oxides. S. oneidensis employs a number of novel strategies for respiration of insoluble Fe(III) oxides, including localization of respiratory proteins to the cell outer membrane (OM). The molecular mechanism by which S. oneidensis adheres to and respires Fe(III) oxides, however, remains poorly understood. In the present study, whole cell fractionation and MALDI-TOF-MS/MS techniques were combined to identify a serine protease (SO3800) associated with the S. oneidensis OM. SO3800 contained predicted structural motifs similar to cell surface-associated serine proteases that function as bacterial adhesins in other gram-negative bacteria. The gene encoding SO3800 was deleted from the S. oneidensis genome, and the resulting mutant strain (DeltaSO3800) was tested for its ability to adhere to and respire Fe(III) oxides. DeltaSO3800 was severely impaired in its ability to adhere to Fe(III) oxides, yet retained wild-type Fe(III) respiratory capability. Laser Doppler velocimetry and cryoetch high-resolution SEM experiments indicated that DeltaSO3800 displayed a lower cell surface charge and higher amount of surface-associated exopolysaccharides. Results of this study indicate that S. oneidensis may respire insoluble Fe(III) oxides at a distance, negating the requirement for attachment prior to electron transfer.

  14. Electrically sensing protease activity with nanopores

    NASA Astrophysics Data System (ADS)

    Kukwikila, Mikiembo; Howorka, Stefan

    2010-11-01

    The enzymatic activity of a protease was electrically detected using nanopore recordings. A peptide substrate was tethered to microscale beads, and cleavage by the enzyme trypsin released a soluble fragment that was electrophoretically driven through the α-hemolysin protein pore, leading to detectable blockades in the ionic current. Owing to its simplicity, this approach to sense enzymatic activity may be applied to other proteases.

  15. Inhibitors of Serine Proteases in Regulating the Production and Function of Neutrophil Extracellular Traps

    PubMed Central

    Majewski, Pawel; Majchrzak-Gorecka, Monika; Grygier, Beata; Skrzeczynska-Moncznik, Joanna; Osiecka, Oktawia; Cichy, Joanna

    2016-01-01

    Neutrophil extracellular traps (NETs), DNA webs released into the extracellular environment by activated neutrophils, are thought to play a key role in the entrapment and eradication of microbes. However, NETs are highly cytotoxic and a likely source of autoantigens, suggesting that NET release is tightly regulated. NET formation involves the activity of neutrophil elastase (NE), which cleaves histones, leading to chromatin decondensation. We and others have recently demonstrated that inhibitors of NE, such as secretory leukocyte protease inhibitor (SLPI) and SerpinB1, restrict NET production in vitro and in vivo. SLPI was also identified as a NET component in the lesional skin of patients suffering from the autoinflammatory skin disease psoriasis. SLPI-competent NET-like structures (a mixture of SLPI with neutrophil DNA and NE) stimulated the synthesis of interferon type I (IFNI) in plasmacytoid dendritic cells (pDCs) in vitro. pDCs uniquely respond to viral or microbial DNA/RNA but also to nucleic acids of “self” origin with the production of IFNI. Although IFNIs are critical in activating the antiviral/antimicrobial functions of many cells, IFNIs also play a role in inducing autoimmunity. Thus, NETs decorated by SLPI may regulate skin immunity through enhancing IFNI production in pDCs. Here, we review key aspects of how SLPI and SerpinB1 can control NET production and immunogenic function. PMID:27446090

  16. Identification of folding intermediates of streblin, the most stable serine protease: biophysical analysis.

    PubMed

    Kumar, Reetesh; Tripathi, Pinki; de Moraes, Fabio Rogerio; Caruso, Icaro P; Jagannadham, Medicherla V

    2014-01-01

    Streblin, a serine proteinase from plant Streblus asper, has been used to investigate the conformational changes induced by pH, temperature, and chaotropes. The near/far UV circular dichroism activities under fluorescence emission spectroscopy and 8-aniline-1-naphthalene sulfonate (ANS) binding have been carried out to understand the unfolding of the protein in the presence of denaturants. Spectroscopic studies reveal that streblin belongs to the α+β class of proteins and exhibits stability towards chemical denaturants, guanidine hydrochloride (GuHCl). The pH-induced transition of this protein is noncooperative for transition phases between pH 0.5 and 2.5 (midpoint, 1.5) and pH 2.5 and 10.0 (midpoint, 6.5). At pH 1.0 or lower, the protein unfolds to form acid-unfolded state, and for pH 7.5 and above, protein turns into an alkaline denatured state characterized by the absence of ANS binding. At pH 2.0 (1 M GuHCl), streblin exists in a partially unfolded state with characteristics of a molten globule state. The protein is found to exhibit strong and predominant ANS binding. In total, six different intermediate states has been identified to show protein folding pathways. PMID:24108566

  17. Inhibition of the Plasma-Membrane-Associated Serine Protease Cathepsin G by Mycobacterium tuberculosis Rv3364c Suppresses Caspase-1 and Pyroptosis in Macrophages

    PubMed Central

    Danelishvili, Lia; Everman, Jamie L.; McNamara, Michael J.; Bermudez, Luiz E.

    2012-01-01

    Tuberculosis is a disease associated with the infection of a great part of the world’s population and is responsible for the death of two to three million people annually. Mycobacterium tuberculosis infects macrophages and subverts its mechanisms of killing. The pathogen suppresses macrophage apoptosis by many different mechanisms. We describe that, upon uptake by macrophages, M. tuberculosis overexpresses an operon Rv3361c-Rv3365c and secretes Rv3364c. The Rv3365c knockout strain is deficient in apoptosis inhibition. The Rv3364c protein binds to the serine protease cathepsin G on the membrane, inhibiting its enzymatic activity and the downstream activation of caspase-1-dependent apoptosis. In summary, M. tuberculosis prevents macrophage pyroptosis by a novel mechanism involving cytoplasmic surveillance proteins. PMID:22275911

  18. Complete conformational stability of kinetically stable dimeric serine protease milin against pH, temperature, urea, and proteolysis.

    PubMed

    Yadav, Subhash Chandra; Jagannadham, Medicherla V

    2009-09-01

    Spectroscopic, calorimetric, and proteolytic methods were utilized to evaluate the stability of the kinetically stable, differentially glycosylated, dimeric serine protease milin as a function of pH (1.0-11.0), temperature, urea, and GuHCl denaturation in presence of 8 M urea at pH 2.0. The stability of milin remains equivalent to that of native at pH 1.0-11.0. However, negligible and reversible alteration in structure upon temperature transition has been observed at pH 2.0 and with 1.6 M GuHCl. Irreversible and incomplete calorimetric transition with apparent T (m) > 100 degrees C was observed at basic pH (9.0 and 10.0). Urea-induced unfolding at pH 4.0, and at pH 2.0 with GuHCl, in presence of 8 M urea also reveals incomplete unfolding. Milin has been found to exhibit proteolytic resistant in either native or denatured state against various commercial proteases. These results imply that the high conformational stability of milin against various denaturating conditions enable its potential use in protease-based industries.

  19. [Coupling of protease activity and sodium loading with intestinal absorption of amino acids].

    PubMed

    Basova, N A; Markov, Iu G; Berzinia, N I

    2005-09-01

    Membrane-bound serine proteases to play a certain role in activation of sodium transport in epithelial cells. To were found explain the protease activity and sodium-dependent L-tryptophan transport across chicken small intestine interaction, four experiments were conducted. One hundred chicks were fed diets that contained 0; 0.3; 3 or 6% of supplemental NaCl and were given distillated water ad libitum. Signs of salt toxicity observed were as follows: a decreased body weight, increased heart and kidney weights, formation of secondary lysosomes in enterocytes and lymphocytes. Such chickens were in the state of negative nitrogen balance. Intestinal absorption of L-tryptophan correlated with mucosal protease activity during increased dietary sodium chloride intake. Recent in vitro and in vivo experiments indicate that enterocyte proteases may be of critical importance in activation of sodium-dependent intestinal transporters for L-tryptophan.

  20. Evolution of the protease-activated receptor family in vertebrates

    PubMed Central

    JIN, MIN; YANG, HAI-WEI; TAO, AI-LIN; WEI, JI-FU

    2016-01-01

    Belonging to the G protein-coupled receptor (GPcr) family, the protease-activated receptors (Pars) consist of 4 members, PAR1-4. PARs mediate the activation of cells via thrombin, serine and other proteases. Such protease-triggered signaling events are thought to be critical for hemostasis, thrombosis and other normal pathological processes. In the present study, we examined the evolution of PARs by analyzing phylogenetic trees, chromosome location, selective pressure and functional divergence based on the 169 functional gene alignment sequences from 57 vertebrate gene sequences. We found that the 4 PARs originated from 4 invertebrate ancestors by phylogenetic trees analysis. The selective pressure results revealed that only PAR1 appeared by positive selection during its evolution, while the other PAR members did not. In addition, we noticed that although these PARs evolved separately, the results of functional divergence indicated that their evolutional rates were similar and their functions did not significantly diverge. The findings of our study provide valuable insight into the evolutionary history of the vertebrate PAR family. PMID:26820116

  1. Discovery of SCH446211 (SCH6): A New Ketoamide Inhibitor of the HCV NS3 Serine Protease and HCV Subgenomic RNA Replication

    SciTech Connect

    Bogen, Stephane L.; Arasappan, Ashok; Bennett, Frank; Chen, Kevin; Jao, Edwin; Liu, Yi-Tsung; Lovey, Raymond G.; Venkatraman, Srikanth; Pan, Weidong; Parekh, Tajel; Pike, Russel E.; Ruan, Sumei; Liu, Rong; Baroudy, Bahige; Agrawal, Sony; Chase, Robert; Ingravallo, Paul; Pichardo, John; Prongay, Andrew; Brisson, Jean-Marc; Hsieh, Tony Y.; Cheng, Kuo-Chi; Kemp, Scott J.; Levy, Odile E.; Lim-Wilby, Marguerita; Tamura, Susan Y.; Saksena, Anil K.; Girijavallabhan, Viyyoor; Njoroge, F. George

    2008-06-30

    Introduction of various modified prolines at P{sub 2} and optimization of the P{sub 1} side chain led to the discovery of SCH6 (24, Table 2), a potent ketoamide inhibitor of the HCV NS3 serine protease. In addition to excellent enzyme potency (K*{sub i} = 3.8 nM), 24 was also found to be a potent inhibitor of HCV subgenomic RNA replication with IC{sub 50} and IC{sub 90} of 40 and 100 nM, respectively. Recently, antiviral activity of 24 was demonstrated with inhibition of the full-length genotype 2a HCV genome. In addition, 24 was found to restore the responsiveness of the interferon regulatory factor 3 (IRF-3) in cells containing HCV RNA replicons.

  2. Protease inhibitor in scorpion (Mesobuthus eupeus) venom prolongs the biological activities of the crude venom.

    PubMed

    Ma, Hakim; Xiao-Peng, Tang; Yang, Shi-Long; Lu, Qiu-Min; Lai, Ren

    2016-08-01

    It is hypothesized that protease inhibitors play an essential role in survival of venomous animals through protecting peptide/protein toxins from degradation by proteases in their prey or predators. However, the biological function of protease inhibitors in scorpion venoms remains unknown. In the present study, a trypsin inhibitor was purified and characterized from the venom of scorpion Mesobuthus eupeus, which enhanced the biological activities of crude venom components in mice when injected in combination with crude venom. This protease inhibitor, named MeKTT-1, belonged to Kunitz-type toxins subfamily. Native MeKTT-1 selectively inhibited trypsin with a Kivalue of 130 nmol·L(-1). Furthermore, MeKTT-1 was shown to be a thermo-stable peptide. In animal behavioral tests, MeKTT-1 prolonged the pain behavior induced by scorpion crude venom, suggesting that protease inhibitors in scorpion venom inhibited proteases and protect the functionally important peptide/protein toxins from degradation, consequently keeping them active longer. In conclusion, this was the first experimental evidence about the natural existence of serine protease inhibitor in the venom of scorpion Mesobuthus eupeus, which preserved the activity of venom components, suggests that scorpions may use protease inhibitors for survival. PMID:27608950

  3. Serine Protease Inhibitors Specifically Defend Solanum nigrum against Generalist Herbivores but Do Not Influence Plant Growth and Development[C][W

    PubMed Central

    Hartl, Markus; Giri, Ashok P.; Kaur, Harleen; Baldwin, Ian T.

    2010-01-01

    Solanaceaeous taxa produce diverse peptide serine proteinase inhibitors (SPIs), known antidigestive defenses that might also control endogenous plant proteases. If and how a plant coordinates and combines its different SPIs for the defense against herbivores and if these SPIs simultaneously serve developmental functions is unknown. We examine Solanum nigrum’s SPI profile, comprising four different active inhibitors, of which the most abundant proved to be novel, to understand their functional specialization in an ecological context. Transcript and activity characterization revealed tissue-specific and insect-elicited accumulation patterns. Stable and transient gene silencing of all four SPIs revealed different specificities for target proteinases: the novel SPI2c displayed high specificity for trypsin and chymotrypsin, while two other SPI2 homologs were highly active against subtilisin. In field and lab experiments, we found all four SPIs to display herbivore- and gene-specific defensive properties, with dissimilar effects on closely related species. However, we did not observe any clear developmental phenotype in SPI-silenced plants, suggesting that SPIs do not play a major role in regulating endogenous proteases under the conditions studied. In summary, specific single SPIs or their combinations defend S. nigrum against generalist herbivores, while the defense against herbivores specialized on SPI-rich diets requires other unknown defense mechanisms. PMID:21177479

  4. The Spl Serine Proteases Modulate Staphylococcus aureus Protein Production and Virulence in a Rabbit Model of Pneumonia

    PubMed Central

    Salgado-Pabon, Wilmara; Meyerholz, David K.; White, Mark J.; Schlievert, Patrick M.

    2016-01-01

    ABSTRACT The Spl proteases are a group of six serine proteases that are encoded on the νSaβ pathogenicity island and are unique to Staphylococcus aureus. Despite their interesting biochemistry, their biological substrates and functions in virulence have been difficult to elucidate. We found that an spl operon mutant of the community-associated methicillin-resistant S. aureus USA300 strain LAC induced localized lung damage in a rabbit model of pneumonia, characterized by bronchopneumonia observed histologically. Disease in the mutant-infected rabbits was restricted in distribution compared to that in wild-type USA300-infected rabbits. We also found that SplA is able to cleave the mucin 16 glycoprotein from the surface of the CalU-3 lung cell line, suggesting a possible mechanism for wild-type USA300 spreading pneumonia to both lungs. Investigation of the secreted and surface proteomes of wild-type USA300 and the spl mutant revealed multiple alterations in metabolic proteins and virulence factors. This study demonstrates that the Spls modulate S. aureus physiology and virulence, identifies a human target of SplA, and suggests potential S. aureus targets of the Spl proteases. IMPORTANCE Staphylococcus aureus is a versatile human pathogen that produces an array of virulence factors, including several proteases. Of these, six proteases called the Spls are the least characterized. Previous evidence suggests that the Spls are expressed during human infection; however, their function is unknown. Our study shows that the Spls are required for S. aureus to cause disseminated lung damage during pneumonia. Further, we present the first example of a human protein cut by an Spl protease. Although the Spls were predicted not to cut staphylococcal proteins, we also show that an spl mutant has altered abundance of both secreted and surface-associated proteins. This work provides novel insight into the function of Spls during infection and their potential ability to degrade

  5. Protease activity in protein-free NS0 myeloma cell cultures.

    PubMed

    Spens, Erika; Häggström, Lena

    2005-01-01

    Zymography of concentrated conditioned medium (CM) from protein-free NS0 myeloma cell cultures showed that this cell line produced and released/secreted several proteases. Two caseinolytic activities at 45-50 and 90 kDa were identified as aspartic acid proteases, and at least two cathepsins of the papain-like cysteine protease family with molecular masses of 30-35 kDa were found by gelatin zymography. One of these cathepsins was identified as cathepsin L by using an enzyme assay exploiting the substrate Z-Phe-Arg-AMC and the inhibitor Z-Phe-Tyr-t(Bu)-DMK. The aspartic acid and cysteine proteases were active only at acidic pH and are therefore not a potential risk for degrading the product or affecting cell growth during culture. Secreted proforms of cathepsins may, however, possess mitogenic functions, but addition of anti-procathepsin L antibodies to NS0 cultures did not influence proliferation. The recombinant antibody product was not degraded in cell-free CM incubated at pH 7, but when the pH was decreased to 3.5-4, the aspartic acid proteases degraded the product. Gelatin zymography also revealed the presence of several serine proteases in NS0 CM, one at 85 kDa and two at 50 kDa, with pH optima close to culture pH. Addition of the serine protease inhibitor aprotinin significantly increased the specific proliferation rate as compared to the control. In addition to these data, N-terminal amino acid sequencing identified two proteins in NS0 CM as the protease inhibitors secretory leukocyte protease inhibitor and cystatin C.

  6. Effects of dietary soybean stachyose and phytic acid on gene expressions of serine proteases in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Mi, Haifeng; Mai, Kangsen; Zhang, Wenbing; Wu, Chenglong; Cai, Yinghua

    2011-09-01

    Soybean stachyose (SBS) and phytic acid (PA) are anti-nutritional factors (ANF) which have deleterious effects on the growth and digestibility in fish. The present research studied the effects of dietary SBS and PA on the expression of three serine protease genes in the liver of Japanese flounder ( Paralichthys olivaceus). These genes are trypsinogen 1 (poTRY), elastase 1 (poEL) and chymotrypsinogen 1 (poCTRY). Eight artificial diets with graded levels of supplemented ANFs were formulated to 4 levels of SBS (0.00, 0.40, 0.80 and 1.50%), 4 levels of PA (0.00, 0.20, 0.40 and 0.80), respectively. Japanese flounder (initial weight 2.45 g ± 0.01 g) were fed with these diets for 10 weeks with three replications per treatment. At the end of 10 weeks, supplementation of 0.40% of dietary SBS or PA significantly increased the gene expression of poTRY and poCTRY ( P<0.05). The same level of dietary SBS significantly decreased the gene expression of poEL. In comparison with the control group (ANF-free), dietary PA (0.2% and 0.8%) significantly decreased the gene expression of poTRY, poCTRY and poEL ( P<0.05). However, excessive supplement of dietary SBS (1.5%) has no significant effects on these gene expressions ( P>0.05). These results suggested that dietary SBS and dietary PA could directly affect the serine protease genes at the transcriptional level in Japanese flounder, and these genes' expression was more sensitive to dietary PA than to SBS under the current experimental conditions.

  7. Molecular cloning, characterization and expression analysis of a clip-domain serine protease from pearl oyster Pinctada fucata.

    PubMed

    Zhang, Dianchang; Jiang, Shigui; Ma, Jianjun; Jiang, Jingjing; Pan, Dequan; Xu, Xinping

    2009-04-01

    The clip-domain serine proteases (SPs) are the essential components of extracellular signaling cascade in various biological processes, especially in embryonic development and the innate immune responses of invertebrate. Herein, we described the isolation and characterization of pearl oyster Pinctada fucata clip-domain SP gene (designated as poSP). The poSP cDNA was 1080 bp long and consisted of a 5'-untranslated region (UTR) of 13 bp, a 3'-UTR of 68 bp with a polyadenylation signal (AATAAA) at 22 nucleotides upstream of the poly(A) tail, and an open reading frame (ORF) of 999 bp encoding a polypeptide of 332 amino acids with an estimated molecular mass of 36.5 kDa and a theoretical isoelectric point of 7.3. A clip-domain and a trypsin-like serine protease domain were identified in the poSP using SMART analysis. Homology analysis of the deduced amino acid sequence of the poSP with other known SP sequences by MatGAT software revealed that the poSP shared 47.0-68.4% similarity to the other known SP sequences. The poSP mRNA was expressed in haemocytes, gonad, digestive gland and mantle, but not expressed in adductor muscle and gill. The poSP mRNA was up-regulated and increased nearly double-fold after LPS or Vibrio alginolyticus stimulation, respectively. These results suggested that the poSP was an inducible acute-phase protein that perhaps involved in the innate immune response of pearl oyster.

  8. Analysis of binding properties and specificity through identification of the interface forming residues (IFR) for serine proteases in silico docked to different inhibitors

    PubMed Central

    2010-01-01

    Background Enzymes belonging to the same super family of proteins in general operate on variety of substrates and are inhibited by wide selection of inhibitors. In this work our main objective was to expand the scope of studies that consider only the catalytic and binding pocket amino acids while analyzing enzyme specificity and instead, include a wider category which we have named the Interface Forming Residues (IFR). We were motivated to identify those amino acids with decreased accessibility to solvent after docking of different types of inhibitors to sub classes of serine proteases and then create a table (matrix) of all amino acid positions at the interface as well as their respective occupancies. Our goal is to establish a platform for analysis of the relationship between IFR characteristics and binding properties/specificity for bi-molecular complexes. Results We propose a novel method for describing binding properties and delineating serine proteases specificity by compiling an exhaustive table of interface forming residues (IFR) for serine proteases and their inhibitors. Currently, the Protein Data Bank (PDB) does not contain all the data that our analysis would require. Therefore, an in silico approach was designed for building corresponding complexes The IFRs are obtained by "rigid body docking" among 70 structurally aligned, sequence wise non-redundant, serine protease structures with 3 inhibitors: bovine pancreatic trypsin inhibitor (BPTI), ecotine and ovomucoid third domain inhibitor. The table (matrix) of all amino acid positions at the interface and their respective occupancy is created. We also developed a new computational protocol for predicting IFRs for those complexes which were not deciphered experimentally so far, achieving accuracy of at least 0.97. Conclusions The serine proteases interfaces prefer polar (including glycine) residues (with some exceptions). Charged residues were found to be uniquely prevalent at the interfaces between the

  9. Structural characterization and biological implications of sulfated N-glycans in a serine protease from the neotropical moth Hylesia metabus (Cramer [1775]) (Lepidoptera: Saturniidae).

    PubMed

    Cabrera, Gleysin; Salazar, Víctor; Montesino, Raquel; Támbara, Yanet; Struwe, Weston B; Leon, Evelyn; Harvey, David J; Lesur, Antoine; Rincón, Mónica; Domon, Bruno; Méndez, Milagros; Portela, Madelón; González-Hernández, Annia; Triguero, Ada; Durán, Rosario; Lundberg, Ulf; Vonasek, Eva; González, Luis Javier

    2016-03-01

    Contact with the urticating setae from the abdomen of adult females of the neo-tropical moth Hylesia metabus gives rise to an urticating dermatitis, characterized by intense pruritus, generalized malaise and occasionally ocular lesions (lepidopterism). The setae contain a pro-inflammatory glycosylated protease homologous to other S1A serine proteases of insects. Deglycosylation with PNGase F in the presence of a buffer prepared with 40% H2 (18)O allowed the assignment of an N-glycosylation site. Five main paucimannosidic N-glycans were identified, three of which were exclusively α(1-6)-fucosylated at the proximal GlcNAc. A considerable portion of these N-glycans are anionic species sulfated on either the 4- or the 6-position of the α(1-6)-mannose residue of the core. The application of chemically and enzymatically modified variants of the toxin in an animal model in guinea pigs showed that the pro-inflammatory and immunological reactions, e.g. disseminated fibrin deposition and activation of neutrophils, are due to the presence of sulfate-linked groups and not on disulfide bonds, as demonstrated by the reduction and S-alkylation of the toxin. On the other hand, the hemorrhagic vascular lesions observed are attributed to the proteolytic activity of the toxin. Thus, N-glycan sulfation may constitute a defense mechanism against predators.

  10. Structural characterization and biological implications of sulfated N-glycans in a serine protease from the neotropical moth Hylesia metabus (Cramer [1775]) (Lepidoptera: Saturniidae).

    PubMed

    Cabrera, Gleysin; Salazar, Víctor; Montesino, Raquel; Támbara, Yanet; Struwe, Weston B; Leon, Evelyn; Harvey, David J; Lesur, Antoine; Rincón, Mónica; Domon, Bruno; Méndez, Milagros; Portela, Madelón; González-Hernández, Annia; Triguero, Ada; Durán, Rosario; Lundberg, Ulf; Vonasek, Eva; González, Luis Javier

    2016-03-01

    Contact with the urticating setae from the abdomen of adult females of the neo-tropical moth Hylesia metabus gives rise to an urticating dermatitis, characterized by intense pruritus, generalized malaise and occasionally ocular lesions (lepidopterism). The setae contain a pro-inflammatory glycosylated protease homologous to other S1A serine proteases of insects. Deglycosylation with PNGase F in the presence of a buffer prepared with 40% H2 (18)O allowed the assignment of an N-glycosylation site. Five main paucimannosidic N-glycans were identified, three of which were exclusively α(1-6)-fucosylated at the proximal GlcNAc. A considerable portion of these N-glycans are anionic species sulfated on either the 4- or the 6-position of the α(1-6)-mannose residue of the core. The application of chemically and enzymatically modified variants of the toxin in an animal model in guinea pigs showed that the pro-inflammatory and immunological reactions, e.g. disseminated fibrin deposition and activation of neutrophils, are due to the presence of sulfate-linked groups and not on disulfide bonds, as demonstrated by the reduction and S-alkylation of the toxin. On the other hand, the hemorrhagic vascular lesions observed are attributed to the proteolytic activity of the toxin. Thus, N-glycan sulfation may constitute a defense mechanism against predators. PMID:26537504

  11. Thrombin regulation of cell function through protease-activated receptors: implications for therapeutic intervention.

    PubMed

    Derian, C K; Damiano, B P; D'Andrea, M R; Andrade-Gordon, P

    2002-01-01

    The serine protease thrombin is well recognized as being pivotal to the maintenance of hemostasis under both normal and pathological conditions. Its cellular actions are mediated through a unique family of protease-activated receptors (PARs). These receptors represent a novel family of G protein-coupled receptors that undergo proteolytic cleavage of their amino terminus and subsequent autoactivation by a tethered peptide ligand. This paper reviews the consequences of PAR activation in thrombosis, vascular injury, inflammation, tissue injury, and within the tumor microenvironment.

  12. Transient ECM protease activity promotes synaptic plasticity

    PubMed Central

    Magnowska, Marta; Gorkiewicz, Tomasz; Suska, Anna; Wawrzyniak, Marcin; Rutkowska-Wlodarczyk, Izabela; Kaczmarek, Leszek; Wlodarczyk, Jakub

    2016-01-01

    Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity, and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP), and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation. PMID:27282248

  13. A novel TMPRSS6 mutation that prevents protease auto-activation causes IRIDA

    PubMed Central

    Altamura, Sandro; D'Alessio, Flavia; Selle, Barbara; Muckenthaler, Martina U.

    2010-01-01

    IRIDA (iron-refractory iron-deficiency anaemia) is a rare autosomal-recessive disorder hallmarked by hypochromic microcytic anaemia, low transferrin saturation and high levels of the iron-regulated hormone hepcidin. The disease is caused by mutations in the transmembrane serine protease TMPRSS6 (transmembrane protease serine 6) that prevent inactivation of HJV (haemojuvelin), an activator of hepcidin transcription. In the present paper, we describe a patient with IRIDA who carries a novel mutation (Y141C) in the SEA domain of the TMPRSS6 gene. Functional characterization of the TMPRSS6(Y141C) mutant protein in cultured cells showed that it localizes to similar subcellular compartments as wild-type TMPRSS6 and binds HJV, but fails to auto-catalytically activate itself. As a consequence, hepcidin mRNA expression is increased, causing the clinical symptoms observed in this IRIDA patient. The present study provides important mechanistic insight into how TMPRSS6 is activated. PMID:20704562

  14. Coagulation, Protease Activated Receptors and Viral Myocarditis

    PubMed Central

    Antoniak, Silvio; Mackman, Nigel

    2013-01-01

    The coagulation protease cascade plays an essential role in hemostasis. In addition, a clot contributes to host defense by limiting the spread of pathogens. Coagulation proteases induce intracellular signaling by cleavage of cell surface receptors called protease-activated receptors (PARs). These receptors allow cells to sense changes in the extracellular environment, such as infection. Viruses activate the coagulation cascade by inducing tissue factor expression and by disrupting the endothelium. Virus infection of the heart can cause myocarditis, cardiac remodeling and heart failure. Recent studies using a mouse model have shown that tissue factor, thrombin and PAR-1 signaling all positively regulate the innate immune during viral myocarditis. In contrast, PAR-2 signaling was found to inhibit interferon-β expression and the innate immune response. These observations suggest that anticoagulants may impair the innate immune response to viral infection and that inhibition of PAR-2 may be a new target to reduce viral myocarditis.. PMID:24203054

  15. ACTIVATION OF A CRYPTIC D-SERINE DEAMINASE (DSD) GENE FROM PSEUDOMONAS CEPACIA 17616

    EPA Science Inventory

    D-serine inhibits growth of P. cepacia 17616; however, resistant mutants able to express an ordinarily cryptic D-serine deaminase (dsd) gene were isolated readily. The resistant strains formed high levels of a D-serine deaminase active on D-threonine as well as D-serine. IS eleme...

  16. α-Ketobenzothiazole Serine Protease Inhibitors of Aberrant HGF/c-MET and MSP/RON Kinase Pathway Signaling in Cancer.

    PubMed

    Han, Zhenfu; Harris, Peter K W; Karmakar, Partha; Kim, Tommy; Owusu, Ben Y; Wildman, Scott A; Klampfer, Lidija; Janetka, James W

    2016-03-17

    Upregulation of the HGF and MSP growth-factor processing serine endopeptidases HGFA, matriptase and hepsin is correlated with increased metastasis in multiple tumor types driven by c-MET or RON kinase signaling. We rationally designed P1' α-ketobenzothiazole mechanism-based inhibitors of these proteases. Structure-activity studies are presented, which resulted in the identification of potent inhibitors with differential selectivity. The tetrapeptide inhibitors span the P1-P1' substrate cleavage site via a P1' amide linker off the benzothiazole, occupying the S3' pocket. Optimized inhibitors display sub-nanomolar enzyme inhibition against one, two, or all three of HGFA, matriptase, and hepsin. Several compounds also have good selectivity against the related trypsin-like proteases, thrombin and Factor Xa. Finally, we show that inhibitors block the fibroblast (HGF)-mediated migration of invasive DU145 prostate cancer cells. In addition to prostate cancer, breast, colon, lung, pancreas, gliomas, and multiple myeloma tumors all depend on HGF and MSP for tumor survival and progression. Therefore, these unique inhibitors have potential as new therapeutics for a diverse set of tumor types. PMID:26889658

  17. Granzyme activity in the inflamed lung is not controlled by endogenous serine proteinase inhibitors.

    PubMed

    Tremblay, G M; Wolbink, A M; Cormier, Y; Hack, C E

    2000-10-01

    Numerous lung diseases, such as hypersensitivity pneumonitis (HP), are characterized by the presence of activated alveolar CTL and NK cells. Since these cells produce granzymes, granzyme A and B levels in bronchoalveolar lavage (BAL) fluids from 14 normal subjects and 12 patients with HP were measured by ELISA. Median (range) BAL granzyme A and B levels were 4 (0-37) and 0 (0-6) pg/ml in normal subjects. BAL granzyme levels were significantly higher in HP patients, being at 74 (0-1,889) and 10 (0-78) pg/ml for granzymes A and B, respectively. In vitro, neither of the three main serine protease inhibitors of the lung, namely alpha1-antitrypsin, secretory leukocyte protease inhibitor, and elafin, showed any effect on granzyme A or B activity. In addition, granzyme A was shown to be fully active in BAL fluids. Hence, these data show that granzyme activity may be poorly controlled by protease inhibitors in inflamed tissues. Thus, granzymes could contribute to tissue remodeling and inflammation characterizing HP.

  18. Activity based chemical proteomics: profiling proteases as drug targets.

    PubMed

    Heal, William Percy; Wickramasinghe, Sasala Roshinie; Tate, Edward William

    2008-09-01

    The pivotal role of proteases in many diseases has generated considerable interest in their basic biology, and in the potential to target them for chemotherapy. Although fundamental to the initiation and progression of diseases such as cancer, diabetes, arthritis and malaria, in many cases their precise role remains unknown. Activity-based chemical proteomics-an emerging field involving a combination of organic synthesis, biochemistry, cell biology, biophysics and bioinformatics-allows the detection, visualisation and activity quantification of whole families or selected sub-sets of proteases based upon their substrate specificity. This approach can be applied for drug target/lead identification and validation, the fundamentals of drug discovery. The activity-based probes discussed in this review contain three key features; a 'warhead' (binds irreversibly but selectively to the active site), a 'tag' (allowing enzyme 'handling', with a combination of fluorescent, affinity and/or radio labels), and a linker region between warhead and tag. From the design and synthesis of the linker arise some of the latest developments discussed here; not only can the physical properties (e.g., solubility, localisation) of the probe be tuned, but the inclusion of a cleavable moiety allows selective removal of tagged enzyme from affinity beads etc. The design and synthesis of recently reported probes is discussed, including modular assembly of highly versatile probes via solid phase synthesis. Recent applications of activity-based protein profiling to specific proteases (serine, threonine, cysteine and metalloproteases) are reviewed as are demonstrations of their use in the study of disease function in cancer and malaria.

  19. Fibrin(ogen)olytic and antiplatelet activities of a subtilisin-like protease from Solanum tuberosum (StSBTc-3).

    PubMed

    Pepe, Alfonso; Frey, María Eugenia; Muñoz, Fernando; Fernández, María Belén; Pedraza, Anabela; Galbán, Gustavo; García, Diana Noemí; Daleo, Gustavo Raúl; Guevara, María Gabriela

    2016-06-01

    Plant serine proteases have been widely used in food science and technology as well as in medicine. In this sense, several plant serine proteases have been proposed as potential anti-coagulants and anti-platelet agents. Previously, we have reported the purification and identification of a plant serine protease from Solanum tuberosum leaves. This potato enzyme, named as StSBTc-3, has a molecular weight of 72 kDa and it was characterized as a subtilisin like protease. In this work we determine and characterize the biochemical and medicinal properties of StSBTc-3. Results obtained show that, like the reported to other plant serine proteases, StSBTc-3 is able to degrade all chains of human fibrinogen and to produces fibrin clot lysis in a dose dependent manner. The enzyme efficiently hydrolyzes β subunit followed by partially hydrolyzed α and γ subunits of human fibrinogen. Assays performed to determine StSBTc-3 substrate specificity using oxidized insulin β-chain as substrate, show seven cleavage sites: Asn3-Gln4; Cys7-Gly8; Glu13-Ala14; Leu15-Tyr16; Tyr16-Leu17; Arg22-Gly23 and Phe25-Tyr26, all of them were previously reported for other serine proteases with fibrinogenolytic activity. The maximum StSBTc-3 fibrinogenolytic activity was determined at pH 8.0 and at 37 C. Additionally, we demonstrate that StSBTc-3 is able to inhibit platelet aggregation and is unable to exert cytotoxic activity on human erythrocytes in vitro at all concentrations assayed. These results suggest that StSBTc-3 could be evaluated as a new agent to be used in the treatment of thromboembolic disorders such as strokes, pulmonary embolism and deep vein thrombosis. PMID:27039890

  20. Fibrin(ogen)olytic and antiplatelet activities of a subtilisin-like protease from Solanum tuberosum (StSBTc-3).

    PubMed

    Pepe, Alfonso; Frey, María Eugenia; Muñoz, Fernando; Fernández, María Belén; Pedraza, Anabela; Galbán, Gustavo; García, Diana Noemí; Daleo, Gustavo Raúl; Guevara, María Gabriela

    2016-06-01

    Plant serine proteases have been widely used in food science and technology as well as in medicine. In this sense, several plant serine proteases have been proposed as potential anti-coagulants and anti-platelet agents. Previously, we have reported the purification and identification of a plant serine protease from Solanum tuberosum leaves. This potato enzyme, named as StSBTc-3, has a molecular weight of 72 kDa and it was characterized as a subtilisin like protease. In this work we determine and characterize the biochemical and medicinal properties of StSBTc-3. Results obtained show that, like the reported to other plant serine proteases, StSBTc-3 is able to degrade all chains of human fibrinogen and to produces fibrin clot lysis in a dose dependent manner. The enzyme efficiently hydrolyzes β subunit followed by partially hydrolyzed α and γ subunits of human fibrinogen. Assays performed to determine StSBTc-3 substrate specificity using oxidized insulin β-chain as substrate, show seven cleavage sites: Asn3-Gln4; Cys7-Gly8; Glu13-Ala14; Leu15-Tyr16; Tyr16-Leu17; Arg22-Gly23 and Phe25-Tyr26, all of them were previously reported for other serine proteases with fibrinogenolytic activity. The maximum StSBTc-3 fibrinogenolytic activity was determined at pH 8.0 and at 37 C. Additionally, we demonstrate that StSBTc-3 is able to inhibit platelet aggregation and is unable to exert cytotoxic activity on human erythrocytes in vitro at all concentrations assayed. These results suggest that StSBTc-3 could be evaluated as a new agent to be used in the treatment of thromboembolic disorders such as strokes, pulmonary embolism and deep vein thrombosis.

  1. Purification of a 24-kD protease from apoptotic tumor cells that activates DNA fragmentation.

    PubMed

    Wright, S C; Wei, Q S; Zhong, J; Zheng, H; Kinder, D H; Larrick, J W

    1994-12-01

    We report the purification of a protease from tumor cells undergoing apoptosis that is involved in activating DNA fragmentation. Initial studies revealed that two inhibitors of serine proteases, N-1-tosylamide-2-phenylethylchloromethyl ketone and carbobenzoxy-Ala-Ala-borophe (DK120), suppressed tumor necrosis factor or ultraviolet (UV) light-induced DNA fragmentation in the U937 histiocytic lymphoma as well as UV light-induced DNA fragmentation in the BT-20 breast carcinoma, HL-60 myelocytic leukemia, and 3T3 fibroblasts. The protease was purified by affinity chromatography with DK120 as ligand and showed high activity on a synthetic substrate preferred by elastase-like enzymes (Ala-Ala-Pro-Val p-nitroanilide), but was inactive on the trypsin substrate, N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester, or the chymotrypsin substrate, Ala-Ala-Pro-Phe p-nitroanilide. The activity of the DK120-binding protease purified from U937 cells undergoing apoptosis was increased approximately 10-fold over that recovered from normal cells. Further purification to homogeneity by heparin-Sepharose affinity chromatography followed by reverse phase high-performance liquid chromatography revealed a single band of 24 kD on a silver-stained sodium dodecyl sulfate gel. In addition to protease activity, the purified enzyme induced DNA fragmentation into multiples of 180 basepairs in isolated U937 nuclei. These findings suggest the 24-kD protease is a novel enzyme that activates DNA fragmentation in U937 cells undergoing apoptosis. PMID:7964487

  2. Enhancement of the aspartame precursor synthetic activity of an organic solvent-stable protease.

    PubMed

    Ogino, Hiroyasu; Tsuchiyama, Shotaro; Yasuda, Masahiro; Doukyu, Noriyuki

    2010-03-01

    The PST-01 protease is highly stable and catalyzes the synthesis of the aspartame precursor with high reaction yields in the presence of organic solvents. However, the synthesis rate using the PST-01 protease was slower than that observed when thermolysin was used. Structural comparison of both enzymes showed particular amino acid differences near the active center. These few residue differences in the PST-01 protease were mutated to match those amino acid types found in thermolysin. The mutated PST-01 proteases at the 114th residue from tyrosine to phenylalanine showed enhancement of synthetic activity. This activity was found to be similar to thermolysin. In addition, mutating the residue in the PST-01 protease with arginine and serine showed more improvement of the activity. The mutant PST-01 protease should be more useful than thermolysin for the synthesis of the aspartame precursor, because this enzyme has higher stability and activity in the presence of organic solvents. The results show the potential of organic solvent-stable enzymes as industrial catalysts.

  3. Protease and protease inhibitory activity in pregnant and postpartum involuting uterus

    SciTech Connect

    Milwidsky, A.; Beller, U.; Palti, Z.; Mayer, M.

    1982-08-15

    The presence of two distinct proteolytic activities in the rat uterus was confirmed with /sup 14/C-labeled globin used as a sensitive protein substrate and following release of label into the trichloroacetic acid-soluble supernatant fraction. Protease I is a cytoplasmic acid protease while protease II is associated with the pellet fraction, can be extracted by 0.6 M sodium chloride, and is active at pH 7.0. Protease I activity is low during pregnancy and markedly increases at term achieving maximal activity at day 3 post partum with a subsequent decline to preterm activity values. Lactation did not affect the uterine protease I activity. Protease II activity is not significantly different during pregnancy, at term, and post partum. The presence of an inhibitor of protease I was suggested by a decrease in enzyme activity with an increased cytosolic protein concentration. The inhibitor also lessened bovine trypsin activity but had no effect on protease II. Although its inhibitory potency on trypsin fluctuated during the various uterine physiologic stages, these changes appeared to be statistically insignificant. Human uterine samples were also found to contain the two protease activities with similar changes in protease I post partum. It is suggested that, both in the rat and in man, uterine involution post partum is associated with a marked increase in activity of acid cytosolic protease, while a particulate neutral protease and a soluble inhibitor of trypsin, which are also present in uterine cells, do not appear to play a significant role in the dissolution of uterine tissues after parturition.

  4. A masquerade-like serine proteinase homologue is necessary for phenoloxidase activity in the coleopteran insect, Holotrichia diomphalia larvae.

    PubMed

    Kwon, T H; Kim, M S; Choi, H W; Joo, C H; Cho, M Y; Lee, B L

    2000-10-01

    Previously, we reported the molecular cloning of cDNA for the prophenoloxidase activating factor-I (PPAF-I) that encoded a member of the serine proteinase group with a disulfide-knotted motif at the N-terminus and a trypsin-like catalytic domain at the C-terminus [Lee, S.Y., Cho, M.Y., Hyun, J.H., Lee, K.M., Homma, K.I., Natori, S. , Kawabata, S.I., Iwanaga, S. & Lee, B.L. (1998) Eur. J. Biochem. 257, 615-621]. PPAF-I is directly involved in the activation of pro-phenoloxidase (pro-PO) by limited proteolysis and the overall structure is highly similar to that of Drosophila easter serine protease, an essential serine protease zymogen for pattern formation in normal embryonic development. Here, we report purification and molecular cloning of cDNA for another 45-kDa novel PPAF from the hemocyte lysate of Holotrichia diomphalia larvae. The gene encodes a serine proteinase homologue consisting of 415 amino-acid residues with a molecular mass of 45 256 Da. The overall structure of the 45-kDa protein is similar to that of masquerade, a serine proteinase homologue expressed during embryogenesis, larval, and pupal development in Drosophila melanogaster. The 45-kDa protein contained a trypsin-like serine proteinase domain at the C-terminus, except for the substitution of Ser of the active site triad to Gly and had a disulfide-knotted domain at the N-terminus. A highly similar 45-kDa serine proteinase homologue was also cloned from the larval cDNA library of another coleopteran, Tenebrio molitor. By in vitro reconstitution experiments, we found that the purified 45-kDa serine proteinase homologue, the purified active PPAF-I and the purified pro-PO were necessary for expressing phenoloxidase activity in the Holotrichia pro-PO system. However, incubation of pro-PO with either PPAF-I or 45-kDa protein, no phenoloxidase activity was observed. Interestingly, when the 45-kDa protein was incubated with PPAF-I and pro-PO in the absence, but not in the presence of Ca2+, the 45-k

  5. Structural Basis for Catalytic Activation of a Serine Recombinase

    SciTech Connect

    Keenholtz, Ross A.; Rowland, Sally-J.; Boocock, Martin R.; Stark, W. Marshall; Rice, Phoebe A.

    2014-10-02

    Sin resolvase is a site-specific serine recombinase that is normally controlled by a complex regulatory mechanism. A single mutation, Q115R, allows the enzyme to bypass the entire regulatory apparatus, such that no accessory proteins or DNA sites are required. Here, we present a 1.86 {angstrom} crystal structure of the Sin Q115R catalytic domain, in a tetrameric arrangement stabilized by an interaction between Arg115 residues on neighboring subunits. The subunits have undergone significant conformational changes from the inactive dimeric state previously reported. The structure provides a new high-resolution view of a serine recombinase active site that is apparently fully assembled, suggesting roles for the conserved active site residues. The structure also suggests how the dimer-tetramer transition is coupled to assembly of the active site. The tetramer is captured in a different rotational substate than that seen in previous hyperactive serine recombinase structures, and unbroken crossover site DNA can be readily modeled into its active sites.

  6. Active site conformational changes of prostasin provide a new mechanism of protease regulation by divalent cations

    SciTech Connect

    Spraggon, Glen; Hornsby, Michael; Shipway, Aaron; Tully, David C.; Bursulaya, Badry; Danahay, Henry; Harris, Jennifer L.; Lesley, Scott A.

    2010-01-12

    Prostasin or human channel-activating protease 1 has been reported to play a critical role in the regulation of extracellular sodium ion transport via its activation of the epithelial cell sodium channel. Here, the structure of the extracellular portion of the membrane associated serine protease has been solved to high resolution in complex with a nonselective d-FFR chloromethyl ketone inhibitor, in an apo form, in a form where the apo crystal has been soaked with the covalent inhibitor camostat and in complex with the protein inhibitor aprotinin. It was also crystallized in the presence of the divalent cation Ca{sup +2}. Comparison of the structures with each other and with other members of the trypsin-like serine protease family reveals unique structural features of prostasin and a large degree of conformational variation within specificity determining loops. Of particular interest is the S1 subsite loop which opens and closes in response to basic residues or divalent ions, directly binding Ca{sup +2} cations. This induced fit active site provides a new possible mode of regulation of trypsin-like proteases adapted in particular to extracellular regions with variable ionic concentrations such as the outer membrane layer of the epithelial cell.

  7. Peptide sequences identified by phage display are immunodominant functional motifs of Pet and Pic serine proteases secreted by Escherichia coli and Shigella flexneri.

    PubMed

    Ulises, Hernández-Chiñas; Tatiana, Gazarian; Karlen, Gazarian; Guillermo, Mendoza-Hernández; Juan, Xicohtencatl-Cortes; Carlos, Eslava

    2009-12-01

    Plasmid-encoded toxin (Pet) and protein involved in colonization (Pic), are serine protease autotransporters of Enterobacteriaceae (SPATEs) secreted by enteroaggregative Escherichia coli (EAEC), which display the GDSGSG sequence or the serine motif. Our research was directed to localize functional sites in both proteins using the phage display method. From a 12mer linear and a 7mer cysteine-constrained (C7C) libraries displayed on the M13 phage pIII protein we selected different mimotopes using IgG purified from sera of children naturally infected with EAEC producing Pet and Pic proteins, and anti-Pet and anti-Pic IgG purified from rabbits immunized with each one of these proteins. Children IgG selected a homologous group of sequences forming the consensus sequence, motif, PQPxK, and the motifs PGxI/LN and CxPDDSSxC were selected by the rabbit anti-Pet and anti-Pic IgGs, respectively. Analysis of the amino terminal region of a panel of SPATEs showed the presence in all of them of sequences matching the PGxI/LN or CxPDDSSxC motifs, and in a three-dimensional model (Modeller 9v2) designed for Pet, both these motifs were found in the globular portion of the protein, close to the protease active site GDSGSG. Antibodies induced in mice by mimotopes carrying the three aforementioned motifs were reactive with Pet, Pic, and with synthetic peptides carrying the immunogenic mimotope sequences TYPGYINHSKA and LLPQPPKLLLP, thus confirming that the peptide moiety of the selected phages induced the antibodies specific for the toxins. The antibodies induced in mice to the PGxI/LN and CxPDDSSxC mimotopes inhibited fodrin proteolysis and macrophage chemotaxis biological activities of Pet. Our results showed that we were able to generate, by a phage display procedure, mimotopes with sequence motifs PGxI/LN and CxPDDSSxC, and to identify them as functional motifs of the Pet, Pic and other SPATEs involved in their biological activities.

  8. The intronic minisatellite OsMin1 within a serine protease gene in the Chinese caterpillar fungus Ophiocordyceps sinensis.

    PubMed

    Zhang, Yong-Jie; Hou, Jun-Xiu; Zhang, Shu; Hausner, Georg; Liu, Xing-Zhong; Li, Wen-Jia

    2016-04-01

    Repetitive DNA sequences make up a significant portion of all genomes and may occur in intergenic, regulatory, coding, or even intronic regions. Partial sequences of a serine protease gene csp1 was previously used as a population genetic marker of the Chinese caterpillar fungus Ophiocordyceps sinensis, but its first intron region was excluded due to ambiguous alignment. Here in this study, we report the presence of a minisatellite OsMin1 within this intron, where a 20(19)-bp repeat motif is duplicated two to six times in different isolates. Fourteen intron alleles and 13 OsMin1 alleles were identified among 125 O. sinensis samples distributed broadly on the Tibetan Plateau. Two OsMin1 alleles were prevalent, corresponding to either two or five repeats of the core sequence motif. OsMin1 appears to be a single locus marker in the O. sinensis genome, but its origin is undetermined. Abundant recombination signals were detected between upstream and downstream flanking regions of OsMin1, suggesting that OsMin1 mutate by unequal crossing over. Geographic distribution, fungal phylogeny, and host insect phylogeny all significantly affected intron distribution patterns but with the greatest influence noted for fungal genotypes and the least for geography. As far as we know, OsMin1 is the first minisatellite found in O. sinensis and the second found in fungal introns. OsMin1 may be useful in designing an efficient protocol to discriminate authentic O. sinensis from counterfeits. PMID:26754819

  9. Characterization of the 41kDa allergen Asp v 13, a subtilisin-like serine protease from Aspergillus versicolor.

    PubMed

    Shi, C; Miller, J D

    2011-09-01

    Aspergillus versicolor is common on moldy building materials. Asp v 13, the principal allergen is produced by strains collected from across Canada. In this paper, we report a 1833bp Asp v 13 open reading frame predicted to encode a protein of 403 amino acids in length with three introns. A BLAST search of Asp v 13, a phylogenic tree calculation and alignment with its homologous proteins from other species indicated that Asp v 13 is a secretory, subtilisin-like serine protease widely distributed in Aspergillus species. His-tagged Asp v 13 was over-expressed in Escherichia coli and purified using Ni-NTA columns with a yield of 1mg/L. Based on immuno binding assay of recombinant protein both antibodies developed against the natural protein, and human sera IgE, the recombinant protein was similar to the natural form. Six IgE- and seven IgG-binding epitopes were also identified with selected human sera along the entire amino acid sequence of Asp v 13. Most residues binding these epitopes are exposed on the surface and correspond to charged regions of the molecule.

  10. The Glycosylphosphatidylinositol-Anchored Serine Protease PRSS21 (Testisin) Imparts Murine Epididymal Sperm Cell Maturation and Fertilizing Ability1

    PubMed Central

    Netzel-Arnett, Sarah; Bugge, Thomas H.; Hess, Rex A.; Carnes, Kay; Stringer, Brett W.; Scarman, Anthony L.; Hooper, John D.; Tonks, Ian D.; Kay, Graham F.; Antalis, Toni M.

    2009-01-01

    An estimated 25%–40% of infertile men have idiopathic infertility associated with deficient sperm numbers and quality. Here, we identify the membrane-anchored serine protease PRSS21, also known as testisin, to be a novel proteolytic factor that directs epididymal sperm cell maturation and sperm-fertilizing ability. PRSS21-deficient spermatozoa show decreased motility, angulated and curled tails, fragile necks, and dramatically increased susceptibility to decapitation. These defects reflect aberrant maturation during passage through the epididymis, because histological and electron microscopic structural analyses showed an increased tendency for curled and detached tails as spermatozoa transit from the corpus to the cauda epididymis. Cauda epididymal spermatozoa deficient in PRSS21 fail to mount a swelling response when exposed to hypotonic conditions, suggesting an impaired ability to respond to osmotic challenges facing maturing spermatozoa in the female reproductive tract. These data suggest that aberrant regulation of PRSS21 may underlie certain secondary male infertility syndromes, such as “easily decapitated” spermatozoa in humans. PMID:19571264

  11. Hydrolysis with Cucurbita ficifolia serine protease reduces antigenic response to bovine whey protein concentrate and αs-casein.

    PubMed

    Babij, Konrad; Bajzert, Joanna; Dąbrowska, Anna; Szołtysik, Marek; Zambrowicz, Aleksandra; Lubec, Gert; Stefaniak, Tadeusz; Willak-Janc, Ewa; Chrzanowska, Józefa

    2015-11-01

    In the present study the effect of hydrolysis with non-commercial Cucurbita ficifolia serine protease on a reduction of the IgE and IgG binding capacity of whey protein concentrate and αs-casein was investigated. The intensity of the protein degradation was analyzed by the degree of hydrolysis, the free amino groups content and RP-HPLC. The ability to bind the antibodies by native proteins and their hydrolysates was determined using a competitive ELISA test. Deep hydrolysis contributed to a significant reduction of immunoreactive epitopes present in WPC. In the case of IgE and IgG present in the serum pool of children with CMA, the lowest binding capacity was detected in the 24 h WPC hydrolysate, where the inhibition of the reaction with native WPC was ≤23 and ≤60 %, respectively. The analysis of the IgG reactivity in the antiserum of the immunized goat showed that the lowest antibody binding capacity was exhibited also by 24 h WPC hydrolysate at a concentration of 1000 μg/ml where the inhibition of the reaction with nWPC was ≤47 %. One-hour hydrolysis of α-casein was sufficient to significant reduction of the protein antigenicity, while the longer time (5 h) of hydrolysis probably lead to the appearance of new epitopes reactive with polyclonal.

  12. Inhibitors of serine proteases decrease sperm penetration during porcine fertilization in vitro by inhibiting sperm binding to the zona pellucida and acrosome reaction.

    PubMed

    Beek, J; Nauwynck, H; Appeltant, R; Maes, D; Van Soom, A

    2015-11-01

    Serine proteases are involved in mammalian fertilization. Inhibitors of serine proteases can be applied to investigate at which point these enzymes exert their action. We selected two serine protease inhibitors, 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF, 100 μM) and soybean trypsin inhibitor (STI, 5 μM) from Glycine max, via previous dose-response IVF experiments and sperm toxicity tests. In the present study, we evaluated how these inhibitors affect porcine fertilization in vitro as calculated on total fertilization rate, polyspermy rate, and the sperm number per fertilized oocyte of cumulus-intact, cumulus-free, and zona-free oocytes. In the control group (no inhibitor), these parameters were 86%, 49%, and 2.2 for cumulus-intact oocytes and 77%, 43%, and 2.2 for cumulus-free oocytes (6-hour gamete incubation period, 1.25 × 10(5) spermatozoa/mL). 4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride and STI significantly reduced total fertilization and polyspermy rate in cumulus-intact and cumulus-free oocytes (P < 0.05). Total fertilization rates were respectively 65% and 53% (AEBSF) and 36% and 17% (STI). Inhibition rates were higher in cumulus-free oocytes than in cumulus-intact oocytes, indicating that inhibitors exerted their action after sperm passage through the cumulus. 4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride but not STI reduced sperm binding to the ZP. The acrosome reaction was significantly inhibited by both inhibitors. Only 40.4% (AEBSF) and 11.4% (STI) of spermatozoa completed a calcium-induced acrosome reaction compared to 86.7% of spermatozoa in the control group. There was no effect on sperm binding or fertilization parameters in zona-free oocytes. In conclusion, sperm-zona binding and acrosome reaction were inhibited by serine protease inhibitors during porcine IVF.

  13. The protease inhibitor HAI-2, but not HAI-1, regulates matriptase activation and shedding through prostasin.

    PubMed

    Friis, Stine; Sales, Katiuchia Uzzun; Schafer, Jeffrey Martin; Vogel, Lotte K; Kataoka, Hiroaki; Bugge, Thomas H

    2014-08-01

    The membrane-anchored serine proteases, matriptase and prostasin, and the membrane-anchored serine protease inhibitors, hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2, are critical effectors of epithelial development and postnatal epithelial homeostasis. Matriptase and prostasin form a reciprocal zymogen activation complex that results in the formation of active matriptase and prostasin that are targets for inhibition by HAI-1 and HAI-2. Conflicting data, however, have accumulated as to the existence of auxiliary functions for both HAI-1 and HAI-2 in regulating the intracellular trafficking and activation of matriptase. In this study, we, therefore, used genetically engineered mice to determine the effect of ablation of endogenous HAI-1 and endogenous HAI-2 on endogenous matriptase expression, subcellular localization, and activation in polarized intestinal epithelial cells. Whereas ablation of HAI-1 did not affect matriptase in epithelial cells of the small or large intestine, ablation of HAI-2 resulted in the loss of matriptase from both tissues. Gene silencing studies in intestinal Caco-2 cell monolayers revealed that this loss of cell-associated matriptase was mechanistically linked to accelerated activation and shedding of the protease caused by loss of prostasin regulation by HAI-2. Taken together, these data indicate that HAI-1 regulates the activity of activated matriptase, whereas HAI-2 has an essential role in regulating prostasin-dependent matriptase zymogen activation.

  14. Proteolytic Activation of the Essential Parasitophorous Vacuole Cysteine Protease SERA6 Accompanies Malaria Parasite Egress from Its Host Erythrocyte*

    PubMed Central

    Ruecker, Andrea; Shea, Michael; Hackett, Fiona; Suarez, Catherine; Hirst, Elizabeth M. A.; Milutinovic, Katarina; Withers-Martinez, Chrislaine; Blackman, Michael J.

    2012-01-01

    The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV). The PV and host cell membranes eventually rupture, releasing merozoites in a process called egress. Certain inhibitors of serine and cysteine proteases block egress, indicating a crucial role for proteases. The Plasmodium falciparum genome encodes nine serine-repeat antigens (SERAs), each of which contains a central domain homologous to the papain-like (clan CA, family C1) protease family. SERA5 and SERA6 are indispensable in blood-stage parasites, but the function of neither is known. Here we show that SERA6 localizes to the PV where it is precisely cleaved just prior to egress by an essential serine protease called PfSUB1. Mutations that replace the predicted catalytic Cys of SERA6, or that block SERA6 processing by PfSUB1, could not be stably introduced into the parasite genomic sera6 locus, indicating that SERA6 is an essential enzyme and that processing is important for its function. We demonstrate that cleavage of SERA6 by PfSUB1 converts it to an active cysteine protease. Our observations reveal a proteolytic activation step in the malarial PV that may be required for release of the parasite from its host erythrocyte. PMID:22984267

  15. Design, Synthesis and Biological Evaluation of a Library of Thiocarbazates and their Activity as Cysteine Protease Inhibitors

    PubMed Central

    Liu, Zhuqing; Myers, Michael C.; Shah, Parag P.; Beavers, Mary Pat; Benedetti, Phillip A.; Diamond, Scott L.

    2010-01-01

    Recently, we identified a novel class of potent cathepsin L inhibitors, characterized by a thiocarbazate warhead. Given the potential of these compounds to inhibit other cysteine proteases, we designed and synthesized a library of thiocarbazates containing diversity elements at three positions. Biological characterization of this library for activity against a panel proteases indicated a significant preference for members of the papain family of cysteine proteases over serine, metallo-, and certain classes of cysteine proteases, such as caspases. Several very potent inhibitors of Cathepsin L and S were identified. The SAR data was employed in docking studies in an effort to understand the structural elements required for Cathepsin S inhibition. This study provides the basis for the design of highly potent and selective inhibitors of the papain family of cysteine proteases. PMID:20438448

  16. Epithelial Sodium Channel-Mediated Sodium Transport Is Not Dependent on the Membrane-Bound Serine Protease CAP2/Tmprss4.

    PubMed

    Keppner, Anna; Andreasen, Ditte; Mérillat, Anne-Marie; Bapst, Julie; Ansermet, Camille; Wang, Qing; Maillard, Marc; Malsure, Sumedha; Nobile, Antoine; Hummler, Edith

    2015-01-01

    The membrane-bound serine protease CAP2/Tmprss4 has been previously identified in vitro as a positive regulator of the epithelial sodium channel (ENaC). To study its in vivo implication in ENaC-mediated sodium absorption, we generated a knockout mouse model for CAP2/Tmprss4. Mice deficient in CAP2/Tmprss4 were viable, fertile, and did not show any obvious histological abnormalities. Unexpectedly, when challenged with sodium-deficient diet, these mice did not develop any impairment in renal sodium handling as evidenced by normal plasma and urinary sodium and potassium electrolytes, as well as normal aldosterone levels. Despite minor alterations in ENaC mRNA expression, we found no evidence for altered proteolytic cleavage of ENaC subunits. In consequence, ENaC activity, as monitored by the amiloride-sensitive rectal potential difference (ΔPD), was not altered even under dietary sodium restriction. In summary, ENaC-mediated sodium balance is not affected by lack of CAP2/Tmprss4 expression and thus, does not seem to directly control ENaC expression and activity in vivo.

  17. Three novel clade B serine protease inhibitors from disk abalone, Haliotis discus discus: Molecular perspectives and responses to immune challenges and tissue injury.

    PubMed

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Godahewa, G I; Whang, Ilson; Kim, Chul; Park, Hae-Chul; Lee, Jehee

    2015-08-01

    Serine protease inhibitors (SERPINs) control cellular protease activity in order to maintain cellular homeostasis. The immune and inflammatory responses of invertebrate clade B SERPINs have not been widely reported. In the present study, three proteins with high similarity to clade B SERPINs, referred to as AbSERPIN-1, AbSERPIN-2 and AbSERPIN-3, were identified from disk abalone (Haliotis discus discus). While AbSERPIN-1 (399 aa) was of a typical size for this protein class, AbSERPIN-2 (506 aa) and AbSERPIN-3 (532 aa) were relatively larger. Bioinformatic analysis revealed the characteristic SERPIN domain in each AbSERPIN. In addition, the N-terminal region of both AbSERPIN-2 and AbSERPIN-3 contained a predicted low complexity region (LCR) and a signal peptide, suggesting that these proteins are secretory proteins and are, thus, novel peptides. Tertiary structural models of the AbSERPINs highlighted their structural and functional conservation. Ubiquitous expression of AbSERPIN transcripts was evaluated by quantitative real time PCR (qPCR) analysis in seven tissue types. AbSERPIN-1, AbSERPIN-2, and AbSERPIN-3 transcript levels were highest in mantle, hemocytes, and muscles, respectively. Temporal expression analysis revealed that AbSERPINs were significantly (P < 0.05) elevated in hemocytes during the early/middle stages following the injection of a bacterial pathogen (Vibrio parahaemolyticus or Listeria monocytogenes) or an immuno-stimulant (lipopolysaccharide). Moreover, mantle tissue injury led to significant changes in the temporal expression of AbSERPIN mRNA. Specifically, transcription of AbSERPIN-1 and AbSERPIN-3 was considerably up-regulated, while expression of AbSERPIN-2 was suppressed. These results suggest a potential role of AbSERPINs in response to pathogen invasion and tissue injury in disk abalone. PMID:25917971

  18. Three novel clade B serine protease inhibitors from disk abalone, Haliotis discus discus: Molecular perspectives and responses to immune challenges and tissue injury.

    PubMed

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Godahewa, G I; Whang, Ilson; Kim, Chul; Park, Hae-Chul; Lee, Jehee

    2015-08-01

    Serine protease inhibitors (SERPINs) control cellular protease activity in order to maintain cellular homeostasis. The immune and inflammatory responses of invertebrate clade B SERPINs have not been widely reported. In the present study, three proteins with high similarity to clade B SERPINs, referred to as AbSERPIN-1, AbSERPIN-2 and AbSERPIN-3, were identified from disk abalone (Haliotis discus discus). While AbSERPIN-1 (399 aa) was of a typical size for this protein class, AbSERPIN-2 (506 aa) and AbSERPIN-3 (532 aa) were relatively larger. Bioinformatic analysis revealed the characteristic SERPIN domain in each AbSERPIN. In addition, the N-terminal region of both AbSERPIN-2 and AbSERPIN-3 contained a predicted low complexity region (LCR) and a signal peptide, suggesting that these proteins are secretory proteins and are, thus, novel peptides. Tertiary structural models of the AbSERPINs highlighted their structural and functional conservation. Ubiquitous expression of AbSERPIN transcripts was evaluated by quantitative real time PCR (qPCR) analysis in seven tissue types. AbSERPIN-1, AbSERPIN-2, and AbSERPIN-3 transcript levels were highest in mantle, hemocytes, and muscles, respectively. Temporal expression analysis revealed that AbSERPINs were significantly (P < 0.05) elevated in hemocytes during the early/middle stages following the injection of a bacterial pathogen (Vibrio parahaemolyticus or Listeria monocytogenes) or an immuno-stimulant (lipopolysaccharide). Moreover, mantle tissue injury led to significant changes in the temporal expression of AbSERPIN mRNA. Specifically, transcription of AbSERPIN-1 and AbSERPIN-3 was considerably up-regulated, while expression of AbSERPIN-2 was suppressed. These results suggest a potential role of AbSERPINs in response to pathogen invasion and tissue injury in disk abalone.

  19. Caspase-dependent and serine protease-dependent DNA fragmentation of myocytes in the ischemia-reperfused rabbit heart: these inhibitors do not reduce infarct size.

    PubMed

    Minatoguchi, S; Kariya, T; Uno, Y; Arai, M; Nishida, Y; Hashimoto, K; Wang, N; Aoyama, T; Takemura, G; Fujiwara, T; Fujiwara, H

    2001-10-01

    Some infarcted myocytes undergo caspase-dependent DNA fragmentation, but serine protease-dependent DNA fragmentation may also be involved. There is controversy regarding whether caspase inhibitors can reduce infarct size, so the present study investigated whether serine protease inhibitor can reduce the DNA fragmentation of infarcted myocytes and whether serine protease or caspase inhibitors attenuates myocardial infarct size in Japanese white rabbits without collateral circulation. Rabbits were subjected to 30-min coronary occlusion followed by 48-h reperfusion. A vehicle (dimethylsulfoxide, control group, n=8) or Z-Val-Ala-Asp(Ome)-CH2F (ZVAD-fmk, a caspase inhibitor, ZVAD group, 0.8 mg/kg iv at 20 min before coronary occlusion and 0.8 mg/kg at 90 min after reperfusion, n=8) or 3,4-dichloroisocoumarin (DCI, a serine protease inhibitor, 2 mg/kg iv at 20 min before coronary occlusion, DCI group, n=8) was administered. Animals were killed at 48h after reperfusion for the detection of myocardial infarct size and at 4h after reperfusion for the detection of dUTP nick end-labeling (TUNEL)-positive myocytes, the electrophoretic pattern of DNA fragmentation and ultrastructural analysis. The left ventricle (LV) was excised and sliced. The myocardial infarct size as a percentage of the area at risk was assessed by triphenyltetrazolium chloride staining. DNA fragmentation was assessed by in situ TUNEL at the light microscopic level. ZVAD and DCI significantly reduced the mean blood pressure during reperfusion without affecting heart rate. There was no significant difference in the % area at risk (AAR) of LV among the 3 groups (control: 26.3+/-3.0%; ZVAD: 25.6+/-2.6%; DCI: 25.6+/-2.0%). The % infarct size as a percentage of the AAR in the ZVAD group (41.3+/-4.5%) and the DCI group (50.4+/-3.8%) was not significantly different from the control group (43.5+/-4.5%). However, the percent DNA fragmentation in the infarcted area in the ZVAD (3.5+/-0.8%) and DCI groups (4

  20. Temperature-induced changes of HtrA2(Omi) protease activity and structure.

    PubMed

    Zurawa-Janicka, Dorota; Jarzab, Miroslaw; Polit, Agnieszka; Skorko-Glonek, Joanna; Lesner, Adam; Gitlin, Agata; Gieldon, Artur; Ciarkowski, Jerzy; Glaza, Przemyslaw; Lubomska, Agnieszka; Lipinska, Barbara

    2013-01-01

    HtrA2(Omi), belonging to the high-temperature requirement A (HtrA) family of stress proteins, is involved in the maintenance of mitochondrial homeostasis and in the stimulation of apoptosis, as well as in cancer and neurodegenerative disorders. The protein comprises a serine protease domain and a postsynaptic density of 95 kDa, disk large, and zonula occludens 1 (PDZ) regulatory domain and functions both as a protease and a chaperone. Based on the crystal structure of the HtrA2 inactive trimer, it has been proposed that PDZ domains restrict substrate access to the protease domain and that during protease activation there is a significant conformational change at the PDZ-protease interface, which removes the inhibitory effect of PDZ from the active site. The crystal structure of the HtrA2 active form is not available yet. HtrA2 activity markedly increases with temperature. To understand the molecular basis of this increase in activity, we monitored the temperature-induced structural changes using a set of single-Trp HtrA2 mutants with Trps located at the PDZ-protease interface. The accessibility of each Trp to aqueous medium was assessed by fluorescence quenching, and these results, in combination with mean fluorescence lifetimes and wavelength emission maxima, indicate that upon an increase in temperature the HtrA2 structure relaxes, the PDZ-protease interface becomes more exposed to the solvent, and significant conformational changes involving both domains occur at and above 30 °C. This conclusion correlates well with temperature-dependent changes of HtrA2 proteolytic activity and the effect of amino acid substitutions (V226K and R432L) located at the domain interface, on HtrA2 activity. Our results experimentally support the model of HtrA2 activation and provide an insight into the mechanism of temperature-induced changes in HtrA2 structure.

  1. EprS, an autotransporter serine protease, plays an important role in various pathogenic phenotypes of Pseudomonas aeruginosa.

    PubMed

    Kida, Y; Taira, J; Kuwano, K

    2016-02-01

    Pseudomonas aeruginosa possesses an arsenal of both cell-associated (flagella, pili, alginate, etc.) and extracellular (exotoxin A, proteases, type III secretion effectors, etc.) virulence factors. Among them, secreted proteases that damage host tissues are considered to play an important role in the pathogenesis of P. aeruginosa infections. We previously reported that EprS, an autotransporter protease of P. aeruginosa, induces host inflammatory responses through protease-activated receptors. However, little is known about the role of EprS as a virulence factor of P. aeruginosa. In this study, to investigate whether EprS participates in the pathogenicity of P. aeruginosa, we characterized various pathogenic phenotypes of the wild-type PAO1 strain and its eprS-disrupted mutant. The growth assays demonstrated that the growth of the eprS mutant was somewhat lower than that of the wild-type strain in a minimal medium containing BSA as the sole carbon and nitrogen source. Thus, these results indicate that eprS would have a role in the growth of P. aeruginosa in the presence of limited nutrients, such as a medium containing proteinaceous materials as a sole nutrient source. Furthermore, disruption of eprS resulted in a decreased production of elastase, pigments, autoinducers and surfactants, and a reduction of swimming and swarming motilities. In addition, the eprS mutant exhibited a reduction in the ability to associate with A549 cells and an attenuation of virulence in leucopenic mice as compared with the wild-type strain. Collectively, these results suggest that EprS exerts pleiotropic effects on various pathogenic phenotypes of P. aeruginosa. PMID:26678838

  2. The contribution of protease-activated receptor 1 to neuronal damage caused by transient focal cerebral ischemia.

    PubMed

    Junge, Candice E; Sugawara, Taku; Mannaioni, Guido; Alagarsamy, Sudar; Conn, P Jeffrey; Brat, Daniel J; Chan, Pak H; Traynelis, Stephen F

    2003-10-28

    The serine proteases tissue plasminogen activator, plasmin, and thrombin and their receptors have previously been suggested to contribute to neuronal damage in certain pathological situations. Here we demonstrate that mice lacking protease-activated receptor 1 (PAR1) have a 3.1-fold reduction in infarct volume after transient focal cerebral ischemia. Intracerebroventricular injection of PAR1 antagonist BMS-200261 reduced infarct volume 2.7-fold. There are no detectable differences between PAR1-/- and WT mice in cerebrovascular anatomy, capillary density, or capillary diameter, demonstrating that the neuroprotective phenotype is not likely related to congenital abnormalities in vascular development. We also show that the exogenously applied serine proteases thrombin, plasmin, and tissue plasminogen activator can activate PAR1 signaling in brain tissue. These data together suggest that if blood-derived serine proteases that enter brain tissue in ischemic situations can activate PAR1, this sequence of events may contribute to the harmful effects observed. Furthermore, PAR1 immunoreactivity is present in human brain, suggesting that inhibition of PAR1 may provide a novel potential therapeutic strategy for decreasing neuronal damage associated with ischemia and blood-brain barrier breakdown.

  3. Proteases from Canavalia ensiformis: Active and Thermostable Enzymes with Potential of Application in Biotechnology

    PubMed Central

    Gonçalves, Rayane Natshe; Gozzini Barbosa, Suellen Duarte

    2016-01-01

    Extracts of leaves, seeds, roots, and stem from a tropical legume, C. ensiformis, were prepared employing buffers and detergent in aqueous solution. Leaf extracts had the highest protein content and the most pronounced peptidase activity with optimal pH in the neutral to alkaline range. All extracts exhibited peaks of activity at various pH values, suggesting the presence of distinctive classes of proteases. N-α-Tosyl-L-arginine methyl ester hydrolysis was maximal at 30°C to 60°C and peptidase activity from all extracts presented very good thermal stability after 24 h incubation at 70°C. C. ensiformis proteases exhibited molecular masses of about 200–57, 40–37, and 20–15 kDa by SDS-PAGE analysis. These enzymes cleaved hemoglobin, bovine serum albumin, casein, and gelatin at different levels. Serine and metalloproteases are the major proteases in C. ensiformis extracts, modulated by divalent cations, stable at 1% of surfactant Triton X-100 and at different concentrations of the reducing agent β-mercaptoethanol. Thus, C. ensiformis expresses a particular set of proteases in distinctive organs with high activity and stability, making this legume an important source of proteases with biotechnological potential.

  4. Proteases from Canavalia ensiformis: Active and Thermostable Enzymes with Potential of Application in Biotechnology

    PubMed Central

    Gonçalves, Rayane Natshe; Gozzini Barbosa, Suellen Duarte

    2016-01-01

    Extracts of leaves, seeds, roots, and stem from a tropical legume, C. ensiformis, were prepared employing buffers and detergent in aqueous solution. Leaf extracts had the highest protein content and the most pronounced peptidase activity with optimal pH in the neutral to alkaline range. All extracts exhibited peaks of activity at various pH values, suggesting the presence of distinctive classes of proteases. N-α-Tosyl-L-arginine methyl ester hydrolysis was maximal at 30°C to 60°C and peptidase activity from all extracts presented very good thermal stability after 24 h incubation at 70°C. C. ensiformis proteases exhibited molecular masses of about 200–57, 40–37, and 20–15 kDa by SDS-PAGE analysis. These enzymes cleaved hemoglobin, bovine serum albumin, casein, and gelatin at different levels. Serine and metalloproteases are the major proteases in C. ensiformis extracts, modulated by divalent cations, stable at 1% of surfactant Triton X-100 and at different concentrations of the reducing agent β-mercaptoethanol. Thus, C. ensiformis expresses a particular set of proteases in distinctive organs with high activity and stability, making this legume an important source of proteases with biotechnological potential. PMID:27630776

  5. Proteases from Canavalia ensiformis: Active and Thermostable Enzymes with Potential of Application in Biotechnology.

    PubMed

    Gonçalves, Rayane Natshe; Gozzini Barbosa, Suellen Duarte; da Silva-López, Raquel Elisa

    2016-01-01

    Extracts of leaves, seeds, roots, and stem from a tropical legume, C. ensiformis, were prepared employing buffers and detergent in aqueous solution. Leaf extracts had the highest protein content and the most pronounced peptidase activity with optimal pH in the neutral to alkaline range. All extracts exhibited peaks of activity at various pH values, suggesting the presence of distinctive classes of proteases. N-α-Tosyl-L-arginine methyl ester hydrolysis was maximal at 30°C to 60°C and peptidase activity from all extracts presented very good thermal stability after 24 h incubation at 70°C. C. ensiformis proteases exhibited molecular masses of about 200-57, 40-37, and 20-15 kDa by SDS-PAGE analysis. These enzymes cleaved hemoglobin, bovine serum albumin, casein, and gelatin at different levels. Serine and metalloproteases are the major proteases in C. ensiformis extracts, modulated by divalent cations, stable at 1% of surfactant Triton X-100 and at different concentrations of the reducing agent β-mercaptoethanol. Thus, C. ensiformis expresses a particular set of proteases in distinctive organs with high activity and stability, making this legume an important source of proteases with biotechnological potential. PMID:27630776

  6. Campylobacter jejuni serine protease HtrA plays an important role in heat tolerance, oxygen resistance, host cell adhesion, invasion, and transmigration

    PubMed Central

    Lind, Judith; Backert, Steffen; Tegtmeyer, Nicole

    2015-01-01

    Campylobacter jejuni is an important pathogen of foodborne illness. Transmigration across the intestinal epithelial barrier and invasion are considered as primary reasons for tissue damage triggered by C. jejuni. Using knockout mutants, it was shown that the serine protease HtrA may be important for stress tolerance and physiology of C. jejuni. HtrA is also secreted in the extra­cellular environment, where it can cleave junctional host cell proteins such as E-cadherin. Aim of the present study was to establish a genetic complementation system in two C. jejuni strains in order to introduce the wild-type htrA gene in trans, test known htrA phenotypes, and provide the basis to perform further mutagenesis. We confirm that reexpression of the htrA wild-type gene in ΔhtrA mutants restored the following phenotypes: 1) C. jejuni growth at high temperature (44 °C), 2) growth under high oxygen stress conditions, 3) expression of proteolytically active HtrA oligomers, 4) secretion of HtrA into the supernatant, 5) cell attachment and invasion, and 6) transmigration across polarized epithelial cells. These results establish a genetic complementation system for htrA in C. jejuni, exclude polar effects in the ΔhtrA mutants, confirm important HtrA properties, and permit the discovery and dissection of new functions. PMID:25883795

  7. Serine protease inhibitor-6 differentially affects the survival of effector and memory alloreactive CD8-T cells.

    PubMed

    Azzi, J; Ohori, S; Ting, C; Uehara, M; Abdoli, R; Smith, B D; Safa, K; Solhjou, Z; Lukyanchykov, P; Patel, J; McGrath, M; Abdi, R

    2015-01-01

    The clonal expansion of effector T cells and subsequent generation of memory T cells are critical in determining the outcome of transplantation. While cytotoxic T lymphocytes induce direct cytolysis of target cells through secretion of Granzyme-B (GrB), they also express cytoplasmic serine protease inhibitor-6 (Spi6) to protect themselves from GrB that has leaked from granules. Here, we studied the role of GrB/Spi6 axis in determining clonal expansion of alloreactive CD8-T cells and subsequent generation of memory CD8-T cells in transplantation. CD8-T cells from Spi6(-/-) mice underwent more GrB mediated apoptosis upon alloantigen stimulation in vitro and in vivo following adoptive transfer into an allogeneic host. Interestingly, while OT1.Spi6(-/-) CD8 T cells showed significantly lower clonal expansion following skin transplants from OVA mice, there was no difference in the size of the effector memory CD8-T cells long after transplantation. Furthermore, lack of Spi6 resulted in a decrease of short-lived-effector-CD8-cells but did not impact the pool of memory-precursor-effector-CD8-cells. Similar results were found in heart transplant models. Our findings suggest that the final alloreactive CD8-memory-pool-size is independent from the initial clonal-proliferation as memory precursors express low levels of GrB and therefore are independent of Spi6 for survival. These data advance our understanding of memory T cells generation in transplantation and provide basis for Spi6 based strategies to target effector T cells.

  8. Serine Protease Inhibitor-6 Differentially Affects the Survival of Effector and Memory Alloreactive CD8-T Cells

    PubMed Central

    Azzi, J.; Ohori, S.; Ting, C.; Uehara, M.; Abdoli, R.; Smith, B. D.; Safa, K.; Solhjou, Z.; Lukyanchykov, P.; Patel, J.; McGrath, M.; Abdi, R.

    2016-01-01

    The clonal expansion of effector T cells and subsequent generation of memory T cells are critical in determining the outcome of transplantation. While cytotoxic T lymphocytes induce direct cytolysis of target cells through secretion of Granzyme-B (GrB), they also express cytoplasmic serine protease inhibitor-6 (Spi6) to protect themselves from GrB that has leaked from granules. Here, we studied the role of GrB/Spi6 axis in determining clonal expansion of alloreactive CD8-T cells and subsequent generation of memory CD8-T cells in transplantation. CD8-T cells from Spi6−/− mice underwent more GrB mediated apoptosis upon alloantigen stimulation in vitro and in vivo following adoptive transfer into an allogeneic host. Interestingly, while OT1.Spi6−/− CD8 T cells showed significantly lower clonal expansion following skin transplants from OVA mice, there was no difference in the size of the effector memory CD8-T cells long after transplantation. Furthermore, lack of Spi6 resulted in a decrease of short-lived-effector-CD8-cells but did not impact the pool of memory-precursor-effector-CD8-cells. Similar results were found in heart transplant models. Our findings suggest that the final alloreactive CD8-memory-pool-size is independent from the initial clonal-proliferation as memory precursors express low levels of GrB and therefore are independent of Spi6 for survival. These data advance our understanding of memory T cells generation in transplantation and provide basis for Spi6 based strategies to target effector T cells. PMID:25534448

  9. Activation of human pro-urokinase by unrelated proteases secreted by Pseudomonas aeruginosa.

    PubMed

    Beaufort, Nathalie; Seweryn, Paulina; de Bentzmann, Sophie; Tang, Aihua; Kellermann, Josef; Grebenchtchikov, Nicolai; Schmitt, Manfred; Sommerhoff, Christian P; Pidard, Dominique; Magdolen, Viktor

    2010-06-15

    Pathogenic bacteria, including Pseudomonas aeruginosa, interact with and engage the host plasminogen (Plg) activation system, which encompasses the urokinase (uPA)-type Plg activator, and is involved in extracellular proteolysis, including matrilysis and fibrinolysis. We hypothesized that secreted bacterial proteases might contribute to the activation of this major extracellular proteolytic system, thereby participating in bacterial dissemination. We report that LasB, a thermolysin-like metalloprotease secreted by Ps. aeruginosa, converts the human uPA zymogen into its active form (kcat=4.9 s-1, Km=8.9 microM). Accordingly, whereas the extracellular secretome from the LasB-expressing pseudomonal strain PAO1 efficiently activates pro-uPA, the secretome from the isogenic LasB-deficient strain PDO240 is markedly less potent in pro-uPA activation. Still, both secretomes induce some metalloprotease-independent activation of the human zymogen. The latter involves a serine protease, which we identified via both recombinant protein expression in Escherichia coli and purification from pseudomonal cultures as protease IV (PIV; kcat=0.73 s-1, Km=6.2 microM). In contrast, neither secretomes nor the pure proteases activate Plg. Along with this, LasB converts Plg into mini-Plg and angiostatin, whereas, as reported previously, it processes the uPA receptor, inactivates the plasminogen activator inhibitor 1, and activates pro-matrix metalloproteinase 2. PIV does not target these factors at all. To conclude, LasB and PIV, although belonging to different protease families and displaying quite different substrate specificities, both activate the urokinase-type precursor of the Plg activation cascade. Direct pro-uPA activation, as also reported for other bacterial proteases, might be a frequent phenomenon that contributes to bacterial virulence.

  10. Cysteine and serine protease-mediated proteolysis in body homogenate of a zooplankter, Moina macrocopa, is inhibited by the toxic cyanobacterium, Microcystis aeruginosa PCC7806.

    PubMed

    Agrawal, Manish Kumar; Bagchi, Divya; Bagchi, Suvendra Nath

    2005-05-01

    The paper describes the characterization of proteases in the whole body homogenate of Moina macrocopa, which can possibly be inhibited by the extracts of Microcystis aeruginosa PCC7806. With the use of oligopeptide substrates and specific inhibitors, we detected the activities of trypsin, chymotrypsin, elastase and cysteine protease. Cysteine protease, the predominant enzyme behind proteolysis of a natural substrate, casein, was partially purified by gel filtration. The substrate SDS-polyacrylamide gel electrophoresis of body homogenate revealed the presence of nine bands of proteases (17-72 kDa). The apparent molecular mass of an exclusive cysteine protease was 60 kDa, whereas of trypsin, it was 17-24 kDa. An extract of M. aeruginosa PCC7806 significantly inhibited the activities of trypsin, chymotrypsin and cysteine protease in M. macrocopa body homogenate at estimated IC(50) of 6- to 79-microg dry mass mL(-1). Upon fractionation by C-18 solid-phase extraction, 60% methanolic elute contained all the protease inhibitors, and these metabolites could be further separated by reverse-phase liquid chromatography. The metabolites inhibitory to M. macrocopa proteases also inhibited the corresponding class of proteases of mammalian/plant origin. The study suggests that protease inhibition may contribute to chemical interaction of cyanobacteria and crustacean zooplankton.

  11. A New Class of Rhomboid Protease Inhibitors Discovered by Activity-Based Fluorescence Polarization

    PubMed Central

    Wolf, Eliane V.; Zeißler, Annett; Vosyka, Oliver; Zeiler, Evelyn; Sieber, Stephan; Verhelst, Steven H. L.

    2013-01-01

    Rhomboids are intramembrane serine proteases that play diverse biological roles, including some that are of potential therapeutical relevance. Up to date, rhomboid inhibitor assays are based on protein substrate cleavage. Although rhomboids have an overlapping substrate specificity, substrates cannot be used universally. To overcome the need for substrates, we developed a screening assay using fluorescence polarization activity-based protein profiling (FluoPol ABPP) that is compatible with membrane proteases. With FluoPol ABPP, we identified new inhibitors for the E. coli rhomboid GlpG. Among these was a structural class that has not yet been reported as rhomboid inhibitors: β-lactones. They form covalent and irreversible complexes with the active site serine of GlpG. The presence of alkyne handles on the β-lactones also allowed activity-based labeling. Overall, these molecules represent a new scaffold for future inhibitor and activity-based probe development, whereas the assay will allow inhibitor screening of ill-characterized membrane proteases. PMID:23991088

  12. Cytotoxic and Inflammatory Responses Induced by Outer Membrane Vesicle-Associated Biologically Active Proteases from Vibrio cholerae

    PubMed Central

    Mondal, Ayan; Tapader, Rima; Chatterjee, Nabendu Sekhar; Ghosh, Amit; Sinha, Ritam; Koley, Hemanta; Saha, Dhira Rani; Chakrabarti, Manoj K.; Wai, Sun Nyunt

    2016-01-01

    Proteases in Vibrio cholerae have been shown to play a role in its pathogenesis. V. cholerae secretes Zn-dependent hemagglutinin protease (HAP) and calcium-dependent trypsin-like serine protease (VesC) by using the type II secretion system (TIISS). Our present studies demonstrated that these proteases are also secreted in association with outer membrane vesicles (OMVs) and transported to human intestinal epithelial cells in an active form. OMV-associated HAP induces dose-dependent apoptosis in Int407 cells and an enterotoxic response in the mouse ileal loop (MIL) assay, whereas OMV-associated VesC showed a hemorrhagic fluid response in the MIL assay, necrosis in Int407 cells, and an increased interleukin-8 (IL-8) response in T84 cells, which were significantly reduced in OMVs from VesC mutant strain. Our results also showed that serine protease VesC plays a role in intestinal colonization of V. cholerae strains in adult mice. In conclusion, our study shows that V. cholerae OMVs secrete biologically active proteases which may play a role in cytotoxic and inflammatory responses. PMID:26930702

  13. Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities

    PubMed Central

    Mielech, Anna M.; Chen, Yafang; Mesecar, Andrew D.; Baker, Susan C.

    2014-01-01

    Coronaviruses and arteriviruses, members of the order Nidovirales, are positive strand RNA viruses that encode large replicase polyproteins that are processed by viral proteases to generate the nonstructural proteins which mediate viral RNA synthesis. The viral papain-like proteases (PLPs) are critical for processing the amino-terminal end of the replicase and are attractive targets for antiviral therapies. With the analysis of the papain-like protease of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), came the realization of the multifunctional nature of these enzymes. Structural and enzymatic studies revealed that SARS-CoV PLpro can act as both a protease to cleave peptide bonds and also as a deubiquitinating (DUB) enzyme to cleave the isopeptide bonds found in polyubiquitin chains. Furthermore, viral DUBs can also remove the protective effect of conjugated ubiquitin-like molecules such as interferon stimulated gene 15 (ISG15). Extension of these studies to other coronaviruses and arteriviruses led to the realization that viral protease/DUB activity is conserved in many family members. Overexpression studies revealed that viral protease/DUB activity can modulate or block activation of the innate immune response pathway. Importantly, mutations that alter DUB activity but not viral protease activity have been identified and arteriviruses expressing DUB mutants stimulated higher levels of acute inflammatory cytokines after infection. Further understanding of the multifunctional nature of the Nidovirus PLP/DUBs may facilitate vaccine development. Here, we review studies describing the PLPs’ enzymatic activity and their role in virus pathogenesis. PMID:24512893

  14. Rapid Detection of Thrombin and Other Protease Activity Directly in Whole Blood

    NASA Astrophysics Data System (ADS)

    Yu, Johnson Chung Sing

    Thrombin is a serine protease that plays a key role in the clotting cascade to promote hemostasis following injury to the endothelium. From a clinical diagnostic perspective, in-vivo thrombin activity is linked to various blood clotting disorders, as well as cardiovascular disease (DVT, arteriosclerosis, etc). Thus, the ability to rapidly measure protease activity directly in whole blood will provide important new diagnostics, and clinical researchers with a powerful tool to further elucidate the relationship between circulating protease levels and disease. The ultimate goal is to design novel point of care (POC) diagnostic devices that are capable of monitoring protease activities directly in whole blood and biological sample. A charge-changing substrate specific to the thrombin enzyme was engineered and its functionality was confirmed by a series of experiments. This led to the preliminary design, construction, and testing of two device platforms deemed fully functional for the electrophoretic separation and focusing of charged peptide fragments. The concept of using the existing charge-changing substrate platform for bacterial protease detection was also investigated. Certain strains of E coli are associated with severe symptoms such as abdominal cramps, bloody diarrhea, and vomiting. The OmpT protease is expressed on the outer membrane of E coli and plays a role in the cleavage of antimicrobial peptides, the degradation of recombinant heterologous proteins, and the activation of plasminogen in the host. Thus, a synthetic peptide substrate specific to the OmpT protease was designed and modeled for the purpose of detecting E coli in biological sample.

  15. A continuous assay for foot-and-mouth disease virus 3C protease activity.

    PubMed

    Jaulent, Agnès M; Fahy, Aodhnait S; Knox, Stephen R; Birtley, James R; Roqué-Rosell, Núria; Curry, Stephen; Leatherbarrow, Robin J

    2007-09-15

    Foot-and-mouth disease virus is a highly contagious pathogen that spreads rapidly among livestock and is capable of causing widespread agricultural and economic devastation. The virus genome is translated to produce a single polypeptide chain that subsequently is cleaved by viral proteases into mature protein products, with one protease, 3C(pro), carrying out the majority of the cleavages. The highly conserved nature of this protease across different viral strains and its crucial role in viral maturation and replication make it a very desirable target for inhibitor design. However, the lack of a convenient and high-throughput assay has been a hindrance in the characterization of potential inhibitors. In this article, we report the development of a continuous assay with potential for high throughput using fluorescence resonance energy transfer-based peptide substrates. Several peptide substrates containing the 3C-specific cleavage site were synthesized, varying both the positions and separation of the fluorescent donor and quencher groups. The best substrate, with a specificity constant k(cat)/K(M) of 57.6+/-2.0M(-1) s(-1), was used in inhibition assays to further characterize the protease's activity against a range of commercially available inhibitors. The inhibition profile of the enzyme showed characteristics of both cysteine and serine proteases, with the chymotrypsin inhibitor TPCK giving stoichiometric inhibition of the enzyme and allowing active site titration of the 3C(pro).

  16. Construction and characterization of novel, completely human serine protease therapeutics targeting Her2/neu.

    PubMed

    Cao, Yu; Mohamedali, Khalid A; Marks, John W; Cheung, Lawrence H; Hittelman, Walter N; Rosenblum, Michael G

    2013-06-01

    Immunotoxins containing bacterial or plant toxins have shown promise in cancer-targeted therapy, but their long-term clinical use may be hampered by vascular leak syndrome and immunogenicity of the toxin. We incorporated human granzyme B (GrB) as an effector and generated completely human chimeric fusion proteins containing the humanized anti-Her2/neu single-chain antibody 4D5 (designated GrB/4D5). Introduction of a pH-sensitive fusogenic peptide (designated GrB/4D5/26) resulted in comparatively greater specific cytotoxicity although both constructs showed similar affinity to Her2/neu-positive tumor cells. Compared with GrB/4D5, GrB/4D5/26 showed enhanced and long-lasting cellular uptake and improved delivery of GrB to the cytosol of target cells. Treatment with nanomolar concentrations of GrB/4D5/26 resulted in specific cytotoxicity, induction of apoptosis, and efficient downregulation of PI3K/Akt and Ras/ERK pathways. The endogenous presence of the GrB proteinase inhibitor 9 did not impact the response of cells to the fusion construct. Surprisingly, tumor cells resistant to lapatinib or Herceptin, and cells expressing MDR-1 resistant to chemotherapeutic agents showed no cross-resistance to the GrB-based fusion proteins. Administration (intravenous, tail vein) of GrB/4D5/26 to mice bearing BT474 M1 breast tumors resulted in significant tumor suppression. In addition, tumor tissue excised from GrB/4D5/26-treated mice showed excellent delivery of GrB to tumors and a dramatic induction of apoptosis compared with saline treatment. This study clearly showed that the completely human, functionalized GrB construct can effectively target Her2/neu-expressing cells and displays impressive in vitro and in vivo activity. This construct should be evaluated further for clinical use.

  17. Purification and characterization of an extracellular protease from Penicillium chrysogenum Pg222 active against meat proteins.

    PubMed

    Benito, María J; Rodríguez, Mar; Núñez, Félix; Asensio, Miguel A; Bermúdez, María E; Córdoba, Juan J

    2002-07-01

    An extracellular protease from Penicillium chrysogenum (Pg222) isolated from dry-cured ham has been purified. The purification procedure involved several steps: ammonium sulfate precipitation, ion-exchange chromatography, filtration, and separation by high-performance liquid chromatography. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and gel filtration, the purified fraction showed a molecular mass of about 35 kDa. The hydrolytic properties of the purified enzyme (EPg222) on extracted pork myofibrillar proteins under several conditions were evaluated by SDS-PAGE. EPg222 showed activity in the range of 10 to 60 degrees C in temperature, 0 to 3 M NaCl, and pH 5 to 7, with maximum activity at pH 6, 45 degrees C, and 0.25 M NaCl. Under these conditions the enzyme was most active against tropomyosin, actin, and myosin. EPg222 showed collagenolytic activity but did not hydrolyze myoglobin. EPg222 showed higher activity than other proteolytic enzymes like papain, trypsin, and Aspergillus oryzae protease. The N-terminal amino acid sequence was determined and was found to be Glu-Asn-Pro-Leu-Gln-Pro-Asn-Ala-Pro-Ser-Trp. This partial amino acid sequence revealed a 55% homology with serine proteases from Penicillium citrinum. The activity of this novel protease may be of interest in ripening and generating the flavor of dry-cured meat products. PMID:12089038

  18. Detection of protease and protease activity using a single nanoscrescent SERS probe

    DOEpatents

    Liu, Gang L.; Ellman, Jonathan A.; Lee, Luke P.; Chen, Fanqing Frank

    2013-01-29

    This invention pertains to the in vitro detection of proteases using a single peptide-conjugate nanocrescent surface enhanced Raman scattering (SERS) probes with at least nanomolar sensitivity. The probe enables detection of proteolytic activity in extremely small volume and at low concentration. In certain embodiments the probes comprise an indicator for the detection of an active protease, where the indicator comprises a nanocrescent attached to a peptide, where said peptide comprises a recognition site for the protease and a Raman tag attached to the peptide.

  19. Conserved structure and adjacent location of the thrombin receptor and protease-activated receptor 2 genes define a protease-activated receptor gene cluster.

    PubMed Central

    Kahn, M.; Ishii, K.; Kuo, W. L.; Piper, M.; Connolly, A.; Shi, Y. P.; Wu, R.; Lin, C. C.; Coughlin, S. R.

    1996-01-01

    BACKGROUND: Thrombin is a serine protease that elicits a variety of cellular responses. Molecular cloning of a thrombin receptor revealed a G protein-coupled receptor that is activated by a novel proteolytic mechanism. Recently, a second protease-activated receptor was discovered and dubbed PAR2. PAR2 is highly related to the thrombin receptor by sequence and, like the thrombin receptor, is activated by cleavage of its amino terminal exodomain. Also like the thrombin receptor, PAR2 can be activated by the hexapeptide corresponding to its tethered ligand sequence independent of receptor cleavage. Thus, functionally, the thrombin receptor and PAR2 constitute a fledgling receptor family that shares a novel proteolytic activation mechanism. To further explore the relatedness of the two known protease-activated receptors and to examine the possibility that a protease-activated gene cluster might exist, we have compared the structure and chromosomal locations of the thrombin receptor and PAR2 genes. MATERIALS AND METHODS: The genomic structures of the two protease-activated receptor genes were determined by analysis of lambda phage, P1 bacteriophage, and bacterial artificial chromosome (BAC) genomic clones. Chromosomal location was determined with fluorescent in situ hybridization (FISH) on metaphase chromosomes, and the relative distance separating the two genes was evaluated both by means of two-color FISH and analysis of YACs and BACs containing both genes. RESULTS: Analysis of genomic clones revealed that the two protease-activated receptor genes share a two-exon genomic structure in which the first exon encodes 5'-untranslated sequence and signal peptide, and the second exon encodes the mature receptor protein and 3'-untranslated sequence. The two receptor genes also share a common locus with the two human genes located at 5q13 and the two mouse genes at 13D2, a syntenic region of the mouse genome. These techniques also suggest that the physical distance separating

  20. Protease activity, localization and inhibition in the human hair follicle

    PubMed Central

    Bhogal, R K; Mouser, P E; Higgins, C A; Turner, G A

    2014-01-01

    Synopsis Objective In humans, the process of hair shedding, referred to as exogen, is believed to occur independently of the other hair cycle phases. Although the actual mechanisms involved in hair shedding are not fully known, it has been hypothesized that the processes leading to the final step of hair shedding may be driven by proteases and/or protease inhibitor activity. In this study, we investigated the presence of proteases and protease activity in naturally shed human hairs and assessed enzyme inhibition activity of test materials. Methods We measured enzyme activity using a fluorescence-based assay and protein localization by indirect immunohistochemistry (IHC). We also developed an ex vivo skin model for measuring the force required to pull hair fibres from skin. Results Our data demonstrate the presence of protease activity in the tissue material surrounding club roots. We also demonstrated the localization of specific serine protease protein expression in human hair follicle by IHC. These data provide evidence demonstrating the presence of proteases around the hair club roots, which may play a role during exogen. We further tested the hypothesis that a novel protease inhibitor system (combination of Trichogen® and climbazole) could inhibit protease activity in hair fibre club root extracts collected from a range of ethnic groups (UK, Brazil, China, first-generation Mexicans in the USA, Thailand and Turkey) in both males and females. Furthermore, we demonstrated that this combination is capable of increasing the force required to remove hair in an ex vivo skin model system. Conclusion These studies indicate the presence of proteolytic activity in the tissue surrounding the human hair club root and show that it is possible to inhibit this activity with a combination of Trichogen® and climbazole. This technology may have potential to reduce excessive hair shedding. Résumé Objectif Chez l'homme, le processus de perte de cheveux, désigné comme exog

  1. Antibacterial activity of silver nanoparticles synthesized from serine.

    PubMed

    Jayaprakash, N; Judith Vijaya, J; John Kennedy, L; Priadharsini, K; Palani, P

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV-Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443nm. The emission spectrum of Ag NPs showed an emission band at 484nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO3 against Gram-positive and Gram-negative bacteria.

  2. A new chymotrypsin-like serine protease involved in dietary protein digestion in a primitive animal, Scorpio maurus: purification and biochemical characterization

    PubMed Central

    2011-01-01

    Background Most recent works on chymotrypsins have been focused on marine animals and insects. However, no study was reported in chelicerate. Results Scorpion chymotrypsin-like protease (SCP) was purified to homogeneity from delipidated hepatopancreases. The protease NH2-terminal sequence exhibited more than 60% monoacids identity with those of insect putative peptidases. The protease displayed no sequence homology with classical proteases. From this point of view, the protease recalls the case of the scorpion lipase which displayed no sequence homology with known lipases. The scorpion amylase purified and characterized by our time, has an amino-acids sequence similar to those of mammalian amylases. The enzyme was characterized with respect its biochemical properties: it was active on a chymotrypsin substrate and had an apparent molecular mass of 25 kDa, like the classically known chymotrypsins. The dependence of the SCP activity and stability on pH and temperature was similar to that of mammalian chymotrypsin proteases. However, the SCP displayed a lower specific activity and a boarder pH activity range (from 6 to 9). Conclusion lower animal have a less evaluated digestive organ: a hepatopancreas, whereas, higher ones possess individualized pancreas and liver. A new chymotrypsin-like protease was purified for the first time from the scorpion hepatopancreas. Its biochemical characterization showed new features as compared to classical chymotrypsin-higher-animals proteases. PMID:21777432

  3. Molecular Cloning and Optimization for High Level Expression of Cold-Adapted Serine Protease from Antarctic Yeast Glaciozyma antarctica PI12

    PubMed Central

    Ahmad Mazian, Mu'adz; Salleh, Abu Bakar; Basri, Mahiran; Rahman, Raja Noor Zaliha Raja Abd.

    2014-01-01

    Psychrophilic basidiomycete yeast, Glaciozyma antarctica strain PI12, was shown to be a protease-producer. Isolation of the PI12 protease gene from genomic and mRNA sequences allowed determination of 19 exons and 18 introns. Full-length cDNA of PI12 protease gene was amplified by rapid amplification of cDNA ends (RACE) strategy with an open reading frame (ORF) of 2892 bp, coded for 963 amino acids. PI12 protease showed low homology with the subtilisin-like protease from fungus Rhodosporidium toruloides (42% identity) and no homology to other psychrophilic proteases. The gene encoding mature PI12 protease was cloned into Pichia pastoris expression vector, pPIC9, and positioned under the induction of methanol-alcohol oxidase (AOX) promoter. The recombinant PI12 protease was efficiently secreted into the culture medium driven by the Saccharomyces cerevisiae α-factor signal sequence. The highest protease production (28.3 U/ml) was obtained from P. pastoris GS115 host (GpPro2) at 20°C after 72 hours of postinduction time with 0.5% (v/v) of methanol inducer. The expressed protein was detected by SDS-PAGE and activity staining with a molecular weight of 99 kDa. PMID:25093119

  4. Pressure-Enhanced Activity and Stability of a Hyperthermophilic Protease from a Deep-Sea Methanogen

    PubMed Central

    Michels, P. C.; Clark, D. S.

    1997-01-01

    We describe the properties of a hyperthermophilic, barophilic protease from Methanococcus jannaschii, an extremely thermophilic deep-sea methanogen. This enzyme is the first protease to be isolated from an organism adapted to a high-pressure-high-temperature environment. The partially purified enzyme has a molecular mass of 29 kDa and a narrow substrate specificity with strong preference for leucine at the P1 site of polypeptide substrates. Enzyme activity increased up to 116(deg)C and was measured up to 130(deg)C, one of the highest temperatures reported for the function of any enzyme. In addition, enzyme activity and thermostability increased with pressure: raising the pressure to 500 atm increased the reaction rate at 125(deg)C 3.4-fold and the thermostability 2.7-fold. Spin labeling of the active-site serine revealed that the active-site geometry of the M. jannaschii protease is not grossly different from that of several mesophilic proteases; however, the active-site structure may be relatively rigid at moderate temperatures. The barophilic and thermophilic behavior of the enzyme is consistent with the barophilic growth of M. jannaschii observed previously (J. F. Miller et al., Appl. Environ. Microbiol. 54:3039-3042, 1988). PMID:16535711

  5. β-Amino acid catalyzed asymmetric Michael additions: design of organocatalysts with catalytic acid/base dyad inspired by serine proteases.

    PubMed

    Yang, Hui; Wong, Ming Wah

    2011-09-16

    A new type of chiral β-amino acid catalyst has been computationally designed, mimicking the enzyme catalysis of serine proteases. Our catalyst approach is based on the bioinspired catalytic acid/base dyad, namely, a carboxyl and imidazole pair. DFT calculations predict that this designed organocatalyst catalyzes Michael additions of aldehydes to nitroalkenes with excellent enantioselectivities and remarkably high anti diastereoselectivities. The unusual stacked geometry of the enamine intermediate, hydrogen bonding network, and the adoption of an exo transition state are the keys to understand the stereoselectivity.

  6. Vacuolar Serine Protease Is a Major Allergen of Fusarium proliferatum and an IgE-Cross Reactive Pan-Fungal Allergen

    PubMed Central

    Yeh, Chang-Ching; Tai, Hsiao-Yun; Chou, Hong; Wu, Keh-Gong

    2016-01-01

    Purpose Fusarium species are among prevalent airborne fungi and causative agents of human respiratory atopic disorders. We previously identified a 36.5-kDa F. proliferatum component recognized by IgE antibodies in 9 (53%) of the 17 F. proliferatum-sensitized atopic serum samples. The purpose of this study is to characterize the 36.5-kDa allergen of F. proliferatum. Methods Characterization of allergens and determination of IgE cross-reactivity were performed by cDNA cloning/expression and immunoblot inhibition studies. Results Based on the finding that the 36.5-kDa IgE-binding component reacted with the mouse monoclonal antibody FUM20 against fungal vacuolar serine protease allergens, the cDNA of F. proliferatum vacuolar serine protease (Fus p 9.0101) was subsequently cloned. Nine serum samples from respiratory atopic patients with IgE binding to the vacuolar serine protease allergen of Penicillium chrysogenum (Pen ch 18) also showed IgE-immunoblot reactivity to rFus p 9.0101. The purified rFus p 9.0101 can inhibit IgE and FUM20 binding to the 36.5-kDa component of F. proliferatum. Thus, a novel and important Fus p 9.0101 was identified. The rPen ch 18 can inhibit IgE binding to Fus p 9.0101. It indicates that IgE cross-reactivity between Fus p 9.0101 and Pen ch 18 also exists. Furthermore, neither rFus p 9.0101 K88A nor rPen ch 18 K89A mutants inhibited IgE binding to rFus p 9.0101. Lys88 was considered a critical core amino acid in IgE binding to r Fus p 9.0101 and a residue responsible for IgE cross-reactivity between Fus p 9.0101 and Pen ch 18 allergens. Conclusions Results obtained from this study indicate that vacuolar serine protease may be a major allergen of F. proliferatum and an important IgE cross-reactive pan-fungal allergen, and provide important bases for clinical diagnosis of fungal allergy. PMID:27334782

  7. Disk abalone (Haliotis discus discus) expresses a novel antistasin-like serine protease inhibitor: Molecular cloning and immune response against bacterial infection.

    PubMed

    Nikapitiya, Chamilani; De Zoysa, Mahanama; Oh, Chulhong; Lee, Youngdeuk; Ekanayake, Prashani Mudika; Whang, Ilson; Choi, Cheol Young; Lee, Jae-Seong; Lee, Jehee

    2010-04-01

    A novel antistasin-like cDNA homologue named as Ab-Antistasin was isolated from the disk abalone Haliotis discus discus normalized cDNA library. The Ab-Antistasin (1398-bp) consisted of an 1185-bp open reading frame encoding 395 amino acid (aa) residues. The predicted molecular mass and isoelectric point of Ab-Antistasin was 44 kDa and 8.5, respectively, and showed highest identity (23.1%) to Hydra magnipapillata antistasin. The most striking feature of Ab-Antistasin is the 12-fold internal repeats (IR) of an antistasin-like domain. Ten of the 12 IR domains (26-27 aa) are highly conserved, with 6 cysteines and 1 glycine. Ab-Antistasin was comprised of three Bowman-Birk serine protease inhibitor family motifs. The recombinant Ab-Antistasin (rAb-Antistasin) was over-expressed in Escherichia coli and purified using a pMAL system. rAb-Antistasin (10 microM) was able to inhibit trypsin activity by 66% in a dose-dependent manner. Moreover, it exhibited low prolongation activity for coagulation in an APTT assay (86.0 s compared to control 42.0 s) with human blood. Endogenous Ab-Antistasin mRNA was found to be expressed in digestive tract, hepatopancreas, hemocytes, abductor muscle and mantle, with highest expression levels in digestive tract followed by hepatopancreas and hemocytes. Quantitative real time PCR results revealed that Ab-Antistasin transcription was significantly induced at 3 h post-infection (p.i.) after challenged by a mixture of bacteria (Vibrio alginolyticus, Vibrio parahemolyticus, and Listeria monocytogenes) in the abalone digestive tract; in the hemocytes, induction occurred at 6 and 12 h. The results indicated that Ab-Antistasin could play an important role in the immune responses of mollusks.

  8. A novel protease activity assay using a protease-responsive chaperone protein

    SciTech Connect

    Sao, Kentaro; Murata, Masaharu; Fujisaki, Yuri; Umezaki, Kaori; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki; Hashizume, Makoto

    2009-06-05

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  9. Characterization of Peptides from Capsicum annuum Hybrid Seeds with Inhibitory Activity Against α-Amylase, Serine Proteinases and Fungi.

    PubMed

    Vieira Bard, Gabriela C; Nascimento, Viviane V; Ribeiro, Suzanna F F; Rodrigues, Rosana; Perales, Jonas; Teixeira-Ferreira, André; Carvalho, André O; Fernandes, Katia Valevski S; Gomes, Valdirene M

    2015-04-01

    Over the last several years, the activity of antimicrobial peptides (AMPs), isolated from plant species, against different microorganisms has been demonstrated. More recently, some of these AMPs have been described as potent inhibitors of α-amylases and serine proteinases from insects and mammals. The aim of this work was to obtain AMPs from protein extracts of a hybrid Capsicum (Ikeda × UENF 1381) seeds and to evaluate their microbial and enzyme inhibitory activities. Initially, proteins were extracted from the Capsicum hybrid seeds in buffer (sodium phosphate pH 5.4,) and precipitated with ammonium sulfate (90% saturated). Extract of hybrid seeds was subjected to size exclusion chromatography, and three fractions were obtained: S1, S2 and S3. The amino acid sequence, obtained by mass spectrometry, of the 6 kDa peptide from the S3 fraction, named HyPep, showed 100% identity with PSI-1.2, a serine protease inhibitor isolated from C. annuum seeds, however the bifunctionality of this inhibitor against two enzymes is being shown for the first time in this work. The S3 fraction showed the highest antifungal activity, inhibiting all the yeast strains tested, and it also exhibited inhibitory activity against human salivary and Callosobruchus maculatus α-amylases as well as serine proteinases.

  10. Tmprss3, a Transmembrane Serine Protease Deficient in Human DFNB8/10 Deafness, Is Critical for Cochlear Hair Cell Survival at the Onset of Hearing*

    PubMed Central

    Fasquelle, Lydie; Scott, Hamish S.; Lenoir, Marc; Wang, Jing; Rebillard, Guy; Gaboyard, Sophie; Venteo, Stéphanie; François, Florence; Mausset-Bonnefont, Anne-Laure; Antonarakis, Stylianos E.; Neidhart, Elizabeth; Chabbert, Christian; Puel, Jean-Luc; Guipponi, Michel; Delprat, Benjamin

    2011-01-01

    Mutations in the type II transmembrane serine protease 3 (TMPRSS3) gene cause non-syndromic autosomal recessive deafness (DFNB8/10), characterized by congenital or childhood onset bilateral profound hearing loss. In order to explore the physiopathology of TMPRSS3 related deafness, we have generated an ethyl-nitrosourea-induced mutant mouse carrying a protein-truncating nonsense mutation in Tmprss3 (Y260X) and characterized the functional and histological consequences of Tmprss3 deficiency. Auditory brainstem response revealed that wild type and heterozygous mice have normal hearing thresholds up to 5 months of age, whereas Tmprss3Y260X homozygous mutant mice exhibit severe deafness. Histological examination showed degeneration of the organ of Corti in adult mutant mice. Cochlear hair cell degeneration starts at the onset of hearing, postnatal day 12, in the basal turn and progresses very rapidly toward the apex, reaching completion within 2 days. Given that auditory and vestibular deficits often co-exist, we evaluated the balancing abilities of Tmprss3Y260X mice by using rotating rod and vestibular behavioral tests. Tmprss3Y260X mice effectively displayed mild vestibular syndrome that correlated histologically with a slow degeneration of saccular hair cells. In situ hybridization in the developing inner ear showed that Tmprss3 mRNA is localized in sensory hair cells in the cochlea and the vestibule. Our results show that Tmprss3 acts as a permissive factor for cochlear hair cells survival and activation at the onset of hearing and is required for saccular hair cell survival. This mouse model will certainly help to decipher the molecular mechanisms underlying DFNB8/10 deafness and cochlear function. PMID:21454591

  11. The Pochonia chlamydosporia Serine Protease Gene vcp1 Is Subject to Regulation by Carbon, Nitrogen and pH: Implications for Nematode Biocontrol

    PubMed Central

    Ward, Elaine; Kerry, Brian R.; Manzanilla-López, Rosa H.; Mutua, Gerald; Devonshire, Jean; Kimenju, John; Hirsch, Penny R.

    2012-01-01

    The alkaline serine protease VCP1 of the fungus Pochonia chlamydosporia belongs to a family of subtilisin-like enzymes that are involved in infection of nematode and insect hosts. It is involved early in the infection process, removing the outer proteinaceous vitelline membrane of nematode eggs. Little is known about the regulation of this gene, even though an understanding of how nutrients and other factors affect its expression is critical for ensuring its efficacy as a biocontrol agent. This paper provides new information on the regulation of vcp1 expression. Sequence analysis of the upstream regulatory region of this gene in 30 isolates revealed that it was highly conserved and contained sequence motifs characteristic of genes that are subject to carbon, nitrogen and pH-regulation. Expression studies, monitoring enzyme activity and mRNA, confirmed that these factors affect VCP1 production. As expected, glucose reduced VCP1 expression and for a few hours so did ammonium chloride. Surprisingly, however, by 24 h VCP1 levels were increased in the presence of ammonium chloride for most isolates. Ambient pH also regulated VCP1 expression, with most isolates producing more VCP1 under alkaline conditions. There were some differences in the response of one isolate with a distinctive upstream sequence including a variant regulatory-motif profile. Cryo-scanning electron microscopy studies indicated that the presence of nematode eggs stimulates VCP1 production by P. chlamydosporia, but only where the two are in close contact. Overall, the results indicate that readily-metabolisable carbon sources and unfavourable pH in the rhizosphere/egg-mass environment may compromise nematode parasitism by P. chlamydosporia. However, contrary to previous indications using other nematophagous and entomopathogenic fungi, ammonium nitrate (e.g. from fertilizers) may enhance biocontrol potential in some circumstances. PMID:22558192

  12. Hepatitis C virus NS3 protease is activated by low concentrations of protease inhibitors.

    PubMed

    Dahl, Göran; Arenas, Omar Gutiérrez; Danielson, U Helena

    2009-12-01

    The nonstructural protein 3 (NS3) of hepatitis C virus (HCV) is a bifunctional enzyme with a protease and a helicase functionality located in each of the two domains of the single peptide chain. There is little experimental evidence for a functional role of this unexpected arrangement since artificial single domain forms of both enzymes are catalytically competent. We have observed that low concentrations of certain protease inhibitors activate the protease of full-length NS3 from HCV genotype 1a with up to 100%, depending on the preincubation time and the inhibitor used. The activation was reduced, but not eliminated, by increased ionic strength, lowered glycerol concentration, or lowered pH. In all cases, it was at the expense of a significant loss of activity. Activation was not seen with the artificial protease domain of genotype 1b NS3 fused with a fragment of the NS4A cofactor. This truncated and covalently modified enzyme form was much less active and exhibited fundamentally different catalytic properties to the full-length NS3 protease without the fused cofactor. The most plausible explanation for the activation was found to involve a slow transition between two enzyme conformations, which differed in their catalytic ability and affinity for inhibitors. Equations derived based on this assumption resulted in better fits to the experimental data than the equation for simple competitive inhibition. The mechanism may involve an inhibitor-induced stabilization of the helicase domain in a conformation that enhances the protease activity, or an improved alignment of the catalytic triad in the protease. The proposed mnemonic mechanism and derived equations are viable for both these explanations and can serve as a basic framework for future studies of enzymes activated by inhibitors or other ligands.

  13. Two variants of the major serine protease inhibitor from the sea anemone Stichodactyla helianthus, expressed in Pichia pastoris.

    PubMed

    García-Fernández, Rossana; Ziegelmüller, Patrick; González, Lidice; Mansur, Manuel; Machado, Yoan; Redecke, Lars; Hahn, Ulrich; Betzel, Christian; Chávez, María de Los Ángeles

    2016-07-01

    The major protease inhibitor from the sea anemone Stichodactyla helianthus (ShPI-1) is a non-specific inhibitor that binds trypsin and other trypsin-like enzymes, as well as chymotrypsin, and human neutrophil elastase. We performed site-directed mutagenesis of ShPI-1 to produce two variants (rShPI-1/K13L and rShPI/Y15S) that were expressed in Pichia pastoris, purified, and characterized. After a single purification step, 65 mg and 15 mg of protein per liter of culture supernatant were obtained for rShPI-1/K13L and rShPI/Y15S, respectively. Functional studies demonstrated a 100-fold decreased trypsin inhibitory activity as result of the K13L substitution at the reactive (P1) site. This protein variant has a novel tight-binding inhibitor activity of pancreatic elastase and increased activity toward neutrophil elastase in comparison to rShPI-1A. In contrast, the substitution Y15S at P2' site did not affect the Ki value against trypsin, but did reduce activity 10-fold against chymotrypsin and neutrophil elastase. Our results provide two new ShPI-1 variants with modified inhibitory activities, one of them with increased biomedical potential. This study also offers new insight into the functional impact of the P1 and P2' sites on ShPI-1 specificity. PMID:26993255

  14. Contribution of metalloproteases, serine proteases and phospholipases A2 to the inflammatory reaction induced by Bothrops jararaca crude venom in mice.

    PubMed

    Zychar, Bianca Cestari; Dale, Camila Squazoni; Demarchi, Denise Soares; Gonçalves, Luis Roberto C

    2010-01-01

    Various toxins isolated from Bothrops snake venoms induce inflammatory reactions and have been claimed to contribute to the severity of local symptoms present in this envenomation. Notwithstanding, the relative participation of serine proteases, metalloproteases and phospholipases A(2) in the inflammatory reaction produced by crude Bothrops venoms is poorly understood. Herein, crude Bothrops jararaca venom was treated with phenylmethanesulfonyl fluoride (PMSF), 1,10-phenanthroline (oPhe), or p-bromophenacyl-bromide (p-BPB) to inhibit those classes of enzymes, respectively, and inflammatory parameters were evaluated and compared to those induced by the control crude venom. The intensity of edema and hyperalgesia/allodynia was remarkably reduced in animals administered with oPhe-treated venom. Leukocyte-endothelium interactions (LEI), such as adhesion and migration of leukocytes, were also modified at 2h and 24h. Edema and LEI parameters induced by p-BPB-treated venom were similar to those observed with the control venom, but hyperalgesia/allodynia was significantly lower. Inflammatory parameters induced by PMSF-treated venom were similar to those induced by the crude venom, except for a mild reduction in edema intensity. Our results indicate that metalloproteases have a pivotal role in the inflammatory reactions induced by B. jararaca venom, and phospholipases A(2) and serine proteases have a minor role.

  15. The human met-ase gene (GZMM): Structure, sequence, and close physical linkage to the serine protease gene cluster on 19p13.3

    SciTech Connect

    Pilat, D.; Zimmer, M.; Wekerle, H.

    1994-12-01

    Cosmid clones containing the genes for the human and murine natural killer cell serine protease Met-ase (gene symbol GZMM; granzyme M) were identified by screening human and murine cosmid libraries with rat Met-ase (RNIK-Met-1) cDNA. The human gene has a size of 7.5 kb and an exon-intron structure identical to that of serine protease genes located on human chromosomes 5q11-q12, 14q11.2, and 19p13.3 that are expressed by lymphocytes, mast cells, or myelomonocyte precursors. Using cosmid DNA as a probe for fluorescence in situ hybridization, we identified the chromosomal position of human Met-ase as 19p13.3. Interphase studies with two differentially labeled probes for Met-ase and the azurocidin (AZU1), proteinase 3 (PRTN3), and neutrophil elastase (ELA2) gene cluster revealed that the distance of Met-ase from this gene cluster is in the range of 200 to 500 kb. Using differentially labeled mouse cosmid probes, we also mapped the murine gene for Met-ase to chromosomal band 10C, close to the gene for lamin B2. Thus, the Met-ase, AZU1, PRTN3, and ELA2 genes fall into an established region of homology between mouse chromosomal band 10C and human 19p13.3. 35 refs., 4 figs.

  16. Ostrinia furnacalis serpin-3 regulates melanization cascade by inhibiting a prophenoloxidase-activating protease.

    PubMed

    Chu, Yuan; Zhou, Fan; Liu, Yang; Hong, Fang; Wang, Guirong; An, Chunju

    2015-06-01

    Serine protease cascade-mediated prophenolxidase activation is a prominent innate immune response in insect defense against the invading pathogens. Serpins regulate this reaction to avoid excessive activation. However, the function of serpins in most insect species, especially in some non-model agriculture insect pests, is largely unknown. We here cloned a full-length cDNA for a serpin, named as serpin-3, from Asian corn borer, Ostrinia furnacalis (Guenée). The open reading frame of serpin-3 encodes 462-amino acid residue protein with a 19-residue signal peptide. It contains a reactive center loop strikingly similar to the proteolytic activation site in prophenoloxidase. Sequence comparison indicates that O. furnacalis serpin-3 is an apparent ortholog of Manduca sexta serpin-3, a defined negative regulator of melanization reaction. Serpin-3 mRNA and protein levels significantly increase after a bacterial or fungal injection. Recombinant serpin-3 efficiently blocks prophenoloxidase activation in larval plasma in a concentration-dependent manner. It forms SDS-stable complexes with serine protease 13 (SP13), and prevents SP13 from cleaving prophenoloxidase. Injection of recombinant serpin-3 into larvae results in decreased fungi-induced melanin synthesis and reduced the expression of attacin, cecropin, gloverin, and peptidoglycan recognition protein-1 genes in the fat body. Altogether, serpin-3 plays important roles in the regulation of prophenoloxidase activation and antimicrobial peptide production in O. furnacalis larvae. PMID:25818483

  17. Hepatocyte growth factor is a preferred in vitro substrate for human hepsin, a membrane-anchored serine protease implicated in prostate and ovarian cancers

    PubMed Central

    Herter, Sylvia; Piper, Derek E.; Aaron, Wade; Gabriele, Timothy; Cutler, Gene; Cao, Ping; Bhatt, Ami S.; Choe, Youngchool; Craik, Charles S.; Walker, Nigel; Meininger, David; Hoey, Timothy; Austin, Richard J.

    2005-01-01

    Hepsin is a membrane-anchored, trypsin-like serine protease with prominent expression in the human liver and tumours of the prostate and ovaries. To better understand the biological functions of hepsin, we identified macromolecular substrates employing a tetrapeptide PS-SCL (positional scanning-synthetic combinatorial library) screen that rapidly determines the P1–P4 substrate specificity. Hepsin exhibited strong preference at the P1 position for arginine over lysine, and favoured threonine, leucine or asparagine at the P2, glutamine or lysine at the P3, and proline or lysine at the P4 position. The relative activity of hepsin toward individual AMC (7-amino-4-methylcoumarin)-tetrapeptides was generally consistent with the overall peptide profiling results derived from the PC-SCL screen. The most active tetrapeptide substrate Ac (acetyl)-KQLR-AMC matched with the activation cleavage site of the hepatocyte growth factor precursor sc-HGF (single-chain HGF), KQLR↓VVNG (where ↓ denotes the cleavage site), as identified by a database analysis of trypsin-like precursors. X-ray crystallographic studies with KQLR chloromethylketone showed that the KQLR peptide fits well into the substrate-binding cleft of hepsin. This hepsin-processed HGF induced c-Met receptor tyrosine phosphorylation in SKOV-3 ovarian cancer cells, indicating that the hepsin-cleaved HGF is biologically active. Activation cleavage site mutants of sc-HGF with predicted non-preferred sequences, DPGR↓VVNG or KQLQ↓VVNG, were not processed, illustrating that the P4–P1 residues can be important determinants for substrate specificity. In addition to finding macromolecular hepsin substrates, the extracellular inhibitors of the HGF activator, HAI-1 and HAI-2, were potent inhibitors of hepsin activity (IC50 4±0.2 nM and 12±0.5 nM respectively). Together, our findings suggest that the HGF precursor is a potential in vivo substrate for hepsin in tumours, where hepsin expression is dysregulated and may

  18. The activation of protease-activated receptor 1 mediates proliferation and invasion of nasopharyngeal carcinoma cells.

    PubMed

    Zhu, Qingyao; Luo, Jianchao; Wang, Tao; Ren, Jinghua; Hu, Kai; Wu, Gang

    2012-07-01

    Protease-activated receptor 1 (PAR-1) is a G-coupled membrane protein, which is involved in physiological and malignant invasion processes. It is activated by serine proteases such as thrombin through a unique form or by specific synthetic peptides. In this study, we determined the expression of PAR-1 in five nasopharyngeal carcinoma (NPC) cell lines with different characteristics of invasiveness and metastasis, and found that the levels of PAR-1 expression were higher in invasive or metastatic cell lines than those in low invasive or metastatic ones. Of the five NPC cell lines, CNE1-LMP1 cells had the highest expression levels of PAR-1, which was mainly distributed at the membrane and in the cytoplasm of tumor cells. Further study showed that the thrombin receptor synthetic activating peptide SFLLRN could stimulate the growth of CNE1-LMP1 cells in a dose-dependent manner. However, thrombin itself had a dual effect on the proliferation of NPC cells. Concentrations of thrombin in the range of 0.1-0.5 U/ml promoted cell growth, but concentrations higher than 0.5 U/ml impaired cell growth. Moreover, thrombin and SFLLRN also enhanced the invasive capabilities of CNE1-LMP1 cells in vitro, and this was partly due to enhancing the activities of MMP-2 and MMP-9. Our findings suggest that PAR-1 may contribute to the growth and invasive potential of NPC cells. PMID:22562397

  19. Stat5a serine phosphorylation. Serine 779 is constitutively phosphorylated in the mammary gland, and serine 725 phosphorylation influences prolactin-stimulated in vitro DNA binding activity.

    PubMed

    Beuvink, I; Hess, D; Flotow, H; Hofsteenge, J; Groner, B; Hynes, N E

    2000-04-01

    The activity of transcription factors of the Stat family is controlled by phosphorylation of a conserved, carboxyl-terminal tyrosine residue. Tyrosine phosphorylation is essential for Stat dimerization, nuclear translocation, DNA binding, and transcriptional activation. Phosphorylation of Stats on specific serine residues has also been described. We have previously shown that in HC11 mammary epithelial cells Stat5a is phosphorylated on Tyr(694) in a prolactin-sensitive manner, whereas serine phosphorylation is constitutive (Wartmann, M., Cella, N., Hofer, P., Groner, B., Xiuwen, L., Hennighausen, L., and Hynes, N. E. (1996) J. Biol. Chem. 271, 31863-31868). By using mass spectrometry and site-directed mutagenesis, we have now identified Ser(779), located in a unique Stat5a SP motif, as the site of serine phosphorylation. By using phospho-Ser(779)-specific antiserum, we have determined that Ser(779) is constitutively phosphorylated in mammary glands taken from different developmental stages. Stat5a isolated from spleen, heart, brain, and lung was also found to be phosphorylated on Ser(779). Ser(725) in Stat5a has also been identified as a phosphorylation site (Yamashita, H., Xu, J., Erwin, R. A., Farrar, W. L., Kirken, R. A., and Rui, H. (1998) J. Biol. Chem. 273, 30218-30224). Here we show that mutagenesis of Ser(725), Ser(779), or a combination of Ser(725/779) to an Ala had no effect on prolactin-induced transcriptional activation of a beta-casein reporter construct. However, following prolactin induction the Ser(725) mutant displayed sustained DNA binding activity compared with that of wild type Stat5a. The results suggest that Ser(725) phosphorylation has an impact on signal duration. PMID:10744710

  20. Stat5a serine phosphorylation. Serine 779 is constitutively phosphorylated in the mammary gland, and serine 725 phosphorylation influences prolactin-stimulated in vitro DNA binding activity.

    PubMed

    Beuvink, I; Hess, D; Flotow, H; Hofsteenge, J; Groner, B; Hynes, N E

    2000-04-01

    The activity of transcription factors of the Stat family is controlled by phosphorylation of a conserved, carboxyl-terminal tyrosine residue. Tyrosine phosphorylation is essential for Stat dimerization, nuclear translocation, DNA binding, and transcriptional activation. Phosphorylation of Stats on specific serine residues has also been described. We have previously shown that in HC11 mammary epithelial cells Stat5a is phosphorylated on Tyr(694) in a prolactin-sensitive manner, whereas serine phosphorylation is constitutive (Wartmann, M., Cella, N., Hofer, P., Groner, B., Xiuwen, L., Hennighausen, L., and Hynes, N. E. (1996) J. Biol. Chem. 271, 31863-31868). By using mass spectrometry and site-directed mutagenesis, we have now identified Ser(779), located in a unique Stat5a SP motif, as the site of serine phosphorylation. By using phospho-Ser(779)-specific antiserum, we have determined that Ser(779) is constitutively phosphorylated in mammary glands taken from different developmental stages. Stat5a isolated from spleen, heart, brain, and lung was also found to be phosphorylated on Ser(779). Ser(725) in Stat5a has also been identified as a phosphorylation site (Yamashita, H., Xu, J., Erwin, R. A., Farrar, W. L., Kirken, R. A., and Rui, H. (1998) J. Biol. Chem. 273, 30218-30224). Here we show that mutagenesis of Ser(725), Ser(779), or a combination of Ser(725/779) to an Ala had no effect on prolactin-induced transcriptional activation of a beta-casein reporter construct. However, following prolactin induction the Ser(725) mutant displayed sustained DNA binding activity compared with that of wild type Stat5a. The results suggest that Ser(725) phosphorylation has an impact on signal duration.

  1. Cleavage of peptide bonds bearing ionizable amino acids at P{sub 1} by serine proteases with hydrophobic S{sub 1} pocket

    SciTech Connect

    Qasim, Mohammad A.; Song, Jikui; Markley, John L.; Laskowski, Michael

    2010-10-01

    Research highlights: {yields} Large pK shifts in ionizable groups when buried in the protein interior. {yields} Substrate dependent shifts in pH optimum for serine proteases. {yields} Lys side chain is a stronger acid in serine protease S{sub 1} pocket than Asp side chain. -- Abstract: Enzymatic hydrolysis of the synthetic substrate succinyl-Ala-Ala-Pro-Xxx-pNA (where Xxx = Leu, Asp or Lys) catalyzed by bovine chymotrypsin (CHYM) or Streptomyces griseus protease B (SGPB) has been studied at different pH values in the pH range 3-11. The pH optima for substrates having Leu, Asp, and Lys have been found to be 7.5-8.0, 5.5-6.0, and {approx}10, respectively. At the normally reported pH optimum (pH 7-8) of CHYM and SGPB, the substrate with Leu at the reactive site is more than 25,000-fold more reactive than that with Asp. However, when fully protonated, Asp is nearly as good a substrate as Leu. The pK values of the side chains of Asp and Lys in the hydrophobic S{sub 1} pocket of CHYM and SGPB have been calculated from pH-dependent hydrolysis data and have been found to be about 9 for Asp and 7.4 and 9.7 for Lys for CHYM and SGPB, respectively. The results presented in this communication suggest a possible application of CHYM like enzymes in cleaving peptide bonds contributed by acidic amino acids between pH 5 and 6.

  2. The structure of a universally employed enzyme: V8 protease from Staphylococcus aureus

    SciTech Connect

    Prasad, Lata; Leduc, Yvonne; Hayakawa, Koto; Delbaere, Louis T.J.

    2008-06-27

    V8 protease, an extracellular protease of Staphylococcus aureus, is related to the pancreatic serine proteases. The enzyme cleaves peptide bonds exclusively on the carbonyl side of aspartate and glutamate residues. Unlike the pancreatic serine proteases, V8 protease possesses no disulfide bridges. This is a major evolutionary difference, as all pancreatic proteases have at least two disulfide bridges. The structure of V8 protease shows structural similarity with several other serine proteases, specifically the epidermolytic toxins A and B from S. aureus and trypsin, in which the conformation of the active site is almost identical. V8 protease is also unique in that the positively charged N-terminus is involved in determining the substrate-specificity of the enzyme.

  3. Intracellular Activation of Tenofovir Alafenamide and the Effect of Viral and Host Protease Inhibitors.

    PubMed

    Birkus, Gabriel; Bam, Rujuta A; Willkom, Madeleine; Frey, Christian R; Tsai, Luong; Stray, Kirsten M; Yant, Stephen R; Cihlar, Tomas

    2016-01-01

    Tenofovir alafenamide fumarate (TAF) is an oral phosphonoamidate prodrug of the HIV reverse transcriptase nucleotide inhibitor tenofovir (TFV). Previous studies suggested a principal role for the lysosomal serine protease cathepsin A (CatA) in the intracellular activation of TAF. Here we further investigated the role of CatA and other human hydrolases in the metabolism of TAF. Overexpression of CatA or liver carboxylesterase 1 (Ces1) in HEK293T cells increased intracellular TAF hydrolysis 2- and 5-fold, respectively. Knockdown of CatA expression with RNA interference (RNAi) in HeLa cells reduced intracellular TAF metabolism 5-fold. Additionally, the anti-HIV activity and the rate of CatA hydrolysis showed good correlation within a large set of TFV phosphonoamidate prodrugs. The covalent hepatitis C virus (HCV) protease inhibitors (PIs) telaprevir and boceprevir potently inhibited CatA-mediated TAF activation (50% inhibitory concentration [IC50] = 0.27 and 0.16 μM, respectively) in vitro and also reduced its anti-HIV activity in primary human CD4(+) T lymphocytes (21- and 3-fold, respectively) at pharmacologically relevant concentrations. In contrast, there was no inhibition of CatA or any significant effect on anti-HIV activity of TAF observed with cobicistat, noncovalent HIV and HCV PIs, or various prescribed inhibitors of host serine proteases. Collectively, these studies confirm that CatA plays a pivotal role in the intracellular metabolism of TAF, whereas the liver esterase Ces1 likely contributes to the hepatic activation of TAF. Moreover, this work demonstrates that a wide range of viral and host PIs, with the exception of telaprevir and boceprevir, do not interfere with the antiretroviral activity of TAF. PMID:26503655

  4. Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence

    PubMed Central

    Kim, Won-Tae; Kong, Hyun-Hee; Ha, Young-Ran; Hong, Yeon-Chul; Jeong, Hae Jin; Yu, Hak Sun

    2006-01-01

    The pathogenic mechanism of granulomatous amebic encephalitis (GAE) and amebic keratitis (AK) by Acanthamoeba has yet to be clarified. Protease has been recognized to play an important role in the pathogenesis of GAE and AK. In the present study, we have compared specific activity and cytopathic effects (CPE) of purified 33 kDa serine proteinases from Acanthamoeba strains with different degree of virulence (A. healyi OC-3A, A. lugdunensis KA/E2, and A. castellanii Neff). Trophozoites of the 3 strains revealed different degrees of CPE on human corneal epithelial (HCE) cells. The effect was remarkably reduced by adding phenylmethylsulfonylfluoride (PMSF), a serine proteinase inhibitor. This result indicated that PMSF-susceptible proteinase is the main component causing cytopathy to HCE cells by Acanthamoeba. The purified 33 kDa serine proteinase showed strong activity toward HCE cells and extracellular matrix proteins. The purified proteinase from OC-3A, the most virulent strain, demonstrated the highest enzyme activity compared to KA/E2, an ocular isolate, and Neff, a soil isolate. Polyclonal antibodies against the purified 33 kDa serine proteinase inhibit almost completely the proteolytic activity of culture supernatant of Acanthamoeba. In line with these results, the 33 kDa serine proteinase is suggested to play an important role in pathogenesis and to be the main component of virulence factor of Acanthamoeba. PMID:17170574

  5. Signaling pathways activated by a protease allergen in basophils

    PubMed Central

    Rosenstein, Rachel K.; Bezbradica, Jelena S.; Yu, Shuang; Medzhitov, Ruslan

    2014-01-01

    Allergic diseases represent a significant burden in industrialized countries, but why and how the immune system responds to allergens remain largely unknown. Because many clinically significant allergens have proteolytic activity, and many helminths express proteases that are necessary for their life cycles, host mechanisms likely have evolved to detect the proteolytic activity of helminth proteases, which may be incidentally activated by protease allergens. A cysteine protease, papain, is a prototypic protease allergen that can directly activate basophils and mast cells, leading to the production of cytokines, including IL-4, characteristic of the type 2 immune response. The mechanism of papain’s immunogenic activity remains unknown. Here we have characterized the cellular response activated by papain in basophils. We find that papain-induced IL-4 production requires calcium flux and activation of PI3K and nuclear factor of activated T cells. Interestingly, papain-induced IL-4 production was dependent on the immunoreceptor tyrosine-based activation motif (ITAM) adaptor protein Fc receptor γ-chain, even though the canonical ITAM signaling was not activated by papain. Collectively, these data characterize the downstream signaling pathway activated by a protease allergen in basophils. PMID:25369937

  6. Characterisation of worldwide Helicobacter pylori strains reveals genetic conservation and essentiality of serine protease HtrA

    PubMed Central

    Tegtmeyer, Nicole; Moodley, Yoshan; Yamaoka, Yoshio; Pernitzsch, Sandy Ramona; Schmidt, Vanessa; Traverso, Francisco Rivas; Schmidt, Thomas P.; Rad, Roland; Yeoh, Khay Guan; Bow, Ho; Torres, Javier; Gerhard, Markus; Schneider, Gisbert; Wessler, Silja

    2015-01-01

    Summary HtrA proteases and chaperones exhibit important roles in periplasmic protein quality control and stress responses. The genetic inactivation of htrA has been described for many bacterial pathogens. However, in some cases such as the gastric pathogen H elicobacter pylori, HtrA is secreted where it cleaves the tumour‐suppressor E‐cadherin interfering with gastric disease development, but the generation of htrA mutants is still lacking. Here, we show that the htrA gene locus is highly conserved in worldwide strains. HtrA presence was confirmed in 992 H . pylori isolates in gastric biopsy material from infected patients. Differential RNA‐sequencing (dRNA‐seq) indicated that htrA is encoded in an operon with two subsequent genes, HP1020 and HP1021. Genetic mutagenesis and complementation studies revealed that HP1020 and HP1021, but not htrA, can be mutated. In addition, we demonstrate that suppression of HtrA proteolytic activity with a newly developed inhibitor is sufficient to effectively kill H . pylori, but not other bacteria. We show that H elicobacter  htrA is an essential bifunctional gene with crucial intracellular and extracellular functions. Thus, we describe here the first microbe in which htrA is an indispensable gene, a situation unique in the bacterial kingdom. HtrA can therefore be considered a promising new target for anti‐bacterial therapy. PMID:26568477

  7. Characterisation of worldwide Helicobacter pylori strains reveals genetic conservation and essentiality of serine protease HtrA.

    PubMed

    Tegtmeyer, Nicole; Moodley, Yoshan; Yamaoka, Yoshio; Pernitzsch, Sandy Ramona; Schmidt, Vanessa; Traverso, Francisco Rivas; Schmidt, Thomas P; Rad, Roland; Yeoh, Khay Guan; Bow, Ho; Torres, Javier; Gerhard, Markus; Schneider, Gisbert; Wessler, Silja; Backert, Steffen

    2016-03-01

    HtrA proteases and chaperones exhibit important roles in periplasmic protein quality control and stress responses. The genetic inactivation of htrA has been described for many bacterial pathogens. However, in some cases such as the gastric pathogen Helicobacter pylori, HtrA is secreted where it cleaves the tumour-suppressor E-cadherin interfering with gastric disease development, but the generation of htrA mutants is still lacking. Here, we show that the htrA gene locus is highly conserved in worldwide strains. HtrA presence was confirmed in 992 H. pylori isolates in gastric biopsy material from infected patients. Differential RNA-sequencing (dRNA-seq) indicated that htrA is encoded in an operon with two subsequent genes, HP1020 and HP1021. Genetic mutagenesis and complementation studies revealed that HP1020 and HP1021, but not htrA, can be mutated. In addition, we demonstrate that suppression of HtrA proteolytic activity with a newly developed inhibitor is sufficient to effectively kill H. pylori, but not other bacteria. We show that Helicobacter htrA is an essential bifunctional gene with crucial intracellular and extracellular functions. Thus, we describe here the first microbe in which htrA is an indispensable gene, a situation unique in the bacterial kingdom. HtrA can therefore be considered a promising new target for anti-bacterial therapy.

  8. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment.

    PubMed

    Fyfe, Cameron D; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W; Cogdell, Richard J; Wall, Daniel M; Burchmore, Richard J S; Byron, Olwyn; Walker, Daniel

    2015-07-01

    Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  9. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    PubMed Central

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-01-01

    Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macro­globulin, this protease-activation mechanism is likely to operate across the diverse members of this group. PMID:26143919

  10. Genetic characterization and expression of the novel fungal protease, EPg222 active in dry-cured meat products.

    PubMed

    Benito, María J; Connerton, Ian F; Córdoba, Juan J

    2006-11-01

    EPg222 protease is a novel extracellular enzyme produced by Penicillium chrysogenum (Pg222) isolated from dry-cured hams that has the potential for use over a broad range of applications in industries that produce dry-cured meat products. The gene encoding EPg222 protease has been identified. Peptide sequences of EPg222 were obtained by de novo sequencing of tryptic peptides using mass spectrometry. The corresponding gene was amplified by PCR using degenerated primers based on a combination of conserved serine protease-encoding sequences and reverse translation of the peptide sequences. EPg222 is encoded as a gene of 1,361 bp interrupted by two introns. The deduced amino acid sequence indicated that the enzyme is synthesized as a preproenzyme with a putative signal sequence of 19 amino acids (aa), a prosequence of 96 aa and a mature protein of 283 aa. A cDNA encoding EPg222 has been cloned and expressed as a functionally active enzyme in Pichia pastoris. The recombinant enzyme exhibits similar activities to the native enzyme against a wide range of protein substrates including muscle myofibrillar protein. The mature sequence contains conserved aa residues characteristic of those forming the catalytic triad of serine proteases (Asp42, His76 and Ser228) but notably the food enzyme exhibits specific aa substitutions in the immunoglobulin-E recognition regions that have been identified in protein homologues that are allergenic.

  11. Protease induced plasticity: matrix metalloproteinase-1 promotes neurostructural changes through activation of protease activated receptor 1

    PubMed Central

    Allen, Megan; Ghosh, Suhasini; Ahern, Gerard P.; Villapol, Sonia; Maguire-Zeiss, Kathleen A.; Conant, Katherine

    2016-01-01

    Matrix metalloproteinases (MMPs) are a family of secreted endopeptidases expressed by neurons and glia. Regulated MMP activity contributes to physiological synaptic plasticity, while dysregulated activity can stimulate injury. Disentangling the role individual MMPs play in synaptic plasticity is difficult due to overlapping structure and function as well as cell-type specific expression. Here, we develop a novel system to investigate the selective overexpression of a single MMP driven by GFAP expressing cells in vivo. We show that MMP-1 induces cellular and behavioral phenotypes consistent with enhanced signaling through the G-protein coupled protease activated receptor 1 (PAR1). Application of exogenous MMP-1, in vitro, stimulates PAR1 dependent increases in intracellular Ca2+ concentration and dendritic arborization. Overexpression of MMP-1, in vivo, increases dendritic complexity and induces biochemical and behavioral endpoints consistent with increased GPCR signaling. These data are exciting because we demonstrate that an astrocyte-derived protease can influence neuronal plasticity through an extracellular matrix independent mechanism. PMID:27762280

  12. Serine protease espP subtype alpha, but not beta or gamma, of Shiga toxin-producing Escherichia coli is associated with highly pathogenic serogroups.

    PubMed

    Khan, Abdul Basit; Naim, Asma; Orth, Dorothea; Grif, Katharina; Mohsin, Mashkoor; Prager, Rita; Dierich, Manfred P; Würzner, Reinhard

    2009-04-01

    Besides Shiga toxins (Stx), Stx-producing Escherichia coli (STEC) harbour several other putative virulence factors, including the serine protease EspP. We have investigated 214 STEC strains from Austria belonging to 61 different serotypes from humans, animals, and food for the presence of this serine protease gene and have determined the espP subtypes and their association with clinical outcome. espP was detected in 121 (57%) out of 214 strains. Sixty-five of 68 strains (96%) of non-sorbitol-fermenting (NSF) O157:H7/NM (NM, non-motile) were positive for espP, while none of 8 SF E. coli O157:NM isolates contained this gene. All 9 strains of serotype O145:NM and 17 of 21 strains (81%) of serotype O26:H11/NM were positive for espP. Nineteen STEC serogroups including O103 and O111 serogroups--considered to be highly pathogenic--were completely negative for espP. Only 5 of 12 strains isolated from patients suffering from haemolytic uraemic syndrome (HUS) were espP-positive (all serogroup NSF O157) as well as 28 of 39 strains from patients with bloody diarrhoea, 40 of 63 strains from patients with non-bloody diarrhoea, and 15 of 19 strains from asymptomatic patients. In O157:H7/NM, O26:H11/NM, and O145:NM only espP subtype alpha was found, whereas in most of the other non-O157 serogroups, subtypes beta and gamma were found. Subtype delta was not detected in our strain collection. Regarding the espP subtypes, only subtype alpha, but not beta and gamma, were found in HUS patients. Moreover, we could demonstrate that espP, and in particular subtype alpha, is associated with highly pathogenic serogroups.

  13. Amplified detection of protease activity using porous silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Orosco, Manuel

    This dissertation will focus on harnessing the optical properties of porous silicon to sense protease activity. Electrochemical etching of polished silicon wafers produces porous silicon with unique optical properties such as Fabry-Perot fringes or a dielectric mirror reflecting specific wavelengths. Porous silicon optical transducers are coupled to a biochemical reaction (protease activity) and optically measured in a label-free manner. The first chapter is an introductory chapter discussing the current methods of detecting protease activity. Also discussed is the use of porous silicon for label-free sensing. The second chapter discusses the use of thin protein layers that are spin coated on the surface of a porous silicon film and excluded from the porous matrix based on size. When active proteases are introduced to the protein layer, small peptide fragments are generated, causing a change in refractive index from low to high. This can be used as a tool to monitor protease activity and amplify the signal to the naked eye. To extend on the second chapter, a double layered porous silicon film with the first layer have large pores and the second layer etched below having small pores was used for sensing protease activity. Proteases are adsorbed into the first layer and introduction of whole protein substrate produces small peptide fragments that can enter the second layer (changing the effective optical thickness). The fourth chapter describes a method of using luminescent transducers coupled to protein films. An "on-off" sensor using protein coated luminescent porous silicon was used to detect a decrease in the intensity of luminescence due to degradation of the protein film. An "off-on" sensor involved a fluorescent dye housed in the porous film and capped with a protein coating. The release of the dye is caused by the action of a protease causing an increase in fluorescent intensity from the dye.

  14. Synthesis and antiviral evaluation of a novel series of homoserine-based inhibitors of the hepatitis C virus NS3/4A serine protease.

    PubMed

    Alexandre, François-René; Brandt, Guillaume; Caillet, Catherine; Chaves, Dominique; Convard, Thierry; Derock, Michel; Gloux, Damien; Griffon, Yann; Lallos, Lisa; Leroy, Frédéric; Liuzzi, Michel; Loi, Anna-Giulia; Moulat, Laure; Musiu, Chiara; Parsy, Christophe; Rahali, Houcine; Roques, Virginie; Seifer, Maria; Standring, David; Surleraux, Dominique

    2015-09-15

    We disclose here the synthesis of a series of macrocyclic HCV protease inhibitors, where the homoserine linked together the quinoline P2' motif and the macrocyclic moiety. These