Science.gov

Sample records for active shear zones

  1. Zipper and freeway shear zone junctions

    NASA Astrophysics Data System (ADS)

    Passchier, Cees; Platt, John

    2016-04-01

    Ductile shear zones are usually presented as isolated planar high-strain domains in a less deformed wall rock, characterised by shear sense indicators such as characteristic deflected foliation traces. Many shear zones, however, form branched systems and if movement on such branches is contemporaneous, the resulting geometry can be complicated and lead to unusual fabric geometries in the wall rock. For Y-shaped shear zone junctions with three simultaneously operating branches, and with slip directions at a high angle to the branch line, eight basic types of shear zone triple junctions are possible, divided into three groups. The simplest type, called freeway junctions, have similar shear sense on all three branches. If shear sense is different on the three branches, this can lead to space problems. Some of these junctions have shear zone branches that join to form a single branch, named zipper junctions, or a single shear zone which splits to form two, known as wedge junctions. Closing zipper junctions are most unusual, since they form a non-active high-strain zone with opposite deflection of foliations. Shear zipper and shear wedge junctions have two shear zones with similar shear sense, and one with the opposite sense. All categories of shear zone junctions show characteristic flow patterns in the shear zone and its wall rock. Shear zone junctions with slip directions normal to the branch line can easily be studied, since ideal sections of shear sense indicators lie in the plane normal to the shear zone branches and the branch line. Expanding the model to allow slip oblique and parallel to the branch line in a full 3D setting gives rise to a large number of geometries in three main groups. Slip directions can be parallel on all branches but oblique to the branch line: two slip directions can be parallel and a third oblique, or all three branches can have slip in different directions. Such more complex shear zone junctions cannot be studied to advantage in a

  2. Hydrothermal quartz formation during fluctuations of brittle shear-zone activity and fluid flow: grain growth and deformation structures of the Pfahl shear zone (Germany)

    NASA Astrophysics Data System (ADS)

    Yilmaz, T.; Prosser, G.; Liotta, D.; Kruhl, J. H.

    2012-12-01

    The Bavarian Pfahl shear zone is a WNW-ESE trending dextral strike-slip shear zone at the SW margin of the Bohemian Massif (Central Europe). It was discontinuously active during decreasing PT-conditions, i.e. from ductile to brittle, from the late-Carboniferous to the late-Cretaceous - Paleocene times. Triassic hydrothermal activity produced a 150 km long and 30-100 m wide quartz dyke along the main fault, surrounded by sheared basement rocks. Within a zone of >10 m metasomatism transformed the wall rocks to mostly kaolinite, chlorite and phyllosilicates. The quartz dyke exhibits a layered to lenticular and partly symmetric structure with different types of quartz masses, transected by a complex quartz vein network. This already indicates pulses of fluid flux and fragmentation during the lifetime of the shear zone. Analyses by optical microscopy, cathodoluminescence (CL) and SEM-EDX reveal at least four subsequent stages of quartz crystallization and fragmentation. (i) The oldest generation of quartz is represented by a homogeneous dark grey to reddish quartz mass made up by ~10-20 μm-sized crystals. It contains mm- to cm-sized angular wall-rock fragments, completely altered to kaolinite, indicating intense wall-rock alteration prior to the earliest event of silica precipitation. This rules out the possibility that the quartz mass developed from silicification of the wall rocks. This first type of quartz occurs as cm- to dm-large angular fragments in (ii) a light grey to pink quartz mass formed by ~10-50 μm-sized crystals. The different colours result from variable types and amounts of inclusions. Quartz of both generations shows random crystallographic orientations and complex inclusion structures. It probably developed during two fragmentation events and possibly from a silica gel precursor that crystallized after precipitation. (iii) The third quartz generation formed as a set of mm- to dm-wide veins roughly parallel to the trend of the Pfahl zone

  3. Age, tectonic evolution and origin of the Aswa Shear Zone in Uganda: Activation of an oblique ramp during convergence in the East African Orogen

    NASA Astrophysics Data System (ADS)

    Saalmann, K.; Mänttäri, I.; Nyakecho, C.; Isabirye, E.

    2016-05-01

    The Aswa Shear Zone (ASZ) is a major NW-SE trending structure of over 1000 km length in East Africa. In Uganda, the ASZ is a steeply NE-dipping, up to 11 km wide mylonitic shear zone that shows multiple stage brittle reactivation. On outcrop-scale, the fabric in the ASZ is characterized by a well-developed NW-SE striking and subvertical or steeply NE or SW dipping mylonitic foliation and a subhorizontal to moderately NW- or SE-plunging stretching lineation. Sinistral kinematics and fabric are very consistent along strike. The strain is heterogeneously distributed and partitioned into lens-shaped lower strain zones dominated by folding and characterized by pure shear, which are surrounded by high strain zones, some of them thick ultramylonites, with intense simple shear combined with flattening and strong transposition of pre-existing fabrics. Ductile shearing occurred during bulk E-W shortening, commenced at amphibolite facies conditions and continued with similar kinematics at greenschist and even lower grade conditions. A number of (sub-)parallel shear zones occur to the NE and SW of the main zone at a distance of up to 20-45 km. They show similar fabrics and kinematics and are thus related to activity along ASZ reflecting strain partitioning into simple shear and pure shear domains on a regional scale. Samples of mylonitic gneisses from the shear zone have been analyzed with U-Pb LA-MC-ICPMS and show Neoarchaean crystallisation ages between 2.66 and 2.61 Ga. Timing of ductile sinistral shearing is poorly constrained by lower intercept ages of 686 ± 62 and 640 ± 44 Ma. The fabric and structural relationship of the ca. 660 Ma Adjumani Granite exposed in the northern segment of ASZ suggest that the age of shear activity can be further limited to ca. 685 and 655 Ma. The Aswa Shear Zone is interpreted as an intra-cratonic, crustal-scale structure close to the northeastern margin of the Congo Craton, possibly inherited from previous continental extension. Early Aswa

  4. Extension and gold mineralisation in the hanging walls of active convergent continental shear zones

    NASA Astrophysics Data System (ADS)

    Upton, Phaedra; Craw, Dave

    2014-07-01

    Orogenic gold-bearing quartz veins form in mountain belts adjacent to convergent tectonic boundaries. The vein systems, hosted in extensional structures within compressively deformed rocks, are a widespread feature of these orogens. In many cases the extensional structures that host gold-bearing veins have been superimposed on, and locally controlled by, compressional structures formed within the convergent orogen. Exploring these observations within the context of a three-dimensional mechanical model allows prediction of mechanisms and locations of extensional zones within convergent orogens. Our models explore the effect of convergence angle and mid-crustal strength on stress states and compare them to the Southern Alps and Taiwan. The dilatation zones coincide with the highest mountains, in the hanging walls of major plate boundary faults, and can extend as deep as the brittle-ductile transition. Extensional deformation is favoured in the topographic divide region of oblique orogens with mid-lower crustal rheology that promotes localisation rather than diffuse deformation. In the near surface, topography influences the stress state to a depth approximately equal to the topographic relief, bringing the rock closer to failure and rotating σ1 to near vertical. The distribution of gold-bearing extensional veins may indicate the general position of the topographic divide within exhumed ancient orogens.

  5. Crustal-scale shear zones recording 400 m.y. of tectonic activity in the North Caribou greenstone belt, western Superior Province of Canada

    NASA Astrophysics Data System (ADS)

    Kalbfleisch, Netasha

    A series of crustal-scale shear zones demarcates the northern and eastern margins of the North Caribou greenstone belt (NCGB), proximal to a Mesoarchean terrane boundary in the core of the western Superior Province of Canada. The dominant deformation produced a pervasive steeply dipping fabric that trends broadly parallel to the doubly arcuate shape of the belt and was responsible for tight folding the banded iron formation host to Goldcorp's prolific gold deposit at Musselwhite mine. The shear zones in the North Caribou greenstone belt are of particular interest because of their ability to channel hydrothermal fluids with the potential to bear ore and cause alteration of the middle to shallow crust. Shear zones are commonly reactivated during subsequent tectonism, but exhibit a consistent and dominant dextral shear sense across the belt; fabric-forming micas and chlorite are generally Mg-rich. Although garnets samples from within the shear zones are dominantly almandine, they possess variable geochemical trends (HREEs of >2 orders of magnitude) and can be syn-, intra-, or post-tectonic in origin. In situ geochronological analysis of zircon (U-Pb) and monazite (total-Pb) in high strain rocks in and around the NCGB, interpreted in light of in situ geochemical analysis of garnet and fabric-forming micas and chlorite, reveals four relatively discrete events that span 400 million years. Metamorphism of the mid-crust was coeval with magmatism during docking of the Island Lake domain at c. 2.86 Ga and subsequent terrane accretion at the north and south margins of the North Caribou Superterrane from c. 2.75 to 2.71 Ga. Transpressive shear at c. 2.60 to 2.56 Ga and late re-activation of shear zones at c. 2.44 Ga produced a steeply-dipping pervasive fabric, and channeled fluids for late crystallization of garnet and monazite recorded in the Markop Lake deformation zone. These observations implicate a horizontal tectonic model similar to the modern eastern Pacific plate

  6. Shear rates measurements in natural shear zones using quartz piezometers.

    NASA Astrophysics Data System (ADS)

    Boutonnet, Emmanuelle; Hervé Leloup, Philippe

    2010-05-01

    Whether deformation within the deep continental crust is fundamentally concentrated in narrow shear zones or distributed in wide zones stays a major controversy of the earth sciences. This is in part because direct measurements of ductile strain or strain rate are difficult, especially when deformation is intense as it is the case in ductile shear zones. Paleo-shear stress can be evaluated by using paleo-piezometers that link shear stress to the size of recrystallized minerals. Such piezometers are calibrated by microphysical models or experimental studies. Indirect measurements of strain rate in natural rocks can be achieved using shear stress, an estimation of the temperature of deformation, and assuming a flow law. However, such estimates have rarely been validated by independent constraints. By comparing shear rates calculated from paleopiezometry, and measured in situ in the same outcrop we determined the more appropriate paleopiezometer and power flow law in order to generalize the method to other outcrops. Within the Ailao - Red River shear zone (ASSR, SE Asia) paleo strain rates during the Miocene left-lateral shear are estimated between 1*10-13 s-1 and 2*10-13 s-1 from tectonic considerations. At site C1, by combining dating of syntectonic dykes and measurements of their deformation, the strain rate is calculated between 3 and 4*10-14 s-1 between 29 to 22 Ma, (Sassier et al., JGR, 2009). Quartz ribbons of sample YY33 from the same outcrop show continuous dynamic recrystallisation (DRX) mechanisms, characterized by subgrain rotation nucleation, and growth by grain boundary migration (Shimitzu et al. JSG, 2008). This dislocation creep regime is compatible with the microphysical models of Twiss (Pure Ammp. Geoph., 1977) and Shimitzu (JSG, 2008) and the experimental piezometer of Stipp and Tullis (GRL, 2003). The measured quartz grain size range between 10 and 960 μm, while the mean recrystallized grain size is 112.2 ± 1.5μm. The associated paleostress is

  7. Fluid migration in ductile shear zones

    NASA Astrophysics Data System (ADS)

    Fusseis, Florian; Menegon, Luca

    2014-05-01

    Fluid migration in metamorphic environments depends on a dynamically evolving permeable pore space, which was rarely characterised in detail. The data-base behind our understanding of the 4-dimensional transport properties of metamorphic rocks is therefore fragmentary at best, which leaves conceptual models poorly supported. Generally, it seems established that deformation is a major driver of permeability generation during regional metamorphism, and evidence for metamorphic fluids being channelled in large scale shear zones has been found in all depth segments of the continental crust. When strain localizes in ductile shear zones, the microfabric is modified until a steady state mylonite is formed that supports large deformations. A dynamic porosity that evolves during mylonitisation controls the distinct transport pathways along which fluid interacts with the rock. This dynamic porosity is controlled by a limited number of mechanisms, which are intrinsically linked to the metamorphic evolution of the rock during its deformational overprint. Many mid- and lower-crustal mylonites comprise polyphase mixtures of micron-sized grains that show evidence for deformation by dissolution/precipitation-assisted viscous grain boundary sliding. The establishment of these mineral mixtures is a critical process, where monomineralic layers are dispersed and grain growth is inhibited by the heterogeneous nucleation of secondary mineral phases at triple junctions. Here we show evidence from three different mid- and lower-crustal shear zones indicating that heterogeneous nucleation occurs in creep cavities. Micro- and nanotomographic observations show that creep cavities provide the dominant form of porosity in these ultramylonites. They control a "granular fluid pump" that directs fluid migration and hence mass transport. The granular fluid pump operates on the grain scale driven by viscous grain boundary sliding, and requires only small amounts of fluid. The spatial arrangement of

  8. Recrystallization fabrics of sheared quartz veins with a strong pre-existing crystallographic preferred orientation from a seismogenic shear zone

    NASA Astrophysics Data System (ADS)

    Price, Nancy A.; Song, Won Joon; Johnson, Scott E.; Gerbi, Christopher C.; Beane, Rachel J.; West, David P.

    2016-07-01

    Microstructural investigations were carried out on quartz veins in schist, protomylonite, and mylonite samples from an ancient seismogenic strike-slip shear zone (Sandhill Corner shear zone, Norumbega fault system, Maine, USA). We interpret complexities in the microstructural record to show that: (1) pre-existing crystallographic preferred orientations (CPO) in the host rock may persist in the new CPO patterns of the shear zone and (2) the inner and outer parts of the shear zone followed diverging paths of fabric development. The host rocks bounding the shear zone contain asymmetrically-folded quartz veins with a strong CPO. These veins are increasingly deformed and recrystallized with proximity to the shear zone core. Matrix-accommodated rotation and recrystallization may position an inherited c-axis maximum in an orientation coincident with rhomb < a > or basal < a > slip. This inherited CPO likely persists in the shear zone fabric as a higher concentration of poles in one hemisphere of the c-axis pole figure, leading to asymmetric crossed girdle or paired maxima c-axis patterns about the foliation plane. Three observed quartz grain types indicate a general trend of localization with decreasing temperature: (1) large (> 100 μm), low aspect ratio (<~5) and (2) high aspect ratio (~ 5-20) grains overprinted by (3) smaller (<~80 μm), low aspect ratio (<~4) grains through subgrain rotation-dominated recrystallization. In the outer shear zone, subgrain rotation recrystallization led to a well-developed c-axis crossed girdle pattern. In the inner shear zone, the larger grains are completely overprinted by smaller grains, but the CPO patterns are relatively poorly developed and are associated with distinctively different misorientation angle histogram profiles ("flat" neighbor-pair profile with similar number fraction for angles from 10 to 90°). This may reflect the preferential activation of grain size sensitive deformation processes in the inner-most part of the

  9. Burdur-Fethiye Shear Zone (Eastern Mediterranean, SW Turkey)

    NASA Astrophysics Data System (ADS)

    Elitez, İrem; Yaltırak, Cenk

    2014-05-01

    Anatolian fault zones. NE-SW-trending left-lateral, left-lateral oblique normal, approximately N-S-trending normal faults and small-scale faults measured in the basin fills indicate an active left-lateral shear regime. The main fold axis direction is NE-SW in the Miocene sediments of the region. This situation points the existence of a NW-SE compressional regime. Then left-lateral shear developed and the extensional regime affected in the Plio-Quaternary. The obtained data can explain the recent wide-area seismic activity. The main reason of the shear zone evolution is the ophiolitic melange located under the Miocene-Pliocene series. The basement of the study area is composed of Lycian Nappes. The presence of the limestone blocks in the melange along the large-scale faults and basin boundaries provide the identification of the fault planes on the rigid areas. In this context, the faults along the BFSZ form together a parallel, short echelon structure in a wide area instead of following each other along a long distance and this indicates a shear zone.

  10. Properties of an adiabatic shear-band process zone

    NASA Astrophysics Data System (ADS)

    Grady, D. E.

    1992-08-01

    THE FORMATION of adiabatie shear bands is examined with an approximate analytic model. The shear band is viewed as a propagating feature with a well-defined front. The shear band is further partitioned into a shear-band process zone within which most of the adiabatic heating and shear stress relaxation occurs, followed by a quasi-steady zone within which little dissipation occurs. Although a one-dimensional analysis of the shear-band dynamics is initially pursued, the analysis is then used to calculate properties of the inherently two-dimensional shear-band process zone. The length and width of the process zone are calculated along with the shear displacement. The model is further used to calculate the energy dissipation within the shear-band process zone and the concept of a shear-band toughness is introduced. The flow field within the vicinity of the process zone is also examined. Calculated properties of the shear-band process zone compared well with available experimental data.

  11. Anisotropy and Heterogeneity Interaction in Shear Zones

    NASA Astrophysics Data System (ADS)

    Dabrowski, M.; Schmid, D. W.

    2009-04-01

    Rocks are heterogeneous on many different scales and deformation may introduce a coexistence of heterogeneity and anisotropy in shear zones. A competent inclusion embedded in a laminated matrix is a typical example. Indisputably, the presence of a mechanical heterogeneity leads to a flow perturbation and consequently to a deflection of the lamination in its vicinity. Assuming a passive response of the matrix phase, the pattern formation around rigid objects has been modeled in two and three dimensions using analytical solutions. Yet, the laminas may be mechanically distinct, leading to an effectively anisotropic rheology of the matrix. The feedback of an evolving matrix structure on the inclusion motion cannot be precluded in this case. In our study elliptical inclusions of varying aspect ratios are embedded in a laminated linear viscous host and subject to a large simple shear deformation in finite element numerical simulations. Increasing the viscosity ratio of the weak and strong lamina significantly changes the pattern characteristics in the matrix. The structural evolution around an inclusion proves to have a major impact on the inclusion motion, leading to the stabilization of elongated inclusions at antithetic orientations. We provide a comparison of two different modeling approaches. In the first approach discrete layers are introduced in the matrix and the large strain evolution of individual minute layers is resolved. Next, the matrix is modeled as an anisotropic medium using an evolving director field that locally describes the anisotropy direction. The length scale of layering can be restored in this model using the micropolar medium formulation.

  12. Structure and development of an anastomosing network of ductile shear zones

    NASA Astrophysics Data System (ADS)

    Carreras, Jordi; Czeck, Dyanna M.; Druguet, Elena; Hudleston, Peter J.

    2010-05-01

    A detailed structural analysis of an anastomosing shear zone network in metagabbros from the Archean Rainy Lake zone (Canada) revealed the existence of prevalent dextral and minor sinistral conjugate shear zones with the obtuse angle (>130°) facing the main shortening direction. A typology of shear zone intersections, confluences, and other features shows that all shears formed during a single deformation event, with dextral and sinistral shears being active together or in an alternating fashion. In spite of the difficulty of establishing a complete kinematic sequence, early and late shears can be distinguished. The final angular pattern between dextral and sinistral shears is not an original feature. Dextral and sinistral shears formed at nearly right angles, and the angles progressively opened towards the extension direction as a result of increasing strain. The obtuse angles were achieved by the combined effects of continued shearing on newly forming shears and internal deformation of the lozenge-shaped domains of lesser-deformed rock bounded by the shears. Through time, there was an increasing prevalence of dextral shears over sinistral ones. The studied pattern and sequential analysis indicate that the bulk deformation was noncoaxial with a deformation regime evolving from a pure shear-dominated dextral transpression to a higher vorticity dextral transpression.

  13. Strain localization across main continental strike-slip shear zones

    NASA Astrophysics Data System (ADS)

    Boutonnet, E.; Leloup, P.; Rozel, A.

    2011-12-01

    Whether deformation within the deep continental crust is fundamentally concentrated in narrow shear zones or distributed in wide zones stays a major controversy of the earth sciences. This is in part because direct measurements of ductile shear or strain rate are difficult, especially when deformation is intense as it is the case in ductile shear zones. The QPSRM (quartz paleo strain rates metry) method allows indirect measurements of strain rates in natural rocks, using shear stress, an estimation of the temperature of deformation, and assuming a flow law. This method has been recently calibrated for ductile continental shear zones conditions, giving the users the best power flow law/ piezometer combination to calculate accurate local strain rates. By comparing the local strain rates with the equivalent global strain rates, measured by dividing the shear rates (mm/yr) by the shear zone width, we estimated the amount of strain localization across ductile shear zones. We applied this method to two major shear zones located in the India-Asia collision zone: the Ailao Shan Red River shear zone (ASRR, SE Asia) and the Karakorum shear zone (Ksz, SW Tibet). We used the Hirth et al. (2001) flow law and the Twiss (1977) piezometer. Within the ASRR, a gradient of strain rates is observed between the shear zone border (5.4 x10-15 s-1) and the shear zone center (3.6 x10-12 s-1). The equivalent global strain rates range between 8.0 x10-15 and 1.7 x10-13 s-1, assuming a shear rate of ~1 cm/yr and a homogenous deformation across the ~15 km-large shear zone. We interpret the local strain rates, which are higher than the global strain rates, as strain localization. The strain localization in the core of the ASRR shear zone had been observed by field studies, and also predicted by numerical models. This study brings a measurement of this strain localization. Within the Ksz, the equivalent shear rate is 4.4 x10-14 s-1, assuming a shear rate of ~11 mm/yr and a homogenous deformation

  14. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Mechanism for Intermediate Depth Earthquakes

    NASA Astrophysics Data System (ADS)

    Coon, E.; Kelemen, P.; Hirth, G.; Spiegelman, M.

    2005-12-01

    Kelemen and Hirth (Fall 2004 AGU) presented a model for periodic, viscous shear heating instabilities along pre-existing, fine grained shear zones. This provides an attractive alternative to dehydration embrittlement for explaining intermediate-depth earthquakes, especially those in a narrow thermal window within the mantle section of subducting oceanic plates (Hacker et al JGR03). Ductile shear zones with widths of cm to m are common in shallow mantle massifs and peridotite along oceanic fracture zones. Pseudotachylites in a mantle shear zone show that shear heating temperatures exceeded the mantle solidus (Obata & Karato Tectonophys95). Olivine grain growth in shear zones is pinned by closely spaced pyroxenes; thus, once formed, these features do not `heal' on geological time scales in the absence of melt or fluid (Warren & Hirth EPSL05). Grain-size sensitive creep will be localized within these shear zones, in preference to host rocks with olivine grain size from 1 to 10 mm. Inspired by the work of Whitehead & Gans (GJRAS74), we proposed that such pre-existing shear zones might undergo repeated shear heating instabilities. This is not a new concept; what is new is that viscous deformation is limited to a narrow shear zone, because grain boundary sliding, sensitive to both stress and grain size, may accommodate creep even at high stress and high temperature. These new ideas yield a new result: simple models for a periodic shear heating instability. Last year, we presented a 1D numerical model using olivine flow laws, assuming that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. Stress evolves due to elastic strain and drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control T. A maximum of 1400 C (substantial melting of peridotite ) was imposed. Grain size evolves due to recrystallization and diffusion. For strain rates of E-13 to E-14 per sec and

  15. Deformation of footwall rock of Phulad Shear Zone, Rajasthan: Evidence of transpressional shear zone

    NASA Astrophysics Data System (ADS)

    Choudhury, Manideepa Roy; Das, Subhrajyoti; Chatterjee, Sadhana M.; Sengupta, Sudipta

    2016-07-01

    Phulad Shear Zone (PSZ) of Delhi Fold Belt in Rajasthan is a northeasterly striking ductile shear zone with a well developed mylonitic foliation (035/70E) and a downdip stretching lineation. The deformation in the PSZ has developed in a transpressional regime with thrusting sense of movement. The northeastern unit, i.e., the hanging wall contains a variety of rocks namely calc-silicates, pelites and amphibolites and the southwestern unit, i.e., the footwall unit contains only granitic rocks. Systematic investigation of the granites of the southwestern unit indicate a gradual change in the intensity of deformation from a distance of about 1 km west of the shear zone to the shear zone proper. The granite changes from weakly deformed granite to a mylonite/ultramylonite as we proceed towards the PSZ. The weakly deformed granite shows a crude foliation with the same attitude of mylonitic foliation of the PSZ. Microscopic study reveals the incipient development of C and S fabric with angle between C and S varying from 15 ∘ to 24 ∘. The small angle between the C and S fabric in the least deformed granite variety indicates that the deformation has strong pure shear component. At a distance of about 1 m away from the PSZ, there is abrupt change in the intensity of deformation. The granite becomes intensely foliated with a strong downdip lineation and the rock becomes a true mylonite. In mesoscopic scale, the granite shows stretched porphyroclasts in both XZ and YZ sections indicating a flattening type of deformation. The angle between the C and S fabric is further reduced and finally becomes nearly parallel. In most places, S fabric is gradually replaced by C fabric. Calculation of sectional kinematic vorticity number ( W n) from the protomylonitic and mylonite/ultramylonite granites varies from 0.3 ± 0.03 to 0.55 ± 0.04 indicating a strong component of pure shear. The similarity of the geometry of structures in the PSZ and the granites demonstrates that the

  16. Imaging Faults and Shear Zones Using Receiver Functions

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, Vera; Mahan, Kevin H.

    2014-11-01

    The geometry of faults at seismogenic depths and their continuation into the ductile zone is of interest for a number of applications ranging from earthquake hazard to modes of lithospheric deformation. Teleseismic passive source imaging of faults and shear zones can be useful particularly where faults are not outlined by local seismicity. Passive seismic signatures of faults may arise from abrupt changes in lithology or foliation orientation in the upper crust, and from mylonitic shear zones at greater depths. Faults and shear zones with less than near-vertical dip lend themselves to detection with teleseismic mode-converted waves (receiver functions) provided that they have either a contrast in isotropic shear velocity ( V s), or a contrast in orientation or strength of anisotropic compressional velocity ( V p). We introduce a detection method for faults and shear zones based on receiver functions. We use synthetic seismograms to demonstrate common features of dipping isotropic interfaces and contrasts in dipping foliation that allows determination of their strike and depth without making further assumptions about the model. We proceed with two applications. We first image a Laramide thrust fault in the western U.S. (the Wind River thrust fault) as a steeply dipping isotropic velocity contrast in the middle crust near the surface trace of the fault; further downdip and across the range, where basin geometry suggests the fault may sole into a subhorizontal shear zone, we identify a candidate shear zone signal from midcrustal depths. The second application is the use of microstructural data from exhumed ductile shear zones in Scotland and in the western Canadian Shield to predict the character of seismic signatures of present-day deep crustal shear zones. Realistic anisotropy in observed shear fabrics generates a signal in receiver functions that is comparable in amplitude to first-order features like the Moho. Observables that can be robustly constrained without

  17. Review on symmetric structures in ductile shear zones

    NASA Astrophysics Data System (ADS)

    Mukherjee, Soumyajit

    2016-07-01

    Symmetric structures in ductile shear zones range widely in shapes and geneses. Matrix rheology, its flow pattern, its competency contrast with the clast, degree of slip of the clast, shear intensity and its variation across shear zone and deformation temperature, and degree of confinement of clast in shear zones affects (independently) the degree of symmetry of objects. Kinematic vorticity number is one of the parameters that govern tail geometry across clasts. For example, symmetric and nearly straight tails develop if the clast-matrix system underwent dominantly a pure shear/compression. Prolonged deformation and concomitant recrystallization can significantly change the degree of symmetry of clasts. Angular relation between two shear zones or between a shear zone and anisotropy determines fundamentally the degree of symmetry of lozenges. Symmetry of boudinaged clasts too depends on competency contrast between the matrix and clast in some cases, and on the degrees of slip of inter-boudin surfaces and pure shear. Parasitic folds and post-tectonic veins are usually symmetric.

  18. Active seismic monitoring of changes of the reflection response of a crystalline shear zone due to fluid injection in the crust at the Continental Deep Drilling Site, Germany

    NASA Astrophysics Data System (ADS)

    Beilecke, T.; Kurt, B.; Stefan, B.

    2005-12-01

    In theory and in the laboratory variations of the hydraulic pressure can be detected with seismic methods: A lowering of the hydraulic pressure leads to the closure of micro-cracks within the rock (increase of the differential or effective pressure). Subsequently, the seismic velocities increase. An increase of the hydraulic pressure leads to reverse seismic effects. Consequently, seismic impedance contrasts and associated reflection amplitudes vary in the case of a propagating fluid pressure front in a rock matrix with inhomogeneous permeability - as is the case at shear zones. The largest amplitude changes can be expected with vertical ray inclination on the impedance contrast. Generally, the expected effects are small however (Kaselow, 2004). The practical utilization of active seismics for the detection of pressure changes at large scale in hard rock is currently being studied at the Continental Deep Drilling Site (KTB). The injection of water (200 l/min) in a depth of about 4000 m into the so-called SE2 shear zone in the KTB pilot hole was monitored with active seismics between May 2004 and April 2005. The core of the experiment layout is a fixed 5-arm geophone array consisting of 24 3-component geophones, buried at about 70 cm depth. The source signal is a vertical vibrator sweep of 30 s length with the spectrum 30-120 Hz. The signal is sent into the ground 32 times during each cycle, detected with the array and recorded separately for each geophone channel, without prior correlation with the source signal. This allows maximum post-processing with seismic processing and analysis tools and especially permits the use of array properties to increase the signal-to-noise ratio. Critical parameters of the experiment are the repeatability of the source signal as well as the stability of the receiver properties. Another pivot is the hydraulic pressure and its distribution built up within the rock matrix. Estimations based on model calculations show that a change of

  19. Radon ( 222Rn) level variations on a regional scale from the Singhbhum Shear Zone, India: A comparative evaluation between influence of basement U-activity and porosity

    NASA Astrophysics Data System (ADS)

    Banerjee, K. S.; Basu, A.; Guin, R.; Sengupta, D.

    2011-05-01

    This paper is devoted to the comparative study of the radon flux vs. uranium content and radon flux vs. porosity for mineral samples from some typical Indian rocks (schists, quartzites, argillaceous quartzites, slates and granites) used as building materials, primarily around the Singhbhum Shear Zone, Jharkhand State. As the radon flux of any particular rock type was investigated with reference to its uranium activity and porosity, a good concordance of porosity on radon flux was observed. Such a significant influence of porosity on radon flux was also observed when different rock types were inter-compared. For example, granite that is commonly considered as typical source of indoor radon showed depleted level of radon flux when compared to most other rocks in the study area. In case of rocks such as slates and argillaceous quartzites, low porosity exhibited reduced radon flux in spite of their enhanced radioactive source content. It is concluded that it may not be advisable to utilize materials that are uranium depleted for construction purposes without giving importance to the materials' porosity.

  20. Thermo-mechanical coupling of faults and mantle shear zones

    NASA Astrophysics Data System (ADS)

    Lambert, Valere; Barbot, Sylvain

    2016-04-01

    Paleo-seismological records suggest non-steady and potentially periodic trends in slip rates over time scales of the order of millennia. It is unclear whether the variability of recurrence times is due to fault processes alone or if they are modulated by off-fault deformation. Theoretical and numerical modeling of fault kinematics from geodetic data have enabled an explosion of new findings about the mechanics of the earthquake cycle. However, these models have been mostly confined to processes along the interface of a fault. Therefore many sources of off-fault deformation, such as thermoelasticity and viscoelasticity, cannot yet be accounted for in the earthquake cycle. Here, we couple fault kinematics and viscoelastic deformation within shear zones using the integral method to simulate unified earthquake cycles that combine fault and off-fault processes. We consider the modulation of slip rates along a fault within the brittle layer due to strain in a viscoelastic substrate beneath the brittle-ductile transition. By implementing a thermally-activated rheology accounting for thermal diffusion, we investigate the thermo-mechanical coupling of faults and mantle shear zones and its implications for earthquake recurrence.

  1. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    NASA Astrophysics Data System (ADS)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within

  2. Shear zones developed between extensional and compressional tectonic regimes: recent deformation of the Burdur Fethiye Shear Zone as a case study

    NASA Astrophysics Data System (ADS)

    Elitez, İrem; Yaltırak, Cenk; Aktuǧ, Bahadır

    2016-04-01

    The southwestern Turkey is one of the most tectonically active areas of the eastern Mediterranean and therefore is a controversial region from the geodynamic point of view. This complex tectonic regime is dominated by the westward escape of Anatolia related to North Anatolian Fault, Aegean back-arc extension regime due to roll-back of Hellenic Arc, the subduction transform edge propagator (STEP) fault zone related to the motion of Hellenic and Cyprus arcs and compressional regime of Tauride Mountains. In addition to that, an active subduction and seamounts moving towards the north determine the tectonic frame of the Eastern Mediterranean. Many researchers suggest either the existence of a single left lateral fault or the nonexistence of a fault zone between Western Anatolia and Western Taurides. According to the integration of digital elevation data, non-commercial GoogleEarth satellite images and field studies, a 300 km-long 75-90 km-wide NE-SW-trending left lateral shear zone, the Burdur-Fethiye Shear Zone, is located among these tectonic structures. By using GPS velocities and focal mechanism solutions of earthquakes, it is understood that most of the previous studies turn a blind eye to the hundreds of faults related to a left-lateral shear zone which will have an important role in the Mediterrenean tectonics. The Burdur-Fethiye Shear Zone is like a zipper driven by the relative velocity differences due to the Aegean back-arc extensional system and Western Taurides compressional region and presents a high seismic activity. The GPS vectors reflect remarkable velocity differences on land and relatedly the significant topographic differences can be clearly observed. According to the GPS vectors, the Aegean region moves 4-12 mm/yr faster than the wesward escape of the Anatolia towards southwest and the velocities are low in the Western Taurides. The left-lateral differential motion across the Burdur-Fethiye Shear Zone varies from 3-4 mm/yr in the north side to 8

  3. Strain accumulation and rotation in the Eastern California Shear Zone

    USGS Publications Warehouse

    Savage, J.C.; Gan, Weijun; Svarc, J.L.

    2001-01-01

    Although the Eastern California Shear Zone (ECSZ) (strike ???N25??W) does not quite coincide with a small circle drawn about the Pacific-North America pole of rotation, trilateration and GPS measurements demonstrate that the motion within the zone corresponds to right-lateral simple shear across a vertical plane (strike N33??W??5??) roughly parallel to the tangent to that local small circle (strike ???N40??W). If the simple shear is released by slip on faults subparallel to the shear zone, the accumulated rotation is also released, leaving no secular rotation. South of the Garlock fault the principal faults (e.g., Calico-Blackwater fault) strike ???N40??W, close enough to the strike of the vertical plane across which maximum right-lateral shear accumulates to almost wholly accommodate that accumulation of both strain and rotation by right-lateral slip. North of the Garlock fault dip slip as well as strike slip on the principal faults (strike ???N20??W) is required to accommodate the simple shear accumulation. In both cases the accumulated rotation is released with the shear strain. The Garlock fault, which transects the ECSZ, is not offset by north-northwest striking faults nor, despite geological evidence for long-term left-lateral slip, does it appear at the present time to be accumulating left-lateral simple shear strain across the fault due to slip at depth. Rather the motion is explained by right-lateral simple shear across the orthogonal ECSZ. Left-lateral slip on the Garlock fault will release the shear strain accumulating there but would augment the accumulating rotation, resulting in a secular clockwise rotation rate ???80 nrad yr-1 (4.6?? Myr-1).

  4. Time-evolution and strain distribution of a major shear zone (SASZ, Brittany, France)

    NASA Astrophysics Data System (ADS)

    Augier, Romain; Raimbourg, Hugues; Bellanger, Mathieu; Turrillot, Paul; Monié, Patrick

    2014-05-01

    Mylonite-bearing crustal shear zones are exhumed extensions at depth of (potentially seismogenic) brittle faults at shallow structural level. By concentrating deformation, shear zones play a major role in the rheology and mechanical behavior of the continental crust. Analysis of shear zone geometry and microstructures is a useful tool to decipher deformation kinematics, though finite strain estimation is still relatively qualitative. Timing of the deformation has also been the focus of numerous studies using the complete spectrum of geochronometers. However, only rare examples provide geochronological data that can be unambiguously linked with deformation. Thus, time-scales over which major mylonite zones develop and remain active under ductile conditions as well as their strain rates often remain poorly documented. Several sections across the South Armorican Shear Zone (SASZ), a crustal-scale, several km-thick dextral shear zone were investigated by structural, petrological and Ar/Ar radiochronological methods. Finite strain profiles on these sections showed a strong deformation partitioning towards the ultramylonite core of the SASZ, with a decrease, of both the C'/S mean angle (from ca. 45° to less than 5°) and the Quartz grain-size (from ca. 150 to 5 µm). In parallel, conventional and in-situ Ar/Ar datings on the fabric-forming white micas were performed on compositionally complex white-micas. Inherited magmatic muscovites carried by the foliation and newly-formed, syn-tectonic substituted phengites located along the shear bands yielded 2 age groups for the less deformed samples. Along the shear zone cross-section, the difference between these two ages evolves from 10-15 Ma in weakly deformed domains to zero toward the SASZ core. In addition, the very fine-grained syn-tectonic phengites yielded the same ca. 300-298 Ma age irrespectively of their distance to the core of the shear zone, even in slightly deformed rocks distant by several km. These results

  5. Alteration-weakening leading to localized deformation in a damage aureole adjacent to a dormant shear zone

    NASA Astrophysics Data System (ADS)

    Backeberg, Nils R.; Rowe, Christie D.; Barshi, Naomi

    2016-09-01

    Deformation adjacent to faults and shear zones is traditionally thought to correlate with slip. Inherited structures may control damage geometry, localizing fluid flow and deformation in a damage aureole around structures, even after displacement has ceased. In this paper we document a post-shearing anastomosing foliation and fracture network that developed to one side of the Mesoarchean Marmion Shear Zone. This fracture network hosts the low-grade, disseminated Hammond Reef gold deposit. The shear zone juxtaposed a greenstone belt against tonalite gneiss and was locked by an intrusion that was emplaced during the final stages of suturing. After cessation of activity, fluids channeled along fault- and intrusion-related fractures led to the pervasive sericitization of feldspars. Foliated zones resulted from flattening in the weaker sericite-rich tonalite during progressive alteration without any change in the regional NW-SE shortening direction. The anastomosing pattern may have been inherited from an earlier ductile fabric, but sericite alteration and flattening fabrics all formed post-shearing. Thus, the apparent foliated fracture network adjacent to the Marmion Shear Zone is a second-order effect of shear-related damage, distinct in time from shear activity, adjacent to an effectively dormant shear zone. This phenomenon has implications for understanding the relative timing of fault zone activity, alteration and (in this case) gold mineralization related to long-term fault zone permeability.

  6. Characteristics of faults and shear zones in deep mines

    USGS Publications Warehouse

    Wallace, R.E.; Morris, H.T.

    1986-01-01

    The characteristics of fault and shear zones to depths of 2.5 km are well documented in deep mines in North America. The characteristics may be summarized as follows. (a) Fault zones usually are irregular, branched, anastomosed, and curved rather than simple and planar. (b) Faults are generally composed of one or more clay or clay-like gouge zones in a matrix of sheared and foliated rock bordered by highly fractured rock. (c) The widths of fault zones appear to be greater when faults have greater displacement, probably as a result of a long history of repeated minor movements. Fault zones with kilometers of displacement tend to be 100 m or more wide, whereas those with only a few hundred meters of displacement commonly are only 1 m or less wide. (d) Some zones represent shear distributed across hundreds of meters without local concentration in a narrow gouge zone. (e) Many fault zones are wet even above the water table, and water moves along them at various rates, but some also serve as subsurface dams, ponding ground water as much as several hundred meters higher on one side than on the other. No striking differences in the characteristics of faults over the vertical range of 2.5 km are documented. ?? 1986 Birkha??user Verlag.

  7. Time constraints on faults activity in the Eastern California Shear Zone from U-Pb (SHRIMP-RG) dating of syntectonic opal

    NASA Astrophysics Data System (ADS)

    Nuriel, P.; Maher, K.; Miller, D. M.

    2013-12-01

    Absolute time constraints for fault activity are of fundamental importance in active fault systems. Such constraints are necessary for estimation of long-term slip-rates and earthquake recurrence intervals required for seismic-hazard assessments. Notwithstanding, paleoseismological records are often limited to the past 1 Ma, and important information such as fault initiation and early stage displacement are seldom determined. Here we present a novel methodological approach for direct dating of brittle deformation events over a geological time scale. We use in situ U-Pb SHRIMP-RG (Sensitive High Resolution Ion Microprobe - Reverse Geometry) analyses of opal precipitates in order to constrain the relative and absolute timing of brittle deformation events. The Mojave Desert fault segments within the Eastern California Shear Zone (ECSZ) are ideal faults to investigate the long-term history because of the need for improved constraints on the timing of fault initiation and the observed discrepancy between long-term and short-term estimates for strain accumulation rates in this area. We analyzed fault-related opal samples from ten different fault exposures within the Camp Rock, Cave Mountain, and the Cady fault systems. Millimeter size fragments of fault-related opal, occurring as fault coating, filling or fault-breccia cement, were imaged using cathodoluminescence and backscattering electron microscopy in order to identify distinct phases of opal associated with specific syntectonic microstructures. Sub-samples within each phase are then targeted with multiple SHRIMP-RG analyses (<50 μm in diameter) to allow the construction of 238U/208Pb-206Pb/208Pb and/or Tera-Wasserburg U-Pb isochrons. Of the 50 distinct phases that were identified, 20 were successfully dated and U-Pb age results range from 8.4 to 0.58 Ma. The timing of fault initiation along the Cave Mountain Fault system was previously estimated to be between 15 Ma and 5 Ma. Our results suggest that initial

  8. Complex strain patterns developed at the frontal and lateral tips to shear zones and thrust zones

    NASA Astrophysics Data System (ADS)

    Coward, M. P.; Potts, G. J.

    Many of the complex strain patterns seen in shear zones and thrust zones, such as variable fabric orientations, refolded folds and fabrics, together with folds with hinges almost parallel to the main transport direction, can be explained in terms of differential movement within the shear zones. These strains are developed at the frontal and lateral tips of the zones as they propagate. Examples are taken from the Moine thrust zone of Scotland which show variations in strains particularly at the lateral tips. The form of differential movement described here may lead to complex strain paths and non-plane strain ellipsoids and the spatial variations in finite strain may be used to delineate zones of extensional and compressional flow and differential movement in the shear zones or thrusts.

  9. Shear Transformation Zones in Granular Material

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Behringer, R. P.

    2004-11-01

    An important issue for a number of systems, including granular materials and molecular solids is how to describe plastic deformation at the microscale. Recently, Falk, Langer and Lemaitre have proposed a scheme for irreversible (plastic) microscopic processes that is based on the idea of non-affice localized deformations. The basic idea is to examine that part of microscopic deformations that cannot be describe in terms of a smooth affine deformation. The rms difference between affine and non-affine deformations is called D^2. We have measured D^2 for a 2D granular Couette flow, in which photoelastic particles contained in an annulus are sheared by an inner rotating wheel. We find that the rate of production of D^2 scales with the local radially dependent shear rate, γ, and that D^2 is directly proportionally to the locally determinded diffusivity, D. Distributions of D^2 for various r's have a universal form P(D^2) ∝ D^2 exp (D^2/D_o).

  10. Strain localization across main continental strike-slip shear zones : a multi-methods approach for the case of the Karakorum shear zone

    NASA Astrophysics Data System (ADS)

    Boutonnet, E.; Leloup, P. H.; Rozel, A.; Arnaud, N.; Paquette, J. L.

    2012-04-01

    Whether deformation within the deep continental crust is fundamentally concentrated in narrow shear zones or distributed in wide zones stays a major controversy of the earth sciences. This is in part because direct measurements of ductile shear or strain rate are difficult, especially when deformation is intense, as it is the case in ductile shear zones. The Pangong range (India) is an 8km-wide shear zone, corresponding to the exhumed root of the central Karakorum fault zone (KFZ), one of the great continental strike-slip faults of the India-Asia collision zone. Ductile deformation is most intense in the Tangtse and Muglib mylonitic strands, which bracket the shear zone to the SW and NE, respectively. The relationships between dykes emplacement ages (U/Pb dating) and deformation indicate that deformation was not synchronous across the shear zone. Ar/Ar dating document that cooling was diachronic across strike and ductile deformation (~ 300°C) stopped earlier in the SW than in the NE. Deformation thus appears to have migrated / localized from the whole shear zone to the Muglib strand, the only locus showing evidence for brittle deformation and active faulting. We compared the strain rates measured at different spatial scales: (1) a global scale investigated by the geological fault rate estimation and (2) a local scale, investigated with the QSR (Quartz strain rate metry) method. The total offset (200-240 km) and the KFZ life span (18 to 25 Ma) yield an average fault rate of 1.1 ±0.2 cm/yr. this corresponds to a global shear rate of 4.4 x10-14 s-1, assuming an homogenous deformation in space and time within a 8 km wide shear zone. Five quartz samples provided deformation temperatures between 348 and 428°C and corresponding paleo-stresses between 24 and 65 MPa. The local strain rates measured within the two mylonitic strands of the fault zone (> 1 x10-13 s-1), are higher than those measured outside of these strands (≤ 1 x10-14 s-1), where deformation is weaker

  11. Deformation and metamorphism of Hamadat complex: Shear zones reshaping the lithosphere

    NASA Astrophysics Data System (ADS)

    Hassan, Mahmoud; Abu-Alam, Tamer; Stüwe, Kurt

    2015-04-01

    In the active tectonic regions, shear zones play an important role to re-configure the structure of the lithosphere. One of the largest pre-Mesozoic shear zones on the Earth is the Najd Fault System of the Arabian-Nubian Shield. Literature data record exhumation of medium-pressure metamorphic complexes due to the activity of the Najd Fault System during the Pan-African Orogeny where the shear zone surrounds the boundaries of metamorphic complexes. The Hamadat complex of Northwestern part of Saudi Arabia shows an exception where the metamorphic rocks appear to occur within the shear zone itself instead of being surrounded by branches of it. The Hamadat complex records peak metamorphic conditions of 505 - 700 °C at two ranges of pressure 8 - 11 and 12.5 - 16.5 kbar. These pressures are higher than those of most other metamorphic complexes associated and exhumed by the Najd Fault system. The higher pressure conditions of the Hamadat complex relatively to other complexes in the shield can be interpreted in two different ways. The documented pressure can be due to lithostatic pressure or shear stress (i.e. in part non-lithostatic). Assuming the lithostatic condition, these pressure ranges indicate that the Hamadat complex consists rocks from two different crustal level (i.e. 28 - 38 km and 43 - 58 km) which shows the importance of the shear zone to reshape the lithosphere by bring rocks from different crustal level into one metamorphic complex.

  12. Thermodynamic modeling of phase relations and metasomatism in shear zones

    NASA Astrophysics Data System (ADS)

    Goncalves, P.; Oliot, E.; Marquer, D.

    2009-04-01

    Ductile shear zones have been recognized for a long time as privileged sites of intense fluid-rock interactions in the crust. In most cases they induce focused changes in mineralogy and bulk chemical composition (metasomatism) which in turn may control the deformation and fluid-migration processes. Therefore understanding these processes requires in a first step to be able to model phase relations in such open system. In this contribution, emphasizes in placed on metasomatic aspects of the problem. Indeed , in many ductile shear zones reported in metagranites, deformation and fluid-rock interactions are associated with gain in MgO and losses of CaO and Na2O (K2O is also a mobile component but it can be either gained or lost). Although the mineralogical consequences of this so-called Mg-metasomatism are well-documented (replacement of K-feldspar into phengite, breakdown of plagioclase into ab + ep, crystallization of chlorite), the origin of this coupled mass-transfer is still unknown. We have performed a forward modeling of phase relationships using petrogenetic grids and pseudosections that consider variations in chemical potential (μ) of the mobile elements (MgO, CaO, Na2O). Chemical potential gradients being the driving force of mass transfer, μ-μ diagrams are the most appropriate diagrams to model open systems where fluid-rock interactions are prominent. Chemical potential diagrams are equivalent to activity diagrams but our approach differs from previous work because (1) solid solutions are taken into account (2) phase relations are modeled in a more realistic chemical system (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O) and (3) the use of pseudosections allows to predict changes of the mineralogy (modes, composition) for the specific bulk composition studied. A particular attention is paid to the relationships between component concentrations and chemical potentials, which is not obvious in multi-component system. The studied shear zone is located in the Grimsel

  13. Alkali-Metasomatism and Phyllonite Development Along a Major Alpine Shear Zone: the East Tenda Shear Zone (alpine Corsica, France)

    NASA Astrophysics Data System (ADS)

    Maggi, Matteo; Rossetti, Federico; Theye, Thomas

    2010-05-01

    Here we present results of an integrated study which combines structural geology, petrology and geochemistry addressed to assess modes and regimes of fluid-rock interaction during shear fabric development along the East Tenda Shear Zone (ETSZ), Haute Corse, France. This shear zone marks the overthrusting of the oceanic-derived Schistes Lustrés nappe onto the Hercynian granitic basement of the western Corsica. The granitic protolith (Casta Granodiorite) consists of K-feldspar, plagioclase, quartz and minor hornblende, and accessory apatite and zircon. A progressive, ductile-to-brittle top-to-the-W/SW shearing affects the Casta granodiorite, evolving from blueschist-facies (S-L tectonites) to upper crustal (brittle thrust faults) conditions. Apart the variably retrogressed mafic blueschist boudins, within the ETSZ two main rock types were recognised: weakly-foliated gneisses (hereafter referred as massive bodies) and phengite-dominated mylonites (hereafter referred as phyllonites). Both rock types consist of a high-variance mineral assemblage made up of feldspar (albite and K-feldspar) + quartz + phengite. Accessory minerals include relict zircons, and syn-kinematic andradite, epidote, monazite, leucoxene and titanite. At a regional scale, phyllonites envelop the massive bodies that, commonly, form sigma-shaped shear lenses wrapped within the mylonitic foliation. Phyllonites consist of alternating, micro-crystalline quartz-feldspar-phengite-bearing layers and by different generation of variably deformed quartz and composite quartz-feldspar (albite and microcline) vein segregations (up to 30 cm in thickness). Late-stage, laminated sub-horizontal quartz-feldspar vein arrays also occur, suggesting their origin as thrust-related shear veins. Microtextures are indicative of pseudomorphic growth of phengite after relict igneous K-feldspar. Nevertheless, new growth of microcline is ubiquitous along the rims of porphyroclastic K-feldspar grains. EMPA of phengite

  14. How does shear zone nucleate? An example from the Suretta nappe (Swiss Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Goncalves, Philippe; Poilvet, Jean-Charles; Oliot, Emilien; Trap, Pierre; Marquer, Didier

    2016-05-01

    In order to address the question of the processes involved during shear zone nucleation, we present a petro-structural analysis of millimetre-scale shear zones within the Roffna rhyolite (Suretta nappe, Eastern central Alps). Field and microscopic evidences show that ductile deformation is localized along discrete fractures that represent the initial stage of shear zone nucleation. During incipient brittle deformation, a syn-kinematic metamorphic assemblage of white mica + biotite + epidote + quartz precipitated at ca. 8.5 ± 1 kbar and 480 ± 50 °C that represent the metamorphic peak conditions of the nappe stacking in the continental accretionary wedge during Tertiary Alpine subduction. The brittle to ductile transition is characterized by the formation of two types of small quartz grains. The Qtz-IIa type is produced by sub-grain rotation. The Qtz-IIb type has a distinct CPO such that the orientation of c-axis is perpendicular to the shear fracture and basal and rhombhoedric slip systems are activated. These Qtz-IIb grains can either be formed by recrystallization of Qtz-IIa or by precipitation from a fluid phase. The shear zone widening stage is characterized by a switch to diffusion creep and grain boundary sliding deformation mechanisms. During the progressive evolution from brittle nucleation to ductile widening of the shear zone, fluid-rock interactions play a critical role, through chemical mass-transfer, metasomatic reactions and switch in deformation mechanisms.

  15. Application of Flow Laws to the Rheology of Shear Zones

    NASA Astrophysics Data System (ADS)

    Hirth, Greg

    2015-04-01

    A limitation in the application of experimental flow laws is that lab data are often obtained from single phase aggregates, rather than rocks. Using a combination of microstructural observations, thermobarometry, metamorphic petrology and thermochronology (where possible), we have identified several scenarios where shear zone rheology appears to operate at conditions where the nominally stronger multi-phase rock deforms by diffusion creep and the single-phase regions of the same rocks deform by dislocation creep of the weak phase. Examples include mafic rocks from the oceanic crust (Mehl and Hirth, 2008), hydrated mafic rocks from lower continental crust (Getsinger et al., 2013) and ophiolites (Homburg et al., 2010), and peridotites from both oceanic transform (Warren and Hirth, 2006) and ophiolites (Skemer et al., 2010). In each case, the extrapolation of experimental data provide evidence that the texture of the poly-phase rock evolves such that the effective viscosity of poly-phase regions deforming by diffusion creep is comparable to that of the single-phase regions deforming by dislocation creep. As such, these scenarios suggest that in many situations using flow laws for single phase aggregates actually provides a reasonable approximation for shear zone rheology. In this presentation, I will provide examples of these scenarios, discuss mechanisms for the grain size evolution of the poly-phase rocks that facilitate the production of the "uniform viscosity layers" in shear zones, and the implications of these observations for the rheology of shear zones and the interpretation of post-seismic geodetic data.

  16. Fluids and shear zones in the deep crust

    NASA Astrophysics Data System (ADS)

    Newton, Robert C.

    1990-10-01

    The continental deep crust is normally nearly fluid-absent. During and after active tectonism (extension, thrusting or shearing), fluids may be abundant in the deep crust and may be associated with such diverse phenomena as granulite-facies metamorphism, shear zone alkaline granites, carbonatite-lamprophyre-syenite complexes, and various kinds of metasomatism, including region carbonatization, fenitization, granitization, and, probably, extreme large-ion lithophile element depletion. The fluids are H 2O-CO 2 mixtures with variable halogens, alkalis and dissolved silicate constituents. CO 2-rich fluids are inferred from dense carbonic inclusions in some deep-crustal granulites, both volcanic ejecta and uplifted deep-crustal terrains. CO 2-H 2O-dominated fluids must be fairly oxidizing, and may account for upward transport of Au, Sb, As and S from the lower crust and upper mantle, with enrichment of these elements at shallow levels. Crustal sources of abundant CO 2 are not likely, either from meteoric sources or from buried carbonates because of their refractory nature. The most plausible source is asthenospheric carbonatite, kimberlite, and alkali basalt liquids, and volatile-enriched lithosphere. Exsolution of fluids of varying CO 2/H 2O ratios is possible upon freezing of the magmas, depending on depth of magma generation, velocity of ascent and degree of volatile presaturation of the lithosphere. The enriched lithosphere in areas of deep-seated magmatism is an intermediate storage site for CO 2 and H 2O. Melts and fluids are liberated from the mantle under tensional conditions, which can include lithospheric strike-slip faulting (transtension) and even localized tension generated in convergence. The fluids can transport heat upward, which augments their ability to metasomatize and melt the lower crust. Melting of the crust can occur under high-CO 2 fluids at granulite facies conditions to produce syenitic magmas, and this could conceivably be accomplished by

  17. Small scale shear zone in calcite: AMS and microstructure

    NASA Astrophysics Data System (ADS)

    Roxerová, Zuzana; Machek, Matěj; Kusbach, Vladimír; Racek, Martin; Silva, Pedro F.

    2016-04-01

    Two structural profiles across thin shear zone in calcite from quarry in Estremoz (Portugal) were studied to find a relationship between AMS and strain in natural rocks. The mesoscopic fabric is characterized by the change from the subhorizontal coarse-grained foliation towards the ~2cm-wide shear zone center with subvertical fine-grained foliation. In microstructure, the shear zone records dynamic recrystallization of calcite aggregate which resulted in development of porphyroclastic microstructure with increasing proportion of fine-grained recrystallized matrix towards the shear zone center. Two distinct crystallographic preferred orientations of calcite were recorded. One related with porphyroclasts, characterized by subvertical orientation of calcite axes and another associated with recrystallized matrix showing subhorizontal calcite axes orientation. The magnetic susceptibility ranges from -8e-6SI to 9e-6SI, with the average -4e-6SI. The majority of the rock mass is diamagnetic, corresponding well with the thermomagnetic curves, with local paramagnetic accumulations in form of thin bands. The AMS of the both profiles exhibits stable subvertical foliation bearing vertical lineation which is locally alternated by the medium-angle foliation. We interpret the AMS fabric pattern which is perpendicular to the mineral one as a type of inverse AMS fabric, due to high iron content in major part of calcite grains The magnetic and microstructural description of the shear zone is accompanied by numerical modeling of AMS based on CPO and different proportion of porphyroclasts, matrix and mica for purposes of deciphering the influence of present microstructural features on AMS.

  18. The Pinto shear zone; a Laramide synconvergent extensional shear zone in the Mojave Desert region of the southwestern United States

    USGS Publications Warehouse

    Wells, M.L.; Beyene, M.A.; Spell, T.L.; Kula, J.L.; Miller, D.M.; Zanetti, K.A.

    2005-01-01

    The Pinto shear zone is one of several Late Cretaceous shear zones within the eastern fringe of the Mesozoic magmatic arc of the southwest Cordilleran orogen that developed synchronous with continued plate convergence and backarc shortening. We demonstrate an extensional origin for the shear zone by describing the shear-zone geometry and kinematics, hanging wall deformation style, progressive changes in deformation temperature, and differences in hanging wall and footwall thermal histories. Deformation is constrained between ???74 and 68 Ma by 40Ar/39Ar thermochronology of the exhumed footwall, including multi-diffusion domain modeling of K-feldspar. We discount the interpretations, applied in other areas of the Mojave Desert region, that widespread Late Cretaceous cooling results from refrigeration due to subduction of a shallowly dipping Laramide slab or to erosional denudation, and suggest alternatively that post-intrusion cooling and exhumation by extensional structures are recorded. Widespread crustal melting and magmatism followed by extension and cooling in the Late Cretaceous are most consistent with production of a low-viscosity lower crust during anatexis and/or delamination of mantle lithosphere at the onset of Laramide shallow subduction. ?? 2005 Elsevier Ltd. All rights reserved.

  19. Mid-crustal shear zone development under retrograde conditions: pressure-temperature-fluid constraints from the Kuckaus Mylonite Zone, Namibia

    NASA Astrophysics Data System (ADS)

    Diener, Johann F. A.; Fagereng, Åke; Thomas, Sukey A. J.

    2016-09-01

    The Kuckaus Mylonite Zone (KMZ) forms part of the larger Marshall Rocks-Pofadder shear zone system, a 550 km-long, crustal-scale strike-slip shear zone system that is localized in high-grade granitoid gneisses and migmatites of the Namaqua Metamorphic Complex. Shearing along the KMZ occurred ca. 40 Ma after peak granulite-facies metamorphism during a discrete tectonic event and affected the granulites that had remained at depth since peak metamorphism. Isolated lenses of metamafic rocks within the shear zone allow the P-T-fluid conditions under which shearing occurred to be quantified. These lenses consist of an unsheared core that preserves relict granulite-facies textures and is mantled by a schistose collar and mylonitic envelope that formed during shearing. All three metamafic textural varieties contain the same amphibolite-facies mineral assemblage, from which calculated pseudosections constrain the P-T conditions of deformation at 2.7-4.2 kbar and 450-480 °C, indicating that deformation occurred at mid-crustal depths through predominantly viscous flow. Calculated T-MH2O diagrams show that the mineral assemblages were fluid saturated and that lithologies within the KMZ must have been rehydrated from an external source and retrogressed during shearing. Given that the KMZ is localized in strongly dehydrated granulites, the fluid must have been derived from an external source, with fluid flow allowed by local dilation and increased permeability within the shear zone. The absence of pervasive hydrothermal fractures or precipitates indicates that, even though the KMZ was fluid bearing, the fluid/rock ratio and fluid pressure remained low. In addition, the fluid could not have contributed to shear zone initiation, as an existing zone of enhanced permeability is required for fluid infiltration. We propose that, following initiation, fluid infiltration caused a positive feedback that allowed weakening and continued strain localization. Therefore, the main

  20. Hydrolytic weakening and penetrative deformation within a natural shear zone

    NASA Astrophysics Data System (ADS)

    Kronenberg, Andreas K.; Segall, Paul; Wolf, George H.

    Processes of fluid infiltration, hydrolytic weakening, and penetrative deformation within a small ductile shear zone within granitic rocks of the central Sierra Nevada have been investigated using integrated field observations, strain analysis, infrared spectroscopy, and transmission electron microscopy. Several lines of evidence suggest that tensile fracturing accompanied by fluid infiltration preceded the ductile shearing event and that shear strains have localized on a pre-existing sealed fracture. Finite shear strains within an aplite dike and granodiorite host increase sharply from nominally O outside the shear zone to values of 10±2 near its center. Water contents of quartz grains exhibit similar spatial trends to that of strain, rising from 60 and 2000 ppm within the undeformed aplite and granodiorite, respectively, to 4000 and 11,000 ppm within their highly sheared equivalents. Infrared signatures of absorptions measured at room temperature and at 77 K show that most of the intragranular water within quartz and feldspar resides in fluid inclusions. Two distinct populations of fluid inclusions have been observed by optical and electron microscopy; one decorating healed microcracks and the second decorating dislocations. We interpret these relations to record interactions between fluids and processes of brittle failure and ductile flow. Fluid inclusions, forming planar arrays along the traces of healed microcracks, are relatively large (˜0.4-3 μm in diameter) and irregular in shape. A second set of fluid inclusions consists of extremely fine (20-140 nm in diameter), more nearly spherical inclusions which consistently lie along free dislocations and dislocation nodes, and exhibit relationships with dislocations similar to those observed in hydrolytically-weakened synthetic quartz. These observations suggest that water-related defects gained access to grain interiors and dislocation cores by fluid infiltration along open microcracks followed by pipe

  1. Development of shear zone-related lozenges in foliated rocks

    NASA Astrophysics Data System (ADS)

    Ponce, Carlos; Druguet, Elena; Carreras, Jordi

    2013-05-01

    Tectonic lozenges are elongate bodies bounded by relatively more deformed rocks. The focus of this study is on the 2-D structure of tectonic lozenges developed during ductile shear in rocks with a pre-existing mechanical anisotropy. On the basis of a detailed analysis of shear zones in foliated rocks from the Cap de Creus area (Variscan of the eastern Pyrenees), five mechanisms to explain the development of different types of lozenges in foliated rocks are suggested. These mechanisms are explained on the basis of the orientation of the previous foliation relative to the bulk shearing direction. It is shown that the prevailing mechanism does not majorly depend on the bulk kinematics but on the angular relationship between the pre-existing foliation and the bulk kinematic axes, and on shear zone interaction. This has implications on the use of lozenge shapes in tectonic interpretations. The fact that there is a wide range of initial orientations, propagation modes and coalescence types implies that the final lozenge geometry is not univocally related neither to the type of strain nor to the kinematic regime.

  2. Viscous shear heating instabilities in a 1-D viscoelastic shear zone

    NASA Astrophysics Data System (ADS)

    Homburg, J. M.; Coon, E. T.; Spiegelman, M.; Kelemen, P. B.; Hirth, G.

    2010-12-01

    Viscous shear instabilities may provide a possible mechanism for some intermediate depth earthquakes where high confining pressure makes it difficult to achieve frictional failure. While many studies have explored the feedback between temperature-dependent strain rate and strain-rate dependent shear heating (e.g. Braeck and Podladchikov, 2007), most have used thermal anomalies to initiate a shear instability or have imposed a low viscosity region in their model domain (John et al., 2009). By contrast, Kelemen and Hirth (2007) relied on an initial grain size contrast between a predetermined fine-grained shear zone and coarse grained host rock to initiate an instability. This choice is supported by observations of numerous fine grained ductile shear zones in shallow mantle massifs as well as the possibility that annealed fine grained fault gouge, formed at oceanic transforms, subduction related thrusts and ‘outer rise’ faults, could be carried below the brittle/ductile transition by subduction. Improving upon the work of Kelemen and Hirth (2007), we have developed a 1-D numerical model that describes the behavior of a Maxwell viscoelastic body with the rheology of dry olivine being driven at a constant velocity at its boundary. We include diffusion and dislocation creep, dislocation accommodated grain boundary sliding, and low-temperature plasticity (Peierls mechanism). Initial results suggest that including low-temperature plasticity inhibits the ability of the system to undergo an instability, similar to the results of Kameyama et al. (1999). This is due to increased deformation in the background allowing more shear heating to take place, and thus softening the system prior to reaching the peak stress. However if the applied strain rate is high enough (e.g. greater than 0.5 x 10-11 s-1 for a domain size of 2 km, an 8 m wide shear zone, a background grain size of 1 mm, a shear zone grain size of 150 μm, and an initial temperature of 650°C) dramatic

  3. Strain partitioning in the mid-crust of a transpressional shear zone system: Insights from the Homestake and Slide Lake shear zones, central Colorado

    NASA Astrophysics Data System (ADS)

    Lee, P. Elizabeth; Jessup, Micah J.; Shaw, Colin A.; Hicks, Gordon L.; Allen, Joseph L.

    2012-06-01

    Kinematic analysis and field mapping of the Homestake shear zone (HSZ) and Slide Lake shear zone (SLSZ) in central Colorado may provide insight into the interaction between subvertical and low-angle shear zones in the middle crust. The northeast-striking, steeply dipping HSZ comprises a ˜10-km-wide set of anastomosing ductile shear zones and pseudotachylyte-bearing faults. Approximately 4 km south of the HSZ, north-northeast-striking, shallowly dipping mylonites of the SLSZ form three 1-10-m-thick splays. Oblique stretching lineations and shear sense in both shear zones record components of dip-slip (top-up-to-the-northwest and top-down-to-the-southeast) and dextral strike-slip movement during mylonite development. Quartz and feldspar deformation mechanisms and quartz [c] axis lattice preferred orientation (LPO) patterns suggest deformation temperatures ranging from ˜280-500 °C in the HSZ to ˜280-600 °C in the SLSZ. Quartz [c] axis LPOs suggest plane strain general shear across the shear system. Based on the relative timing of fabric development, compatible kinematics and similar deformation temperatures in the SLSZ and the HSZ, we propose that both shear zones formed during strain localization and partitioning within a transpressional shear zone system that involved subvertical shuffling in the mid-crust at 1.4 Ga.

  4. Major shear zone and processes involved in exhumation and extension on S-Kythnos

    NASA Astrophysics Data System (ADS)

    Lenauer, I.; Laner, G.; Grasemann, B.; Iglseder, C.

    2009-04-01

    The Western Cycladic island of Kythnos lies in the Aegean Sea and is composed of metamorphic rocks of the Attic Cycladic Crystalline, where ongoing extensional tectonics has led to exhumation of high-grade metamorphic rocks. Extension and thus exhumation localized at major shear zones found throughout the Aegean Sea. While islands of the Northern and Eastern Cyclades show crustal-scale detachments along low-angle normal faults with N- to NE-directed shear sense, the Western Cyclades show S- to SW-directed sense of shear. On Kythnos, widespread SSW-directed shear sense can be observed in massive greenschist and marble layers. However, deformation is especially pronounced on a layer of extremely fine-grained ultramylonitic marble and a coexisting meter-scale cataclasite. The ultramylonite crops out on the southern tip of Kythnos island and dips southwestward at various angles. Due to extension-perpendicular shortening, the ~5 m massive ultramylonite horizon appears buckled and internally folded. Within the ultramylonite shear zone, significant grain size reduction can be observed. The extreme thinning and mylonitic foliation point to large displacement values involving high shear strain. The grain size reduction of the ultramylonitic marble and the partially rounded components in the cataclasite may have provided the means for reducing the apparent fault friction, allowing movement along planes at a lower angle than mechanically predicted. Additionally, fluid activity may have been an important factor involved in friction reduction. Isotope studies of the ultramylonitic marble and associated calcite veins show interactions between rock fractures creating fluid paths and the effect of fluids on fracturing mechanisms. Furthermore, as low- and high-angle faults were active contemporaneously, fluid flow channeling along the strong foliation und thus increase in permeability may have led to additional reduction of friction in the ultramylonitic layers. Further exhumation

  5. Kinematic, finite strain and vorticity analysis of the Sisters Shear Zone, Stewart Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Ring, Uwe; Bernet, Matthias; Tulloch, Andy

    2015-04-01

    The Sisters Shear Zone (SSZ) on Stewart Island, New Zealand, is a greenschist-facies extensional shear zone active prior to and possibly during the development of the Pacific-Antarctica spreading ridge at ∼76 Ma. We report quantitative kinematic and rotation data as well as apatite fission-track (AFT) ages from the SSZ. Early kinematic indicators associated with the NNE-trending stretching lineation formed under upper greenschist-facies metamorphism and show alternating top-to-the-NNW and top-to-the-SSE senses of shear. During progressive exhumation lowermost greenschist-facies and brittle-ductile kinematic indicators depict a more uniform top-to-the-SSE sense of shear in the topmost SSZ just below the detachment plane. Deformed metagranites in the SSZ allow the reconstruction of deformation and flow parameters. The mean kinematic vorticity number (Wm) ranges from 0.10 to 0.89; smaller numbers prevail in the deeper parts of the shear zone with a higher degree of simple shear deformation in the upper parts of the shear zone (deeper and upper parts relate to present geometry). High finite strain intensity correlates with low Wm and high Wm numbers near the detachment correlate with relatively weak strain intensity. Finite strain shows oblate geometries. Overall, our data indicate vertical and possibly temporal variations in deformation of the SSZ. Most AFT ages cluster around 85-75 Ma. We interpret the AFT ages to reflect the final stages of continental break-up just before and possibly during the initiation of sea-floor spreading between New Zealand and Antarctica.

  6. Late Neogene kinematics of intra-arc oblique shear zones: The Petilia-Rizzuto Fault Zone (Calabrian Arc, Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    van Dijk, J. P.

    1994-10-01

    The kinematics of intra-arc shear zones play a key role in the secondary shaping of orogenic arcs such as the Calabrian Arc (central Mediterranean). Comparison of the Neogene structural development of the Petilia-Rizzuto Fault Zone and the basement structure of the bordering Sila massif reveals that the fault zone is the surface expression of a deep NW-SE trending sinistral crustal oblique shear zone. This shear zone continues over a length of more than 130 km across the northern segment of the Calabrian Arc and shows a post-Eocene sinistral displacement of about 50 km. The late Neogene forearc basin development and syndepositional tectonics along the fault zone are reconstructed in great detail by analyzing the middle Miocene-Recent tectonic sequence stratigraphy. A strike-slip cycle can be recognized whereby the subsequent activity of Riedel shears, tensional faults, and P shears, positive flower structures and principle displacement wrench faults, can accurately be traced in time. Observed phenomena are discussed in terms of the activity of a conjugate system of oblique thrust zones within the growing accretionary complex. The evolution of special types of thrust belt basins is illustrated. These include oblique thin-skinned pull-apart basins, oblique rhomboidal "harmonica" basins, and "detached slab" basins (new terms introduced here), evolving one into the other. A new feature illustrated is the recurrent basin inversion which generated passive roof duplexes through back-shear motion and out-of-sequence thrusting along the wedge. The fault patterns and the style of inversion tectonics imply an E-W directed axis of effective compressive stress in this part of the arc. This resulted from an interaction of (1) local E-W directed compression related to a differential displacement of two parallel segments of the arc (generated by the migration to the southeast of the Calabrian Arc and opening of the Tyrrhenian backarc basin); (2) alternating NW-SE directed

  7. How does shear zone nucleate? An example from the Suretta nappe (Swiss Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Goncalves, Philippe; Poilvet, Jean-Charles; Oliot, Emilien; Trap, Pierre; Marquer, Didier

    2016-05-01

    In order to address the question of the processes involved during shear zone nucleation, we present a petro-structural analysis of millimetre-scale shear zones within the Roffna rhyolite (Suretta nappe, Eastern central Alps). Field and microscopic evidences show that ductile deformation is localized along discrete fractures that represent the initial stage of shear zone nucleation. During incipient brittle deformation, a syn-kinematic metamorphic assemblage of white mica + biotite + epidote + quartz precipitated at ca. 8.5 ± 1 kbar and 480 ± 50 °C that represent the metamorphic peak conditions of the nappe stacking in the continental accretionary wedge during Tertiary Alpine subduction. The brittle to ductile transition is characterized by the formation of two types of small quartz grains. The Qtz-IIa type is produced by sub-grain rotation. The Qtz-IIb type has a distinct CPO such that the orientation of c-axis is perpendicular to the shear fracture and basal and rhombhoedric slip systems are activated. These Qtz-IIb grains can either be formed by recrystallization of Qtz-IIa or by precipitation from a fluid phase. The shear zone widening stage is characterized by a switch to diffusion creep and grain boundary sliding deformation mechanisms. During the progressive evolution from brittle nucleation to ductile widening of the shear zone, fluid-rock interactions play a critical role, through chemical mass-transfer, metasomatic reactions and switch in deformation mechanisms.

  8. Broad belts of shear zones: The common form of surface rupture produced by the 28 June 1992 Landers, California, earthquake

    SciTech Connect

    Johnson, A.M.; Cruikshank, K.M. |; Fleming, R.W.

    1993-12-31

    Surface rupturing during the 28 June 1992, Landers, California earthquake, east of Los Angeles, accommodated right-lateral offsets up to about 6 m along segments of distinct, en echelon fault zones with a total length of about 80 km. The offsets were accommodated generally not by faults -- distinct slip surfaces -- but rather by shear zones, tabular bands of localized shearing. In long, straight stretches of fault zones at Landers the rupture is characterized by telescoping of shear zones and intensification of shearing: broad shear zones of mild shearing, containing narrow shear zones of more intense shearing, containing even-narrower shear zones of very intense shearing, which may contain a fault. Thus the ground ruptured across broad belts of shearing with subparallel walls, oriented NW. Each broad belt consists of a broad zone of mild shearing, extending across its entire width (50 to 200 m), and much narrower (a few m wide) shear zones that accommodate most of the offset of the belt and are portrayed by en echelon tension cracks. In response to right-lateral shearing, the slices of ground bounded by the tension cracks rotated in a clockwise sense, producing left lateral shearing, and the slices were forced against the walls of the shear zone, producing thrusting. Even narrower shear zones formed within the narrow shear zones, and some of these were faults. Although the narrower shear zones probably are indicators to right-lateral fault segments at depth, the surface rupturing during the earthquake is characterized not by faulting, but by zones of shearing at various scales. Furthermore, understanding of the formation of the shear zones may be critical to understanding of earthquake faulting because, where faulting is associated with the formation of a shear zone, the faulting occurs late in the development of the shear zone. The faulting occurs after a shear zone or a belt of shear zones forms.

  9. Contrasting metamorphism across cauvery shear zone, south India

    NASA Astrophysics Data System (ADS)

    John, Manish M.; Balakrishnan, S.; Bhadra, B. K.

    2005-04-01

    The Palghat Cauvery Shear Zone (CSZ) is a major shear zone that possibly extends into different fragments of Gondwanaland. In the present study mafic granulites occurring on either side of the CSZ in Namakkal area, southern India are examined. Textural features recorded in the mafic granulites are crucial in elucidating the metamorphic history of the southern granulite terrane (SGT). In the mafic granulites occurring to the south of CSZ, evidence of garnet breaking down during near isothermal decompression (ITD) is indicated by the development of orthopyroxene + plagioclase moats in between quartz and garnet. The presence of comparatively small elongated second generation garnet embedded in pyroxenes from the mafic granulites occurring to the north of CSZ is indicative of the garnet formation via reaction between pyroxenes and plagioclase, which occurred during isobaric cooling (IBC). Rocks occurring to the south of CSZ have recorded comparatively higher temperature and pressure (849‡C and 9.6kbar) than those occurring to the north of the CSZ (731‡C and 8.6kbar) using conventional geothermobarometry. The rocks occurring to the north of CSZ have suffered more complex metamorphic histories in comparison to the southern part. Integrating the results of the present field and metamorphic studies with the earlier investigations and available geochronological data we suggest that the CSZ could represent a suture zone between two different continental blocks that underwent distinct metamorphic evolution.

  10. Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses

    PubMed Central

    Pan, D.; Inoue, A.; Sakurai, T.; Chen, M. W.

    2008-01-01

    We report experimental characterization of shear transformation zones (STZs) for plastic flow of bulk metallic glasses (BMGs) based on a newly developed cooperative shearing model [Johnson WL, Samwer K (2005) A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys Rev Lett 95: 195501]. The good agreement between experimental measurements and theoretical predictions in the STZ volumes provides compelling evidence that the plastic flow of metallic glasses occurs through cooperative shearing of unstable STZs activated by shear stresses. Moreover, the ductility of BMGs was found to intrinsically correlate with their STZ volumes. The experiments presented herein pave a way to gain a quantitative insight into the atomic-scale mechanisms of BMG mechanical behavior. PMID:18815377

  11. The importance of strain localisation in shear zones

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Finch, Melanie; Gomez-Rivas, Enrique; Griera, Albert; Llorens, Maria-Gema; Steinbach, Florian; Weikusat, Ilka

    2016-04-01

    The occurrence of various types of shear bands (C, C', C'') in shear zones indicate that heterogeneity of strain is common in strongly deformed rocks. However, the importance of strain localisation is difficult to ascertain if suitable strain markers are lacking, which is usually the case. Numerical modelling with the finite-element method has so far not given much insight in the development of shear bands. We suggest that this is not only because the modelled strains are often not high enough, but also because this technique (that usually assumes isotropic material properties within elements) does not properly incorporate mineral deformation behaviour. We simulated high-strain, simple-shear deformation in single- and polyphase materials with a full-field theory (FFT) model coupled to the Elle modelling platform (www.elle.ws; Lebensohn 2001; Bons et al. 2008). The FFT-approach simulates visco-plastic deformation by dislocation glide, taking into account the different available slip systems and their critical resolved shear stresses in relations to the applied stresses. Griera et al. (2011; 2013) have shown that this approach is particularly well suited for strongly anisotropic minerals, such as mica and ice Ih (Llorens 2015). We modelled single- and polyphase composites of minerals with different anisotropies and strengths, roughly equivalent to minerals such as ice Ih, mica, quartz and feldspar. Single-phase polycrystalline aggregates show distinct heterogeneity of strain rate, especially in case of ice Ih, which is mechanically close to mica (see also Griera et al. 2015). Finite strain distributions are heterogeneous as well, but the patterns may differ from that of the strain rate distribution. Dynamic recrystallisation, however, usually masks any strain and strain rate localisation (Llorens 2015). In case of polyphase aggregates, equivalent to e.g. a granite, we observe extensive localisation in both syn- and antithetic shear bands. The antithetic shear bands

  12. Microstructural and Rheological Constraints on the Mantle Strength of Strike-Slip Fault Systems: Evidence from the Bogota Peninsula Shear Zone, New Caledonia

    NASA Astrophysics Data System (ADS)

    Chatzaras, V.; Titus, S.; Tikoff, B.; Drury, M. R.

    2014-12-01

    Crust-mantle coupling along major strike-slip fault zones suggests that these two lithospheric layers act as an integrated system. In such a system, the spatial and temporal evolution of mantle strength across strike-slip shear zones has proven a key component in understanding lithospheric deformation and rheology. The Bogota Peninsula shear zone is exposed in the mantle section of the New Caledonia ophiolite. It contains a unique microstructural and textural record across a 4-km wide mylonitic zone bordered by a wider zone of weaker deformation. The shear zone is interpreted as a paleotransform fault, based on the orientations of fabrics and dikes inside and outside the zone. No ultramylonites or pseudotachylites were observed within the shear zone. Olivine grain size paleopiezometers suggest variation of the shear zone stresses, with the highest values recorded in the center of the shear zone, coincident with increasing olivine CPO strength toward the shear zone center. By estimating the finite strain in the zone, and assuming that all portions of the shear zone were active synchronously, we can correlate the increased stresses to increased strain rates. We compare the mantle strength in the Bogota Peninsula shear zone to other transform faults, such as the San Andreas fault (SAF) system. The differential stresses in the upper mantle of the SAF system, determined from xenoliths, is similar to those observed in the New Caledonia. Further, the width of shearing deformation in Bogota Peninsula shear zone is similar to that inferred for other transform zones, in both the upper crust and lithospheric mantle. These similarities suggest that viscous flow in the lithospheric mantle is in mechanical communication to brittle deformation in the upper crust. We propose a "Lithospheric Feedback" model, in which displacement due to mantle flow loads the crust during interseismic cycles, while the upper crust effectively limits the strength of the lithosphere.

  13. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Possible Mechanism for Intermediate Depth Earthquakes and Slow Earthquakes?

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Hirth, G.

    2004-12-01

    Localized ductile shear zones with widths of cm to m are observed in exposures of Earth's shallow mantle (e.g., Kelemen & Dick JGR 95; Vissers et al. Tectonophys 95) and dredged from oceanic fracture zones (e.g., Jaroslow et al. Tectonophys 96). These are mylonitic (grain size 10 to 100 microns) and record mineral cooling temperatures from 1100 to 600 C. Pseudotachylites in a mantle shear zone show that shear heating temperatures can exceed the mantle solidus (e.g., Obata & Karato Tectonophys 95). Simple shear, recrystallization, and grain boundary sliding all decrease the spacing between pyroxenes, so olivine grain growth at lower stress is inhibited; thus, once formed, these shear zones do not "heal" on geological time scales. Reasoning that grain-size sensitive creep will be localized within these shear zones, rather than host rocks (grain size 1 to 10 mm), and inspired by the work of Whitehead & Gans (GJRAS 74), we thought these might undergo repeated shear heating instabilities. In this view, as elastic stress increases, the shear zone weakens via shear heating; rapid deformation of the weak shear zone releases most stored elastic stress; lower stress and strain rate coupled with diffusion of heat into host rocks leads to cooling and strengthening, after which the cycle repeats. We constructed a simple numerical model incorporating olivine flow laws for dislocation creep, diffusion creep, grain boundary sliding, and low T plasticity. We assumed that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. We fixed the velocity along one side of an elastic half space, and calculated stress due to elastic strain. This stress drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control temperature evolution in the shear zone and host rocks. A maximum of 1400 C (where substantial melting of peridotite would occur) is imposed. Grain size evolves during dislocation

  14. Subduction interface processes recorded by eclogite-facies shear zones (Monviso, W. Alps)

    NASA Astrophysics Data System (ADS)

    Angiboust, S.; Agard, P.; Raimbourg, H.; Yamato, P.; Huet, B.

    2011-11-01

    The Monviso ophiolite Lago Superiore Unit constitutes a well-preserved, almost continuous upper fragment of oceanic lithosphere subducted at c. 80 km depth, thereby providing a unique opportunity to study mechanical coupling processes and meter-scale fluid-rock interactions occurring at such depths in present-day subduction zones. It is made of (i) a variably thick (50-500 m) section of eclogitized basaltic crust (associated with minor calcschist lenses) overlying a 100-400 m thick metagabbroic body and of (ii) a c. 1 km thick serpentinite sole. We herein focus on the three major eclogite-facies shear zones found at the top of the unit, at the boundary between basalts and gabbros, and between gabbros and serpentinites, respectively. Strain localization occurred at lithological interfaces, irrespective of material strength. While ductile deformation dominates along the shear zones, local brittle behavior is demonstrated by the existence of numerous eclogite breccias of Fe-Ti metagabbros and widespread garnet fractures, possibly linked with intermediate-depth eclogite-facies (micro)seismicity. These m- to hm-sized fragments of Fe-Ti metagabbros were later sheared and disseminated within serpentinite schists along the gabbro-serpentinite boundary (Lower Shear zone; LSZ). Pervasive and focused fluid flow is attested in the LSZ by significant alteration of bulk rock compositions, weakening of the rocks and widespread crystallization of hydrous parageneses. By contrast, the Intermediate Shear zone (ISZ) shows evidence for more restricted, short-range fluid flow. The activity of both the ISZ and LSZ ceased during early lawsonite eclogite-facies exhumation, when deformation localized deeper within the serpentinite sole, allowing for the detachment (and preservation) of this large ophiolitic fragment.

  15. Multi-scale analysis of Proterozoic shear zones: An integrated structural and geophysical study

    NASA Astrophysics Data System (ADS)

    Stewart, John R.; Betts, Peter G.; Collins, Alan S.; Schaefer, Bruce F.

    2009-11-01

    Structural mapping of poorly exposed shear zone outcrops is integrated with the analysis of aeromagnetic and Bouguer gravity data to develop a multi-scale kinematic and relative overprinting chronology for the Palaeoproterozoic Tallacootra Shear Zone, Australia. D 2 mylonitic fabrics at outcrop record Kimban-aged (ca. 1730-1690 Ma) N-S shortening and correlate with SZ 1 movements. Overprinting D 3 sinistral shear zones record the partitioning of near-ideal simple shear and initiated Riedel to regional-scale SZ 2 strike-slip on the Tallacootra Shear Zone (SZ 2). Previously undocumented NE-SW extension led to the emplacement of aplite dykes into the shear zone and can be correlated to the (ca. 1595-1575 Ma) Hiltaba magmatic event. D 4 dextral transpression during the (ca. 1470-1450 Ma) Coorabie Orogeny reactivated the Tallacootra Shear Zone (SZ 2-R4) exhuming lower crust of the northwestern Fowler Domain within a positive flower structure. This latest shear zone movement is related to a system of west-dipping shear zones that penetrate the crust and sole into a lithospheric detachment indicating wholesale crustal shortening. These methods demonstrate the value of integrating multi-scale structural analyses for the study of shear zones with limited exposure.

  16. Deriving strain from crystallographic preferred orientation for a ductile shear zone in north western Turkey.

    NASA Astrophysics Data System (ADS)

    Farrell, K.; Lloyd, G. E. E.; Wallis, D.; Phillips, R. J.

    2015-12-01

    Understanding the behaviour of active continental-scale fault zones at depth, and in particular how displacements observed at the Earth's surface are accommodated through the crust, is crucial to improving understanding of the earthquake cycle. This behaviour can be inferred by study of exhumed portions of ductile shear zones using methods such as recording strain profile(s) across the fault zone. However, due to the nature of mid-crustal rocks, strain markers tend to be rare and/or discontinuously distributed. The intensity (I) of crystallographic preferred orientation (CPO) of deformed minerals provides a proxy for strain that is continuous across fault zones. CPO are collected via electron back scattered diffraction in the scanning electron microscope. The strength of the CPO can be quantified using eigenvalue-based intensity parameters. Calibration of intensity with strain is achieved via comparison with visco-plastic self-consistency models of CPO evolution, although the temperature-dependent critical resolved shear stresses of potential crystal slip systems must be known. As an example, we consider the dextral strike-slip Eskişehir shear zone, NW Turkey, which was active during the Oligocene and accommodated ~100km of displacement, including a component of late oblique-normal slip. An exhumed mid-crustal section of this fault zone is exposed in the Uludağ Massif, comprising of high-grade metamorphic rocks of the Uludağ Group, intruded by the Central and South Uludağ granites. Sample transects focussed on the pure calcic marbles that dominate the stratigraphy. Fortunately, the availability of experimental data for calcite crystal slip behaviour at different temperatures makes the application of the CPO intensity strain proxy method relatively straightforward. The Uludağ Massif and Eskişehir shear zone provide a field based analogue for the ductile shear zone beneath the currently active North Anatolian Fault. The results of our CPO intensity-based strain

  17. The Markoye Shear Zone in NE Burkina Faso

    NASA Astrophysics Data System (ADS)

    Tshibubudze, Asinne; Hein, Kim A. A.; Marquis, Pascal

    2009-12-01

    Birimian supracrustal sequences in NE Burkina Faso are dominated by meta-volcaniclastic greywacke, intercalated meta-conglomerate, siltstone and shale. The sequences where subjected to two phases of deformation and contact metamorphosed to hornblende-hornfels facies during emplacement of pyroxenite-gabbro-norite (Yacouba Mafic complex), granodiorite-tonalite (Tin Taradat granodiorite-tonalite) and dolerite dykes. Structural studies indicated that the NE-trending, first-order crustal-scale Markoye Shear Zone (MSZ; Markoye Fault of [Jeambrun, M., Delfour, J., Gravost, M., 1970. Carte géologique de L'Oudalan. Bureau De Recherches Geologiques et Miniéres, Burkina Faso.]) has undergone at least two phases of reactivation concomitant to two phases of regional deformation. The first phase of deformation, D1, resulted in the formation of NNW-NW trending folds and thrusts during dextral-reverse displacement on the MSZ. The deformation is termed the Tangaean Event and predates the Eburnean Orogeny. D2 phase involved a period of SE-NW crustal shortening and sinistral-reverse displacement on the MSZ, and is correlated to the Eburnean Orogeny ˜2.1 Ga. Deformation in D2 is characterised by NE-trending regional folds (F2) and a pervasive NE-trending foliation (S2-C to S2). Within the MSZ, deformation is characterised by NNE-trending zones of mylonite that are bordered in the hangingwall and footwall by pseudotachylite veins. Buck quartz-carbonate veins and quartz cataclasite veins crosscut the mylonite zones and are, in turn, crosscut by quartz-chlorite-(muscovite) shears that formed during reactivation of the MSZ late in D2. Several generations of veins are recognised at the Essakane main deposit (EMZ): Arsenopyrite-pyrite-gold mineralization in quartz veins formed in D1 during metasomatic alteration of the host rocks; Vein-stockwork gold mineralization is interpreted to have formed late in D2.

  18. Fluid-Controlled Metamorphism of Eclogitic Pseudotachylite-Bearing Shear Zones, FLAKSTADØY, Northern Norway

    NASA Astrophysics Data System (ADS)

    Leech, M.; Shulman, D. J.

    2012-12-01

    Eclogite-facies shear zones occur surrounding pseudotachylite veins and fractures in granulite-facies basement on Flakstadøy (Lofoten Islands, Norway). Omphacite and albite-diopside symplectite identified in the shear zones demonstrates shear zones formed at eclogite-facies conditions, estimated at 690-750°C and 1.3-1.5 GPa from garnet-omphacite pairs and the jadeite component of clinopyroxene. The brittle deformation accompanying pseudotachylite formation opened fluid pathways that overcame kinetic barriers for metamorphism in metastable lower crustal rocks. The advection of fluids likely facilitated deformation and localized strain within the shear zones: A strong alignment of amphibole <001> parallel to the shear zone and pseudotachylite fabric demonstrates fluid availability during shearing, and that hydrous phases grew during fluid-driven eclogitization. Hydration reactions in the shear zones consumed available fluid leaving the lower crust dry and preventing retrogression. The preservation of pseudotachylite textures and omphacite in shear zones show that shearing was not reactivated during exhumation and that retrogression was minimal. The eclogitized shear zones on Flakstadøy demonstrate that lower crustal rocks can remain metastable if they lack an influx of fluids to drive metamorphism and deformation, potentially controlling large-scale orogenic processes.

  19. Pseudotachylytes of the Deep Crust: Examples from a Granulite-Facies Shear Zone

    NASA Astrophysics Data System (ADS)

    Orlandini, O.; Mahan, K. H.; Regan, S.; Williams, M. L.; Leite, A.

    2013-12-01

    The Athabasca Granulite Terrane is an exhumed section of deep continental crust exposed in the western Canadian shield. The terrane hosts the 1.88 Ga Cora Lake shear zone, a 3-5 km wide sinistral and extensional oblique-slip system that was active at high-pressure granulite-grade conditions ( ~1.0 GPa, >800°C to ~0.8 GPa and 700 °C). Pseudotachylyte, a glassy vein-filling substance that results from frictional melting during seismic slip, is common in ultramylonitic strands of the shear zone, where veins run for tens of meters subparallel to foliation. Some but not all PST veins have been overprinted with the Cora Lake shear zone foliation, and undeformed PST locally bears microlitic garnet. The frictional melts that quench into PST may reach >1400 °C, but are extremely localized and cool to country rock temperatures within minutes, resulting in glass and/or microlitic mineral growths. The melt itself is thought by many to be in disequilibrium with the host rock due to its rapid nature, but during cooling equilibrium is probably reached at small scales. This allows for microprobe analysis of adjacent microlites for thermobarometric calculations. Preliminary results from undeformed (e.g., youngest of multiple generations) PST suggest that quenching occurred in upper amphibolite facies ambient conditions and is compatible with later stages of Cora Lake shear zone activity. Host-rock mylonites contain abundant garnet and pyroxene sigma clasts indicating sinistral shear, and where PST-bearing slip surfaces are found at low angles to the foliation, they display sinistral offset. The host rock contains abundant macroscopic and microscopic sinistral shear fracture systems (e.g., Riedel [R], Y, and P displacement surfaces) within the immediate proximity of PST veins, indicating a complex interplay of brittle and ductile behavior that is interpreted to be genetically related to the formation of the PST. The shear fracture systems are characterized by sharply bounded

  20. K-Ar constraints on fluid-rock interaction and dissolution-precipitation events within the actively creeping shear zones from SAFOD cores

    NASA Astrophysics Data System (ADS)

    Ali, S.; Hemming, S. R.; Torgersen, T.; Fleisher, M. Q.; Cox, S. E.; Stute, M.

    2009-12-01

    The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes responsible for faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD drill cores show multiple zones of alteration and deformation due to fluid-rock interaction in the fault rocks(Schleicher et al. 2008). In context of fluid studies in the SAFZ, noble gas and potassium measurements were performed on solid samples of sedimentary rocks obtained from drill cores across the fault (3050-4000m-MD). We used a combination of 40Ar/39Ar and K-Ar methods on crushed samples of mudrock with variable amounts of visible slickensides to constrain the degree of resetting of the K-Ar system across the San Andreas Fault zone. 40Ar/39Ar was analyzed from small fragments (sand sized grains) while K-Ar was measured in crushed bulk rock samples (100-250 mg for Ar, and 5-10 mg for K analyses). The apparent 40Ar/39Ar ages based on single step laser fusion of small fragments corresponding to the detrital component in the coarse fraction, show varying ages ranging from the provenance age to <13Ma. Although more data are needed to make detailed comparisons, the apparent K-Ar ages of bulk samples in the fault zone are biased toward authigenic materials contained in the fine fraction, similar to the 40Ar/39Ar ages reported for mineralogical separates from very fine size fractions of samples obtained from 3065.98m-MD and 3294.89m-MD (Schleicher et al., submitted to Geology). The small samples measured for 40Ar/39Ar show scatter in the apparent ages, generally bracketing the bulk ages. However they are picked from sieved portions of the samples, and it is likely that there may be a loss of the younger (finer) material. Detrital provenance ages appear to be 50-60Ma in the Pacific Plate, and 100Ma in the North American Plate. 40Ar/39Ar ages within the SAFZ, as defined by geophysical logs (3200-3400m MD), are dominated by apparent detrital ages of ˜100Ma

  1. Variscan granitoids related to shear zones and faults: examples from the Central Sudetes (Bohemian Massif) and the Middle Odra Fault Zone

    NASA Astrophysics Data System (ADS)

    Oberc-Dziedzic, T.; Kryza, R.; Pin, C.

    2015-07-01

    The granitoid intrusions of the Central Sudetes (CS) and of the Middle Odra Fault Zone (MOFZ), NE part of the Bohemian Massif, are both spatially and temporally related to large-scale shear zones and faults (including possible terrane boundaries) that provided effective channels for melt migration. Summarizing common features of the CS and MOFZ granitoids, we have delineated a set of characteristics of the fault-related and shear zone-related granitoids: (1) they are mainly generated by partial melting of crustal sources, with variable contribution (or no contribution) of mantle materials; (2) the sheet-like, steeply inclined, narrow and rather small granitoid intrusions are emplaced within shear zones at mid-crustal level (c. 20 km depth), whereas the larger, flat-lying plutons intrude into the upper crust, outside or above these shear zones; (3) the magmatic foliation and lineation in granitoids of the deeper, sheet-like intrusions are concordant with those in the surrounding metamorphic rocks, suggesting that the solidification of granitoids was coeval with the deformation in the shear zones; instead, the magmatic foliation in the shallower and larger dome-like plutons reflects magma flow; (4) ductile, transcurrent movements along the shear zones postdate medium-pressure regional metamorphism and are accompanied by an increase in the local thermal gradient, as documented by the crystallization of cordierite, andalusite and sillimanite; (5) the increase in the thermal gradient precedes the emplacement of granitoids and their concomitant thermal influence on the country rocks. The granitoids related to the final stages of tectonothermal activity of the shear zones are good-time markers of their evolutionary path.

  2. Granular Shear Zone Formation: Acoustic Emission Measurements and Fiber-bundle Models

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Or, Dani

    2013-04-01

    We couple the acoustic emissions method with conceptual models of granular material behavior for investigation of granular shear zone formation and to assess eminence of landslide hazard. When granular materials are mechanically loaded or sheared, they tend to produce discrete events of force network restructuring, and frictional interaction at grain contacts. Such abrupt perturbations within the granular lattice release part of the elastic energy stored in the strained material. Elastic waves generated by such events can be measured as acoustic emissions (AE) and may be used as surrogates for intermittent structural transitions associated with shear zone formation. To experimentally investigate the connection between granular shearing and acoustic signals we performed an array of strain-controlled shear-frame tests using glass beads. AE were measured with two different systems operating at two frequency ranges. High temporal resolution measurements of the shear stresses revealed the presence of small fluctuations typically associated with low-frequency (< 20 kHz) acoustic bursts. Shear stress jumps and linked acoustic signals give account of discrete events of grain network rearrangements and obey characteristic exponential frequency-size distributions. We found that statistical features of force jumps and AE events depend on mechanical boundary conditions and evolve during the straining process. Activity characteristics of high-frequency (> 30 kHz) AE events is linked to friction between grains. To interpret failure associated AE signals, we adapted a conceptual fiber-bundle model (FBM) that describes some of the salient statistical features of failure and associated energy production. Using FBMs for the abrupt mechanical response of the granular medium and an associated grain and force chain AE generation model provides us with a full description of the mechanical-acoustical granular shearing process. Highly resolved AE may serve as a diagnostic tool not only

  3. Spatiotemporal evolution of a fault shear stress patch due to viscoelastic interseismic fault zone rheology

    NASA Astrophysics Data System (ADS)

    Sone, Hiroki; Uchide, Takahiko

    2016-08-01

    We conducted numerical studies to explore how shear stress anomalies on fault planes (shear stress patches) evolve spatiotemporally during the interseismic period under the influence of viscoelastic rheology assigned to fault zones of finite thickness. 2-D viscoelastic models consisting of a fault zone and host rock were sheared to simulate shear stress accumulation along fault zones due to tectonic loading. No fault slip along a distinct fault planes is implied in the model, thus all fault shear motion is accommodated by distributed deformation in the viscoelastic fault zone. Results show that magnitudes of shear stress patches evolve not only temporally, but also spatially, especially when the stress anomaly is created by a geometrical irregularity (asperity) along the interface of an elastic host rock and viscoelastic fault zone. Such shear stress anomalies diffuse spatially so that the spatial dimension of the shear stress patch appears to grow over time. Models with varying fault zone viscoelastic properties and varying fault zone viscosity both show that such spatial diffusion of shear stress is enhanced by increasing the contribution of the viscous behavior. The absolute rate at which shear stress patches grow spatially is generally not influenced by the size of the shear stress patch. Therefore shear stress patches with smaller dimensions will appear to grow quicker, in the relative sense, compared to larger stress patches. These results suggest that the minimum dimensions of shear stress patches that can exist along a fault could be governed by the effective viscosity of the fault zone. Therefore patterns of accumulated shear stress could vary along faults when viscous properties are heterogeneous, for instance due to depth or material heterogeneity, which has implications on how earthquake rupture behavior could vary along faults.

  4. Ductile shear zones beneath strike-slip faults: Implications for the thermomechanics of the San Andreas fault zone

    USGS Publications Warehouse

    Thatcher, W.; England, P.C.

    1998-01-01

    We have carried out two-dimensional (2-D) numerical experiments on the bulk flow of a layer of fluid that is driven in a strike-slip sense by constant velocities applied at its boundaries. The fluid has the (linearized) conventional rheology assumed to apply to lower crust/upper mantle rocks. The temperature dependence of the effective viscosity of the fluid and the shear heating that accompanies deformation have been incorporated into the calculations, as has thermal conduction in an overlying crustal layer. Two end-member boundary conditions have been considered, corresponding to a strong upper crust driving a weaker ductile substrate and a strong ductile layer driving a passive, weak crust. In many cases of practical interest, shear heating is concentrated close to the axial plane of the shear zone for either boundary condition. For these cases, the resulting steady state temperature field is well approximated by a cylindrical heat source embedded in a conductive half-space at a depth corresponding to the top of the fluid layer. This approximation, along with the application of a theoretical result for one-dimensional shear zones, permits us to obtain simple analytical approximations to the thermal effects of 2-D ductile shear zones for a range of assumed rheologies and crustal geotherms, making complex numerical calculations unnecessary. Results are compared with observable effects on heat flux near the San Andreas fault using constraints on the slip distribution across the entire fault system. Ductile shearing in the lower crust or upper mantle can explain the observed increase in surface heat flux southeast of the Mendocino triple junction and match the amplitude of the regional heat flux anomaly in the California Coast Ranges. Because ductile dissipation depends only weakly on slip rate, faults moving only a few millimeters per year can be important heat sources, and the superposition of effects of localized ductile shearing on both currently active and now

  5. Areas of Active Tectonic Uplift Are Sensitive to Small Changes in Fold Orientations within a Broad Zone of Left-lateral Transpression and Shearing, Dominican Republic and Haiti (Hispaniola)

    NASA Astrophysics Data System (ADS)

    Ambrosius, I.; Mann, P.

    2014-12-01

    Previous GPS studies have shown that the island of Hispaniola is a 250 km-wide zone of active, east-west, left-lateral shearing along two major strike-slip zones: the Septentrional-Oriente fault zone through the northern part of the island and the Enriquillo-Plantain Garden fault zone (EPGFZ) through the southern part of the island. The total interplate rate distributed on both faults is 21 mm/yr. Using a high-resolution DEM, we constructed fluvial channel profiles across transpression-related folds of late Miocene to recent age in the area of central and southern Dominican Republic and Haiti to determine controls of areas of relatively high, moderate, and slow uplift inferred from fluvial channel profiles. Fold axes in this area extend for 50-150 km and exhibit two different trends: 1) folds that occupy the area of the Sierra de Neiba-Chaine des Matheux north of the Enriquillo-Cul-de-Sac Valley and EPGFZ and folds that occupy the area of the Sierra de Bahoruco-Massif de la Selle all exhibit more east-west fold axes trending 110; 2) folds that occupy the area northwest of the EPGFZ in the western Chaine des Matheux and Sierra de Neiba all exhibit fold axes with more northwest trends of 125. River channel profiles show that the second group of more northwesterly-trending fold axes show relatively higher rates of tectonic uplift based on their convex-upward river profiles. Our interpretation for regional variations in river profiles and inferred uplift is that uplift is more pronounced on fold axes trending 15 degrees more to the northwest because their axes are more oblique to the interplate direction of east-west shearing. Longterm uplift rates previously measured from a stairstep of late Quaternary coral terraces at the plunging nose of the westernmost Chaine des Matheux have been previously shown to be occurring at a rate of 0.19 mm/yr. Onland exposures of Holocene corals are found only on one locality within the southern area of folds 30 km west of the epicenter

  6. The San-in shear zone in southwest Japan revealed by the GEONET data

    NASA Astrophysics Data System (ADS)

    Nishimura, T.; Takada, Y.

    2015-12-01

    The most remarkable lineament of microseismicity in the Japanese Islands exists along the northern coastline in the San-in region that is a northern half of the westernmost part of Honshu in southwest Japan. Several M~7 earthquakes including the 1943 Tottori, and the 2000 Western Tottori earthquakes occurred along the lineament. However, no well-developed active fault has been identified in and around the lineament. Though several previous studies proposed a large dextral shear zone corresponding to seismicity lineament in the San-in region, none of them dealt with geodetic data. In this study, we report that a high strain rate is concentrated along the seismicity lineament from cGNSS observations. We propose to call this deformed zone "the San-in shear zone". The GNSS data used in this study are from the GEONET data operated by the Geospatial Information Authority of Japan. We estimate interseismic velocities by fitting a linear function to daily GNSS coordinates estimated with both Bernese and GIPSY software. We recognize the following characteristics in the velocity distribution in the San-in region and its vicinity (Fig. 1). First, a northern limit of the observed northwestward velocity due to interplate coupling on the subducting Philippine Sea plate locates in and around the Seto Inland Sea. Second, the inland San-in region does not significantly deform though the northern coast of the San-in regions moves eastward with a velocity of 4 mm/yr relative to the inland region. The observed right-lateral shear deformation is generally localized along the lineament of seismicity and continues more than 200 km long along the coast of the Japan Sea. Velocity profile across the shear zone is roughly reproduced by a 2-dimensional dislocation model for a vertical strike-slip fault with a locking depth of 5~15 km. The San-in shear zone can be interpreted as strain portioning to accommodate strike slip component of oblique subduction along the Nankai Trough. The Median

  7. Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone.

    PubMed

    Calvert, Andrew J

    2004-03-11

    At convergent continental margins, the relative motion between the subducting oceanic plate and the overriding continent is usually accommodated by movement along a single, thin interface known as a megathrust. Great thrust earthquakes occur on the shallow part of this interface where the two plates are locked together. Earthquakes of lower magnitude occur within the underlying oceanic plate, and have been linked to geochemical dehydration reactions caused by the plate's descent. Here I present deep seismic reflection data from the northern Cascadia subduction zone that show that the inter-plate boundary is up to 16 km thick and comprises two megathrust shear zones that bound a >5-km-thick, approximately 110-km-wide region of imbricated crustal rocks. Earthquakes within the subducting plate occur predominantly in two geographic bands where the dip of the plate is inferred to increase as it is forced around the edges of the imbricated inter-plate boundary zone. This implies that seismicity in the subducting slab is controlled primarily by deformation in the upper part of the plate. Slip on the shallower megathrust shear zone, which may occur by aseismic slow slip, will transport crustal rocks into the upper mantle above the subducting oceanic plate and may, in part, provide an explanation for the unusually low seismic wave speeds that are observed there.

  8. Microstructures, deformation mechanisms and seismic properties of a Palaeoproterozoic shear zone: The Mertz shear zone, East-Antarctica

    NASA Astrophysics Data System (ADS)

    Lamarque, Gaëlle; Bascou, Jérôme; Maurice, Claire; Cottin, Jean-Yves; Riel, Nicolas; Ménot, René-Pierre

    2016-06-01

    The Mertz shear zone (MSZ) is a lithospheric scale structure that recorded mid-crustal deformation during the 1.7 Ga orogeny. We performed a microstructural and crystallographic preferred orientation (CPO) study of samples from both mylonites and tectonic boudins that constitute relics of the Terre Adélie Craton (TAC). The deformation is highly accommodated in the MSZ by anastomosed shear bands, which become more scattered elsewhere in the TAC. Most of the MSZ amphibolite-facies mylonites display similar CPO, thermal conditions, intensity of deformation and dominant shear strain. Preserved granulite-facies boudins show both coaxial and non-coaxial strains related to the previous 2.45 Ga event. This former deformation is more penetrative and less localized and shows a deformation gradient, later affected by a major phase of recrystallization during retrogression at 2.42 Ga. Both MSZ samples and granulite-facies tectonic boudins present microstructures that reflect a variety of deformation mechanisms associated with the rock creep that induce contrasted CPO of minerals (quartz, feldspar, biotite, amphibole and orthopyroxene). In particular, we highlight the development of an "uncommon" CPO in orthopyroxene from weakly deformed samples characterized by (010)-planes oriented parallel to the foliation plane, [001]-axes parallel to the stretching lineation and clustering of [100]-axes near the Y structural direction. Lastly, we computed the seismic properties of the amphibolite and granulite facies rocks in the MSZ area in order to evaluate the contribution of the deformed intermediate and lower continental crust to the seismic anisotropy recorded above the MSZ. Our results reveal that (i) the low content of amphibole and biotite in the rock formations of the TAC, and (ii) the interactions between the CPO of the different mineralogical phases, generate a seismically isotropic crust. Thus, the seismic anisotropy recorded by the seismic stations of the TAC, including the

  9. In situ observation of shear zone microstructures and strain localization using a transparent rotary shear apparatus

    NASA Astrophysics Data System (ADS)

    Korkolis, Evangelos

    An important focus of Geophysics is why geologic faults experience multiple styles of failure, ranging from stable aseismic creep to unstable seismic slip. Previous studies suggest that microstructures within fault gouge, a granular layer of wear material, have a significant effect on macroscopic fault behavior. This thesis investigates the effects of particle angularity, particle size distribution, total displacement, slip rate, and fault wall roughness on microstructures and grain kinematics in simulated gouge assemblages using a transparent rotary shear apparatus. Gouge strength increases with particle angularity, as evidenced by rotation of force chains near the sliding interface. Variations in slip rate and fault wall roughness appear to have no effect on the macroscopic behavior of gouge. After some widening at low displacement, the width of the deforming zone is observed to scale with average particle size, eventually becoming wider for spherical particles, independent of the tested particle size distributions.

  10. The Sefwi-Comoé belt Ghana/Ivory Coast : a major crustal shear zone ?

    NASA Astrophysics Data System (ADS)

    Jessell, Mark

    2010-05-01

    The Palaeoproterozoic Sefwi-Comoé region that straddles Ghana and the Ivory Coast in West Africa has been characterised as resulting from a combination of compression and simple shear during late synkinematic leucogranite intrusion. The analysis of regional geophysical datasets allows us to better define the geometry of the major lithostratigraphic packages and their structural contacts in this region. This analysis reveals a series of well defined leucogranites intrusions enveloped by high strain zones. Recent finite element modelling of two-phase aggregates has shown that we can analyse the geometry of these systems both in terms of their finite defomation and their mechanical contrast. We interpret the geometries we see in the Sefwi-Comoé region as reflecting the activity of a major crustal deformation zone which was dominated by simple shear. The comparison with the modelling suggests a finite shear strain of approximately 5 gamma, which in turn implies a lateral displacement of 400 km across the belt. Our analysis suggests that the leucogranites were already acting as more rigid bodies during the (dextral?) shearing, suggesting that their emplacement was predominantly pre-kinematic, and which has implications for their potential subsequent remobilization by gravitational forces.

  11. Multiscale model for predicting shear zone structure and permeability in deforming rock

    NASA Astrophysics Data System (ADS)

    Cleary, Paul W.; Pereira, Gerald G.; Lemiale, Vincent; Piane, Claudio Delle; Clennell, M. Ben

    2016-04-01

    A novel multiscale model is proposed for the evolution of faults in rocks, which predicts their internal properties and permeability as strain increases. The macroscale model, based on smoothed particle hydrodynamics (SPH), predicts system scale deformation by a pressure-dependent elastoplastic representation of the rock and shear zone. Being a continuum method, SPH contains no intrinsic information on the grain scale structure or behaviour of the shear zone, so a series of discrete element method microscale shear cell models are embedded into the macroscale model at specific locations. In the example used here, the overall geometry and kinematics of a direct shear test on a block of intact rock is simulated. Deformation is imposed by a macroscale model where stresses and displacement rates are applied at the shear cell walls in contact with the rock. Since the microscale models within the macroscale block of deforming rock now include representations of the grains, the structure of the shear zone, the evolution of the size and shape distribution of these grains, and the dilatancy of the shear zone can all be predicted. The microscale dilatancy can be used to vary the macroscale model dilatancy both spatially and temporally to give a full two-way coupling between the spatial scales. The ability of this model to predict shear zone structure then allows the prediction of the shear zone permeability using the Lattice-Boltzmann method.

  12. Fabrics of pre- and syntectonic granite plutons and chronology of shear zones in the Eastern Borborema Province, NE Brazil

    NASA Astrophysics Data System (ADS)

    Archanjo, Carlos J.; Hollanda, Maria Helena B. M.; Rodrigues, Sérgio W. O.; Neves, Benjamim B. B.; Armstrong, Richard

    2008-03-01

    We used the fabrics of two granite plutons and U/Pb (SHRIMP) zircon ages to constrain the tectonic evolution of the E-trending Patos shear zone (Borborema Province, NE Brazil). The pre-tectonic Teixeira batholith consists of an amphibole leucogranite locally with aegirine-augite. Zircons from a syenogranite yielded crystallization ages of 591 ± 5 Ma. The batholith fabrics were determined by anisotropy of magnetic susceptibility (AMS) and mineral shape preferred orientation. The fabrics support pre-transcurrent batholith emplacement, as evidenced by: (i) magmatic/magnetic fabrics in low susceptibility (<0.35 mSI) leucogranites highly discordant to the regional host rock structure, and (ii) concordant magnetic fabrics restricted to high susceptibility (>1 mSI) corridors connected to shear zones branching off from Patos. One of these satellite shear zones controlled the syntectonic emplacement of the Serra Redonda pluton, which yields a crystallization age of 576 ± 3 Ma. This late shearing event marks the peak regional deformation that, south of Patos, was coupled to crustal shortening nearly perpendicular to the shear belt. The chronology of the deformational events indicates that the major shear zones of the eastern Borborema are late structures active after the crustal blocks amalgamated.

  13. Strain localization in shear zones during exhumation: a graphical approach to facies interpretation

    NASA Astrophysics Data System (ADS)

    Cardello, Giovanni Luca; Augier, Romain; Laurent, Valentin; Roche, Vincent; Jolivet, Laurent

    2015-04-01

    formation of smaller asymmetric syn-blueschist boudins and is associated with epidote grain-size reduction, synonym of more intense strain localization. In the latest stage (3), newly formed chlorite-rich shear bands bound new boudins of the previously produced terms having blueschist fine-grained heritage. Sense of shear is consistently top-to-the-ENE through the entire localization process. Greenschist-related boudinage is associated with quartz precipitation along the main shear bands and at the necks of boudins, places of strain localization. Metamorphic reactions and transpositions gradually obliterate the former texture, being progressively more active towards the top, where minor shear zones have been deforming at the expenses of similar folds and epidote-rich levels. The resulting qualitative analysis means to be a proxy for further numerical models and a comparison to similar field-study areas.

  14. Scaling of viscous shear zones with depth-dependent viscosity and power-law stress-strain-rate dependence

    NASA Astrophysics Data System (ADS)

    Moore, James D. P.; Parsons, Barry

    2015-07-01

    One of the unresolved questions concerning fault deformation is the degree and cause of localization of shear at depth beneath a fault. Geologic observations of exhumed shear zones indicate that while the motion is no longer planar, it can still be localized near the down-dip extension of the fault; however, the degree of localization is uncertain. We employ simple analytic and numerical models to investigate the structural form of distributed shear beneath a strike-slip fault, and the relative importance of the physical mechanisms that have the potential to localize a shear zone. For a purely depth dependent viscosity, η = η0 exp (-z/z0), we find that a shear zone develops with a half-width δ _w˜ √{z_0} for small z0 at the base of the layer, where lengths are non-dimensionalized by the layer thickness (d km). Including a non-linear stress-strain-rate relation (dot{ɛ }∝ σ ^n) scales δw by 1/√{n}, comparable to deformation length scales in thin viscous sheet calculations. We find that the primary control on the shear-zone width is the depth dependence of viscosity that arises from the temperature dependence of viscosity and the increase in temperature with depth. As this relationship is exponential, scaling relations give a dimensional half-width that scales approximately as tilde{δ}_w≈ T_{1/2}√{Rd/nQβ } km, where T_{1/2} (K) is the temperature at the midpoint of the layer, R (J mol-1 K-1) the gas constant, Q (J mol-1) the activation energy and β (K km-1) the geothermal gradient. This relation predicts the numerical results for the parameter range consistent with continental rheologies to within 2-5 per cent and shear-zone half-widths from 2 to 6 km. The inclusion of shear-stress heating reduces δw by only an additional 5-25 per cent, depending on the initial width of the shear zone. While the width of the shear zone may not decrease significantly, local temperature increases from shear-stress heating range from 50 to 300 °C resulting in a

  15. Strain localisation and thermal evolution of a thick ultramylonitic shear zone

    NASA Astrophysics Data System (ADS)

    Finch, M.; Hasalova, P.; Weinberg, R. F.

    2013-12-01

    Ultramylonites are the ultimate result of mylonitisation in a ductile shear zone. They accommodate high amounts of strain because they are the weakest rock in the shear zone and usually form thin bands within rocks of lower strain (mylonites and protomylonites). Thick ultramylonites are rare; where they are reported in the literature they are up to a few hundred metres thick and indicate inefficient localisation processes. This work describes an ultramylonitic shear zone within the Sierras Pampeanas of Argentina: the El Pichao shear zone. The shear zone is part of the 470 Ma Sierra de Quilmes, a metamorphic complex of the Famatinian orogeny. The El Pichao shear zone is >3.5-km thick and contains a 1-km core of continuous ultramylonite. Globally, shear zones of similar width are rare and where reported are related to major orogenic fronts. Shear zone width is determined by plate velocity and rock strength, such that greater widths occur at high velocities and lower rock strengths. Shear zones widen when the degree of strain localisation decreases which can be caused by weakening of the host rock, hardening of the shear zone, or a decrease in the yield stress of the rock due to an increase in temperature. Different mechanisms lead to each of these processes and their determination is difficult in studies of shear zones. El Pichao shear zone overprints amphibolite faces Grt-schists in the footwall, granites in the ultramylonitic shear zone core, and migmatites in the hanging wall. Syn-kinematic anatexis in the migmatitic hanging wall indicates that the migmatites should have been weaker during shearing than the crystallised granite which formed the protolith to the ultramylonitic core. Additionally, the migmatites are very heterogenous with mica-rich melanosomes and syn-kinematic Qtz-Fsp leucosomes, making them the ideal site for strain localisation and strain partitioning between weaker and stronger phases. However, strain localised to the granite of the

  16. Structural setting and magnetic properties of pseudotachylyte in a deep crustal shear zone, western Canadian shield

    NASA Astrophysics Data System (ADS)

    Orlandini, O. F.; Mahan, K. H.; Brown, L. L.; Regan, S.; Williams, M. L.

    2012-12-01

    Seismic slip commonly produces pseudotachylytes, a glassy vein-filling substance that is typically interpreted as either a frictional melt or an ultra-triturated cataclasite. In either form, pseudotachylytes are commonly magnetite enriched, even in magnetite-free host rocks, and therefore are potentially useful as high fidelity recorders of natural magnetic fields at the time of slip in a wide array of lithologies. Pseudotachylytes generally have high magnetic susceptibility and thus should preserve the dominant field present as the material passes the Curie temperatures of magnetic minerals, primarily magnetite. Two potential sources have been proposed for the dominant magnetic field recorded: the earth's magnetic field at the time of slip or the temporary and orders of magnitude more intense field created by the presence of coseismic currents along the failure plane. Pseudotachylytes of the Cora Lake shear zone (CLsz) in the Athabasca Granulite Terrain, western Canadian shield, are consistently hosted in high strain ultramylonitic orthogneiss. Sinistral and extensional oblique-slip in the CLsz occurred at high-pressure granulite-grade conditions of ~1.0 GPa and >800°C and may have persisted to somewhat lower P-T conditions (~0.8 GPa, 700 °C) during ductile deformation. Pseudotachylyte-bearing slip surfaces have sinistral offset, matching the larger shear zone, and clasts of wall rock in the more brecciated veins display field evidence for ductile shear along the same plane prior to brittle failure. The presence of undeformed pseudotachylyte in kinematically compatible fracture arrays localized in ultramylonite indicates that brittle failure may have occurred in the waning stages of shear zone activity and at similar deep crustal conditions. Field-documented occurrences of pseudotachylyte include 2 cm-thick veins that run subparallel to mylonitic foliation and contain small flow-aligned clasts and large, heavily brecciated foliation-crosscutting zones up to

  17. High-T Detachment Shear Zone in Mirdita Ophiolite (albania)

    NASA Astrophysics Data System (ADS)

    Jousselin, D.; Nicolas, A. A.; Boudier, F. I.; Meshi, A.

    2013-12-01

    Two oceanic core complex (OCC) extending over 50km have been mapped in the northern part of the Mirdita ophiolite. Despite the fact that the ophiolite is encased between major Dinaric thrusts, a late Jurassic marine topography is still preserved, as demonstrated by the nearly horizontal sedimentary cover. The study area exposes two peridotite domes, aligned on a N-S trend, separated by a talweg 1km wide, occupied by gabbros. This alignment is parallel to the paleoridge indicated by the sheeted dike complex, exposed at the eastern margin, and trending N-S. The two mantle domes composed of clinopyroxene bearing harzburgite with high-T porphyroclastic textures are roofed by a ~1km thick mylonitic shell, particularly well exposed at the limit with the gabbros, and interpreted as an oceanic high-T detachment shear zone. Six mylonite samples are studied for textures and crystal preferred orientation (CPO) aiming to improve the kinematics of the oceanic detachment. The mylonitic peridotite are exceptionally fresh, serpentine minerals being restricted to the bordering porphyroclastic harzburgites. They exhibit a tight millimetric layering formed by olivine / olivine+orthopyroxene / olivine+clinopyroxene or pargasitic amphibole, with grain-size 100-200μm in olivine bands vs 20-50μm in polyphase bands; plagioclase is ubiquitous. Orthopyroxene porphyroclasts show both body rotation and slip with boudinage in the flowing matrix. Electron back scattering diffraction (EBSD) maps provide precise modal composition and phase distribution. Although olivine CPO is not strong, it consistently records solid state flow on the [100](0kl)(010) slip system; the slight obliquity of [100] slip line on the mineral lineation marks the sense of shear. Pargasitic amphibole having grown in the mylonitic development has a strong CPO with [001]pg parallel to [100]ol. The most surprising result is a weak but constant orientation of [001]opx, known as the unique slip direction in orthopyroxene, at

  18. The evolution of faults formed by shearing across joint zones in sandstone

    NASA Astrophysics Data System (ADS)

    Myers, Rodrick; Aydin, Atilla

    2004-05-01

    The evolution of strike-slip and normal faults formed by slip along joint zones is documented by detailed field studies in the Jurassic Aztec Sandstone in the Valley of Fire State Park, Nevada, USA. Zones of closely spaced planar sub-parallel joints arranged en échelon are sheared, forming faults. Fracturing occurs as a result of shearing, forming new joints. Later shearing along these joints leads to successively formed small faults and newer joints. This process is repeated through many generations of fracturing with increasing fault slip producing a hierarchical array of structures. Strain localization produced by shearing of joint zones at irregularities in joint traces, fracture intersections, and in the span between adjacent sheared joints results in progressive fragmentation of the weakened sandstone, which leads to the formation of gouge along the fault zone. The length and continuity of the gouge and associated slip surfaces is related to the slip magnitude and fault geometry with slip ranging from several millimeters to about 150 m. Distributed damage in a zone surrounding the gouge core is related to the original joint zone configuration (step sense, individual sheared joint overlaps and separation), shear sense, and slip magnitude. Our evolutionary model of fault development helps to explain some outstanding issues concerning complexities in faulting such as, the variability in development of fault rock and fault related fractures, and the failure processes in faults.

  19. The role of thermo-mechanical feedback in the generation of shear zones in the lithosphere

    NASA Astrophysics Data System (ADS)

    Duretz, Thibault; Schmalholz, Stefan M.; Podladchikov, Yuri Y.

    2014-05-01

    The collision between continental plates results in the development of orogenic belts. Ongoing collision is responsible for the localisation of deformation and the development of shear zones. The presence of shear zones is well documented within orogens and their importance for the exhumation of high-grade (HG) metamorphic rocks is well accepted; their role in the formation of HG units is however debated. State of the art geodynamic modelling of continental collision is often used to model the genesis and exhumation of HG rocks. Nevertheless, it is a common approach to model collision by predefining shear zones and/or by employing constitutive models that can introduce mesh dependency. Mesh size dependency leads to difficult comparison between physical models and natural data since pressure and temperature cannot be accurately computed within the modelled shear zones. In this contribution, we employ thermo-mechanical modelling to study the formation of shear zones in the lithosphere. Our approach takes into account the coupling between momentum and energy balance by including viscous dissipation and temperature/stress dependant viscosity. We show that this methodology allows for the spontaneous development of shear zones around a cylindrical weak heterogeneity. Systematic simulations showed that this approach produces mesh-insensitive results. The modelled shear zones are hence characterised by a finite-width, which is independent on the numerical mesh resolution. Additional test were performed to constrain the physical parameters that control shear band thicknesses, the results highlight the role of thermal transport properties rather than the initial heterogeneity dimensions. Moreover, we demonstrate that these results can be achieved by using two different numerical methods, which are both popular methods in the geodynamic modelling community (Lagrangian finite elements and Eulerian-Lagrangian finite differences). Such models may therefore be reliably used to

  20. FLUID EVOLUTION AND MINERAL REACTIONS DURING SHEAR ZONE FORMATION AT NUSFJORD, LOFOTEN, NORWAY (Invited)

    NASA Astrophysics Data System (ADS)

    Kullerud, K.

    2009-12-01

    At Nusfjord in Lofoten, Norway, three 0.3 - 3 m thick shear zones occur in a gabbro-anorthosite. During deformation, the shear zones were infiltrated by a hydrous fluid enriched in Cl. In the central parts of the shear zones, fluid-rock interaction resulted in complete break-down of the primary mafic silicates. Complete hydration of these minerals to Cl-free amphibole and biotite suggests that the hydrous fluid was present in excess during deformation in these parts of the shear zones. Along the margins of the shear zones, however, the igneous mafic silicates (Cpx, Bt, Opx) were only partly overgrown by hydrous minerals. Here, Cl-enriched minerals (Amph, Bt, Scp, Ap) can be observed. Amphibole shows compositions covering the range 0.1 - 4.0 wt % Cl within single thin sections. Mineral textures and extreme compositional variations of the Cl-bearing minerals indicate large chemical gradients of the fluid phase. Relics of primary mafic silicates and compositionally zoned reaction coronas around primary mafic silicates suggest that the free fluid was totally consumed before the alteration of the primary phases were completed. The extreme variations in the Cl-content of amphibole are inferred to monitor a gradual desiccation of the Cl-bearing grain-boundary fluid during fluid-mineral reactions accordingly: 1) The first amphibole that formed during the reactions principally extracted water from the fluid, resulting in a slight increase in the Cl content of the fluid. 2) Continued amphibole-forming reactions resulted in gradual consumption of the free fluid phase, principally by extracting water from the fluid, resulting in an increase in its Cl-content. Higher Cl-content of the fluid resulted in higher Cl-content of the equilibrium amphibole. 3) The most Cl-enriched amphibole (4 wt % Cl) formed in equilibrium with the last volumes of the grain-boundary fluid, which had evolved to a highly saline solution. Mineral reactions within a 1-2 thick zone of the host rock along

  1. Mechanics of shear rupture applied to earthquake zones

    NASA Technical Reports Server (NTRS)

    Li, Victor C.

    1986-01-01

    The mechanics of shear slippage and rupture in rock masses are reviewed. The essential ideas in fracture mechanics are summarized emphasizing the interpretation and relation among the fracture parameters in shear cracks. The slip-weakening model is described. The general formulation of the problem of nonuniform slip distribution in a continuum is covered.

  2. A low-temperature ductile shear zone: The gypsum-dominated western extension of the brittle Fella-Sava Fault, Southern Alps

    PubMed Central

    Bartel, Esther Maria; Neubauer, Franz; Heberer, Bianca; Genser, Johann

    2014-01-01

    Based on structural and fabric analyses at variable scales we investigate the evaporitic gypsum-dominated Comeglians-Paularo shear zone in the Southern Alps (Friuli). It represents the lateral western termination of the brittle Fella-Sava Fault. Missing dehydration products of gypsum and the lack of annealing indicate temperatures below 100 °C during development of the shear zone. Despite of such low temperatures the shear zone clearly exhibits mylonitic flow, thus evidencing laterally coeval activity of brittle and viscous deformation. The dominant structures within the gypsum rocks of the Lower Bellerophon Formation are a steeply to gently S-dipping foliation, a subhorizontal stretching lineation and pure shear-dominated porphyroclast systems. A subordinate simple shear component with dextral displacement is indicated by scattered σ-clasts. Both meso- and microscale structures are characteristic of a subsimple shear type of deformation with components of both coaxial and non-coaxial strain. Shortening in a transpressive regime was accommodated by right-lateral displacement and internal pure shear deformation within the Comeglians-Paularo shear zone. The shear zone shows evidence for a combination of two stretching faults, where stretching occurred in the rheologically weaker gypsum member and brittle behavior in enveloping lithologies. PMID:26523080

  3. Reaction enhanced channelised fluid-flux along mid- crustal shear zone: An example from Mesoproterozoic Phulad Shear Zone, Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sadhana M.; Choudhury, Manideepa Roy; Das, Subhrajyoti

    2016-09-01

    Fluid infiltration at great depth during regional metamorphism plays a major role in mass transport and is responsible for significant rheological changes in the rock. Calc-silicate rocks of the Kajalbas area of Delhi Fold Belt, Rajasthan, are characterised by foliation parallel alternate bands of amphibole-rich and clinopyroxene-plagioclase feldspar-rich layers of varying thicknesses (mm to decimetre thick). Textural relation suggests that the amphibole grains formed from clinopyroxene and plagioclase in the late phase of regional deformation. Algebraic analysis of the reaction textures and mineral compositions was performed with the computer program C-Space to obtain the balanced chemical reactions that led to the formation of amphibole-rich bands. The computed balanced reaction is 70.74 Clinopyroxene + 27.23 Plagioclase + 22.018 H2O + 5.51 K++ 1.00 Mg2++ 27.15 Fe2+ = 22.02 Amphibole + 67.86 SiO2 aqueous + 36.42 Ca2++ 8.98 Na+. The constructed reaction suggests that aqueous fluid permeated the calc-silicate rock along mm to decimetre thick channels, metasomatized the clinopyroxene-plagioclase bearing rocks to form the amphibole-rich layers. The regional deformation presumably created the fluid channels thereby allowing the metasomatic fluid to enter the rock system. The above reaction has large negative volume change for solid phases indicating reaction-induced permeability. Thermodynamic calculations suggest that the fluid-rock interaction occurred at 665 ±05∘C and 6.6 ±0.25 kbar (corresponding to ˜20 km depth). Textural modeling integrating the textural features and balanced chemical reaction of the calc-silicate rocks of Mesoproterozoic Phulad Shear Zone thus indicate that extremely channelled fluid flow was reaction enhanced and caused major change in the rock rheology.

  4. Effects of Shear Zone Development on Seismic Anisotropy in the Lower Grenvillian Crust

    NASA Astrophysics Data System (ADS)

    Song, W. J.; Gerbi, C. C.; Johnson, S. E.; Vel, S. S.

    2014-12-01

    Deep crustal structure, particularly the geometry of shear zones, affects the degree of crust-mantle coupling and the kinematics of crustal deformation. In principle, shear zones in the deep crust can be visible using seismic imaging due to the change in the orientations and modes of anisotropic minerals. However, matching the seismic signals to structures present remains a challenge. This work seeks to bridge some of that gap. We utilize the Parry Sound domain in the western Central Gneiss Belt of the Grenville orogen, Ontario, Canada, to develop quantitative relationships between geologic structures and seismic anisotropy. This region provides excellent examples of granulite and amphibolite facies shear zones up to several km wide. We investigated three rock types: (1) regionally deformed mafic and felsic granulite facies orthogneiss, (2) granulite facies shear zones, and (3) amphibolite facies shear zones. Both of the latter two derived from (1). Using the numerical architecture of asymptotic expansion homogenization (which considers grain-scale elastic interactions), we computed much higher precision seismic velocities than is possible with conventional Voigt-Reuss-Hill algorithms. In all sheared felsic rocks, the dominant quartz slip system was prism + rhomb indicating slowest Vp direction paralleled lineation because in quartz a-axis is near the slowest direction. In contrast, in all sheared mafic rocks, the fastest amphibole direction is strongly parallel to the lineation. As a consequence of combining the quartz and amphibole deformation, rocks comprising felsic and mafic layers have a weak seismic anisotropy. In monolithological shear zones, anisotropy can exceed 10%. Despite the promise this work illustrates, we must continue to consider the influence of inherited fabrics in the host rock. In a second line of investigation, we explored how shear zone volume fraction affects seismic anisotropy.

  5. Shear zone nucleation and deformation transient: effect of heterogeneities and loading conditions in experimentally deformed calcite

    NASA Astrophysics Data System (ADS)

    Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.

    2015-12-01

    In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  6. The influence of water on the formation of mantle shear zones

    NASA Astrophysics Data System (ADS)

    Warren, J. M.; Skemer, P. A.; Hirth, G.; Kelemen, P. B.

    2012-12-01

    The formation of localized shear zones is a prerequisite for plate tectonics, yet the mechanisms that drive shear localization are poorly constrained. In the oceanic lithosphere, ductiley-deformed peridotites have been found at detachment and transform faults, indicating the importance of mantle shear localization for plate spreading. Proposed mechanisms for initiating shear localization include water or melt addition, grain size reduction, and effects due to lattice preferred orientations (LPO). However, the sequence of physical processes that leads to ductile shear localization in the mantle lack direct geological observation for the generation of fine-grained (~1-100 μm) mylonites from coarse-grained (0.5-5 mm) protoliths. The Josephine Peridotite in Oregon provides a field setting to test hypotheses for initiation of shear localization. The massif is an obducted section of oceanic lithospheric mantle, which contains a sequence of small shear zones that vary from 1 m to 60 m wide. Measurement of the passive rotation of pyroxenite layers across the shear zones provides an estimate strain. Mylonites are observed at the center of the narrowest shear zones, which also record the highest strains (>2000 %). Field observations of the presence and abundance of syn-kinematic melt veins, consisting of gabbro or dunite, provide constraints on the role of melt in shear localization. Variations in water content appear to drive strain localization in the Josephine. Water, present as hydrogen defects in nominally anhydrous minerals (e.g., olivine, orthopyroxene) can significantly influence mantle rheology. One of the highest strain shear zones has an olivine LPO that corresponds to Type-E (001)[100] slip, whereas the LPO of the widest shear zone corresponds to Type-A (010)[100] slip. Experimental constraints on olivine LPO indicate that Type-E slip corresponds to olivine with a higher water content than Type-A slip. To confirm the role of water in shear localization, we

  7. Microstructural study of the Mertz shear zone, East Antarctica. Implications for deformation processes and seismic anisotropy.

    NASA Astrophysics Data System (ADS)

    Lamarque, Gaëlle; Bascou, Jérôme; Maurice, Claire; Cottin, Jean-Yves; Ménot, René-Pierre

    2015-04-01

    The Mertz Shear Zone (MSZ; 146°E 67°S; East Antarctica) is one major lithospheric-scale structure which outcrops on the eastern edge of the Terre Adélie Craton (Ménot et al., 2007) and that could connected with shear zones of South Australia (e.g., Kalinjala or Coorong shear zone (Kleinschmidt and Talarico, 2000; Gibson et al., 2013)) before the Cretaceous opening of the Southern Ocean. Geochronological and metamorphic studies indicated an MSZ activity at 1.7 and 1.5 Ga respectively in amphibolite and greenschists facies conditions. The deformation affects both the intermediate and lower crust levels, without associated voluminous magma injection. Granulite crop out in the area of the MSZ. They were dated at 2.4 Ga (Ménot et al., 2005) and could represent some preserved Neoarchean tectonites. These rocks show various degrees of deformation including penetrative structures that may display comparable features with that observed in amphibolite and greenschists facies rocks, i.e. NS-striking and steeply dipping foliation with weekly plunging lineation. In the field, cinematic indicators for the MSZ argue for a dominant dextral shear sense. We proceed to optical analysis and crystallographic preferred orientation (CPO) measurements using EBSD technique in order to better constrain the deformation processes. Our results highlight (1) a microstructural gradient from highly deformed rocks (mylonites), forming plurimetric large shear bands and showing evidences of plastic deformation, to slightly deformed rocks in preserved cores with no evidences of plastic deformation or with a clear strong static recrystallization; (2) CPO of minerals related with variations on deformation conditions. Feldspar and quartz CPO argue for plastic deformation at high temperature in the most deformed domains and for the absence of deformation or an important stage of static recrystallization in preserved cores; (3) uncommon CPO in orthopyroxene which are characterized by [010]-axes

  8. Ductile duplexing at a bend of a continental-scale strike-slip shear zone: example from NE Brazil

    NASA Astrophysics Data System (ADS)

    Corsini, Michel; Vauchez, Alain; Caby, Renaud

    1996-04-01

    During the Pan-African orogeny, the Borborema Province in NE Brazil developed a continental-scale shear-zone system that comprises NE- and EW-trending ductile strike-slip shear zones. Remote sensing and structural mapping has revealed a pattern of arcuate anastomosing strike-slip shear zones separating sigmoidal lenses of less deformed material, located at the western end of the EW-trending Patos shear zone, which is one of the largest shear zones of the Province. This structure of imbricate shear zones was initiated under high-temperature deformation conditions. It is interpreted as a ductile strike-slip duplex and may represent a kinematic pattern for strain accommodation in response to a bend of a ductile mega-shear zone.

  9. Using drill cutting separates to estimate the strength of narrow shear zones at SAFOD

    USGS Publications Warehouse

    Morrow, C.; Solum, J.; Tembe, S.; Lockner, D.; Wong, T.-F.

    2007-01-01

    A technique is presented for estimating frictional strength of narrow shear zones based on hand selection of drillhole cuttings separates. Tests were conducted on cuttings from the SAFOD scientific drillhole near Parkfield, California. Since cuttings are mixed with adjacent material as they travel up the drillhole, these fault-derived separates give a better representation of the frictional properties of narrow features than measurements from the bulk material alone. Cuttings from two shear zones (one an active trace of the San Andreas fault) contain a significant weight percent of clay-rich grains that exhibit deformation-induced slickensides. In addition, cuttings from the active SAF trace contain around 1% serpentine. Coefficients of friction for clay-rich and serpentine grains were 0.3-0.5 and 0.4-0.45, respectively. These values are around 0.12 lower than the friction coefficient of the corresponding bulk cuttings, providing an improved estimate of the frictional strength of the San Andreas fault. Copyright 2007 by the American Geophysical Union.

  10. Evolution of twist-shear and dip-shear in flaring active region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Gosain, Sanjay; Venkatakrishnan, P.

    2011-08-01

    We study the evolution of magnetic shear angle in a flare productive active region NOAA 10930. The magnetic shear angle is defined as the deviation in the orientation of the observed magnetic field vector with respect to the potential field vector. The shear angle is measured in horizontal as well as vertical plane. The former is computed by taking the difference between the azimuth angles of the observed and potential field and is called the twist-shear, while the latter is computed by taking the difference between the inclination angles of the observed and potential field and is called the dip-shear. The evolution of the two shear angles is then tracked over a small region located over the sheared penumbra of the delta sunspot in NOAA 10930. We find that, while the twist-shear shows an increasing trend after the flare the dip-shear shows a significant drop after the flare.

  11. The effects of heterogeneities and loading conditions in the development of shear zones

    NASA Astrophysics Data System (ADS)

    Morales, Luiz F. G.; Rybacki, Erik; Dresen, Georg

    2016-04-01

    Shear zones are regions of localized deformation and are frequently nucleated by material and/or structural heterogeneities and may develop under transient boundary conditions of strain rate and stress. Here we investigate shear zone nucleation and development due to mechanical heterogeneities. Experiments were performed in constant twist rate (CTR) and constant torque (CT) torsion tests to simulate the end member conditions of constant strain rate and constant stress. We have used hollow cylinders of Carrara marble samples containing weak inclusions of Solnhofen limestone. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure to maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. Local shear strain values in the process zone are between 5 to 10 times higher than the bulk applied strain. In CT experiments, a narrow shear zone marked by intense grain size reduction is developed in front of the inclusion and the surrounding material remains relatively intact, whereas in CTR experiments the deformation is more widely distributed. The volume of recrystallized grains is nevertheless similar in the samples deformed at same bulk strains in both CT and CTR. At similar bulk strain, the crystallographic preferred orientation (CPO) in the process zone of CT experiments is stronger than in CTR experiments and CPO strength varies with grain size. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  12. The Cora Lake Shear Zone: Strain Localization in an Ultramylonitic, Deep Crustal Shear Zone, Athabasca Granulite Terrain, Western Churchill Province, Canada

    NASA Astrophysics Data System (ADS)

    Regan, S.; Williams, M. L.; Mahan, K. H.; Orlandini, O. F.; Jercinovic, M. J.; Leslie, S. R.; Holland, M.

    2012-12-01

    Ultramylonitic shear zones typically involve intense strain localization, and when developed over large regions can introduce considerable heterogeneity into the crust. The Cora Lake shear zone (CLsz) displays several 10's to 100's of meters-wide zones of ultramylonite distributed throughout its full 3-5 km mylonitized width. Detailed mapping, petrography, thermobarometry, and in-situ monazite geochronology suggest that it formed during the waning phases of granulite grade metamorphism and deformation, within one of North America's largest exposures of polydeformed lower continental crust. Anastomosing zones of ultramylonite contain recrystallized grain-sizes approaching the micron scale and might appear to suggest lower temperature mylonitization. However, feldspar and even clinopyroxene are dynamically recrystallized, and quantitative thermobarometry of syn-deformational assemblages indicate high P and T conditions ranging from 0.9 -10.6 GPa and 775-850 °C. Even at these high T's, dynamic recovery and recrystallization were extremely limited. Rocks with low modal quartz have extremely small equilibrium volumes. This is likely the result of inefficient diffusion, which is further supported by the unannealed nature of the crystals. Local carbonate veins suggests that H2O poor, CO2 rich conditions may have aided in the preservation of fine grain sizes, and may have inhibited dynamic recovery and recrystallization. The Cora Lake shear zone is interpreted to have been relatively strong and to have hardened during progressive deformation. Garnet is commonly fractured perpendicular to host rock fabric, and statically replaced by both biotite and muscovite. Pseudotachylite, with the same sense of shear, occurs in several ultramylonitized mafic granulites. Thus, cataclasis and frictional melt are interpreted to have been produced in the lower continental crust, not during later reactivation. We suggest that strengthening of rheologically stiffer lithologies led to

  13. Factors affecting the kinematic interpretation of asymmetric boudinage in shear zones

    NASA Astrophysics Data System (ADS)

    Goldstein, Arthur G.

    Based on work along a major mylonite zone in the northern Appalachians and scale model studies, a new mechanism for the origin of asymmetric boudins in shear zones is proposed. Along the Honey Hill Fault in southern Connecticut, granitic sills intruded into calc-silicate gneisses and schists were oblique to the boundaries of the mylonite zone and experienced the following sequence in the production of sigmoidal boudins: (1) as the calc-silicate schists experienced mylonitization and flow, the more competent, coarse-grained granitic sills deformed by extensional fracturing and quartz veining; (2) continued extension of granitic sills was accommodated by 'normal' shear on early-formed quartz veins; (3) continuing extension of sills and ductile modification of the corners of boudins resulted in granitic 'fish' with tails which stream from the top of the boudin in the 'down-dip' direction and from the bottom in the 'up-dip' direction. Based on a variety of kinematic indicators, the sense of asymmetry of the tails is identical to that expected for recrystallization tails on sheared augen (σ structure). Models composed of silicone putty and Plasticine were created to investigate the effect of pre-shearing geometry on boudin evolution, and were deformed in a simple shear device. The models reproduce the kinematics deduced from field relations and suggest that one of the primary factors in controlling the amount of extension is the angle which early veins make with the shear zone boundary. Varying the angular relationships in the models suggests that other pre-shearing geometric factors may affect the geometry of boudins formed in this way. Boudins formed through this mechanism appear very similar to Hanmer's type II asymmetric boudins. Because the pre-shearing geometry can exert a control on boudin asymmetry, caution should be used when attempting to deduce shear sense or shear strain values from asymmetric boudinage.

  14. Deformation partitioning in transpressional shear zones with an along-strike stretch component: An example from the Superior Boundary Zone, Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Kuiper, Yvette D.; Lin, Shoufa; Jiang, Dazhi

    2011-03-01

    The partitioning of triclinic flow into domains of apparent monoclinic and apparent orthorhombic flow is described and discussed, using the Aiken River shear zone (ARSZ) as an example. The ARSZ is a 1-1.5 km wide east-west trending, dextral, north-side-up, mylonite zone, within the northern part of the Superior Province in Manitoba. It displays a high along-strike stretch (˜10), which is most likely indicative of an escape-tectonic setting. Although the central mylonite zone exhibits an apparent monoclinic fabric symmetry, the actual flow field was probably triclinic with a high simple shearing over pure shearing ratio, which resolves potential strain compatibility problems with neighbouring domains. The simple shearing-dominated zone is relatively narrow and has well-defined boundaries. An up to ˜20 km wide zone adjacent to the ARSZ shows an apparent orthorhombic fabric symmetry with shear zone boundary-parallel horizontal stretch and shear zone-orthogonal shortening. However, the actual flow may have been triclinic with a low simple shearing over pure shearing ratio. Either way, the pure shear component of the ARSZ is distributed over a much broader area than the simple shear component and has diffuse boundaries. This is consistent with simple shearing being a softening and pure shearing a hardening process.

  15. Typology of lozenges and their development in anastomosing shear zones in foliated rocks

    NASA Astrophysics Data System (ADS)

    Ponce, Carlos; Carreras, Jordi; Druguet, Elena

    2010-05-01

    Lozenges are characteristic common structures related to anastomosing networks of shear zones. They are ellipsoid-shaped bodies of undeformed (or less deformed) country rock bounded by mylonites. They have been studied since the 1980's (Bell and Rubenach 1980, Bell 1981, Simpson, 1982, Choukroune and Gapais 1987, Hudleston 1999, Fusseis 2006), and various formation processes have been proposed. However, the lack of a systematic typology has led to confronting interpretations about their origin, development and significance in the context of anastomosing shear zones. A typology of shear zone-related lozenges is proposed with regard to the pre-shearing rock properties: 1) Lozenges in rheologically heterogeneous rocks. Their development is related to the presence of volumes of rock that behave more competent than the surrounding media. These are therefore typically developed in shear zones affecting rocks with a marked competence constrast. This is the case e.g. of a sheared competent dyke in a less competent schistose matrix. 2) Lozenges in homogeneous (2a, isotropic or 2b, anisotropic) rocks that arise from the confluence of differently oriented shears. The development of this type of lozenges is at present less understood than type 1 lozenges. The present work is focused in the formation and development of type 2 lozenges. The here presented preliminary results are based on a 2D approach (sections parallel to the shear direction) and supported by the analysis of natural examples from the Cap de Creus shear belt Eastern Pyrenees). Two main variables are taken into account for the interpretation of this type of lozenges. First, the relative kinematics of the bounding shear zones, i.e., shear zones have the same shear sense or, instead, they have opposite shear sense (conjugate sets). Second, only for foliated rocks, the relative orientation of the previous foliation with regard to the lozenge major axis. Furthermore, some models are presented to explain the

  16. Metasomatism-controlled nucleation and development of paired-shear zone: an example from the Neves area (Eastern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Link, Gaétan; Goncalves, Philippe; Lanari, Pierre; Oliot, Emilien

    2016-04-01

    garnet, only presents in the bleached zone, is made of a Mn-rich core and a Ca-rich rim. The core of atoll garnets were formed during the bleaching event, then they have been partially resorbed during the development of the paired-shear zone that is coeval with a new metasomatic event. This latter forms the rim of atoll garnets, which are similar in compositions with euhedral garnets. The center of the shear zone, located at the interface between the granodiorite and the bleached zone, shows evidences of late brittle reactivation, with breakdown of biotite into chlorite, the cataclasis of garnet with crystallization of K-feldspar (or adularia) and epidote in the cracks, and crystallization of a large amount of Fe and Ti-oxydes. The temperature conditions of this reactivation - maybe linked to a seismic event - are estimated at ~225°C. Our results demonstrate that early fluid-rock interaction is responsible for the formation of a bleached zone and the development of viscosity contrasts, within an initially isotropic rock, sufficient to localize deformation. Furthermore, the transient brittle deformation is also associated with fluid and chemical mass transfer. This contribution shows that both ductile and brittle deformations are associated with fluid-rock interactions. Thus, understanding strain localization processes requires to take into consideration not only mechanical processes, like active deformation mechanisms, but also fluid-assisted chemical processes.

  17. Mechanical response, chemical variation, and volume change in the Brookneal and Hylas shear zones, Virginia

    NASA Astrophysics Data System (ADS)

    Gundersen, Linda C. S.; Gates, Alexander E.

    1995-07-01

    Changes in volume and chemical composition were compared with strain indicators measured in two Alleghanian shear zones in granitoid plutons within the Virginia Piedmont. Both shear zones have measurable kinematic indicators that consistently record dextral strike-slip movement. The Brookneal zone, in the Melrose Granite, exhibits one ductile deformation event whereas the Hylas zone, in the Petersburg Granite, records both brittle and ductile events. Comparison of the chemical variation and volume change for each of the shear zones yields several surprising similarities given the differences in deformational history and structural style of the two zones. Overall, both zones experienced volume decreases during deformation from undeformed to ultramylonitic. Silica, K, and U increased in both zones with decreases in Fe, Mg, Sr, Ti, Mn, Y, Nb, Zr. Changes in element behavior with incremental changes in strain are different in each zone and appear to be directly related to the style of deformation and strain processes operating at each deformational stage. Chemical data from the Brookneal shear zone clusters into three groups corresponding to weak deformation, moderate strain, and ultramylonite. Deformation in the Hylas shear zone is more complex and abrupt changes in volume and element behavior may be related to brittle events late in the deformation history. The choice of immobile elements for mass balance and volume calculations was based on the petrography of the samples. The concentration of titanite in the Melrose Granite changes from several percent in the undeformed rock to absent with very minor Ti oxides in the ultramylonite. A similar decrease in most accessory minerals takes place in the Hylas zone; however monazite increases significantly. Titanium mobility is implied in the results of the chemical analyses and volume calculations. Further, it is postulated that the fluid source for the shear zones includes dehydration reactions in the granites themselves

  18. Determining the significance of high-grade shear zones by using temperature-time paths, with examples from the Grenville orogen

    NASA Astrophysics Data System (ADS)

    van der Pluijm, Ben A.; Mezger, Klaus; Cosca, Michael A.; Essene, Eric J.

    1994-08-01

    Ductile shear zones preserve essential information on processes that are active in orogenic roots, but the significance of these zones is often difficult to interpret. Structural, petrologic, and geochronologic data from shear zones yield elements of the history that are not necessarily synchronous. However, by combining these data with temperature-time (T-t) paths, insights are obtained into the nature of shear zones, the relation between bounding blocks, and orogenic evolution of the deep crust. This procedure is illustrated with two examples from the mid-Proterozoic Grenville orogen. T-t paths from ˜1160 to ˜900 Ma are based on U-Pb dating of metamorphic minerals—including garnet (closure temperature, Tc, >800 °C), monazite (Tc ≅ 725 °C), sphene (Tc ≅ 600 °C), and rutile (Tc ≅ 400 °C)—and 40Ar/39Ar hornblende ages (Tc ≅ 480°C). Comparison of T-t paths from adjacent blocks allows predictions about the significance, kinematics, and timing of displacement of shear zones. In the Grenville orogen, T-t paths can distinguish between major terrane boundaries (e.g., the Carthage-Colton shear zone) and within-terrane shear zones (e.g., the Bancroft shear zone). Thus, these data can also be used to identify individual tectonic terranes in the deep crust. This integrated approach to analysis of shear zones provides constraints needed to determine the nature and rate of deep orogenic processes in areas that are complicated by high metamorphic grades.

  19. The Border Ranges shear zone, Glacier Bay National Park, Alaska: An example of an ancient brittle-ductile transition zone

    SciTech Connect

    Smart, K.J. . Dept. of Geological Sciences)

    1992-01-01

    The Border Ranges fault system in southern Alaska forms the tectonic boundary between the Peninsular-Alexander-Wrangellia (PAW) composite terrane and the Chugach terrane. In Glacier Bay National Park, the Border Ranges fault system is a north-northwest trending, 10 kilometer wide zone of ductile shear zones and brittle faults hereafter referred to as the Border Ranges shear zone. Three-dimensional strain analyses of plagioclase lathes in the foliated calc-alkaline plutons reveals a strong flattening fabric with the plane of maximum flattening (XY-plane) oriented northwest-southeast and dipping steeply to the southwest. The distribution and shapes of sub-elliptical mafic enclaves in the calc-alkaline plutons show a similarly oriented flattening fabric. Coeval brittle and ductile deformational processes are indicated by: (1) ductile shear zones narrowing to brittle faults at the outcrop scale; and (2) undulose quartz with subgrain development, kinked biotite, twinned and undulose feldspar, and fractured and twinned hornblende often within a single thin-section. Amphibole geobarometry indicates that two of the calc-alkaline plutons deformed by the shear zone crystallized at pressures of approximately 3 kilobars equivalent to 10 to 12 kilometers depth. Metamorphic mineral assemblages within the mylonites indicate deformation under lower greenschist facies conditions (300--400 C). The shear zone may represent a snapshot of the brittle-ductile transition of an ancient convergent-transform plate boundary. As such, this unique exposure may be an ancient analogue for the brittle-ductile transition of the present day San Andreas fault system.

  20. Pseudotachylyte-bearing faults and shear zones along the Norumbega fault system in Maine

    NASA Astrophysics Data System (ADS)

    West, D. P.; Price, N. A.; Swanson, M.; Pollock, S. G.

    2012-12-01

    The Norumbega fault system represents the eroded roots of a >400 km long fault system that records a Middle Paleozoic through Mesozoic history of superimposed deformational processes. The Paleozoic history is dominated by right lateral shearing that evolved from a wide zone of regional scale dextral transpression to more highly focused and in many cases seismogenic slip along relatively narrow faults and shear zones. The Mesozoic history, largely deduced through geochronological studies, likely involved localized reactivation in association with the transition between Late Paleozoic dextral transpression and Early Mesozoic extension in the northern Appalachians. Pseudotachylyte, found in a variety of structural settings, has been identified on numerous fault strands along the southern 250 km of the fault system in Maine and provides an excellent opportunity to evaluate evolving seismogenic processes, at a variety of depths, along a regional scale fault system. The oldest pseudotachylyte (Late Devonian-Early Carboniferous) formed at frictional-to-viscous transitional depths during dextral deformation and is most commonly characterized by multiple generations of foliation-parallel frictional melt veins that were subsequently deformed through viscous shearing and transformed into thin ultramylonite layers. While this variety of pseudotachylyte has only been positively identified along three ~25 km long fault segments within the central portion of the Norumbega (e.g., Sandhill Corner), we speculate it may be more widespread in the fault system owing to difficulties in recognition in the field and a lack of detailed imaging and laboratory studies of mylonite-hosted pseudotachylyte-bearing rocks in the fault system. Younger (Permian-Early Triassic) undeformed pseudotachylyte-bearing faults have been found discontinuously along much of the Norumbega and presumably these occurrences reflect countless high velocity coseismic slip events at shallower depths. Spectacularly

  1. Western Old Woman Mountains shear zone: Evidence for late ductile extension in the Cordilleran orogenic belt

    SciTech Connect

    Carl, B.S.; Miller, C.F. ); Foster, D.A. )

    1991-09-01

    Rocks within the 1-km-thick Western Old Woman Mountains shear zone (WSZ) contain ductilely deformed quartz and ductilely and brittlely deformed feldspars, indicating greenschist to lower amphibolite facies mylonitization. Foliation measured in 73 Ma mid-crustal granitoids within the zone generally dips west-southwest, and sense-of-shear indicators demonstrate top-to-the-west sense of movement parallel to gently southwest plunging lineation. The tip of the shear zone is not exposed, but 10 km to the west unmetamorphosed Late Cretaceous-age upper crust is present. The WSZ is thus most simply interpreted as a normal-sense low-angle shear zone. Timing of deformation is constrained to the interval 73 to ca. 65 Ma by the age of deformed granitoids and {sup 40}Ar/{sup 39}Ar chronology. This interval coincides with a period of rapid cooling of rocks now exposed in the Old Woman Mountains that probably resulted from 4 to 8 km of unroofing. The authors suggest that movement along the WSZ is responsible for at least some of this unroofing. The proposed history involves tectonic denudation along a low-angle ductile shear zone and is similar to that demonstrated for Tertiary Cordilleran metamorphic core complexes.

  2. Quartz c-axis preferred orientations in an experimental shear zone

    SciTech Connect

    Dell'Angelo, L.

    1985-01-01

    Natural rocks which have deformed by simple shear commonly exhibits an asymmetric quartz c-axis fabric which can be a useful kinematic indicator. Although there is some controversy on the sense of asymmetry from theoretical models, fabrics measured from natural rocks generally exhibit an asymmetry with maxima inclined in the direction of shear. The authors have deformed a fine grained quartzite in simple shear in order to determine the relationship of the c-axis fabric to the sense of shear, the foliation and the shear zone boundary. The sample was deformed at 800/sup 0/C, 15 kb and 10/sup -6//sec, where previous axial compression experiments produce small circle girdles symmetrical about sigma/sub 1/ due to basal and prism slip. Original grains are flattened with only a minor amount of recrystallization. A thin sample (.1'' thick) was cut from a right cylinder at 45/sup 0/ to the core axis and placed between two ZrO/sub 2/ pistons with matching 45/sup 0/ faces. In the sheared sample, measurements of grain aspect ratios in vertical sections parallel and perpendicular to the shear direction as well as the angle between the shear zone boundary and the foliation (18/sup 0/) indicate that the deformation has been dominantly simple shear (maximum of 2.8) with only a minor component of pure shear. The preferred orientation pattern is an asymmetric type I crossed girdle which is characterized by two girdles connected through the intermediate strain axis by a single girdle. The asymmetry is defined by stronger maxima inclined in the direction of shear.

  3. Microstructures and kinematic vorticity analysis from the mylonites along the Karakoram Shear Zone, Pangong Mountains, Karakoram

    NASA Astrophysics Data System (ADS)

    Roy, P.

    2012-04-01

    The Karakoram Shear Zone is a northwest-southeast trending dextral ductile shear zone, which has affected the granitic and granodioritic bodies of the southern Asian Plate margin in three distinct episodes. The ductile shearing of the granitic bodies at Tangste and Darbuk has resulted in the development of mylonites with mylonitic foliation and stretching lineation. More intense deformation is noted in the Tangste granite grading upto orthomylonite, as compared to the Darbuk granite. Kinematic indicators include S-C foliation, synthetic C' and C" antithetic shear bands, Type A σ-mantled porphyroclasts, oblique quartz foliation, micro-shears with bookshelf gliding, mineral fishes including Group 2 mica fishes, and Type 1 and 2a pull-apart microstructures, and exhibit strong dextral sense of ductile shearing towards southeast. The textural features of the minerals especially that of quartz and feldspar, indicate temperature of mylonitisation ranging between 300° C and 500° C in the upper greenschist facies. The mylonitic rocks of the KSZ provide an opportunity for the possible utilization of the deformational structures namely that of quartz and feldspar porphyroclast as well as, well developed shear bands for kinematic vorticity studies. Well developed quartz and feldspar porphyroclasts and synthetic and antithetic shear bands from six different mylonitic samples of the mylonitic Tangste granite has been used to estimate the bulk kinematic vorticity (Wk) involved in the overall deformation of the KSZ using the Porphyroclast Hyperbolic Distribution (PHD) method and Shear band (SB) analysis. The PHD method yields Wk values that range from Wk = 0.29 to Wk =0.43, where as the Shear bands yields values ranging from Wk = 0.45 to Wk =0.93, thus indicating distinct pure and simple shear regimes at different stages of the evolution of the KSZ.

  4. Stretching lineations, shear zone kinematics and dextral transpression along the Flying Point/Norumbega fault zone, Casco Bay, Maine

    SciTech Connect

    Swanson, M.T. . Dept. of Geosciences)

    1993-03-01

    Stretching lineations (L2) throughout the high-grade metamorphic rocks of the Casco Bay area are defined by the alignment of grain aggregates and elongate minerals generally parallel to subhorizontal upright F2 fold hinges. L2 lineations were developed due to regional layer-parallel shear related to dextral transpression along the Flying Point segment of the Norumbega Fault Zone during the later Paleozoic. The reorientation of boudin partings, quartz veins and pegmatite intrusions, the asymmetry of boudin pods, late vein folds and crenulations as well as a range of microscopic kinematic indicators within these rocks clearly indicate an overall dextral shear sense and a variable dip-slip component with local transport directions parallel to L2 during deformation. The distribution of L2 lineations about the trace of the NE- trending Flying Point Fault Zone shows: (a) E-plunging L2 in a broad zone on the NW side within SE-dipping, locally, pegmatite-injected, porphyroclastic schists and gneisses and; (c) sub-horizontal L2 within subordinate fault slices of folded Casco Bay Group lithologies to the SE. The Flying Point Fault zone itself consists of the straight planar gneisses and related rocks as a 2 km wide corridor of high shear strain reflected in the development of quartz-vein sheath folds parallel to L2. Variably-deformed mafic and felsic intrusions preserved as asymmetric pods and lenses within the flanking lithologies have been obliterated within this zone of high shear strain. This kinematic pattern and distribution of lineations is interpreted as an asymmetric transpressional uplift dominated by a broad NW front suffering oblique escape toward the west under dextral reverse motions and a major near-vertical zone of decoupling that developed at a restraining bend at the southwest end of the Norumbega Fault Zone.

  5. The Suruli shear zone and regional scale folding pattern in Madurai block of Southern Granulite Terrain, south India

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Rajeshdurai, P.

    2010-04-01

    Through the application of remote sensing techniques followed by field checks, the exact extension and nature of Suruli shear zone in Madurai block of southern granulite terrain (SGT) in south India is brought out for the first time in this work. The dominant rock type exposed in this area is charnockite intruded by granites. The Suruli ductile shear zone extends from just west of Kadaiyanallur in the south to Ganguvarpatti in the north over a length of 150 km. Between Kadaiyanallur and Kambam, the shear zone extends roughly in N-S direction. From Kambam, it swerves towards NE and then towards ENE near Ganguvarpatti. The strongly developed transposed foliation and mylonite foliation within the shear zone dip towards east only and so the eastern block (Varushanad hills) is the hanging wall and the western block (Cardamom hills) is the footwall of the shear zone. In the eastern block, three distinct phases of regional scale folding (F1, F2 and F3) are recognized. In complete contrast, the western block recorded only the last phase (F3) regional scale folding. As the more deformed eastern block (older terrain) moved over the relatively less deformed western block (younger terrain) along the Suruli shear zone, it is proposed that this shear zone is a thrust or reverse fault, probably of Proterozoic age. As there are evidences for decreasing displacement from north to south (i.e., from Ganguvarpatti to Kadaiyanallur), the Suruli shear zone could be a rotational thrust or reverse fault with the pivot located close to Kadaiyanallur. As the pivot is located near Achankovil shear zone which trends WNW-ESE (dip towards SSW), the Suruli shear zone could be splaying (branching) out from Achankovil shear zone. In a nutshell, the Suruli shear zone could be a splay, rotational thrust or reverse fault.

  6. Fluid flow and polymetallic sulfide mineralization in the Kettara shear zone (Jebilet Massif, Variscan Belt, Morocco)

    NASA Astrophysics Data System (ADS)

    N'diaye, I.; Essaifi, A.; Dubois, M.; Lacroix, B.; Goodenough, K. M.; Maacha, L.

    2016-07-01

    The Kettara shear zone is a regional wrench shear zone within the Jebilet massif of Western Morocco, part of the Variscan orogenic belt. This massif is characterized by bimodal magmatism, largely intrusive, and by a number of polymetallic massive sulfide deposits. A syntectonic mafic-ultramafic intrusion and an adjacent, deformed pyrrhotite-rich massive sulfide deposit are located within a 'compressional jog' of the shear zone. Hydrothermal alteration in both the intrusion and the wall rocks adjacent to the deposit is characterized by syntectonic replacement processes leading to formation of chlorite-schists and quartz ± calcite veins. Fluid inclusions in mineralized (pyrrhotite-bearing) quartz veins from the wall rocks adjacent to the deposit and in veins associated with chlorite-schists within the intrusion indicate a prevalence of H2O-CO2-CH4-N2 and H2O-salt fluid systems. In the mineralized veins the fluid shows reducing conditions, with gas dominated by CH4 and N2 and salinities around 7.5 wt% NaCl, whereas in the chlorite shear zones fluid is CO2 dominated and salinities are higher than 23 wt% NaCl. Hydrogen and oxygen isotopic compositions of chlorite and quartz are similar and demonstrate involvement of metamorphic water in both the deposit and the intrusion. The data are consistent with a regional metamorphic fluid flow through the Kettara shear zone. The migrating metamorphic fluids were reduced in the organic matter-rich host rocks leading to deposition of sulfides in the mineralized veins. There are two possible hypotheses for the origin of these mineralized veins: either they were formed during deformation and remobilization of a syn-sedimentary massive sulfide deposit, or they were formed synchronously with the sulfide deposit during development of the Kettara shear zone.

  7. Fluid flow and polymetallic sulfide mineralization in the Kettara shear zone (Jebilet Massif, Variscan Belt, Morocco)

    NASA Astrophysics Data System (ADS)

    N'diaye, I.; Essaifi, A.; Dubois, M.; Lacroix, B.; Goodenough, K. M.; Maacha, L.

    2016-07-01

    The Kettara shear zone is a regional wrench shear zone within the Jebilet massif of Western Morocco, part of the Variscan orogenic belt. This massif is characterized by bimodal magmatism, largely intrusive, and by a number of polymetallic massive sulfide deposits. A syntectonic mafic-ultramafic intrusion and an adjacent, deformed pyrrhotite-rich massive sulfide deposit are located within a 'compressional jog' of the shear zone. Hydrothermal alteration in both the intrusion and the wall rocks adjacent to the deposit is characterized by syntectonic replacement processes leading to formation of chlorite-schists and quartz ± calcite veins. Fluid inclusions in mineralized (pyrrhotite-bearing) quartz veins from the wall rocks adjacent to the deposit and in veins associated with chlorite-schists within the intrusion indicate a prevalence of H2O-CO2-CH4-N2 and H2O-salt fluid systems. In the mineralized veins the fluid shows reducing conditions, with gas dominated by CH4 and N2 and salinities around 7.5 wt% NaCl, whereas in the chlorite shear zones fluid is CO2 dominated and salinities are higher than 23 wt% NaCl. Hydrogen and oxygen isotopic compositions of chlorite and quartz are similar and demonstrate involvement of metamorphic water in both the deposit and the intrusion. The data are consistent with a regional metamorphic fluid flow through the Kettara shear zone. The migrating metamorphic fluids were reduced in the organic matter-rich host rocks leading to deposition of sulfides in the mineralized veins. There are two possible hypotheses for the origin of these mineralized veins: either they were formed during deformation and remobilization of a syn-sedimentary massive sulfide deposit, or they were formed synchronously with the sulfide deposit during development of the Kettara shear zone.

  8. The Freyenstein Shear Zone - Implications for exhumation of the South Bohemian Batholith (Moldanubian Superunit, Strudengau, Austria)

    NASA Astrophysics Data System (ADS)

    Griesmeier, Gerit; Iglseder, Christoph; Konstantin, Petrakakis

    2016-04-01

    The Moldanubian superunit is part of the internal zone of the Variscan Orogen in Europe and borders on the Saxothuringian and Sudetes zones in the north. In the south, it is blanketed by the Alpine foreland molasse. Tectonically it is subdivided into the Moldanubian Nappes (MN), the South Bohemian Batholith (SBB) and the Bavarian Nappes. This work describes the ~ 500 m thick Freyenstein shear zone, which is located at the southern border of the Bohemian Massif north and south of the Danube near Freyenstein (Strudengau, Lower Austria). The area is built up by granites of Weinsberg-type, which are interlayered by numerous dikes and paragneisses of the Ostrong nappe system. These dikes include medium grained granites and finegrained granites (Mauthausen-type granites), which form huge intrusions. In addition, smaller intrusions of dark, finegrained diorites und aplitic dikes are observed. These rocks are affected by the Freyenstein shear zone und ductily deformed. Highly deformed pegmatoides containing white mica crystals up to one cm cut through the deformed rocks and form the last dike generation. The Freyenstein shear zone is a NE-SW striking shear zone at the eastern edge of the SBB. The mylonitic foliation is dipping to the SE with angles around 60°. Shear-sense criteria like clast geometries, SĆ structures as well as microstructures show normal faulting top to S/SW with steep (ca. 50°) angles. The Freyenstein shear zone records a polyphase history of deformation and crystallization: In a first phase, mylonitized mineral assemblages in deformed granitoides can be observed, which consist of pre- to syntectonic muscovite-porphyroclasts and biotite as well as dynamically recrystallized potassium feldspar, plagioclase and quartz. The muscovite porphyroclasts often form mica fishes and show top to S/SW directed shear-sense. The lack of syntectonic chlorite crystals points to metamorphic conditions of lower amphibolite-facies > than 450° C. In a later stage fluid

  9. Evidence for fluid flow in ductile shear zones, Granite Wash Mountains, Maria fold and thrust belt

    SciTech Connect

    Marin, B.A.; Mosher, S. . Dept. of Geological Sciences)

    1993-04-01

    Synkinematic fluids that accompanied Mesozoic (D2) deformation in the Granite Wash Mountains, eastern Maria fold and thrust belt, had profound effects on the metamorphic mineralogy and deformation mechanisms of Paleozoic metsedimentary rocks. The D2 thrusts are discrete brittle faults that commonly bound highly sheared, ductilely deformed rocks. These low-angle faults cross cut a vertical section of Paleozoic and Mesozoic supracrustal rocks that were multiply repeated and upturned by earlier Mesozoic deformation, D1. Kinematic analysis of a series of these ductile shear zones has confirmed that the dominant sense of motion during thrusting was to the SW, however, some isolated kinematic indicators and indicators along the lowest zone suggest NE-thrusting. Microstructures in samples collected both within D2 ductile shear zones and outside D2 zones show fluids played an important role in D2 deformation. The abundant evidence for fluids along D2 ductile shear zones includes: quartz veins in the Kaibab Fm (a dolomitic marble), zones of metasomatic alteration ( bleached'' zones) within D2 zones, an increase in the abundance of metamorphic minerals within D2 zones, and the presence of synkinematic wollastonite in silicones limestones of the Redwall Fm. The most dramatic and significant effect of synkinematic fluids in on the style of deformation mechanisms operating during thrusting. Evidence for intracrystalline plastic deformation and rotational recrystallization is not well-developed: instead, microstructures are dominated by migrational recrystallization fabrics. In some samples, quartz grain boundaries have migrated over a preexisting foliation defined by aligned micas, indicating that grain boundaries were highly mobile. Fluid-enhanced grain boundary mobility has allowed internally deformed grains or parts of grains to be consumed rapidly with no or little record of the deformation left behind.

  10. Dextral strike-slip along the Kapıdağ shear zone (NW Turkey): evidence for Eocene westward translation of the Anatolian plate

    NASA Astrophysics Data System (ADS)

    Türkoğlu, Ercan; Zulauf, Gernold; Linckens, Jolien; Ustaömer, Timur

    2016-07-01

    The northern part of the Kapıdağ Peninsula (Marmara Sea, NW Turkey) is affected by the E-W trending Kapıdağ shear zone, which cuts through calc-alkaline granitoids of the Ocaklar pluton resulting in mylonitic orthogneiss. Macroscopic and microscopic shear-sense indicators, such as SC fabrics, shear bands, σ-clasts and mica fish, unequivocally suggest dextral strike-slip for the Kapıdağ shear zone. Based on petrographic data, deformation microfabrics of quartz and feldspar, and the slip systems in quartz, the dextral shearing should have been active at T = 500-300 °C and P < 5 kbar. Published K-Ar and 39Ar-40Ar cooling ages of hornblende and biotite suggest that cooling below 500-300 °C occurred during the Eocene (ca. 45-ca. 35 Ma), meaning that the Kapıdağ shear zone should have been active during Middle to Late Eocene times. The differential stress related to the shearing was <50 MPa as is indicated by the size of recrystallized quartz grains. Based on the new and published data, it is concluded that the westward movement of the Anatolian plate might have been active almost continuously from the Middle Eocene until recent times.

  11. Dextral strike-slip along the Kapıdağ shear zone (NW Turkey): evidence for Eocene westward translation of the Anatolian plate

    NASA Astrophysics Data System (ADS)

    Türkoğlu, Ercan; Zulauf, Gernold; Linckens, Jolien; Ustaömer, Timur

    2016-10-01

    The northern part of the Kapıdağ Peninsula (Marmara Sea, NW Turkey) is affected by the E-W trending Kapıdağ shear zone, which cuts through calc-alkaline granitoids of the Ocaklar pluton resulting in mylonitic orthogneiss. Macroscopic and microscopic shear-sense indicators, such as SC fabrics, shear bands, σ-clasts and mica fish, unequivocally suggest dextral strike-slip for the Kapıdağ shear zone. Based on petrographic data, deformation microfabrics of quartz and feldspar, and the slip systems in quartz, the dextral shearing should have been active at T = 500-300 °C and P < 5 kbar. Published K-Ar and 39Ar-40Ar cooling ages of hornblende and biotite suggest that cooling below 500-300 °C occurred during the Eocene (ca. 45-ca. 35 Ma), meaning that the Kapıdağ shear zone should have been active during Middle to Late Eocene times. The differential stress related to the shearing was <50 MPa as is indicated by the size of recrystallized quartz grains. Based on the new and published data, it is concluded that the westward movement of the Anatolian plate might have been active almost continuously from the Middle Eocene until recent times.

  12. Relationship of quartz LPO fabrics in mylonites near the Alpine Fault, New Zealand to the attitude of the shear zone boundary

    NASA Astrophysics Data System (ADS)

    Little, T. A.; Prior, D. J.; Toy, V.

    2015-12-01

    The active Alpine fault self-exhumes its own ductile shear zone roots and has known kinematics. Within ~1 km of the fault, the foliation is subparallel to the shear zone boundary in which it formed at amphibolite-facies conditions. Using EBSD, we analysed quartz Lattice Preferred Orientations (LPOs) of mylonites along a central part of the fault. The samples were mostly taken from naturally outcropping rocks, complemented by a few sections from core from the DFDP-2B hole—rocks that accommodated a range of finite strains and that have diverse quartz contents. All the LPOs feature a single (or strongest) girdle of c-axes hat is inclined ~28 ±4° away from the pole to the shear zone boundary (SZB) in a sense that is synthetic to the bulk shear. A point maximum of a-axes is inclined at the same angle relative to the shearing direction. This girdle is perpendicular to C' extensional shear bands in the rock, not to the bulk shear zone boundary, whereas the maximum is parallel to the slip direction of the shear bands. These relationships prevail across large variations in quartz content and finite shear strain magnitude. We infer that quartz LPOs are not always reliable indicators of SZB attitude, and they do not necessarily undergo an obvious rotation relative to the SZB as a function of increasing finite strain. Both the C' shears and the LPOs formed as late-incremental features at orientations controlled by the instantaneous geometry of a non-simple shear flow. We suggest that that the C' planes were aligned to planes of maximum shear-strain-rate. The data can be explained by flow in a thinning and stretching shear zone that deforms in plane strain at a Wk of ~0.7 to ~0.85. In support of this, inversions of seismic focal mechanism data yield an orientation of σ1 for the brittle crust of the central Southern Alps "natural laboratory" that approximately coincides with the predicted orientation of the contractional instantaneous stretching axis for the above

  13. Creep cavitation bands control porosity and fluid flow in lower crustal shear zones

    SciTech Connect

    Menegon, Luca; Fusseis, Florian; Stunitz, Holger; Xiao, Xianghui

    2015-03-01

    Shear zones channelize fluid flow in Earth’s crust. However, little is known about deep crustal fluid migration and how fluids are channelized and distributed in a deforming lower crustal shear zone. This study investigates the deformation mechanisms, fluid-rock interaction, and development of porosity in a monzonite ultramylonite from Lofoten, northern Norway. The rock was deformed and transformed into an ultramylonite under lower crustal conditions (temperature = 700–730 °C, pressure = 0.65–0.8 GPa). The ultramylonite consists of feldspathic layers and domains of amphibole + quartz + calcite, which result from hydration reactions of magmatic clinopyroxene. The average grain size in both domains is <25 mm. Microstructural observations and electron backscatter diffraction analysis are consistent with diffusion creep as the dominant deformation mechanism in both domains. Festoons of isolated quartz grains define C'-type bands in feldspathic layers. These quartz grains do not show a crystallographic preferred orientation. The alignment of quartz grains is parallel to the preferred elongation of pores in the ultramylonites, as evidenced from synchrotron X-ray microtomography. Such C'-type bands are interpreted as creep cavitation bands resulting from diffusion creep deformation associated with grain boundary sliding. Mass-balance calculation indicates a 2% volume increase during the protolith-ultramylonite transformation, which is consistent with synkinematic formation of creep cavities producing dilatancy. Thus, this study presents evidence that creep cavitation bands may control deep crustal porosity and fluid flow. Nucleation of new phases in creep cavitation bands inhibits grain growth and enhances the activity of grain size–sensitive creep, thereby stabilizing strain localization in the polymineralic ultramylonites.

  14. A Middle Paleozoic shear zone in the Sierra de Valle Fértil, Argentina: Records of a continent-arc collision in the Famatinian margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Cristofolini, E. A.; Otamendi, J. E.; Walker, B. A.; Tibaldi, A. M.; Armas, P.; Bergantz, G. W.; Martino, R. D.

    2014-12-01

    Geological, petrological and structural observations were obtained along a 30-km-long traverse across a segment of the Valle Fértil shear zone, central-western Argentina. On a regional scale, the shear zone appears as numerous discontinues belts over 25 km in width and is approximately 140 km in length, extended on the western section of the Sierras Valle Fértil - La Huerta mountain range. The steeply dipping shear zone with a vertical mylonitic lineation is composed of amphibolite facies ribbon mylonites and amphibolite to greenschist facies ultramylonites derived from Early Ordovician plutonic and metasedimentary parent rocks. Locally, syn-kinematic retrogression of mylonites formed greenschist facies phyllonites. During the later stages of deformation, unstrained parent rocks, mylonites, ultramylonites and phyllonites were affected by pervasive cataclasis under low greenschist facies conditions associated with localized faulting. One new 40Ar/39Ar age on biotite and published 40Ar/39Ar ages on amphibole in the shear zone yield an average cooling rate of 6.2 °C/Ma for a time period that crosses the Silurian-Devonian boundary. Since in metasedimentary rocks the youngest zircon's rims dated at 465 Ma marks the beginning of cooling, nearly continuous uplift of rocks within the shear zone occurred over a minimum time span of 55 Ma. During the period of active deformation, dip-slip movement can explain uplift of several kilometers of the Early Ordovician arc crust. The Valle Fértil shear zone, which was formed near above the inferred suture zone between the Famatinian arc and Cuyania microcontinent, is a major structural boundary nucleated within the Early Ordovician crust. The simplest geodynamic model to explain the evolution of the Valle Fértil shear zone involves the collision of the composite Cuyania/Precodillera microcontinent against the Famatinian arc.

  15. Effect of depth-dependent shear modulus on tsunami generation along subduction zones

    USGS Publications Warehouse

    Geist, E.L.; Bilek, S.L.

    2001-01-01

    Estimates of the initial size of tsunamis generated by subduction zone earthquakes are significantly affected by the choice of shear modulus at shallow depths. Analysis of over 360 circum-Pacific subduction zone earthquakes indicates that for a given seismic moment, source duration increases significantly with decreasing depth (Bilek and Lay, 1998; 1999). Under the assumption that stress drop is constant, the increase of source duration is explained by a 5-fold reduction of shear modulus from depths of 20 km to 5 km. This much lower value of shear modulus at shallow depths in comparison to standard earth models has the effect of increasing the amount of slip estimated from seismic moment determinations, thereby increasing tsunami amplitude. The effect of using depth dependent shear modulus values is tested by modeling the tsunami from the 1992 Nicaraguan tsunami earthquake using a previously determined moment distribution (lhmle??, 1996a). We find that the tide gauge record of this tsunami is well matched by synthetics created using the depth dependent shear modulus and moment distribution. Because excitation of seismic waves also depends on elastic heterogeneity, it is important, particularly for the inversion of short period waves, that a consistent seismic/tsunami shear modulus model be used for calculating slip distributions.

  16. Kinematics of the Torcal Shear Zone: transpressional tectonics shaping orogenic curves in the northern Gibraltar Arc.

    NASA Astrophysics Data System (ADS)

    Barcos, Leticia; Balanyá, Juan Carlos; Díaz-Azpiroz, Manuel; Expósito, Inmaculada; Jiménez-Bonilla, Alejandro

    2014-05-01

    Structural trend line patterns of orogenic arcs depict diverse geometries resulting from multiple factors such as indenter geometry, thickness of pre-deformational sequences and rheology of major decollement surfaces. Within them, salient-recess transitions often result in transpressive deformation bands. The Gibraltar Arc results from the Neogene collision of a composite metamorphic terrane (Alboran Domain, acting as a relative backstop) against two foreland margins (Southiberian and Maghrebian Domains). Within it, the Western Gibraltar Arc (WGA) is a protruded salient, 200 km in length cord, closely coinciding with the apex zone of the major arc. The WGA terminates at two transpressional zones. The main structure in the northern (Betic) end zone is a 70 km long and 4-5 km wide brittle deformation band, the so-called Torcal Shear Zone (TSZ). The TSZ forms a W-E topographic alignment along which the kinematic data show an overall dextral transpression. Within the TSZ strain is highly partitioned into mainly shortening, extensional and strike-slip structures. The strain partitioning is heterogeneous along the band and, accordingly, four distinct sectors can be identified. i) The Peñarrubia-Almargen Transverse Zone (PATZ), located at the W-end of the TSZ presents WNW-ESE folds and dextral faults, together with normal faults that accommodate extension parallel to the dominant structural trend. WNW ESE dextral faults might be related with synthetic splays at the lateral end of the TSZ. ii) The Sierra del Valle de Abdalajís (SVA) is characterized by WSW-ENE trending folds and dextral-reverse faults dipping to SSE, and NW-SE normal faults. The southern boundary of the SVA is a dextral fault zone. iii) The Torcal de Antequera Massif (TAM) presents two types of structural domains. Two outer domains located at both margins characterized by E-W trending, dextral strike-slip structures, and an inner domain, characterized by en echelon SE-vergent open folds and reverse shear

  17. Strain pattern and deformational history in the eastern part of the Cauvery shear zone, southern India

    NASA Astrophysics Data System (ADS)

    Chetty, T. R. K.; Rao, Y. J. Bhaskar

    2006-10-01

    Regional structural mapping, guided by remote sensing interpretation, in the eastern part of the Cauvery shear zone (CSZ), southern Granulite Terrain, reveals a structural framework of two major boundary shear zones interlinked by a set of sigmoidal shear belts. The strain pattern and deformational history are manifest in terms of two major episodes; D1 and D2. While D1 structures are well preserved in low strain areas, the D2 fabrics are well reflected in high strain belts enveloping the low strain domains. Our multiscale structural observations can be modelled in terms of a plan view duplex showing a cross sectional flower structure related to regional transpression resulting from late Neoproterozoic collisional processes in the eastern Gondwana.

  18. Initiation and propagation of shear zones in a heterogeneous continental lithosphere

    SciTech Connect

    Tommasi, A.; Vauchez, A.

    1995-11-10

    Numerical methods were used to investigate the deformation of a continental plate in northeastern Brazil. Of particular interest are the perturbations induced by a stiff compressional deformation of a highly heterogeneous continental lithosphere on the development of a shear zone formed at the termination of a stiff block.

  19. Evolution of Continental Lower Crust Recorded By an Exhumed Deep Crustal Intracontinental Shear Zone

    NASA Astrophysics Data System (ADS)

    Dumond, G.; Mahan, K. H.; Regan, S. P.; Williams, M. L.; Goncalves, P.; Wood, V. R.

    2014-12-01

    Exposures of deep crustal shear zones are fundamental records of strain localization and the temporal evolution of ductile to brittle behavior as these tectonites were exhumed to the surface. We present results from a decade of field-based research on a deeply exhumed (~35 km-paleodepths) strike-slip shear zone in the western Churchill province of the Canadian Shield. The Grease River shear zone is a >400 km-long and 7 km-thick structure that cuts the Athabasca granulite terrane, North America's largest exposure of continental lower crust (>20,000 km2). The shear zone is dominated by granulite- to amphibolite-grade L-S and L>S tectonites characterized by penetrative NE-striking steeply-dipping foliations with gently-plunging to sub-horizontal stretching and intersection lineations. These fabrics are locally overprinted by pseudotachylyte and narrow (<500 m-thick) greenschist-grade zones of cataclasite. Dextral kinematics are defined by deflected foliation trajectories, C' shear bands, and well-developed σ- and δ-type porphyroclasts of Kfs + Pl + Opx + Grt + Hb in felsic to intermediate granulite paragneisses and orthogneisses. Data collected along a well-exposed, nearly 150 km-long segment of the shear zone documents a >100 m.y. episodic record of transpressive to strike-slip intracontinental strain accumulation that coincided with two oppositely convergent orogenies: the east-vergent arc-continent collision of the 1.94-1.90 Ga Taltson orogen and the west-vergent continent-continent collision of the 1.9-1.8 Ga Trans-Hudson orogen. Deformation mechanisms evolved from distributed ductile dynamic recrystallization and grain-size reduction to localized pseudotachylyte development, cataclastic flow, and brittle faulting. Lower crustal behavior during strain localization was dynamic. Melt-weakened mono-cyclic crust was juxtaposed against strong isobarically-cooled poly-cyclic crust along the shear zone at 1.92-1.90 Ga. Brittle-ductile reactivation of the structure

  20. Initiation of deformation of the Eastern California Shear Zone: Constraints from Garlock fault geometry and GPS observations

    USGS Publications Warehouse

    Gan, Weijun; Zhang, P.; Shen, Z.-K.; Prescott, W.H.; Svarc, J.L.

    2003-01-01

    We suggest a 2-stage deformation model for the Eastern California Shear Zone (ECSZ) to explain the geometry of the Garlock fault trace. We assume the Garlock fault was originally straight and then was gradually curved by right-lateral shear deformation across the ECSZ. In our 2-stage deformation model, the first stage involves uniform shear deformation across the eastern part of the shear zone, and the second stage involves uniform shear deformation across the entire shear zone. In addition to the current shape of the Garlock fault, our model incorporates constraints on contemporary deformation rates provided by GPS observations. We find that the best fitting age for initiation of shear in eastern part of the ECSZ is about 5.0 ?? 0.4 Ma, and that deformation of the western part started about 1.6 Myr later.

  1. Viscoelastic shear zone model of a strike-slip earthquake cycle

    USGS Publications Warehouse

    Pollitz, F.F.

    2001-01-01

    I examine the behavior of a two-dimensional (2-D) strike-slip fault system embedded in a 1-D elastic layer (schizosphere) overlying a uniform viscoelastic half-space (plastosphere) and within the boundaries of a finite width shear zone. The viscoelastic coupling model of Savage and Prescott [1978] considers the viscoelastic response of this system, in the absence of the shear zone boundaries, to an earthquake occurring within the upper elastic layer, steady slip beneath a prescribed depth, and the superposition of the responses of multiple earthquakes with characteristic slip occurring at regular intervals. So formulated, the viscoelastic coupling model predicts that sufficiently long after initiation of the system, (1) average fault-parallel velocity at any point is the average slip rate of that side of the fault and (2) far-field velocities equal the same constant rate. Because of the sensitivity to the mechanical properties of the schizosphere-plastosphere system (i.e., elastic layer thickness, plastosphere viscosity), this model has been used to infer such properties from measurements of interseismic velocity. Such inferences exploit the predicted behavior at a known time within the earthquake cycle. By modifying the viscoelastic coupling model to satisfy the additional constraint that the absolute velocity at prescribed shear zone boundaries is constant, I find that even though the time-averaged behavior remains the same, the spatiotemporal pattern of surface deformation (particularly its temporal variation within an earthquake cycle) is markedly different from that predicted by the conventional viscoelastic coupling model. These differences are magnified as plastosphere viscosity is reduced or as the recurrence interval of periodic earthquakes is lengthened. Application to the interseismic velocity field along the Mojave section of the San Andreas fault suggests that the region behaves mechanically like a ???600-km-wide shear zone accommodating 50 mm/yr fault

  2. Relating rheology to geometry in large-scale natural shear zones

    NASA Astrophysics Data System (ADS)

    Platt, John

    2016-04-01

    The geometry and width of the ductile roots of plate boundary scale faults are very poorly understood. Some field and geophysical data suggests widths of tens of km in the lower crust, possibly more in the upper mantle. Other observations suggest they are much narrower. Dip slip shear zones may flatten out and merge into zones of subhorizontal lower crustal or asthenospheric flow. The width of a ductile shear zone is simply related to relative velocity and strain rate. Strain rate is related to stress through the constitutive relationship. Can we constrain the stress, and do we understand the rheology of materials in ductile shear zones? A lot depends on how shear zones are initiated. If they are localized by pre-existing structures, width and/or rheology may be inherited, and we have too many variables. If shear zones are localized primarily by shear heating, initial shear stress has to be very high (> 1 GPa) to overcome conductive heat loss, and very large feedbacks (both positive and negative) make the system highly unstable. Microstructural weakening requires a minimum level of stress to cause deformation and damage in surrounding rock, thereby buffering the stress. Microstructural weakening leads to grain-size sensitive creep, for which we have constitutive laws, but these are complicated by phase mixing in polyphase materials, by viscous anisotropy, by hydration, and by changes in mineral assemblage. Here are some questions that need to be addressed. (1) If grain-size reduction by dynamic recrystallization results in a switch to grain-size sensitive creep (GSSC) in a stress-buffered shear zone, does dynamic recrystallization stop? Does grain growth set in? If grain-size is still controlled by dislocation processes, then the effective stress exponent for GSSC is 4-5, even though the dominant mechanism may be diffusion and/or grain-boundary sliding (GBS). (2) Is phase mixing in ultramylonites primarily a result of GBS + neighbour switching, creep cavitation and

  3. The significance of geological and zircon age data derived from the wall rocks of the Ailao Shan-Red River Shear Zone, NW Vietnam

    NASA Astrophysics Data System (ADS)

    Żelaźniewicz, Andrzej; Hòa, Trần Trọng; Larionov, Alexander N.

    2013-09-01

    This paper offers new evidence on whether the Ailao Shan-Red River Shear Zone of NW Vietnam is part of a suture zone between two continental blocks (the IndoChina Block and the South China Block) or whether it is itself of intracontinental origin, developed within the South China margin. To help clarify the role that the Ailao Shan-Red River Shear Zone plays in South China tectonic reconstructions, we gathered new whole-rock geochemistry, structural field data, and zircon U-Pb (SHRIMP) ages from granites, rhyodacites, and migmatites that occur within geological units adjacent to both the SW and NE sides of the Red River Fault Zone, a segment of the larger shear zone. The new zircon ages show that both walls of the Red River Fault Zone contain metamorphic and intraplate A-type granitoid rocks of Late Permian-Early Triassic age (263-240 Ma) and are of Indosinian origin. In the SW wall, the Fan Si Pan complex is a Neoproterozoic basement of metagranites and metasediments that was intruded by Late Permian (˜260 Ma), peralkaline, A-type granites and by subalkaline, A-type, biotite granite of Eocene age (˜35 Ma), containing xenoliths of gneissified Permian granitoids. The two intrusive episodes were separated by regional tectonic deformations occurring within a transpressional regime of a NW/W-vergent thrusting with a left-lateral oblique component, that was associated with greenschist to amphibolite facies metamorphism, presumably also of Eocene age (˜50-35 Ma), and that may have been related to the left-lateral movement on the Ailao Shan-Red River Shear Zone. In the NE wall, the Lo Gam complex is a Neoproterozoic basement (˜767 Ma) that was repeatedly subjected to tectonothermal activity throughout the Palaeozoic (at ˜450-420 Ma, ˜350 Ma, ˜265 Ma), ending in the Early Triassic (˜248 Ma). There was no thermal overprint during the Cenozoic. In this wall, a significant part of the Permo-Triassic thermotectonism was ductile shearing that was concentrated along

  4. Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level.

    PubMed

    Nordez, Antoine; Hug, François

    2010-05-01

    This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions, consisting of linear torque ramps of 30 s from 0 to 40% of maximal voluntary contraction. Both electromyographic (EMG) activity and shear elastic modulus were continuously measured in the biceps brachii during the two ramps. There was significant linear regression (P<0.001) between shear elastic modulus and EMG activity level for both ramps of all six subjects (R2=0.94+/-0.05, ranging from 0.82 to 0.98). Good repeatability was found for shear elastic modulus estimated at both 3% (trial 1: 21.7+/-6.7 kPa; trial 2: 23.2+/-7.2 kPa, intraclass correlation coefficient=0.89, standard error in measurement=2.3 kPa, coefficient of variation=12.7%) and 7% (trial 1: 42.6+/-14.1 kPa; trial 2: 44.8+/-15.8 kPa, intraclass correlation coefficient=0.94, standard error in measurement=3.7 kPa, coefficient of variation=7.1%) of maximal EMG activity. The shear elastic modulus estimated at both 3 and 7% of maximal EMG activity was not significantly different (P>0.05) between the two trials. These results confirm our hypothesis that the use of supersonic shear imaging greatly improves the correlation between muscle shear elastic modulus and EMG activity level. Due to the nonlinearity of muscle mechanical properties, the muscle elasticity should be linked to the muscle stress. Therefore, the present study represents a first step in attempting to show that supersonic shear imaging can be used to indirectly estimate muscle stress.

  5. Role of the Eastern California Shear Zone in accommodating Pacific-North American Plate motion

    NASA Astrophysics Data System (ADS)

    Dokka, Roy K.; Travis, Christopher J.

    1990-08-01

    The newly recognized Eastern California shear zone (ECSZ) of the Mojave Desert-Death Valley region has played a major, but previously underappreciated role in accommodating the dextral shear between the Pacific and North American plates in late Cenozoic time. Comparison of integrated net slip along the shear zone with motion values across the entire transform boundary indicates that between 9% and 23% of the total relative plate motion has occurred along the ECSZ since its probable inception ˜10-6 Ma. Long-term integrated shear along the ECSZ (6-12 mm yr-1) is similar to historic measurements (6.7±1.3 mm yr-1). Time-space patterns of faulting suggest that shear was concentrated in the eastern part of the Mojave Desert block and Death Valley during late Miocene and early Pleistocene time, but that the locus of faulting in the south-central Mojave jumped westward between 1.5 and 0.7 Ma.

  6. Ductile shear zone rheology: the viewpoint of experimentally crept lower crustal rocks and analogues

    NASA Astrophysics Data System (ADS)

    Dimanov, Alexandre; Raphanel, Jean; Bornert, Michel; Bourcier, Mathieu; Gaye, Ababacar; Ludwig, Wolfgang

    2015-04-01

    With respect to lithosphere rheology, we are especially interested in the mechanical behavior and evolution of ductile shear zones at depth, which present polyphase and heterogeneous character and multi-scale strain localization patterns. According to structural geology, most strain concentrates in ultramylonitic layers, which exhibit along with metamorphism overprinted or concomitant microstructural signatures from several deformation mechanisms. The latter are either active in volume (crystal slip plasticity and dislocation recovery processes), or in the vicinity and along interfaces (grain sliding, phase transformations and solution mass transfer). Because all of these contribute to the drastic evolution of microstructures with respect to the wall rock and the protomylonite, and because the chronology of their activation and their interactions are unclear, inference of the overall rheology from these microstructural records seems illusory. Therefore, since more than a decade we investigate experimentally and numerically the rheology of synthetic rocks representative of lower crustal mineralogy (namely plagioclases and clinopyroxenes). Samples are elaborated with different microstructures and with variable phases, fluid and melt contents for the purpose of being representative of diverse geodynamical contexts. Experiments were performed either at constant stress or strain rate, in co-axial compression or in torsion. For macroscopic non-Newtonian flow we clearly identified dislocation glide and creep mechanisms. That is to say that power law rheology relates to dominant crystal slip plasticity accommodated by recovery processes, including dislocation climb and pile-up, sub-grain rotation and marginal recrystallization. We further refer to this regime as RCSP (recovery crystal slip plasticity). Conversely, Newtonian (linear viscous) behavior mostly involves grain boundary sliding (GBS) accommodated by diffusional mass transfer and grain boundary dislocation

  7. Development of a deep-crustal shear zone in response to syntectonic intrusion of mafic magma into the lower crust, Ivrea-Verbano zone, Italy

    USGS Publications Warehouse

    Snoke, A.W.; Kalakay, T.J.; Quick, J.E.; Sinigoi, S.

    1999-01-01

    A 1 to 1.5 km-thick, high-temperature shear zone is localized in wall rocks subparallel to the eastern intrusive contact of the Permian Mafic Complex of the Ivrea-Verbano zone (IVZ), Italy. The shear zone is characterized by concentrated ductile deformation manifested by a penetrative foliation subparallel to the intrusive contact and a northeast-plunging sillimanite lineation. Evidence of noncoaxial strain and transposition is widespread in the shear zone including such features as rootless isoclinal folds, dismemberment of competent layers, and scattered kinematic indicators. The metasedimentary rocks in the shear zone are migmatitic, and the accumulation of leucosome is variable within the shear zone. Near the intrusive contact with the Mafic Complex leucosome forms ~20 vol% of the wall rock, whereas leucosome concentrations may locally reach ~60 vol% of the wall rock near the outer limits of the shear zone. This variation in vol% leucosome suggests melt/magma migration from the inferred site of anatexis along the intrusive contact to lower-strain regions within and near the margins of the shear zone. The leucosome accumulations chiefly occur as layer-parallel concentrations, but are also folded and boudined, and locally are associated with tension gashes and fracture arrays. Networks of granitic dikes and small plutons in the eastern IVZ suggest that some magmas migrated out of the high-temperature shear zone. Some magma apparently migrated laterally along the strike of the shear zone and concentrated in areas of lower strain where the intrusive contact takes a major westward bend. The high-temperature shear zone is interpreted as a 'stretching fault' (or stretching shear zone) after Means [W.D. Means, Stretching faults, Geology 17 (1989) 893-896], whereupon the metasedimentary wall rocks and associated leucosome deformed synchronously with the multistage emplacement and deformation flow of the Mafic Complex. The recognition of a high-temperature shear zone

  8. The Pliny-Strabo trench region: A large shear zone resulting from slab tearing

    NASA Astrophysics Data System (ADS)

    Özbakır, Ali D.; Şengör, A. M. C.; Wortel, M. J. R.; Govers, R.

    2013-08-01

    The eastern part of the Hellenic subduction zone is composed of the Pliny and Strabo "trenches" that have been regarded as a zone of convergence between the subducting African lithosphere and the overriding Anatolian-Aegean plate. In the Pliny and Strabo "trenches", the oblique relative plate motion is generally thought to be accommodated by a typical strain partitioning consisting of strike-slip and convergence components. Notwithstanding the occurrence of strike-slip motion parallel with the Pliny-Strabo "trenches", trench-normal thrusting is not observed so far. Therefore, we conducted a detailed analysis to investigate the deformation mechanisms of the eastern part of the Hellenic Trench system. Our analyses of offshore faulting and mechanisms of earthquakes in the overriding Aegean lithosphere show that the region of the Pliny and Strabo "trenches" obeys the mechanics of the sinistral shear zone model of Tchalenko (1970). We propose that the trench perpendicular convergence is taken up by the Rhodes fold and thrust belt, which has been postulated off the southeast coast of Rhodes. Several regional P-wave tomography results give indications of a slow seismic anomaly under this zone, which is interpreted as a tear between the Hellenic and Cyprus subduction zones. The primary reason for such tear and its propagation is the ongoing rollback of the subducted part of the African lithosphere, also referred to as "the Aegean slab". Our work elucidates the surface expression of this tearing process in the form of the development of a shear zone between the Aegean lithosphere in the NW and the African lithosphere in the SE, the Pliny-Strabo Shear Zone.

  9. Faults and Shear Zones: Constraints on the Extrapolation of Laboratory Tests

    NASA Astrophysics Data System (ADS)

    Dresen, Georg; Bohnhoff, Marco; Kwiatek, Grzegorz; Rybacki, Erik

    2016-04-01

    Geological structures and processes often show strong geometric and physical similarities if observed on different scales. Examples range from fractures, faults and shear zones to seismic characteristics such as b-value or seismic source properties. Laboratory tests on small-scale rock samples allow studying aspects of processes that govern earthquake nucleation and rupture propagation, strain localization in shear zones, and high-temperature rheology. However, upscaling of laboratory results to the field scale requires that dominant deformation processes remain the same on vastly different scales, and that potential effects of changing kinematic and thermodynamic boundary conditions may successfully be accounted for by appropriate constitutive equations. A key observational strategy relies on analysis of deformation processes on different scales. In this presentation we will illustrate the approach with two examples from very different geological environments: 1. Scaling of earthquake mechanisms observed in the laboratory, in mines and along major fault zones and 2. High-temperature creep processes governing the deformation in highly localized shear zones in the lower crust and upper mantle. Our results show that constitutive models capturing fundamental physical processes on the laboratory scale may be successfully applied to model deformation on the field scale.

  10. Pseudotachylite in eclogite-facies shear zones from the Lofoten Islands, northern Norway

    NASA Astrophysics Data System (ADS)

    Leech, M. L.; Shulman, D.; Dutra, S.

    2009-12-01

    The Lofoten Islands of northern Norway are one of two areas on Earth where eclogite-facies pseudotachylite has been found. Pseudotachylite-bearing eclogite shear zones indicate brittle faulting below the brittle/ductile transition existing at approximately 40 km depth in mafic lithosphere. Localized eclogite-facies shear zones, containing omphacite and garnet, have been found in various types of host rock on the islands of Flakstadøy, Vestvagøya, and Austvagøya. These eclogite shear zones are thought to be the result of deep crustal processes during Caledonian subduction and continent-continent collision. Pseudotachylite veins within these ESZ were observed in two locations on Flakstadøy near Flakstad and Nusfjord. At both locations, pseudotachylite- and non-pseudotachylite-bearing eclogite shear zones were sampled with a one-inch core drill. Using Fe-Mg exchange between garnet and omphacite, eclogitization took place at approximately 1.5 GPa and 680° C or approximately 45 km depth. Mineral chemistry and microstructural analyses of the host rock to shear zone transitions will provide information on the relationship between deformation and high-grade metamorphism. The microstructural relationship between the eclogite shear zones and pseudotachylite formation will be analyzed using electron backscatter diffraction (EBSD) at San Francisco State University. We expect mineral chemistry and EBSD analyses will distinguish between deformation-controlled or fluid-induced eclogite-facies metamorphism in otherwise metastable host rocks. Based on field observations, the ESZ and pseudotachylite formed coseismically, indicating brittle faulting occurred at eclogite-facies P-T conditions in the lower crust. Previous attempts to date the ESZ have been hampered by a retrograde amphibolite-facies overprint during post-Caledonian extension and exhumation. We will use 40Ar/39Ar to date crystal-free portions (i.e., unretrogressed) of pseudotachylite veins and Rb-Sr or Lu-Hf to

  11. The Neoproterozoic Trans-Saharan/Trans-Brasiliano shear zones: Suggested Tibetan Analogs

    NASA Astrophysics Data System (ADS)

    Attoh, K.; Brown, L. D.

    2008-05-01

    The Trans-Saharan Borborema (TSB) belt is a product of the assembly of Gondwana, a supercontinent that formed from cratonic fragments derived from Rodinia and other vagrant lithospheric blocks. Recent reconstructions show the West African craton (WAC) and Congo- San-Francisco craton juxtaposed by the closure of the Brasiliano (Pharuside, Adamastor) ocean during early stages of the Pan-African orogenic cycle in northwest Gondwana. The Dahomeyide and Pharuside segments of the resulting orogenic belt preserve well- organized lithotectonic units on the eastern margin of the WAC. The foreland units consist of craton-verging nappe stacks formed from the deformed margin of the WAC and its cover rocks. The near-hinter land is underlain by granitoid gneisses postulated to represent ca 600 Ma juvenile crust, exposed in the Accra-Benin plain. Further east from the suture zone is the Nigerian province, which includes rocks that were extensively reworked apparently during the Pan-African. The Borborema province of northeastern Brasil is the correlative/ extension of Nigerian. It is underlain by rocks intensively reworked during the Brasiliano (Pan-African) orogeny and juxtaposed along a series of shear zones. A distinct feature of the TBS are these extensive shear zones, many of which are typified by dextral wrench shear. In West Africa the prominent examples extend from the Sahara to the coastline and include the Hoggar, which splays into the Kandi fault, which itself has numerous splays in Benin, Togo and southeastern Ghana. In Brazil, nearly all reconstructions show that the continuation of the Kandi Fault is the Sobral fault which is inferred to be the northern segment of the Trans-Brasiliano lineament (TBL). If correct, the TBL and its TBS extensions constitute a 4000 km long dextral shear zone, perhaps the longest coherent shear zone on earth. We suggest that the geometry of these shear zones and associated Pan African sutures have instructive analogs in the Tibet

  12. Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones.

    PubMed

    Fusseis, F; Regenauer-Lieb, K; Liu, J; Hough, R M; De Carlo, F

    2009-06-18

    The feedback between fluid migration and rock deformation in mid-crustal shear zones is acknowledged as being critical for earthquake nucleation, the initiation of subduction zones and the formation of mineral deposits. The importance of this poorly understood feedback is further highlighted by evidence for shear-zone-controlled advective flow of fluids in the ductile lower crust and the recognition that deformation-induced grain-scale porosity is a key to large-scale geodynamics. Fluid migration in the middle crust cannot be explained in terms of classical concepts. The environment is considered too hot for a dynamic fracture-sustained permeability as in the upper crust, and fluid pathways are generally too deformed to be controlled by equilibrium wetting angles that apply to hotter, deeper environments. Here we present evidence that mechanical and chemical potentials control a syndeformational porosity generation in mid-crustal shear zones. High-resolution synchrotron X-ray tomography and scanning electron microscopy observations allow us to formulate a model for fluid migration in shear zones where a permeable porosity is dynamically created by viscous grain-boundary sliding, creep cavitation, dissolution and precipitation. We propose that syndeformational fluid migration in our 'granular fluid pump' model is a self-sustained process controlled by the explicit role of the rate of entropy production of the underlying irreversible mechanical and chemical microprocesses. The model explains fluid transfer through the middle crust, where strain localization in the creep regime is required for plate tectonics, the formation of giant ore deposits, mantle degassing and earthquake nucleation. Our findings provide a key component for the understanding of creep instabilities in the middle crust. PMID:19536262

  13. 40Ar/ 39Ar and RbSr analyses from ductile shear zones from the Atacama Fault Zone, northern Chile: the age of deformation

    NASA Astrophysics Data System (ADS)

    Scheuber, Ekkehard; Hammerschmidt, Konrad; Friedrichsen, Hans

    1995-11-01

    The influence of deformation on the K-Ar and the Rb-Sr isotope system is investigated. It is assumed that, due to the diffusion processes involved, deformation has a similar effect on isotopic equilibrium as has temperature. In order to examine the influence of deformation on the K-Ar and the Rb-Sr isotope systems two shear zones from the Atacama Fault Zone (AFZ), situated in the north Chilean Coastal Cordillera, have been investigated. The AFZ, which was active as a sinistral strike-slip fault during the Mesozoic, has two sets of shear zones, one formed under amphibolite (SZ1), one under greenschist facies conditions (SZ2), Rb-Sr and 40Ar/ 39Ar age determinations were conducted on samples from cross sections of each set. In SZ1 the hornblendes and bioties from a weakly deformed sample reveal cooling ages of 153-152 and 150 ± 1 Ma, respectively. Biotite from the center of the shear zone of SZ1 gave an isochron of 143.9 ± 0.3 Ma (MSWD = 0.04) which is interpreted as the age of deformation which produced resetting of the mineral system. In SZ2 hornblendes yielded 40Ar/ 39Ar plateau (cooling) ages of ˜ 138 Ma. Biotites from undeformed samples gave Rb-Sr and 40Ar/ 39Ar total degassing ages of 130 ± 1 Ma, whereas biotite from the mylonitic rocks yielded 126-125 Ma which dates the time of deformation. Sr isotope homogenization occurred in the mylonitic rocks, and is most likely a result of deformation. The formation of SZ1 can be correlated to the Araucanian (= Nevadan) phase. The deformation in SZ2 is related to the onset of uplift and cooling of the Coastal Cordilleran magmatic arc.

  14. Preservation of Blueschist Facies Minerals Along a Shear Zone By Fast Flowing CO2-Bearing Fluids - a Field Study from the Cycladic Blueschist Unit on Syros, Greece

    NASA Astrophysics Data System (ADS)

    Kleine, B. I.; Skelton, A.; Huet, B.; Pitcairn, I.

    2014-12-01

    Our study was undertaken at Fabrika Beach on the southeastern shore of Syros which belongs to the Greek Cycladic archipelago in the Aegean Sea. The island is situated within the Attic-Cycladic metamorphic core complex belt and is now located in the back-arc of the active Hellenic subduction zone. At Fabrika Beach, blueschist facies minerals are observed in haloes fringing a shear zone within greenschist facies rocks. The approximately vertical shear zone cuts a near horizontal layer of greenschist facies rocks. The blue haloes are ca. 1 m wide, and are seen on both sides of the shear zone. The haloes consist of a carbonated blueschist facies mineral assemblage. Based on petrological, geochemical and thermodynamic evidence we show that these haloes were preserved at greenschist facies conditions in response to fast flowing CO2-bearing fluid. Furthermore, we use a simple mass balance to calculate the fluid flux within the shear zone which would be required to cause the observed preservation of blueschist facies minerals. We constructed a simplified P-T vs. XCO2 pseudosection using PerPlex 6.6.6 to confirm that preservation of carbonated blueschist can occur at greenschist facies conditions in the presence of CO2-bearing fluid. The flux of CO2-bearing fluid along the shear zone was rapid with respect to the fluid flux in the surrounding rocks. Mass balance calculations reveal that the fluid flux within the shear zone was at least 100 - 2000 times larger than the fluid flux within the surrounding rocks. Mineral textures show greenschist facies minerals partially replacing blueschist minerals in the haloes supporting our interpretation that blueschist facies minerals were preserved during greenschist facies retrogression.

  15. Identifying shear transformation zones in amorphous solids via a virtual strain method

    NASA Astrophysics Data System (ADS)

    Falk, Michael; Patinet, Sylvain

    One outstanding problem in the mechanical response of amorphous solids is the identification of flow defect sites, so called shear transformation zones (STZs), a priori in the structure. Many methods have been utilized in order to predict local STZ sites including short-range order, soft-mode analysis and machine learning. Here we directly probe local regions of the material via shear in order to detect nearby saddle points that can result in transformations. This non-perturbative method gives excellent correlation with global shear of the system. It also provides a means to cross-correlate the existence of such local transition pathways with other proposed diagnostics such as the soft-spot method of Manning and Liu. We use the information gained by this method to consider the coarse-graining necessary to connect atomistic methods to continuum theories.

  16. Distinction between tectonic mixing and mass transfer processes in a ductile shear zone

    NASA Astrophysics Data System (ADS)

    Yang, X.-Y.; O'Hara, K. D.; Moecher, D. P.

    1998-08-01

    A petrological, geochemical and microtextural study of an upper amphibolite facies shear zone, developed in interlayered mafic and felsic layers, permits the relative roles of tectonic mixing and fluid-assisted mass transfer processes to be determined. Geochemical evidence indicates that the chemical changes in the deformed rocks result from mixing of mafic and felsic layers together with fluid-assisted mass transfer within the shear zone. During mylonitization, most major elements and some trace elements (LREE, Rb, Sr, Ba, Cu, Ni) exhibited mobile behavior. The HREEs, Ti, V, Sc, Co and Fe, on the other hand, were immobile. Based on mass conservation of these elements, a two-component mixing model using mafic and felsic rocks from outside the shear zone as end-members explains the major and trace element data. The chemical composition of the felsic mylonite is modeled by mixing 12±5% mafic rock and 88±5% felsic rock, whereas, the mafic mylonite is modeled by mixing 55±4% mafic rock and 45±4% felsic rock. A closed system mixing model yields a good fit for immobile elements, such as HREEs, Ti, V, and Sc, but significant chemical differences between the calculated data and observed data are explained by fluid-assisted mass transfer of mobile elements under open system conditions. A 24% volume loss in the felsic mylonite and 13% volume loss in mafic mylonite are derived from the mass balance, assuming the HREE, Ti, V and Sc were immobile.

  17. Mechanical anisotropy control on strain localization in upper mantle shear zones

    NASA Astrophysics Data System (ADS)

    Herwegh, Marco; Mercolli, Ivan; Linckens, Jolien; Müntener, Othmar

    2016-05-01

    Mantle rocks at oceanic spreading centers reveal dramatic rheological changes from partially molten to solid-state ductile to brittle deformation with progressive cooling. Using the crustal-scale Wadi al Wasit mantle shear zone (SZ, Semail ophiolite, Oman), we monitor such changes based on quantitative field and microstructural investigations combined with petrological and geochemical analyses. The spatial distribution of magmatic dikes and high strain zones gives important information on the location of magmatic and tectonic activity. In the SZ, dikes derived from primitive melts (websterites) are distributed over the entire SZ but are more abundant in the center; dikes from more evolved, plagioclase saturated melts (gabbronorites) are restricted to the SZ center. Accordingly, harzburgite deformation fabrics show a transition from protomylonite (1100°C), mylonite (900-800°C) to ultramylonite (<700°C) and a serpentine foliation (<500°C) from the SZ rim to the center. The spatial correlation between solid-state deformation fabrics and magmatic features indicates progressive strain localization in the SZ on the cooling path. Three stages can be discriminated: (i) Cycles of melt injection (dunite channels and websterite dikes) and solid-state deformation (protomylonites-mylonites; 1100-900°C), (ii) dominant solid-state deformation in harzburgite mylonites (900-800°C) with some last melt injections (gabbronorites) and ultramylonites (<700°C), and (iii) infiltration of seawater inducing a serpentine foliation (<500°C) followed by cataclasis during obduction. The change of these processes in space and time indicates that early dike-related ridge-parallel deformation controls the onset of the entire strain localization history promoting nucleation sites for different strain weakening processes as a consequence of changing physicochemical conditions.

  18. Structural evolution of the Sarandí del Yí Shear Zone, Uruguay: kinematics, deformation conditions and tectonic significance

    NASA Astrophysics Data System (ADS)

    Oriolo, S.; Oyhantçabal, P.; Heidelbach, F.; Wemmer, K.; Siegesmund, S.

    2015-10-01

    The Sarandí del Yí Shear Zone is a crustal-scale shear zone that separates the Piedra Alta Terrane from the Nico Pérez Terrane and the Dom Feliciano Belt in southern Uruguay. It represents the eastern margin of the Río de la Plata Craton and, consequently, one of the main structural features of the Precambrian basement of Western Gondwana. This shear zone first underwent dextral shearing under upper to middle amphibolite facies conditions, giving rise to the reactivation of pre-existing crustal fabrics in the easternmost Piedra Alta Terrane. Afterwards, pure-shear-dominated sinistral shearing with contemporaneous magmatism took place under lower amphibolite to upper greenschist facies conditions. The mylonites resulting from this event were then locally reactivated by a cataclastic deformation. This evolution points to strain localization under progressively retrograde conditions with time, indicating that the Sarandí del Yí Shear Zone represents an example of a thinning shear zone related to the collisional to post-collisional evolution of the Dom Feliciano Belt that occurred between the Meso- to Neoproterozoic (>600 Ma) and late Ediacaran-lower Cambrian times.

  19. Fault-valve behaviour in optimally oriented shear zones: an example at the Revenge gold mine, Kambalda, Western Australia

    NASA Astrophysics Data System (ADS)

    Nguyen, Phung T.; Harris, Lyal B.; Powell, Chris McA; Cox, Stephen F.

    1998-12-01

    Quartz vein systems developed in and adjacent to shear zones host major gold deposits in the Kambalda region of the Norseman-Wiluna greenstone belt. At the Revenge Mine, two groups of mineralised reverse shear zones formed as conjugate, near-optimally oriented sets during ESE subhorizontal shortening adjacent to a major transpressional shear system. The shear zones developed at temperatures of about 400°C in a transitional brittle-ductile regime. Deformation was associated with high fluid fluxes and involved fault-valve behaviour at transiently near-lithostatic fluid pressures. During progressive evolution of the shear system, early brittle and ductile deformation was overprinted by predominantly brittle deformation. Brittle shear failure was associated with fault dilation and the formation of fault-fill veins, particularly at fault bends and jogs. A transition from predominantly brittle shear failure to combined shear along faults and extension failure adjacent to faults occurred late during shear zone evolution and is interpreted as a response to a progressive decrease in maximum shear stress and a decrease in effective stresses. The formation of subhorizontal stylolites, locally subvertical extension veins and minor normal faults in association with thrust faulting, indicates episodic or transient reorientation of the near-field maximum principal stress from a subhorizontal to a near-vertical attitude during some fault-valve cycles. Local stress re-orientation is interpreted as resulting from near-total shear stress release and overshoot during some rupture events. Previously described fault-valve systems have formed predominantly in severely misoriented faults. The shear systems at Revenge Mine indicate that fault-valve action, and associated fluctuations in shear stress and fluid pressure, can influence the mechanical behaviour of optimally-oriented faults.

  20. Metamorphic signature of the Gneiss Canyon Shear Zone, Lower Granite Gorge, Grand Canyon, Arizona

    SciTech Connect

    Robinson, K.; Williams, M.L. . Dept. of Geology and Geography)

    1992-01-01

    The Proterozoic orogen in Arizona consists of structural blocks separated by NE trending shear zones. The Gneiss Canyon Shear Zone (GCSZ) is important because it appears to define in part the boundary between the amphibolite facies Yavapai Province and the granulite facies Mojave Province. An early NW striking foliation is clearly visible in many samples from the Lower Granite Gorge (LGG). In Travertine Canyon, east of the GCSZ, pelitic schists contain And-Sil-Crd-Bi and Gar-Sil-Sta-Bi. Mafic rocks exhibit complex phase relations between cummingtonite, anthophyllite, gedrite, garnet, and cordierite. The coexistence of cordierite-cummingtonite is indicative of low pressure metamorphism. Microprobe analyses of garnets reveal prograde growth zoning profiles. Temperature and pressure estimates of peak metamorphism are 550--600 C and 3 kb. Just east of the GCSZ, pelitic assemblages contain Gar-Bi [+-] Sil [+-] Mus, and garnet zoning profiles are flat in the cores. In Spencer Canyon, west of the GCSZ, samples commonly contain Gar-Bi-Sil-Crd, and in many samples cordierite is being replaced by sillimanite. Thermobarometric calculations yield temperature and pressure estimates of 650 C and 3.5 kb. Mineral assemblages and quantitative thermobarometry suggest higher peak metamorphic temperature west of the GCSZ but relatively constant pressures across the LGG. On the east side of the GCSZ, temperatures increase toward the Shear Zone, probably due to the presence of extensive dikes, pods, and veins of variably deformed granite. Peak mineral assemblages are syntectonic with respect to the NE-striking GCSZ fabric. If a suture exists in the LGG, the GCSZ fabrics apparently reflect post-accretionary tectonism, with accretion occurring prior to the peak of metamorphism.

  1. Kinematics of the Eastern California shear zone: Evidence for slip transfer from Owens and Saline Valley fault zones to Fish Lake Valley fault zone

    USGS Publications Warehouse

    Reheis, M.C.; Dixon, T.H.

    1996-01-01

    Late Quaternary slip rates and satellite-based geodetic data for the western Great Basin constrain regional fault-slip distribution and evolution. The geologic slip rate on the Fish Lake Valley fault zone (the northwest extension of the Furnace Creek fault zone) increases northward from about 3 to 5 mm/yr, in agreement with modeled geodetic data. The increase coincides with the intersections of the Deep Springs fault, connected to the Owens Valley fault zone, and of other faults connected to the Saline Valley fault. The combined geologic and geodetic data suggest that (1) the northwest-striking faults of the Eastern California shear zone north of the Garlock fault are connected by north- to northeast-striking normal faults that transfer slip in a series of right steps, and (2) the amount and distribution of slip among the many faults of this broad, complex plate boundary have changed through time.

  2. Les unités gneissiques et la zone de cisaillement crustal du Sud-Togo (Gneissic units and crustal shear zone of South Togo)

    NASA Astrophysics Data System (ADS)

    Castaing, C.; Aregba, A.; Assih-Edeou, P.; Chevremont, P.; Godonou, K. S.; Sylvain, J. P.

    This publication is the result of recent geological mapping in Togo. An important crustal shear-zone in the South Togo is reviewed and the overall structural evolution of the area is examined in the light of current ideas on the chain. The geological evolution of the area occurred in three tectono-metamorphic stages in which the foliation developed and was folded under upper amphibolite facies conditions, with anatexis and the emplacement of granites, followed by transcurrent shearing under retrograde metamorphic conditions. The shear-zones, recognised in southeastern Togo, are the southward continuation of the great submeridian shear zones of the Hoggar and the Adrar des Iforas. They take the form of kilometres wide, blasto to ultramylonitic zones in which a mylonitic foliation indicates dextral ductile deformation under greenschist facies conditions. The ductile deformation evolves towards late cataclasis in the center of the shear zones. The geological evolution of the South Togo accords with the geotectonic framework of the internal Pan-African zones of the central Hoggar and Nigeria, where a polycyclic tectono-metamorphic history, with important granitization and late shearing appears to be the general case.

  3. Structural mapping and analysis of a Madagascar Precambrian shear zone using enhanced Landsat Thematic Mapper Data

    SciTech Connect

    Kilmer, D.S.; Duncan, I.J. )

    1990-05-01

    Recently, the west coast of Madagascar has become a frontier region for petroleum exploration. Major structures in the Precambrian shield of Madagascar may have a strong control on the development of sedimentary basins, as has been documented in the Morondava basin. The 2.5-3.0+ Ga shield of Madagascar is an amphibolite- to granulite-grade metamorphic gneiss terrain, intruded by anorthosites and 550-Ma granites and pegmatites. Landsat Thematic Mapper data provides a cost-effective method for regional-scale structural mapping of this poorly known terrain. A five-component linear mixing model has been used to enhance the lithologic information in this six-band data. Lithologic component images thus produced utilize the full geologic spectral range of the data. A preliminary structural geologic map compiled from the component images has greater detail than existing maps at 1:100,000 scale, to which it has been compared. The Ankafotra-Saririaky shear zone has been identified as a north-northeast-trending, 15- to 20-km-wide region of appressed folds, attenuated layering, and subparallel faults on the western side of the shield. Two anorthosite massifs that occur within this shear zone have the structural characteristics of boudins in a ductile matrix. The shear deformed a preexisting terrain of poly-phase folding, characterized by tight folds and complex fold interference structures displayed by basins and domes on a scale of 10 km. Enhanced remote sensing data can be used to characterize the nature and mechanism of shear deformation in such zones.

  4. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.

    This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter

  5. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina

    NASA Astrophysics Data System (ADS)

    Leloup, Philippe Hervé; Lacassin, Robin; Tapponnier, Paul; Schärer, Urs; Zhong, Dalai; Liu, Xiaohan; Zhang, Liangshang; Ji, Shaocheng; Trinh, Phan Trong

    1995-12-01

    The Red River Fault zone (RRF) is the major geological discontinuity that separates South China from Indochina. Today it corresponds to a great right-lateral fault, following for over 900 km the edges of four narrow (< 20 km wide) high-grade gneiss ranges that together form the Ailao Shan-Red River (ASRR) metamorphic belt: the Day Nui Con Voi in Vietnam, and the Ailao, Diancang and Xuelong Shan in Yunnan. The Ailao Shan, the longest of those ranges, is fringed to the south by a strip of low-grade schists that contain ultramafic bodies. The ASRR belt has thus commonly been viewed as a suture. A detailed study of the Ailao and Diancang Shan shows that the gneiss cores of the ranges are composed of strongly foliated and lineated mylonitic gneisses. The foliation is usually steep and the lineation nearly horizontal, both being almost parallel to the local trend of the gneissic cores. Numerous shear criteria, including asymmetric tails on porphyroclasts, C-S or C'-S structures, rolling structures, asymmetric foliation boudinage and asymmetric quartz axis fabrics, indicate that the gneisses have undergone intense, progressive left-lateral shear. P-T studies show that left-lateral strain occurred under amphibolite-facies conditions (3-7 kb and 550-780°C). In both ranges high-temperature shear was coeval with emplacement of leucocratic melts. Such deformed melts yield {U}/{Pb} ages between 22.4 and 26.3 Ma in the Ailao Shan and between 22.4 and 24.2 Ma in the Diancang Shan, implying shear in the Lower Miocene. The mylonites in either range rapidly cooled to ≈ 300°C between 22 and 17 Ma, before the end of left-lateral motion. The similarity of deformation kinematics, P-T conditions, and crystallization ages in the aligned Ailao and Diancang Shan metamorphic cores, indicate that they represent two segments of the same Tertiary shear zone, the Ailao Shan-Red River (ASRR) shear zone. Our results thus confirm the idea that the ASRR belt was the site of major left

  6. Petrologic and chemical changes in ductile shear zones as a function of depth in the continental crust

    NASA Astrophysics Data System (ADS)

    Yang, Xin-Yue

    Petrologic and geochemical changes in ductile shear zones are important for understanding deformational and geochemical processes of the continental crust. This study examines three shear zones that formed under conditions varying from lower greenschist facies to upper amphibolite facies in order to document the petrologic and geochemical changes of deformed rocks at various metamorphic grades. The studied shear zones include two greenschist facies shear zones in the southern Appalachians and an upper amphibolite facies shear zone in southern Ontario. The mylonitic gneisses and mylonites in the Roses Mill shear zone of central Virginia are derived from a ferrodiorite protolith and characterized by a lower greenschist facies mineral assemblage. Both pressure solution and recrystallization were operative deformation mechanisms during mylonitization in this shear zone. Strain-driven dissolution and solution transfer played an important role in the mobilization of felsic components (Si, Al, K, Na, and Ca). During mylonitization, 17% to 32% bulk rock volume losses of mylonites are mainly attributed to removal of these mobile felsic components by a fluid phase. Mafic components (Fe, Mg, Ti, Mn and P) and trace elements, REE, Y, V and Sc, were immobile. At Rosman, North Carolina, the Brevard shear zone (BSZ) shows a deformational transition from the coarse-grained Henderson augen gneiss (HAG) to proto-mylonite, mylonite and ultra-mylonite. The mylonites contain a retrograde mineral assemblage as a product of fluid-assisted chemical breakdown of K-feldspar and biotite at higher greenschist facies conditions. Recrystallization and intra-crystalline plastic deformation are major deformation mechanisms in the BSZ. Fluid-assisted mylonitization in the BSZ led to 6% to 23% bulk volume losses in mylonites. During mylonitization, both major felsic and mafic elements and trace elements, Rb, Sr, Zr, V, Sc, and LREE were mobile; however, the HREEs were likely immobile. A shear zone

  7. A new mechanism for fluid migration in midcrustal shear zones based on viscous grain boundary sliding and creep cavitation

    NASA Astrophysics Data System (ADS)

    Fusseis, F.; Regenauer-Lieb, K.; Liu, J.

    2009-04-01

    associated volume changes. Deformation, pore formation and growth dissipate a total power that is the time rate of the pressure work done by the granular fluid pump minus the time rate of the energy stored in the pore surface. If the rate of dissipation is maximized and constant, pore growth is stable. Note that this granular fluid pump relies on the opening and closing of pores and consequently describes a dynamic permeability. It should occur wherever viscous grain boundary sliding is active in shear zones with a free fluid phase. This is the case in many midcrustal shear zones that are either characterized by episodic cataclastic/mylonitic deformation (during the earthquake cycle) or by reaction softening associated with retrogression. The granular fluid pump provides comparatively steady, non-episodic fluid transfer and does not require pervasive fracturing. References: Fliervoet et al., 1997, JSG 19/12, 1495-1520, Fusseis et al., in review, Nature.

  8. Structural evolution and U-Pb SHRIMP zircon ages of the Neoproterozoic Maria da Fé shear zone, central Ribeira Belt - SE Brazil

    NASA Astrophysics Data System (ADS)

    Zuquim, M. P. S.; Trouw, R. A. J.; Trouw, C. C.; Tohver, E.

    2011-03-01

    The Maria da Fé Shear Zone (MFSZ) is a sinistral strike-slip kilometric-scale structure developed in the late Neoproterozoic during the assembly of Gondwana. The MFSZ development is related to the NW-SE collision between the São Francisco Paleocontinent and the Rio Negro Magmatic Arc, which formed the Ribeira Belt. This paper describes the shear zone in detail, concluding that the orientation and age are consistent with NW-SE shortening during the afore mentioned collision. A U-Pb SHRIMP Concordia age of 586.9 ± 8.7 Ma is reported from zircon grains of a granitic dyke that crystallised synkinematically to the main tectonic activity of the shear zone. Another group of zircon grains from the same sample generated an upper intercept age of 2083 ± 43 Ma anchored in the younger Concordia age. These zircon grains are interpreted as relict grains of the basement from which the granite dyke was generated by partial melting. The temperature during mylonitization in the MFSZ was estimated in the range from 450 to 600 °C, based on microstructures in quartz and feldspar. An earlier collision in the same region, between 640 and 610 Ma, led to an extensive nappe-stack with tectonic transport to ENE, integrating the southern Brasilia Belt. One of the thrust zones between these nappes in the studied area is the Cristina Shear Zone with mylonites that were generated under upper amphibolite to granulite facies conditions. Brittle-ductile E-W metric-scale shear zones are superimposed on the MFSZ, which were active in similar, but probably slightly cooler, metamorphic conditions (≈500 °C).

  9. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones

    USGS Publications Warehouse

    Marone, C.; Kilgore, B.

    1993-01-01

    THEORETICAL and experimentally based laws for seismic faulting contain a critical slip distance1-5, Dc, which is the slip over which strength breaks down during earthquake nucleation. On an earthquake-generating fault, this distance plays a key role in determining the rupture nucleation dimension6, the amount of premonitory and post-seismic slip7-10, and the maximum seismic ground acceleration1,11. In laboratory friction experiments, Dc has been related to the size of surface contact junctions2,5,12; thus, the discrepancy between laboratory measurements of Dc (??? 10-5 m) and values obtained from modelling earthquakes (??? 10-2 m) has been attributed to differences in roughness between laboratory surfaces and natural faults5. This interpretation predicts a dependence of Dc on the particle size of fault gouge 2 (breccia and wear material) but not on shear strain. Here we present experimental results showing that Dc scales with shear strain in simulated fault gouge. Our data suggest a new physical interpretation for the critical slip distance, in which Dc is controlled by the thickness of the zone of localized shear strain. As gouge zones of mature faults are commonly 102-103 m thick13-17, whereas laboratory gouge layers are 1-10 mm thick, our data offer an alternative interpretation of the discrepancy between laboratory and field-based estimates of Dc.

  10. Texture and elastic anisotropy of a mylonitic anorthosite from the Morin Shear Zone (Quebec, Canada)

    NASA Astrophysics Data System (ADS)

    Gómez Barreiro, Juan; Wenk, Hans-Rudolf; Vogel, Sven

    2015-02-01

    A sample of anorthosite from the granulite facies Morin Shear Zone (Quebec, Canada) was investigated for crystal preferred orientation and elastic anisotropy. Time-of-flight neutron diffraction data obtained with the HIPPO diffractometer at LANSCE were analyzed with the Rietveld method to obtain orientation distribution functions of the principal phases (plagioclase, clinopyroxene and orthopyroxene). Texture and microstructures are compatible with the plastic deformation of the aggregate under high-T conditions. All mineral phases depict a significant preferred orientation that could be related to the general top-to-the north shearing history of the Morin Shear Zone. Texture patterns suggest that (010)[001] in plagioclase and (110)[001] in clinopyroxene are likely dominant slip systems. Using preferred orientation data P- and S-waves velocities and elastic anisotropy were calculated and compared with previous studies to explore elastic properties of rocks with different pyroxene-plagioclase mixtures. P-wave velocity, S-wave splitting and anisotropy increase with clinopyroxene content. Seismic anisotropy is linked to the texture symmetry which can lead to large deviations between actual anisotropy and that measured along Cartesian XYZ sample directions (lineation/foliation reference frame). This is significant for the prediction and interpretation of seismic data, particularly for monoclinic or triclinic texture symmetries.

  11. Sub-layers inside the entrainment zone of a dry, shear-free convective boundary layer

    NASA Astrophysics Data System (ADS)

    Garcia, Jade Rachele; Mellado, Juan Pedro

    2013-11-01

    The entrainment zone of a dry, shear-free convective boundary layer growing into a homogeneously stably-stratified fluid is studied using direct numerical simulation. Based on the self-similar analysis of the mean and variance buoyancy profiles, we identify two sub-layers within the entrainment zone, defined as the region of negative buoyancy flux: i) an upper sub-layer with a thickness comparable to the penetrative length scale based on the convective velocity and the buoyancy frequency of the free troposphere and ii) a lower sub-layer acting as a transition towards the mixed layer, with a thickness equal to a constant fraction of the boundary layer height. The capping region of the penetrative thermals belongs to the upper sub-layer of the entrainment zone, and the troughs between the penetrating thermals belong to the lower sub-layer of the entrainment zone. Correspondingly, different buoyancy scales are identified in the different regions; parametrizations thereof are provided and explained. This multiplicity of characteristic scales inside the entrainment zone helps to explain the uncertainty associated with previous analysis of entrainment zone properties and the difficulty to parametrize them based on a single length scale and a single buoyancy scale. Juelich Research Centre for the computing time.

  12. An empirical method to estimate shear wave velocity of soils in the New Madrid seismic zone

    USGS Publications Warehouse

    Wei, B.-Z.; Pezeshk, S.; Chang, T.-S.; Hall, K.H.; Liu, Huaibao P.

    1996-01-01

    In this study, a set of charts are developed to estimate shear wave velocity of soils in the New Madrid seismic zone (NMSZ), using the standard penetration test (SPT) N values and soil depths. Laboratory dynamic test results of soil samples collected from the NMSZ showed that the shear wave velocity of soils is related to the void ratio and the effective confining pressure applied to the soils. The void ratio of soils can be estimated from the SPT N values and the effective confining pressure depends on the depth of soils. Therefore, the shear wave velocity of soils can be estimated from the SPT N value and the soil depth. To make the methodology practical, two corrections should be made. One is that field SPT N values of soils must be adjusted to an unified SPT N??? value to account the effects of overburden pressure and equipment. The second is that the effect of water table to effective overburden pressure of soils must be considered. To verify the methodology, shear wave velocities of five sites in the NMSZ are estimated and compared with those obtained from field measurements. The comparison shows that our approach and the field tests are consistent with an error of less than of 15%. Thus, the method developed in this study is useful for dynamic study and practical designs in the NMSZ region. Copyright ?? 1996 Elsevier Science Limited.

  13. Theory of activated-rate processes under shear with application to shear-induced aggregation of colloids.

    PubMed

    Zaccone, Alessio; Wu, Hua; Gentili, Daniele; Morbidelli, Massimo

    2009-11-01

    Using an approximation scheme within the convective diffusion (two-body Smoluchowski) equation framework, we unveil the shear-driven aggregation mechanism at the origin of structure formation in sheared colloidal systems. The theory, verified against numerics and experiments, explains the induction time followed by explosive (irreversible) rise of viscosity observed in charge-stabilized colloidal and protein systems under steady shear. The Arrhenius-type equation with shear derived here, extending Kramers' theory in the presence of shear, clearly demonstrates the important role of shear drive in activated-rate processes as they are encountered in soft condensed matter.

  14. Shear-transformation-zone theory of yielding in athermal amorphous materials

    SciTech Connect

    Langer, J. S.

    2015-07-22

    Yielding transitions in athermal amorphous materials undergoing steady-state shear flow resemble critical phenomena. Historically, they have been described by the Herschel-Bulkley rheological formula, which implies singular behaviors at yield points. In this paper, I examine this class of phenomena using an elementary version of the thermodynamic shear-transformation-zone (STZ) theory, focusing on the role of the effective disorder temperature, and paying special attention to scaling and dimensional arguments. I find a wide variety of Herschel-Bulkley-like rheologies but, for fundamental reasons not specific to the STZ theory, conclude that the yielding transition is not truly critical. Specifically, for realistic many-body models with short-range interactions, there is a correlation length that grows rapidly but ultimately saturates near the yield point.

  15. Shear-transformation-zone theory of yielding in athermal amorphous materials

    DOE PAGES

    Langer, J. S.

    2015-07-22

    Yielding transitions in athermal amorphous materials undergoing steady-state shear flow resemble critical phenomena. Historically, they have been described by the Herschel-Bulkley rheological formula, which implies singular behaviors at yield points. In this paper, I examine this class of phenomena using an elementary version of the thermodynamic shear-transformation-zone (STZ) theory, focusing on the role of the effective disorder temperature, and paying special attention to scaling and dimensional arguments. I find a wide variety of Herschel-Bulkley-like rheologies but, for fundamental reasons not specific to the STZ theory, conclude that the yielding transition is not truly critical. Specifically, for realistic many-body models withmore » short-range interactions, there is a correlation length that grows rapidly but ultimately saturates near the yield point.« less

  16. Geologic and thermochronologic constraints on the initial orientation of the Raft River detachment and footwall shear zone

    SciTech Connect

    Wells, M.L. . Dept. of Geosciences); Snee, L.W. )

    1993-04-01

    The Raft River Mountains of northwestern Utah expose a detachment fault that separates a hanging wall of Paleozoic rocks from Proterozoic ( ) and Archean rocks of the footwall. Beneath the detachment lies a 100 to 300m-thick top-to-the-east extensional shear zone. Geologic mapping, strain and kinematic analysis, and [sup 40]Ar/[sup 39]Ar thermochronology suggest that the shear zone and detachment fault had an initial low-angle regional dip(<20[degree]). Along a 27 km, E-W transect across the south flank of the range, the base of the shear zone everywhere lies 20 to 60 m beneath the Archean/Proterozoic( ) unconformity, despite an eastward-increasing lateral strain gradient. Strain analyses of mylonite coupled with the regional relationship between the unconformity and the shear zone boundary indicates that the unconformity and overlying Proterozoic( ) metasediments were not rotated into parallelism with the shear zone boundary, but were initially subparallel (0--2[degree]). Constraints on the initial orientation and crustal position of the shear zone have been derived from [sup 40]Ar/[sup 39] thermochronology of mineral suites (hornblende, muscovite, biotite, and k-feldspar) collected within and beneath the shear zone along a 27 km transect parallel to the transport direction. Prior to the middle Eocene, the unconformity was between hornblende and muscovite closure across the E-W extent of the range. The western end of the range was uplifted to temperatures below muscovite and biotite closure at 44--47 Ma. This Eocene uplift is inferred to be related to footwall flexure resulting from tectonic denudation along a top-to-the-west extensional shear system exposed in the western Raft River, northern Grouse Creek, and southern Albion mountains. The unconformity in the central and eastern Raft River Mountain was uplifted to temperatures below muscovite and biotite closure from [approximately]24 to 14 Ma, during top-to-the-east tectonic denudation.

  17. Repeated hydrothermal quartz crystallization and cataclasis in the Bavarian Pfahl shear zone (Germany)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Tim I.; Prosser, Giacomo; Liotta, Domenico; Kruhl, Jörn H.; Gilg, H. Albert

    2014-11-01

    Field and microstructural data of the Pfahl shear zone in north-eastern Bavaria (Germany) reveal the intimate spatial-temporal connection between fragmentation, fluid influx and quartz crystallization. These processes and their interaction led to complex-structured quartz units: (i) a dense network of early quartz veins, (ii) two domains of fine-grained reddish to grayish quartz masses, (iii) an extended central zone of massive white quartz, and (iv) late cross-cutting closely spaced parallel fractures and partly open quartz veins. The fine-grained quartz domains result from repeated and coeval cataclasis, fluidization and quartz precipitation. Material transport in these domains is at least partly governed by the flow of mobile fluid-quartz-particle suspensions. The complex internal meso-to microstructures of the massive white quartz are generated by repeated processes of fragmentation and grain growth. In general, the brittle part of the Pfahl shear zone represents a key example of cyclic dissolution/precipitation and fragmentation on large scale.

  18. Strain accumulation across the Eastern California Shear Zone at latitude 36°30'N

    USGS Publications Warehouse

    Gan, Weijun; Svarc, Jerry L.; Savage, J.C.; Prescott, W.H.

    2000-01-01

    The motion of a linear array of monuments extending across the Eastern California Shear Zone (ECSZ) has been measured from 1994 to 1999 with the Global Positioning System. The linear array is oriented N54°E, perpendicular to the tangent to the local small circle drawn about the Pacific-North America pole of rotation, and the observed motion across the ECSZ is approximated by differential rotation about that pole. The observations suggest uniform deformation within the ECSZ (strike N23°W) (26 nstrain yr−1 extension normal to the zone and 39 nstrain yr−1 simple right-lateral shear across it) with no significant deformation in the two blocks (the Sierra Nevada mountains and southern Nevada) on either side. The deformation may be imposed by right-lateral slip at depth on the individual major fault systems within the zone if the slip rates are: Death Valley-Furnace Creek fault 3.2±0.9 mm yr−1, Hunter Mountain-Panamint Valley fault 3.3±1.6 mm yr−1, and Owens Valley fault 6.9±1.6 mm yr−1. However, this estimate of the slip rate on the Owens Valley fault is 3 times greater than the geologic estimate.

  19. Constraints on strain rates during large-scale mid-crustal shearing: An example from the basal Vaddas shear zone, northern Caledonides

    NASA Astrophysics Data System (ADS)

    Gasser, Deta; Stünitz, Holger; Nasipuri, Pritam; Menegon, Luca

    2013-04-01

    The Caledonian orogen in Scandinavia is characterized by large-scale crustal nappe stacks which were emplaced east-/southeast-wards onto the Baltica shield. Whereas original thrust relationships are generally obscured by syn- to post-collisional extensional deformation in the southern and central Scandinavian Caledonides, several large-scale thrust systems are well-preserved in the northern Scandinavian Caledonides in Troms and Finnmark. One example is the mid-crustal Vaddas shear zone, which emplaced the Vaddas nappe on top of the Kalak nappe complex. In this contribution we present a structural, petrological and geochronological analysis of the rocks under- and overlying the Vaddas shear zone in northern Troms, in order to estimate the strain rate associated with thrusting along this major shear zone. The Vaddas nappe above the investigated shear zone consists mainly of Upper Ordovician to Silurian metasediments, which were deposited in a marine environment and which were intruded by voluminous gabbroic intrusions, before they were sheared off from their substratum and transported on top of the Kalak nappe complex during the Caledonian orogeny. PT conditions from one of these gabbroic bodies indicate that the body intruded the metasediments at ~9 kbar (Getsinger et al., subm to G3), which corresponds to a depth of ~34 km. U-Pb SIMS dating of zircons from this gabbro indicate that intrusion occurred at 439±2 Ma. The Vaddas nappe is separated from the Kalak nappe by an at least ~150 m thick, amphibolite-facies shear zone with a subhorizontal fabric and top-to-the-SE shear sense. It has developed within the lowest part of the Vaddas nappe as well as the upper part of the Kalak nappe complex and PT calculations indicate that final shearing occurred at ~450° C and ~6 kbar (depth of ~23 km). U-Pb TIMS dating of titanites, which grow parallel to the shear fabric in the Kalak nappe complex, gives 206Pb/238U ages ranging from 442±1 to 429±1 Ma, indicating that

  20. The influence of metasomatic reactions on distributed vs. localized slip in ultramafic shear zones

    NASA Astrophysics Data System (ADS)

    Tarling, Matthew S.; Tulley, Chris J.; Smith, Steven A. F.

    2016-04-01

    The Livingstone Fault is a >1000 km long terrane boundary in New Zealand that juxtaposes ultramafic rocks of the Dun Mountain Ophiolite Belt against quartzofeldspathic rocks of the continental Caples Terrane. The fault is characterized by a zone of sheared serpentinite mélange tens to several hundreds of meters wide with a generally well-defined scaly fabric, containing entrained pods of massive serpentinite, volcanic rocks and quartzofeldspathic rocks. Talc- and tremolite- forming metasomatic reactions occurred frequently within the mélange zone, along the margins of the mélange and at the edges of entrained pods. These reactions were the result of the interaction between the serpentine minerals and silica bearing fluids derived from the quartzofeldspathic Caples Terrane. In the bulk of the mélange, structures such as distributed scaly fabrics, S-C fabrics, and networks of fibrous serpentine veins suggest a broad delocalization of strain, likely accommodated by pressure-solution mechanisms along the serpentinite- and talc-bearing fabrics. However, at the margins of the mélange zone and the edges of pods, layers of tremolite tens of centimeters thick are characterized by a highly indurated microstructure consisting of networks of tightly interwoven, acicular tremolite crystals forming a semi-nephritic to nephritic texture. In these metasomatic regions, discrete cataclastic slip zones associated with well-polished slickenlined surfaces are observed at the interfaces of the serpentinite and Caples Terrane quartzofeldspathics. In the Livingstone Fault, this style of highly-localized slip is uniquely associated withthe development of the indurated nephritic textures. Because tremolite is a frictionally-strong and generally velocity-weakening calc-silicate, we speculate that the tremolite-forming metasomatic reactions may have promoted localized and unstable fault slip within a shear zone that was otherwise deforming by creep. Employing scanning and transmission

  1. Shear wave anisotropy in textured phase D and constraints on deep water recycling in subduction zones

    NASA Astrophysics Data System (ADS)

    Rosa, Angelika D.; Sanchez-Valle, Carmen; Nisr, Carole; Evans, Shaun R.; Debord, Regis; Merkel, Sébastien

    2013-09-01

    Regions of low seismic velocity and high shear anisotropies in cold subducted slabs have often been related to anisotropic fabrics in hydrous phases mainly induced by slab deformation. The interpretation of these seismic anomalies in terms of hydration thus relies on a better knowledge of the elasticity and plastic deformation mechanisms of candidate hydrous phases. Here we investigate the development of lattice preferred orientations (LPO) in phase D [MgSi2H2O6, 10-18 wt% H2O], the ultimate water carrier in hydrous subducted peridotite. The samples were deformed non-hydrostatically up to 48 GPa in a diamond anvil cell and the texture and strength were obtained from analysis of the X-ray diffraction patterns collected in radial diffraction geometry. We find that at low strains the layered structure of phase D displays strong 0001 texture, where the stacking fault axis (c-axis) preferentially align parallel to the compression axis. A subsidiary 101¯0 texture develops at higher strains. Plasticity simulations in polycrystalline aggregates using a viscoplastic self-consistent model suggest that these LPO patterns are consistent with shape preferred orientation mechanism during the first compaction steps and, with dominant easy glide on basal planes and harder first order pyramidal slip, respectively, upon further compression. We find that phase D displays the lowest strength and the highest anisotropy among phases in hydrous peridotite in the uppermost lower mantle and might thus control the shear wave anisotropy generated in subducted slabs below the transition zone. We further evaluate the effect of textured phase D on the seismic velocity structure and shear wave anisotropy of deformed hydrous peridotite and compare the results to seismic observations in Tonga subduction. We show that 16 vol% of phase D in hydrous subducted peridotite is required to explain the negative velocity anomalies of 3%, the extent of shear wave splitting (0.9±0.3%) and the shear wave ray

  2. Shear-wave splitting in Quaternary sediments: Neotectonic implications in the central New Madrid seismic zone

    USGS Publications Warehouse

    Harris, J.B.

    1996-01-01

    Determining the extent and location of surface/near-surface structural deformation in the New Madrid seismic zone (NMSZ) is very important for evaluating earthquake hazards. A shallow shear-wave splitting experiment, located near the crest of the Lake County uplift (LCU) in the central NMSZ, shows the presence of near-surface azimuthal anisotropy believed to be associated with neotectonic deformation. A shallow fourcomponent data set, recorded using a hammer and mass source, displayed abundant shallow reflection energy on records made with orthogonal source-receiver orientations, an indicator of shear-wave splitting. Following rotation of the data matrix by 40??, the S1 and S2 sections (principal components of the data matrix) were aligned with the natural coordinate system at orientations of N35??W and N55??E, respectively. A dynamic mis-tie of 8 ms at a two-way traveltime of 375 ms produced an average azimuthal anisotropy of ???2% between the target reflector (top of Quaternary gravel at a depth of 35 m) and the surface. Based on the shear-wave polarization data, two explanations for the azimuthal anisotropy in the study area are (1) fractures/cracks aligned in response to near-surface tensional stress produced by uplift of the LCU, and (2) faults/fractures oriented parallel to the Kentucky Bend scarp, a recently identified surface deformation feature believed to be associated with contemporary seismicity in the central NMSZ. In addition to increased seismic resolution by the use of shear-wave methods in unconsolidated, water-saturated sediments, measurement of near-surface directional polarizations, produced by shear-wave splitting, may provide valuable information for identifying neotectonic deformation and evaluating associated earthquake hazards.

  3. Transpressive suture and flower structure: the Tomar-Badajoz-Cordoba shear zone, SW Iberia

    NASA Astrophysics Data System (ADS)

    Marti Linares, D.; Palomeras, I.; Perez-Estaun, A.; Carbonell, R.; Simancas, F.; Ayarza, P.; Tejero, R.; Martín-Parra, L.; Matas, J.; Lodeiro, F.; Mansilla, L.

    2009-12-01

    The Tomar-Badajoz-Córdoba shear Zone (TBCSZ) is a major structural element located in SW-Iberia. This is considered a suture that separates the Central Iberian Zone (CIZ) in NE and Ossa Morena Zone (OMZ) in SW. It is at least 380km in length and 10 to 20km width. It is a left lateral transpressive flower structure. The strike-slip displacement decays from SE to NW. Its axial zone includes a high grade metamorphic rock unit known as the Central Unit (CU) containing eclogites, and also suture lithotypes as ophiolites. It has been interpreted as a Variscan suture or a reworked Cadomian suture in intraplate regime during the Variscan cycle. This important structure has been imaged by 2 deep seismic reflection transects, the IBERSEIS in 2003 and more recently by ALCUDIA. The good quality of the seismic data sets constrains the internal architecture of this transpressional zone imaging a crustal scale flower structure. The structure features a north dipping wedge limited by two bands of reflectors that reach the middle crust (5 s). Beneath that and slightly to the north a wedge of relatively high amplitude reflectivity dips to the south into the mantle for 10-15 km. This structure is most probably the seismic signature of a complex structure result of deformation associated to a strike slip fault.

  4. The role of discrete intrabasement shear zones during multiphase continental rifting

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon

    2016-04-01

    Rift systems form within areas of relatively weak, heterogeneous lithosphere, containing a range of pre-existing structures imparted from previous tectonic events. The extent to which these structures may reactivate during later rift phases, and therefore affect the geometry and evolution of superposed rift systems, is poorly understood. The greatest obstacle to understanding how intrabasement structures influence the overlying rift is obtaining detailed constraints on the origin and 3D geometry of structures within crystalline basement. Such structures are often deeply buried beneath rift systems and therefore rarely sampled directly. In addition, due to relatively low internal acoustic impedance contrasts and large burial depths, crystalline basement typically appears acoustically transparent on seismic reflection data showing no resolvable internal structure. However, offshore SW Norway, beneath the Egersund Basin, intrabasement structures are exceptionally well-imaged due to large impedance contrasts within a highly heterogeneous and shallow basement. We use borehole-constrained 2D and 3D seismic reflection data to constrain the 3D geometry of these intrabasement reflections, and examine their interactions with the overlying rift system. Two types of intrabasement structure are observed: (i) thin (c. 100 m) reflections displaying a characteristic trough-peak-trough wavetrain; and (ii) thick (c. 1 km), sub-parallel reflection packages dipping at c. 30°. Through 1D waveform modelling we show that these reflection patterns arise from a layered sequence as opposed to a single interface. Integrating this with our seismic mapping we correlate these structures to the established onshore geology; specifically layered mylonites associated with the Caledonian thrust belt and cross-cutting extensional Devonian shear zones. We observe multiple phases of reactivation along these structures throughout multiple rift events, in addition to a range of interactions with

  5. Neoproterozoic structural evolution of the NE-trending Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hamimi, Zakaria; El-Sawy, El-Sawy K.; El-Fakharani, Abdelhamid; Matsah, Mohamed; Shujoon, Abdulrahman; El-Shafei, Mohamed K.

    2014-11-01

    The Ad-Damm Shear Zone (AdSZ) is a major NE- (to NNE-) trending fault zone separating Jiddah and Asir tectonic terranes in the Neoproterozoic Juvenile Arabian Shield (AS). AdSZ is characterized by the development of dextral transcurrent shear-sense indicators and moderately to steeply NW plunging stretching lineations. It is mainly developed under high amphibolite-to greenschist-facies conditions and extends ∼380 km, with an average width ∼2-4 km, from the conspicuous Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW-trending sinistral Najd Shear System. This assumption is, based on the noteworthy dextral shear criteria recorded within the 620 Ma mylonitic granite of No'man Complex. A total shear-zone strike length exceeding 117 km is carefully investigated during this study to reconstruct its structural evolution. Shear-sense indicators and other field observations including overprinting relations clearly demonstrate a complicated Neoproterozoic history of AdSZ, involving at least three phases of deformations (D1-D3). Both D1 and D2 phases were of contractional regime. During D1 phase a NW-SE compression led to the formation of NE-oriented low-angle thrusts and tight-overturned folds. D2 is represented by a NE-SW stress oriented that led to the development of an open folding. D3 is expressed by the NE-SW intensive dextral transcurrent brittle-ductile shearing. It is overprinting the early formed fabrics and played a significant role in the creation of AdSZ and the mega-scale related folds. Such deformation history reflects the same Neoproterozoic deformation regime recognized in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).

  6. Fabric evidence for granodiorite emplacement with extensional shear zones in the Variscan Gredos massif (Spanish Central System)

    NASA Astrophysics Data System (ADS)

    Díaz-Alvarado, Juan; Fernández, Carlos; Díaz-Azpiroz, Manuel; Castro, Antonio; Moreno-Ventas, Ignacio

    2012-09-01

    Three granitoid bodies in the central part of the Gredos massif (Spanish Central System batholith) are tabular, around 1 km in thickness, and intruded into a migmatitic middle crust during the D3 deformation phase of the Variscan Orogeny. Petrologically, they are composed of Bt-granodiorite and Crd-monzogranite, and they show varying abundance of large (cm-scale) feldspar megacrysts. A detailed study of the shape preferred orientation (SPO) magmatic fabric defined by these megacrysts, together with a kinematic analysis of the structures due to interactions between them, and the measurement of quartz c-axis fabrics in migmatites and granitoids, suggests that granitic magma and country rocks were mechanically coupled during deformation. The emplacement took place along large-scale, extensional shear zones active during the first stages of the D3 phase. The shape of the SPO ellipsoids varies from constrictional at the centre of the granitic bodies, to flattening or even oblate at their external contacts with the migmatitic host rocks. The favoured interpretation of this spatial fabric variation is the overprinting of the emplacement fabrics by a constrictional tectonic regime associated with the growth of tabular magma chambers along extensional detachments, followed by shear zone development commonly at the top of the granitic bodies. The entire structure was later folded during the last stages of the D3 phase.

  7. Active shear flow control for improved combustion

    NASA Astrophysics Data System (ADS)

    Gutmark, E.; Parr, T. P.; Hanson-Parr, D. M.; Schadow, K. C.

    1990-01-01

    The acoustical and fluid dynamic facets of an excited premixed flame were studied experimentally to evaluate possibilities for development of a stabilizing closed-loop control system. The flame was analyzed as a nonlinear system which includes different subcomponents: acoustics, fluid dynamics, and chemical reaction. Identification of the acoustical and fluid dynamics subsystems is done by analyzing the transfer function, which was obtained by driving the system with both white-noise and a frequency-sweeping sine-wave. The features obtained by this analysis are compared to results of flow visualization and hot-wire flow-field and spectral measurements. The acoustical subsystem is determined by the resonant acoustic modes of the settling chamber. These modes are subsequently filtered and amplified by the flow shear layer, whose instability characteristics are dominated by the preferred mode frequency.

  8. Dynamics of a deformable active particle under shear flow.

    PubMed

    Tarama, Mitsusuke; Menzel, Andreas M; ten Hagen, Borge; Wittkowski, Raphael; Ohta, Takao; Löwen, Hartmut

    2013-09-14

    The motion of a deformable active particle in linear shear flow is explored theoretically. Based on symmetry considerations, we propose coupled nonlinear dynamical equations for the particle position, velocity, deformation, and rotation. In our model, both, passive rotations induced by the shear flow as well as active spinning motions, are taken into account. Our equations reduce to known models in the two limits of vanishing shear flow and vanishing particle deformability. For varied shear rate and particle propulsion speed, we solve the equations numerically in two spatial dimensions and obtain a manifold of different dynamical modes including active straight motion, periodic motions, motions on undulated cycloids, winding motions, as well as quasi-periodic and chaotic motions induced at high shear rates. The types of motion are distinguished by different characteristics in the real-space trajectories and in the dynamical behavior of the particle orientation and its deformation. Our predictions can be verified in experiments on self-propelled droplets exposed to a linear shear flow.

  9. High temperature pseudotachylytes and ductile shear zones in dry rocks from the continental lower crust (Lofoten, Norway)

    NASA Astrophysics Data System (ADS)

    Menegon, Luca; Pennacchioni, Giorgio; Harris, Katherine; Wood, Elliot

    2014-05-01

    Understanding the mechanisms of initiation and growth of shear zones under lower crustal conditions is of fundamental importance when assessing lithosphere rheology and strength. In this study we investigate brittle-ductile shear zones developed under lower crustal conditions in anorthosites from Nusfjord, Lofoten (northern Norway). Steep ductile shear zones trend E-W to ESE-WSW and have a stretching lineation plunging steeply to the SSW or SSE. The shear sense is normal (south block down to the south) as indicated by SC and SC' fabrics and sigmoidal foliations. The shear zone show a mylonitic to ultramylonitic fabric, sharp boundaries to the host anorthosites, and abundant anastomosing dark fine-grained layers along the main foliation. The fine-grained layers localized much of the strain. Relatively lower strain domains within or adjacent to shear zones indicate that the fine dark bands of mylonites represent transposed pseudotachylyte which still locally preserve the pristine structures such as chilled margins, breccia textures with angular clasts of the host rock and injection veins; intersecting veins of pseudotachylyte record multiple stages of seismic slip. The orientation of injection veins and marker offset along the most preserved pseudotachylyte fault veins indicate approximately a sinistral strike slip kinematic during faulting event responsible for the friction-induced melting. These observations indicate that ductile shear zones exploited pre-existing brittle fault zones including a network of pseudotachylytes, and that the fine-grained "ultramylonites" derive from former fine-grained pseudotachylytes. The pseudotachylyte microstructure is dominated by plagioclase microlites dispersed in a groundmass of fine-grained clinopyroxene. Clinopyroxene recrystallizes in the damage zone flanking the pseudotachylytes, indicating high metamorphic grade during pseudotachylyte formation. Small idioblastic or cauliflower garnet are scattered through the matrix and

  10. Shear Wave Splitting from Local Earthquakes in the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Martin, P.; Arroucau, P.; Vlahovic, G.

    2012-12-01

    In this study we investigate crustal anisotropy in the New Madrid seismic zone (NMSZ), by analyzing shear wave splitting from local earthquake data. The NMSZ is centrally located in the United States, spanning portions of western Tennessee, northeastern Arkansas, and southeastern Missouri. The NMSZ is also the location in which three of the largest known earthquakes took place in North America, occurring in 1811-1812. Although many seismic studies have been performed in this region, there is no consensus about which driving mechanism could satisfy both the current observations, as well as the historically observed seismicity. Therefore, it is important to continue investigating the NMSZ, to gain a better understanding of its seismicity, and the possible mechanisms that drive it. The automated technique developed by Savage et al. (2010) is used to perform the shear wave splitting measurements at 120 seismic stations within the NMSZ. The Center for Earthquake Research and Information (CERI) at the University of Memphis provided data for 1151 earthquakes spanning the years 2003-2011. The initial event selection was reduced to 245 earthquakes ranging in magnitude from 2.0 to 4.6, which fell within the shear wave window of one or more of the stations. The results of this study provide information about orientation of microcracks in the upper portion of the crust; future work will include analysis for temporal and spatial variations in order to assess the state of stress in the region.

  11. Shear mixing in stellar radiative zones. II. Robustness of numerical simulations

    NASA Astrophysics Data System (ADS)

    Prat, V.; Guilet, J.; Viallet, M.; Müller, E.

    2016-07-01

    Context. Recent numerical simulations suggest that the model by Zahn (1992, A&A, 265, 115) for the turbulent mixing of chemical elements due to differential rotation in stellar radiative zones is valid. Aims: We investigate the robustness of this result with respect to the numerical configuration and Reynolds number of the flow. Methods: We compare results from simulations performed with two different numerical codes, including one that uses the shearing-box formalism. We also extensively study the dependence of the turbulent diffusion coefficient on the turbulent Reynolds number. Results: The two numerical codes used in this study give consistent results. The turbulent diffusion coefficient is independent of the size of the numerical domain if at least three large turbulent structures fit in the box. Generally, the turbulent diffusion coefficient depends on the turbulent Reynolds number. However, our simulations suggest that an asymptotic regime is obtained when the turbulent Reynolds number is larger than 103. Conclusions: Shear mixing in the regime of small Péclet numbers can be investigated numerically both with shearing-box simulations and simulations using explicit forcing. Our results suggest that Zahn's model is valid at large turbulent Reynolds numbers.

  12. Ductile extensional shear zones in the lower crust of a passive margin

    NASA Astrophysics Data System (ADS)

    Clerc, Camille; Jolivet, Laurent; Ringenbach, Jean-Claude

    2015-12-01

    We describe and interpret an unpublished set of ION Geophysical seismic reflection profile showing strong organized seismic reflectors at the base of the continental crust of the Uruguayan volcanic rifted margin. We distinguish two main groups of reflectors in the lowermost continental crust. A first group, at depths ranging from 32 km below the continent to 16 km in the continent-ocean transition, comprises reflectors continuous over tens of kilometers, peculiarly visible near the mantle-crust boundary. A second group of reflectors dipping toward the ESE (oceanward) is widely distributed in the lower crust. These reflectors are slightly curved and tend to merge and become sub-parallel with the first group of reflectors. Together they draw the pattern of thick shallow-dipping top-to-the continent shear zones affecting the lower continental crust. Such sense of shear is also consistent with the continentward dip of the normal faults that control the deposition of the thick syn-tectonic volcanic formations (SDR). A major portion of the continental crust behaved in a ductile manner and recorded a component of top-to-the continent penetrative simple shear during rifting indicative of a lateral movement between the upper crust and the mantle.

  13. Preliminary Investigation of the Footwall Transition of the Borrego Spring Shear Zone

    NASA Astrophysics Data System (ADS)

    Vadman, M.

    2014-12-01

    The Borrego Springs Shear Zone in the Peninsular Range Batholith, California, is an eastover west thrusting regime that is part of the Eastern Peninsular Ranges Mylonite Zone. Tothe west, undeformed tonalite is dominant. Moving east, tonalite becomes foliated andmylonitized in places. Further east, the full transition to the footwall is unclear as it is coveredby Quaternary deposits. While roughly continuous on a regional level, there is no clear cutband of mylonite that can be followed locally for greater than several hundred meters. Themylonitized tonalite shows lower amphibolite to upper greenschist facies metamorphism,which may indicate why there is no local uninterrupted band of mylonitization, as itmetamorphosed at the brittle/ductile transition. Dated at ~92MA, it is surmised thatdeformation ended no later than 65-70MA due to 40Ar/40K dates from biotite in themylonitized tonalite. Felsic pegmatite dikes also cut through the area, showing evidence ofductile shear in some places, but again, not consistently throughout the region. Detailed mapping of the area shows a synformal structure of tonalitic mylonite betweenundeformed tonalite. Foliations are roughly perpendicular to the hinge line of the synform.This evidence, along with intermittent mylonitization, indicates non-uniform deformation. Noevidence of overprinting was seen in the synform, suggesting that the fold formed after themajority of ductile deformation.

  14. Evolution of elastic wave speed during shear-induced damage and healing within laboratory fault zones

    NASA Astrophysics Data System (ADS)

    Kaproth, Bryan M.; Marone, Chris

    2014-06-01

    Earthquake faults fail and restrengthen repeatedly during the seismic cycle. Faults restrengthen via a set of processes known collectively as fault healing, which is well documented in the laboratory but less well understood in tectonic fault zones. Recent observations of fault zone wave speed following earthquakes suggest opportunities to connect laboratory and field observations of fault healing. However, existing laboratory data lack detail necessary to identify specific processes linking elastic wave speed to fault damage and healing. Here we document changes in elastic properties during laboratory seismic cycles, simulated via periods of nonshear and quasistatic fault slip. Experiments were conducted on brine-saturated halite under conditions favoring pressure solution, analogous to healing processes within and at the base of the seismogenic zone. We find that elastic wave speed (V) and amplitude (A) correlate with porosity. For each percent of porosity lost during compaction, VP increases by ~3%, VS by ~2%, AP by ~10%, and AS by ~7%. Moreover, V and A decrease with granular dilation during fault slip. With increasing shear strain, fabric formation dominates the ultrasonic signals. We find that fault strength depends on fault porosity, making VP and VS potential proxies for fault strength evolution. Our data show that a 1% change in VP or VS results in a friction increase of 0.01 or 0.02, respectively. Within natural fault zones, advances in monitoring elastic wave speed may provide critical information on the evolution of fault strength and seismic hazard throughout the seismic cycle.

  15. Dilutional Control of Prothrombin Activation at Physiologically Relevant Shear Rates

    PubMed Central

    Haynes, Laura M.; Dubief, Yves C.; Orfeo, Thomas; Mann, Kenneth G.

    2011-01-01

    The generation of proteolyzed prothrombin species by preassembled prothrombinase in phospholipid-coated glass capillaries was studied at physiologic shear rates (100–1000 s−1). The concentration of active thrombin species (α-thrombin and meizothrombin) reaches a steady state, which varies inversely with shear rate. When corrected for shear rate, steady-state levels of active thrombin species exhibit no variation and a Michaelis-Menten analysis reveals that chemistry of this reaction is invariant between open and closed systems; collectively, these data imply that variations with shear rate arise from dilutional effects. Significantly, the major products observed include nonreactive species arising from the loss of prothrombin's phospholipid binding domain (des F1 species). A numerical model developed to investigate the spatial and temporal distribution of active thrombin species within the capillary reasonably approximates the observed output of total thrombin species at different shears; it also predicts concentrations of active thrombin species in the wall region sufficient to account for observed levels of des FI species. The predominant feedback formation of nonreactive species and high levels of the primarily anticoagulant intermediate meizothrombin (∼40% of total active thrombin species) may provide a mechanism to prevent thrombus propagation downstream of a site of thrombosis or hemorrhage. PMID:21281592

  16. Mapping Shear Zones, Faults, and Crustal Deformation Fabric With Receiver Functions

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, V.; Mahan, K. H.

    2014-12-01

    Dipping faults, shear zones, and pervasive anisotropic crustal fabric due to deformation are all capable of generating strong near-station mode conversions of teleseismic body waves, even for weak (a few percent) velocity anisotropy. These conversions can be found using the receiver function technique. Dipping foliation and dipping isotropic velocity contrasts can occur in isolation or together in deformed crust. Both generate receiver function arrivals that have a characteristic periodicity with azimuth. Different fixed azimuthal phase shifts between radial and tangential component receiver functions distinguish dipping or tilted structure and fabric from horizontal axis anisotropy. We demonstrate a method that uses these characteristics to map geologically relevant information such as strike and depth of foliation of dipping isotropic velocity contrasts and of horizontal symmetry axis anisotropy contrasts. The method uses waveforms without matching them via forward modeling, which makes choices such as slow versus fast axis symmetry and isotropic dip versus anisotropic axis tilt unnecessary. It also does not use shear wave splitting of the converted waves, which is more difficult to isolate. We show results from the continental U.S. and Canada and from the collision zones in the Himalaya and Tibetan Plateau and Taiwan. We discuss interpretation of our results in the light of recent laboratory measurements of deformed crustal rocks and contributions to the seismic signal from individual minerals such as micas, amphiboles, and quartz. Our observations are connected to geological ground truth by using structural maps and sample anisotropy determined using electron backscatter diffraction from exhumed deep crust in the Athabasca granulite province to predict the seismic signal from present-day deep crust. We also discuss the reconciliation of measurements from anisotropic receiver functions, surface waves, and split shear waves.

  17. A brittle (normal?) shear zone cored in Site C0002 of Nankai Trough Seismogenic Zone Experiment (IODP Expedition 348)

    NASA Astrophysics Data System (ADS)

    Crespo-Blanc, Ana; Sample, James; Brown, Kevin; Otsubo, Makoto; Yamamoto, Yuzuru

    2016-04-01

    Integrated Ocean Discovery Program (IODP) Expedition 348, which belongs to the Nankai Trough Seismogenic Zone Experiment, conducted riser-drilling to make deeper an existing hole at Site C0002, up to 3058.5 meters below seafloor (mbsf). This site is located 80 km SE of the Kii Peninsula (Japan) in the Kumano forearc basin, in turn situated on top of the Nankai accretionary prism. Cuttings (875.5-3058.5 mbsf) and cores (2163.0-2217.5 mbsf) were collected in the upper Miocene to Pliocene turbiditic silty claystone with few intercalations of sandstone which characterize the accretionary prism lithological units. A remarkably preserved fault zone has been cored around 2205 mbsf (core section Hole C0002P-348-5R-4). It is characterized by 34 cm of fault breccia, in which an anastomosed cataclastic foliation is present. The rocks of the damaged zone are formed by silty claystone with an incipient scaly fabric and scarce levels of sandstones. Extra-large thin sections were made along the whole core section. In the brittle shear zone, they reveal a catalogue of deformation structures characteristic of a high structural level. In particular, almond-type structures and arrays of microfaults cutting the stratification are the most common structures and outline the cataclastic foliation. The occurrence of calcite veins in the recovered cores is limited to this fault zone, which is indicative of its role as fluid path, accompanied by carbonate cementation. Generally fault veins have lower δ18O values than carbonate cements in the sedimentary matrix, consistent with veins forming at higher temperatures and/or from a fluid more strongly depleted in 18O. A continuum of the relationships between calcite veins and cataclastic deformation is observed, from veins that precipitated early in the fault history, with calcite grains broken during subsequent deformation, to late veins which seal the almond-type structures within the claystones. The geometry of the calcite grains within the

  18. Shear zones in the upper mantle - relation between geochemical enrichment and deformation in mantle peridotites

    SciTech Connect

    Downes, H. )

    1990-04-01

    Textural variations in mantle-derived spinel peridotites have previously been interpreted as evidence of the existence of asthenospheric mantle diapirs, indicating deformational heterogeneity on a large lateral scale (kilometers to tens of kilometers). However, many volcanic vents entrain both deformed and undeformed xenoliths, and field relations in peridotite massifs show the scale of alternation between deformed and undeformed peridotite to be small (centimeters to meters) because of the presence of numerous lithospheric shear zones. Some rare xenoliths contain both deformed and undeformed peridotite. These is also an apparent relation between deformation and the growth of metasomatic minerals; amphibole is often concentrated in strongly deformed zones in peridotite massifs and deformed xenoliths, although it is also found in crosscutting veins and aureoles around such veins. A relation can also be seen between deformation and indicators of geochemical enrichment. Clinopyroxenes from many deformed spinel peridotites show light rate earth element (REE) enrichment, whereas clinopyroxenes from undeformed spinel peridotites commonly have mid-ocean ridge basalt (MORB)-type light REE-depleted patterns. Sr and Nd radiogenic isotopic compositions of undeformed peridotites are generally MORB-like, and have low {epsilon}Sr and high {epsilon}Nd. In contrast, deformed peridotites, with or without amphibole, often have higher {epsilon}Sr and low {epsilon}Nd values, indicating geochemical enrichment by large ion lithophile (LIL)- and light REE-enriched fluids or melts. These observations can be used to infer that the shallow mantle contains lithospheric ductile shear zones in which metasomatic fluids precipitated amphibole and clinopyroxene.

  19. Geophysical characterization of transtensional fault systems in the Eastern California Shear Zone-Walker Lane Belt

    NASA Astrophysics Data System (ADS)

    McGuire, M.; Keranen, K. M.; Stockli, D. F.; Feldman, J. D.; Keller, G. R.

    2011-12-01

    The Eastern California Shear Zone (ECSZ) and Walker Lane belt (WL) accommodate ~25% of plate motion between the North American and Pacific plates. Faults within the Mina deflection link the ECSZ and the WL, transferring strain from the Owens Valley and Death Valley-Fish Lake Valley fault systems to the transcurrent faults of the central Walker Lane. During the mid to late Miocene the majority of strain between these systems was transferred through the Silver Peak-Lone Mountain (SPLM) extensional complex via a shallowly dipping detachment. Strain transfer has since primarily migrated north to the Mina Deflection; however, high-angle faults bounding sedimentary basins and discrepancies between geodetic and geologic models indicate that the SPLM complex may still actively transfer a portion of the strain from the ECSZ to the WL on a younger set of faults. Establishing the pattern and amount of active strain transfer within the SPLM region is required for a full accounting of strain accommodation, and provides insight into strain partitioning at the basin scale within a broader transtensional zone. To map the active structures in and near Clayton Valley, within the SPLM region, we collected seismic reflection and refraction profiles and a dense grid of gravity readings that were merged with existing gravity data. The primary goals were to determine the geometry of the high-angle fault system, the amount and sense of offset along each fault set, connectivity of the faults, and the relationship of these faults to the Miocene detachment. Seismic reflection profiles imaged the high-angle basin-bounding normal faults and the detachment in both the footwall and hanging wall. The extensional basin is ~1 km deep, with a steep southeastern boundary, a gentle slope to the northwest, and a sharp boundary on the northwest side, suggestive of another fault system. Two subparallel dip-slip faults bound the southeast (deeper) basin margin with a large lateral velocity change (from ~2

  20. Imaging Water in Deformed Quartzites: Examples from Caledonian and Himalayan Shear Zones

    NASA Astrophysics Data System (ADS)

    Kronenberg, Andreas; Ashley, Kyle; Hasnan, Hasnor; Holyoke, Caleb; Jezek, Lynna; Law, Richard; Thomas, Jay

    2016-04-01

    Infrared IR measurements of OH absorption bands due to water in deformed quartz grains have been collected from major shear zones of the Caledonian and Himalayan orogens. Mean intragranular water contents were determined from the magnitude of the broad OH absorption at 3400 cm-1 as a function of structural position, averaging over multiple grains, using an IR microscope coupled to a conventional FTIR spectrometer with apertures of 50-100 μm. Images of water content were generated by scanning areas of up to 4 mm2 of individual specimens with a 10 μm synchrotron-generated IR beam and contouring OH absorptions. Water contents vary with structural level relative to the central cores of shear zones and they vary at the grain scale corresponding to deformation and recrystallization microstructures. Gradients in quartz water content expressed over structural distances of 10 to 400 m from the centers of the Moine Thrust (Stack of Glencoul, NW Scotland), the Main Central Thrust (Sutlej valley of NW India), and the South Tibetan Detachment System (Rongbuk valley north of Mount Everest) indicate that these shear zones functioned as fluid conduits. However, the gradients differ substantially: in some cases, enhanced fluid fluxes appear to have increased quartz water contents, while in others, they served to decrease water contents. Water contents of Moine thrust quartzites appear to have been reduced during shear at greenschist facies by processes of regime II BLG/SGR dislocation creep. Intragranular water contents of the protolith 70 m below the central fault core are large (4078 ± 247 ppm, H/106 Si) while mylonites within 5 mm of the Moine hanging wall rocks have water contents of only 1570 (± 229) ppm. Water contents between these extremes vary systematically with structural level and correlate inversely with the extent of dynamic recrystallization (20 to 100%). Quartz intragranular water contents of Himalayan thrust and low-angle detachment zones sheared at upper

  1. Mineralogical constraint for metamorphic conditions in a shear zone affecting the Archean Ngoulemakong tonalite, Congo craton (Southern Cameroon) and retentivity of U-Pb SHRIMP zircon dates

    NASA Astrophysics Data System (ADS)

    Tchameni, R.; Lerouge, C.; Penaye, J.; Cocherie, A.; Milesi, J. P.; Toteu, S. F.; Nsifa, N. E.

    2010-08-01

    In the Ngoulemakong region of the Ntem unit (South Cameroon), tonalite crops out as intrusions of various sizes cross-cutting the charnockite suite. Both of these granitoids are affected by NE-SW and WNW-ESE sinistral and dextral shear zones. Tonalite in the WNW-ESE shear zone are deformed and shows metamorphic assemblages represented by quartz-microcline-biotite-garnet-plagioclase-scapolite-fluoro-apatite and chlorite-sulfides-epidote-muscovite-quartz-calcite not recorded by the undeformed rocks outside it. These mineralogical assemblages provide evidence of decreasing pressure-temperature conditions from granulite-amphibolite-facies in the moderate deformed part to greenschist-facies in the central part of the shear plane. The higher fluid (H 2O, CO 2, S, F, Cl, K, and Na) activities and high-grade recrystallizations recorded in the shear zone favour a Pb loss hypothesis in the zircons. U-Pb SHRIMP zircon dating yield an emplacement age of 2865 ± 4 Ma for the tonalite but does not permit the determination of the age of the high-grade event responsible for the Pb loss. These results provide evidence of the retentivity of U-Pb zircon dates under high grade conditions.

  2. Role of the Western Anatolia Shear Zone (WASZ) in Neotectonics Evolution of the Western Anatolia Extended Terrain, Turkey

    NASA Astrophysics Data System (ADS)

    Cemen, I.; Gogus, O. H.; Hancer, M.

    2013-12-01

    The Neotectonics period in western Anatolia Extended Terrain, Turkey (WAET) may have initiated in late Oligocene following the Eocene Alpine collision which produced the Izmir-Ankara suture zone. The Western Anatolia Shear Zone (WASZ) bounds the WAET to the east. The shear zone contains mostly normal faults in the vicinity of the Gulf of Gokova. However, its movement is mostly oblique slip from the vicinity of Tavas towards the Lake of Acigol where it makes a northward bend and possibly joins the Eskisehir fault zone to the north of the town of Afyon. The shear zone forms the southern and eastern margins of the Kale-Tavas, Denizli and Acigol basins. The shear zone is similar in its structural/tectonics setting to the Eastern California Shear zone (ECSZ) of the Basins and Ranges of North America Extended terrain which is also composed of many normal to oblique-slip faults and separates two extended terrains with different rates of extension. Western Anatolia experienced many devastating earthquakes within the last 2000 years. Many of the ancient Greek/Roman city states, including Ephesus, Troy, and Hierapolis were destroyed by large historical earthquakes. During the second half of the 20th century, the region experienced two major large earthquake giving normal fault focal mechanism solutions. They are the 1969, M=6.9 Alasehir and the 1970, M=7.1 Gediz earthquakes. These earthquakes had caused substantial damage and loss of life in the region. Therefore, a comprehensive understanding of the kinematics of the Cenozoic extensional tectonics and earthquake potential of the WASZ in the region, is very important, especially since the fault zone is very close to the major towns in eastern part of western Turkey, such as Mugla, Denizli, Sandikli, Dinar and Afyon.

  3. Characterizing fractures and shear zones in crystalline rock using seismic and GPR methods

    NASA Astrophysics Data System (ADS)

    Doetsch, Joseph; Jordi, Claudio; Laaksonlaita, Niko; Gischig, Valentin; Schmelzbach, Cedric; Maurer, Hansruedi

    2016-04-01

    Understanding the natural or artificially created hydraulic conductivity of a rock mass is critical for the successful exploitation of enhanced geothermal systems (EGS). The hydraulic response of fractured crystalline rock is largely governed by the spatial organization of permeable fractures. Defining the 3D geometry of these fractures and their connectivity is extremely challenging, because fractures can only be observed directly at their intersections with tunnels or boreholes. Borehole-based and tunnel-based ground-penetrating radar (GPR) and seismic measurements have the potential to image fractures and other heterogeneities between and around boreholes and tunnels, and to monitor subtle time-lapse changes in great detail. We present the analysis of data acquired in the Grimsel rock laboratory as part of the In-situ Stimulation and Circulation (ISC) experiment, in which a series of stimulation experiments have been and will be performed. The experiments in the granitic rock range from hydraulic fracturing to controlled fault-slip experiments. The aim is to obtain a better understanding of coupled seismo-hydro-mechanical processes associated with high-pressure fluid injections in crystalline rocks and their impact on permeability creation and enhancement. GPR and seismic data have been recorded to improve the geological model and characterize permeable fractures and shear zones. The acquired and processed data include reflection GPR profiles measured from tunnel walls, single-borehole GPR images, and borehole-to-borehole and tunnel-to-tunnel seismic and GPR tomograms. The reflection GPR data reveal the geometry of shear zones up to a distance of 30 m from the tunnels and boreholes, but the interpretation is complicated by the geometrical ambiguity around tunnels and boreholes and by spurious reflections from man-made structures such as boreholes. The GPR and seismic traveltime tomography results reveal brittle fractured rock between two ductile shear zones. The

  4. Implications of channel flow analogue models for extrusion of the Higher Himalayan Shear Zone with special reference to the out-of-sequence thrusting

    NASA Astrophysics Data System (ADS)

    Mukherjee, Soumyajit; Koyi, Hemin A.; Talbot, Christopher J.

    2012-01-01

    The Higher Himalayan Shear Zone (HHSZ) contains a ductile top-to-N/NE shear zone—the South Tibetan detachment system-lower (STDSL) and an out-of-sequence thrust (OOST) as well as a top-to-N/NE normal shear at its northern boundary and ubiquitously distributed compressional top-to-S/SW shear throughout the shear zone. The OOST that was active between 22 Ma and the Holocene, varies in thickness from 50 m to 6 km and in throw from 1.4 to 20 km. Channel flow analogue models of this structural geology were performed in this work. A Newtonian viscous polymer (PDMS) was pushed through a horizontal channel leading to an inclined channel with parallel and upward-diverging boundaries analogous to the HHSZ and allowed to extrude to the free surface. A top-to-N/NE shear zone equivalent to the STDSU developed spontaneously. This also indirectly connotes an independent flow confined to the southern part of the HHSZ gave rise to the STDSL. The PDMS originally inside the horizontal channel extruded at a faster rate through the upper part of the inclined channel. The lower boundary of this faster PDMS defined the OOST. The model OOST originated at the corner and reached the vent at positions similar to the natural prototype some time after the channel flow began. The genesis of the OOST seems to be unrelated to any rheologic contrast or climatic effects. Profound variations in the flow parameters along the HHSZ and the extrusive force probably resulted in variations in the timing, location, thickness and slip parameters of the OOST. Variation in pressure gradient within the model horizontal channel, however, could not be matched with the natural prototype. Channel flow alone presumably did not result in southward propagation of deformation in the Himalaya.

  5. Reactivation of Paleoproterozoic crust in southern Finland based on paleomagnetic studies of shear zones

    NASA Astrophysics Data System (ADS)

    Preeden, U.; Mertanen, S.; Plado, J.

    2009-04-01

    Paleomagnetic and mineralogical studies have been carried out on Paleoproterozoic crystalline rocks in shear and fault zones in southern Finland. That was done to obtain further evidence on Proterozoic-Paleozoic reactivation of the crust due to juvenile fluid activity. Locating in the central part of Baltica, the area has been tectonically relatively quiet since Precambrian, but previous paleomagnetic studies from the same region have shown presence of remagnetization events. The oldest identified remanence component represents primary magnetization, referring to the late stages of Svecofennian orogeny at ~1.85 Ga. According to the SEM and rock magnetic studies the remanence resides in (titano)magnetite. Younger Proterozoic component is related to the ~1.6 Ga rapakivi intrusions. The most prevalent remanence represents Permian remagnetization, carried by fine-grained hematite. We presume this component reflects reactivation of the Svecofennian crust either due to (i) spreading of basinal fluids caused by tectonic processes at the edges of the plate (Caledonian, Hercynian and Uralian orogens) or (ii) extensive erosion/regression that allowed subsurface meteoric fluids to circulate in the already existing fault systems. The likely source for iron in these fluids could be the processes of alteration and dissolution of micas, epidote and/or earlier iron-titanium oxides. Additional iron could also have been transported into the system by externally derived fluids. Solving the exact origin of fluids still needs geochemical analysis of fluid inclusions and studies on isotopic compositions. In a wider view all these tectonic events can be related to the formation and break-up of supercontinent Pangea. Worldwide, there exist hundreds of documented indications of a late Paleozoic secondary magnetization in different rock types. Similar secondary magnetizations have been found also in the Fennoscandian region, for instance in the crystalline rocks in eastern and northern

  6. Effect of Machining on Shear-Zone Microstructure in Ti-15V-3Cr-3Al-3Sn: Conventional and Ultrasonically Assisted Turning

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Tse, Y. Y.; Muhammad, R.; Roy, A.; Silberschmidt, V. V.; Higginson, R. L.

    2016-09-01

    This work systematically studied morphology of nano- and microstructures in primary and secondary shear zones of machining chips produced with two different machining methods: conventional and ultrasonically assisted turning. Electron backscatter diffraction and transmission electron microscopy showed that chips had similar microstructures for both machining techniques. The nanostructure in secondary shear zones was less homogeneous than that in primary shear zones. In addition, a heavily deformed layer was formed in a subsurface of Ti-15V-3Cr-3Al-3Sn work-pieces, replicating the microstructure of secondary shear zones of the machining chips, and elongated nanocrystalline grains in this layer were aligned with a tangential direction of turning.

  7. Weak ductile shear zone beneath the western North Anatolian Fault Zone: inferences from earthquake cycle model constrained by geodetic observations

    NASA Astrophysics Data System (ADS)

    Yamasaki, T.; Wright, T. J.; Houseman, G. A.

    2013-12-01

    in the weak zone of ~ 1018×0.3 Pa s, and larger than ~ 1020 Pa s outside this region. Models with sharp boundaries to the weak zone fit the data better than those with a smooth increase of viscosity away from the fault. Thus abrupt changes in material properties, such as those that might result from grain-size reduction, may be required in addition to any effect from shear heating. Unlike some previous models, we do not require non-linear stress-dependent viscosities. Our models imply that geodetic strain rates decay to a quasi-steady state within about 10% of the inter-earthquake period (years or decades) and that interseismic geodetic observations can therefore be used to infer the long-term geological slip rate, provided there has not been a recent earthquake. Rheologies inferred from postseismic studies alone likely reflect the rheology of the weak zone beneath the fault, and should not be used to infer the strength profile of normal lithosphere.

  8. Rb-Sr, Sm-Nd, and U-Pb geochronology of the rocks within the Khlong Marui shear zone, southern Thailand

    NASA Astrophysics Data System (ADS)

    Kanjanapayont, Pitsanupong; Klötzli, Urs; Thöni, Martin; Grasemann, Bernhard; Edwards, Michael A.

    2012-08-01

    In southern Thailand, the Khlong Marui shear zone is dominated by a NNE-SSW striking high topographic lozenge shaped area of ca. 40 km long and 6 km wide between the Khlong Marui Fault and the Bang Kram Fault. The geology within this strike-slip zone consists of strongly deformed layers of mylonitic meta-sedimentary rocks associated with orthogneisses, mylonitic granites, and pegmatitic veins with a steeply dipping foliation. The strike-slip deformation is characterized by dextral ductile deformation under amphibolite facies and low to medium greenschist facies. In situ U-Pb ages of inherited zircon cores from all zircons in the Khlong Marui shear zone indicate that they have the same material from the Archean. Late Triassic to Late Cretaceous ages obtained for zircon outer cores of the mylonitic granite are probably related to a period of magmatic activity that was significantly influenced by the West Burma and Shan-Thai collision and the subduction along the Sunda Trench. The early dextral ductile deformation phase of the Khlong Marui shear zone in the Early Eocene suggested by U-Pb ages of zircon rims, and the later dextral transpressional deformation in the Late Eocene indicated by mica Rb-Sr ages. Rb-Sr, Sm-Nd, and U-Pb dating correlation implies that the major exhumation period of the ductile lens was in the Eocene. This period was tectonically influenced in the SE Asia region by the early India-Asia collision.

  9. Channelized Fluid Flow and Metasomatism in Subducted Oceanic Lithosphere recorded in an Eclogite-facies Shear Zone (Monviso Ophiolite, Italy)

    NASA Astrophysics Data System (ADS)

    Angiboust, S.; Agard, P.; Pettke, T.

    2012-04-01

    The Monviso ophiolite Lago Superiore Unit (LSU) constitutes a well-preserved, almost continuous fragment of upper oceanic lithosphere subducted down to ca. 80 km (between 50 and 40 Ma) and later exhumed along the subduction interface. The LSU is made of (i) a variably thick (50-500 m) section of eclogitized mafic crust (associated with minor calcschist lenses) overlying a 100-400 m thick metagabbroic body, and of (ii) a serpentinite sole (ca. 1000 m thick). This section is cut by two 10 to 100m thick eclogite-facies shear zones, found at the boundary between basalts and gabbros (Intermediate Shear Zone: ISZ), and between gabbros and serpentinites (Lower Shear Zone: LSZ). Fragments of mylonitic basaltic eclogites and marbles were dragged and dismembered within serpentinite schists along the LSZ during eclogite-facies deformation [Angiboust et al., Lithos, 2011]. Metasomatic rinds formed on these fragments at the contact with the surrounding antigorite schists during lawsonite-eclogite facies metamorphism, testifying to prominent fluid-rock interaction along with deformation. We present new petrological and geochemical data on four types of metasomatically altered eclogites (talc-, chlorite-, lawsonite- and phengite-bearing eclogites) and on a (serpentinite-derived) talc schist from the block rind. Bulk-rock compositions, in situ LA-ICP-MS analysis and X-ray Cr/Mg maps of garnet demonstrate that (i) these samples underwent significant B, Cr, Mg, Ni and Co enrichment and Fe, V and As depletion during eclogite-facies metamorphism (while Li and Pb behaved inconsistently) and (ii) garnet composition and chemistry of inclusions show extreme variation from core to rim. These compositional patterns point to a massive, pulse-like, fluid-mediated element transfer along with deformation, originating from the surrounding serpentinite (locally, with contributions from metasediments-equilibrated fluids). Antigorite breakdown, occurring ca. 10 km deeper than the maximum depth

  10. CLMSZ, Garnet Mountain area, southern California: A collisionally generated contractional shear zone

    SciTech Connect

    Bracchi, K.A.; Girty, G.H.; Girty, M.S. . Dept. of Geological Sciences)

    1993-04-01

    The Harper Creek gneiss (HCg) and Oriflamme Canyon unit (OCu) underlie the central portion of the Cuyamaca Laguna Mountains shear zone (CLMSZ) in and around Garnet Mountain, Peninsular Ranges, California, and may have been deformed during Cretaceous arc-continent collision. U-Pb zircon work and petrological and geochemical analyses suggest that in the Garnet Mountain area, the 140 Ma HCg is derived from granite and granodiorite, whereas the 122 [+-] 1 Ma OCu is a protomylonite derived from a granite. Both units appear to be per aluminous calc-alkaline magmatic arc granitoids. Mineral assemblages suggest uppermost greenschist to lower amphibolite grade conditions during deformation. In the HCg, S-1hc is a mylonitic gneissosity with a mean attitude of N11W, 60 NE. A mineral streaking lineation lies within the plane of S-1hc and has a mean attitude of 61[degree] N76E. In the OCu, S-1oc strikes about N13W and dips 52 NE and contains a mineral streaking lineation with an attitude of 49 N52E. Dextral and sinistral shear bands, S-2d and S-2s (looking NW), transect S-1hc and S-1oc. S-2d and S-2s strike subparallel to S-1. In the HCg S-2s is weakly developed and dips about 32 NE, whereas S-2d is more dominant and dips about 76 NE. On the OCu these relationships are reversed. S-2d does not cross cut S-2s: hence, the two sets of shear bands are interpreted to be conjugates reflecting NE-SW contraction and subvertical extension during collisional development of the CLMSZ.

  11. Nucleation and growth of retrograde shear zones: an example from the Needle Mountains, Colorado, U.S.A.

    NASA Astrophysics Data System (ADS)

    Gibson, Richard G.

    Brittle and ductile deformation features are heterogeneously developed in late Proterozoic retrograde, normal-slip shear zones that cross-cut amphibolites and quartzo-feldspathic gneisses in the Needle Mountains. Replacement of amphibolite-grade minerals by greenschist facies assemblages is spatially related to transgranular fractures that cross-cut the older gneissosity. Steeply dipping, chlorite-lined slip surfaces are associated with chlorite + quartz ± muscovite-filled dilational jogs and narrow breccia zones. Arrays of slip surfaces are transitional into similarly oriented phyllonite zones, within which the foliation locally overprints early cataclastic zones. The nucleation of these shear zones under greenschist facies conditions involved fluid infiltration along early transgranular fractures and hydration of Fe-Mg-bearing minerals. Initial displacement occurred by slip along these fractures and local cataclasite development. Fluids were episodically drawn into dilatant sites along these slip surfaces. A transition to plastic deformation resulted directly from the metamorphic breakdown of feldspars and amphiboles to phyllosilicates, which allowed strain localization into narrow phyllonite zones. Thus, dilatancy produced by early brittle deformation appears to be the main process by which fluids infiltrate into developing greenschist-grade, retrograde shear zones. Reaction-softening via hydration reactions causes a brittle-to-plastic transition and results in strain localization.

  12. Characterizing Seismic Anisotropy across the Peruvian Flat-Slab Subduction Zone: Shear Wave Splitting from PULSE

    NASA Astrophysics Data System (ADS)

    Eakin, C. M.; Long, M. D.; Beck, S. L.; Wagner, L. S.; Tavera, H.

    2013-12-01

    Although 10% of subduction zones worldwide today exhibit shallow or flat subduction, we are yet to fully understand how and why these slabs go flat. An excellent study location for such a problem is in Peru, where the largest region of flat-subduction currently exists, extending ~1500 km in length (from 3 °S to 15 °S) and ~300 km in width. Across this region we investigate the pattern of seismic anisotropy, an indicator for past and/or ongoing deformation in the upper mantle. To achieve this we conduct shear wave splitting analyzes at 40 broadband stations from the PULSE project (PerU Lithosphere and Slab Experiment). These stations were deployed for 2+ years across the southern half of the Peruvian flat-slab region. We present detailed shear wave splitting results for deep and teleseismic events, making use of a wide variety of available phases that sample the upper mantle directly beneath the stations (such as SKS, SKKS, PKS, sSKS, SKiKS, ScS and local/direct S). We analyze the variability of our results with respect to initial polarizations and ray paths, as well as spatial variability between stations as the underlying slab morphology changes. Preliminary results show predominately NW-SE fast polarizations (trench oblique to sub-parallel) over the flat-slab region east of Lima. These results are consistent with observations of more complex multi-layered anisotropy beneath a nearby permanent station (NNA). Further south, towards the transition to steeper subduction, the splitting pattern becomes increasingly dominated by null measurements. Over to the east however, beyond Cuzco, where the mantle wedge might begin to play a role, we record fast polarizations quasi-parallel to the local slab contours. We carefully evaluate the different possible source locations within the subduction zone for this seismic anisotropy and observe increasing evidence for distinct anisotropy within the slab as well as the sub-slab mantle.

  13. The nature of the Ailao Shan-Red River (ASRR) shear zone: Constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs

    NASA Astrophysics Data System (ADS)

    Liu, Junlai; Tang, Yuan; Tran, My-Dung; Cao, Shuyun; Zhao, Li; Zhang, Zhaochong; Zhao, Zhidan; Chen, Wen

    2012-03-01

    -brittle deformation structures, such as hot striae and discrete retrogression zones, are attributed to normal-slip shearing in the third deformation episode (D3), which was probably locally active, along the eastern flank of the DCS range, for example. There are four quartz c-axis fabric patterns in the mylonitic rocks, including type A point maxima, type B Y point maxima with crossed girdles superimposition, type C quadrant maxima, as well as type D point and quadrant maxima combination. They are consistent with microscopic observations of microstructures of high-temperature pure shearing, low-temperature simple shearing and their superimposition. Integrated microstructural analysis and fabric thermometer studies provide information on both high temperature (up to 750 °C) and dominant low-temperature (300-600 °C) deformations of quartz grains in different rock types. Sillimanite and garnet fabrics, especially the latter, were primarily formed at the peak metamorphism during high-temperature pure shearing. The above structural, microstructural and fabric associations were generated in the tectonic framework of the Indian-Eurasian collision. The low-temperature microstructures and fabrics are attributed to left-lateral shearing along the ASRR shear zone from 27 to 21 Ma during the southeastward extrusion of the Indochina block, which postdated high-temperature deformation at the peak metamorphism during the collision.

  14. 40Ar-39Ar laser dating of ductile shear zones from central Corsica (France): Evidence of Alpine (middle to late Eocene) syn-burial shearing in Variscan granitoids

    NASA Astrophysics Data System (ADS)

    Di Vincenzo, Gianfranco; Grande, Antonietta; Prosser, Giacomo; Cavazza, William; DeCelles, Peter G.

    2016-10-01

    The island of Corsica (France) plays a central role in any reconstruction of Western Mediterranean geodynamics and paleogeography but several key aspects of its geological evolution are still uncertain. The most debated topics include the interpretation of the Corsican orogen as the result of an east- or west-directed subduction, and the actual involvement of the Variscan basement of Corsica in the Alpine orogenic cycle. This study integrates 40Ar-39Ar laserprobe, mesostructural, microtextural, and microchemical analyses and places relevant constraints on the style, P-T conditions, and timing of Alpine-age, pervasive ductile shear zones which affected the Variscan basement complex of central Corsica, a few kilometers to the west of the present-day front of the Alpine nappes. Shear zones strike ~ NNE-SSW, dip at a high angle, and are characterized by a dominant sinistral strike-slip component. Two of the three investigated shear zones contain two texturally and chemically resolvable generations of white mica, recording a prograde (burial) evolution: (1) deformed celadonite-poor relicts are finely overgrown by (2) a celadonite-rich white mica aligned along the main foliation. White mica from a third sample of another shear zone, characterized by a significantly lower porphyroclast/matrix ratio, exhibits a nearly uniform high-celadonite content, compositionally matching the texturally younger phengite from the nearby shear zones. Mineral-textural analysis, electron microprobe data, and pseudosection modeling constrain P-T conditions attained during shearing at ~ 300 °C and minimum pressures of ~ 0.6 GPa. In-situ 40Ar-39Ar analyses of coexisting low- and high-celadonite white micas from both shear zones yielded a relatively wide range of ages, ~ 45-36 Ma. Laser step-heating experiments gave sigmoidal-shaped age profiles, with step ages in line with in-situ spot dates. By contrast, the apparently chemically homogenous high-celadonite white mica yielded concordant in

  15. Strain localization in the middle- to upper continental crust: examples from the Patos and Pernambuco shear zones (Borborema Province, NE Brazil)

    NASA Astrophysics Data System (ADS)

    Viegas, G.; Archanjo, C. J.; Hollanda, M. H.; Vauchez, A. R.

    2014-12-01

    The accommodation of deformation in the Earth's lithosphere typically results in a heterogeneous distribution of strain in the continental crust, which is a function of effective pressure, temperature and strain rate at different structural levels. In Northeast Brazil, the Borborema Province is characterized by an interconnected, crustal-scale shear zone system associated with a widespread granitic plutonism. Two of the most prominent structures of this system, the Patos and Pernambuco shear zones, are characterized by ~ 600 km long E-W striking mylonite belts in which strain localization processes are observed either in association with partial melting in the Patos strike-slip fault, or as zones of overprinting brittle-ductile deformation in the Pernambuco shear zone. Deformation mechanisms are distinct across the Patos shear zone, mainly marked by crystalline plasticity and diffusion creep in the high-temperature northern border, magmatic flow in the central region and dislocation creep coupled with microfracturing in the southern sector. The Espinho Branco migmatite (~ 565 Ma) acts as a weak rheological layer that accumulates strain in the northern portion of the fault. Alternatively, the absence of partial melting and the dominant cataclastic/plastic flow regime lead to grain-size sensitive strain localization at the southern border. The Pernambuco shear zone was nucleated at the vicinities of two granitoid batholiths at c.a. 588 Ma. Low-temperature mylonites adjacent to the batholiths show several microstructures indicating coeval activity of brittle-ductile deformation. Recent zircon U-Pb (SHRIMP) data on these mylonites yielded mean ages of ~ 539 Ma, suggesting successive events of thermal input and shearing within the structure. These features suggest that strain localization processes exert an important control on the rheology of the continental lithosphere; the accommodation of deformation in the middle crust is mainly attained by the presence of weak

  16. Evaluating Temporal Variations in Fault Slip-Rate and Fault Interaction in the Eastern California Shear Zone

    NASA Astrophysics Data System (ADS)

    Amos, C. B.; Jayko, A.; Burgmann, R.

    2008-12-01

    Delineating spatiotemporal patterns of strain accumulation and release within plate boundaries remains fundamental to our understanding of the dynamics of active crustal deformation. The timescales at which active strain varies or remains constant for individual fault systems, however, are often poorly resolved. The origin of large-magnitude strain transients in the Eastern California shear zone remains enigmatic and underpins the importance of quantifying active deformation at multiple geologic timescales along this tectonic boundary. Here, we focus on the Late Pleistocene- Holocene record of slip on the NW-striking Little Lake fault zone, one of the primary structures responsible for transferring Pacific-North American plate motion between the northern Mojave Desert and the east side of the Sierra Nevada block north of the Garlock fault. Discrepancies between geologic and geodetically determined rates of motion along the Little Lake fault zone in the China Lake-Indian Wells Valley area suggest a potentially complex temporal history of slip on this structure with some slip stepping eastward onto structures bounding the west side of the Coso Range. Preliminary reconstruction of a slip-rate history on the Little Lake fault from multiple generations of displaced Quaternary geomorphic features suggests potential variation in fault-slip rates at timescales of 104- 105 years. Two paleochannel margins on a basalt strath in the Little Lake spillway represent the youngest of these features. Each margin exhibits ~30 m of right-lateral displacement and suggests a minimum slip rate of ~1.4 mm/yr during Holocene-Late Pleistocene time. Additionally, a prominent fluvial escarpment or terrace riser along the east side of Little Lake wash is offset at least ~150 to 700 m, depending on how the initial geometry of this feature is reconstructed. Pending geochronologic constraints on the age of this feature, such an offset potentially suggests higher rates of slip averaged over longer

  17. Major softening at brittle-ductile transition due to interplay between chemical and deformation processes: An insight from evolution of shear bands in the South Armorican Shear Zone

    NASA Astrophysics Data System (ADS)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.

    2016-02-01

    The formation of S-C/C' fabrics in the South Armorican Shear Zone has been evaluated by detailed microstructural study where the focus was given to initiation and early evolution of the C/C' fabric shear bands. Our observations suggest that the S-C/C' fabrics formed at distinct temperature conditions indicating >550°C for the S fabric and 300-350°C at 100-400 MPa for the C/C' fabric shear bands. The evolving microstructure within shear bands documents switches in deformation mechanisms related to positive feedbacks between deformation and chemical processes and imposes mechanical constraints on the evolution of the brittle-ductile transition in the continental transform fault domains. Three stages of shear band evolution have been identified. Stage I corresponds to initiation of shear bands via formation of microcracks with possible yielding differential stress of up to 250 MPa. Stage II is associated with subgrain rotation recrystallization and dislocation creep of quartz and coeval dissolution-precipitation creep of microcline. Recrystallized quartz grains show continual increase in size and decrease in stress and strain rates from 94 MPa to 17-26 MPa and 1.8 × 10-1 s-1-9 × 10-17 s-1 associated with deformation partitioning into weaker microcline layer and shear band widening. The quartz mechanical data allowed us to set some constrains for coeval dissolution-precipitation of microcline which at our estimated pressure-temperature conditions suggests creep at 17-26 MPa differential stress and 1.8 × 10-15 s-1 strain rate. Stage III is characterized by localized slip along white mica bands accommodated by dislocation creep at strain rate 1.8 × 10-14 s-1 and stress 5.75 MPa. Our mechanical data point to dynamic evolution of the studied brittle-ductile transition characterized by major weakening to strengths >10 MPa. Such nonsteady state evolution may be common in crustal shear zones especially when phase transformations are involved.

  18. Applicability of Channel flow as an extrusion mechanism of the Higher Himalayan Shear Zone from Sutlej, Zanskar, Dhauliganga and Goriganga Sections, Indian Himalaya

    NASA Astrophysics Data System (ADS)

    Mukherjee, Soumyajit

    2010-05-01

    Applicability of Channel flow as an extrusion mechanism of the Higher Himalayan Shear Zone from Sutlej, Zanskar, Dhauliganga and Goriganga Sections, Indian Himalaya Soumyajit Mukherjee Department of Earth Sciences, Indian Institute of Technology Bombay Powai, Mumbai- 400076, INDIA, e-mail: soumyajitm@gmail.com Mukherjee & Koyi (1,2) evaluated the applicability of channel flow extrusion of the Higher Himalayan Shear Zone (HHSZ) in the Zanskar and the Sutlej sections based on field- and micro-structural studies, analytical- and analog models. Further work on the Dhauliganga and the Goriganga sections of the HHSZ reveal complicated structural geology that is untenable to explain simply in terms of channel flow. For example, in the former section, flexure slip folds exist in a zone spatially separated from the upper strand of the South Tibetan Detachment System (STDSU). On the other hand, in the later section, an STDSU- in the sense of Mukherjee and Koyi (1)- is absent. Instead, a steep extensional shear zone with northeasterly dipping shear plane cuts the pre-existing shear fabrics throughout the HHSZ. However, the following common structural features in the HHSZ were observed in these sections. (1) S-C fabrics are the most ubiquitous ductile shear sense indicators in field. (2) Brittle shearing along the preexisting ductile primary shear planes in a top-to-SW sense. (3) Less ubiquitous ductile compressional shearing in the upper part of the shear zone including the STDSU. (4) A phase of local brittle-ductile extension throughout the shear zone as revealed by boudins of various morphologies. (5) The shear zone is divisible into a southern non-migmatitic and a northern migmatitic zone. No special structural dissimilarity is observed across this lithological boundary. Keywords: Channel flow, Extrusion, Higher Himalaya, Structural Geology, Shear zone, Deformation References 1. Mukherjee S, Koyi HA (in press) Higher Himalayan Shear Zone, Sutlej section: structural geology

  19. Analogue modelling of inclined, brittle-ductile transpression: Testing analytical models through natural shear zones (external Betics)

    NASA Astrophysics Data System (ADS)

    Barcos, L.; Díaz-Azpiroz, M.; Balanyá, J. C.; Expósito, I.; Jiménez-Bonilla, A.; Faccenna, C.

    2016-07-01

    The combination of analytical and analogue models gives new opportunities to better understand the kinematic parameters controlling the evolution of transpression zones. In this work, we carried out a set of analogue models using the kinematic parameters of transpressional deformation obtained by applying a general triclinic transpression analytical model to a tabular-shaped shear zone in the external Betic Chain (Torcal de Antequera massif). According to the results of the analytical model, we used two oblique convergence angles to reproduce the main structural and kinematic features of structural domains observed within the Torcal de Antequera massif (α = 15° for the outer domains and α = 30° for the inner domain). Two parallel inclined backstops (one fixed and the other mobile) reproduce the geometry of the shear zone walls of the natural case. Additionally, we applied digital particle image velocimetry (PIV) method to calculate the velocity field of the incremental deformation. Our results suggest that the spatial distribution of the main structures observed in the Torcal de Antequera massif reflects different modes of strain partitioning and strain localization between two domain types, which are related to the variation in the oblique convergence angle and the presence of steep planar velocity - and rheological - discontinuities (the shear zone walls in the natural case). In the 15° model, strain partitioning is simple and strain localization is high: a single narrow shear zone is developed close and parallel to the fixed backstop, bounded by strike-slip faults and internally deformed by R and P shears. In the 30° model, strain partitioning is strong, generating regularly spaced oblique-to-the backstops thrusts and strike-slip faults. At final stages of the 30° experiment, deformation affects the entire model box. Our results show that the application of analytical modelling to natural transpressive zones related to upper crustal deformation

  20. The Hurd Peak gneiss of the Long Lake shear zone, eastern Sierra Nevada, California

    SciTech Connect

    Holland, K.S.; Reed, W.E. . Dept. of Earth and Space Sciences)

    1993-04-01

    The Hurd Peak gneiss is located within the Long Lake valley of the east-central Sierra Nevada, California. This unit is the principle orthogneiss in Hathaway's (1993) Long Lake shear zone. The rock shows porphyroclasts of plagioclase and quartz, abundant mafic enclaves, and cross-cutting field associations which suggest that the gneiss had a plutonic protolith. The gneiss varies from biotite-poor nearest the contact with the Lamarck to biotite-rich nearest Long Lake. The contact zone between the gneiss and the Lamarck pluton ranges from sharp to gradational and from migmatitic to mixed, i.e., the mixed zone being greater than 50% intermingled dikes of 10 cm or greater thickness. In places this contact is marked by a quartz-free biotite hornfels approximately 5 m thick. Based on their relative deformation, at least 3 suites of aplite dikes cross-cut the gneiss, and 5 other lithologies, including basaltic, mixed, composite, andesitic, and quartz dioritic compositions, also cross-cut the gneiss. The Rb-Sr whole rock isochron age of the Hurd Peak gneiss has been determined to be 90.2 Ma. The authors interpret this isochron to be the result of mobilization of the Rb-Sr isotopic system during intrusion of the Lamarck Granodiorite (90 Ma); this may represent a regional cooling age. The initial [sup 87]/Sr[sup 86]Sr ratio of the gneiss is 0.7098, i.e., much more evolved than the surrounding plutons which have [sup 87]Sr/[sup 86]Sr ratios near 0.706. Sr model ages indicate that the protolith of the gneiss is considerably older than 90 Ma, one such calculation suggests an age of approximately 250 Ma. Single crystals of zircon have been isolated from the gneiss for U-Pb dating, and analytical work on the zircons is presently on-going.

  1. Evidence and dynamics for the change of strike-slip direction of the Changle Nanao ductile shear zone, southeastern China

    NASA Astrophysics Data System (ADS)

    Zhihong, Wang; Huafu, Lu

    1997-12-01

    The Changle-Nanao ductile shear zone was developed from a suture zone. The evidence from the ductile fabrics and mylonitic microstructures indicates that the strike-slip was sinistral during pre-collision. It became dominantly dextral in the syn-collision stage in late Early Cretaceous. The dextral strike-slip movement continued in the post-collision stage with extension as the dominant process. The strike-slip movement of the zone was strictly controlled by dynamics of collision between the Fujian (Min)-Taiwan (Tai) microcontinent and the Fujian (Min)-Zhejiang (Zhe) Mesozoic volcanic arc during the time interval of 100-120 Ma. The Min-Tai microcontinent in which the ductile shear zone developed might have been located originally to the south of its present position. The northward migration of the microcontinent had contributed to a few hundred kilometers of drift rather than a shear displacement. The real shear displacement is small due to the change of strike-slip direction from sinistral to dextral.

  2. Fluid Shear Stress Increases Neutrophil Activation via Platelet-Activating Factor

    PubMed Central

    Mitchell, Michael J.; Lin, Kimberly S.; King, Michael R.

    2014-01-01

    Leukocyte exposure to hemodynamic shear forces is critical for physiological functions including initial adhesion to the endothelium, the formation of pseudopods, and migration into tissues. G-protein coupled receptors on neutrophils, which bind to chemoattractants and play a role in neutrophil chemotaxis, have been implicated as fluid shear stress sensors that control neutrophil activation. Recently, exposure to physiological fluid shear stresses observed in the microvasculature was shown to reduce neutrophil activation in the presence of the chemoattractant formyl-methionyl-leucyl-phenylalanine. Here, however, human neutrophil preexposure to uniform shear stress (0.1–2.75 dyn/cm2) in a cone-and-plate viscometer for 1–120 min was shown to increase, rather than decrease, neutrophil activation in the presence of platelet activating factor (PAF). Fluid shear stress exposure increased PAF-induced neutrophil activation in terms of L-selectin shedding, αMβ2 integrin activation, and morphological changes. Neutrophil activation via PAF was found to correlate with fluid shear stress exposure, as neutrophil activation increased in a shear stress magnitude- and time-dependent manner. These results indicate that fluid shear stress exposure increases neutrophil activation by PAF, and, taken together with previous observations, differentially controls how neutrophils respond to chemoattractants. PMID:24853753

  3. Modeling Spatial Structure of Rock Fracture Surfaces Before and After Shear Test: A Method for Estimating Morphology of Damaged Zones

    NASA Astrophysics Data System (ADS)

    Babanouri, Nima; Karimi Nasab, Saeed

    2015-05-01

    This paper deals with the structural analysis of rock fracture roughness, and accordingly, a method is developed for estimating/predicting the post-shearing 3D geometry of the fracture surface. For this purpose, surfaces of three natural rock fractures were digitized and studied before and after the direct shear test. The variogram analysis of the surfaces indicated a strong non-linear trend in the topography data. Hence, the spatial variability of the rock fracture surfaces was decomposed to: one deterministic component, characterized by a high-order polynomial representing the large-scale undulations, and one stochastic component, described by the variogram of residuals representing the small-scale roughness. Using an image-processing technique, a total of 343 damage zones with different sizes, shapes, initial roughness characteristics, local stress fields, and/or asperity strength values were spatially located and clustered. In order to characterize the overall spatial structure of the degraded zones, the concept of the `pseudo-zonal variogram' was introduced. The results showed that the spatial continuity at the damage zones increases due to the asperity degradation. The increase in the variogram range is anisotropic and tends to be higher along the shearing. Consequently, the direction of maximum continuity rotates towards the shear direction. After modeling the evolution of the spatial structure with shearing and detecting boundaries of the degraded areas, a methodology was presented to provide a regression-kriging estimate of the morphology of sheared surfaces. The proposed method can be considered as a cost-free and reasonably accurate alternative to expensive techniques of scanning the rock fracture surface after the shear test.

  4. Strain localization in brittle-ductile shear zones: fluid abundant vs fluid limited conditions (an example from Wyangala area, Australia)

    NASA Astrophysics Data System (ADS)

    Spruzeniece, L.; Piazolo, S.

    2015-04-01

    This study focuses on physiochemical processes occurring in a brittle-ductile shear zone at both fluid-present and fluid-limited conditions. In the studied shear zone (Wyangala, SE Australia), a coarse-grained two feldspar-quartz-biotite granite is transformed into a medium grained orthogneiss at the shear zone margins and a fine-grained quartz-muscovite phyllonite in the central parts. The orthogneiss displays cataclasis of feldspar and crystal-plastic deformation of quartz. Quartz accommodates most of the deformation and is extensively recrystallized showing distinct crystallographic preferred orientation (CPO). Feldspar-to-muscovite, biotite-to-muscovite and albitization reactions occur locally at porphyroclasts' fracture surfaces and margins. However, the bulk rock composition shows very little change in respect to the wall rock composition. In contrast, in the shear zone centre quartz occurs as large, weakly deformed porphyroclasts, in sizes similar to that in the wall rock, suggesting that it has undergone little deformation. Feldspars and biotite are almost completely reacted to muscovite, which is arranged in a fine-grained interconnected matrix. Muscovite-rich layers contain significant amounts of fine-grained intermixed quartz with random CPO. These domains are interpreted to have accommodated most of the strain. Bulk rock chemistry data shows a significant increase in SiO2 and depletion in NaO content compared to the wall rock composition. We suggest that the high and low strain fabrics represent markedly different scenarios and cannot be interpreted as a simple sequential development with respect to strain. We suggest that the fabrics and mineralogical changes in the shear zone centre have formed due to fluid influx probably along an initially brittle fracture. Here, hydration reactions dramatically changed the rheological properties of the rock. In the newly produced muscovite-quartz layers creep cavitation associated with grain boundary sliding and

  5. Tectonic evidence for the ongoing Africa-Eurasia convergence in central Mediterranean foreland areas: A journey among long-lived shear zones, large earthquakes, and elusive fault motions

    NASA Astrophysics Data System (ADS)

    di Bucci, Daniela; Burrato, Pierfrancesco; Vannoli, Paola; Valensise, Gianluca

    2010-12-01

    We investigate the role of the Africa-Eurasia convergence in the recent tectonic evolution of the central Mediterranean. To this end we focused on two sectors of the Adriatic-Hyblean foreland of the Apennine-Maghrebian chain as they allow tectonic evidence for relative plate motions to be analyzed aside from the masking effect of other more local tectonic phenomena (e.g., subduction, chain building, etc.). We present a thorough review of data and interpretations on two major shear zones cutting these foreland sectors: the E-W Molise-Gondola in central Adriatic and the N-S Vizzini-Scicli in southern Sicily. The selected foreland areas exhibit remarkable similarities, including an unexpectedly high level of seismicity and the presence of the investigated shear zones since the Mesozoic. We analyze the tectonic framework, active tectonics, and seismicity of each of the foreland areas, highlighting the evolution of the tectonic understanding. In both areas, we find that current strains at midcrustal levels seem to respond to the same far-field force oriented NNW-SSE to NW-SE, similar to the orientation of the Africa-Eurasia convergence. We conclude that this convergence plays a primary role in the seismotectonics of the central Mediterranean and is partly accommodated by the reactivation of large Mesozoic shear zones.

  6. Synkinematic magmatism, heterogeneous deformation, and progressive strain localization in a strike-slip shear zone. The case of the right-lateral Karakorum fault.

    NASA Astrophysics Data System (ADS)

    Leloup, P. H.; Boutonnet, E.; Arnaud, N.; Paquette, J. L.; Davis, W. J.; Hattori, K.

    2012-04-01

    The Pangong range is an 8km wide shear zone corresponding to the exhumed root of the central Karakorum fault zone (KFZ), one of the great continental strike-slip faults of the India-Asia collision zone. Ductile deformation is the most intense in the Tangtse and Muglib strands which bracket the shear zone to the SW and NE respectively. Structural and microstructural data show that deformation was at least partly synchronous with partial melting and the intrusion of granitic bodies and dykes. New U/Pb SHRIMPII and LA-ICP-MS ages for 24 zircons populations, from 5 gneiss and mylonites as well as 10 leucocratic dykes, span in age from 105.1±1.1 Ma to 14.2±0.1 Ma. Old ages are inherited from the surrounding Cretaceous Ladakh and Karakorum batholiths, while 13 ages are younger than 25.6 Ma and reflect Miocene partial melting. The oldest dyke that can be shown to be syntectonic to the KFZ is 18.8±0.4 Ma old, suggesting that strike slip deformation started in the Tangtse strand at least at ~19 Ma. Other published U/Pb ages imply that deformation lasted until at least ~13.5 Ma. The absolute ages of dykes that are deformed or crosscut the foliation demonstrate that deformation was heterogeneous in space and time. 24 new Ar/Ar ages, together with published ones, allow reconstructing the shear zone cooling history. Cooling was diachronic across strike and ductile deformation (~300°C) stopped earlier in the SW than in the NE: at ~16 Ma in the south Tangtse granite, ~11 Ma in the Tangtse strand, ~9Ma in the Pangong range, and ~ 8Ma in the Muglib Strand. Deformation thus appears to have migrated / localized from the whole shear zone to the Muglib strand, the only locus showing evidence for brittle deformation and active faulting. Taking into account data previously collected along the KFZ, and a finite offset of 200 to 240 km, it appears that the fault has been active for at least 22 Ma, with a slip rate of 0.84 to 1.3 cm/yr in its central section. Stain rates measured in

  7. Shearing of magma along a high-grade shear zone: Evolution of microstructures during the transition from magmatic to solid-state flow

    NASA Astrophysics Data System (ADS)

    Zibra, I.; Kruhl, J. H.; Montanini, A.; Tribuzio, R.

    2012-04-01

    Syntectonic plutons may record short-lived geological events related to crustal melting and deformation of the continental crust. Therefore, interpretation of microstructure and orientation of fabrics is critical in order to constrain space/time/temperature/deformation relationships during pluton crystallization. Here we describe the transition from magmatic to solid-state deformation in the late-Variscan Diorite-Granite Suite (DGS) emplaced along the Santa Lucia Shear Zone. The systematic collection of meso-, microstructural and quartz < c > axis data allow us to examine the spatial distribution and the mode of superposition of different fabrics. We identify three magmatic microfabric types, thought to reflect the microstructural evolution at decreasing melt content during pluton crystallization. Our data suggest that diffusion creep, dislocation creep and grain-scale fracturing cooperated in accommodating the shearing of the partially molten quartzofeldspathic aggregate. We suggest that the switch from upward to horizontal magmatic flow occurred at melt fractions gt; ˜0.40, and that most of the hypersolidus fabrics formed during horizontal flow, reflecting the stress field imposed by the shear zone, and preserving no memory of the ascent stage.

  8. Metagabbro associated with the shear zone on Prins Karls Forland (Svalbard, Arctic)

    NASA Astrophysics Data System (ADS)

    Maraszewska, Maria; Manecki, Maciej; Czerny, Jerzy; Schneider, David; Myhre, Per Inge; Faehnrich, Karol; Barnes, Christopher

    2016-04-01

    Prins Karls Forland (PKF) is a N-S elongated island situated west of Spitsbergen in the Svalbard archipelago, High Arctic. The northern part of the island is dominated by siliciclastic metasediments regionally metamorphosed to greenshist facies assemblages during one distinct stage of tectonism. Amphibolite facies garnet-mica schists, mica schists, quartzites and carbonate-silicate rocks exhibiting evidence of at least two distinct, strong deformation episodes (including mylonitization) locally outcrop on the east coast of PKF, termed the Pinkie Unit. A ~1 km wide shear zone containing ductile to brittle structures and distinct outcrops of greenstones (metagabbros and greenschists), associated with magnetite ore, separates these two contrasting tectonic units. Ten samples of greenstones were collected on the slopes of Lauratzonfjellet and Boureefjellet for petrologic and geochemical analyses. Despite intense localized shearing, the metagabbros are undeformed and preserve coarse crystalline, magmatic texture, which is locally poikilitic. The primary magmatic assemblage consists of brown hornblende, plagioclase, biotite and opaque minerals, with accessory apatite and titanite. No relicts of pyroxenes are preserved. Formation of secondary uralite, sericite and chlorite is observed. Metamorphic assemblage consists of actinolite pseudomorhs after hornblende, epidote, and second generation biotite. Blue amphibole is observed in one sample from Boureefjellet; greenschists from Boureefjellet also contain fibrous blue amphibole, as well as garnets, actinolite, epidote and biotite. Some rocks sampled on Boureefjellet are more strongly deformed and exhibit probably two stages of metamorphism: amphibolite facies metamorphism resulting in blue amphibole-garnet assemblage followed by greenschist facies metamorphism resulting in actinolite-epidote-biotite paragenesis. Parallel and overlapping patterns on chondrite-normalized REE diagrams and spider diagrams indicate that these

  9. Heterogeneous constrictional deformation in a ductile shear zone resulting from the transposition of a lineation-parallel fold

    NASA Astrophysics Data System (ADS)

    Xypolias, P.; Chatzaras, V.; Beane, R.; Papadopoulou, S.

    2013-07-01

    We use new (micro-)structural, petrofabric, strain and vorticity data to analyze the deformation path in a mesoscopic quartz mylonite zone. The mylonite zone resulted from the complete transposition of a stretching lineation-parallel isoclinal fold. Symmetric cleft-girdle quartz c-axis fabrics were recorded in the middle domain, which occupies the inner limbs of the precursor isoclinal fold, while asymmetric cleft- and crossed-girdle fabrics were observed in the upper and lower domains that represent the outer limbs. Constrictional strain, with increasing k values towards the middle domain, is inferred from petrofabric and 3D strain data. Oblique grain shape fabrics yield vorticity estimates of 0.72-0.90 in the zone. However, in the middle domain, pure shear dominated deformation is suggested by orthorhombic crystallographic fabrics. Strain rate is constant throughout the zone; a strain decrease towards the zone center implies that deformation ceased earlier in the middle domain. The data indicates that fold transposition and subsequent mylonitization started as pure-shear-dominated constrictional deformation and progressively changed to simple-shear-dominated, plane strain. During this flow path the asymmetric quartz c-axis fabrics likely developed by depopulation of cleft-girdle maxima rather than from the synthetic rotation of fabric maxima itself.

  10. Shear wave anisotropy beneath the Cascadia subduction zone and western North American craton

    NASA Astrophysics Data System (ADS)

    Currie, Claire A.; Cassidy, John F.; Hyndman, Roy D.; Bostock, Michael G.

    2004-04-01

    We have examined shear wave splitting of SKS phases at 26 permanent broadband stations in western North America to constrain regional trends in anisotropy at the Cascadia subduction zone (CSZ) and adjacent regions. At forearc stations above the Juan de Fuca Plate, the fast directions are approximately parallel to the direction of absolute plate motion of the main Juan de Fuca Plate (~N70°E). Delay times of 1.0 to 1.5 s indicate a mantle source for the anisotropy, most likely strain-induced lattice-preferred orientation of anisotropic mantle minerals. The anisotropy may be related to present-day subduction-induced deformation of the mantle beneath the subducting plate. The delay times show an increase with distance from the deformation front (trench), which may be indicative of 3-5 per cent anisotropy within the forearc mantle wedge, with a fast direction parallel to the subduction direction. Above the Explorer Plate at the northern end of the CSZ, the fast directions are N25°E. This may reflect either the more northerly subduction direction of that plate, or a transition from subduction-related deformation to along-margin flow parallel to the transcurrent Queen Charlotte Fault to the north. At four stations in the central backarc of the CSZ, fast directions are parallel to the Juan de Fuca-North America convergence direction, consistent with mantle deformation due to subduction-induced mantle wedge flow, as well as deformation of the uppermost backarc mantle associated with motion of the overriding plate. No clear splitting was observed at the two most northern backarc stations, indicating either little horizontal anisotropy or highly complex anisotropy beneath these stations, possibly associated with complex mantle flow around the northern edge of the subducted plate. The hot, thin backarc lithosphere of the Cascadia subduction zone extends to the Rocky Mountain Trench, the western boundary of the cold, stable North America craton. At two stations on the North

  11. The lateral boundary of a metamorphic core complex: The Moutsounas shear zone on Naxos, Cyclades, Greece☆

    PubMed Central

    Cao, Shuyun; Neubauer, Franz; Bernroider, Manfred; Liu, Junlai

    2013-01-01

    We describe the structure, microstructures, texture and paleopiezometry of quartz-rich phyllites and marbles along N-trending Moutsounas shear zone at the eastern margin of the Naxos metamorphic core complex (MCC). Fabrics consistently indicate a top-to-the-NNE non-coaxial shear and formed during the main stage of updoming and exhumation between ca. 14 and 11 Ma of the Naxos MCC. The main stage of exhumation postdates the deposition of overlying Miocene sedimentary successions and predates the overlying Upper Miocene/Pliocene conglomerates. Detailed microstructural and textural analysis reveals that the movement along the Moutsounas shear zone is associated with a retrograde greenschist to subgreenschist facies overprint of the early higher-temperature rocks. Paleopiezometry on recrystallized quartz and calcite yields differential stresses of 20–77 MPa and a strain rate of 10−15–10−13 s−1 at 350 °C for quartz and ca. 300 °C for calcite. Chlorite geothermometry of the shear zone yields two temperature regimes, 300–360 °C, and 200–250 °C. The lower temperature group is interpreted to result from late-stage hydrothermal overprint. PMID:26523079

  12. The Eastern California Shear Zone as the northward extension of the southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Thatcher, W.; Savage, J. C.; Simpson, R. W.

    2016-04-01

    Cluster analysis offers an agnostic way to organize and explore features of the current GPS velocity field without reference to geologic information or physical models using information only contained in the velocity field itself. We have used cluster analysis of the Southern California Global Positioning System (GPS) velocity field to determine the partitioning of Pacific-North America relative motion onto major regional faults. Our results indicate the large-scale kinematics of the region is best described with two boundaries of high velocity gradient, one centered on the Coachella section of the San Andreas Fault and the Eastern California Shear Zone and the other defined by the San Jacinto Fault south of Cajon Pass and the San Andreas Fault farther north. The ~120 km long strand of the San Andreas between Cajon Pass and Coachella Valley (often termed the San Bernardino and San Gorgonio sections) is thus currently of secondary importance and carries lesser amounts of slip over most or all of its length. We show these first order results are present in maps of the smoothed GPS velocity field itself. They are also generally consistent with currently available, loosely bounded geologic and geodetic fault slip rate estimates that alone do not provide useful constraints on the large-scale partitioning we show here. Our analysis does not preclude the existence of smaller blocks and more block boundaries in Southern California. However, attempts to identify smaller blocks along and adjacent to the San Gorgonio section were not successful.

  13. The Eastern California Shear Zone as the northward extension of the southern San Andreas Fault

    USGS Publications Warehouse

    Thatcher, Wayne R.; Savage, James C.; Simpson, Robert W.

    2016-01-01

    Cluster analysis offers an agnostic way to organize and explore features of the current GPS velocity field without reference to geologic information or physical models using information only contained in the velocity field itself. We have used cluster analysis of the Southern California Global Positioning System (GPS) velocity field to determine the partitioning of Pacific-North America relative motion onto major regional faults. Our results indicate the large-scale kinematics of the region is best described with two boundaries of high velocity gradient, one centered on the Coachella section of the San Andreas Fault and the Eastern California Shear Zone and the other defined by the San Jacinto Fault south of Cajon Pass and the San Andreas Fault farther north. The ~120 km long strand of the San Andreas between Cajon Pass and Coachella Valley (often termed the San Bernardino and San Gorgonio sections) is thus currently of secondary importance and carries lesser amounts of slip over most or all of its length. We show these first order results are present in maps of the smoothed GPS velocity field itself. They are also generally consistent with currently available, loosely bounded geologic and geodetic fault slip rate estimates that alone do not provide useful constraints on the large-scale partitioning we show here. Our analysis does not preclude the existence of smaller blocks and more block boundaries in Southern California. However, attempts to identify smaller blocks along and adjacent to the San Gorgonio section were not successful.

  14. Simulations of a stretching bar using a plasticity model from the shear transformation zone theory

    SciTech Connect

    Rycroft, Chris H.; Gibou, Frederic

    2010-06-05

    An Eulerian simulation is developed to study an elastoplastic model of amorphous materials that is based upon the shear transformation zone theory developed by Langer and coworkers. In this theory, plastic deformation is controlled by an effective temperature that measures the amount of configurational disorder in the material. The simulation is used to model ductile fracture in a stretching bar that initially contains a small notch, and the effects of many of the model parameters are examined. The simulation tracks the shape of the bar using the level set method. Within the bar, a finite difference discretization is employed that makes use of the essentially non-oscillatory (ENO) scheme. The system of equations is moderately stiff due to the presence of large elastic constants, and one of the key numerical challenges is to accurately track the level set and construct extrapolated field values for use in boundary conditions. A new approach to field extrapolation is discussed that is second order accurate and requires a constant amount of work per gridpoint.

  15. Symmetric and near-symmetric objects in ductile shear zones- examples from Higher Himalaya, Bhagirathi section, India

    NASA Astrophysics Data System (ADS)

    Mukherjee, Soumyajit

    2013-04-01

    Ductile shear zones contain numerous asymmetric fabrics/structures/clasts/ objects of three overall geometries viz. sigmoidal, lenticular and parallelogram-shaped (Mukherjee, 2011). These indicate the shear sense of the rock, and have been reviewed from time to time by other authors and myself. By contrast, there has been no concise study or review of symmetric and near symmetric objects within ductile shear zones. This work studies morphologies of such symmetric objects from the Bhagirathi river section in the Higher Himalaya (HH), India. The HH in this section began top-to~SW compressional ductile shear at ~ 25 Ma. This was followed by intervals of extrusion by channel flow alternating with critical taper spreading from~ 18 Ma onwards. During its two pulses/phases of channel flow, two sub-zones of extensional ductile top-to~NE shear developed (Mukherjee, in press). Mesoscopic near symmetric objects in the HH are of the following types. (A) Isolated objects- most often lenticular/elliptical, but rarely sub-circular, rectangular or rhombic. (B) Gently curved quartz veins. (C) Warped NE dipping main foliations. (D) Nearly uniformly thin quartzofeldspathic foliations that bulge locally into sub-circular or sub-elliptical shapes. Most of the fractures inside clasts are irregular and their geometries do not conclusively indicate any shear sense. In general these fractures are confined to within the (harder?) clasts, very gently curved, sub-parallel to each other, and are at high angle with ~ NE dipping main foliations defined within mylonitized host rocks. This probably indicates (local?) brittle-ductile extension parallel to the main foliation. Notice that (a) one common explanation for the evolution of S-fabrics is that they rotate towards parallelism with the C-planes as the intensity of shear increases; and (b) lenticular clasts in mylonitized gneiss have classically been called 'augens'. In both these cases, a low-angle S-fabric and 'augen' may not indicate a

  16. Kinematic evolution of the Fodjomekwet-Fotouni Shear Zone (West-Cameroon): Implications for emplacement of the Fomopéa and Bandja plutons

    NASA Astrophysics Data System (ADS)

    Tcheumenak Kouémo, Jules; Njanko, Théophile; Kwékam, Maurice; Naba, Séta; Bella Nké, Bertille E.; Yakeu Sandjo, Angeline F.; Fozing, Eric M.; Njonfang, Emmanuel

    2014-11-01

    The Fodjomekwet-Fotouni shear zone (FFSZ) belongs to the western part of the Central Cameroon Shear Zone (CCSZ). From the border to the core, the FFSZ is made of: (i) protomylonites, (ii) garnet-sillimanite mylonites and (iii) garnet-sillimanite ultramylonites. Structural data indicate (1) a N40°E mylonitic foliation trend (strongly dipping toward NE or SW) with strike varying between N34°E-78°NW at Fotouni and N52°E-61°SE at Fodjomekwet; (2) a stretching lineation (plunging toward NE or SW) with best line varying between 224/4 at Fotouni and 232/10 at Fodjomekwet; (3) sinistral (N-S) and dextral (NE-SW) kinematic markers, respectively correlated to the D2 and D3 of the CCSZ deformation phases. The presence of relic sinistral shear markers wrapped by dominant dextral shear markers rendered difficult the understanding of the FFSZ evolution. Anisotropy of magnetic susceptibility in the FFSZ shows that magnetic fabrics are characterized by dominant NE-SW and locally N-S to NNE-SSW trending foliation and lineation. These directions show that mylonitisation was initiated in the N-S direction during the sinistral syn-D2 shearing, evolved and reoriented toward NNE-SSW and NE-SW between 613 and 590 Ma. The sinistral shearing event was thereafter followed by a NE-SW trend dextral syn-D3 reactivation of the N50°E fault between 580 and 552 Ma. The sinistral phase seems to have favoured the evolution of fractures in pull-apart structures. The pull-apart opening of fracture enables the upwelling of magma and the emplacement of the Fomopéa and the Bandja plutons (FBP). This synkinematic emplacement is witnessed by the elongated shape and the NE-SW trending direction of these massifs. Kinematic emplacement of FBP controlled by active shear zone is comparable to syntectonic plutonism in eastern Nigeria and NE Brazil.

  17. A review of porosity-generating mechanisms in crustal shear zones

    NASA Astrophysics Data System (ADS)

    Fusseis, F.; Regenauer-Lieb, K.; Revets, S.

    2009-04-01

    Knowledge of the spatiotemporal characteristics of permeability is critical for the understanding of fluid migration in rocks. In diagenetic and metamorphic rocks different porosity-generating mechanisms contribute to permeability and so influence fluid migration and fluid/rock interaction. However, little is known about their relative contributions to the porosity architecture of a rock in a tectono-metamorphic environment. This presentation reviews porosity-generating mechanisms that affect fluid migration in shear zones, the most important crustal fluid conduits, in the context of the tectonometamorphic evolution of rocks. Mechanisms that generate porosity can be classified in a) those that involve the direct action of a fluid, b) processes in which a fluid partakes or that are supported by a fluid or c) mechanism that do not involve a fluid. a) Hydraulic fracturing, where it happens through the formation of tensile fractures, occurs where pore fluid pressures equalize the combined lithostatic pressure and strength of the rock (Etheridge et al., 1984, Cox & Etheridge, 1989, Oliver, 1996). Here an internally released (devolatilisation reactions, e.g., Rumble, 1994, Hacker, 1997, Yardley, 1997 and references therein) or externally derived (infiltrating from metamorphic, magmatic or meteoric sources, Baumgartner et al., 1997, Jamtveit et al., 1997, Thompson, 1997, Gleeson et al., 2003) fluid directly causes the mechanical failure of a rock. Where a fluid is in chemical disequilibrium with a rock (undersaturated with regard to a chemical species) minerals will be dissolved, generating dissolution porosity. Rocks ‘leached' by the removal of chemical components by vast amounts of fluid are reported to lose up to 60% of their original volume (e.g., Kerrich et al., 1984, McCaig 1988). Dissolution porosity is probably an underrated porosity-generating mechanism. It can be expected along the entire metamorphic evolution, including diagenesis (Higgs et al., 2007) and

  18. Formation of left-lateral fractures within the Summit Ridge shear zone, 1989 Loma Prieta, California, earthquake

    SciTech Connect

    Johnson, A.M.; Fleming, R.W. |

    1993-12-01

    The 1989 Loma Prieta, California, earthquake is characterized by the lack of major, throughgoing, coseismic, right-lateral faulting along strands of the San Andreas fault zone in the epicentral area. Instead, throughout the Summit Ridge area there are zones of tension cracks and left-lateral fracture zones oriented about N45 deg W, that is, roughly parallel to the San Andreas fault in this area. The left-lateral fractures zones are enigmatic because their left-lateral slip is opposite to the right-lateral sense of the relative motion between the Pacific and North American plates. We suggest that the enigmatic fractures can be understood if we assume that coesiesmic deformation was by right-lateral shear across a broad zone, about 0.5 km wide and 4 km long, beneath Summit Ridge. Contrary to most previous reports on the Loma Prieta earthquake, which assert that coseismic, right-lateral ground rupture was restricted to considerable (greater than 4 km) depths in the epicentral area, we find that nearly all the right-lateral offset is represented at the ground surface by the Summit Ridge shear zone.

  19. Exhumation of the Greater Himalayan Sequence Along the Zanskar Shear Zone, NW India

    NASA Astrophysics Data System (ADS)

    Basta, S.; Beck, E.; Burlick, T.

    2013-12-01

    The Zanskar Shear Zone (ZSZ), the western extent of the South Tibetan Detachment System, exposes high-grade metamorphic rocks of the Greater Himalayan Sequence (GHS) in its footwall. Granites and metapelites collected along the the ZSZ in the Suru River valley provide how and when the GHS rocks exhumed and were deformed. There are two suits of Paleozoic granites deformed within the ZSZ: Pan-African Cambrian-Ordovician granites at the cores of gneiss domes and Mississippian-Permian granites related to Panjal Traps magmatism. Age of Himalayan granites indicates 28-16 Ma which is concurrent with anatectic leucogranite crystallization. The metamorphic mineral assemblage indicates increasing metamorhic grade from NE to SW and comprises Qtz × Kfs + Pl + Bt × Ms × Sil × Ky × Grt × St × Chl × Tur × Rt. In addition to macroscopic evidence, strongly deformed quartz grains, deformation twins, pressure shadows, and kink bands have been observed to demonstrate micro-tectonics evidence. There are two different method to explain exhumation and deformation of the GHS metapelites: Electron backscatter diffraction (EBSD) crystallographic mapping and pseudosection modeling. While EBSD indicates the potential temperature of deformation, pseudosection modeling with Perple_X specifically presents the exhumation path of the GHS rocks. Pseudosection modeling with Perple_X , based on whole-rock geochemical analysis, is set pressure and temperature to 0.4-1.2 GPa and 300-900°C, and uses specific solution models, Bio(TCC), Chl(HP), St(HP), feldspar, Mica(CHA), Gt(HP), and hCrd, namely. These two methods are used by combining with geo/thermochronology data from U-Pb, 40Ar/39Ar, and (U-Th)/He, constraining the age of metamorphism, the cooling and exhumation time of the GHS rocks, and the end of shearing of deformation, respectively. 40Ar/39Ar dating on muscovite and biotite constrains cooling and exhumation ages of the GHS as ~20-19 Ma and 15 Ma, respectively. A metamorphic pressure

  20. Quartz c-axis fabric development associated with shear deformation along an extensional detachment shear zone: Chapedony Metamorphic Core Complex, Central-East Iranian Microcontinent

    NASA Astrophysics Data System (ADS)

    Faghih, Ali; Soleimani, Masoumeh

    2015-01-01

    Lattice preferred orientations (LPOs) of quartz were used to establish differences in deformation geometry, finite strain and temperature across an extensional detachment shear zone within the Chapedony Metamorphic Core Complex in the Central-East Iranian Microcontinent along the northern flank of Gondwana. Quartz c-axis data show a continuous evolution across the core complex from asymmetric Type I crossed girdles at the southwest margin, to broken, asymmetric Type I crossed girdle and single girdle with a large concentration of axes plotted in the center of the stereoplot at the central parts of the core complex and small circle girdle pattern at the northeast margin. These variations in quartz c-axis patterns imply change in strain geometry during deformation from plane strain to general flattening and pure flattening. Integrating analyses of quartz c-axis opening angles, quartz c-axis patterns and recrystalization regimes of quartz and feldspar suggests deformation temperatures range between less than 400 °C and 650 °C, which yield greenschist to amphibolite facies conditions. Mean kinematic vorticity number (Wm) measured in the mylonite samples ranges between 0.67 and 0.71, which indicates that exhumation of the metamorphic rocks of the CMCC was facilitated by a significant component of pure shear strain within a general shear regime.

  1. Using Local Second Gradient Model and Shear Strain Localisation to Model the Excavation Damaged Zone in Unsaturated Claystone

    NASA Astrophysics Data System (ADS)

    Pardoen, Benoît; Levasseur, Séverine; Collin, Frédéric

    2015-03-01

    The drilling of galleries induces damage propagation in the surrounding medium and creates, around them, the excavation damaged zone (EDZ). The prediction of the extension and fracture structure of this zone remains a major issue, especially in the context of underground nuclear waste storage. Experimental studies on geomaterials indicate that localised deformation in shear band mode usually appears prior to fractures. Thus, the excavation damaged zone can be modelled by considering the development of shear strain localisation bands. In the classical finite element framework, strain localisation suffers a mesh-dependency problem. Therefore, an enhanced model with a regularisation method is required to correctly model the strain localisation behaviour. Among the existing methods, we choose the coupled local second gradient model. We extend it to unsaturated conditions and we include the solid grain compressibility. Furthermore, air ventilation inside underground galleries engenders a rock-atmosphere interaction that could influence the damaged zone. This interaction has to be investigated in order to predict the damaged zone behaviour. Finally, a hydro-mechanical modelling of a gallery excavation in claystone is presented and leads to a fairly good representation of the EDZ. The main objectives of this study are to model the fractures by considering shear strain localisation bands, and to investigate if an isotropic model accurately reproduces the in situ measurements. The numerical results provide information about the damaged zone extension, structure and behaviour that are in very good agreement with in situ measurements and observations. For instance, the strain localisation bands that develop in chevron pattern during the excavation and rock desaturation, due to air ventilation, are observed close to the gallery.

  2. Jurassic Cordilleran dike swarm-shear zones: Implications for the Nevadan orogeny and North American plate motion

    SciTech Connect

    Wolf, M.B.; Saleeby, J.B. )

    1992-08-01

    A cogenetic and coeval tonalitic and mafic dike swarm has been identified within a southern fragment (the Owens Mountain area) of the western Foothills terrane (California). The dikes were mylonitized and transposed (rotated into subparallel orientation) during emplacement, from 155 to 148 Ma (U-Pb zircon data), which coincides in time with the Nevadan orogeny. Steeply southeast-plunging fold axes and S-fold geometries indicate a sinistral-sense of shear, possibly with some dip-slip motion as well. This shear zone may be the southern and possibly deeper extension of the Bear Mountains fault zone. This and other Late Jurassic Cordilleran dike swarms record a complex pattern of sinistral-sense transtension-transpression that developed at the apparent-polar-wander J2 cusp ([approximately] 150 Ma) and during subsequent, rapid, northwestward acceleration of North America. The Late Jurassic Nevadan orogeny is a manifestation of these dramatic changes in magnitude and direction of North American motion.

  3. Sutures, Sinkers, Shear zones and Sills: Cryptic Targets and Explicit Strategies for EARTHSCOPE FlexArray in the East

    NASA Astrophysics Data System (ADS)

    Brown, L. D.

    2006-05-01

    Given the 3D framework represented by EarthScope's USArray as it scans eastward, the strategic challenge falls to defining cost-effective deployments of FlexArray to address specific lithospheric targets. Previous deep geophysical surveys (e.g. COCORP, USGS, GLIMPCE, et al.) provide guidance not only in framing the geological issues involved, but in designing field experiments that overcome the limitations of previous work. Opportunities highlighted by these precursor studies include: a) Collisional sutures (e.g. Brunswick Anomaly/Suwannee terrane) which lie buried beneath overthrust terranes/ younger sedimentary covers. Signal penetration in previous controlled source surveys has been insufficient. High resolution passive surveys designed to map intralithospheric detachments, Moho, and mantle subduction scars is needed to validate the extrapolations of the existing upper crustal information; b) Intracratonic basins and domes (e.g. Michigan Basin, Adirondack Dome) are perhaps the greatest geological mystery hosted in the east. Previous geophysical studies have lacked the resolution or penetration needed to identify the buoyancy drivers presumed to be responsible for such structures. It is likely that these drivers lie in the upper mantle and will require detailed velocity imaging to recognized. c) Distributed shear fabrics are a defining characteristic of the deep crust in many deformation zones (e.g. Grenville Front). Detailed mapping of crustal anisotropy associated with such shear zones should help delineate ductile flow directions associated with the orogenies that accreted the eastern U.S. 3 component, 3D active+passive surveys are needed to obtain definitive remote measures of such vector characteristics in the deep crust. d) Extensive reflectors in the central U.S. may mark important buried Precambrian basins and/or sill complexes. If the latter, the magmatic roots of those systems remain unrecognized, as does their volumetric contribution to crustal growth

  4. Characterization of Quartz and Feldspar Deformation in the Mid-crust: Insights from the Cordillera Blanca Shear Zone, Peru

    NASA Astrophysics Data System (ADS)

    Hughes, C. A.; Jessup, M. J.; Shaw, C. A.

    2014-12-01

    Deformation mechanisms within shear zones from various crustal levels must be characterized to develop accurate models of lithospheric rheology. The Cordillera Blanca Shear Zone (CBSZ) in the central Peruvian Andes records changes in temperature, microstructures, and deformation mechanisms that occurred during exhumation through the brittle-ductile-transition during normal-sense slip over the last ~5 m.y. The 100-500-m-thick mylonitic shear zone occupies the footwall of a 200-km-long normal detachment fault, marking the western boundary of the 8 Ma, leucogranodiorite Cordillera Blanca Batholith. Though local variations do occur, including recrystallized quartz veins and local, decimeter- to meter- scale shear zones, the CBSZ follows a general trend of increasing strain towards the detachment. Structurally lowest positions are weakly deformed and transition to protomylonite, mylonite, and ultramylonite at higher positions, truncating at a cataclasite nearest the detachment. We characterize strain using EBSD analyses of quartz lattice preferred orientations and deformation temperatures using quartz and feldspar textures and two-feldspar thermometry of asymmetric strain-induced myrmekite. At the deepest structural positions, feldspar grains record a complex history characterized by bulging recrystallization, myrmekite formation, and brittle fracture, while quartz exhibits dominant grain-boundary migration recrystallization (T> 500 °C) and prism slip. Intermediate samples exhibit more prevalent strain-induced myrmekite, brittle fracture in feldspar, and reaction-associated recrystallization of K-feldspar to mica; quartz records mainly subgrain-rotation recrystallization (400-500 °C) and dominant prism slip with a rhomb component. Shallower positions preserve fewer, smaller, and more rounded feldspar porphyroclasts with no myrmekite, and dominant bulging recrystallization (280-400 °C) in quartz that records prism , rhomb , and some basal slip.

  5. Neotectonic reactivation of shear zones and implications for faulting style and geometry in the continental margin of NE Brazil

    NASA Astrophysics Data System (ADS)

    Bezerra, F. H. R.; Rossetti, D. F.; Oliveira, R. G.; Medeiros, W. E.; Neves, B. B. Brito; Balsamo, F.; Nogueira, F. C. C.; Dantas, E. L.; Andrades Filho, C.; Góes, A. M.

    2014-02-01

    The eastern continental margin of South America comprises a series of rift basins developed during the breakup of Pangea in the Jurassic-Cretaceous. We integrated high resolution aeromagnetic, structural and stratigraphic data in order to evaluate the role of reactivation of ductile, Neoproterozoic shear zones in the deposition and deformation of post-rift sedimentary deposits in one of these basins, the Paraíba Basin in northeastern Brazil. This basin corresponds to the last part of the South American continent to be separated from Africa during the Pangea breakup. Sediment deposition in this basin occurred in the Albian-Maastrichtian, Eocene-Miocene, and in the late Quaternary. However, our investigation concentrates on the Miocene-Quaternary, which we consider the neotectonic period because it encompasses the last stress field. This consisted of an E-W-oriented compression and a N-S-oriented extension. The basement of the basin forms a slightly seaward-tilted ramp capped by a late Cretaceous to Quaternary sedimentary cover ~ 100-400 m thick. Aeromagnetic lineaments mark the major steeply-dipping, ductile E-W- to NE-striking shear zones in this basement. The ductile shear zones mainly reactivated as strike-slip, normal and oblique-slip faults, resulting in a series of Miocene-Quaternary depocenters controlled by NE-, E-W-, and a few NW-striking faults. Faulting produced subsidence and uplift that are largely responsible for the present-day morphology of the valleys and tablelands in this margin. We conclude that Precambrian shear zone reactivation controlled geometry and orientation, as well as deformation of sedimentary deposits, until the Neogene-Quaternary.

  6. Presynaptic active zones in invertebrates and vertebrates.

    PubMed

    Ackermann, Frauke; Waites, Clarissa L; Garner, Craig C

    2015-08-01

    The regulated release of neurotransmitter occurs via the fusion of synaptic vesicles (SVs) at specialized regions of the presynaptic membrane called active zones (AZs). These regions are defined by a cytoskeletal matrix assembled at AZs (CAZ), which functions to direct SVs toward docking and fusion sites and supports their maturation into the readily releasable pool. In addition, CAZ proteins localize voltage-gated Ca(2+) channels at SV release sites, bringing the fusion machinery in close proximity to the calcium source. Proteins of the CAZ therefore ensure that vesicle fusion is temporally and spatially organized, allowing for the precise and reliable release of neurotransmitter. Importantly, AZs are highly dynamic structures, supporting presynaptic remodeling, changes in neurotransmitter release efficacy, and thus presynaptic forms of plasticity. In this review, we discuss recent advances in the study of active zones, highlighting how the CAZ molecularly defines sites of neurotransmitter release, endocytic zones, and the integrity of synapses.

  7. Presynaptic active zones in invertebrates and vertebrates

    PubMed Central

    Ackermann, Frauke; Waites, Clarissa L; Garner, Craig C

    2015-01-01

    The regulated release of neurotransmitter occurs via the fusion of synaptic vesicles (SVs) at specialized regions of the presynaptic membrane called active zones (AZs). These regions are defined by a cytoskeletal matrix assembled at AZs (CAZ), which functions to direct SVs toward docking and fusion sites and supports their maturation into the readily releasable pool. In addition, CAZ proteins localize voltage-gated Ca2+ channels at SV release sites, bringing the fusion machinery in close proximity to the calcium source. Proteins of the CAZ therefore ensure that vesicle fusion is temporally and spatially organized, allowing for the precise and reliable release of neurotransmitter. Importantly, AZs are highly dynamic structures, supporting presynaptic remodeling, changes in neurotransmitter release efficacy, and thus presynaptic forms of plasticity. In this review, we discuss recent advances in the study of active zones, highlighting how the CAZ molecularly defines sites of neurotransmitter release, endocytic zones, and the integrity of synapses. PMID:26160654

  8. Simultaneous Clockwise and Counterclockwise Rotation Along the Eastern California Shear Zone at the Coso Range, California

    NASA Astrophysics Data System (ADS)

    Pluhar, C. J.; Coe, R. S.; Monastero, F. C.

    2005-12-01

    The Coso Range, California lies in a releasing step-over of the westernmost strand of the dextral Eastern California Shear Zone (ECSZ). Previous paleomagnetic studies on c.a. 3 Ma lavas of Wild Horse Mesa, within the Coso Range, demonstrate small-magntiude (12.0°±4.6°) clockwise vertical-axis rotations since emplacement of these rocks. Seismogenic, slickenline, and GPS strain data in the same region indicate a present-day rotation rate consistent with lava paleomagnetism results. However, paleomagnetism of lake beds of the White Hills, south of Wild Horse Mesa, yields a (reversed-polarity) mean direction of declination = 171.8°, inclination = -27.8°, κ = 12.3, and α95 = 7.5° for n = 34 samples. Thus, White Hills have rotated counterclockwise 8.2°±8.2° since the sediments were deposited around 1 Ma. Although not significant at 95% confidence, this rotation is significant at any lesser confidence level and therefore indicates counterclockwise rotation. The opposite sense of rotation between White Hills and Wild Horse Mesa is understandable by the differing fault orientation and deformation styles between the two locales. The White Hills are an anticline within the larger-scale releasing bend of the ECSZ. Faults in the White Hills are generally oriented north-south to northwest-southeast. On the other hand the Wild Horse Mesa forms a transtentional basin with widespread north-south to northeast-southwest oriented normal faults. These differing fault orientations, probably intimately related to the local transpression and transtension within the two areas, respectively, results in simultaneous rotation of opposite sense due to an invariant far-field strain.

  9. Constitutive modeling of large inelastic deformation of amorphous polymers: Free volume and shear transformation zone dynamics

    NASA Astrophysics Data System (ADS)

    Voyiadjis, George Z.; Samadi-Dooki, Aref

    2016-06-01

    Due to the lack of the long-range order in their molecular structure, amorphous polymers possess a considerable free volume content in their inter-molecular space. During finite deformation, these free volume holes serve as the potential sites for localized permanent plastic deformation inclusions which are called shear transformation zones (STZs). While the free volume content has been experimentally shown to increase during the course of plastic straining in glassy polymers, thermal analysis of stored energy due to the deformation shows that the STZ nucleation energy decreases at large plastic strains. The evolution of the free volume, and the STZs number density and nucleation energy during the finite straining are formulated in this paper in order to investigate the uniaxial post-yield softening-hardening behavior of the glassy polymers. This study shows that the reduction of the STZ nucleation energy, which is correlated with the free volume increase, brings about the post-yield primary softening of the amorphous polymers up to the steady-state strain value; and the secondary hardening is a result of the increased number density of the STZs, which is required for large plastic strains, while their nucleation energy is stabilized beyond the steady-state strain. The evolutions of the free volume content and STZ nucleation energy are also used to demonstrate the effect of the strain rate, temperature, and thermal history of the sample on its post-yield behavior. The obtained results from the model are compared with the experimental observations on poly(methyl methacrylate) which show a satisfactory consonance.

  10. Rheology of talc sheared at high pressure and temperature: a case study for hot subduction zones

    NASA Astrophysics Data System (ADS)

    Misra, Santanu; Boutareaud, Sébastien; Burg, Jean-Pierre

    2014-01-01

    Talc is a common fault-coating mineral occurring in a variety of tectonic settings from the immediate subsurface down to more than 100 km depth along subducting plate interfaces. It is considered to stabilize slip at seismogenic depth. To gain insight into the rheological behavior of talc and related deformation processes along the subduction interface of hot oceanic slabs, we conducted torsion experiments on intact synthetic talc samples at 200-600 °C under 100-300 MPa confining pressure at intermediate strain rates (3 × 10- 4 and 2.45 × 10- 3 s- 1) for bulk shear strains up to 12.6.We also conducted stepping strain rate experiments to investigate rate and temperature dependence on sliding velocity and slide-hold-slide experiments to explore the re-strengthening and frictional healing of the sliding zones. The experimental results reveal 1) post-yield strain hardening followed by brief weakening episodes and then again strain hardening with increasing deformation and 2) a gradual transition of friction evolution from velocity-strengthening to velocity-neutral. Microstructural observations coupled with mechanical data suggest that talc rheology combines localized and distributed deformation, in a state called the brittle-ductile transition, with a predominance of crystal-plastic over cataclastic (brittle to semi-brittle) processes at 600 °C and 300 MPa confining pressure. These data suggest that talc cannot accumulate the tectonic stress necessary for earthquake-generating rupture along the subduction interface. This result concurs with the concept that in weak heterogeneous talc-rich material, strong asperities that can resist the tectonic stress to a greater extent are responsible for the consequential earthquake occurrence.

  11. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.

    PubMed

    Cui, Zhenlu

    2011-03-01

    We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: the apparent viscosity may decrease with the increase of the concentration. PMID:21517529

  12. Weakly sheared active suspensions: Hydrodynamics, stability, and rheology

    NASA Astrophysics Data System (ADS)

    Cui, Zhenlu

    2011-03-01

    We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: The apparent viscosity may decrease with the increase of the concentration.

  13. Neoproterozoic Structural Evolution of the NE-trending 620-540 Ma Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hamimi, Z.; El-Sawy, E. K.; El-Fakharan, A. S.; Shujoon, A.; Matsah, M.; El-Shafei, M.

    2012-04-01

    Ad-Damm Shear Zone (ASZ) is a NE-trending fault zone separating Jeddah and Asir tectonostratigraphic terranes in the Neoproterozoic juvenile Arabian Shield. ASZ extends ~380 km, with an average width ~2-3 km, from the eye-catching Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW- trending sinistral Najd Shear System based on noteworthy dextral shear criteria recorded within the 620 Ma sheared granites of Numan Complex, as well as right-lateral offsets within quartz veins and dikes transected by the shear zone. The present study is an integrated field-based structural analysis and remote sensing. We utilized the ASTER data for lithologic discrimination and automatic structural lineament extraction and analysis of the Neoproterozoic basement lithologies encountered along and within the vicinity of ASZ. Various false color composite images were generated and evaluated for lithological mapping and structural lineaments. The obtained map was analyzed using GIS techniques to interpret the behavior of the existing lineaments and their spatial distribution. Based on the results of the ASTER data, two significant areas; around Bir Ad-Damm and to the south of Wadi Numan, are selected for detailed field investigation. Shear-sense indicators and overprinting relations clearly show a complicated Neoproterozoic history of ASZ, involving at least three deformations: (1) an early attenuated NE-SW sinistral shearing; followed by (2) a SE-directed thrusting phase resulted in the formation SE-verging thrusts and associated thrust-related folds; and (3) late NE-SW intensive dextral transcurrent shearing played a significant role in the creation of mesoscopic shear-zone related folds, particularly in the area near Bir Ad-Damm. Such deformation history demonstrates the same episode of Neoproterozoic deformation exhibited in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).

  14. GPS deformation rates in the Bajo Segura Basin (NE of the Eastern Betic Shear Zone, SE Spain)

    NASA Astrophysics Data System (ADS)

    Jesús Borque, María; Sánchez-Alzola, Alberto; Estévez, Antonio; García-Tortosa, Francisco J.; Martín-Rojas, Iván; Molina, Sergio; Alfaro, Pedro; Rodríguez-Caderot, Gracia; de Lacy, Clara; García-Armenteros, Juan Antonio; Avilés, Manuel; Herrera, Antonio; Rosa-Cintas, Sergio; Gil, Antonio J.

    2014-05-01

    The Bajo Segura Basin, located in the NE end of the Eastern Betic Shear Zone, is one of the areas with highest seismic activity of the Iberian Peninsula. It is bounded by the Crevillente Fault to the north and the Bajo Segura Fault to the south, and it is characterized by a Late Miocene to Quaternary folded cover. We estimate the present-day deformation of the study area from a GPS network with 11 sites. Observation campaigns were carried out four times (June 1999, September 2001, September 2002 and September 2013). We used the 6.2 version of GIPSY-OASIS software to process GPS data in Precise Point Positioning mode (PPP). In order to obtain the position time series in the whole period of these episodic campaigns, all the GPS observations from 1999 to 2013 campaigns were processed with an identical standard procedure. We compared our velocity field estimation with respect to GEODVEL tectonic model to obtain the residual velocity field of the Bajo Segura Basin. We estimated a ~N-S shortening with deformation rates varying between 0.2 and 0.6 mm/yr. These results are consistent with local geological deformation rates although slightly higher. They also fit well with regional geodetic data estimated for the Western Mediterranean.

  15. Determination of the stress conditions of the ductile-to-brittle regime along the Asuke Shear Zone, SW Japan

    NASA Astrophysics Data System (ADS)

    Kanai, Takuto; Takagi, Hideo

    2016-04-01

    The stress conditions of the ductile-to-brittle regime have been assessed along the Asuke Shear Zone (ASZ), which strikes NE-SW in the Cretaceous Ryoke granite terrain in SW Japan. Along the ASZ, pseudotachylyte and mylonitized pseudotachylyte are locally developed together with cataclasite. The simultaneous operation of dislocation creep and grain-size-sensitive creep, as indicated by the coexistence of the Z-maximum and relatively random c-axis lattice preferred orientations as well as the sizes of dynamically recrystallized quartz grains (6.40-7.79 μm) in the mylonitized pseudotachylyte, suggest differential stresses of 110-130 MPa at ∼300 °C. The e-twin morphology, twinning ratio, and distribution of the glide direction on the e-twin plane of the twinned calcite in the amygdules of the pseudotachylyte suggest the stress conditions of the σ1 and σ3 axes trend 228° and 320° and plunge 55° and 1°, respectively, and indicate differential stresses of 40-80 MPa at 150-200 °C. Based on kinematic indicators in the fault rocks, the stress conditions estimated from calcite twins, and the cooling history of the granitic protolith, the ASZ is inferred to have been activated under a stress state that caused sinistral normal movements before and after pseudotachylyte formation at 70-50 Ma.

  16. Kinematics of the Tengchong Terrane in SE Tibet from the late Eocene to early Miocene: Insights from coeval mid-crustal detachments and strike-slip shear zones

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqin; Wang, Qin; Cai, Zhihui; Dong, Hanwen; Li, Huaqi; Chen, Xijie; Duan, Xiangdong; Cao, Hui; Li, Jing; Burg, Jean-Pierre

    2015-12-01

    It is generally believed that the extrusion of SE Tibet was bounded by the dextral Gaoligong and the sinistral Ailaoshan-Red River strike-slip shear zones from the Oligocene to early Miocene. This study integrates field mapping, structural analysis and geochronology in western Yunnan (China), where foliated Precambrian basement rocks and late Cretaceous to early Eocene plutons are exposed to the west of the Gaoligong shear zone. We found that late Eocene to early Miocene flat-lying ductile shear zones were kinematically related to steeply dipping strike-slip shear zones. Four elongated gneiss domes (Donghe, Guyong, Yingjiang and Sudian) are cored by high-grade metamorphic rocks and pre-kinematic granite plutons, and bounded by top-to-NE detachments and NE-trending dextral strike-slip shear zones. Zircon U-Pb ages from LA-ICP-MS analysis and 40Ar/39Ar ages of micas and hornblende demonstrate that the flat-lying Donghe Detachment (> 35-15 Ma) and the Nabang dextral strike-slip shear zone (41-19 Ma) were sites of prolonged, mostly coeval ductile deformation from amphibolite to greenschist facies metamorphism. The Gaoligong shear zone experienced dextral shearing under similar metamorphic conditions between 32 and 10 Ma. Consistent 40Ar/39Ar ages of hornblende from the three shear zones indicate their contemporaneity at mid-crustal depth, causing the rapid exhumation and SW-ward extrusion of the Tengchong Terrane. The strain geometry and shear zone kinematics in the Tengchong Terrane are interpreted with folding of the anisotropic lithosphere around a vertical axis, i.e., the northeast corner of the Indian Plate since 41 Ma. The newly discovered NE-trending Sudian, Yingjiang, and Lianghe strike-slip shear zones are subordinate ductile faults accommodating the initially rapid clockwise rotation of the Tengchong Terrane. The detachments caused mid-crustal decoupling and faster SW-ward extrusion below the sedimentary cover, whereas the strike-slip shear zones accommodated

  17. Infiltration of meteoric fluids in an extensional detachment shear zone (Kettle dome, WA, USA): How quartz dynamic recrystallization relates to fluid-rock interaction

    NASA Astrophysics Data System (ADS)

    Quilichini, Antoine; Siebenaller, Luc; Nachlas, William O.; Teyssier, Christian; Vennemann, Torsten W.; Heizler, Matthew T.; Mulch, Andreas

    2015-02-01

    We document the interplay between meteoric fluid flow and deformation processes in quartzite-dominated lithologies within a ductile shear zone in the footwall of a Cordilleran extensional fault (Kettle detachment system, Washington, USA). Across 150 m of shear zone section, hydrogen isotope ratios (δD) from synkinematic muscovite fish are constant (δD ˜ -130‰) and consistent with a meteoric fluid source. Quartz-muscovite oxygen isotope thermometry indicates equilibrium fractionation temperatures of ˜365 ± 30 °C in the lower part of the section, where grain-scale quartz deformation was dominated by grain boundary migration recrystallization. In the upper part of the section, muscovite shows increasing intragrain compositional zoning, and quartz microstructures reflect bulging recrystallization, solution-precipitation, and microcracking that developed during progressive cooling and exhumation. The preserved microstructural characteristics and hydrogen isotope fingerprints of meteoric fluids developed over a short time interval as indicated by consistent mica 40Ar/39Ar ages ranging between 51 and 50 Ma over the entire section. Pervasive fluid flow became increasingly channelized during detachment activity, leading to microstructural heterogeneity and large shifts in quartz δ18O values on a meter scale. Ductile deformation ended when brittle motion on the detachment fault rapidly exhumed the mylonitic footwall.

  18. Clast Rotation and Nature of Strain Localization in Thick Ultramylonites: the El Pichao Shear Zone (Sierra de Quilmes), NW Argentina.

    NASA Astrophysics Data System (ADS)

    Hasalova, Pavlina; Hunter, Nicholas James; Weinberg, Roberto; Finch, Melanie

    2013-04-01

    Ultramylonite formation is integral to understanding the accommodation of high strain in ductile shear zones, mountain building and crustal movement. The El Pichao Shear Zone (PSZ) is 3-7km thick ductile thrust zone in the Sierra de Quilmes, NW Argentina. Sinistral thrusting along the PSZ has placed granulite facies migmatites of the Tolombón Complex on top of amphibolite metasedimentary rocks of the Agua del Sapo Complex, separated by a sheared granitic body intruded by pegmatites. The fabric varies from protomylonite to ultramylonite. Ultramylonites in the core of the shear zone reach ~1km in thickness. Ultramylonites of this thickness are extremely rare, and thus the El Pichao Shear Zone provides a unique opportunity to investigate the origin of such high strain rocks. We used microstructural and quantitative textural analysis, quartz crystallographic preferred orientation (CPO), clast vorticity and geochemical data to investigate the origin of the thick ultramylonites, and variable strain accommodation associated with the mylonitization process. The mylonitic rocks have granitic composition and consist of a matrix of Bt+Qtz+Ms+Pl+Kfs, Qtz ribbons, mica bands and feldspar porphyroclasts. Feldspar clasts have been variably rotated and their deformation behaviour varies between brittle faulting and partial to complete dynamic recrystallisation. In the ultramylonite Qtz ribbons or strong S-C fabrics are lacking and the matrix tends to be homogeneous with only weak foliation defined by the preferred orientation of micas. There is also a systematic decrease in matrix grain size and mica connectivity towards ultramylonite. Quartz CPO suggests changes in deformation mechanisms associated with strain increase. The transition between mylonite and ultramylonite in the PSZ occurred due to a switch from dominant dislocation creep to dominant diffusion creep. Major and trace element data show no geochemical variation between samples, indicating that the mylonite

  19. Metamorphic and structural evidence for significant vertical displacement along the Ross Lake fault zone, a major orogen-parallel shear zone in the Cordillera of western North America

    USGS Publications Warehouse

    Baldwin, J.A.; Whitney, D.L.; Hurlow, H.A.

    1997-01-01

    Results of an investigation of the petrology and structure of the Skymo complex and adjacent terranes constrain the amount, timing, and sense of motion on a segment of the > 600-km-long Late Cretaceous - early Tertiary Ross Lake fault zone (RLFZ), a major orogen-parallel shear zone in the Cordillera of western North America. In the study area in the North Cascades, Washington state, the RLFZ accommodated significant pre-middle Eocene vertical displacement, and it juxtaposes the Skymo complex with upper amphibolite facies (650??-690??C and 6-7 kbar) Skagit Gneiss of the North Cascades crystalline core to the SW and andalusite-bearing phyllite of the Little Jack terrane (Intermontane superterrane) to the NE. The two main lithologic units of the Skymo complex, a primitive mafic intrusion and a fault-bounded block of granulite facies metasedimentary rocks, are unique in the North Cascades. Granulite facies conditions were attained during high-temperature (> 800??C), low pressure (??? 4 kbar) contact metamorphism associated with intrusion of the mafic magma. P-T estimates and reaction textures in garnet-orthopyroxene gneiss suggest that contact metamorphism followed earlier, higher pressure regional metamorphism. There is no evidence that the Skagit Gneiss experienced high-T - low-P contact metamorphism. In the Little Jack terrane, however, texturally late cordierite ?? spinel and partial replacement of andalusite by sillimanite near the terrane's fault contact with Skymo gabbro suggest that the Little Jack terrane experienced high-T (??? 600??C) - low-P (??? 4 kbar) contact metamorphism following earlier low-grade regional metamorphism. Similarities in the protoliths of metasedimentary rocks in the Skymo and Little Jack indicate that they may be part of the same terrane. Differences in pressure estimates for the Little Jack versus Skymo for regional metamorphism that preceded contact metamorphism indicate vertical displacement of ??? 10 km (west side up) on the strand

  20. Timing of deformation in the Sarandí del Yí Shear Zone, Uruguay: Implications for the amalgamation of western Gondwana during the Neoproterozoic Brasiliano-Pan-African Orogeny

    NASA Astrophysics Data System (ADS)

    Oriolo, Sebastián.; Oyhantçabal, Pedro; Wemmer, Klaus; Basei, Miguel A. S.; Benowitz, Jeffrey; Pfänder, Jörg; Hannich, Felix; Siegesmund, Siegfried

    2016-03-01

    U-Pb and Hf zircon (sensitive high-resolution ion microprobe -SHRIMP- and laser ablation-inductively coupled plasma-mass spectrometry -LA-ICP-MS-), Ar/Ar hornblende and muscovite, and Rb-Sr whole rock-muscovite isochron data from the mylonites of the Sarandí del Yí Shear Zone, Uruguay, were obtained in order to assess the tectonothermal evolution of this crustal-scale structure. Integration of these results with available kinematic, structural, and microstructural data of the shear zone as well as with geochronological data from the adjacent blocks allowed to constrain the onset of deformation along the shear zone at 630-625 Ma during the collision of the Nico Pérez Terrane and the Río de la Plata Craton. The shear zone underwent dextral shearing up to 596 Ma under upper to middle amphibolite facies conditions, which was succeeded by sinistral shearing under lower amphibolite to upper greenschist facies conditions until at least 584 Ma. After emplacement of the Cerro Caperuza granite at 570 Ma, the shear zone underwent only cataclastic deformation between the late Ediacaran and the Cambrian. The Sarandí del Yí Shear Zone is thus related to the syncollisional to postcollisional evolution of the amalgamation of the Río de la Plata Craton and the Nico Pérez Terrane. Furthermore, the obtained data reveal that strain partitioning and localization with time, magmatism emplacement, and fluid circulation are key processes affecting the isotopic systems in mylonitic belts, revealing the complexity in assessing the age of deformation of long-lived shear zones.

  1. Two-zone heterogeneous structure within shear bands of a bulk metallic glass

    SciTech Connect

    Shao, Yang; Yao, Kefu; Liu, Xue; Li, Mo

    2013-10-21

    Shear bands, the main plastic strain carrier in metallic glasses, are severely deformed regions often considered as disordered and featureless. Here we report the observations of a sandwich-like heterogeneous structure inside shear bands in Pd{sub 40.5}Ni{sub 40.5}P{sub 19} metallic glass sample after plastic deformation by high-resolution transmission electron microscopy. The experimental results suggest a two-step plastic deformation mechanism with corresponding microstructure evolution at atomic scale, which may intimately connected to the stability of the shear band propagation and the overall plastic deformability.

  2. The Cora Lake Shear Zone, an Exhumed Deep Crustal Lithotectonic Discontinuity, Western Churchill Province, Canada

    NASA Astrophysics Data System (ADS)

    Regan, S.; Leslie, S.; Holland, M. E.; Williams, M. L.; Mahan, K. H.; Jercinovic, M. J.

    2011-12-01

    Deep crustal flow is a fundamental tectonic process that may serve to reduce topographic gradients, especially in overthickened collisional orogens. Recent studies have utilized numerical models and seismic interpretations, but generally in two dimensions. Although useful, two dimensional models can not fully characterize lower crustal flow or coupling of crustal layers because they cannot fully incorporate lateral heterogeneity in the flow field. The Athabasca Granulite terrane, in northern Saskatchewan, is an exposed deep crustal terrane that underwent granulite grade deformation during the Neoarchean (ca. 2.55), then cooled isobarically for 600 m.y., and then was reactivated during the Paleoproterozoic (ca. 1.9 Ga). Regional exhumation occurred at roughly 1.85 Ga. This exposure, is a field laboratory for studying lower crustal flow, stabilization, and reactivation. Recent work suggests that the northwestern domain, dominated by the multiphase, opx-bearing, Mary batholith, underwent top-to-the-east lower crustal flow during the Neoarchean. The Chipman domain, to the SE , is primarily underlain by the 3.2 Ga, Chipman tonalite straight gneiss, which was likely restitic, and rheologically strong during the 2.6 Ga flow event. The Cora Lake shear zone (CLsz), which divides the two domains, is interpreted to represent a lithotectonic, compositional, and rheologic boundary within the deep crust. Recent mapping of the western gradient of the CLsz has provided insight into the role and evolution of the rheologic discontinuity and its relationship to crustal flow. The Mary granite (gneiss) contains excellent assemblages for P-T and pseudosection analysis. Interlayered felsic granulite contain abundant monazite for in-situ geochronology. An intense subhorizontal tectonic fabric (S1), interpreted to be the product of crustal flow, is present in both units. This early fabric was locally crenulated, folded, and transposed, by a sub-vertical S2 fabric. Current work involves

  3. Block and shear-zone architecture of the Minnesota River Valley subprovince: Implications for late Archean accretionary tectonics

    USGS Publications Warehouse

    Southwick, D.L.; Chandler, V.W.

    1996-01-01

    The Minnesota River Valley subprovince of the Superior Province is an Archean gneiss terrane composed internally of four crustal blocks bounded by three zones of east-northeast-trending linear geophysical anomalies. Two of the block-bounding zones are verified regional-scale shears. The geological nature of the third boundary has not been established. Potential-field geophysical models portray the boundary zones as moderately north-dipping surfaces or thin slabs similar in strike and dip to the Morris fault segment of the Great Lakes tectonic zone at the north margin of the subprovince. The central two blocks of the subprovince (Morton and Montevideo) are predominantly high-grade quartzofeldspathic gneiss, some as old as 3.6 Ga, and late-tectonic granite. The northern and southern blocks (Benson and Jeffers, respectively) are judged to contain less gneiss than the central blocks and a larger diversity of syntectonic and late-tectonic plutons. A belt of moderately metamorphosed mafic and ultramafic rocks having some attributes of a dismembered ophiolite is partly within the boundary zone between the Morton and Montevideo blocks. This and the other block boundaries are interpreted as late Archean structures that were reactivated in the Early Proterozoic. The Minnesota River Valley subprovince is interpreted as a late accretionary addition to the Superior Province. Because it was continental crust, it was not subductible when it impinged on the convergent southern margin of the Superior Craton in late Archean time, and it may have accommodated to convergent-margin stresses by dividing into blocks and shear zones capable of independent movement.

  4. Analecta of structures formed during the 28 June 1992 Landers-Big Bear, California earthquake sequence (including maps of shear zones, belts of shear zones, tectonic ridge, duplex en echelon fault, fault elements, and thrusts in restraining steps)

    SciTech Connect

    Johnson, A.M.; Johnson, N.A.; Johnson, K.M.; Wei, W.; Fleming, R.W.; Cruikshank, K.M.; Martosudarmo, S.Y.

    1997-12-31

    The June 28, 1992, M{sub s} 7.5 earthquake at Landers, California, which occurred about 10 km north of the community of Yucca Valley, California, produced spectacular ground rupturing more than 80 km in length (Hough and others, 1993). The ground rupturing, which was dominated by right-lateral shearing, extended along at least four distinct faults arranged broadly en echelon. The faults were connected through wide transfer zones by stepovers, consisting of right-lateral fault zones and tension cracks. The Landers earthquakes occurred in the desert of southeastern California, where details of ruptures were well preserved, and patterns of rupturing were generally unaffected by urbanization. The structures were varied and well-displayed and, because the differential displacements were so large, spectacular. The scarcity of vegetation, the aridity of the area, the compactness of the alluvium and bedrock, and the relative isotropy and brittleness of surficial materials collaborated to provide a marvelous visual record of the character of the deformation zones. The authors present a series of analecta -- that is, verbal clips or snippets -- dealing with a variety of structures, including belts of shear zones, segmentation of ruptures, rotating fault block, en echelon fault zones, releasing duplex structures, spines, and ramps. All of these structures are documented with detailed maps in text figures or in plates (in pocket). The purpose is to describe the structures and to present an understanding of the mechanics of their formation. Hence, most descriptions focus on structures where the authors have information on differential displacements as well as spatial data on the position and orientation of fractures.

  5. Brittle grain-size reduction of feldspar, phase mixing and strain localization in granitoids at mid-crustal conditions (Pernambuco shear zone, NE Brazil)

    NASA Astrophysics Data System (ADS)

    Viegas, Gustavo; Menegon, Luca; Archanjo, Carlos

    2016-03-01

    The Pernambuco shear zone (northeastern Brazil) is a large-scale strike-slip fault that, in its eastern segment, deforms granitoids at mid-crustal conditions. Initially coarse-grained (> 50 µm) feldspar porphyroclasts are intensively fractured and reduced to an ultrafine-grained mixture consisting of plagioclase and K-feldspar grains (< 15 µm) localized in C' shear bands. Detailed microstructural observations and electron backscatter diffraction (EBSD) analysis do not show evidence of intracrystalline plasticity in feldspar porphyroclasts and/or fluid-assisted replacement reactions. Quartz occurs either as thick (˜ 1-2 mm) monomineralic veins transposed along the shear zone foliation or as thin ribbons ( ≤ 25 µm width) dispersed in the feldspathic mixture. The microstructure and c axis crystallographic-preferred orientation are similar in the thick monomineralic veins and in the thin ribbons, and they suggest dominant subgrain rotation recrystallization and activity of prism < a > and rhomb < a > slip systems. However, the grain size in monophase recrystallized domains decreases when moving from the quartz monomineralic veins to the thin ribbons embedded in the feldspathic C' bands (14 µm vs. 5 µm respectively). The fine-grained feldspar mixture has a weak crystallographic-preferred orientation interpreted as the result of shear zone parallel-oriented growth during diffusion creep, as well as the same composition as the fractured porphyroclasts, suggesting that it generated by mechanical fragmentation of rigid porphyroclasts with a negligible role of chemical disequilibrium. Once C' shear bands were generated and underwent viscous deformation at constant stress conditions, the polyphase feldspathic aggregate would have deformed at a strain rate 1 order of magnitude faster than the monophase quartz monomineralic veins, as evidenced by applying experimentally and theoretically calibrated flow laws for dislocation creep in quartz and diffusion creep in

  6. Synaptic Vesicle Proteins and Active Zone Plasticity.

    PubMed

    Kittel, Robert J; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention.

  7. Synaptic Vesicle Proteins and Active Zone Plasticity

    PubMed Central

    Kittel, Robert J.; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention. PMID:27148040

  8. A mega shear zone in the Central Range of Taiwan and it's implication for the Late Mesozoic subduction of the paleo-Pacific plate

    NASA Astrophysics Data System (ADS)

    Yi, D. C.; Lin, C. W.

    2012-04-01

    The metamorphic basement "Tananao Complex" exposed in the eastern flank of the Central Range of Taiwan. The ancient Asian continental margin deposited a thick sequence of sandstone, shale, limestone and volcanic rocks that was the protolith of Tananao Complex. In Late Mesozoic Era, the thick sequence of rocks was subjected to several phases of metamorphism and deformation to form the pair metamorphic belts which were the western Tailuko Belt and the eastern Yuli Belt. The Tailuko belt is composed of phyllite, quartzite, quartz-mica schist, meta-conglomerate, gneiss, meta-basite, amphibolite, serpentinite, marble and meta-chert, etc. The Yuli belt is composed of a monotonous assemblage of quartz-mica schist, subordinate meta-basite and serpentinite, etc. It is believed that the boundary of the Tailuko belt and the Yuli belt is a large fault, but the field evidence of the fault has never been found. In this study, meso-scale field investigation of the lithologies and rock fabrics indicate that a mega shear zone, called "The Daguan shear zone", separated the Tailuko belt from the Yuli belt. The Daguan shear zone is a NNE trending and west dipping mega shear zone which is mainly composed of mylonitic dark gray quartz-mica schist and mica schist, intercalated with 1 to 2 centimeters thick of elongated meta-conglomerate band. The shear zone is composed of numerous meso-scale ductile shear zones. Additionally, the shaer zone is characterized by abundant varied quartz veins that have been refolded to lenticular or pod shape and nearly parallel to S2 cleavage. Compaed to the existing geological information of the Central Range, we believe that the Daguan shear zone played a role as the boundary of the subduction zone which the paleo-Pacific Plate subducted into the Eurasian Plate in Late Mesozoic Era.

  9. Fe-Ti-oxide textures and microstructures in shear zones from oceanic gabbros at Atlantis Bank, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Till, Jessica; Morales, Luiz F. G.; Rybacki, Erik

    2016-04-01

    Ocean drilling expeditions at several oceanic core complexes formed at slow- and ultra-slow-spreading ridges have recovered cores containing numerous zones of oxide-rich gabbros containing ilmenite and magnetite. In these cores, high modal concentrations of Fe-Ti-oxides are systematically associated with high-temperature plastic deformation features in silicates. We present observations of Fe-Ti-oxide mineral structures and textural characteristics from a series of oxide-rich shear zones from Atlantis Bank (ODP Site 735B) on the Southwest Indian Ridge aimed at determining how oxide mineral abundances relate to strain localization. Fe-Ti-oxide minerals in undeformed oxide gabbros and in highly deformed samples from natural shear zones generally have morphologies characteristic of crystallized melt, including highly cuspate grains and low dihedral angles. Anisotropy of magnetic susceptibility in oxide-rich shear zones is very strong, with fabrics mainly characterized by strong magnetic foliations parallel to the macroscopic foliation. Crystallographic preferred orientations (CPO) in magnetite are generally weak, with occasionally well-defined textures. Ilmenite typically displays well-developed CPOs, however, the melt-like ilmenite grain shapes indicate that at least part of the crystallographic texture results from oriented ilmenite growth during post-deformation crystallization. The oxides are hypothesized to have initially been present as isolated pockets of trapped melt (intercumulus liquid) in a load-bearing silicate framework. Progressive plastic deformation of silicate phases at high-temperature mainly produced two features: (i) elongated melt pockets, which crystallized to form strings of opaque minerals and (ii), interconnected networks of melt regions. The latter lead to intense strain localization of the rock, which appears as oxide-rich mylonites in the samples. In some samples, abundant low-angle grain boundaries in both magnetite and ilmenite suggest

  10. [Molecular mechanism at the presynaptic active zone].

    PubMed

    Ohtsuka, Toshihisa

    2011-07-01

    Our higher brain functions such as learning and memory, emotion, and consciousness depend on the precise regulation of complicated neural networks in the brain. Neurons communicate with each other through the synapse, which comprise 3 regions: the presynapse, synaptic cleft, and postsynapse. The active zone (AZ) beneath the presynaptic membrane is the principal site for Ca2+ -dependent neurotransmitter release: AZ is involved in determining the site for docking and synaptic vesicle fusion. Presently, the full molecular composition of AZ is unclear, but it is known to contain several AZ-specific proteins, including cytomatrix of the active zone-associated protein (CAST)/ERC2, ELKS, RIM1, Munc13-1, Piccolo/Aczonin, and Bassoon. CAST and ELKS are novel active zone proteins that directly bind to Rab3-interacting molecules (RIMs), Bassoon, and Piccolo, and are thought to play a role in neurotransmitter release by binding these to AZ proteins. In this review, current advances in studies on AZ structure and function have been summarized, and the focus is mainly on protein-protein interactions among the AZ proteins.

  11. Role of mineralogical and chemical changes on shear zone nucleation: an example from the Neves area (Tauern Window, Eastern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Link, Gaetan; Goncalves, Philippe; Lanari, Pierre; Oliot, Emilien

    2015-04-01

    Several studies have proposed a model for shear zone nucleation in granitoids, in which an initial anisotropy, frequently a brittle structure or a compositional heterogeneity, is required to localize and initiate the ductile shearing in granitoids. This model is referred as an inherited-localization model. This brittle precursor is also the loci of intense fluid-rock interactions that induce mineral and chemical transformations that control the behavior of shear zone. However, Oliot et al. (2010, 2014) suggest that brittle precursors are not necessary required to initiate the ductile shearing in granites. Indeed, the early recrystallization of metastable phases (like plagioclase) into a fine-grained metamorphic assemblage, stable at the P-T-fluid conditions of the deformation, might induce local weakening required for strain localization and shear zone nucleation. We will define this model as the metamorphic-localization model. In both models, shear zone nucleation appears to be associated with metamorphic reactions, fluid flow and mass transfer. The goal of this contribution is to document and quantify the mineralogical and chemical changes involved during the process of shear zone nucleation in granitoids, and to discuss their role. Answering these questions requires to study shear zones in which petrological and microstructural evidences of the deformation have not been obliterated by subsequent ductile deformation. One of the best example is located in the Neves area (Tauern Window, Eastern Alps, Italy) where a Variscan granodiorite is affected by an Alpine amphibolite facies deformation strongly localized on precursor fractures. The studied samples are mm to cm-wide shear zones with distinct mineralogical evolution. In the undeformed granodiorite, the mineralogical assemblage consists of quartz, K-feldspar, biotite and a fine-grained assemblage of albite, epidote and white mica developed at the expense of the metastable magmatic plagioclase. In addition to the

  12. Evidence for nearly orthogonal, Oligocene crustal flow beneath the coeval mylonitic shear zone of the Ruby Mountains core complex, Nevada

    SciTech Connect

    Maccready, T.; Snoke, A.W. . Dept. of Geology and Geophysics); Wright, J.E. . Dept. of Geology and Geophysics)

    1993-04-01

    Structural analysis and new geochronologic data indicate a nearly orthogonal, Oligocene flow pattern in migmatitic infrastructure immediately beneath the kilometer-scale mylonitic shear zone of the Ruby Mountains metamorphic core complex, Nevada. Three zircon fractions from a biotite monzogranitic orthogneiss yielded a crystallization age of 30 [+-] 1 Ma. Single monazite fractions from two leucocratic granitic orthogneisses indicated a preliminary crystallization age of 37 Ma. These three samples all exhibit a penetrative, approximately north-south-trending elongation lineation. The elongation lineation is interpreted as the slip line in the flow plane of the migmatitic, nonmylonitic infrastructural core of the northern Ruby Mountains. This flow pattern is coeval with the well-documented, west-northwest sense-of-slip in the structurally overlying kilometer-scale mylonitic shear zone suggesting fundamental plastic decoupling between structural levels in this core complex. Furthermore, the study area is characterized by overlapping, oppositely verging fold-nappes which are rooted to the east and west. The penetrative, elongation lineation is subparallel to parasitic folds developed synchronous with the fold-nappes suggesting a kinematically related evolution. One possible model is that late Eocene-early Oligocene granitic magmas invaded a migmatitic core zone undergoing a complex flow pattern related to large-scale crustal extension. The local flow pattern in the migmatitic infrastructure may be a manifestation of mid-crustal migration of low viscosity crustal material into an area beneath a domain of highly extended upper crustal rocks.

  13. Geodetic slip rate for the eastern California shear zone and the recurrence time of Mojave desert earthquakes

    USGS Publications Warehouse

    Sauber, J.; Thatcher, W.; Solomon, S.C.; Lisowski, M.

    1994-01-01

    Where the San Andreas fault passes along the southwestern margin of the Mojave desert, it exhibits a large change in trend, and the deformation associated with the Pacific/North American plate boundary is distributed broadly over a complex shear zone. The importance of understanding the partitioning of strain across this region, especially to the east of the Mojave segment of the San Andreas in a region known as the eastern California shear zone (ECSZ), was highlighted by the occurrence (on 28 June 1992) of the magnitude 7.3 Landers earthquake in this zone. Here we use geodetic observations in the central Mojave desert to obtain new estimates for the rate and distribution of strain across a segment of the ECSZ, and to determine a coseismic strain drop of ~770 ??rad for the Landers earthquake. From these results we infer a strain energy recharge time of 3,500-5,000 yr for a Landers-type earthquake and a slip rate of ~12 mm yr-1 across the faults of the central Mojave. The latter estimate implies that a greater fraction of plate motion than heretofore inferred from geodetic data is accommodated across the ECSZ.

  14. Field and Microstructure Study of Transpressive Jogdadi shear zone near Ambaji, Aravalli- Delhi Mobile Belt, NW India and its tectonic implication on the exhumation of granulites.

    NASA Astrophysics Data System (ADS)

    Tiwari, Sudheer Kumar; Biswal, Tapas Kumar

    2016-04-01

    Aravalli- Delhi mobile belt is situated in the northwestern part of Indian shield. It comprises tectono- magmatic histories from Archean to Neoproterozoic age. It possesses three tectono- magmatic metamorphic belts namely Bhilwara Supergroup (3000 Ma), Aravalli Supergorup (1800 Ma) and Delhi Supergroup (1100 -750Ma). The Delhi Supergroup is divided in two parts North Delhi and South Delhi; North Delhi (1100 Ma to 850 Ma) is older than South Delhi (850 Ma to 750 Ma). The study area falls in the South Delhi terrane; BKSK granulites are the major unit in this terrane. BKSK granulites comprise gabbro- norite-basic granulite, pelitic granulite, calcareous granulite and occur within the surrounding of low grade rocks as meta- rhyolite, quartzite, mica schist and amphibolites. The high grade and low grade terranes share a sheared margin. Granulites have undergone three phases of folding, intruded by three phases of granites and traversed by many shear zones. One of the shear zones is Jogdadi shear zone which consists of granitic mylonites and other sheared rocks. Jogdadi shear zone carries the evidence of both ductile as well as brittle shearing. It strikes NW- SE; the mylonitic foliation dip moderately to SW or NE and stretching lineations are oblique towards SE. The shear zone is folded and gabbro- norite - basic granulite occurs at the core. One limb of fold passes over coarse grained granite while other limb occurs over gabbro- norite- basic granulite. Presence of mylonitic foliation, asymmetric folding, S-C fabrics, porphyroclasts, mica fishes and book shelf- gliding are indicative of ductile deformation. Most of the porphyroclasts are sigmoidal and delta types but there are also some theta and phi type porphyroclasts. Book shelf-gliding structures are at low angle to the C plane. The shear zone successively shows protomylonite, mylonite and ultramylonites from margin to the centre. As the mylonitization increases recrystallized quartz grains appear. Porphyroclasts

  15. Weak ductile shear zone beneath a major strike-slip fault: Inferences from earthquake cycle model constrained by geodetic observations of the western North Anatolian Fault Zone

    NASA Astrophysics Data System (ADS)

    Yamasaki, Tadashi; Wright, Tim J.; Houseman, Gregory A.

    2014-04-01

    GPS data before and after the 1999 İzmit/Düzce earthquakes on the North Anatolian Fault Zone (Turkey) reveal a preseismic strain localization within about 25 km of the fault and a rapid postseismic transient. Using 3-D finite element calculations of the earthquake cycle in an idealized model of the crust, comprising elastic above Maxwell viscoelastic layers, we show that spatially varying viscosity in the crust can explain these observations. Depth-dependent viscosity without lateral variations can reproduce some of the observations but cannot explain the proximity to the fault of maximum postseismic velocities. A localized weak zone beneath the faulted elastic lid satisfactorily explains the observations if the weak zone extends down to midcrustal depths, and the ratio of relaxation time to earthquake repeat time ranges from ~0.005 to ~0.01 (for weak-zone widths of ~24 and 40 km, respectively) in the weakened domain and greater than ~1.0 elsewhere, corresponding to viscosities of ~1018 ± 0.3 Pa s and greater than ~1020 Pa s. Models with sharp weak-zone boundaries fit the data better than those with a smooth viscosity increase away from the fault, implying that the weak zone may be bounded by a relatively abrupt change in material properties. Such a change might result from lithological contrast, grain size reduction, fabric development, or water content, in addition to any effects from shear heating. Our models also imply that viscosities inferred from postseismic studies primarily reflect the rheology of the weak zone and should not be used to infer the mechanical properties of normal crust.

  16. Thermal structure of a major crustal shear zone, the basal thrust in the Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Fauconnier, Julien; Labrousse, Loïc; Andersen, Torgeir B.; Beyssac, Olivier; Duprat-Oualid, Sylvia; Yamato, Philippe

    2013-04-01

    In continental collision, most of the convergence between the two involved plates is accommodated on a major thrust system at crustal to lithospheric scale, which thermal state depends on critical parameters such as thrust rate, initial thermal properties of involved lithosphere units or local processes such as shear heating. In active orogens the deeper part of such thrust systems is only imaged by geophysics and their thermal state is inferred from modeling. The Norwegian Caledonides offer a rare exhumed thrust system : the Jotun Basal Thrust (JBT), that allows the direct determination of its thermal envelope through Raman Spectroscopy of Carbonaceous Material (RSCM). Data were collected in the Alum shales formation, an organic carbon-rich unit of Cambro-Ordovician age along which the basal decollement of the JBT accommodated a significant portion of the relative movement between the Caledonian nappe stack and Baltica during the Scandian collision and its later collapse. Maximum temperature mapping within this unit shows isotherms almost cylindrically grading from ~320°C in the southeast to ~500°C in the northwest in the trailing end of the nappe stack. Based on Bt+Chl+Grt+Phg equilibrium, we estimate that the trailing end reached 500°C at 1.2 ± 0.1 GPa pressure. 2D thermo-kinematic modeling constrained with these new natural data and timing considerations for the Scandian collision were used to understand the geodynamic significance of this maximum temperature envelope. By testing the influence of the geometry, velocity and extensional reactivation duration, our models indicate that (1) peak temperatures were diachronous along the JBT and were reached during extensional reactivation in its shallowest parts, (2) thrust rate and dip angle must have remained low for the JBT and (3) the Scandian Caledonides represent a relatively cold orogenic wedge compared to other mountain belts of the same size.

  17. The Eidsfjord shear zone, Lofoten-Vesterålen, north Norway: An Early Devonian, paleoseismogenic low-angle normal fault

    NASA Astrophysics Data System (ADS)

    Steltenpohl, Mark G.; Moecher, David; Andresen, Arild; Ball, Jacob; Mager, Stephanie; Hames, Willis E.

    2011-05-01

    We report structural and 40Ar/39Ar isotopic information on the Eidsfjord shear zone that document it to be a seismogenic, tops-west (hinterland directed), Devonian ductile low angle (25-30° dip, shallowing locally) normal detachment fault. Anorthosite/migmatitic gneiss in the detachment's upper plate, mangerite in the lower plate, and detachment mylonites are all cut by generations of abundant pseudotachylyte occurring over approximately 150 km2. The mean of four laser 40Ar/39Ar plateau ages for single crystals of recrystallized muscovite from mylonites defining the Eidsfjord shear zone indicates an age of 403.6 ± 1.1 Ma (2σ) for deformation and recrystallization. 40Ar/39Ar step-heating analyses are reported for muscovite from mylonitized rocks of the Fiskefjord shear zone, a nearby tops-east Caledonian thrust that was reactivated as a tops-west normal fault, documenting cooling of the upper plate through the ˜350 °C isotherm at ˜457 Ma. Together with Middle-Ordovician tectonothermal relics found farther west in Lofoten, tops-down-to-the-west normal-slip movement on these extensional shear zones explains maintenance of high-crustal levels throughout the Siluro-Devonian Scandian event. Potassium feldspar 40Ar/39Ar results document a pulse, or multiple pulses, of uplift and cooling between ca. 235 Ma and 185 Ma, consistent with formation of Triassic-Jurassic rift basins flanking the Lofoten Ridge. The Eidsfjord detachment appears to mark the northern terminus of the Early Devonian detachment system traceable 800 km southward to the Nordfjord-Sogn detachment and westward across the North Atlantic to detachments of roughly the same age on the conjugate side of the orogen in East Greenland. The timing, geometry, kinematics, and rheological development of Eidsfjord detachment are grossly similar to the Nordfjord-Sogn detachment but the former contrasts in that it presently lacks exposed deposits of Devonian sedimentary rocks, has smaller magnitudes of displacement

  18. Fabrics of migmatites and relationships between partial melting and deformation in high-grade transpressional shear zones: the Patos anatexite (Borborema Province, NE Brazil)

    NASA Astrophysics Data System (ADS)

    Viegas, L. G. F.; Archanjo, C. J.; Vauchez, A.

    2012-04-01

    Migmatites are heterogeneous rocks that record flow processes in the middle crust of actively deforming orogens. The Patos anatexite is located within a transpressional, high-temperature shear zone in which mylonites are associated with partial melting at different scales. The relationships between melting and deformation inside continental ductile shear zones can be hindered due to the apparent structural complexity of migmatites, which encompass shear zone-parallel syntectonic leucosome veins, randomly-oriented nebulites and isotropic leucogranite accumulations of various sizes. A comprehensive petrostructural study was carried out in these rocks in order to test the compatibility of field, magnetic and crystallographic fabrics with the kinematics of melt deformation within high-grade shear zones. Magnetic fabrics of partially molten rocks were investigated using the anisotropy of magnetic susceptibility (AMS) and anisotropy of anhysteretic remanence (AAR). Crystallographic preferred orientations (CPOs) were measured using Electron Backscatter Diffraction (EBSD). Bulk AMS results indicate that ferromagnetic minerals dominate the overall susceptibility of the Patos anatexite, while a subset of samples shows composite ferro- and paramagnetic susceptibilities. AAR in the paramagnetic subfabrics reveals coaxiality between ferro- and paramagnetic fabric ellipsoids, suggesting formation of the magnetic fabric in the Patos anatexite as resulting from a single viscous flow process. AMS lineations display a well-oriented pattern in which magnetic foliations rotate consistently with a dextral simple shear sense, while AAR subfabrics are broadly parallel to the main AMS axes. The CPO of biotite crystals shows a good correlation of <001> axes with the k3 direction of the magnetic susceptibility ellipsoid in samples displaying orientations consistent with the shear-zone fabric and dominantly ferromagnetic behavior. In sites where the nebulitic fabric displays complex patterns

  19. Heterogeneity within a deep crustal strike-slip shear zone with implications for lower crustal flow, Athabasca granulite terrane, western Canadian Shield

    NASA Astrophysics Data System (ADS)

    Leslie, S. R.; Mahan, K. H.; Regan, S.; Williams, M. L.

    2011-12-01

    Deep crustal strike-slip shear zones play a fundamental role in lower crustal flow. Although commonly modeled in two-dimensions, regional considerations suggest that large-scale crustal flow is a heterogeneous, three-dimensional process. The Athabasca granulite terrane, western Canadian Shield, exposes a large region of high-pressure tectonite (>20,000 km2) that provides a natural example of ancient lower crustal flow and an analog for similar processes active today in other regions. Regional heterogeneous deformation permits preservation of Neoarchean deformation fabrics and metamorphic textures. The Cora Lake shear zone (CLsz) is a NW-dipping km-scale mylonite to ultramylonite zone that forms a discrete tectonic discontinuity between two rheologically distinct Neoarchean lower-crustal domains. Northwest of the CLsz, the domain is primarily underlain by ~2.6 Ga felsic to mafic metaplutonic gneisses and interlayered ~2.55 Ga felsic granulite. Lithologies here preserve Neoarchean granulite-facies metamorphism coupled with partial melting and synkinematic melt-enhanced ESE-directed subhorizontal flow at ~0.9 GPa (~30 km paleodepths). Southeast of the CLsz, the Chipman domain is underlain by ~3.2 Ga metatonalite gneiss, an extensive ~1.9 Ga mafic dike swarm, and generally minor ~2.55 Ga mafic and felsic granulite. In contrast to the northwest, lithologies of the western Chipman domain document higher pressures at ~1.3 GPa (~40 km paleodepths) synchronous with development of a gently dipping Neoarchean gneissic fabric. Strong, anhydrous Chipman domain lithologies and melt-weakened lithologies to the northwest are juxtaposed by sinistral to sinistral-normal oblique shear along the CLsz, consistent with higher pressures (deeper paleodepths) documented in the footwall Chipman domain. A notable and pervasive feature along strike of the CLsz in the western Chipman domain is the marked increase in abundance of m-scale layers of mafic and felsic granulite westward with

  20. Shear-wave splitting and mantle anisotropy in the southern South American subduction zone

    NASA Astrophysics Data System (ADS)

    MacDougall, J. G.; Fischer, K. M.; Anderson, M. L.

    2010-12-01

    The goal of this study is to constrain mantle flow above and below the subducting Nazca plate at latitudes of 30°-41° S. In this segment of the South American subduction zone, slab dip varies dramatically, including a region of flat slab subduction in the north and greater dip angles (~30°) in the south, where the segment ends at a slab gap associated with Chile Ridge. We measured shear-wave splitting in over 200 S arrivals from local earthquakes at permanent stations PLCA (USGS/GTSN) and PEL (Geoscope) and 14 stations of the 2000-2002 CHARGE (Chile Argentina Geophysical Experiment) PASSCAL array. We also made splitting measurements in 17 SKS and SKKS phases recorded by PLCA and permanent station TRQA (IRIS/GSN). Splitting parameters for a sub-set of local S, SKS and SKKS phases were determined using a range of filters from 0.05-0.2 to 0.05-2, and were generally stable as a function of frequency; frequency-dependence was observed in a small number of cases, and will be investigated further. The results reported below correspond to a 0.05-2 Hz bandpass filter. Local S splitting times range from 0.1-0.9 seconds, and for back-arc stations, splitting times correlate with path length in the mantle wedge. These results indicate that wedge anisotropy is a dominant factor in the observed splitting, although shallower anisotropy also appears to be present. Splitting fast polarizations at back-arc stations show a coherent variation with latitude. Fast polarizations vary from NE at 40°-41°S, to N (roughly slab-strike parallel) at 35°-36°S, to NE-ESE at 30°-33°S, curving as the slab flattens where the Juan Fernandez Ridge is subducting beneath the South American lithosphere. For SKS and SKKS phases at PLCA (in the western back-arc at 41°S), fast directions are predominantly ENE-ESE and splitting times range from 1.0-2.3 s. At TRQA (much farther to the east and at 38°S), teleseismic fast polarizations are E-SE and splitting times vary from 0.8-2.4 s. At PLCA, because

  1. Geometry and subsidence history of the Dead Sea basin: A case for fluid-induced mid-crustal shear zone?

    USGS Publications Warehouse

    ten Brink, U.S.; Flores, C.H.

    2012-01-01

    Pull-apart basins are narrow zones of crustal extension bounded by strike-slip faults that can serve as analogs to the early stages of crustal rifting. We use seismic tomography, 2-D ray tracing, gravity modeling, and subsidence analysis to study crustal extension of the Dead Sea basin (DSB), a large and long-lived pull-apart basin along the Dead Sea transform (DST). The basin gradually shallows southward for 50 km from the only significant transverse normal fault. Stratigraphic relationships there indicate basin elongation with time. The basin is deepest (8-8.5 km) and widest (???15 km) under the Lisan about 40 km north of the transverse fault. Farther north, basin depth is ambiguous, but is 3 km deep immediately north of the lake. The underlying pre-basin sedimentary layer thickens gradually from 2 to 3 km under the southern edge of the DSB to 3-4 km under the northern end of the lake and 5-6 km farther north. Crystalline basement is ???11 km deep under the deepest part of the basin. The upper crust under the basin has lower P wave velocity than in the surrounding regions, which is interpreted to reflect elevated pore fluids there. Within data resolution, the lower crust below ???18 km and the Moho are not affected by basin development. The subsidence rate was several hundreds of m/m.y. since the development of the DST ???17 Ma, similar to other basins along the DST, but subsidence rate has accelerated by an order of magnitude during the Pleistocene, which allowed the accumulation of 4 km of sediment. We propose that the rapid subsidence and perhaps elongation of the DSB are due to the development of inter-connected mid-crustal ductile shear zones caused by alteration of feldspar to muscovite in the presence of pore fluids. This alteration resulted in a significant strength decrease and viscous creep. We propose a similar cause to the enigmatic rapid subsidence of the North Sea at the onset the North Atlantic mantle plume. Thus, we propose that aqueous fluid flux

  2. Are quartz LPOs predictably oriented with respect to the shear zone boundary?: A test from the Alpine Fault mylonites, New Zealand

    NASA Astrophysics Data System (ADS)

    Little, Timothy A.; Prior, David J.; Toy, Virginia G.

    2016-03-01

    The Alpine fault self-exhumes its own ductile shear zone roots and has a known slip kinematics. Within ˜1 km of the fault, the mylonitic foliation is subparallel to the boundary of the amphibolite-facies ductile shear zone in which it formed. Using EBSD, we analyzed quartz Lattice Preferred Orientations [LPOs) of mylonites along a central part of the Alpine Fault. All LPOs feature a strongest girdle of [c]-axes that is forward-inclined ˜28 ± 4° away from the pole to the fault. A maximum of axes is inclined at the same angle relative the fault. The [c]-axis girdle is perpendicular to extensional (C') shear bands and the maximum is parallel to their slip direction. [c]-axis girdles do not form perpendicular to the SZB. Schmid factor analysis suggests that σ1 was arranged at 60-80° to the Alpine Fault. These observations indicate ductile transpression in the shear zone. The inclined arrangement of [c]-axis girdles, axes, and C' planes relative to the fault can be explained by their alignment relative to planes of maximum shear-strain-rate in a general shear zone, a significant new insight regarding shear zones and how LPO fabrics may generally develop within them. For the Alpine mylonite zone, our data imply a kinematic vorticity number (Wk) of ˜0.7 to ˜0.85. Inversions of seismic focal mechanisms in the brittle crust of the Southern Alps indicate that σ1 is oriented ˜60° to the Alpine Fault; that shear bands form at ˜30° to this direction, and that σ2 and σ3 flip positions between the brittle and ductile parts of the crust.

  3. Linking deformation and chemical re-equilibration: new results from the Cretaceous Vinschgau shear zone (Southern Tyrol, Italy)

    NASA Astrophysics Data System (ADS)

    Eberlei, Tobias; Habler, Gerlinde; Grasemann, Bernhard; Abart, Rainer

    2013-04-01

    The Austroalpine Matsch Unit in the European Eastern Alps preserves evidence for at least three tectonometamorphic cycles, including a Variscan amphibolite-facies metamorphism, a Permian high-T/low-P event related to the intrusion of pegmatites and a Cretaceous metamorphism at the greenschist to amphibolite-facies transition. The southern tectonic boundary of the Matsch unit is formed by the about 2 km thick Vinschgau shear zone, which was active during the Cretaceous and involves metapelites, orthogneisses and metapegmatites (Schmid & Haas 1989). A characteristic mylonitic foliation with an E-W trending stretching lineation, S-C and S-C-Ć fabrics with general top W non-coaxial shear kinematics developed. Remarkable strain-gradients occur at the cm- to m-scale, partly associated with lithological heterogeneities. In this contribution we focus on the relationship between deformation and microstructural- and chemical re-equilibration of white mica and feldspar in the Permian metapegmatites. Based on detailed structural characterization during field work, we used optical microscopy and scanning electron microscopy (SEM) as well as electron backscatter diffraction (EBSD) for microstructural and microtextural characterization. An electron microprobe (EPMA) was used for analyzing the major element compositions of microstructurally different phase generations. In the Permian metapegmatites metamorphic white mica, plagioclase feldspar (ab87 - ab99) and K-feldspar replaced the primary pegmatite assemblages. Magmatic white mica with near-end member composition of muscovite is strongly deformed, showing kinks, undulose extinction and cracks. A new fine-grained white mica generation with elevated celadonite-component (SiIV = 3.05-3.25 cations/11O) not only predominates the mylonitic foliation and compressional quadrants of mm-sized albite and muscovite clasts but also compositionally altered zones within primary magmatic white mica along kink planes and cleavage planes. The

  4. Metamorphic conditions in the Nilgiri Granulite Terrane and the adjacent Moyar and Bhavani Shear Zones: A reevaluation

    NASA Technical Reports Server (NTRS)

    Raith, M.; Hengst, C.; Nagel, B.; Bhattacharya, A.; Srikantappa, C.

    1988-01-01

    Data were presented on pressure and temperature determinations from the Nilgiri Hills. About 70 samples were analyzed by probe and several calibrations of garnet-pyroxene thermometry and barometry applied. Most calibrations gave considerable scatter; however, a new calibration by Bhattacharya, Raith, Lal, and others, accounting for nonideality in both garnet and orthopyroxene, gave consistent results of 754 + or - 52 C and 9.2 + or - 0.7 kbar. On the regional scale, a pressure increase of 6.5 to 7 kbar in the SW to 11 kbar in the NE was related to block tilting. A continuous pressure gradient into the Moyar shear zone suggests that the zone is not a suture juxtaposing unrelated blocks.

  5. Anisotropic upper crust above the aftershock zone of the 2013 Ms 7.0 Lushan earthquake from the shear wave splitting analysis

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Zhang, Haijiang; Zhang, Xin; Pei, Shunping; An, Meijian; Dong, Shuwen

    2015-10-01

    We have conducted a systematic shear wave splitting analysis using 1000 selected aftershocks with M > 2 from the 2013 Ms 7.0 Lushan earthquake along the Longmenshan fault system in southwest China. Polarization directions of fast shear waves show a bimodal distribution with one dominant direction approximately parallel to the fault strike and the other close to the regional maximum horizontal compressive stress direction. This indicates that in this area mechanisms causing crustal seismic anisotropy are both stress induced and fault zone structure controlled. Delay times between fast and slow shear waves do not show a clear trend of increase for deeper events, suggesting the anisotropic zone is mostly above the aftershocks, which are generally located below 8 km. We further applied a shear wave splitting tomography method to measured delay times to characterize the spatial distribution of seismic anisotropy. The three-dimensional anisotropic percentage model shows strong anisotropy above 8 km but low anisotropy below it. The mainshock slip zone and its aftershocks are associated with very low or negligible anisotropy and high velocity, indicating that the zones with high anisotropy and low velocity above 8 km are mechanically weak and it is difficult for stress to accumulate there. The main and back reverse fault zones are associated with high anisotropic anomalies above ˜8 km, likely caused by shear fabric or microfractures aligned parallel to the fault zone.

  6. Magnetic fabric development in a highly anisotropic magnetite-bearing ductile shear zone (Seve Nappe Complex, Scandinavian Caledonides)

    NASA Astrophysics Data System (ADS)

    Kontny, A.; Engelmann, R.; Grimmer, J. C.; Greiling, R. O.; Hirt, A.

    2012-04-01

    Magnetite-bearing mylonitic garnet-micaschists close to the major suture between the Baltica and Iapetus terranes (Seve Nappe Complex, Scandinavian Caledonides) show very high anisotropy of magnetic susceptibility (AMS) with corrected degree of anisotropy ( P') up to 4.8. Three different magnetic fabric types can be distinguished. They correspond to protomylonite (type I, P' < 2), mylonite (type II, 2 < P' < 3), and ultramylonite (type III, P' > 3), respectively. The orientation of the ellipsoid axes from all applied magnetic fabric methods in this study is similar with shallow dips of the metamorphic foliation toward WSW and subhorizontal, mostly NW-SE trending mineral lineation. Differences between subfabrics were minimized under high shear strain as all markers tend to align parallel with the shear plane. The very high anisotropies and mostly oblate ellipsoid shapes of type III correlate with high magnetic susceptibility ( k mean up to 55 × 10-3 SI units) and are related to the concentration of magnetite aggregates with shape-preferred orientation. They show a distinct field dependence of magnetic susceptibility of up to 10% in the k max-direction. We attribute this field dependence to a "memory" of high strains in the domain walls of the crystals acquired during synkinematic magnetite growth during shear zone fabric development at temperatures of 550-570°C.

  7. Contrasts in sillimanite deformation in felsic tectonites from anhydrous granulite- and hydrous amphibolite-facies shear zones, western Canadian Shield

    NASA Astrophysics Data System (ADS)

    Leslie, S. R.; Mahan, K. H.; Regan, S.; Williams, M. L.; Dumond, G.

    2015-02-01

    The deformation behavior of crustal materials in variably hydrated metamorphic environments can significantly influence the rheological and seismic properties of continental crust. Optical observations and electron backscatter diffraction (EBSD) analyses are used to characterize sillimanite deformation behavior in felsic tectonites from two deformation settings in the Athabasca granulite terrane, western Canadian Shield. Under estimated conditions of 0.8-1.0 GPa, 725-850 °C in the Cora Lake shear zone, the data suggest that sillimanite deformed by dislocation creep with slip in the [001] direction accompanied by subgrain rotation recrystallization. Where sillimanite locally remained undeformed, strain was concentrated in surrounding weaker phases. Under hydrated conditions of 0.4-0.6 GPa, 550-650 °C in the Grease River shear zone, textures and cathodoluminescence imaging point to dissolution-precipitation creep as the major deformation mechanism for sillimanite, resulting in synkinematic growth of foliation-parallel euhedral sillimanite in a preferred orientation with [001] parallel to the lineation. The results suggest that temperature, fluid content, and modal mineralogy of the surrounding phases may all have significant influence on sillimanite deformation but that preferential alignment of sillimanite [001] parallel to the lineation persists regardless of contrasts in the conditions or mechanisms of deformation.

  8. Contrasts in sillimanite deformation in felsic tectonites from anhydrous granulite- and hydrous amphibolite-facies shear zones, western Canadian Shield

    NASA Astrophysics Data System (ADS)

    Leslie, S. R.; Mahan, K. H.; Regan, S.; Williams, M. L.; Dumond, G.

    2015-02-01

    The deformation behavior of crustal materials in variably hydrated metamorphic environments can significantly influence the rheological and seismic properties of continental crust. Optical observations and electron backscatter diffraction (EBSD) analyses are used to characterize sillimanite deformation behavior in felsic tectonites from two deformation settings in the Athabasca granulite terrane, western Canadian Shield. Under estimated conditions of 0.8-1.0 GPa, 725-850 °C in the Cora Lake shear zone, the data suggest that sillimanite deformed by dislocation creep with slip in the [001] direction accompanied by subgrain rotation recrystallization. Where sillimanite locally remained undeformed, strain was concentrated in surrounding weaker phases. Under hydrated conditions of 0.4-0.6 GPa, 550-650 °C in the Grease River shear zone, textures and cathodoluminescence imaging point to dissolution-precipitation creep as the major deformation mechanism for sillimanite, resulting in synkinematic growth of foliation-parallel euhedral sillimanite in a preferred orientation with [001] parallel to the lineation. The results suggest that temperature, fluid content, and modal mineralogy of the surrounding phases may all have significant influence on sillimanite deformation but that preferential alignment of sillimanite [001] parallel to the lineation persists regardless of contrasts in the conditions or mechanisms of deformation.

  9. Applying a general triclinic transpression model to highly partitioned brittle-ductile shear zones: A case study from the Torcal de Antequera massif, external Betics, southern Spain

    NASA Astrophysics Data System (ADS)

    Díaz-Azpiroz, M.; Barcos, L.; Balanyá, J. C.; Fernández, C.; Expósito, I.; Czeck, D. M.

    2014-11-01

    Oblique convergence and subsequent transpression kinematics can be considered as the general situation in most convergent and strike-slip tectonic boundaries. To better understand such settings, progressively more complex kinematic models have been proposed, which need to be tested against natural shear zones using standardized procedures that minimise subjectivism. In this work, a protocol to test a general triclinic transpression model is applied to the Torcal de Antequera massif (TAM), an essentially brittle shear zone. Our results, given as kinematic parameters of the transpressive flow (transpression obliquity, ϕ; extrusion obliquity, υ; and kinematic vorticity number, Wk), suggest that the bulk triclinic transpressive flow imposed on the TAM was partitioned into two different flow fields, following a general partitioning type. As such, one flow field produced narrow structural domains located at the limits of the TAM, where mainly dextral strike-slip simple-shear-dominated transpression took place (Outer domains, ODs). In contrast, the remaining part of the bulk flow produced pure-shear-dominated dextral triclinic transpression at the inner part of the TAM (Inner domain, ID). A graphical method relating internal (ϕ, Wk) to far-field (dip of the shear zone boundary, δ; angle of oblique convergence, α) transpression parameters is proposed to obtain the theoretical horizontal velocity vector (V→), which in the case of the TAM, ranges between 099 and 118. These results support the applicability of kinematic models of triclinic transpression to brittle-ductile shear zones and the potential utility of the proposed protocol.

  10. Review of the Senegalo-Malian shear zone system - Timing, kinematics and implications for possible Au mineralisation styles

    NASA Astrophysics Data System (ADS)

    Diene, M.; Fullgraf, T.; Diatta, F.; Gloaguen, E.; Gueye, M.; Ndiaye, P. M.

    2015-12-01

    The Kédougou Kénieba Inlier (KKI) of eastern Senegal forms a typical Paleoproterozoic greenstone belt characterised by low-metamorphic sequences of volcanic rocks and volcano-sediments that have been intruded at various stages by gabbroic suites and calc-alkaline granitoids. The main structures of the KKI comprise two anastomosing structures about N-S trending shear belts that are distinguished into the western Main Transcurrent Zone (MTZ) and the eastern Senegalo-Malian shear zone system (SMSZ). These shear belts are taken to define the limits between the western Mako, the central Diale-Kéniebandi and the eastern Daléma-Kofi domains even though transitions exist between their characteristic deposition sequences. Remote sensing analysis of airborne geophysics and satellite data (Landsat, ENVI, SRTM) in combination with geological field mapping, structural analysis and geochronology suggests that the SMSZ represents a Birimian structure that records a main stage of deformation that could characterise the major transcurrent Eburnean tectonics (D2) dated from 2105 Ma (Feybesse et al., 2006a-e). This sinistral transpressive deformation marked by a major constraint oriented NNW-SSE, is accompanied by a NNE-SSW extension leading to the opening of dilational areas such as small pull-apart basins marked by local calk-alkaline volcanic sequences and several coeval intrusions of the Boboti Suite dated 2080 ± 0.9 Ma (Hirdes and Davis, 2002). A post-Birimian to pre-Neoproterozoic deformation post dates the transcurrent phase and is marked by regional N-S extension. Review of the existing Au-mineralisation models in combination with the spatial analysis of soil geochemical data suggest seven possible mineralisation styles that are related to the transpressional tectonics and coeval magmatism.

  11. The integrated analyses of digital field mapping techniques and traditional field methods: implications from the Burdur-Fethiye Shear Zone, SW Turkey as a case-study

    NASA Astrophysics Data System (ADS)

    Elitez, İrem; Yaltırak, Cenk; Zabcı, Cengiz; Şahin, Murat

    2015-04-01

    The precise geological mapping is one of the most important issues in geological studies. Documenting the spatial distribution of geological bodies and their contacts play a crucial role on interpreting the tectonic evolution of any region. Although the traditional field techniques are still accepted to be the most fundamental tools in construction of geological maps, we suggest that the integration of digital technologies to the classical methods significantly increases the resolution and the quality of such products. We simply follow the following steps in integration of the digital data with the traditional field observations. First, we create the digital elevation model (DEM) of the region of interest by interpolating the digital contours of 1:25000 scale topographic maps to 10 m of ground pixel resolution. The non-commercial Google Earth satellite imagery and geological maps of previous studies are draped over the interpolated DEMs in the second stage. The integration of all spatial data is done by using the market leading GIS software, ESRI ArcGIS. We make the preliminary interpretation of major structures as tectonic lineaments and stratigraphic contacts. These preliminary maps are controlled and precisely coordinated during the field studies by using mobile tablets and/or phablets with GPS receivers. The same devices are also used in measuring and recording the geologic structures of the study region. Finally, all digitally collected measurements and observations are added to the GIS database and we finalise our geological map with all available information. We applied this integrated method to map the Burdur-Fethiye Shear Zone (BFSZ) in the southwest Turkey. The BFSZ is an active sinistral 60-to-90 km-wide shear zone, which prolongs about 300 km-long between Suhut-Cay in the northeast and Köyceğiz Lake-Kalkan in the southwest on land. The numerous studies suggest contradictory models not only about the evolution but also about the fault geometry of this

  12. Synkinematic magmatism, heterogeneous deformation, and progressive strain localization in a strike-slip shear zone: The case of the right-lateral Karakorum fault

    NASA Astrophysics Data System (ADS)

    Boutonnet, Emmanuelle; Leloup, P. H.; Arnaud, N.; Paquette, J.-L.; Davis, W. J.; Hattori, K.

    2012-08-01

    New structural observations coupled with 15 U/Pb and 24 Ar/Ar new ages from the Karakorum shear zone (KSZ) constrain the timing and slip rate of the right-lateral Karakorum fault zone (KFZ), one of the great continental Asian strike-slip faults. In the Tangtse-Darbuk area, the Tangtse (SW) and Muglib (NE) mylonitic strands of the KSZ frame the less deformed Pangong Range. Inherited U/Pb ages show that granitic protoliths are mostly from the Karakorum and Ladakh batoliths, with a major Miocene melting event lasting from ≥21.5 to 13.5 Ma. Some of the Miocene granitic bodies show structural evidence for intrusion synkinematic to the KSZ. The oldest of these granitoids is 18.8 ± 0.4 Ma old, implying that deformation started prior to ˜19 Ma. Microstructural data show that right-lateral deformation pursued during cooling. Ar/Ar data show that ductile deformation stopped earlier in the Tangtse (˜11 Ma) than in the Muglib strand (˜7 Ma). Deformation ended at ˜11 Ma in the Tangtse strand while it is still active in the Muglib strand, suggesting a progressive localization of deformation. When merged with published observations along the KFZ, these data suggest that the KFZ nucleated in the North Ayilari range at least ˜22 Ma ago. The long-term fault rate is 0.84 to 1.3 cm/yr, considering a total offset of 200 to 240 km. The KSZ collected magma produced within the shear zone and/or deeper in crust for which the producing mechanism stays unclear but was not the lower crustal channel flow.

  13. Entrainment-Zone Restratification and Flow Structures in Stratified Shear Turbulence

    NASA Technical Reports Server (NTRS)

    Reif, B. Anders Pettersson; Werne, Joseph; Andreassen, Oyvind; Meyer, Christian; Davis-Mansour, Melissa

    2002-01-01

    Late-time dynamics and morphology of a stratified turbulent shear layer are examined using 1) Reynolds-stress and heat-flux budgets, 2) the single-point structure tensors introduced by Kassinos et al. (2001), and 3) flow visualization via 3D volume rendering. Flux reversal is observed during restratification in the edges of the turbulent layer. We present a first attempt to quantify the turbulence-mean-flow interaction and to characterize the predominant flow structures. Future work will extend this analysis to earlier times and different values of the Reynolds and Richardson numbers.

  14. Geology of Precambrian rocks and isotope geochemistry of shear zones in the Big Narrows area, northern Front Range, Colorado

    USGS Publications Warehouse

    Abbott, Jeffrey T.

    1970-01-01

    Rocks within the Big Narrows and Poudre Park quadrangles located in the northern Front Range of Colorado are Precambrian metasedimentary and metaigneous schists and gneisses and plutonic igneous rocks. These are locally mantled by extensive late Tertiary and Quaternary fluvial gravels. The southern boundary of the Log Cabin batholith lies within the area studied. A detailed chronology of polyphase deformation, metamorphism and plutonism has been established. Early isoclinal folding (F1) was followed by a major period of plastic deformation (F2), sillimanite-microcline grade regional metamorphism, migmatization and synkinematic Boulder Creek granodiorite plutonism (1.7 b.y.). Macroscopic doubly plunging antiformal and synformal structures were developed. P-T conditions at the peak of metamorphism were probably about 670?C and 4.5 Kb. Water pressures may locally have differed from load pressures. The 1.4 b.y. Silver Plume granite plutonism was post kinematic and on the basis of petrographic and field criteria can be divided into three facies. Emplacement was by forcible injection and assimilation. Microscopic and mesoscopic folds which postdate the formation of the characteristic mineral phases during the 1.7 b.y. metamorphism are correlated with the emplacement of the Silver Plume Log Cabin batholith. Extensive retrograde metamorphism was associated with this event. A major period of mylonitization postdates Silver Plume plutonism and produced large E-W and NE trending shear zones. A detailed study of the Rb/Sr isotope geochemistry of the layered mylonites demonstrated that the mylonitization and associated re- crystallization homogenized the Rb87/Sr 86 ratios. Whole-rock dating techniques applied to the layered mylonites indicate a probable age of 1.2 b.y. Petrographic studies suggest that the mylonitization-recrystallization process produced hornfels facies assemblages in the adjacent metasediments. Minor Laramide faulting, mineralization and igneous activity

  15. Brittle grain size reduction of feldspar, phase mixing and strain localization in granitoids at mid-crustal conditions (Pernambuco shear zone, NE Brazil)

    NASA Astrophysics Data System (ADS)

    Viegas, Gustavo; Menegon, Luca; Archanjo, Carlos

    2016-04-01

    The Pernambuco shear zone (northeastern Brazil) is a large-scale strike-slip fault that, in its eastern segment, deforms granitoids at mid-crustal conditions. Initially coarse (> 50 μm) grained feldspar porphyroclasts are intensively fractured and reduced to an ultrafine-grained mixture consisting of plagioclase and K-feldspar grains (< 15 μm in size) localized in C' shear bands. Detailed microstructural observations and EBSD analysis do not show evidence of intracrystalline plasticity in feldspar porphyroclasts and/or fluid-assisted replacement reactions. Quartz occurs either as thick (˜ 1-2 mm) monomineralic bands or as thin ribbons dispersed in the feldspathic mixture. The microstructure and c-axis crystallographic preferred orientation are similar in the thick monomineralic band and in the thin ribbons, and suggest dominant subgrain rotation recrystallization and activity of prism and rhomb slip systems. However, the grain size in monophase recrystallized domains decreases when moving from the monomineralic veins to the thin ribbons embedded in the feldspathic C' bands (14 μm vs 5 μm, respectively).The fine-grained feldspar mixture has a weak crystallographic preferred orientation interpreted as the result of oriented growth during diffusion creep, as well as the same composition as the fractured porphyroclasts, suggesting that it generated by mechanical fragmentation of rigid porphyroclasts with a negligible role of chemical disequilibrium. Assuming that the C' shear bands deformed under constant stress conditions, the polyphase feldspathic aggregate would have deformed at a strain rate one order of magnitude faster than the monophase quartz ribbons. Overall, our dataset indicates that feldspar underwent a brittle-viscous transition while quartz was deforming via crystalline plasticity. The resulting rock microstructure consists of a two-phase rheological mixture (fine-grained feldspars and recrystallized quartz) in which the feldspathic material

  16. Presynaptic Active Zone Density during Development and Synaptic Plasticity.

    PubMed

    Clarke, Gwenaëlle L; Chen, Jie; Nishimune, Hiroshi

    2012-01-01

    Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated.

  17. Application of strain analysis to estimate pressure solution processes in regional shear zones

    NASA Astrophysics Data System (ADS)

    Voytenko, V. N.; Khlebalin, I. Yu.; Senotrusov, V. A.

    2016-01-01

    This paper considers the basic principles of the strain analysis method based on the analysis of antitaxial regeneration fibrous fringes around linear rigid inclusions in a low-viscosity rock matrix. This method has been developed for pressure shadows composed of fibrous minerals, whose orientation is controlled by the major elongation direction rather than the orientation of rigid inclusions. This approach is applicable only for rocks exposed to uniform coaxial straining. The strain ellipse is calculated in two ways: for three variably oriented strain markers, it is calculated using Mohr's circles, and for numerous strain markers by average body ellipse. The strain ellipsoid is calculated using the parameters of a few strain ellipses calculated with three and more non-parallel planes. This paper provides the data on the method testing in reference sites of Dora-Pil' ore field in the Upper Indigirka district and Vangash area in the Yenisei Range. Regeneration fibrous fringes around fragments of fern fossils and linear rutile metacrystals were used as markers. The results of strain analysis obtained for the reference sites in the Upper Indigirka district made it possible to describe the signs of variable strain stages of developing strike-slip zones making up the Adycha-Taryn Fault Zone. Sublatitudinal ore-bearing strike-slip zones are characterized by a subvertical orientation of the elongation axes X of elongated strain ellipsoids, which are subperpendicular to quartz-carbonate veins and slope kink zones. NW-trending strike-slip zones are characterized by subhorizontal orientation of the Z shortening axes of flattened strain ellipsoids, which are subparallel to the normals of quartz-carbonate veins and veinlets. The results of strain analysis obtained for reference sites in the Vangash area made it possible to describe the thrust strain environment following the metamorphism stage and to reveal specific features in the formation of the strain textures of ore

  18. Correlation of fingertip shear force direction with somatosensory cortical activity in monkey.

    PubMed

    Fortier-Poisson, Pascal; Langlais, Jean-Sébastien; Smith, Allan M

    2016-01-01

    To examine the activity of somatosensory cortex (S1) neurons to self-generated shear forces on the index and thumb, two monkeys were trained to grasp a stationary metal tab with a key grip and exert forces without the fingers slipping in one of four orthogonal directions for 1 s. A majority (∼85%) of slowly adapting and rapidly adapting (RA) S1 neurons had activity modulated with shear force direction. The cells were recorded mainly in areas 1 and 2 of the S1, although some area 3b neurons also responded to shear direction or magnitude. The preferred shear vectors were distributed in every direction, with tuning arcs varying from 50° to 170°. Some RA neurons sensitive to dynamic shear force direction also responded to static shear force but within a narrower range, suggesting that the direction of the shear force may influence the adaptation rate. Other neurons were modulated with shear forces in diametrically opposite directions. The directional sensitivity of S1 cortical neurons is consistent with recordings from cutaneous afferents showing that shear direction, even without slip, is a powerful stimulus to S1 neurons. PMID:26467520

  19. Shear Wave Splitting Intensity of the Maule, Chile Rupture Zone: Results from Teleseismic and Local Aftershock Datasets

    NASA Astrophysics Data System (ADS)

    Torpey, M. E.; Russo, R. M.; Chevrot, S.

    2015-12-01

    We calculated the shear wave splitting intensity (SI) of the Maule, Chile rupture zone (32°S-39°S) to constrain the seismic anisotropy of the region. Our data are from 80 of the temporary seismometers deployed as part of the IMAD (International Maule Aftershock Deployment) geophysical networks to capture the aftershocks of the Mw 8.8 megathrust event in 2010. We implemented the multichannel analysis method of Chevrot (2000) to measure the SI of 64 teleseismic SKS phases in addition to the fast orientations ϕ and splitting delays δt measured with the method of Silver & Chan (1991). To measure the SI of local aftershocks, we modified the method to allow for use of the upgoing S phase from local events in and above the Nazca slab after correcting for the initial event polarization. We compared our results with other measurement methods (Silver and Chan 1991, Wolfe and Silver 1998) that solve for splitting parameters to examine the robustness of the shear wave splitting intensity method, particularly for local datasets. The results we obtained using the splitting intensity method for the teleseismic data show an overall fast direction that is parallel to the absolute plate motion of the Nazca plate that is subducting beneath the South American plate. These results are consistent with the results we calculated using the Wolfe and Silver method. SI deriving from S waves that originate in the Nazca slab or deeper SA lithosphere are likely to reveal patterns of crustal fabric, and hence differ from the SI of the teleseismic shear waves.

  20. Clast Rotation and the Origin of Thick Ultramylonites: the El Pichao Shear Zone (Sierra de Quilmes), NW Argentina

    NASA Astrophysics Data System (ADS)

    Hunter, N. J.; Hasalova, P.; Weinberg, R. F.; Finch, M.

    2012-12-01

    The El Pichao shear zone in the Sierra de Quilmes, NW Argentina is a 3-7km thick, ductile shear zone between high grade migmatites and low grade metamorphic sequences of an exhumed basement. In the low grade metasediments deformation fabrics vary from protomylonite via mylonite to ultramylonite. These two sequences are separated by a granitic intrusion and intensely intruded by pegmatite dykes. The shear zone overprints all three main rock sequences. The ultramylonite fabrics can reach extreme thicknesses of 1km, which has been seldom observed elsewhere. Thus, the El Pichao Shear Zone provides a unique opportunity to understand differences in strain accommodation at the mylonite-ultramylonite transition, and the nature of thick ultramlyonite sequences. The mylonite sequences contain an anisotropic matrix comprising Bt + Qtz + Ms + Plg + Kfs, with coarse Qtz ribbons, mica bands and feldspar porphyroclasts up to 5 cm in diameter. Qtz ribbons have undergone grain boundary migration recrystallization and have been folded around feldspar clasts. Feldspar clasts have been variably rotated, demonstrated by the orientation of dynamically recrystallized material around the clasts. Three types of deformation behaviour occur simultaneously amongst the feldspar clasts: (i) brittle fracturing, (ii) partial recrystallization, (iii) complete recrystallization. The ultramylonite sequences contain a fine-grained equigranular matrix of Qtz + Ms + Bt + Plg + Kfs with feldspar porphyroclasts. Rotation-induced strain accommodation is demonstrated by the presence of δ-style porphyroclasts and the orientation of micas around clast boundaries. Qtz ribbons or strong S-C fabrics are lacking and the matrix tends to be homogeneous with only weak foliation defined by the preferred orientation of micas. The bulk connectivity of phases in the matrix decreases toward ultramylonite, which suggests a homogenization of the matrix between mylonite and ultramylonite. Quartz c-axis data demonstrates a

  1. Representation and Management of the Knowledge of Brittle Deformation in Shear Zones Using Microstructural Data From the SAFOD Core Samples

    NASA Astrophysics Data System (ADS)

    Babaie, H. A.; Broda, C. M.; Kumar, A.; Hadizadeh, J.

    2010-12-01

    Web access to data that represent knowledge acquired by investigators studying the microstructures in the core samples of the SAFOD (San Andreas Observatory at Depth) project can help scientists efficiently integrate and share knowledge, query the data, and update the knowledge base on the Web. To achieve this, we have used OWL (Web Ontology Language) to build the brittle deformation ontology for the microstructures observed in the SAFOD core samples, by explicitly formalizing the knowledge about deformational processes, geological objects undergoing deformation, and the underlying mechanical and environmental conditions in brittle shear zones. The developed Web-based ‘SAFOD Brittle Microstructure and Mechanics Knowledge base’ (SAFOD BM2KB), which instantiates this ontology and is available at http://codd.cs.gsu.edu:9999/safod/index.jsp, will host and serve data that pertains to spatial objects, such as microstructure, gouge, fault, and SEM image, acquired by the SAFOD investigators through the studies of the SAFOD core samples. Deformation in shear zones involves complex brittle and ductile processes that alter, create, and/or destroy a wide variety of one- to three-dimensional, multi-scale spatial entities such as rocks and their constituent minerals and structure. These processes occur through a series of sub-processes that happen in different time intervals, and affect the spatial objects at granular to regional scales within shear zones. The processes bring about qualitative change to the spatial entities over time intervals that start and end with events. Processes, such as mylonitization and cataclastic flow, change the spatial location, distribution, dimension, size, shape, and orientation of some objects through translation, rotation and strain. These processes may also result in newly formed entities, such as a new mineral, gouge, vein, or fault, during one or more phases of deformation. Deformation processes may also destroy entities, such as a

  2. Fluid-assisted zircon and monazite growth within a shear zone: a case study from Finnmark, Arctic Norway

    NASA Astrophysics Data System (ADS)

    Kirkland, Christopher L.; Whitehouse, Martin J.; Slagstad, Trond

    2009-11-01

    The U-Pb ages, REE content, and oxygen isotopic composition of zircon rims developed within a major shear zone in the Kalak Nappe Complex (KNC), Arctic Norway have been determined along with the age of monazite crystals. Different generations of granitic veins have been distinguished based on both field criteria and monazite ages of 446 ± 3 and 424 ± 3 Ma. Within each of these veins, inherited zircon cores are mantled by homogeneous low CL-response zircon rims which yield a range of concordant U-Pb dates of ca. 470-360 Ma. Significant numbers of zircon rims coincide with the timing of monazite crystallization. The zircon rims have moderate light REE enrichment compared to cores, distinctive (Sm/La) n values of less than 12, and La between 0.3 and 10 ppm. This indicates free elemental exchange between newly formed zircon rims and the surrounding matrix. The rims have calculated accumulated alpha-radiation dosages corresponding with a crystalline structure and δ18O values of 1‰. This implies rim crystallization directly from a zirconium-saturated hydrothermal fluid which was modified by some silicate melt. Growth of the zircon rims was prolonged and locally variable due to preferential fluid flow. A third type of zircon can be recognized, forming both rims and cores, with high alpha-radiation doses, and significant enrichment in La, Pr, and Eu. These are interpreted as low-temperature hydrothermally altered metamict zircons. The high volatile input and partial melting in the shear zone favoured prolonged zircon rim growth due to its ability to easily nucleate on inherited seeds. On the other hand, monazite, susceptible to dissolution and re-growth, crystallized in brief episodes, as has been predicted from theoretical phase diagrams. From a regional perspective, these results elucidate cryptic Ar-Ar cooling ages, providing the first record of a Late Ordovician heating and cooling phase within the KNC prior to the climactic Scandian collision.

  3. Relationships between deformation and magmatism in the Pan-African Kandi Shear Zone: Microstructural and AMS studies of Ediacaran granitoid intrusions in central Bénin (West Africa)

    NASA Astrophysics Data System (ADS)

    Adissin Glodji, L.; Bascou, J.; Yessoufou, S.; Ménot, R.-P.; Villaros, A.

    2014-09-01

    Relationships between the metamorphic basement, granitic intrusions and the Kandi Shear Zone (KSZ) in central Bénin have been investigated using petrological and structural approaches, in order to better understand the space and time parameters of the Pan-African shear deformation and the Ediacaran magmatism. In central Bénin, metamorphic rocks from the KSZ display a steep to vertical N-S trending foliation, a sub-horizontal mineral lineation together with kinematic indicators in agreement with a dextral transcurrent mega-shear zone. Four granitic intrusions (Dassa, Tré, Gobada and Tchetti) show many petrological similarities. They are biotite ± amphibole - ilmenite ± magnetite monzogranites with ferrous and metaluminous I-type features derived from high-K calk-alkaline magma. A fifth intrusion (Fita) is an alkali-feldspar, biotite, magnetite and ilmenite bearing granite crystallized from an alkaline magma. Moreover, high K2O, Zr, Y, Nb and low CaO, MgO and Al2O3 contents together with high (FeOt/MgO) and low LIL/HFS elements ratios suggesting an A-type granite affinity. Microstructural and AMS investigations presented in this paper show (i) solid-state deformation evidence for Dassa pluton and (ii) a magmatic deformation for the Tré, Tchetti, Gobada and Fita granitoids. Foliation in Dassa is parallel to the mesoscopic planar mylonitic foliation of the metamorphic basement. In the Tré, Tchetti, Gobada and Fita granitoids, magmatic textures and magnetic fabrics are coherent with the KSZ activity. These data suggest (i) a syn-kinematic nature for most of the intrusions (Tré, Gobada, Tchetti and Fita), except Dassa which correspond to an earlier event (ii) the succession of high-K calk-alkaline (Dassa, Tré, Gobada, Tchetti) evolves toward alkaline magmas (Fita) during the KSZ strike-slip tectonics. These observations highlight the changing nature of magma composition, magmatic processes and the different sources during KSZ activity in the Bénin Nigerian

  4. Structures, kinematic analysis, rheological parameters and temperature-pressure estimate of the Mesozoic Xingcheng-Taili ductile shear zone in the North China Craton

    NASA Astrophysics Data System (ADS)

    Liang, Chenyue; Liu, Yongjiang; Neubauer, Franz; Bernroider, Manfred; Jin, Wei; Li, Weimin; Zeng, Zuoxun; Wen, Quanbo; Zhao, Yingli

    2015-09-01

    The NE to ENE trending Mesozoic Xingcheng-Taili ductile shear zone of the northeastern North China Craton was shaped by three phases of deformation. Deformation phase D1 is characterized by a steep, generally E-W striking gneissosity. It was then overprinted by deformation phase D2 with NE-sinistral shear with K-feldspar porphyroclasts forming a subhorizontal low-angle stretching lineation on a steep foliation. During deformation phase D3, lateral motion accommodated by ENE sinistral strike-slip shear zones dominated. Associated fabrics developed at upper greenschist metamorphic facies conditions and show the deformation characteristics of middle- to shallow crustal levels. In some parts, the older structures have been in turn overprinted by late-stage sinistral D3 shearing. Finite strain and kinematic vorticity in all deformed granitic rocks indicate a prolate ellipsoid (L-S tectonites) near plane strain. Simple shear-dominated general shear during D3 deformation is probably of general significance. The quartz c-axis textures indicate prism-gliding with a dominant rhomb slip and basal slip system formed mainly at low-middle temperatures. Mineral deformation behavior, quartz c-axis textures, quartz grain size and the Kruhl thermometer demonstrate that the ductile shear zone developed under greenschist facies metamorphic conditions at deformation temperatures ranging from 400 to 500 °C. Dislocation creep is the main deformation mechanism at a shallow crustal level. Fractal analysis showed that the boundaries of recrystallized quartz grains had statistically self-similarities. Differential stresses deduced from dynamically recrystallized quartz grain size are at around 20-39 MPa, and strain rates in the order of 10-12 to 10-14 s-1. This indicates deformation of granitic rocks in the Xingcheng-Taili ductile shear zone at low strain rates, which is consistent with most other ductile shear zones. Hornblende-plagioclase thermometer and white mica barometer

  5. Thermal structure of a major crustal shear zone, the basal thrust in the Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Fauconnier, J.; Labrousse, L.; Andersen, T. B.; Beyssac, O.; Duprat-Oualid, S.; Yamato, P.

    2014-01-01

    Crustal-scale thrust zones accommodate most of the horizontal shortening at the front of orogenic wedges. Their thermal state is a key feature of collision zones, depending on critical parameters such as thrust rate or initial thermal properties of involved lithosphere units. We present here the first direct imaging of the thermal envelope of such a thrust zone: the Jotun Basal Thrust (JBT) in the Scandinavian Caledonides, through Raman Spectroscopy of Carbonaceous Material in the alum shales, an organic carbon-rich unit of Cambro-Ordovician age along which the basal decollement of the JBT developed. Maximum temperature mapping within this unit shows isotherms grading from ∼320 °C in the south-east to ∼500 °C in the north-west in the trailing end of the nappe stack. Based on bt + chl + grt + ph equilibrium, we estimate that the trailing end reached a temperature of 500 °C at 1.2±0.1 GPa pressure. 2-D thermo-kinematic modelling constrained with these new natural data and timing considerations for the Scandian collision indicates that (1) peak temperature mainly reflects maximum burial stage, (2) thrust rate and dip angle must have been low for the JBT and (3) the Scandinavian Caledonides represent a relatively cold orogenic wedge compared to other orogens.

  6. The Sundance fault: A newly recognized shear zone at Yucca Mountain, Nevada

    SciTech Connect

    Spengler, R.W.; Braun, C.A.; Martin, L.G.; Weisenberg, C.W.

    1994-12-31

    Ongoing detailed mapping at a scale of 1:240 of structural features within the potential repository area indicates the presence of several previously unrecognized structural features. Minor north-trending west-side-down faults occur east and west of the Ghost Dance fault and suggest a total width of the Ghost Dance fault system of nearly 366 m (1200 ft). A zone of near-vertical N30{degrees}-40{degrees} W-trending faults, at least 274 m (900 ft) wide, has been identified in the northern part of our study area and may traverse across the potential repository area. On the basis of a preliminary analysis of available data, we propose to name this zone the {open_quotes}Sundance fault system{close_quotes} and the dominant structure, occurring near the middle of the zone, the {open_quotes}Sundance fault{close_quotes}. Some field relations suggest left-stepping deflections of north-trending faults along a pre-existing northwest-trending structural fabric. Other field observations suggest that the {open_quotes}Sundance fault system{close_quotes} offsets the Ghost Dance fault system in an apparent right lateral sense by at least 52 m (170 ft). Additional detailed field studies are needed to better understand structural complexities at Yucca Mountain.

  7. The Sundance fault: A newly recognized shear zone at Yucca Mountain, Nevada

    SciTech Connect

    Spengler, R.W.; Braun, C.A.; Martin, L.G.; Weisenberg, C.W.

    1994-04-01

    Ongoing detailed mapping at a scale of 1:240 of structural features within the potential repository area indicates the presence of several previously unrecognized structural features. Minor north-trending west-side-down faults occur east and west of the Ghost Dance fault and suggest a total width of the Ghost Dance fault system of nearly 366 m (1200 ft). A zone of near-vertical N30{degrees} {minus} 40{degrees}W {minus} trending faults, at least 274 m (900 ft) wide, has been identified in the northern part of our study area and may traverse across the proposed repository area. On the basis of a preliminary analysis of available data, we propose to name this zone the ``Sundance fault system`` and the dominant structure, occurring near the middle of the zone, the ``Sundance fault.`` Some field relations suggest left-stepping deflections of north-trending faults along a preexisting northwest-trending structural fabric. Other field observations suggest that the ``Sundance fault system`` offsets the Ghost Dance fault system in an apparent right lateral sense by at least 52 m (170 ft). Additional detailed field studies, however, are needed to better understand structural complexities at Yucca Mountain.

  8. Evaluation of magnetic shear in off-disk center active regions

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, P.; Hagyard, M. J.; Hathaway, D. H.

    1989-01-01

    The changes that projection effects produce in the evaluation of magnetic shear in off-disk center active regions by comparing angular shear calculated in image plane and heliographic coordinates are analyzed, and the procedure for properly evaluating magnetic shear by transforming the observed vector magnetic field into the heliographic system is described. This procedure is then used to evaluate magnetic shear along the magnetic neutral line in an active region that was observed on April 24, 1984 at a longitude offset of -45 deg. In particular, the number of 'critically sheared' pixels along an east-west directed segment of the neutral line in the leader sunspot group changes from 16 in the image plane magnetogram to 14 in the heliographic magnetogram. The critical shear as calculated in the image plane served as a good predictor for the location of flaring activity since the flare ribbons of the great flare of April 24 bracketed the inversion line where the critical shear was located. These results indicate that for this particular region, projection effects did not significantly affect the evaluation of critical shear.

  9. Multi-surface Earthquake Rupture Recorded in Pseudotachylyte Vein Geometries, Norumbega Shear Zone, southern Maine

    NASA Astrophysics Data System (ADS)

    Ross, C.; Rowe, C. D.; Pollock, S. G.; Swanson, M.; Tarling, M.; Backeberg, N. R.; Coulson, S.; Barshi, N.; Bate, C.; Dascher-Cousineau, K.; Scibek, J.; Harrichhausen, N.; Timofeev, A.; Rakoczy, P.; Nisbet, H.; Castro, A.; Smith, H.

    2015-12-01

    Earthquake rupture surfaces are typically treated as single rupture planes. However, the observation of four linked, non-parallel to sub-parallel slip surfaces on a mining induced earthquake in 2004 shows that rupture geometries may be more complicated (Heesakkers et al., 2011). Multiple pseudotachylyte-bearing fault surfaces are exposed within a 1.1 km wide mylonite zone of the Paleozoic Norumbega fault system. The pseudotachylytes are present in two juxtaposed mylonite zones: the Ray Corner mylonite and a mylonite derived from Scarboro Formation metavolcanics. The Ray Corner mylonite crosscuts pelitic schists of the Cape Elizabeth Formation, at upper greenschist-facies conditions (quartz + feldspar + chlorite + muscovite ± titanite ± pyrite). The pseudotachylyte veins formed late in the deformational history, during a period of predominantly brittle dextral offset. The pseudotachylytes are cryptocrystalline and have rounded porphyroclasts of quartz and feldspar. Microstructural observations show evidence for static and dynamic recrystallization overprinting the primary quench textures, suggesting that previous generations of rupture surfaces have been recycled into the mylonitic fabric (Price et al., 2012). Many of the pseudotachylyte veins have a sharp boundary on one side and are poorly defined on the other, providing insight to the propagation direction. This confirms that the paleo-earthquake ruptures occurred at conditions where quartz and feldspar were able to deform plastically, near the base of the seismogenic zone. Using differential GPS, we mapped the geometry of pseudotachylyte fault veins, injection veins, and slip surface intersections. At Ray Corner, there are 7 layer-parallel pseudotachylytes in a 4 m wide zone with linking and subsequent oblique pseudotachylytes. Some intersections between pseudotachylytes are dilational, depending on the intersection angle and relative displacement on the two faults. At these sites, pseudotachylyte melt sourced

  10. Shear stress reduces protease activated receptor-1 expression in human endothelial cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.

  11. On the geometric relationship between deformation microstructures in zircon and the kinematic framework of the shear zone

    NASA Astrophysics Data System (ADS)

    Kovaleva, Elizaveta; Klötzli, Urs; Habler, Gerlinde

    2016-10-01

    We present novel microstructural analyses of zircon from a variety of strained rocks. For the first time, multiple plastically deformed zircon crystals were analyzed in a kinematic context of the respective host shear zones. Our aim was to derive how the orientation of zircon grains in a shear zone affects their deformation, based on careful in situ observations. For sampling, we selected zircon-bearing rocks that were deformed by simple shear. Samples covered a range of P-T conditions and lithologies, including various meta-igneous and meta-sedimentary gneisses. Microstructural analyses of zircon crystals in situ with scanning electron backscatter diffraction mapping show strong geometrical relationships between orientations of: (i) the long axes of plastically deformed zircon crystals, (ii) the crystallographic orientation of misorientation axes in plastically deformed zircon crystals and (iii) the foliation and lineation directions of the respective samples. We assume that zircon crystals did not experience post-deformation rigid body rotation, and thus the true geometric link can be observed. The relationships are the following: (a) plastically deformed zircon crystals usually have long axes parallel to the mylonitic foliation plane; (b) crystals with < c > axes oriented at an angle > 15° to the foliation plane are undeformed or fractured. Zircon crystals that have < c > axes aligned parallel or normal to the stretching lineation within the foliation plane develop misorientation and rotation axes parallel to the [001] crystallographic direction. Zircon grains with the < c > axis aligned at 30-60° to the lineation within the foliation plane often develop either two low Miller indices misorientation axes or one high Miller indices misorientation axis. Host phases have a significant influence on deformation mechanisms. In a relatively soft matrix, zircon is more likely to develop low Miller indices misorientation axes than in a relatively strong matrix. These

  12. P-T-t-d History of the Greater Himalaya Sequence metapelites in the Zanskar Shear Zone, NW India

    NASA Astrophysics Data System (ADS)

    Beck, E.; Leech, M. L.; Basta, S.

    2013-12-01

    Greater Himalaya Sequence (GHS) metapelites deformed in the Zanskar Shear Zone (ZSZ) record geochemical and structural evidence of a complex history. This study applies a multi-component approach to understanding the metamorphic and deformational evolution of the high-grade metapelites in western Himalaya. Samples collected from NE to SW from the ZSZ, along Malung Takpo, record increasing metamorphic grade and decreasing mylonitization with increased distance from the shear zone. Microscopic evidence for variable degrees of deformation includes: change in crystal size, foliation development, pressure shadows, and kink bands. The dominant mineralogy is Qz+Kfs+Pl+Bt+Ms+Grt+Ky×Sil×St+opaques. Advanced isochemical phase diagrams (pseudosections) are calculated in Perple_X using whole-rock geochemical (XRF) data for six samples. The pseudosection conditions range 3-15 kbar and 300-800°C and use the solution models Bio(TCC), Chl(HP), St(HP), hCrd, feldspar, Mica(CHA), and Gt(HP) with modifications made to increase the models' accuracy. The generated phase equilibria diagrams, in conjunction with observed mineral growth relationships, are used to determine the P-T paths and illustrate peak and retrograde metamorphic events. Three dating techniques [U-Pb, 40Ar/39Ar, and (U-Th)/He] are incorporated to constrain timing along the P-T paths. U-Pb SHRIMP dating of monazite constrains the timing of regional metamorphism to ~27 Ma. 40Ar/39Ar dating of muscovite and biotite yields ages of ~20-19 Ma and 15 Ma, respectively, for cooling and exhumation through the middle crust. Dates acquired from (U-Th)/He analyses of monazite and zircon will indicate the timing of the end of movement along the ZSZ. Electron backscatter diffraction (EBSD) maps crystallographic orientation of minerals and is used to determine their responses to deformation. Crystallographic responses in quartz and feldspar are used to constrain the conditions during deformation. This will be supplemented by

  13. Activation and shedding of platelet glycoprotein IIb/IIIa under non-physiological shear stress.

    PubMed

    Chen, Zengsheng; Mondal, Nandan K; Ding, Jun; Koenig, Steven C; Slaughter, Mark S; Griffith, Bartley P; Wu, Zhongjun J

    2015-11-01

    The purpose of this study was to investigate the influence of non-physiological high shear stress on activation and shedding of platelet GP IIb/IIIa receptors. The healthy donor blood was exposed to three levels of high shear stresses (25, 75, 125 Pa) from the physiological to non-physiological status with three short exposure time (0.05, 0.5, 1.5 s), created by a specific blood shearing system. The activation and shedding of the platelet GPIIb/IIIa were analyzed using flow cytometry and enzyme-linked immunosorbent assay. In addition, platelet P-selectin expression of sheared blood, which is a marker for activated platelets, was also analyzed. The results from the present study showed that the number of activated platelets, as indicated by the surface GPIIb/IIIa activation and P-selectin expression, increased with increasing the shear stress level and exposure time. However, the mean fluorescence of GPIIb/IIIa on the platelet surface, decreased with increasing the shear stress level and exposure time. The reduction of GPIIb/IIIa on the platelet surface was further proved by the reduction of further activated platelet GPIIb/IIIa surface expression induced by ADP and the increase in GPIIb/IIIa concentration in microparticle-free plasma with increasing the applied shear stress and exposure time. It is clear that non-physiological shear stress induce a paradoxical phenomenon, in which both activation and shedding of the GPIIb/IIIa on the platelet surface occur simultaneously. This study may offer a new perspective to explain the reason of both increased thrombosis and bleeding events in patients implanted with high shear blood-contacting medical devices. PMID:26160282

  14. Regeneration of the active zone at the frog neuromuscular junction

    PubMed Central

    1984-01-01

    The active zone is a unique specialization of the presynaptic membrane and is believed to be the site of transmitter release. The formation of the active zone and the relationship of this process to transmitter release were studied at reinnervated neuromuscular junctions in the frog. At different times after a nerve crush, the cutaneous pectoris muscles were examined with intracellular recording recording and freeze- fracture electron microscopy. The P face of a normal active zone typically consists of two double rows of particles lined up in a continuous segment located opposite a junctional fold. In the initial stage of reinnervation, clusters of large intramembrane particles surrounding membrane elevations appeared on the P face of nerve terminals. Like normal active zones, these clusters were aligned with junctional folds. Vesicle openings, which indicate transmitter release, were seen at these primitive active zones, even though intramembrane particles were not yet organized into the normal pattern of two double rows. The length of active zones at this stage was only approximately 15% of normal. During the secondary stage, every junction was reinnervated and most active zones had begun to organize into the normal pattern with normal orientation. Unlike normal, there were often two or more discontinuous short segments of active zone aligned with the same junctional fold. The total length of active zone per junctional fold increased to one-third of normal, mainly because of the greater number of segments. In the third stage, the number of active zone segments per junctional fold showed almost no change when compared with the secondary stage. However, individual segments elongated and increased the total length of all active zone segments per junctional fold to about two-thirds of the normal length. The dynamic process culminated in the final stage, during which elongating active zones appeared to join together and the number of active zone segments per

  15. Microstructural evolution and rheology of quartz in a mid-crustal shear zone

    NASA Astrophysics Data System (ADS)

    Rahl, Jeffrey M.; Skemer, Philip

    2016-06-01

    We present microstructural and crystallographic preferred orientation (CPO) data on quartz deformed in the middle crust to explore the interaction and feedback between dynamic recrystallization, deformation processes, and CPO evolution. The sample investigated here is a moderately deformed quartz-rich mylonite from the Blue Ridge in Virginia. We have created high-resolution crystallographic orientation maps using electron backscatter diffraction (EBSD) of 51 isolated quartz porphyroclasts with recrystallized grain fractions ranging from 10 to 100%. Recrystallized grains are internally undeformed and display crystallographic orientations dispersed around the orientation of the associated parent porphyroclast. We document a systematic decrease in fabric intensity with recrystallization, suggesting that progressive deformation of the recrystallized domains involves processes that can weaken a pre-existing CPO. Relationships between recrystallization fraction and shear strain suggest that complete microstructural re-equilibration requires strains in excess of γ = 5. Variation in the degree of recrystallization implies that strain was accumulated heterogeneously, and that a steady-state microstructure and rheology were not achieved.

  16. The influence of strain localisation on the rotation behaviour of rigid objects in experimental shear zones

    NASA Astrophysics Data System (ADS)

    ten Grotenhuis, Saskia M.; Passchier, Cees W.; Bons, Paul D.

    2002-03-01

    Mica fish and tourmaline fish from natural mylonites were analysed in thin section to determine their orientation distribution. They are oriented with their long axes tilted with respect to the mylonitic foliation, and fish with a small aspect ratio exhibit a slightly larger angle than fish with a large aspect ratio. This orientation seems to be a stable orientation for the mica and tourmaline fish. Analogue experiments with two rheologically different matrix materials were performed to explain the data. One material was PDMS, a linear viscous polymer. The other was tapioca pearls, a granular material with low cohesion and Mohr-Coulomb type behaviour. In contrast to a fairly homogeneous strain distribution in PDMS, distinct small-scale shear bands developed in tapioca pearls during deformation. Experiments modelled different vorticity numbers and parallelogram-shaped rigid objects with different aspect ratios were used. Rotation rates of objects in a viscous matrix are very similar to analytical solutions for ellipses in viscous flow, but stable orientations differ from data of natural examples. In all experiments with a Mohr-Coulomb matrix elongated objects had a stable orientation due to small-scale strain localisation. We therefore suggest that small-scale strain localisation (≤mm) that might be hidden by ongoing deformation and recrystallisation processes, is an important characteristic of the rheology of mylonites.

  17. Microstructures and crystallographic fabric evolution during melt-present and melt-absent conditions in the partially molten middle crust: the Patos shear zone (Borborema Province, NE Brazil)

    NASA Astrophysics Data System (ADS)

    Ferreira Viegas, Luís Gustavo; Archanjo, Carlos; Vauchez, Alain

    2013-04-01

    The Patos shear zone is an exposed segment of the partially molten middle crust characterized by a 600 km long, E-trending transcurrent structure that deforms the Precambrian rocks of the Borborema Province. High-temperature (HT) mylonites with low melt fractions (~ 5%) constitute most of the shear belt, while a narrow strip of highly strained mylonites to ultramylonites outlines its southern margin. Migmatites and "transitional" mylonites occur sandwiched between these tectonites. A progressive microfabric development is recorded from melt-bearing mylonites to high-strain ultramylonites. A microstructural study was carried out to understand the fabric evolution from melt-assisted to melt-absent deformation. Fabrics were investigated by optical and scanning electron microscopy (SEM), and crystallographic preferred orientations were measured by Electron Backscatter Diffraction (EBSD). Melt-bearing HT-mylonites display solid-state microstructures with coarse quartz ribbons and sutured grain boundaries. K-feldspar clasts are often fractured and show peripheral myrmekite. Towards the contact with anatexites the microfabric becomes typically magmatic with abundant interstitial quartz. Transitional mylonites, located immediately south of the migmatites, are marked by progressive grain size reduction of recrystallized felsic phases. High-strain mylonites have a fine-grained quartz-feldspar matrix with relics of quartz ribbons and fractured K-feldspar. Melt-bearing mylonites display quartz [0001] axes forming maxima mainly on Y, while quartz fabrics in the anatexite are weaker and diffuse, suggesting deformation in the magmatic state. In transitional and high-strain mylonites the measured quartz CPOs show [0001] concentrations between Z and Y. K-feldspar and plagioclase fabrics record mainly the activity of (010)[001] and (010)[100] slip systems in all rock types, with local activity of the (100)[010] slip system in the transitional mylonites. These data suggest that the

  18. Integrated Analysis of Airborne Geophysical Data to Understand the Extent, Kinematics and Tectonic Evolution of the Precambrian Aswa Shear Zone in East Africa.

    NASA Astrophysics Data System (ADS)

    Katumwehe, A. B.; Atekwana, E. A.; Abdelsalam, M. G.; Laó-Dávila, D. A.

    2014-12-01

    The Aswa Shear zone (ASZ) is a Precambrian lithospheric structure which forms the western margin of the East African Orogeny (EAO) that influenced the evolution of many tectonic events in Eastern Africa including the East African Rift System. It separates the cratonic entities of Saharan Metacraton in the northeast from the Congo craton and the Tanzanian craton and the Kibaran orogenic belt to the southwest. However little is known about its kinematics and the extent and tectonic origin are not fully understood. We developed a new technique based on the tilt method to extract kinematic information from high-resolution airborne magnetic data. We also used radiometric data over Uganda integrated with Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) in South Sudan to understand the extent, kinematics and define the tectonic origin of ASZ. (1) Our results suggest that the ASZ extends in a NW-SE for ~550 km in Uganda and South Sudan. (2) The airborne magnetic and radiometric data revealed a much wider (~50 km) deformation belt than the mapped 5-10 km of exposed surface expression of the ASZ. The deformation belt associated with the shear is defined by three NW-trending sinistral strike-slip shear zones bounding structural domains with magnetic fabrics showing splays of secondary shear zones and shear-related folds. These folds are tighter close to the discrete shear zones with their axial traces becoming sub-parallel to the shear zones. Similar fold patterns are observed from South Sudan in the SRTM DEM. We interpret these folds as due to ENE-WSW shortening associated with the sinistral strike-slip movement. (3) To the northeast of the shear zone, the magnetic patterns suggest a series of W-verging nappes indicative of strong E-W oriented shortening. Based on the above observations, we relate the evolution of the ASZ to Neoproterozoic E-W collision between East and West Gondwana. This collision produced E-W contraction resulting in W-verging thrusts

  19. Alkaline intrusion in a granulite ensemble in the eastern ghats belt, India: Shear zone pathway and a pull-apart structure

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Kar, Rajib

    2004-03-01

    The alkaline complex of Koraput, Orissa, India, is one of several bodies in the high-grade Eastern Ghats belt, but this one is an integral part of the high-grade belt and remote from the western boundary against the Bastar craton. The Koraput complex forms a lozenge-shaped intrusion into the metapelitic granulites and is bounded by shear zones. The combined effect of movement along these shear zones, is a northeasterly elongated sygmoidal cavity with maximum width along the northwesterly trending Reidel shear. Thus the Koraput alkaline complex can be considered to have been emplaced in a pull-apart structure, developed in the granulitic country rocks. Moreover, in view of the fact that the western margin of the high-grade Eastern Ghats belt bears clear evidence of collisional features, rather than that of rifting or break-up, the rift-valley model for the alkaline magmatism in this high-grade belt appears untenable.

  20. Strain transfer at continental scale from a transcurrent shear zone to a transpressional fold belt: The Patos-Seridó system, northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Corsini, Michel; Vauchez, Alain; Archanjo, Carlos; de Sá, Emanuel F. J.

    1991-06-01

    During the Brasiliano-pan-African orogeny, a complex continental-scale pattern of east-west transcurrent shear zones and northeast-trending fold belts formed in the northern and central Borborema province of northeastern Brazil. The east-west shear zones have been usually regarded as slightly younger features, but the study of the most spectacular case of intersection between these two structures, the Patos shear zone and the Seridó transpressional belt, leads to a different tectonic model. Satellite imagery and structural, petro-logical, and geophysical data support the interpretation that these structures (1) are in structural continuity and (2) formed simultaneously under amphibolite facies metamorphic conditions that led to partial melting. This suggests a model of strain transfer at the scale of the orogen: at the eastern end of the Patos east-west dextral shear zone, the strain that accommodated the relative motion of the northern block was transferred to the northeast-trending Seridó belt, where it resulted in folding, strike-slip faulting, and stretching parallel to the strike of the belt.

  1. Triclinic Transpression in brittle shear zones evaluated via combined numerical and analogue modeling: the case of The Torcal de Antequera Massif, SE Spain.

    NASA Astrophysics Data System (ADS)

    Barcos, Leticia; Díaz-Azpiroz, Manuel; Faccenna, Claudio; Balanyá, Juan Carlos; Expósito, Inmaculada; Giménez-Bonilla, Alejandro

    2013-04-01

    Numerical kinematic models have been widely used to understand the parameters controlling the generation and evolution of ductile transpression zones. However, these models are based on continuum mechanics and therefore, are not as useful to analyse deformation partitioning and strain within brittle-ductile transpression zones. The combination of numerical and analogue models will potentially provide an effective approach for a better understanding of these processes and, to a broader extent, of high strain zones in general. In the present work, we follow a combined numerical and analogue approach to analyse a brittle dextral transpressive shear zone. The Torcal de Antequera Massif (TAM) is part of a roughly E-W oriented shear zone at the NE end of the Western Gibraltar Arc (Betic Cordillera). This shear zone presents, according to their structural and kinematic features, two types of domains i) Domain type 1 is located at both TAM margins, and is characterized by strike-slip structures subparallel to the main TAM boundaries (E-W). ii) Domain type 2 corresponds to the TAM inner part, and it presents SE-vergent open folds and reverse shear zones, as well as normal faults accommodating fold axis parallel extension. Both domains have been studied separately applying a model of triclinic transpression with inclined extrusion. The kinematic parameters obtained in this study (?, ? and Wk) allows us to constrain geometrical transpression parameters. As such, the angle of oblique convergence (α, the horizontal angle between the displacement vector and the strike of the shear zone) ranges between 10-17° (simple shear dominated) for domain type 1 and between 31-35° (coaxial dominated) for domain type 2. According to the results obtained from the numerical model and in order to validate its possible utility in brittle shear zones we develop two analogue models with α values representative of both domains defined in the TAM: 15° for type 1 and 30° for type 2. In the

  2. Anisotropic shear zones revealed by backazimuthal harmonics of teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Park, J.; Levin, V.

    2016-11-01

    Backazimuth-dependent Ps conversion, observed in seismic receiver functions (RFs) is generated by acute{SV} and acute{SH} waves that help match the shear-polarized displacement of hybrid Ṕ at the interfaces of an anisotropic layer. The effect of elliptical anisotropy with a tilted or horizontal symmetry axis hat{w} on body-wave propagation in horizontal layers can be expressed in terms of the first-order hybridization of upgoing and downgoing P, SV and SH plane waves with a common horizontal slowness p. The first-order perturbations to the upgoing P wave involve hybridization of its polarization eigenvector with the addition of the shear wave polarizations acute{SV},grave{SV},acute{SH},grave{SH}. Although the hybridization of plane waves in an anisotropic layer is only one factor in the complicated reflection and transmission problem, these perturbations suggest that the influence of P anisotropy on RFs is much larger than the influence of S anisotropy. Perturbation terms for hybrid Ṕ can be grouped into functional dependencies on the tilt angle ψ of the symmetry axis hat{w} from the vertical. Terms proportional to sin2 ψ include four-lobed variation (cos 2θ, sin 2θ) with backazimuth θ, encompassing the effect of a horizontal axis of symmetry. Terms proportional to sin 2ψ have two-lobed variation (cos θ, sin θ) with backazimuth θ, encompassing the effects of a tilted symmetry axis. In the perturbation formula (33) for the hybrid Ṕ polarization, the four-lobed terms have pre-factor αp, and the two-lobed terms have pre-factor ανP, leading potentially to larger amplitude in the two-lobed pattern in Ps for the same amount of P anisotropy. For a dipping interface between two isotropic media, the out-of-plane deflections of the P-SV converted wave lead to a two-lobed pattern of P-SV and P-SH amplitudes that resembles the effects of anisotropy with a tilted axis of symmetry. The birefringence of the Moho-converted Ps phase influences the backazimuth

  3. Integrated geophysical investigations for the delineation of source and subsurface structure associated with hydro-uranium anomaly: A case study from South Purulia Shear Zone (SPSZ), India

    NASA Astrophysics Data System (ADS)

    Sharma, S. P.; Biswas, A.

    2012-12-01

    South Purulia Shear Zone (SPSZ) is an important region for prospecting of uranium mineralization. Geological studies and hydro-uranium anomaly suggest the presence of Uranium deposit around Raghunathpur village which lies about 8 km north of SPSZ. However, detailed geophysical investigations have not been carried out in this region for investigation of uranium mineralization. Since surface signature of uranium mineralization is not depicted near the location, a deeper subsurface source is expected for hydro uranium anomaly. To delineate the subsurface structure and to investigate the origin of hydro-uranium anomaly present in the area, Vertical Electrical Sounding (VES) using Schlumberger array and Gradient Resistivity Profiling (GRP) were performed at different locations along a profile perpendicular to the South Purulia Shear Zone. Apparent resistivity computed from the measured sounding data at various locations shows a continuously increasing trend. As a result, conventional apparent resistivity data is not able to detect the possible source of hydro uranium anomaly. An innovative approach is applied which depicts the apparent conductivity in the subsurface revealed a possible connection from SPSZ to Raghunathpur. On the other hand resistivity profiling data suggests a low resistive zone which is also characterized by low Self-Potential (SP) anomaly zone. Since SPSZ is characterized by the source of uranium mineralization; hydro-uranium anomaly at Raghunathpur is connected with the SPSZ. The conducting zone has been delineated from SPSZ to Raghunathpur at deeper depths which could be uranium bearing. Since the location is also characterized by a low gravity and high magnetic anomaly zone, this conducting zone is likely to be mineralized zone. Keywords: Apparent resistivity; apparent conductivity; Self Potential; Uranium mineralization; shear zone; hydro-uranium anomaly.

  4. The Vincent Fault in the San Gabriel Mtns, southern California, USA: a modified plate boundary shear zone

    NASA Astrophysics Data System (ADS)

    Xia, Haoran; Platt, John

    2015-04-01

    The Vincent Fault in southern California separates the ocean-affiliated Pelona schist of Late Cretaceous age in the footwall from a Meso-Proterozoic gneiss complex and Mesozoic granitoid rocks in the hanging wall. The Vincent fault has been regarded as the original megathrust formed during Laramide flat-slab subduction. Our new pressure, temperature and geochronologic data from the rocks in the hanging wall and the footwall indicate that the Vincent fault has undergone post-subduction modification. The Pelona schist in the San Gabriel Mtns was metamorphosed up to high-pressure greenschist facies. The peak metamorphic temperature given by laser Raman spectroscopy of carbonaceous material is 518.9 ± 19.6°C, consistent with the temperature range of 515-550°C from the quartz c-axis opening-angle thermometer. The peak pressure yielded by Si-in-muscovite barometry is 10.5 ± 1 kbar. The upper ~50 m of the Pelona schist was then mylonitized together with the lower 500-800 m of the hanging wall, which overprinted the pre-existing texture. Mylonitization produced a strong ESE-trending lineation in both rock units, with a consistent ESE sense of shear: opposite to what would be predicted by E-directed subduction. Pressure and temperature of mylonitization of the Pelona schist and the lower part of the hangingwall mylonite zone constrained by the Ti-in-quartz thermobarometer and Si-in-muscovite barometer is around ~4.7 kbar and 372 to 425°C; whereas the upper part of the mylonite zone was equilibrated at ~2.4 kbar and ~365°C. The quartz c-axis fabric opening-angle thermometer also gives a temperature range from 360 to 420°C in the entire mylonite zone. Mylonitization therefore took place during exhumation and cooling of the Pelona Schist. Fission track ages of detrital zircons from both the footwall and the hanging wall of the Vincent fault cluster around 46.7 ± 5.9 Ma, indicating that both footwall and hanging wall had cooled to ~200°C by that time. No other major

  5. Constraining Quaternary offset of the Cady fault, eastern California shear zone, southern California, with geologic mapping, luminescence dating, and geophysics

    NASA Astrophysics Data System (ADS)

    Schmidt, K. M.; Mahan, S.; Langenheim, V. E.

    2012-12-01

    We interpreted bedrock and surficial geologic mapping in conjunction with potential-field anomalies and recently acquired luminescence dates of alluvial sediment to constrain offset along the east-striking sinistral Cady fault within the Mojave block of the eastern California shear zone. Previous research, new field mapping of Quaternary deposits, and analysis of aeromagnetic data indicate that the Cady fault forms a significant structural boundary separating northwest-striking dextral faults to the south, from east-northeast-striking faults to the north. We estimated total sinistral offset of ~6 km along the Cady fault based upon reconstruction of displaced bedrock outcrops and magnetic anomalies. Assuming extensional strain in the region began ~10 Ma, as recorded by interbedded sediments and volcanics of the Ricardo Group exposed along the Garlock fault, the long-term offset rate is ~0.6 mm/yr. Assuming that onset of strain is dated by the opening of the Gulf of California to marine incursions by rifting associated with the San Andreas fault system at ~ 6 Ma, the long-term offset rate is roughly 1 mm/yr. Time-averaged sinistral offset rates through the Quaternary, estimated from field mapping of displaced alluvial deposits and from regional age constraints obtained through luminescence and radiocarbon dating techniques, decrease with older deposit age. Deposits from the late Pleistocene/Holocene transition yield rates exceeding 1 mm/yr whereas minimum rates for middle to early Pleistocene deposits may be as low as 0.02 mm/yr, assuming this time-averaged fault offset ensued immediately following deposit formation. At one Holocene-Pleistocene deposit beheaded by the Cady fault, we dated two horizons below the Bk horizon to preclude sampling of illuviated post-deposition fines. New infrared-stimulated luminescence (IRSL) dates were used to estimate numeric ages of alluvial sediment and an aggradation rate. For illustration purposes, we assumed that sediment

  6. Ti distribution in quartz across a heterogeneous shear zone within a granodiorite: the effect of deformation mechanism and strain on Ti resetting

    NASA Astrophysics Data System (ADS)

    Bestmann, Michel; Pennacchioni, Giorgio

    2015-04-01

    The study of a heterogeneous ductile shear zone developed at ca. 500 °C and 0.2 GPa during post-magmatic cooling of a granodiorite allows the effect of strain and recrystallization on Ti re-equilibration of quartz to be assessed. Understanding this effect is critical for applying Ti-in-quartz (TitaniQ) thermobarometry to mylonites. Differently strained quartz across the shear zone shows a heterogeneous distribution of Ti (measured by SIMS) with overall Ti range between 2 and 45 ppm. Quartz cathodoluminescence (CL) is proved by spectral analysis to be univocally correlated to Ti content and CL images were calibrated as Ti maps using SIMS measurements. Coarse grained weakly deformed domains consist of magmatic quartz extensively recrystallized by grain boundary migration (GBM) and mostly (65-75% area) contain 20-38 ppm Ti. Ti resetting to lower amounts occurred locally: (i) in haloes surrounding titanite and biotite inclusions (Ti as low as 6 ppm); (ii) along grain boundaries and healed microfractures; and (iii) towards the quartz domain boundary. With increasing strain quartz underwent progressive grainsize reduction and developed a bimodal microstructure with elongate grains (>100's µm long) surrounded by mantles of new grains (10-30 µm in size) recrystallized by subgrain rotation (SR). Dynamic recrystallization by SGR, associated with prism slip, became increasingly important over GBM as strain increased towards the shear zone core. Relevant resetting of Ti in quartz only occurred in high strain domains (shear strain gamma ≥ 10) in the shear zone core where fine recrystallization amounts at 50-60% area and coarser cores are strongly substructured. These domains are not compositionally homogeneous and still show a range of Ti content between 2 and 10 ppm. In all strain facies of the shear zone quartz-filled pressure shadows associated with feldspar show an almost constant Ti of ~ 2ppm. Therefore the pristine Ti content of the magmatic quartz mylonitized in

  7. The Fluid Evolution of a Ductile-To Dextral Shear Zone in the Central Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Holk, G. J.; Lojasiewicz, I.; Hartman, S. M.; Compton, K.; Paterson, S. R.; Kirkpatrick, J. D.

    2015-12-01

    The application of stable isotopes in conjunction with detailed mapping of the dextral Steelhead Lake shear zone (SLSZ) in the central Sierra Nevada reveals a complex fluid history as the system transitioned from ductile-to-brittle behavior at shallow crustal depth in response to cooling of the adjacent Tuolumne Batholith (TB) at ~85 Ma. This system has a multi-stage alteration history that includes: (1) ductiley deformed tourmaline-bearing leucogranite dikes, (2) ductile-to-brittle quartz+tourmaline veins, (3) brittle calc-silicate-rich leach zones, and (4) 1-10-m-thick quartz veins with crack-seal textures. High and variable quartz δ18O values (> +13‰) from metasedimentary rocks belonging to the Saddlebag pendant outside the SLSZ indicate metamorphic fluids at low water/rock ratio. Leucogranite dikes associated with the TB have δ18O (plagioclase = +9.5±0.3‰) and δD (~ -80‰) values consistent with magmatic fluids. Quartz+tourmaline veins that record the ductile-to-brittle transition display a range of δ18O values (quartz: +3.4 to +16.4‰; tourmaline: +8.0‰) that indicate a complex fluid system involving magmatic, metamorphic, and meteoric-hydrothermal fluids. Variable mineral δ18O (-1.5 to +11.3‰) and δD (-140 to -77‰) values from the Sawmill Sequence calc-silicates and Koip Sequence metavolcanics are the product of a fluid system with magmatic (TB) and meteoric-hydrothermal end-member sources, with lowest values found within a pull-apart zone and the highest values are outside this zone. Quartz δ18O (-3.2 to +14.5‰) and fluid inclusion δD values (-137 to -79‰) define a mixing line with magmatic (TB) and meteoric-hydrothermal water end members for the crack-seal veins. Detailed studies of one 10-m-thick vein reveal a trend of decreasing isotope values from the margin to the median plane. Most mineral pairs failed to reach isotopic equilibrium, indicating a very complex and short-lived fluid evolution for this system. This study documents

  8. Petrological and geochemical studies of ultramafic-mafic rocks from the North Puruliya Shear Zone (eastern India)

    NASA Astrophysics Data System (ADS)

    Mandal, Aditi; Ray, Arijit

    2015-12-01

    Ultramafic and mafic rocks occur within a linear belt, trending nearly E-W along North Puruliya Shear Zone of the Chhotanagpur Gneissic Complex (CGC). These rocks are classified as gabbro, norite, gabbro-norite, dolerite, diorite, olivine-websterite and lherzolite. Mafic rocks (Group 1) often occur in association with ultramafic variants (Group 2) and sometimes in isolation. A genetic link has been established between these mafic and ultramafic rocks using disposition of ultramafic and mafic rocks in the outcrop, systematic variation in modal mineralogy, co-linearity of plots in biaxial chemical variation diagram. Chemical composition of biotite and clinopyroxene reveal calc-alkaline nature and arc signature in these mafic-ultramafic rocks and whole rock geochemical characters indicate similarity with arc magma in subduction zone setting. The high values of Mg no. (47-81) and Al 2 O 3 (5.5-17.9) of mafic rocks indicate primitive, aluminous nature of the parental melt and presence of amphibole and biotite indicate its hydrous nature. The parent mafic melt evolved through fractionation of olivine, spinel, clinopyroxene and plagioclase. The crystal cumulates gave rise to the ultramafic rocks and the associated mafic rocks formed from residual melt. Crustal contamination played an important role in magmatic evolution as evident from variation in abundance of Rb in different lithomembers. Mafic-ultramafic rocks of the present study have been compared with intra-cratonic layered complexes, mafic-ultramafic rocks of high grade terrain, Alaskan type ultramafic-mafic complex and ophiolites. It is observed that the ultramafic-mafic rocks of present study have similarity with Alaskan type complex.

  9. Structure, age, and tectonic setting of a multiply reactivated shear zone in the piedmont in Washington, D.C., and vicinity

    USGS Publications Warehouse

    Fleming, A.H.; Drake, A.A.

    1998-01-01

    The Rock Creek shear zone is the dominant tectonic feature in the Piedmont in Washington, D.C. and adjacent parts of Maryland, has an exposed length of 25 km, and a width of up to 3 km. The shear zone is characterized by a complicated composite fabric produced by the imposition of both ductile and brittle structures as well as the reactivation, transposition, and folding of older structures during subsequent antithetic displacement. At least five main types of structural elements are discernible and include: 1) relict, medium- to coarse-grained mylonitic foliation and related structures produced by sinistral shearing under at least middle amphibolite facies conditions; 2) a ductile fault zone having an apparent sinistral displacement of at least several km and an unknown, but possibly significant component of upward throw of the east wall; 3) pervasive, fine-grained ultramylonitic foliation associated with quartz ribbons and late oblique shear bands, generated by dextral shearing under thermal conditions that appear to have progressed from middle greenschist to sub-greenschist (semi-brittle); 4) a system of oblique-(west wall up) and dextralship faults localized chiefly within a tectonic me??lange at the junction of two major strands, and whose motion spanned the ductile-brittle transition; and 5) a system of post-Cretaceous thrust faults that cut Coastal Plain rocks as young as Quaternary as well as the previously deformed crystalline rocks. The first two sets of structures are of probable Ordovician age and are thus believed to coincide with the Taconic event, which produced regional middle to upper amphibolite facies metamorphism, widespread plutonism, and extensive southwest-vergent fold phases in this area. In contrast, the dextral shearing and faulting were generated during final thermal cooling and represent the latest Paleozoic penetrative deformation that affected this area. They are very likely Alleghanian because of their great similarity to other better

  10. A Brittle-Ductile Transition Preserved in the Sierra Crest Shear Zone, Sierra Nevada, CA: a Natural Laboratory for Examining Rheologically-Controlled Brittle and Ductile Deformation Partitioning

    NASA Astrophysics Data System (ADS)

    Attia, S.; Paterson, S. R.; Hartman, S. M.; Jiang, D.

    2015-12-01

    The Sierra Crest shear zone (SCSZ), an ~300 km long Late Cretaceous dextral transpressive ductile-brittle shear system in the eastern central Sierra Nevada, CA partitioned tectonic boundary conditions during a fundamental rheological transition in the upper crust from ductile to brittle deformation due to the exhumation and cooling of the arc. The SCSZ represents a well-exposed and data-rich 'natural laboratory' to study the mechanisms driving evolving strain partitioning and rheology. The SCSZ transitioned from a broad swath of partitioned ductile shear zones, comprised of anastomosing simple shear dominated zones separated by pure shear dominated domains, to a complex partitioned brittle fault system, expressed as brittle slip, veining, brecciation, and pseudotachylyte formation along discrete structures, as arc magmatism shut down, the arc cooled, and exhumation rates increased. Previous studies have documented evolving deformation partitioning in the ductile system indicated by variable fabric development ranging from preserved bedding to mylonites, the spread of lineation orientations, and variable kinematics. Multi-generational brittle fabrics that are variably ductilely deformed and the orientation of 1st and 2nd order brittle structures, both concordant and discordant with ductile shears, indicate that partitioning also evolved during the complex rheological transition. Structural, strain, P-T-t, geochronologic, and field data provide controls on parameters (e.g. lithology, fluids, strain, preexisting structure, timing, P-T conditions) needed to model the development of the SCSZ in anisotropic crust undergoing a transition in rheology and tectonic boundary conditions. As rheological heterogeneity will lead to deformation partitioning throughout intervening scales, it is unrealistic to apply single scale models to this investigation. Thus, we propose to compare the above observations to predictions made by a model (MOPLA; Jiang, 2014) of progressive

  11. Thermal effects in the shear-transformation-zone theory of amorphous plasticity: comparisons to metallic glass data.

    PubMed

    Falk, M L; Langer, J S; Pechenik, L

    2004-07-01

    We extend our earlier shear-transformation-zone theory of amorphous plasticity to include the effects of thermally assisted molecular rearrangements. This version of our theory is a substantial revision and generalization of conventional theories of flow in noncrystalline solids. As in our earlier work, it predicts a dynamic transition between jammed and flowing states at a yield stress. Below that yield stress, it now describes thermally assisted creep. We show that this theory accounts for the experimentally observed strain-rate dependence of the viscosity of metallic glasses, and that it also captures many of the details of the transient stress-strain behavior of those materials during loading. In particular, it explains the apparent onset of superplasticity at sufficiently high stress as a transition between creep at low stresses and plastic flow near the yield stress. We also argue that there are internal inconsistencies in the conventional theories of these deformation processes, and suggest ways in which further experimentation as well as theoretical analysis may lead to better understanding of a broad range of nonequilibrium phenomena. PMID:15324056

  12. Fabric-related velocity anisotropy and shear wave splitting in rocks from the Santa Rosa Mylonite Zone, California

    SciTech Connect

    Kern, H. ); Wenk, H.R. )

    1990-07-10

    The directional dependence of P and S wave velocities have been measured at pressures (up to 600 MPa) and temperatures (up to 700C) in rocks from the Santa Rosa Mylonite Zone (southern California). During tectonism, these were progressively deformed from granodiorite protolith to mylonite and ultimately phyllonite. The mineralogical and chemical composition of protolith and mylonite is nearly identical. Thus these rocks provide excellent material for documenting the effect of microstructural and textural changes on rock anisotropy. Velocity anisotropy increases significantly with the degree of deformation, whereas average velocities and densities do not change. At low pressure (50 MPa) the velocity anisotropy ranges from 1.7% in granodiorite up to 19% in phyllonite and is due to both oriented microfractures and crystallographic preferred orientation. At high pressure (600 MPa), the residual anisotropy up to 12% is mainly due to preferred mineral orientation, in particular of biotite. Significant shear wave splitting is measured parallel to the foliation plane and shows a good correlation with the biotite texture. These observations confirm that oriented microcracks and preferred orientation of minerals should be taken into account in the interpretation of seismic reflection and refraction data in terranes with deformed rocks.

  13. First local seismic tomography for Red River shear zone, northern Vietnam: Stepwise inversion employing crustal P and Pn waves

    NASA Astrophysics Data System (ADS)

    Huang, Hsin-Hua; Xu, Zhen J.; Wu, Yih-Min; Song, Xiaodong; Huang, Bor-Shouh; Nguyen, Le Minh

    2013-01-01

    The 900-km-long Red River shear zone (RRSZ) lends a compelling support to the continental extrusion model for the tectonic evolution of southeastern Asia, but has been challenged by many of views, as some new records mainly from northern Vietnam, suspecting the dimensions of RRSZ neither in depth nor in displacement are as large as we expected before. However, compared to the northwestern half of the RRSZ in Yunnan province better studied by many fields, the southeastern half in northern Vietnam is relatively poorly constrained by seismic study, due to insufficient stations and data in the past. This study, using a newly deployed portable broadband seismic network, obtained the first local seismic tomography with a stepwise inversion using P and Pn phases. Surface geology, major structures, and rock properties are well correlated and identified in our model, suggesting the RRSZ is a lithospheric structure at least penetrating to the uppermost mantle with mantle thermal anomalies. In general, the crust of northern Vietnam appears to be weak and sits on a relatively hot uppermost mantle, showing a long and complex thermo tectonic history. A mid-lower crustal segmentation of RRSZ is also proposed to compromise the discrepancies recently observed between Yunnan province and northern Vietnam.

  14. Principal fault zone width and permeability of the active Neodani fault, Nobi fault system, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Tsutsumi, A.; Nishino, S.; Mizoguchi, K.; Hirose, T.; Uehara, S.; Sato, K.; Tanikawa, W.; Shimamoto, T.

    2004-02-01

    The internal structure and permeability of the Neodani fault, which was last activated at the time of the 1891 Nobi earthquake (M8.0), were examined through field survey and experiments. A new exposure of the fault at a road construction site reveals a highly localized feature of the past fault deformation within a narrow fault core zone. The fault of the area consists of three zone units towards the fault core: (a) protolith rocks; (b) 15 to 30 m of fault breccia, and (c) 200 mm green to black fault gouge. Within the fault breccia zone, cataclastic foliation oblique to the fault has developed in a fine-grained 2-m-wide zone adjacent to the fault. Foliation is defined by subparallel alignment of intact lozenge shaped clasts, or by elongated aggregates of fine-grained chert fragments. The mean angle of 20°, between the foliation and the fault plane suggests that the foliated breccia accommodated a shear strain of γ<5 assuming simple shear for the rotation of the cataclastic foliation. Previous trench surveys have revealed that the fault has undergone at least 70 m of fault displacement within the last 20,000 years in this locality. The observed fault geometry suggests that past fault displacements have been localized into the 200-mm-wide gouge zone. Gas permeability analysis of the gouges gives low values of the order of 10 -20 m 2. Water permeability as low as 10 -20 m 2 is therefore expected for the fault gouge zone, which is two orders of magnitude lower than the critical permeability suggested for a fault to cause thermal pressurization during a fault slip.

  15. Constraints on strain rate and fabric partitioning in ductilely deformed black quartzites (Badajoz-Córdoba Shear Zone, Iberian Massif)

    NASA Astrophysics Data System (ADS)

    Puelles, Pablo; Ábalos, Benito; Fernández-Armas, Sergio

    2013-04-01

    The Badajoz-Córdoba Shear Zone is a is 30-40 km wide and 400 km long, NW-SE trending structure located at the boundary between the Ossa-Morena and Central-Iberian Zones of the Iberian Massif. Two elongated domains can be differentiated inside: the Obejo-Valsequillo domain to the NE and the Ductile Shear Belt (DSB) to the SW. The former exhibits Precambrian to Cambrian volcano-sedimentary rocks unconformably overlaying a Neoproterozoic basement formed by the "Serie Negra". The latter, 5-15 km wide, is composed mainly of metamorphic tectonites including the "Serie Negra" and other units located structurally under it. The petrofabric of "Serie Negra" black quartzites from the DSB is analyzed in this study with the Electron Back-Scattered Diffraction technique (EBSD). Black quartzites represent originally siliceous, chemical-biochemical shallow-water marine deposits, currently composed almost exclusively of quartz and graphite. Macroscopically they exhibit an outstanding planolinear tectonic fabric. Petrographically, coarse- and fine-grained dynamically recrystallized quartz bands alternate. The former contain quartz grains with irregular shapes, mica inclusions and "pinning" grain boundaries. Oriented mica grains and graphite particles constrain irregular quartz grain shapes. Quartz ribbons with chessboard microstructures also occur, indicating recrystallization under elevated temperatures coeval with extreme stretching. Fine-grained recrystallized quartz bands are dominated by quartz grains with straight boundaries, triple junctions, a scarcer evidence of bulging, and a higher concentration of dispersed, minute graphite grains. Quartz lattice-preferred orientation (LPO) patterns permit to identify two well-developed maxima for [c] axes: one close to the Y structural direction and the other one around Z, and -axes girdles normal to Y and Z. Although both [c] axis maxima appear in the coarse- and fine-grained bands, subsets can be isolated with grain cluster

  16. Cosmogenic 10Be and 36Cl geochronology of offset alluvial fans along the northern Death Valley fault zone: Implications for transient strain in the eastern California shear zone

    USGS Publications Warehouse

    Frankel, K.L.; Brantley, K.S.; Dolan, J.F.; Finkel, R.C.; Klinger, R.E.; Knott, J.R.; Machette, M.N.; Owen, L.A.; Phillips, F.M.; Slate, J.L.; Wernicke, B.P.

    2007-01-01

    The northern Death Valley fault zone (NDVFZ) has long been recognized as a major right-lateral strike-slip fault in the eastern California shear zone (ECSZ). However, its geologic slip rate has been difficult to determine. Using high-resolution digital topographic imagery and terrestrial cosmogenic nuclide dating, we present the first geochronologically determined slip rate for the NDVFZ. Our study focuses on the Red Wall Canyon alluvial fan, which exposes clean dextral offsets of seven channels. Analysis of airborne laser swath mapping data indicates ???297 ?? 9 m of right-lateral displacement on the fault system since the late Pleistocene. In situ terrestrial cosmogenic 10Be and 36C1 geochronology was used to date the Red Wall Canyon fan and a second, correlative fan also cut by the fault. Beryllium 10 dates from large cobbles and boulders provide a maximum age of 70 +22/-20 ka for the offset landforms. The minimum age of the alluvial fan deposits based on 36Cl depth profiles is 63 ?? 8 ka. Combining the offset measurement with the cosmogenic 10Be date yields a geologic fault slip rate of 4.2 +1.9/-1.1 mm yr-1, whereas the 36Cl data indicate 4.7 +0.9/-0.6 mm yr-1 of slip. Summing these slip rates with known rates on the Owens Valley, Hunter Mountain, and Stateline faults at similar latitudes suggests a total geologic slip rate across the northern ECSZ of ???8.5 to 10 mm yr-1. This rate is commensurate with the overall geodetic rate and implies that the apparent discrepancy between geologic and geodetic data observed in the Mojave section of the ECSZ does not extend north of the Garlock fault. Although the overall geodetic rates are similar, the best estimates based on geology predict higher strain rates in the eastern part of the ECSZ than to the west, whereas the observed geodetic strain is relatively constant. Copyright 2007 by the American Geophysical Union.

  17. Alternations in burial and exhumation along the Selimiye (Kayabükü) shear zone in the Menderes Massif from detailed garnet pressure-temperature paths

    NASA Astrophysics Data System (ADS)

    Kelly, E. D.; Atakturk, K. R.; Catlos, E. J.; Lizzadro-McPherson, D. J.; Cemen, I.; Lovera, O. M.

    2015-12-01

    Pressure-temperature (P-T) paths derived from garnet chemical zoning and supported by thermal modeling record alternating burial and exhumation during Main Menderes Metamorphism in western Turkey. We studied six rocks along the Selimiye (Kayabükü) shear zone, three from the footwall (Çine nappe) and three from the hanging wall (Selimiye nappe). The shear zone bounds the southern Menderes Massif metamorphic core complex and has been suggested to record compression followed by extension. The rocks are lower-amphibolite facies garnet-bearing metapelites with nearly identical mineral suites. Retrograde overprinting hinders classical thermobarometry; to overcome this, preserved chemical zoning in garnet combined with a G-minimization approach was used to construct detailed P-T paths (e.g., 50 points in some paths). During continuous temperature increase, the Çine nappe paths show increasing, decreasing, and then increasing pressure (an N-shaped path) ending at 7-8 kbar and ~565-590 °C. The Selimiye nappe paths show a single increase in P-T ending at ~7.3 kbar and ~580 °C. Similar bulk-rock compositions in all samples and the separation by the shear zone suggest that garnets grew during distinct events in each nappe. The timing of garnet growth, and thus the P-T paths, is currently undetermined, as monazite inclusions in garnet appear secondary and complicated by excess common Pb. The Çine nappe N-shaped path describes alternations in burial and exhumation, possibly due to thrust motion along the shear zone. To demonstrate the physical plausibility of the P-T paths, a 2-D finite difference solution to the diffusion-advection equation was applied. The results of the thermal modeling suggest that thrusting, denudation, and renewed thrusting would produce similar changes in P-T to the N-shaped path. Thus, the Çine nappe N-shaped P-T path appears to record a gap in thrust motion along the Selimiye (Kayabükü) shear zone prior to ultimate unroofing of the massif.

  18. Late Neoproterozoic metamorphic assemblages along the Pan-African Hamisana Shear Zone, southeastern Egypt: Metamorphism, geochemistry and petrogenesis

    NASA Astrophysics Data System (ADS)

    Ali-Bik, Mohamed W.; Sadek, Mohamed F.; Ghabrial, Doris Sadek

    2014-11-01

    A variety of Late Neoproterozoic gneisses and amphibolites are distributed along the N-S trending Hamisana Shear Zone (HSZ), in southeastern Egypt. The HSZ originated after the accretion of the Arabian-Nubian Shield (ANS) and covers an area of about 1500 km2 in southeastern Egypt and northeastern Sudan. The architecture of the northern part of the HSZ is best explained as a tectono-stratigraphic column, in which allochthonous ophiolitic mélange was thrusted onto metamorphosed island-arc assemblages (gneisses and amphibolites). The latter rock units were generally subjected to two successive phases of amphibolite facies metamorphism, followed by a thermal phase and retrograde overprint. The early penetrative, low- to medium-pressure metamorphism (M1) was synchronous with D1-gneissosity and N-S trending lineation, demarcating the high strain HSZ. The mineral assemblages formed during the M1 phase include quartz + andesine + hornblende (I) + biotite (I) in hornblende-biotite gneiss, quartz + andesine + pargasitic hornblende (I) + ferroan pargasitic hornblende (I) + edenitic hornblende (I) in hornblende-schist, quartz + plagioclase + biotite + muscovite in psammopelitic gneiss, and diopside + tremolite + calcite + sphene ± garnet in calc-silicates, being characteristic for amphibolite facies with metamorphic conditions of 600 ± 50 °C and 5-6.5 kbar. The second metamorphic phase (M2) is related to the crystallization of biotite and/or hornblende in S2 foliation demarcating the NE-SW trending dextral shear deformation (D2). The calculated temperature for this M2 phase is about 592 °C. Subsequent thermal events are documented by growth of spinel and scapolite in calc-silicate rocks and of cordierite in psammopelitic gneiss in response to uplift, decomposition and heat provided by the nearby late-formed igneous intrusions. Finally, the rocks reached a temperature of about 530 °C during the cooling retrogressive stage. Based on geological, petrological and geochemical

  19. Differentiation of Secular and Postseismic Deformation in the Mojave Shear Zone in Southern California and Inference of Lithospheric Rheology

    NASA Astrophysics Data System (ADS)

    Shen, Z.; Liu, S.; Burgmann, R.

    2015-12-01

    The 1992 Mw 7.3 Landers and 1999 Mw7.1 Hector Mine earthquakes struck the Eastern California Shear Zone (ECSZ) in the Mojave Desert, Southern California. Coseismic and postseismic deformation from these events affect efforts to use Global Positioning System (GPS) observations collected since these events to establish a secular surface velocity field, especially in the near field of the coseismic ruptures. We devise block motion models constrained by both historical pre-Landers triangulation and trilateration observations and post-Landers GPS measurements to recover the secular deformation field and differentiate the postseismic transients in the Mojave region. Postseismic transients are found to remain in various "interseismic" GPS velocity solutions in the form of 2-3 mm/yr excess right-lateral shear across the Landers and Hector Mine coseismic ruptures [Liu et al., 2015 JGR]. Postseismic GPS time series differentiated from the secular velocity field reveal enduring late-stage transient motions in the near field of the coseismic ruptures. Using the postseismic time series data as model constraints, we develop postseismic deformation model invoking afterlip on faults and viscoelastic relaxation in the lower crust and upper mantle. A Burgers body material and a Maxwell material are assumed for the lower crust and upper mantle respectively. Our preliminary modeling result, constrained using GPS time series data from the SCEC Crustal Motion Map 4.0 (covering the time period of 1992-2004), reveals that both the long-term viscosities for the lower crust and upper mantle are on the order of e+19 Pa-s. This finding differs significantly from the "Crème Brulee" model predictions about the rheological structure of the lower crust and upper mantle, in which the lower crust has a substantially higher viscosity. We are incorporating more GPS time series data into our model, particularly the ones from continuous sites of the Plate Boundary Observatory network with post-2004

  20. Integrated Kinematic Analysis of GPS and Fault Slip Data in the Eastern California Shear Zone, Walker Lane and Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Thatcher, W.

    2001-12-01

    The Sierra Nevada (SN) microplate moves roughly N50?W with respect to North America (NA), around an Euler pole that lies in the Pacific (PA) basin to the west and south. Its motion is indicative of processes governing the deformation of the Walker Lane and Eastern California Shear Zone, accommodating east to west expansion of the Basin and Range and approximately 25% of PA/NA dextral shear. To date, estimates for the location of the SN/NA pole obtained by GPS, VLBI and geologic data differ by at least 30 degrees [e.g. Argus and Gordon, 1996; Hearn and Humphreys, 1998]. The difference between these poles may, in part, be attributable to the type of data used in the analyses. The GPS determined velocity field potentially contains artifacts of the earthquake cycle such as recoverable elastic deformation preceded by slip at depth, fault creep, and viscoelastic relaxation following earthquakes on block bounding faults. We use Global Positioning System (GPS), fault strike and slip rate data to constrain the kinematics of the eastern boundary of the Sierra Nevada (SN) microplate, and western Basin and Range province of western North America. Data include previously published GPS measurements [Bennet et al., 1998; Thatcher et al., 1999; Gan et al., 2000; Svarc et al., submitted manuscript 2001], recently collected GPS data, and recently compiled fault maps of Nevada and California that include fault strike, slip sense and slip rate estimates. GPS velocities are refined with the Quasi Observation Combination Analysis algorithm of Dong et al. From these data we constrain the spatial variation in the rate and style of deformation throughout the region, and identify components of the deformation that are relevant to interaction of the PA/NA transform margin and Basin and Range extension. Using two-dimensional viscoelastic finite elements we derive kinematic models representative of the instantaneous (GPS) time scale, in preparation for future modeling of the longer term

  1. Crystallographically controlled crystal-plastic deformation of zircon in shear zones

    NASA Astrophysics Data System (ADS)

    Kovaleva, Elizaveta; Klötzli, Urs

    2014-05-01

    Plastically-deformed zircons from various types of strained natural metamorphic rocks have been investigated in-situ by electron backscatter diffraction analysis (EBSD), allowing crystallographic orientation mapping at high spatial resolution. Plastic deformation often forms under the control of grain-internal heterogeneities. At the crystal structure scale deformation is controlled by the physical anisotropy of the lattice. Three most common slip systems in zircon are [100]{010}, [010]{001} and [001]{010} (Leroux et. al., 1999; Reddy et. al., 2007). They are genetically connected with the main zircon crystallographic directions: [001] (c-axis), [100] and [010] (a and b axes). Atomic models show weak planes normal to these directions that preferably evolve to glide planes in the deforming crystal. The visualization of seismic (elastic) properties of zircon with the MATLAB toolbox MTEX shows a similar pattern. The slowest S-wave velocities are observed in directions parallel to [100], [010] and [001] crystallographic directions. The highest Young's modulus values lie in the same directions. In natural zircon grains, the common slip systems are preferably activated when zircon is hosted by rheologically comparatively weaker phases or a fine-grained matrix. In these cases zircon behaves as a rigid clast. During progressive deformation high deviatoric stresses together with high strain rates concentrate at crystal tips, as shown by numerical modeling. Softer host phases allow more degrees of freedom for zircon to be deformed according to its crystallographic and internal properties. These conclusions are supported by the misorientation axes density distribution maps, derived with MTEX. Deformed zircon hosted by a relatively soft phase (mostly biotite) develops a crystallographic preferred orientation (CPO), which has not been documented for zircon before. At the same time deformation of zircon hosted by a rheologically stronger matrix causes the activation of less

  2. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-06-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS) under lap shear loading condition. DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. Static weld strength tests using lap shear samples were performed on the joint populations with various fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with conventionally required fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 welds under lap shear loading. Moreover, failure mode has strong influence on weld peak load and energy absorption for all the DP800 welds and the TRIP800 small welds: welds failed in pullout mode have statistically higher strength and energy absorption than those failed in interfacial fracture mode. For TRIP800 welds above the critical fusion zone level, the influence of weld failure modes on peak load and energy absorption diminishes. Scatter plots of peak load and energy absorption versus weld fusion zone size were then constructed, and the results indicate that fusion zone size is the most critical factor in weld quality in terms of peak load and energy absorption for both DP800 and TRIP800 spot welds.

  3. New structural and seismological evidence and interpretation of a lithospheric-scale shear zone at the southern edge of the Ionian subduction system (central-eastern Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Barreca, G.; Scarfı, L.; Cannavò, F.; Koulakov, I.; Monaco, C.

    2016-06-01

    Geological, gravimetric, and seismological data from the central-eastern Sicily (Italy) provide evidences of a NW-SE oriented shear zone at the southern edge of the Ionian subduction system. This structure consists of a near 100 km long lithospheric-scale structural and seismic boundary. In the near-surface, it shows Plio-Pleistocene vertical-axis structural rotations, kilometer-scale topographic imprint, progressive wrenching, and large down-faulting. All these features, together with its location south-west of the subduction system, allow us to interpret the shear zone as the upper plate expression of an abandoned Subduction Transform Edge Propagator fault, working before slab detachment, currently reactivated by elastic rebound or mantle upwelling mechanism triggered by slab detachment, to form an incipient transform belt separating compartments characterized by different motion in the modern context of Africa-Europe convergence.

  4. Evolution of metamorphic fluids in shear zones: The record from the emeralds of Habachtal, Tauern Window, Austria

    NASA Astrophysics Data System (ADS)

    Nwe, Y. Y.; Grundmann, G.

    1990-11-01

    Fluid inclusions in emeralds from the Habachtal, Central Tauern Window, have been studied by microthermometry. Results allow a detailed reconstruction of trapping history and evolution of the metamorphic fluids during the Middle Alpine Tauernkristallisation metamorphic event and some of the subsequent cooling period. Five different types of fluid inclusions, corresponding to at least five trapping periods, have been distinguished. In general, the earliest primary (type 1) inclusions, which occur as negative crystals or thin long tubes, are represented by low salinity ( < 10 wt. % NaCl equivalent) aqueous fluids with or without CO 2 with up to XCO 2 ≈ 0.04. Later primary type 2 inclusions are distinguished by different morphologies and distribution patterns. Lower salinity CO 2-free brines and CO 2-bearing denser inclusions with higher CO 2 contents (up to XCO 2 ≈ 0.11) are characteristic of this stage. The type 2 inclusions may also occur as pseudosecondary arrays. The effects of necking have been studied, and found to be considerable in the type 1 primary inclusions. This mechanism has occasionally resulted in the appearance of almost pure CO 2 fluids. The possibility of fluid immiscibility has been examined, and rejected, for the apparent "coexistence" of primary brine and CO 2-bearing inclusions. Instead, mixing of fluids which fluctuated between two different compositions is proposed. The fluctuation was probably due to the sequence of hydration reactions during the Tauernkristallisation. Maximum trapping pressures (3.6 kbar) obtained for stage 1 of the Tauernkristallisation are thought to represent a situation where sublithostatic fluid pressures exested in shear zones during the crystallisation period of many of the emerald cores and coexisting biotite and actinolite. Maximum fluid pressures of 7 kbar were obtained from the type 2 inclusions. This is similar to pressure estimates obtained from mineral equilibria. At least four phases of deformation are

  5. Rock mechanics observations pertinent to the rheology of the continental lithosphere and the localization of strain along shear zones

    USGS Publications Warehouse

    Kirby, S.H.

    1985-01-01

    the general phenomenon of ductile faulting in which ductile strains are localized into shear zones. Ductile faults have been produced in experiments of five different rock types and is generally expressed as strain softening in constant-strain-rate tests or as an accelerating-creep-rate stage at constant differential stress. A number of physical mechanisms have been identified that may be responsible for ductile faulting, including the onset of dynamic recrystallization, phase changes, hydrothermal alteration and hydrolytic weakening. Microscopic evidence for these processes as well as larger-scale geological and geophysical observations suggest that ductile faulting in the middle to lower crust and upper mantle may greatly influence the distribution and magnitudes of differential stresses and the style of deformation in the overlying upper continental lithosphere. ?? 1985.

  6. Pressure solution in rocks: focused ion beam/transmission electron microscopy study on orthogneiss from South Armorican Shear Zone, France

    NASA Astrophysics Data System (ADS)

    Bukovská, Zita; Wirth, Richard; Morales, Luiz F. G.

    2015-09-01

    In order to characterize the µm-to-nm structures related to operation of pressure solution on phase boundaries in naturally deformed rocks, we have performed a detailed focused ion beam/transmission electron microscopy study in ultramylonite samples from South Armorican Shear Zone (France) that focused on grain boundary scale. We have studied phase boundaries between quartz, K-feldspar and white mica in both 2D and 3D and compare our evidences with theoretical dissolution precipitation models in the current literature. The dissolution (re)precipitation processes lead to the development of different features at different phase boundaries. In both quartz-white mica and quartz-K-feldspar phase boundaries, voids were ubiquitously observed. These voids have different shapes, and the development of some of them is crystallographically controlled. In addition, part of these voids might be filled with vermiculite. Amorphous leached layers with kaolinite composition were observed at the boundaries of K-feldspar-quartz and K-feldspar-white mica. The development of different features along the phase boundaries is mainly controlled by the crystallography of the phases sharing a common interface, together with the presence of fluids that either leaches or directly dissolve the mineral phases. In addition, the local dislocation density in quartz may play an important role during pressure solution. We suggest that the nanoscale observations of the quartz-white mica phase boundaries show direct evidence for operation of island-and-channel model as described in Wassmann and Stockhert (Tectonophysics 608:1-29, 2013), while K-feldspar-quartz phase boundaries represents amorphous layers formed via interface-coupled dissolution reprecipitation as described by Hellmann et al. (Chem Geol 294-295:203-216, 2012).

  7. Inferences about Shear Zone Flow Pathways between CFM 06.002i2 and Pinkel from Tracer Tests 10-01 to 12-02

    SciTech Connect

    Reimus, Paul W.

    2012-06-26

    This presentation provides an analysis of several tracer tests conducted at the Grimsel Test Site, Switzerland, between 2010 and early 2012, with the objective of testing a conceptual model of flow through the shear zone in which the tracer tests were conducted. The analysis includes predictions of tracer residence times in each of two flow pathways in the shear zone as a function of injection and extraction flow rates in the tracer tests. Conclusions are: (1) Separation of shear zone flow between CFM 06.002i2 and Pinkel into two predominant flow pathways seems reasonable; (2) Conceptual model is that travel time in pathway 1 is dependent on injection flow rate, and travel time in pathway 2 is dependent on extraction flow rate; (3) Predict residence time (in hours) in Pathway 1 equal to {approx}9.9/(Injection Flow Rate, ml/min), provided injection interval flow is greater than about 0.15 ml/min (which is not reliably achieved under natural flow/dilution conditions after installation of CFM 11.00X holes); and (4) Predict residence time of {approx}8 hrs in Pathway 2 with extraction flow rate of 25 ml/min.

  8. Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase

    NASA Technical Reports Server (NTRS)

    Park, H.; Go, Y. M.; Darji, R.; Choi, J. W.; Lisanti, M. P.; Maland, M. C.; Jo, H.

    2000-01-01

    Fluid shear stress activates a member of the mitogen-activated protein (MAP) kinase family, extracellular signal-regulated kinase (ERK), by mechanisms dependent on cholesterol in the plasma membrane in bovine aortic endothelial cells (BAEC). Caveolae are microdomains of the plasma membrane that are enriched with cholesterol, caveolin, and signaling molecules. We hypothesized that caveolin-1 regulates shear activation of ERK. Because caveolin-1 is not exposed to the outside, cells were minimally permeabilized by Triton X-100 (0.01%) to deliver a neutralizing, polyclonal caveolin-1 antibody (pCav-1) inside the cells. pCav-1 then bound to caveolin-1 and inhibited shear activation of ERK but not c-Jun NH(2)-terminal kinase. Epitope mapping studies showed that pCav-1 binds to caveolin-1 at two regions (residues 1-21 and 61-101). When the recombinant proteins containing the epitopes fused to glutathione-S-transferase (GST-Cav(1-21) or GST-Cav(61-101)) were preincubated with pCav-1, only GST-Cav(61-101) reversed the inhibitory effect of the antibody on shear activation of ERK. Other antibodies, including m2234, which binds to caveolin-1 residues 1-21, had no effect on shear activation of ERK. Caveolin-1 residues 61-101 contain the scaffolding and oligomerization domains, suggesting that binding of pCav-1 to these regions likely disrupts the clustering of caveolin-1 or its interaction with signaling molecules involved in the shear-sensitive ERK pathway. We suggest that caveolae-like domains play a critical role in the mechanosensing and/or mechanosignal transduction of the ERK pathway.

  9. Neutral-Line Magnetic Shear and Enhanced Coronal Heating in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Gary, G. A.; Shimizu, T.

    1997-01-01

    By examining the magnetic structure at sites in the bright coronal interiors of active regions that are not flaring but exhibit persistent strong coronal heating, we establish some new characteristics of the magnetic origins of this heating. We have examined the magnetic structure of these sites in five active regions, each of which was well observed by both the Yohkoh SXT and the Marshall Space Flight Center Vector Magnetograph and showed strong shear in its magnetic field along part of at least one neutral line (polarity inversion). Thus, we can assess whether this form of nonpotential field structure in active regions is a characteristic of the enhanced coronal heating and vice versa. From 27 orbits' worth of Yohkoh SXT images of the five active regions, we have obtained a sample of 94 persistently bright coronal features (bright in all images from a given orbit), 40 long (greater than or approximately equals 20,000 km) neutral-line segments having strong magnetic shear throughout (shear angle greater than 45 deg), and 39 long neutral-line segments having weak magnetic shear throughout (shear angle less than 45 deg). From this sample, we find that: (1) all of our persistently bright coronal features are rooted in magnetic fields that are stronger than 150 G; (2) nearly all (95%) of these enhanced coronal features are rooted near neutral lines (closer than 10,000 km); (3) a great majority (80%) of the bright features are rooted near strong-shear portions of neutral lines; (4) a great majority (85%) of long strong-shear segments of neutral lines have persistently bright coronal features rooted near them; (5) a large minority (40%) of long weak-shear segments of neutral lines have persistently bright coronal features rooted near them; and (6) the brightness of a persistently bright Coronal feature often changes greatly over a few hours. From these results, we conclude that most persistent enhanced heating of coronal loops in active regions: (1) requires the

  10. Active zones of mammalian neuromuscular junctions: formation, density, and aging

    PubMed Central

    Nishimune, Hiroshi

    2012-01-01

    Presynaptic active zones are synaptic vesicle release sites that playessential roles in the function and pathology of mammalian neuromuscular junctions (NMJs). The molecular mechanisms of active zone organization utilize presynaptic voltage-dependent calcium channels (VDCCs) in NMJs as scaffolding proteins. VDCCs interact extracellularly with the muscle-derived synapse organizer, laminin β2, and interact intracellularly with active zone-specific proteins, such as Bassoon, CAST/Erc2/ELKS2alpha, ELKS, Piccolo, and RIMs. These molecular mechanisms are supported by studies in P/Q- and N-type VDCCs double-knockout mice, and they are consistent with the pathological conditions of Lambert-Eaton myasthenic syndrome and Pierson syndrome, which are caused by autoantibodies against VDCCs or by a laminin β2 mutation. During normal postnatal maturation, NMJs maintain the density of active zones, while NMJs triple their size. However, active zones become impaired during aging. Propitiously, muscle exercise ameliorates the active zone impairment in aged NMJs, which suggests the potential for therapeutic strategies. PMID:23252894

  11. The internal deformation of the Peridotite Nappe of New Caledonia: A structural study of serpentine-bearing faults and shear zones in the Koniambo Massif

    NASA Astrophysics Data System (ADS)

    Quesnel, Benoît; Gautier, Pierre; Cathelineau, Michel; Boulvais, Philippe; Couteau, Clément; Drouillet, Maxime

    2016-04-01

    We present a structural analysis of serpentine-bearing faults and shear zones in the Koniambo Massif, one of the klippes of the Peridotite Nappe of New Caledonia. Three structural levels are recognized. The upper level is characterized by a dense network of fractures. Antigorite and polygonal serpentine form slickenfibers along fault planes with distinct kinematics. As a result, the upper level keeps the record of at least two deformation events, the first associated with the growth of antigorite (WNW-ESE extension), the second with the growth of polygonal serpentine (NW-SE compression). The lower level coincides with the 'serpentine sole' of the nappe, which consists of massive tectonic breccias overlying a layer of mylonitic serpentinites. The sole records pervasive tangential shear with top-to-SW kinematics and represents a décollement at the base of the nappe. The intermediate level is characterized by the presence of several meters-thick conjugate shear zones accommodating NE-SW shortening. Like the sole, these shear zones involve polygonal serpentine and magnesite as the main syn-kinematic mineral phases. The shear zones likely root into the basal décollement, either along its roof or, occasionally, around its base. Compared to top-to-SW shearing along the sole, the two deformation events recorded in the upper level are older. The three structural levels correlate well with previously recognized spatial variations in the degree of serpentinization. It is therefore tempting to consider that the intensity of serpentinization played a major role in the way deformation has been distributed across the Peridotite Nappe. However, even the least altered peridotites, in the upper level, contain so much serpentine that, according to theoretical and experimental work, they should be nearly as weak as pure serpentinite. Hence, no strong vertical gradient in strength due to variations in the degree of serpentinization is expected within the exposed part of the nappe

  12. The Maritsa strike-slip shear zone between Kostenets and Krichim towns, South Bulgaria — Structural, petrographic and isotope geochronology study

    NASA Astrophysics Data System (ADS)

    Naydenov, Kalin; Peytcheva, Irena; von Quadt, Albrecht; Sarov, Stoyan; Kolcheva, Krastina; Dimov, Dimo

    2013-06-01

    The present study describes the characteristics of the Maritsa Shear Zone (MSZ), a major tectonic element in the Balkanides in South Central Bulgaria. Metamorphic rocks of four lithotectonic units — Madan, Chepinska, Asenitsa and Thrace units crop out in the study area. Strike-slip ductile deformation in MSZ affects the Thrace Lithotectonic Unit (TLU) for up to 15 km. The stratigraphy of this unit is divided in two: Parvenets succession and variegated succession. U-Pb zircon dating reveals Late Jurassic protolith age for metagranitoids and metagabbros of the variegated succession. For its metasedimentary part Triassic to Upper Jurassic age is suggested based on the strontium isotope signature of the marbles. The Parvenets succession affiliates to the Variscan metamorphic basement of Europe. The metamorphic evolution of the zone is subdivided into synmetamorphic strike-slip deformations and annealing stages. The ductile shearing occurred in greenschist to lower amphibolite facies between 130 Ma (discordant U-Pb ages) and 82-78 Ma (late-syntectonic granites). This stage is connected with the oblique collision of the Rhodope Late Jurassic arc with the European platform. With the docking of the arc and the triggering of the strike-slip movements, MSZ represents an orogen-scale border between the Rhodope south-vergent thrust complex and the north-vergent deformations in the Srednogorie and Sakar-Strandzha zones. During the Late Cretaceous MSZ is the contact between the Srednogorie magmatic arc (part of the Apuseni-Banat-Timok-Srednogorie Belt) and the Rhodopean metamorphic core complexes. NW-SE dextral faulting characterized the brittle tectonics along the zone. Strike-slip faults of the southern border of the TLU are transferred into reverse faults, along which the TLU overthrusted Oligocene sediments. MSZ is an orogen-scale transpressional shear zone and an important border in the structure of the Balkanides. This multidisciplinary research emphasizes its role as a

  13. Spatial Evolution of Neogene Normal Faults, Northern Owens Valley: Constraints on Oblique-slip Partioning Within the Eastern California Shear Zone.

    NASA Astrophysics Data System (ADS)

    Sheehan, T. P.; Dawers, N.

    2005-05-01

    Simple geometric constraints can be used to predict fault interaction at depth. Such interaction within crustal scale fault populations plays an important role in the tectonic evolution of extensional tectonic settings. Here we use a theoretical relationship between fault dip, horizontal fault spacing, and depth to the base of the seismogenic zone to explain the late Cenozoic temporal and spatial evolution of faulting within the Eastern California shear zone, including the northern extent of Owens Valley, California. Our results show that during its evolution, the east-dipping Sierra Nevada frontal fault in northern Owens Valley became inactive due to intersection with the larger west-dipping range-bounding fault of the White Mountains. The horizontal spacing of 10 km between these two conjugate faults is such that they intersect within the brittle seismic layer resulting in the locking of this segment of Sierra Nevada frontal fault. Continued accumulation of normal displacement along the White Mountains fault zone has since resulted in the present-day half-graben basement structure of northern Owens Valley. This down-dropping along the eastern margin of the valley imposes a flexural tension across the surface of the Coyote Warp, which can be considered a large relay zone between the Sierra Nevada frontal fault and the Round Valley fault further west. It is suggested that this tension is responsible for the formation of west-dipping antithetic normal faults that are distributed locally around the Coyote Warp. This extensional fault geometry has imposed a kinematic restraint on the development and distribution of right-lateral shear within this part of the Eastern California shear zone, including northeastward transfer of right-lateral slip from the Owens Valley fault to the White Mountains fault.

  14. High-resolution shear-wave seismics across the Carlsberg Fault zone south of Copenhagen - Implications for linking Mesozoic and late Pleistocene structures

    NASA Astrophysics Data System (ADS)

    Kammann, Janina; Hübscher, Christian; Boldreel, Lars Ole; Nielsen, Lars

    2016-07-01

    The Carlsberg Fault zone (CFZ) is a NNW-SSE striking structure close to the transition zone between the Danish Basin and the Baltic Shield. We examine the fault evolution by combining very-high-resolution onshore shear-wave seismic data, one conventional onshore seismic profile and marine reflection seismic profiles. The faulting geometry indicates a strong influence of Triassic subsidence and rifting in the Central European Basin System. Growth strata within the CFZ surrounding Höllviken Graben reveal syntectonic sedimentation in the Lower Triassic, indicating the opening to be a result of Triassic rifting. In the Upper Cretaceous growth faulting documents continued rifting. These findings contrast the Late Cretaceous to Paleogene inversion tectonics in neighboring structures, such as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image faulting in Quaternary and Danian layers in the CFZ. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below. In the shear-wave profile, we imaged the uppermost 30 m of the western part of CFZ. The complex fault zone comprises normal block faults and one reverse block fault. The observed faults cut through the Danian as well as the Quaternary overburden. Hence, there are strong indicators for ongoing faulting, like mapped faulting in Quaternary sediments and ongoing subsidence of the eastern block of the CFZ as interpreted by other authors. The lack of earthquakes localized in the fault zone implies that either the frequency of occurring earthquakes is too small to be recorded in the observation time-span, or that the movement of the shallow sub-surface layers may be due to other sources than purely tectonic processes.

  15. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels.

    PubMed

    Korin, Netanel; Kanapathipillai, Mathumai; Matthews, Benjamin D; Crescente, Marilena; Brill, Alexander; Mammoto, Tadanori; Ghosh, Kaustabh; Jurek, Samuel; Bencherif, Sidi A; Bhatta, Deen; Coskun, Ahmet U; Feldman, Charles L; Wagner, Denisa D; Ingber, Donald E

    2012-08-10

    Obstruction of critical blood vessels due to thrombosis or embolism is a leading cause of death worldwide. Here, we describe a biomimetic strategy that uses high shear stress caused by vascular narrowing as a targeting mechanism--in the same way platelets do--to deliver drugs to obstructed blood vessels. Microscale aggregates of nanoparticles were fabricated to break up into nanoscale components when exposed to abnormally high fluid shear stress. When coated with tissue plasminogen activator and administered intravenously in mice, these shear-activated nanotherapeutics induce rapid clot dissolution in a mesenteric injury model, restore normal flow dynamics, and increase survival in an otherwise fatal mouse pulmonary embolism model. This biophysical strategy for drug targeting, which lowers required doses and minimizes side effects while maximizing drug efficacy, offers a potential new approach for treatment of life-threatening diseases that result from acute vascular occlusion.

  16. The Origin of Olivine B-Type Fabric in Naturally Deformed Peridotite: Insight from the Ronda Large-Scale Mantle Shear Zone (spain)

    NASA Astrophysics Data System (ADS)

    Précigout, J.; Hirth, G.

    2011-12-01

    Strain-induced olivine Lattice Preferred Orientation (LPO) mostly controls the propagation of seismic waves in the mantle. Hence, it strongly affects the imaging of mantle structures through analyzing of elastic waves coming from deep earthquakes (Ismaïl and Mainprice, 1998). Understanding the relationships between mantle deformation and olivine LPO is thus crucial to objectively interpret the deep mantle structures. Here, based on detailed documentation of olivine LPOs in the Ronda peridotite (southern Spain), we provide evidences of flow-normal a-axis LPO, i.e., B-type fabric, within a kilometer-scale ductile shear zone. This fabric occurs upon entering the shear zone and describes a progressive transition from A-type fabric (parallel-flow a-axis LPO) to B-type fabric. While B-type fabrics have been described from several localities, to our knowledge this is the first olivine fabric transition ever observed in naturally deformed peridotites. Furthermore, while the olivine fabric strength (Jindex) increases in the A-type fabric domain towards the center of the shear zone, the Jindex progressively decreases in the B-type fabric domain. Based on deformation experiments, A-type fabric occurs during high-temperature/low-stress deformation of anhydrous olivine aggregates (Jung and Karato, 2001). In contrast, the B-type fabrics have been observed under a wide range of conditions: 1) at high-temperature/low stress conditions in the presence of melt (Kohlstedt and Holtzman, 2009); 2) at high-stress in the presence of water (Jung and Karato, 2001); 3) under dry conditions at very high pressure (> 3 GPa; Jung et al., 2009); and 4) during diffusion-creep in the presence of orthopyroxene (Sundberg and Cooper, 2008). In our natural example, we conclude that the B-type fabric arises from enhancing diffusion creep at the expense of dislocation creep, because: 1) the B-type fabric is observed to overprint the typical fabric of anhydrous peridotite (A-type), 2) the Ronda

  17. The Black Mountain tectonic zone--a reactivated northeast-trending crustal shear zone in the Yukon-Tanana Upland of east-central Alaska: Chapter D in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    O'Neill, J. Michael; Day, Warren C.; Alienikoff, John N.; Saltus, Richard W.; Gough, Larry P.; Day, Warren C.

    2007-01-01

    The Black Mountain tectonic zone in the YukonTanana terrane of east-central Alaska is a belt of diverse northeast-trending geologic features that can been traced across Black Mountain in the southeast corner of the Big Delta 1°×3° degree quadrangle. Geologic mapping in the larger scale B1 quadrangle of the Big Delta quadrangle, in which Black Mountain is the principal physiographic feature, has revealed a continuous zone of normal and left-lateral strikeslip high-angle faults and shear zones, some of which have late Tertiary to Quaternary displacement histories. The tectonic zone includes complexly intruded wall rocks and intermingled apophyses of the contiguous mid-Cretaceous Goodpaster and Mount Harper granodioritic plutons, mafic to intermediate composite dike swarms, precious metal mineralization, early Tertiary volcanic activity and Quaternary fault scarps. These structures define a zone as much as 6 to 13 kilometers (km) wide and more than 40 km long that can be traced diagonally across the B1 quadrangle into the adjacent Eagle 1°×3° quadrangle to the east. Recurrent activity along the tectonic zone, from at least mid-Cretaceous to Quaternary, suggests the presence of a buried, fundamental tectonic feature beneath the zone that has influenced the tectonic development of this part of the Yukon-Tanana terrane. The tectonic zone, centered on Black Mountain, lies directly above a profound northeast-trending aeromagnetic anomaly between the Denali and Tintina fault systems. The anomaly separates moderate to strongly magnetic terrane on the northwest from a huge, weakly magnetic terrane on the southeast. The tectonic zone is parallel to the similarly oriented left-lateral, strike-slip Shaw Creek fault zone 85 km to the west.

  18. Activity-related redistribution of presynaptic proteins at the active zone.

    PubMed

    Tao-Cheng, J-H

    2006-09-01

    Immunogold labeling distributions of seven presynaptic proteins were quantitatively analyzed under control conditions and after high K+ depolarization in excitatory synapses from dissociated rat hippocampal cultures. Three parallel zones in presynaptic terminals were sampled: zones I and II, each about one synaptic vesicle wide extending from the active zone; and zone III, containing a distal pool of vesicles up to 200 nm from the presynaptic membrane. The distributions of SV2 and synaptophysin, two synaptic vesicle integral membrane proteins, generally followed the distribution of synaptic vesicles, which were typically evenly distributed under control conditions and had a notable depletion in zone III after stimulation. Labels of synapsin I and synuclein, two synaptic vesicle-associated proteins, were similar to each other; both were particularly sparse in zone I under control conditions but showed a prominent enrichment toward the active zone, after stimulation. Labels of Bassoon, Piccolo and RIM 1, three active zone proteins, had very different distribution profiles from one another under control conditions. Bassoon was enriched in zone II, Piccolo and RIM 1 in zone I. After stimulation, Bassoon and Piccolo remained relatively unchanged, but RIM 1 redistributed with a significant decrease in zone I, and increases in zones II and III. These results demonstrate that Bassoon and Piccolo are stable components of the active zone while RIM 1, synapsin I and synuclein undergo dynamic redistribution with synaptic activity.

  19. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; P<0.05) at all examined time points (2 to 24 hours). mRNA half-life studies showed that this response was not due to increased mRNA instability. tPA mRNA expression was decreased (to 10% of stationary control; P<0.05) by low shear stress after 12 hours of exposure and was increased (to 250% of stationary control; P<0.05) after 24 hours at high shear stress. The same trends in PAR-1 mRNA levels were observed in rat smooth muscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  20. Fault Slip Partitioning in the Eastern California Shear Zone-Walker Lane Belt: Pliocene to Late Pleistocene Contraction Across the Mina Deflection

    NASA Astrophysics Data System (ADS)

    Lee, J.; Stockli, D.; Gosse, J.

    2007-12-01

    Two different mechanisms have been proposed for fault slip transfer between the subparallel NW-striking dextral- slip faults that dominant the Eastern California Shear Zone (ECSZ)-Walker Lane Belt (WLB). In the northern WLB, domains of sinistral-slip along NE-striking faults and clockwise block rotation within a zone of distributed deformation accommodated NW-dextral shear. A somewhat modified version of this mechanism was also proposed for the Mina deflection, southern WLB, whereby NE-striking sinistral faults formed as conjugate faults to the primary zone of NW-dextral shear; clockwise rotation of the blocks bounding the sinistral faults accommodated dextral slip. In contrast, in the northern ECSZ and Mina deflection, domains of NE-striking pure dip-slip normal faults, bounded by NW-striking dextral-slip faults, exhibited no rotation; the proposed mechanism of slip transfer was one of right-stepping, high angle normal faults in which the magnitude of extension was proportional to the amount of strike-slip motion transferred. New geologic mapping, tectonic geomorphologic, and geochronologic data from the Queen Valley area, southern Mina deflection constrain Pliocene to late Quaternary fault geometries, slip orientations, slip magnitudes, and slip rates that bear on the mechanism of fault slip transfer from the relatively narrow northern ECSZ to the broad deformation zone that defines the Mina deflection. Four different fault types and orientations cut across the Queen Valley area: (1) The NE-striking normal-slip Queen Valley fault; (2) NE-striking sinistral faults; (3) the NW-striking dextral Coyote Springs fault, which merges into (4) a set of EW-striking thrust faults. (U-Th)/He apatite and cosmogenic radionuclide data, combined with magnitude of fault offset measurements, indicate a Pliocene to late Pleistocene horizontal extension rate of 0.2-0.3 mm/yr across the Queen Valley fault. Our results, combined with published slip rates for the dextral White Mountain

  1. Measuring the activities of higher organisms in activated sludge by means of mechanical shearing pretreatment and oxygen uptake rate.

    PubMed

    Hao, Xiaodi; Wang, Qilin; Cao, Yali; van Loosdrecht, Mark C M

    2010-07-01

    A pretreatment method was developed to assess the activities of higher organisms. The method is based on mechanical shearing to damage the large cells of the protozoan and metazoan community in activated sludge. The procedure was confirmed through experimentation to be effective in determining the activities of higher organisms by comparing oxygen uptake rates (OURs) before and after the higher organisms were eradicated. Shearing led to disintegration of flocs, which could be effectively reconstituted by centrifugation. The reconstitution of the sludge flocs was essential since otherwise the activity of the floc mass would be too high due to lack of diffusion limitation. Mechanical shearing had no influence on the morphology, quantity and specific activity of yeasts, and it was inferred that bacteria smaller than yeasts in size would also not be influenced by the applied shearing procedure. Moreover, the effect of filamentous organisms on the measured activities of higher organisms was experimentally demonstrated and analyzed, and determined to be so weak that it could be ignored. Based on these tests, five typical activated sludge processes were selected to measure the contribution of higher organisms to the original OUR. The measured activities of higher organisms ranged from 9.4 to 25.0% of the original OURs.

  2. Orbital fluid shear stress promotes osteoblast metabolism, proliferation and alkaline phosphates activity in vitro

    SciTech Connect

    Aisha, M.D.; Nor-Ashikin, M.N.K.; Sharaniza, A.B.R.; Nawawi, H.; Froemming, G.R.A.

    2015-09-10

    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases. - Highlights: • OFS stress transmits anabolic signals to osteoblasts. • Actin and tubulin fibers are rearranged under OFS stress. • OFS stress increases mitochondrial metabolism and proliferation. • Reduced RANKL/OPG ratio in response to OFS inhibits osteoclastogenesis. • OFS stress prevents apoptosis and stimulates ALP and OCN.

  3. Diabatic heating profiles over the continental convergence zone during the monsoon active spells

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Rajib; Sur, Sharmila; Joseph, Susmitha; Sahai, A. K.

    2013-07-01

    The present paper aims to bring out the robust common aspects of spatio-temporal evolution of diabatic heating during the monsoon intraseasonal active phases over the continental tropical convergence zone (CTCZ). The robustness of spatio-temporal features is determined by comparing the two state-of-the art reanalyses: NCEP Climate Forecast System reanalysis and Modern ERA Retrospective Analysis. The inter-comparison is based on a study period of 26 years (1984-2009). The study confirms the development of deep heating over the CTCZ region during the active phase and is consistent between the two datasets. However, the detailed temporal evolution of the vertical structure (e.g., vertical tilts) of heating differs at times. The most important common feature from both the datasets is the significant vertical redistribution of heating with the development of shallow (low level) heating and circulation over the CTCZ region 3-7 days after the peak active phase. The shallow circulation is found to be associated with increased vertical shear and relative vorticity over certain regions in the subcontinent. This increased vertical shear and relative vorticity in the lower levels could be crucial in the sustenance of rainfall after the peak active phase. Model experiments with linear dynamics affirm the role of shallow convection in increasing the lower level circulation as observed.

  4. Major shear zones of southern Brazil and Uruguay: escape tectonics in the eastern border of Rio de La plata and Paranapanema cratons during the Western Gondwana amalgamation

    NASA Astrophysics Data System (ADS)

    Passarelli, C. R.; Basei, M. A. S.; Wemmer, K.; Siga, O.; Oyhantçabal, P.

    2011-04-01

    The Mantiqueira Province represents a series of supracrustal segments of the South-American counterpart formed during the Gondwana Supercontinent agglutination. In this crustal domain, the process of escape tectonics played a conspicuous role, generating important NE-N-S-trending lineaments. The oblique component of the motions of the colliding tectonic blocks defined the transpressional character of the main suture zones: Lancinha-Itariri, Cubatão-Arcádia-Areal, Serrinha-Rio Palmital in the Ribeira Belt and Sierra Ballena-Major Gercino in the Dom Feliciano Belt. The process as a whole lasted for ca. 60 Ma, since the initial collision phase until the lateral escape phase predominantly marked by dextral and subordinate sinistral transpressional shear zones. In the Dom Feliciano Belt, southern Brazil and Uruguay, transpressional event at 630-600 Ma is recognized and in the Ribeira Belt, despite less coevally, the transpressional event occurred between 590 and 560 Ma in its northern-central portion and between ca. 625 and 595 Ma in its central-southern portion. The kinematics of several shear zones with simultaneous movement in opposite directions at their terminations is explained by the sinuosity of these lineaments in relation to a predominantly continuous westward compression.

  5. Significant Accommodation of NW-Directed Right Lateral Shear Across the Northern Walker Lane, Nevada by the Pyramid Lake Fault Zone

    NASA Astrophysics Data System (ADS)

    Briggs, R. W.; Wesnousky, S. G.

    2002-12-01

    Geodetic measurements indicate that 4-8 mm/year of northwest directed, right lateral shear is accumulating across the northern Walker Lane at the latitude of Reno, Nevada (Thatcher et al., 1999). The Pyramid Lake fault zone is located at the latitude of Reno within the northern Walker Lane. The northwest trending, right lateral fault exhibits features typical of strike slip faults, including laterally offset geomorphic features, opposite-facing scarps, and linear ridges and depressions. The fault zone is ideally oriented to accommodate northwest directed right lateral shear. Measurements of laterally offset geomorphic features, including channel thalwegs, channel banks, and prominent ridges are interpreted to show the fault slip rate is at minimum 1mm/yr and probably >=3 mm/yr during the latest Pleistocene and Holocene. Thus the Pyramid Lake fault zone appears to accommodate a significant portion (40-75%) of the geodetically measured strain at its latitude across the northern Walker Lane. Radiocarbon and tephra collected from trench exposures are placing limits on the recurrence and recency of rupture along the fault.

  6. Exhumation history of a shear zone constrained by microstructural and fluid inclusion techniques: an example from the Satluj valley, NW Himalaya, India

    NASA Astrophysics Data System (ADS)

    Pandey, Anand K.; Sachan, H. K.; Virdi, N. S.

    2004-07-01

    The regional structures, rock microstructures and fluid inclusion trail patterns have been employed to determine the evolution of the Jakhri Thrust Zone (JTZ). The JTZ is a break back thrust cutting across the folded Lesser Himalayan Crystalline nappe and is best exposed in the Kulu-Rampur window zone of the NW Himalaya. The microstructures in the JTZ suggest SW directed ductile shearing and a progressively decreasing finite strain away from the thrust in the footwall. The quartz recrystallization, microstructures and presence of chlorite in the thrust zone indicate lower greenschist facies P-T conditions during deformation. The microstructures and fluid inclusion trails (secondary) show analogous patterns suggesting that the latter would have formed by the healing of microfractures during shearing in the footwall. The microthermic studies on these fluid inclusions suggest that the CO 2-H 2O inclusions have been emplaced and reequilibrated during peak deformation whereas the H 2O-NaCl inclusions reequilibrated during footwall exhumation. The density and salinity of fluid inclusions were also reset during the same exhumation. The isochores of CO 2-H 2O and H 2O-NaCl inclusions in the greenschist facies suggest an isothermal exhumation path from a depth of ˜15 to 17 km, assuming lithostatic pressure conditions. These results in the JTZ emphasize the utility of fluid inclusions in tectonic studies.

  7. Variable quartz lattice preferred orientation patterns within a mylonite from the Rockfish Valley Shear Zone of the Central Virginia Blue Ridge

    NASA Astrophysics Data System (ADS)

    Rahl, J. M.; Wala, V. T.; Roth, K. A.; Skemer, P. A.

    2013-12-01

    The lattice preferred orientation (LPO) patterns that develop during strain reflect deformation conditions, such as strain magnitude, shear sense, and deformation temperature. We present quartz LPO results from a suite of samples collected from a single mylonitic outcrop in the Rockfish Valley Shear Zone in the Blue Ridge of Virginia. In these rocks, quartz occurs both within elongate recrystallized ribbons and as isolated porphyroclasts, typically 250-500 μm long, surrounded by a mica-rich matrix. The quartz LPO patterns reveal a wide range of fabrics despite origination from a single outcrop. In the highly recrystallized ribbons and in some isolated porphyroclasts, well-developed c-axis fabrics are consistent with basal slip. In contrast, other isolated porphyroclasts show lower degrees of crystallization and LPO fabrics are strong but randomly oriented with respect to the macroscopic foliation. We interpret these fabrics to represent the orientation of the porphyroclast prior to deformation. In still other porphyroclasts, fabrics are less well-developed and appear transitional between an initial crystal orientation and the well-developed fabric observed in the highly recrystallized ribbons. Together, these observations suggest that quartz LPO patterns within individual porphyroclasts evolve towards a steady state fabric at different rates, even within samples that share a deformational and temperature history. Possible explanations for the variable recrystallization among these individual porphyroclasts are heterogeneous strain within the sample and/or orientation effects. We infer that ductile shear zones with abundant quartz and mica may require extremely large shear strains in order to reach rheological steady state.

  8. Subsurface biological activity zone detection using genetic search algorithms

    SciTech Connect

    Mahinthakumar, G.; Gwo, J.P.; Moline, G.R.; Webb, O.F.

    1999-12-01

    Use of generic search algorithms for detection of subsurface biological activity zones (BAZ) is investigated through a series of hypothetical numerical biostimulation experiments. Continuous injection of dissolved oxygen and methane with periodically varying concentration stimulates the cometabolism of indigenous methanotropic bacteria. The observed breakthroughs of methane are used to deduce possible BAZ in the subsurface. The numerical experiments are implemented in a parallel computing environment to make possible the large number of simultaneous transport simulations required by the algorithm. The results show that genetic algorithms are very efficient in locating multiple activity zones, provided the observed signals adequately sample the BAZ.

  9. Integrating GIS-based geologic mapping, LiDAR-based lineament analysis and site specific rock slope data to delineate a zone of existing and potential rock slope instability located along the grandfather mountain window-Linville Falls shear zone contact, Southern Appalachian Mountains, Watauga County, North Carolina

    USGS Publications Warehouse

    Gillon, K.A.; Wooten, R.M.; Latham, R.L.; Witt, A.W.; Douglas, T.J.; Bauer, J.B.; Fuemmeler, S.J.

    2009-01-01

    Landslide hazard maps of Watauga County identify >2200 landslides, model debris flow susceptibility, and evaluate a 14km x 0.5km zone of existing and potential rock slope instability (ZEPRSI) near the Town of Boone. The ZEPRSI encompasses west-northwest trending (WNWT) topographic ridges where 14 active/past-active rock/weathered rock slides occur mainly in rocks of the Grandfather Mountain Window (GMW). The north side of this ridgeline is the GMW / Linville Falls Fault (LFF) contact. Sheared rocks of the Linville Falls Shear Zone (LFSZ) occur along the ridge and locally in the valley north of the contact. The valley is underlain principally by layered granitic gneiss comprising the Linville Falls/Beech Mountain/Stone Mountain Thrust Sheet. The integration of ArcGIS??? - format digital geologic and lineament mapping on a 6m LiDAR (Light Detecting and Ranging) digital elevation model (DEM) base, and kinematic analyses of site specific rock slope data (e.g., presence and degree of ductile and brittle deformation fabrics, rock type, rock weathering state) indicate: WNWT lineaments are expressions of a regionally extensive zone of fractures and faults; and ZEPRSI rock slope failures concentrate along excavated, north-facing LFF/LFSZ slopes where brittle fabrics overprint older metamorphic foliations, and other fractures create side and back release surfaces. Copyright 2009 ARMA, American Rock Mechanics Association.

  10. Cell-Activation by Shear Stresses in Abdominal Aortic Aneurysms (AAA)

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Sparks, Steven; Chomaz, Jean-Marc; Lasheras, Juan C.

    2003-11-01

    Increasing experimental evidence indicates that low and oscillatory shear stresses promote proliferative, thrombotic, adhesive and inflammatory-mediated degenerative conditions throughout the wall of the aorta. These degenerative conditions have been shown to be involved in the pathogenesis of AAAs, a permanent, localized dilatation of the abdominal aorta. The purpose of this study is to measure both the magnitude and the duration of the shear stresses acting on both the arterial walls and on the blood cells inside AAAs, and to characterize their changes as the AAA enlarges. We conducted a parametric in-vitro study of the pulsatile blood flow in elastic models of AAAs while systematically varying the blood flow parameters, and the geometry of the aneurysm's bulging. The instantaneous flow characteristic inside the AAA was measured using DPIV at a sampling rate of 15 Hertz. A "cell-activation parameter" defined as the integral of the product of the magnitude of the shear stress and the time during which the stress acts was computed along each of the blood cell pathlines. The Lagrangian tracking of the blood cells shows that a large majority of them are subjected first to very high level of shear-induced "cell-activation" while later on they are entrained in regions of stasis where their residence time can increase up to several cardiac cycles. This cell-activation followed by the entrainment in low shear regions creates the optimal cell-adhesive and inflammatory-mediated degenerative conditions that are postulated to play an important role in the etiology and progressive enlargement of AAAs.

  11. Microstructural and mineral analysis on the fault gouge in the coseismic shear zone of the 2008 M w 7.9 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Yuan, Ren-mao; Zhang, Bing-liang; Xu, Xi-wei; Lin, Chuan-yong; Han, Zhu-jun

    2015-07-01

    The 2008 M w 7.9 Wenchuan earthquake formed two coseismic surface rupture zones with the trend of N35°E, known as the Beichuan-Yingxiu rupture and the Pengguan rupture. The Beichuan-Yingxiu rupture is the principle one with abundant fault gouge development along its length. In the exploratory trench at the Saba village along the Beichuan-Yingxiu rupture, the new fault gouge zone is only ~3 mm wide, which suggests that fault slip was constrained in a very narrow zone. In this study, we thus carried out detailed microstructural and mineral component analysis on the oriented fault gouge samples from the Saba exploratory trench to understand their features and geological implication. The results show that different microstructures of localized brittle deformation can be observed in the fault gouges, including Y-shear, R1-shear, R2-shear, P-shear as well as tension fracture, bookshelf glided structure and so on. These microstructures are commonly recognized as the product of seismic fault slipping. Furthermore, within the area between two parallel Y-shears of the fault gouge, a few of microstructures of distributed ductile deformations were developed, such as P-foliation, elongation and asymmetrical trailing structure of detrital particles. The microstructure features of fault gouges implicate the thrust movement of the fault during the Wenchuan earthquake. In addition, the fault gouge has less quartz and feldspar and more clay than the surrounding rocks, which indicates that some quartz and feldspar in the surrounding rocks were transformed into clay, whereas the fault gouge has more illite and less illite/montmorillonite mixed layers than the surrounding rocks, which shows that the illite/montmorillonite mixed layer was partly converted into illite due to temperature increasing induced by coseismic fault slipping friction (also being affected partly by the chemical action of solutions). Such microstructures features and mineral component changes recorded the

  12. Domainal fabrics of hematite in schistose, shear zone-hosted high-grade Fe ores: The product of the interplay between deformation and mineralization

    NASA Astrophysics Data System (ADS)

    Rosière, Carlos A.; Garcia, Orlando L.; Siemes, Heinrich; Schaeben, Helmut

    2013-10-01

    Schistose high-grade hematite orebodies (>64 wt % Fe) in the Iron Quadrangle, Minas Gerais, were formed in shear zones by hydrothermal alteration of the Paleoproterozoic Cauê BIF during the Transamazonian orogenesis. The ore is comprised of platy hematite (specularite) grains that define the foliation and overprint a relict banded martite-hematite fabric resembling, at first sight, a mylonite. The EBSD analyses of a m-scale schistose orebody from the Pau Branco mine show that specularite grew as elongated plates with the (00.1) plane parallel to the foliation. The population of the measured grain aspect ratio (GAR) is homogenous in different scales, and the longest axes of the crystals align with the stretching lineation (L//X) building continuous domains, or anastomose around stretched iron oxide aggregates and rootless fold hinges. The pole figure of the (00.1) plane shows usually a maximum centered on the pole of the foliation Z often elongated on a girdle perpendicular to the lineation L. The {10.4} pole figure has the configuration of a symmetric cleft girdle and the corresponding {11.0} and {10.0} pole figures present well developed girdles parallel to the foliation with an elongated maximum centered on X. Microstructures associated with crystal-plastic behavior and dynamic recrystallization are missing and the fabric of the orebody probably results from precipitation of strain-controlled oriented hematite plates and anisotropic syntaxial growth of favorably oriented grains with the intervention of hydrothermal fluids during Fe enrichment. The shear zone provided pathways for the percolation of mineralizing fluids under temperatures that varied from 140 to 350 °C or higher, under ductile or ductile-brittle conditions. The orthorhombic fabric and CPO (crystallographic preferred orientation) of the ore nevertheless contrast with the asymmetry of simple shear as observed in the torsion experiments by Siemes et al. (2010, 2011), probably due to volume loss and

  13. Synkinematic high-K calc-alkaline plutons associated with the Pan-African Central Cameroon shear zone (W-Tibati area): Petrology and geodynamic significance

    NASA Astrophysics Data System (ADS)

    Njanko, Théophile; Nédélec, Anne; Affaton, Pascal

    2006-04-01

    Four plutons from the W-Tibati area of central Cameroon crop out in close relationships with the Pan-African Adamawa ductile shear zone (Central Cameroon Shear Zone: CCSZ). These plutons include diorites, tonalites, granodiorites and granites, and most of them are porphyritic due to the abundance of pink K-feldspar megacrysts. Syn-kinematic magma emplacement is demonstrated by the elongate shape of the plutons and by magmatic and ductile (gneissic) foliations that strike parallel to or at a low angle with the CCSZ; the foliation obliquity is consistent with dextral transcurrent tectonics. Whole-rock geochemistry points to high-K calc-alkaline to shoshonitic magmatism. Mixing-mingling features can be observed in the field. However, fractional crystallization of plagioclase, amphibole, biotite (+ K-feldspar in the more felsic compositions) appears to have played a dominant role in the magmatic differentiation processes, as confirmed by mass balance calculations based on major elements. Isotopic signatures suggest that the magmas may have originated from different sources, i.e. either from a young mafic underplate for most magmas with ɛNdi(600 Ma) around -1 to -2 and Sri (600 Ma) around 0.705, or from an enriched lithospheric mantle for some diorites with ɛNdi(600 Ma) at -6 and Sri (600 Ma) at 0.7065; mixing with young crustal component is likely. The plutonic rocks of W-Tibati are similar to other Pan-African high-K calk-alkaline syn-kinematic plutons in western Cameroon. They also display striking similarities with high-K calk-alkaline plutons associated with the Patos and Pernambuco shear zones of the Borborema province in NE Brazil.

  14. A Correlation Between Length of Strong-Shear Neutral Lines and Total X-Ray Brightness in Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.

    1997-01-01

    From a sample of 7 MSFC vector magnetograms,of active regions and 17 Yohkoh SXT soft X-ray images of these active regions, we have found that the total x-ray brightness of an entire active region is correlated with the total length of neutral lines on which the magnetic field is both strong (less than 250 G) and strongly sheared (shear angle greater than 75 deg) in the same active region. This correlation, if not fortuitous, is additional evidence of the importance of strong-shear strong-field neutral lines to strong heating in active regions.

  15. In-situ tracer tests and models developed to understand flow paths in a shear zone at the Grimsel Test Site, Switzerland

    NASA Astrophysics Data System (ADS)

    Blechschmidt, I.; Martin, A. J.

    2012-12-01

    The Grimsel Test Site (www.grimsel.com) is an international underground research laboratory excavated at a depth of 450m below the surface in the crystalline Aare Massif of southern Switzerland in 1984. It is operated and owned by the National Cooperative for the Disposal of Radioactive Waste of Switzerland (NAGRA) which is the organization responsible for managing and researching the geological disposal of all types of radioactive wastes originating in Switzerland. One experiment, the Colloid Formation and Migration test (CFM*), is an ongoing in-situ migration test started in 2004 to study colloid facilitated transport behavior of radionuclides through a shear zone. The importance of colloid transport in the context of a radioactive waste repository is that it provides a mechanism for potentially enhancing the advective transport of radionuclides. The montmorillonite clays that are planned to be used as an engineered barrier around the radioactive waste in many repository concepts may be a source of such colloids under specific hydraulic and/or chemical boundary conditions. The CFM project includes an integrated programme of field testing, laboratory studies and modelling/interpretation. The field tests are performed in a shear zone where the natural outflow has been controlled by a tunnel packer system and flow is monitored with an array of boreholes drilled for CFM and previous experiments at the site. The flow field is controlled by a low-rate extraction from a surface packer. The controlled low-rate extraction creates a region of low hydraulic gradients and fluid velocity within the shear zone, suitable for study under repository-relevant or other geo-resource relevant conditions. Here we present a summary of the migration tracer tests carried out so far to understand the hydraulic properties and transport characteristics of the shear zone using both stable and radioactive (Na-22, Cs-137, Ba-133, Th-232, Np-237, Am-243, Pu-242) tracers as well as colloids, and

  16. Combination of spaceborne radar interferometry (DEM) and Landsat TM imageries contributing to recent tectonic and geology studies in the Aswa lineament shear zone (Sudan)

    NASA Astrophysics Data System (ADS)

    Volon, Carole; Kervyn, Francois; Slob, Siefko; Derauw, Dominique

    1998-10-01

    Until recently, the Aswa lineament shear zone in Uganda and Sudan was considered to be tectonically at rest but the 1990- 1991 seismic events triggered a renewal of interest in this area. Using ERS1 - ERS2 tandem covering the area where earthquakes were observed, we have generated a high resolution Digital Elevation Model (DEM) which provides a good quality reference to analyze the geomorphology and the drainage patterns, in order to extract valuable tectonic information. Then, the combination of spaceborne radar interferometry and Landsat TM imagery contributes to a better understanding of the geological and tectonic phenomena of the studied area.

  17. Pseudotachylyte in the Bench Canyon Shear Zone, central Sierra Nevada, California: Frictional melting in the brittle and semi-brittle fields

    SciTech Connect

    McNulty, B.A. )

    1993-04-01

    Many aspects of pseudotachylyte are controversial, particularly whether it is the product of intense comminution (e.g. ultracataclasite'') or frictional melting. Ubiquitous exposures of pseudotachylyte in the Bench Canyon shear Zone (BCSZ), central Sierra Nevada, California, provide an excellent opportunity for further study. Scanning electron microscopy (SEM) reveals vesicles, amygdules, crystallites and embayments of microxenocrysts, textures which are supportive of a melt origin for pseudotachylyte in the BCAZ. EDS and microprobe analyses indicate strong compositional contrasts between pseudotachylyte and granodiorite host; one explanation for this is preferential melting in order of individual mineral melting points.

  18. Strain-dependent evolution of garnets in a high pressure ductile shear zone using Synchroton x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Macente, Alice; Fusseis, Florian; Menegon, Luca; John, Timm

    2016-04-01

    Synkinematic reaction microfabrics carry important information on the kinetics, timing and rheology of tectonometamorphic processes. Despite being routinely interpreted in metamorphic and structural studies, reaction and deformation microfabrics are usually described in two dimensions. We applied Synchrotron-based x-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in 3D. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway) previously described by John et al., (2009), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets. Our microtomographic data allowed us to quantify changes to the garnet volume, their shapes and their spatial arrangement. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analyses to correlate mineral composition and orientation data with the x-ray absorption signal of the same mineral grains. This allowed us to extrapolate our interpretation of the metamorphic microfabric evolution to the third dimension, effectively yielding a 4-dimensional dataset. We found that: - The x-ray absorption contrast between individual mineral phases in our microtomographic data is sufficient to allow the same petrographic observations than in light- and electron microscopy, but extended to 3D. - Amongst the major constituents of the synkinematic reactions, garnet is the only phase that can be segmented confidently from the microtomographic data. - With increasing deformation, the garnet volume increases from about 9% to 25%. - Garnet coronas in the gabbros never completely encapsulate olivine grains. This may indicate that the reaction progressed preferentially in some directions, but also leaves pathways for element transport to and from the olivines that are

  19. Preliminary Interpretation of a Radionuclide and Colloid Tracer Test in a Granodiorite Shear Zone at the Grimsel Test Site, Switzerland

    SciTech Connect

    Reimus, Paul W.

    2012-08-30

    In February and March 2012, a tracer test involving the injection of a radionuclide-colloid cocktail was conducted in the MI shear zone at the Grimsel Test Site, Switzerland, as part of the Colloids Formation and Migration (CFM) project. The colloids were derived from FEBEX bentonite, which is mined in Spain and is being considered as a potential waste package backfill in a Spanish nuclear waste repository. The tracer test, designated test 12-02 (second test in 2012), involved the injection of the tracer cocktail into borehole CFM 06.002i2 and extraction from the Pinkel surface packer at the main access tunnel wall approximately 6.1 m from the injection interval. The test configuration is depicted in Figure 1. This configuration has been used in several conservative tracer tests and two colloid-homologue tracer tests since 2007, and it is will be employed in an upcoming test involving the emplacement of a radionuclide-doped bentonite plug into CFM 06.002i2 to evaluate the swelling and erosion of the bentonite and the transport of bentonite colloids and radionuclides from the source to the extraction point at the tunnel wall. Interpretive analyses of several of the previous tracer tests, from 09-01 through 12-02 were provided in two previous Used Fuel Disposition Program milestone reports (Arnold et al., 2011; Kersting et al., 2012). However, only the data for the conservative tracer Amino-G Acid was previously analyzed from test 12-02 because the other tracer data from this test were not available at the time. This report documents the first attempt to quantitatively analyze the radionuclide and colloid breakthrough curves from CFM test 12-02. This report was originally intended to also include an experimental assessment of colloid-facilitated transport of uranium by bentonite colloids in the Grimsel system, but this assessment was not conducted because it was reported by German collaborators at the Karlsruhe Institute of Technology (KIT) that neither uranium nor

  20. Endothelial cell activation by hemodynamic shear stress derived from arteriovenous fistula for hemodialysis access.

    PubMed

    Franzoni, Marco; Cattaneo, Irene; Longaretti, Lorena; Figliuzzi, Marina; Ene-Iordache, Bogdan; Remuzzi, Andrea

    2016-01-01

    Intimal hyperplasia (IH) is the first cause of failure of an arteriovenous fistula (AVF). The aim of the present study was to investigate the effects on endothelial cells (ECs) of shear stress waveforms derived from AVF areas prone to develop IH. We used a cone-and-plate device to obtain real-time control of shear stress acting on EC cultures. We exposed human umbilical vein ECs for 48 h to different shear stimulations calculated in a side-to-end AVF model. Pulsatile unidirectional flow, representative of low-risk stenosis areas, induced alignment of ECs and actin fiber orientation with flow. Shear stress patterns of reciprocating flow, derived from high-risk stenosis areas, did not affect EC shape or cytoskeleton organization, which remained similar to static cultures. We also evaluated flow-induced EC expression of genes known to be involved in cytoskeletal remodeling and expression of cell adhesion molecules. Unidirectional flow induced a significant increase in Kruppel-like factor 2 mRNA expression, whereas it significantly reduced phospholipase D1, α4-integrin, and Ras p21 protein activator 1 mRNA expression. Reciprocating flow did not increase Kruppel-like factor 2 mRNA expression compared with static controls but significantly increased mRNA expression of phospholipase D1, α4-integrin, and Ras p21 protein activator 1. Reciprocating flow selectively increased monocyte chemoattractant protein-1 and IL-8 production. Furthermore, culture medium conditioned by ECs exposed to reciprocating flows selectively increased smooth muscle cell proliferation compared with unidirectional flow. Our results indicate that protective vascular effects induced in ECs by unidirectional pulsatile flow are not induced by reciprocating shear forces, suggesting a mechanism by which oscillating flow conditions may induce the development of IH in AVF and vascular access dysfunction. PMID:26497959

  1. Development of discrete aggregates of recrystallization along micro-shear zones in quartz ribbons during multistage ductile evolution of a quartz vein

    NASA Astrophysics Data System (ADS)

    Ceccato, Alberto; Pennacchioni, Giorgio; Bestmann, Michel

    2016-04-01

    The post-magmatic ductile deformation of the Rieserferner pluton (Eastern Alps) includes localized ductile shear zones exploiting a set of joint-filling quartz veins. These deformed veins show different stages of evolution, from coarse grained vein quartz to the fine grained recrystallized aggregates of ultramylonites, locally recorded in different domains of heterogeneously sheared veins. The microstructural evolution includes, with increasing strain: (i) Development of ribbon mylonites consisting of elongated grains, oblique to the shear zone boundary, derived from different quartz veins crystals. The individual ribbons have different crystallographic orientations and aspect ratios. (ii) Dismantling of ribbons along a fracture-like network of fine grained recrystallized quartz aggregates, that commonly represent micro-shear zones (μSZ). These discrete recrystallization zones are preferentially developed in ribbons whose crystallographic axis is oriented either parallel or normal to ribbon elongation. (iii) Extensive dynamic recrystallization to fine-grained (10-20 μm) aggregates leading to quartz ultramylonites. Typically ultramylonites show a layered texture with bands having different crystallographic preferred orientation (CPO) that probably reflect the original heterogeneity in crystallographic orientations of the vein. Electron backscattered diffraction analysis indicates that the μSZ within quartz ribbons are mainly parallel to {r} or {z} planes of the host grain, and the new grain inside μSZ show a weak CPO with their basal plane parallel to the μSZ boundary. There is no systematic relationships between the Dauphiné twinning and the μSZ. Misorientation analysis suggests that in the host grain dislocation creep is dominant on {m} slip system, whereas it is probably a minor mechanism within μSZ. Subgrains and low-angle boundaries (LAB) are heterogeneously developed at the border of the μSZ, and more commonly occur around the tips of

  2. Increase in Mechanical Resistance to Force in a Shear-Activated Protein

    NASA Astrophysics Data System (ADS)

    Botello, Eric; Harris, Nolan; Choi, Huiwan; Zhou, Zhou; Bergeron, Angela; Dong, Jing-Fei; Kiang, Ching-Hwa

    2009-03-01

    von Willebrand factor (VWF) is the largest multimeric adhesion ligand found in human blood. Plasma VWF (pVWF) must be exposed to shear stress, like at sites of vascular injury, to be activated to bind platelets to induce blood clotting. In addition, adhesion activity of VWF is related to its polymer size, with the ultra-large form of VWF (ULVWF) being hyper-active, and forming fibers even without exposure to shear stress. We used the AFM to stretch pVWF, sheared VWF (sVWF) and ULVWF, and monitor the forces as a function of molecular extension. We showed a similar increase in force resistance to unfolding for sVWF and ULVWF when compared to pVWF. The increase in force is reduced when other molecules that are known to disrupt their fibril formation are present. Our results provide evidence that the common higher order structure of sVWF and ULVWF may affect the domain structure that causes difference in their adhesion activity compared to pVWF.

  3. Chemical and sulphur isotope compositions of pyrite in the Jaduguda U (-Cu-Fe) deposit, Singhbhum shear zone, eastern India: Implications for sulphide mineralization

    NASA Astrophysics Data System (ADS)

    Pal, Dipak C.; Sarkar, Surajit; Mishra, Biswajit; Sarangi, A. K.

    2011-06-01

    The Jaduguda U (-Cu-Fe) deposit in the Singhbhum shear zone has been the most productive uranium deposit in India. Pyrite occurs as disseminated grains or in sulphide stringers and veins in the ore zone. Veins, both concordant and discordant to the pervasive foliation, are mineralogically either simple comprising pyrite ± chalcopyrite or complex comprising pyrite + chalcopyrite + pentlandite + millerite. Nickel-sulphide minerals, though fairly common in concordant veins, are very rare in the discordant veins. Pyrite in Ni-sulphide association is commonly replaced by pentlandite at the grain boundary or along micro-cracks. Based on concentrations of Co and Ni, pyrite is classified as: type-A - high Co (up to 30800 ppm), no/low Ni; type-B - moderate Co (up to 16500 ppm) and moderate to high Ni (up to 32700 ppm); type-C - no/low Co and high Ni (up to 43000 ppm); type-D - neither Co nor Ni. Textural and compositional data of pyrites suggest that the hydrothermal fluid responsible for pre-/early-shearing mineralization evolved from Co-rich to Ni-rich and the late-/post-shearing fluid was largely depleted in minor elements. Sulphur isotope compositions of pyrite mostly furnish positive values ranging between -0.33 and 12.06‰. Composite samples of pyrites with only type-A compositions and mixed samples of type-A and type-B are consistently positive. However, pyrite with mixed type-A and type-C and pyrite with type-D compositions have negative values but close to 0‰. By integrating minor element and sulphur isotope compositions of pyrite in conjunction with other published data on the Jaduguda deposit, it is proposed that reduced sulphur for the precipitation of most pyrites (type-A, type-B) was likely derived from isotopically heavy modified seawater. However, some later sulphur might be magmatic in origin remobilized from existing sulphides in the mafic volcanic rocks in the shear zone.

  4. Structures, microfabrics, fractal analysis and temperature-pressure estimation of the Mesozoic Xingcheng-Taili ductile shear zone in the North China craton

    NASA Astrophysics Data System (ADS)

    Liang, Chenyue; Neubauer, Franz; Liu, Yongjiang; Jin, Wei; Zeng, Zuoxun; Bernroider, Manfred; Li, Weimin; Wen, Quanbo; Han, Guoqing; Zhao, Yingli

    2014-05-01

    The ductile shear zone in Xingcheng-Taili area (western Liaoning Province in China) is tectonically located in the eastern section of the northern margin of the North China craton, and dominantly comprises deformed granitic rocks of Neoarchean and Triassic to Late Jurassic age, which were affected by shearing within middle- to low-grade metamorphic conditions. Because a high-temperature metamorphic overprint is lacking, microstructures attesting to low-temperature ductile deformation are well preserved. However, the rocks and its structures have not been previously analyzed in detail except by U-Pb zircon dating and some geochemistry. Here, we describe the deformation characteristics and tectonic evolution of the Xingcheng-Taili ductile shear zone, in order to understand the mode of lithosphericscale reactivation, extension and thinning of the North China craton. The ductile deformation history comprises four successive deformation phases: (1) In the Neoarchean granitic rocks, a steep gneissosity and banded structures trend nearly E-W (D1). (2) A NE-striking sinistral structure of Upper Triassic rocks may indicate a deformation event (D2) in Late Triassic times, which ductile deformation structures superimposed on Neoarchean granitic rocks. (3) A gneissose structure with S-C fabrics as well as an ENE-trending sinistral strike-slip characteristic (D3) developed in Upper Jurassic biotite adamellite and show the deformation characteristics of a shallow crustal level and generated mylonitic fabrics superimposed on previous structures. (4) Late granitic dykes show different deformational behavior, and shortening with D4 folds. The attitude of the foliation S and mineral stretching lineation of three main types of rocks shows remarkable differences in orientation. The shapes of recrystallized quartz grains from three main types of granitic rocks with their jagged and indented boundaries were natural records of deformation conditions (D1to D3). Crystal preferred

  5. North Caribbean neotectonic events: The Trans-Haitian fault system. Tertiary record of an oblique transcurrent shear zone uplifted in Hispaniola

    NASA Astrophysics Data System (ADS)

    Pubellier, M.; Vila, J.-M.; Boisson, D.

    1991-08-01

    The left-lateral relative motion between the Caribbean and the North American plates has previously been inferred as occurring along a fault zone located north of Hispaniola. East of the northern Dominican Republic, a relatively linear fracture zone (the Septentrional Fault Zone, SFZ) extends into the Puerto Rico subduction zone. Similarly, south of Haiti, the trace of the inactive Enriquillo-Plantain Garden Fault Zone (EPGFZ) extends into the Muertos Trench and may represent a major fault along the plate boundary. Between these two major strike-slip fault systems, the central part of Haiti shows a diffuse fracture zone that trends N130. The chronology of deformation involves an initial Paleocene to Eocene suturing of allochthonous terranes, a Late Miocene development of a strong spaced cleavage within the late Paleocene to Late Miocene strata that overlap the terrane suture, and diffuse Pliocene to Pleistocene strike-slip faulting along traces that reactivate the older spaced cleavage planes. During the Pleistocene, basalts ranging in age from 0.4 to 1.3 Ma were extruded in pull-apart basins associated with N130-trending faults (antithetic features of the SFZ) and N30 normal faults (antecedent synthetic features of the SFZ). This event is coeval with the compression recorded at the Muertos-Beata collision front in the southwestern Dominican Republic. The most recent phase of tectonism involves strong uplifts and broad, open folding along NW-striking axes, which is consistent with the regional maximum deformation pattern predicted for E-W left-lateral shear along the North America—Caribbean plate boundary.

  6. Mineralization stages of the unique shear zone-hosted "Felsit-type" Sn-polymetallic mineralization in the eastern Erzgebirge, Germany

    NASA Astrophysics Data System (ADS)

    Járóka, Tom; Seifert, Thomas

    2014-05-01

    The polymetallic cassiterite-bearing mineralization of the "Felsit-type" is located in the NW of the Freiberg mining district within the Großschirma area. The mineralization is hosted by metamorphic rocks of the Preßnitzer Group unit that form the most northeastern part of the Erzgebirge metamorphic core complex. This geological unit is in the Großschirma area predominantly composed of two-mica gneisses and mica schists, whereas intercalations of muscovite-gneiss ("red gneiss"), amphibolites and metacarbonates occur less commonly. These metamorphic rocks were deformed by several NE-SW striking fault zones. The hydrothermal Sn-bearing fluids migrated within shear zones that developed primarily at the contact between different lithotypes. The shear zones are characterized by strong pervasive metasomatic alterations which were triggered by small chlorite-cassiterite-quartz-sulfide-veins. The rock-forming minerals are strongly corroded and displaced by the ore and gangue minerals within the shear zones. The bulk geochemistry of selected drill core samples feature grades up to 0.28 wt. % Sn, 0.15 wt. % Cu, 300 ppm Pb, 140 ppm Zn, 1.1 wt. % F, 250 ppm Li, 820 ppm Rb, 90 ppm Cs, and 130 ppm W. Microscopic and geochemical studies of the samples show that the Sn-polymetallic mineralization of the "Felsit-type" can be distinguished into three different mineralization stages. The first one is dominated by chlorite and quartz. Cassiterite probably appears in two generations with different grain shapes: acicular (< 1 - 100 µm) and isometric cassiterite (< 10 - 650 µm). Smaller amounts of fluorite, rutile, apatite, and scheelite are also associated with the first stage. The second mineralization stage is dominated by pyrite which is the most abundant ore mineral of this paragenesis, while marcasite, chalcopyrite, pyrrhotite, galena, sphalerite, arsenopyrite, bismuthinite, and magnetite appear only subordinately. The third stage is dominated by carbonates that are often

  7. Platelet Activation Due to Hemodynamic Shear Stresses: Damage Accumulation Model and Comparison to In Vitro Measurements

    PubMed Central

    Nobili, Matteo; Sheriff, Jawaad; Morbiducci, Umberto; Redaelli, Alberto; Bluestein, Danny

    2009-01-01

    The need to optimize the thrombogenic performance of blood recirculating cardiovascular devices, e.g., prosthetic heart valves (PHV) and ventricular assist devices (VAD), is accentuated by the fact that most of them require lifelong anticoagulation therapy that does not eliminate the risk of thromboembolic complications. The formation of thromboemboli in the flow field of these devices is potentiated by contact with foreign surfaces and regional flow phenomena that stimulate blood clotting, especially platelets. With the lack of appropriate methodology, device manufacturers do not specifically optimize for thrombogenic performance. Such optimization can be facilitated by formulating a robust numerical methodology with predictive capabilities of flow-induced platelet activation. In this study, a phenomenological model for platelet cumulative damage, identified by means of genetic algorithms (GAs), was correlated with in vitro experiments conducted in a Hemodynamic Shearing Device (HSD). Platelets were uniformly exposed to flow shear representing the lower end of the stress levels encountered in devices, and platelet activity state (PAS) was measured in response to six dynamic shear stress waveforms representing repeated passages through a device, and correlated to the predictions of the damage accumulation model. Experimental results demonstrated an increase in PAS with a decrease in “relaxation” time between pulses. The model predictions were in very good agreement with the experimental results. PMID:18204318

  8. The Ray Corner High Strain Zone of the Norumbega Fault System in Maine: A Complex History of Ductile Shear, Brittle Deformation, and Paleoseismicity

    NASA Astrophysics Data System (ADS)

    West, D. P., Jr.; Pollock, S. G.; Song, W. J.; Price, N.; Johnson, S. E.

    2014-12-01

    Recent detailed bedrock mapping in south-central Maine in the vicinity of the regionally extensive Norumbega fault system has revealed the presence of a previously unrecognized zone of overprinting ductile and brittle deformation herein referred to as the Ray Corner high strain zone. The nearly one km wide zone trends approximately 045o and can be mapped continuously for a distance of over 20 kms. Like nearly all previously mapped high strain zones of the Norumbega fault system, the Ray Corner high strain zone is contained within a single lithotectonic belt (Casco Bay Group) and thus while recording a polyphase history of high strain displacement at different structural levels, it does not represent a terrain boundary at the present erosional surface. The Ray Corner high strain zone is characterized by an older (likely Devonian) pervasive steeply dipping mylonitic foliation. Lineations, where observable, are sub-horizontal and a variety of kinematic indicators indicate dextral shear. Quartz microstructures are consistent with grain boundary migration and sub-grain rotation recrystallization processes, whereas feldspars are fractured. EBSD analysis of recrystallized quartz ribbons reveal strong CPO patterns in c-axis pole figures (both Y maxima and bipolar maxima between Y and Z) that are consistent with prism + romb slip. These finding are consistent with mylonitic deformation occurring at temperatures in the 400-500oC range. Superimposed on these earlier mylonitic fabrics in zones several 10s of meters across are a wide range of lower temperature brittle deformational features. These include spectacular pseudotachylyte fault and injection veins up to 3 cm thick, cataclastite breccia cored brittle faults up to 10 cm thick, and silicified fault breccia zones up to several meters across. While most of these brittle features cross-cut the earlier ductile fabrics, locally there is microstructural evidence of deformed pseudotachylyte layers within the mylonites

  9. Bond slip detection of concrete-encased composite structure using shear wave based active sensing approach

    NASA Astrophysics Data System (ADS)

    Zeng, Lei; Parvasi, Seyed Mohammad; Kong, Qingzhao; Huo, Linsheng; Lim, Ing; Li, Mo; Song, Gangbing

    2015-12-01

    Concrete-encased composite structure exhibits improved strength, ductility and fire resistance compared to traditional reinforced concrete, by incorporating the advantages of both steel and concrete materials. A major drawback of this type of structure is the bond slip introduced between steel and concrete, which directly reduces the load capacity of the structure. In this paper, an active sensing approach using shear waves to provide monitoring and early warning of the development of bond slip in the concrete-encased composite structure is proposed. A specimen of concrete-encased composite structure was investigated. In this active sensing approach, shear mode smart aggregates (SAs) embedded in the concrete act as actuators and generate desired shear stress waves. Distributed piezoceramic transducers installed in the cavities of steel plates act as sensors and detect the wave response from shear mode SAs. Bond slip acts as a form of stress relief and attenuates the wave propagation energy. Experimental results from the time domain analysis clearly indicate that the amplitudes of received signal by lead zirconate titanate sensors decreased when bond slip occurred. In addition, a wavelet packet-based analysis was developed to compute the received signal energy values, which can be used to determine the initiation and development of bond slip in concrete-encased composite structure. In order to establish the validity of the proposed method, a 3D finite element analysis of the concrete-steel bond model is further performed with the aid of the commercial finite element package, Abaqus, and the numerical results are compared with the results obtained in experimental study.

  10. Shear-wave Velocity Structure and Inter-Seismic Strain Accumulation in the Up-Dip Region of the Cascadia Subduction Zone: Similarities to Tohoku?

    NASA Astrophysics Data System (ADS)

    Collins, J. A.; McGuire, J. J.; Wei, M.

    2013-12-01

    The up-dip region of subduction zone thrusts is difficult to study using land-based seismic and geodetic networks, yet documenting its ability to store and release elastic strain is critical for understanding the mechanics of great subduction earthquakes and tsunami generation. The 2011 Tohoku earthquake produced extremely large slip in the shallowest portion of the subduction zone beneath a region of the fore-arc that is comprised of extremely low-velocity, unconsolidated sediments [Tsuru et al. JGR 2012]. The influence of the sediment material properties on the co-seismic slip distribution and tsunami generation can be considerable through both the effects on the dynamic wavefield during the rupture [Kozdon and Dunham, BSSA 2012] and potentially the build up of strain during the inter-seismic period. As part of the 2010-2011 SeaJade experiment [Scherwath et al, EOS 2011], we deployed 10 ocean bottom seismographs (OBS) on the continental slope offshore of Vancouver Island in the region of the NEPTUNE Canada observatory. One goal of the experiment is to measure the shear modulus of the sediments lying above the subducting plate using the seafloor compliance technique. Using seafloor acceleration measured by broadband seismometer and seafloor pressure measured by Differential Pressure Gauge (DPG), we estimate the compliance spectrum in the infra-gravity wave band (~0.002-0.04 Hz) at 9 sites following the methodology of Crawford et al. [JGR, 1991]. We calibrated DPG sensitivities using laboratory measurements and by comparing teleseismic Rayleigh arrivals recorded on the seismometer and DPG channels [Webb, pers. comm]. We correct the vertical-component seismometer data for tilt using the procedure of Crawford and Webb [BSSA, 2000], Corrections for the gravitational attraction of the surface gravity waves [Crawford et al., JGR, 1998] are important at frequencies of 0.003-0.006 Hz only. Typically, the coherences are high (>0.7) in the 0.006 to 0.03 Hz range. We invert

  11. Surface morphology of platelet adhesion influenced by activators, inhibitors and shear stress

    NASA Astrophysics Data System (ADS)

    Watson, Melanie Groan

    Platelet activation involves multiple events, one of which is the generation and release of nitric oxide (NO), a platelet aggregation inhibitor. Platelets simultaneously send and receive various agents that promote a positive and negative feedback control system during hemostasis. Although the purpose of platelet-derived NO is not fully understood, NO is known to inhibit platelet recruitment. NO's relatively large diffusion coefficient allows it to diffuse more rapidly than platelet agonists. It may thus be able to inhibit recruitment of platelets near the periphery of a growing thrombus before agonists have substantially accumulated in those regions. Results from two studies in our laboratory differed in the extent to which platelet-derived NO decreased platelet adhesion. Frilot studied the effect of L-arginine (L-A) and NG-Methyl-L-arginine acetate salt (L-NMMA) on platelet adhesion to collagen under static conditions in a Petri dish. Eshaq examined the percent coverage on collagen-coated and fibrinogen-coated microchannels under shear conditions with different levels of L-A and Adenosine Diphosphate (ADP). Frilot's results showed no effect of either L-A or L-NMMA on surface coverage, thrombus size or serotonin release, while Eshaq's results showed a decrease in surface coverage with increased levels of L-A. A possible explanation for these contrasting results is that platelet-derived NO may be more important under flow conditions than under static conditions. For this project, the effects of L-A. ADP and L-NMMA on platelet adhesion were studied at varying shear stresses on protein-coated glass slides. The surface exposed to platelet-rich-plasma in combination with each chemical solution was observed under AFM, FE-SEM and fluorescence microscopy. Quantitative and qualitative comparisons of images obtained with these techniques confirmed the presence of platelets on the protein coatings. AFM images of fibrinogen and collagen-coated slides presented characteristic

  12. Crossover from shear-driven to thermally activated drainage of liquid-infused microscale capillaries

    NASA Astrophysics Data System (ADS)

    Colosqui, Carlos E.; Wexler, Jason S.; Liu, Ying; Stone, Howard A.

    2016-10-01

    The shear-driven drainage of capillary grooves filled with viscous liquid is a dynamic wetting phenomenon relevant to numerous industrial processes and lubricant-infused surfaces for drag reduction and antifouling. Prior work has reported that a finite length L∞ of the capillary groove can remain indefinitely filled with liquid even when large shear stresses are applied. The mechanism preventing full drainage is attributed to a balance between the shear-driven flow and a counterflow driven by capillary pressures caused by deformation of the free surface. In this work, we examine closely the approach to the final equilibrium length L∞ and report a crossover to a slow drainage regime that cannot be described by conventional dynamic models considering solely hydrodynamic and capillary forces. The slow drainage regime observed in experiments can be instead modeled by a kinetic equation describing a sequence of random thermally activated transitions between multiple metastable states caused by surface defects with nanoscale dimensions. Our findings provide insights on the critical role that natural or engineered surface roughness with nanoscale dimensions can play in the imbibition and drainage of capillaries and other dynamic wetting processes in microscale systems.

  13. Rheological signatures in limit cycle behaviour of dilute, active, polar liquid crystalline polymers in steady shear

    PubMed Central

    Forest, M. Gregory; Phuworawong, Panon; Wang, Qi; Zhou, Ruhai

    2014-01-01

    We consider the dilute regime of active suspensions of liquid crystalline polymers (LCPs), addressing issues motivated by our kinetic model and simulations in Forest et al. (Forest et al. 2013 Soft Matter 9, 5207–5222 (doi:10.1039/c3sm27736d)). In particular, we report unsteady two-dimensional heterogeneous flow-orientation attractors for pusher nanorod swimmers at dilute concentrations where passive LCP equilibria are isotropic. These numerical limit cycles are analogous to longwave (homogeneous) tumbling and kayaking limit cycles and two-dimensional heterogeneous unsteady attractors of passive LCPs in weak imposed shear, yet these states arise exclusively at semi-dilute concentrations where stable equilibria are nematic. The results in Forest et al. mentioned above compel two studies in the dilute regime that complement recent work of Saintillan & Shelley (Saintillan & Shelley 2013 C. R. Physique 14, 497–517 (doi:10.1016/j.crhy.2013.04.001)): linearized stability analysis of the isotropic state for nanorod pushers and pullers; and an analytical–numerical study of weakly and strongly sheared active polar nanorod suspensions to capture how particle-scale activation affects shear rheology. We find that weakly sheared dilute puller versus pusher suspensions exhibit steady versus unsteady responses, shear thickening versus thinning and positive versus negative first normal stress differences. These results further establish how sheared dilute nanorod pusher suspensions exhibit many of the characteristic features of sheared semi-dilute passive nanorod suspensions. PMID:25332387

  14. Metasomatism and Channelized Fluid Flow in Subducted Oceanic Lithosphere: the Record from an Eclogite-facies Shear Zone (Monviso Ophiolite, Italy)

    NASA Astrophysics Data System (ADS)

    Angiboust, S.; Pettke, T.; Agard, P.; Oncken, O.

    2012-12-01

    The Monviso ophiolite Lago Superiore Unit (LSU) constitutes a well-preserved, almost continuous fragment of upper oceanic lithosphere subducted down to ca. 80 km (between 50 and 40 Ma) and later exhumed along the subduction interface. The LSU is made of (i) a variably thick (50-500 m) section of eclogitized mafic crust (associated with minor calcschist lenses) overlying a 100-400 m thick metagabbroic body, and of (ii) a serpentinite sole (ca. 1000 m thick). This section is cut by two 10 to 100m thick eclogite-facies shear zones, found at the boundary between basalts and gabbros (Intermediate Shear Zone), and between gabbros and serpentinites (Lower Shear Zone: LSZ). Fragments of mylonitic basaltic eclogites and calcschists were dragged and dismembered within serpentinite schists along the LSZ during eclogite-facies deformation [Angiboust et al., Lithos, 2011]. Metasomatic rinds formed on these fragments at the contact with the surrounding antigorite schists during lawsonite-eclogite facies metamorphism, testifying to prominent fluid-rock interaction along with deformation. We present new petrological and geochemical data on four types of metasomatically altered eclogites (talc-, chlorite-, lawsonite- and phengite-bearing eclogites) and on a (serpentinite-derived) magnesite-bearing talc schist from the block rind. Bulk-rock compositions, in situ LA-ICP-MS analysis and X-ray Cr/Mg maps of garnet demonstrate that (i) these samples underwent significant Cr, Mg, Ni and Co enrichment and Fe, V (and to a lesser extent As) depletion during eclogitic metasomatism and (ii) garnet composition and chemistry of inclusions show extreme variation from core to rim. These compositional patterns point to a massive, pulse-like, fluid-mediated element transfer along with deformation, originating from the surrounding serpentinite (locally, with possible contributions from metasediments-equilibrated fluids). Antigorite breakdown, occurring ca. 15 km deeper than the maximum depth reached

  15. Agonist-induced platelet procoagulant activity requires shear and a Rac1-dependent signaling mechanism

    PubMed Central

    Delaney, Michael Keegan; Liu, Junling; Kim, Kyungho; Shen, Bo; Stojanovic-Terpo, Aleksandra; Zheng, Yi; Cho, Jaehyung

    2014-01-01

    Activated platelets facilitate blood coagulation by exposing phosphatidylserine (PS) and releasing microvesicles (MVs). However, the potent physiological agonists thrombin and collagen poorly induce PS exposure when a single agonist is used. To obtain a greater procoagulant response, thrombin is commonly used in combination with glycoprotein VI agonists. However, even under these conditions, only a percentage of platelets express procoagulant activity. To date, it remains unclear why platelets poorly expose PS even when stimulated with multiple agonists and what the signaling pathways are of soluble agonist-induced platelet procoagulant activity. Here we show that physiological levels of shear present in blood significantly enhance agonist-induced platelet PS exposure and MV release, enabling low doses of a single agonist to induce full-scale platelet procoagulant activity. PS exposed on the platelet surface was immediately released as MVs, revealing a tight coupling between the 2 processes under shear. Using platelet-specific Rac1−/− mice, we discovered that Rac1 plays a common role in mediating the low-dose agonist-induced procoagulant response independent of platelet aggregation, secretion, and the apoptosis pathway. Platelet-specific Rac1 function was not only important for coagulation in vitro but also for fibrin accumulation in vivo following laser-induced arteriolar injury. PMID:25079357

  16. Shear Punch Properties of Low Activation Ferritic Steels Following Irradiation in ORR

    SciTech Connect

    Ermi, Ruby M.; Hamilton, Margaret L.; Gelles, David S.; Ermi, August M.

    2001-10-01

    Shear punch post-irradiation test results are reported for a series of low activation steels containing Mn following irradiation in the Oak Ridge Reactor at 330 and 400 degrees centigrade to {approx}10 dpa. Alloy compositions included 2Cr, 9Cr and 12Cr steels with V to 1.5% and W to 1.0%. Comparison of results with tensile test results showed good correlations with previously observed trends except where disks were improperly manufactured because they were too thin or because engraving was faulty.

  17. Linking Plagioclase Zoning Patterns to Active Magma Processes

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Plechov, P.; Eichelberger, J. C.

    2015-12-01

    Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, Augustine and Cleveland Volcanoes in Alaska, as well as from the drilling into an active magma body at Krafla, Iceland.

  18. Microstructural and chemical transformations accompanying deformation of granite in a shear zone at Miéville, Switzerland; with implications for stress corrosion cracking and superplastic flow

    NASA Astrophysics Data System (ADS)

    Kerrich, Robert; Allison, Iain; Barnett, Robert L.; Moss, Stephen; Starkey, John

    1980-08-01

    At Miéville, in the Aiguilles-Rouges Massif, granitic rocks of the basement are deformed into mylonites within a major subvertical shear zone. The ambient temperature during translation is estimated at 250° C±30° C from fluid inclusion filling temperatures in syntectonic microveins, from Δ 18O quartzilmenite of+15%, and from mineralogical criteria. Porphyroclasts of both oligoclase and orthoclase feldspar decrease from initial diameters of 20 mm and assume elliptical shapes during progressive deformation, due to recrystallisation of the margins to ultra-fine polygonal grains which extend out from the porphyroclasts in thin trails: the final stable grain size is <5 μ. The recrystallised feldspar has a composition of the parent porphyroclast,+albite, requiring relative gains of Na and losses of K+Ca compared to the precursor, and implying short range redistribution of the components during deformation. Decrease of free energy associated with the deformation catalysed change in feldspar composition, coupled with stored strain energy in the porphyroclasts may account for recrystallisation to a stable aggregate of ultrafine grain size. The long trails imply exceptionally high ductility, which, coupled with microstructural criteria, and admixture of quartz from neighbouring pure quartz aggregates by grain boundary sliding, is interpreted in terms of superplastic flow. Estimated temperatures of T/T m≈0.2 for the inferred superplastic deformation is lower by a factor of 2 than previously recorded for this flow michanism in silicates. The feldspar and quartz probably accomodated grain boundary sliding by intercrystalline diffusion. Biotite responds to deformation by bendgliding, kinking, and recrystallisation in mantles. The reaction of high-Ti parent grains to low-Ti biotite+Fe-muscovite+ ilmenite+chlorite is catalysed at all of these microstructural sites. Progressive deformation of the fine-grained products in the mantles is coupled with steady reaction to low

  19. Character of High Temperature Mylonitic Shear Zones Associated with Oceanic Detachment Faults at the Ultra-Slow Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Marr, C.; John, B. E.; Cheadle, M. J.; German, C. R.

    2014-12-01

    Two well-preserved core complexes at the Mid-Cayman Rise (MCR), Mt Dent and Mt Hudson, provide an opportunity to examine the deformation history and rheology of detachment faults at an ultra-slow spreading ridge. Samples from the CAYTROUGH (1976-77) project and the Nautilus NA034 cruise (2013) were selected for detailed petrographic and microstructural study. Surface samples from Mt. Dent (near the center of the MCR) provide insight into lateral variation in footwall rock type and deformation history across a core complex in both the across and down dip directions. In contrast, sampling of Mt. Hudson (SE corner of the MCR) focuses on a high-angle, crosscutting normal fault scarp, which provides a cross section of the detachment fault system. Sampling across Mt Dent reveals that the footwall is composed of heterogeneously-distributed gabbro (47%) and peridotite (20%) with basaltic cover (33%) dominating the top of the core complex. Sampling of Mt Hudson is restricted to the normal fault scarp cutting the core complex and suggests the interior is dominated by gabbro (85% gabbro, 11% peridotite, 4% basalt). At Mt. Dent, peridotite is exposed within ~4km of the breakaway indicating that the Mt. Dent detachment does not cut Penrose-style oceanic crust. The sample set provides evidence of a full down-temperature sequence of detachment related-fault rocks, from possible granulite and clear amphibolite mylonitizatization to prehnite-pumpellyite brittle deformation. Both detachments show low-temperature brittle deformation overprinting higher temperature plastic fabrics. Fe-Ti oxide gabbro mylonites dominate the sample set, and plastic deformation of plagioclase is recorded in samples collected as near as ~4km from the inferred breakaway along the southern flank of Mt. Dent, suggesting the brittle-plastic transition was initially at ~3km depth. Recovered samples suggest strain associated with both detachment systems is localized into discrete mylonitic shear zones (~1-10cm

  20. Crevasses, Fractures and Folds within Firn and Marine Ice of the McMurdo Shear Zone, Antarctica interpreted from GPR Profiles acquired with an Unmanned Rover

    NASA Astrophysics Data System (ADS)

    Arcone, S. A.; Lever, J.; Ray, L.

    2015-12-01

    The firn of the McMurdo shear zone within the Ross Ice Shelf, Antarctica is intensively crevassed, and may also contain crevasses within its meteoric and marine ice. However, the surface crevassing prevents ordinary vehicle access to investigate its structure geophysically. We used a lightweight robotic vehicle to tow 200 and 400 MHz ground-penetrating radar antennas simultaneously along 100 evenly spaced transects over a 28 km2 grid spanning the shear zone width. Transects were mainly orthogonal to ice flow. Total firn and meteoric ice thickness was about 160 m. Firn crevasses profiled at 400 MHz were up to 16 m wide, under snow bridges up to 10 m thick, and with strikes near 50-55° to general flow direction. From top down, 200-MHz profiles reveal firn diffractions originating to about 40 m depth, no discernible structure within the meteoric ice, a discontinuous transitional horizon, and at least 20 m of disturbed and stratified marine ice. Freeboard ranging from 28-31 m shows more marine ice exists. We interpret the transitional horizon to be a thin saline layer, and marine ice hyperbolic diffractions and reflections to be responses to localized fractures and to crevasses of various widths, filled with unstratified marine ice, and at strikes mainly between 41-63°. We interpret off-nadir, marine ice horizons to be responses to linear and folded faults, the structure and orientation of which are similar to some in firn. The coinciding and synchronously folded areas of fractured firn and marine ice suggest the visibly unstructured meteoric ice is also fractured, but either never crevassed, or crevassed and sutured without sea water penetration, and that any bottom crevasses that occurred near grounding lines have been thermally eroded. Consequently any fractures in the meteoric ice beneath our grid are likely to have formed far from any grounding area, but it is unclear why there is no evidence of sea water penetration given the fractured and crevassed marine ice.

  1. Real-Time Monitoring of Platelet Activation Using Quartz Thickness-Shear Mode Resonator Sensors.

    PubMed

    Wu, Huiyan; Zhao, Guangyi; Zu, Hongfei; Wang, James H-C; Wang, Qing-Ming

    2016-02-01

    In this study, quartz thickness-shear mode (TSM) resonator sensors were adopted to monitor the process of platelet activation. Resting platelets adhering to fibrinogen-coated electrodes were activated by different concentrations of thrombin (1, 10, and 100 U/mL), and the corresponding electrical admittance spectra of TSM resonators during this process were recorded. Based on a bilayer-loading transmission line model of TSM resonators, the complex shear modulus (G' + jG″) and the average thickness (hPL) of the platelet monolayer at a series of time points were obtained. Decrease in thrombin concentration from 100 to 1 U/mL shifted all peaks and plateaus in G', G″, and hPL to higher time points, which could be attributed to the partial activation of platelets by low concentrations of thrombin. The peak value of hPL was acquired when platelets presented their typical spherical shape as the first transformation in activation process. The G' peak appeared 10 ∼ 20 min after hPL peak, when some filopods were observed along the periphery of platelets but without obvious cell spreading. As platelet spreading began and continued, G', G″, and hPL decreased, leading to a steady rise of resonance frequency shift of TSM resonator sensors. The results show high reliability and stability of TSM resonator sensors in monitoring the process of platelet activation, revealing an effective method to measure platelet activities in real-time under multiple experimental conditions. The G', G″, and hPL values could provide useful quantitative measures on platelet structure variations in activation process, indicating potential of TSM resonators in characterization of cells during their transformation. PMID:26840731

  2. The Role played by Shear Modulus Contrast in Earth Materials on Facilitating Shear Localization in the Lithosphere

    NASA Astrophysics Data System (ADS)

    So, B.-D.; Yuen, D. A.; Regenauer-Lieb, K.; Lee, S.-M.

    2012-04-01

    Viscoplasticity has been considered to be a dominant element in causing the nucleation of shear instability leading to shear localization. Here we propose that a simple contrast in shear moduli may be sufficient for explaining the fast timescale asymmetric shear instability in a bi-material setting. Up to now, no studies have been made on asymmetric shear instability induced by elastic modulus contrast. Thermal-mechanical numerical simulations based on high resolution finite-element methods were performed to understand the effects of shear modulus contrast on inducing asymmetric instabilities. Strain-rate and stress dependent rheology are used with a wide range of activation energy 0-850 kJ/mol for all models. Numerical results with enough shear modulus contrast show the asymmetric shear instability, which is generated around the interface and then propagates across the interface. We also examined the role of activation energy (0-850 kJ/mol) on the geometrical pattern and the initiation time of asymmetric shear localization. The shear modulus contrast has to be close to 2 for triggering asymmetric shear instability and is found to be by far a more important controlling factor in causing shear instability than activation energy of the creep law. Our work suggests that initiation of lithosphere-scale asymmetric instability would be faster than previous considerations. In a view of the stored energy and its release as shear heating, the network between the various contrasts in yield strength and shear moduli controls the developing feature of asymmetric instability . Higher yield strength contrast induces severe deformation and a small temperature increase. It may hold the key for resolving the heat flow paradox question. Our finding stresses that naturally occurring shear modulus contrast have also important impact on many geological problems related to shear zone formation.

  3. Kinematics of syn- and post-exhumational shear zones at Lago di Cignana (Western Alps, Italy): constraints on the exhumation of Zermatt-Saas (ultra)high-pressure rocks and deformation along the Combin Fault and Dent Blanche Basal Thrust

    NASA Astrophysics Data System (ADS)

    Kirst, Frederik; Leiss, Bernd

    2016-03-01

    Kinematic analyses of shear zones at Lago di Cignana in the Italian Western Alps were used to constrain the structural evolution of units from the Piemont-Ligurian oceanic realm (Zermatt-Saas and Combin zones) and the Adriatic continental margin (Dent Blanche nappe) during Palaeogene syn- and post-exhumational deformation. Exhumation of Zermatt-Saas (U)HP rocks to approximately lower crustal levels at ca. 39 Ma occurred during normal-sense top-(S)E shearing under epidote-amphibolite-facies conditions. Juxtaposition with the overlying Combin zone along the Combin Fault at mid-crustal levels occurred during greenschist-facies normal-sense top-SE shearing at ca. 38 Ma. The scarcity of top-SE kinematic indicators in the hanging wall of the Combin Fault probably resulted from strain localization along the uppermost Zermatt-Saas zone and obliteration by subsequent deformation. A phase of dominant pure shear deformation around 35 Ma affected units in the direct footwall and hanging wall of the Combin Fault. It is interpreted to reflect NW-SE crustal elongation during updoming of the nappe stack as a result of underthrusting of European continental margin units and the onset of continental collision. This phase was partly accompanied and followed by ductile bulk top-NW shearing, especially at higher structural levels, which transitioned into semi-ductile to brittle normal-sense top-NW deformation due to Vanzone phase folding from ca. 32 Ma onwards. Our structural observations suggest that syn-exhumational deformation is partly preserved within units and shear zones exposed at Lago di Cignana but also that the Combin Fault and Dent Blanche Basal Thrust experienced significant post-exhumational deformation reworking and overprinting earlier structures.

  4. The incorporation of a zone of calcified cartilage improves the interfacial shear strength between in vitro-formed cartilage and the underlying substrate.

    PubMed

    St-Pierre, Jean-Philippe; Gan, Lu; Wang, Jian; Pilliar, Robert M; Grynpas, Marc D; Kandel, Rita A

    2012-04-01

    A major challenge for cartilage tissue engineering remains the proper integration of constructs with surrounding tissues in the joint. Biphasic osteochondral constructs that can be anchored in a joint through bone ingrowth partially address this requirement. In this study, a methodology was devised to generate a cell-mediated zone of calcified cartilage (ZCC) between the in vitro-formed cartilage and a porous calcium polyphosphate (CPP) bone substitute in an attempt to improve the mechanical integrity of that interface. To do so, a calcium phosphate (CaP) film was deposited on CPP by a sol-gel process to prevent the accumulation of polyphosphates and associated inhibition of mineralization as the substrate degrades. Cartilage formed in vitro on the top surface of CaP-coated CPP by deep-zone chondrocytes was histologically and biochemically comparable to that formed on uncoated CPP. Furthermore, the mineral in the ZCC was similar in crystal structure, morphology and length to that formed on uncoated CPP and native articular cartilage. The generation of a ZCC at the cartilage-CPP interface led to a 3.3-fold increase in the interfacial shear strength of biphasic constructs. Improved interfacial strength of these constructs may be critical to their clinical success for the repair of large cartilage defects.

  5. Deformation Band Shear Zones Formed in Unconsolidated Sediment From Repeated Late Holocene Coseismic Deformation Along the 1906 Rupture Trace of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Baldwin, J. N.; Cashman, S. M.; Crawford, R.; Deis, A.; Cashman, K. V.

    2005-12-01

    Two trenches were excavated across the 1906 rupture trace of the San Andreas Fault (SAF) at Alder Creek, near Manchester, CA, in Mendocino County for the purpose of structural and microstructural analysis of deformed late Holocene unconsolidated sediment. The site records coseismic rupture in the form of upward terminations of deformation band faults and written historical accounts of the 1906 rupture directly adjacent to the site. Based on the age of the deposits exposed and paleoseismic record of the northern SAF, as many as three to five surface faulting events have occurred, including ~5 m of dextral displacement during the 1906 earthquake. Deformation band shear zones, 2-20mm thick, form an upward-branching 1-2m. wide array of splay faults developed in unconsolidated silt and very fine- to medium-grained sand. Vertical displacement on individual deformation band faults is generally <5cm. Microstructural characteristics (porosity, grain size, grain orientation) of oriented samples collected at ~ 2 m in depth were measured in thin section using image analysis of SEM backscatter images. Porosity estimated from SEM images is slightly lower in deformation bands (39.0±1.8%) than in sand in the same horizon several m. from the fault (42.9±0.9%) or in 1-5 mm wide sand lenses bracketed by deformation bands (42.9±2.0%). Deformation band samples contain significantly more very fine and fine sand, and less medium and coarse sand, than samples collected from the same horizon several m. from the fault. Grain size distributions record grain size reduction from grain fracturing within deformation bands. Also, fractured grains in sand adjacent to deformation bands and angular to acicular small grains within deformation bands attest to grain breakage accompanying development of deformation bands. All horizontal samples show a strong preferred orientation of elongate grains. Clustering of grain long axis orientations is more pronounced in deformation band faults than in sand

  6. Late Eocene-Miocene tectono-magmatic response to the Indian- Eurasian plate collision: constraints from structural analysis, and Sr-Nd and Hf geochemistry of leucocratic intrusions along the Ailao Shan Red-River shear zone, SE Tibet

    NASA Astrophysics Data System (ADS)

    Liu, J.; Tang, Y.; Cao, S.; Ngyuen, Q.; Song, Z.; Tran, M.; Chen, Y.; Ji, M.; Zhang, Z.; Zhao, Z.

    2010-12-01

    The over 1000 km Ailao Shan-Red River (ASRR) shear zone is one of the most important geological discontinuities in Southeast Asia. Great controversies remain on the nature of the shear zone and its role in shaping the tectonic framework of Southeast Asia. Our observation reveals the existence of the Paleogene high potassic alkaline rocks and calc-alkaline intrusions (>30Ma) and the late Oligocene to early Miocene calc-alkaline granitic rocks (28-21Ma). The former are concordant dykes and are generally strongly sheared into mylonitic rocks. The latter are either concordant and show weak strain fabric, or discordant and show no strain fabric. Meanwhile, they have distinct REE, Sr-Nd, Hf isotope signatures and are different in mineralizing features. The Paleogene intrusions are characterized by enriched LREE and depleted HREE without any Eu anomalies (whole rock). Whole rock Sr-Nd (87Sr/86Sr(i): 0.7069 to 0.7098; ɛNd(t): -7.98 to -3.31) and in situ Zircon Hf isotope (-0.79 to +6.2) analyses yield a binary mixing trend between the mantle- and supracrustal-derived melts for the Paleogene magma. Here our new data suggest that most of the Paleogene magmatic rocks are either sheared high potassium alkaline rocks or deformed calc-alkaline intrusions. They are identical to and are the deformed counterparts of rocks from the two Paleogene mineralizing magmatic provinces on both sides of the ASRR shear zone, i.e. the Jinping-Fan Si Pan province and the Dali-Beiya province. These two types of leucocratic rocks are formed as the result of post-collisional delamination of a thickened crust, and deformed and offset by the left lateral shearing along the ASSR shear zone. The late Oligo-Miocene calc-alkaline granitic rocks are localized within the ASRR shear zone. They are in overall concordant to the mylonitic foliation in the shear zone and preserve microstructures typical of syn- to late kinematic emplacement. They have negative Eu anomalies, variable but mostly higher Sr ratios

  7. Formation of Golgi-derived active zone precursor vesicles.

    PubMed

    Maas, Christoph; Torres, Viviana I; Altrock, Wilko D; Leal-Ortiz, Sergio; Wagh, Dhananjay; Terry-Lorenzo, Ryan T; Fejtova, Anna; Gundelfinger, Eckart D; Ziv, Noam E; Garner, Craig C

    2012-08-01

    Vesicular trafficking of presynaptic and postsynaptic components is emerging as a general cellular mechanism for the delivery of scaffold proteins, ion channels, and receptors to nascent and mature synapses. However, the molecular mechanisms leading to the selection of cargos and their differential transport to subneuronal compartments are not well understood, in part because of the mixing of cargos at the plasma membrane and/or within endosomal compartments. In the present study, we have explored the cellular mechanisms of active zone precursor vesicle assembly at the Golgi in dissociated hippocampal neurons of Rattus norvegicus. Our studies show that Piccolo, Bassoon, and ELKS2/CAST exit the trans-Golgi network on a common vesicle that requires Piccolo and Bassoon for its proper assembly. In contrast, Munc13 and synaptic vesicle proteins use distinct sets of Golgi-derived transport vesicles, while RIM1α associates with vesicular membranes in a post-Golgi compartment. Furthermore, Piccolo and Bassoon are necessary for ELKS2/CAST to leave the Golgi in association with vesicles, and a core domain of Bassoon is sufficient to facilitate formation of these vesicles. While these findings support emerging principles regarding active zone differentiation, the cellular and molecular analyses reported here also indicate that the Piccolo-Bassoon transport vesicles leaving the Golgi may undergo further changes in protein composition before arriving at synaptic sites.

  8. Molecular Remodeling of the Presynaptic Active Zone of Drosophila Photoreceptors via Activity-Dependent Feedback.

    PubMed

    Sugie, Atsushi; Hakeda-Suzuki, Satoko; Suzuki, Emiko; Silies, Marion; Shimozono, Mai; Möhl, Christoph; Suzuki, Takashi; Tavosanis, Gaia

    2015-05-01

    Neural activity contributes to the regulation of the properties of synapses in sensory systems, allowing for adjustment to a changing environment. Little is known about how synaptic molecular components are regulated to achieve activity-dependent plasticity at central synapses. Here, we found that after prolonged exposure to natural ambient light the presynaptic active zone in Drosophila photoreceptors undergoes reversible remodeling, including loss of Bruchpilot, DLiprin-α, and DRBP, but not of DSyd-1 or Cacophony. The level of depolarization of the postsynaptic neurons is critical for the light-induced changes in active zone composition in the photoreceptors, indicating the existence of a feedback signal. In search of this signal, we have identified a crucial role of microtubule meshwork organization downstream of the divergent canonical Wnt pathway, potentially via Kinesin-3 Imac. These data reveal that active zone composition can be regulated in vivo and identify the underlying molecular machinery.

  9. The Limit of Magnetic-Shear Energy in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C.

    2013-01-01

    It has been found previously, by measuring from active ]region magnetograms a proxy of the free energy in the active region fs magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main ]sequence path bordering the free ]energy ]limit line in (flux content, free ]energy proxy) phase space. Here we present evidence that specifies the underlying magnetic condition that gives rise to the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free ]energy limit, the ratio of magnetic ]shear free energy to the non ]free magnetic energy the potential field would have is of order 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. Evidently, most active regions in which this core ]field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1, most active regions are compelled to explode.

  10. The Limit of Magnetic-Shear Energy in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Falconer, David; Sterling, Alphonse

    2012-01-01

    It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode.

  11. THE LIMIT OF MAGNETIC-SHEAR ENERGY IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C.

    2012-05-01

    It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode.

  12. Electrical activity of the Hartmann layers relative to surface viscous shearing in an annular magnetohydrodynamic flow

    NASA Astrophysics Data System (ADS)

    Delacroix, Jules; Davoust, Laurent

    2014-03-01

    As a first step towards two-phase magnetohydrodynamics (MHD), this paper addresses an original analytical coupling between surface rheology, e.g., a gradually oxidizing liquid metal surface, ruled by the Boussinesq number Bo, and a supporting annular MHD flow, ruled by the Hartmann number Ha, in the general layout of a classical annular deep-channel viscometer, as developed by Mannheimer and Schechter [J. Colloid Interface Sci. 32, 195-211 (1970)]. Using a matched asymptotic expansion based on the small parameter 1/Ha, we can express the surface velocity as a coupling variable in the jump momentum balance at the liquid surface. By solving the latter through the determination of the Green's function, the whole flow can be analytically calculated. A modified Boussinesq number, tilde{B_o}, is produced as a new non-dimensional parameter that provides the balance between surface viscous shearing and the Lorentz force. It is shown that the tilde{B_o} number drives the electrical activation of the Hartmann layers, heavily modifying the MHD flow topology and leading to the emergence of the Lorentz force, for which interaction with the flow is not classical. Finally, the evolution laws given in this study allow the determination of scaling laws for an original experimental protocol, which would make it possible to accurately determine the surface shear viscosity of a liquid metal with respect to the quality of the ambient atmosphere.

  13. Characterizing a large shear-zone with seismic and magnetotelluric methods: The case of the Dead Sea Transform

    USGS Publications Warehouse

    Maercklin, N.; Bedrosian, P.A.; Haberland, C.; Ritter, O.; Ryberg, T.; Weber, M.; Weckmann, U.

    2005-01-01

    Seismic tomography, imaging of seismic scatterers, and magnetotelluric soundings reveal a sharp lithologic contrast along a ???10 km long segment of the Arava Fault (AF), a prominent fault of the southern Dead Sea Transform (DST) in the Middle East. Low seismic velocities and resistivities occur on its western side and higher values east of it, and the boundary between the two units coincides partly with a seismic scattering image. At 1-4 km depth the boundary is offset to the east of the AF surface trace, suggesting that at least two fault strands exist, and that slip occurred on multiple strands throughout the margin's history. A westward fault jump, possibly associated with straightening of a fault bend, explains both our observations and the narrow fault zone observed by others. Copyright 2005 by the American Geophysical Union.

  14. Modeling Activity of Very-Low-Frequency Earthquakes in Shallow Subduction Zone Considering Splay Faults and High Pore Pressure Zones

    NASA Astrophysics Data System (ADS)

    Shibazaki, B.; Ito, Y.; Ujiie, K.

    2010-12-01

    Recent observations reveal that very-low-frequency (VLF) earthquakes occur in the shallow subduction zones in the Nankai trough, Hyuganada, and off the coast of Tokachi, Japan (Obara and Ito, 2005; Asano et al., 2008; Obana and Kodaira, 2009). The ongoing super drilling project, Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE), involves sampling the core of seismogenic faults and conducting analyses, experiments, and in-situ borehole measurements at the Nankai trough where VLF earthquakes occur. The data obtained in this project will be used to develop a model of VLF earthquakes that integrates seismological observations, laboratory experimental results, and geological observations. In the present study, first, we perform 2D quasi-dynamic modeling of VLF earthquakes in an elastic half-space on the basis of a rate- and state-dependent friction law. We set a local unstable zone in a shallow stable zone. To explain very low stress drops and short recurrence intervals of VLF earthquakes, the effective stress is assumed to be around 0.2 MPa. The results indicate that VLF earthquakes are unstable slips that occur under high pore pressure conditions. The probable causes for the high pore pressure along the faults of VLF earthquakes are the sediment compaction and dehydration that occur during smectite-to-illite transition in the shallow subduction zone. Then, we model the generation process of VLF earthquakes by considering splay faults and the occurrences of large subduction earthquakes. We set the local unstable zones with high pore pressure in the stable splay fault zones. We assume the long-term average slip velocity of the splay faults, and that the shear stress is accumulated by the delay of the fault slip from the long-term slip motion. Depending on the frictional properties of the shallow splay faults, two types of VLF earthquakes can occur. When the effective stress is low all over the splay faults, the rupture of large earthquakes propagates to the

  15. Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow.

    PubMed Central

    Folie, B J; McIntire, L V

    1989-01-01

    The concentration profiles of adenosine diphosphate (ADP), thromboxane A2 (TxA2), thrombin, and von Willebrand factor (vWF) released extracellularly from the platelet granules or produced metabolically on the platelet membrane during thrombus growth, were estimated using finite element simulation of blood flow over model thrombi of various shapes and dimensions. The wall fluxes of these platelet-activating agents were estimated for each model thrombus at three different wall shear rates (100 s-1, 800 s-1, and 1,500 s-1), employing experimental data on thrombus growth rates and sizes. For that purpose, whole human blood was perfused in a parallel-plate flow chamber coated with type l fibrillar human collagen, and the kinetic data collected and analyzed by an EPl-fluorescence video microscopy system and a digital image processor. It was found that thrombin concentrations were large enough to cause irreversible platelet aggregation. Although heparin significantly accelerated thrombin inhibition by antithrombin lll, the remaining thrombin levels were still significantly above the minimum threshold required for irreversible platelet aggregation. While ADP concentrations were large enough to cause irreversible platelet aggregation at low shear rates and for small aggregate sizes, TxA2 concentrations were only sufficient to induce platelet shape change over the entire range of wall shear rates and thrombi dimensions studied. Our results also indicated that the local concentration of vWF multimers released from the platelet alpha-granules could be sufficient to modulate platelet aggregation at low and intermediate wall shear rates (less than 1,000 s-1). The sizes of standing vortices formed adjacent to a growing aggregate and the embolizing stresses and the torque, acting at the aggregate surface, were also estimated in this simulation. It was found that standing vortices developed on both sides of the thrombus even at low wall shear rates. Their sizes increased with

  16. How to Make an Active Zone: Unexpected Universal Functional Redundancy between RIMs and RIM-BPs.

    PubMed

    Acuna, Claudio; Liu, Xinran; Südhof, Thomas C

    2016-08-17

    RIMs and RIM-binding proteins (RBPs) are evolutionary conserved multidomain proteins of presynaptic active zones that are known to recruit Ca(2+) channels; in addition, RIMs perform well-recognized functions in tethering and priming synaptic vesicles for exocytosis. However, deletions of RIMs or RBPs in mice cause only partial impairments in various active zone functions and have no effect on active zone structure, as visualized by electron micrographs, suggesting that their contribution to active zone functions is limited. Here, we show in synapses of the calyx of Held in vivo and hippocampal neurons in culture that combined, but not individual, deletions of RIMs and RBPs eliminate tethering and priming of synaptic vesicles, deplete presynaptic Ca(2+) channels, and ablate active zone complexes, as analyzed by electron microscopy of chemically fixed synapses. Thus, RBPs perform unexpectedly broad roles at the active zone that together with those of RIMs are essential for all active zone functions. PMID:27537484

  17. How to Make an Active Zone: Unexpected Universal Functional Redundancy between RIMs and RIM-BPs.

    PubMed

    Acuna, Claudio; Liu, Xinran; Südhof, Thomas C

    2016-08-17

    RIMs and RIM-binding proteins (RBPs) are evolutionary conserved multidomain proteins of presynaptic active zones that are known to recruit Ca(2+) channels; in addition, RIMs perform well-recognized functions in tethering and priming synaptic vesicles for exocytosis. However, deletions of RIMs or RBPs in mice cause only partial impairments in various active zone functions and have no effect on active zone structure, as visualized by electron micrographs, suggesting that their contribution to active zone functions is limited. Here, we show in synapses of the calyx of Held in vivo and hippocampal neurons in culture that combined, but not individual, deletions of RIMs and RBPs eliminate tethering and priming of synaptic vesicles, deplete presynaptic Ca(2+) channels, and ablate active zone complexes, as analyzed by electron microscopy of chemically fixed synapses. Thus, RBPs perform unexpectedly broad roles at the active zone that together with those of RIMs are essential for all active zone functions.

  18. 78 FR 14963 - Foreign-Trade Zone 163-Ponce, Puerto Rico; Authorization of Production Activity; Zimmer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Foreign-Trade Zones Board Foreign-Trade Zone 163--Ponce, Puerto Rico; Authorization of Production Activity; Zimmer Manufacturing BV (Medical Devices); Ponce, Puerto Rico On November 1, 2012, CODEZOL, C.D., grantee of FTZ 163, submitted a notification of proposed production activity to the Foreign-Trade Zones...

  19. 78 FR 52759 - Foreign-Trade Zone 265-Conroe, Texas: Authorization of Production Activity; Bauer Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-26

    ... Foreign-Trade Zones Board Foreign-Trade Zone 265--Conroe, Texas: Authorization of Production Activity; Bauer Manufacturing Inc. (Foundation Casings and Tools/Accessories for Pile Drivers and Boring Machinery... of proposed production activity to the Foreign-Trade Zones (FTZ) Board on behalf of...