Science.gov

Sample records for active site amino

  1. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  2. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  3. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  4. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  5. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue

    PubMed Central

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males’ subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  6. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue.

    PubMed

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males' subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  7. Defining the Structural Parameters that Confer Anticonvulsant Activity by the Site-by-Site Modification of (R)-N′-Benzyl 2- Amino-3-methylbutanamide

    PubMed Central

    King, Amber; De Ryck, Marc; Kaminski, Rafal; Valade, Anne; Stables, James P.; Kohn, Harold

    2011-01-01

    Primary Amino Acid Derivatives (PAADs) (N′-benzyl 2-substituted 2-amino acetamides) are structurally related to Functionalized Amino Acids (FAAs) (N′-benzyl 2- substituted 2-acetamido acetamides) but differ by the absence of the terminal N-acetyl group. Both classes exhibit potent anticonvulsant activities in the maximal electroshock seizure animal model and the reported structure-activity relationships (SARs) of PAADs and FAAs differ in significant ways. Recently, we documented that PAAD efficacy was associated with a hydrocarbon moiety at the C(2)-carbon, while in the FAAs, a substituted heteroatom one atom removed from the C(2)-center was optimal. Previously in this issue, we showed that PAAD activity was dependent upon the electronic properties of the 4′-N′-benzylamide substituent, while FAA activity was insensitive to electronic changes at this site. In this study, we prepared analogs of (R)-N′-benzyl 2-amino-3-methylbutanamide to identify the structural components for maximal anticonvulsant activity. We demonstrated that the SAR of PAADs and FAAs diverged at the terminal amide site and that PAADs had considerably more structural latitude in the types of units that could be incorporated at this position, suggesting that these compounds function according to different mechanism(s). PMID:21861466

  8. Novel human D-amino acid oxidase inhibitors stabilize an active-site lid-open conformation

    PubMed Central

    Terry-Lorenzo, Ryan T.; Chun, Lawrence E.; Brown, Scott P.; Heffernan, Michele L. R.; Fang, Q. Kevin; Orsini, Michael A.; Pollegioni, Loredano; Hardy, Larry W.; Spear, Kerry L.; Large, Thomas H.

    2014-01-01

    The NMDAR (N-methyl-D-aspartate receptor) is a central regulator of synaptic plasticity and learning and memory. hDAAO (human D-amino acid oxidase) indirectly reduces NMDAR activity by degrading the NMDAR co-agonist D-serine. Since NMDAR hypofunction is thought to be a foundational defect in schizophrenia, hDAAO inhibitors have potential as treatments for schizophrenia and other nervous system disorders. Here, we sought to identify novel chemicals that inhibit hDAAO activity. We used computational tools to design a focused, purchasable library of compounds. After screening this library for hDAAO inhibition, we identified the structurally novel compound, ‘compound 2’ [3-(7-hydroxy-2-oxo-4-phenyl-2H-chromen-6-yl)propanoic acid], which displayed low nM hDAAO inhibitory potency (Ki=7 nM). Although the library was expected to enrich for compounds that were competitive for both D-serine and FAD, compound 2 actually was FAD uncompetitive, much like canonical hDAAO inhibitors such as benzoic acid. Compound 2 and an analog were independently co-crystalized with hDAAO. These compounds stabilized a novel conformation of hDAAO in which the active-site lid was in an open position. These results confirm previous hypotheses regarding active-site lid flexibility of mammalian D-amino acid oxidases and could assist in the design of the next generation of hDAAO inhibitors. PMID:25001371

  9. Active-site amino acid residues in γ-glutamyltransferase and the nature of the γ-glutamyl-enzyme bond

    PubMed Central

    Elce, John S.

    1980-01-01

    Active-site residues in rat kidney γ-glutamyltransferase (EC 2.3.2.2) were investigated by means of chemical modification. 1. In the presence of maleate, the activity was inhibited by phenylmethanesulphonyl fluoride, and the inhibition was not reversed by β-mercaptoethanol, suggesting that a serine residue is close to the active site, but is shielded except in the presence of maleate. 2. Treatment of the enzyme with N-acetylimidazole modified an amino group, exposed a previously inaccessible cysteine residue and inhibited hydrolysis of the γ-glutamyl-enzyme intermediate, but not its formation. 3. After reaction of the enzyme successively with N-acetylimidazole and with non-radioactive iodoacetamide/serine/borate, two active-site residues reacted with iodo[14C]acetamide. One of these possessed a carboxy group, which formed a [14C]glycollamide ester, and the other was cysteine, shown by isolation of S-[14C]carboxymethylcysteine after acid hydrolysis. When N-acetylimidazole treatment was omitted, only the carboxy group reacted with iodo[14C]acetamide. 4. Isolation of the γ-[14C]glutamyl-enzyme intermediate was made easier by prior treatment of the enzyme with N-acetylimidazole. The γ-glutamyl-enzyme bond was stable to performic acid, and to hydroxylamine/urea at pH10, but was hydrolysed slowly at pH12, indicating attachment of the γ-[14C]glutamyl group in amide linkage to an amino group on the enzyme. Proteolysis of the γ-[14C]glutamyl-enzyme after performic acid oxidation gave rise to a small acidic radioactive peptide that was resistant to further proteolysis and was not identical with γ-glutamyl-ε-lysine. 5. A scheme for the catalytic mechanism is proposed. PMID:6104953

  10. Site-directed mutagenesis of tobacco anionic peroxidase: Effect of additional aromatic amino acids on stability and activity.

    PubMed

    Poloznikov, A A; Zakharova, G S; Chubar, T A; Hushpulian, D M; Tishkov, V I; Gazaryan, I G

    2015-08-01

    Tobacco anionic peroxidase (TOP) is known to effectively catalyze luminol oxidation without enhancers, in contrast to horseradish peroxidase (HRP). To pursue structure-activity relationship studies for TOP, two amino acids have been chosen for mutation, namely Thr151, close to the heme plane, and Phe140 at the entrance to the active site pocket. Three mutant forms TOP F140Y, T151W and F140Y/T151W have been expressed in Escherichia coli, and reactivated to yield active enzymes. Single-point mutations introducing additional aromatic amino acid residues at the surface of TOP exhibit a significant effect on the enzyme catalytic activity and stability as judged by the results of steady-state and transient kinetics studies. TOP T151W is up to 4-fold more active towards a number of aromatic substrates including luminol, whereas TOP F140Y is 2-fold more stable against thermal inactivation and 8-fold more stable in the reaction course. These steady-state observations have been rationalized with the help of transient kinetic studies on the enzyme reaction with hydrogen peroxide in a single turnover regime. The stopped-flow data reveal (a) an increased stability of F140Y Compound I towards hydrogen peroxide, and thus, a higher operational stability as compared to the wild-type enzyme, and (b) a lesser leakage of oxidative equivalents from TOP T151W Compound I resulting in the increased catalytic activity. The results obtained show that TOP unique properties can be further improved for practical applications by site-directed mutagenesis. PMID:25957835

  11. Two-dimensional IR spectroscopy of protein dynamics using two vibrational labels: a site-specific genetically encoded unnatural amino acid and an active site ligand.

    PubMed

    Thielges, Megan C; Axup, Jun Y; Wong, Daryl; Lee, Hyun Soo; Chung, Jean K; Schultz, Peter G; Fayer, Michael D

    2011-09-29

    Protein dynamics and interactions in myoglobin (Mb) were characterized via two vibrational dynamics labels (VDLs): a genetically incorporated site-specific azide (Az) bearing unnatural amino acid (AzPhe43) and an active site CO ligand. The Az-labeled protein was studied using ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy. CO bound at the active site of the heme serves as a second VDL located nearby. Therefore, it was possible to use Fourier transform infrared (FT-IR) and 2D IR spectroscopic experiments on the Az in unligated Mb and in Mb bound to CO (MbAzCO) and on the CO in MbCO and MbAzCO to investigate the environment and motions of different states of one protein from the perspective of two spectrally resolved VDLs. A very broad bandwidth 2D IR spectrum, encompassing both the Az and CO spectral regions, found no evidence of direct coupling between the two VDLs. In MbAzCO, both VDLs reported similar time scale motions: very fast homogeneous dynamics, fast, ∼1 ps dynamics, and dynamics on a much slower time scale. Therefore, each VDL reports independently on the protein dynamics and interactions, and the measured dynamics are reflective of the protein motions rather than intrinsic to the chemical nature of the VDL. The AzPhe VDL also permitted study of oxidized Mb dynamics, which could not be accessed previously with 2D IR spectroscopy. The experiments demonstrate that the combined application of 2D IR spectroscopy and site-specific incorporation of VDLs can provide information on dynamics, structure, and interactions at virtually any site throughout any protein. PMID:21823631

  12. Two-Dimensional IR Spectroscopy of Protein Dynamics Using Two Vibrational Labels: A Site-Specific Genetically Encoded Unnatural Amino Acid and an Active Site Ligand

    PubMed Central

    Thielges, Megan C.; Axup, Jun Y.; Wong, Daryl; Lee, Hyun Soo; Chung, Jean K.; Schultz, Peter G.; Fayer, Michael D.

    2012-01-01

    Protein dynamics and interactions in myoglobin (Mb) were characterized via two vibrational dynamics labels (VDLs): a genetically incorporated site-specific azide (Az) bearing unnatural amino acid (AzPhe43) and an active site CO ligand. The Az-labeled protein was studied using ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy. CO bound at the active site of the heme serves as a second VDL located nearby. Therefore, it was possible to use Fourier transform infrared (FT-IR) and 2D IR spectroscopic experiments on the Az in unligated Mb and in Mb bound to CO (MbAzCO) and on the CO in MbCO and MbAzCO to investigate the environment and motions of different states of one protein from the perspective of two spectrally resolved VDLs. A very broad bandwidth 2D IR spectrum, encompassing both the Az and CO spectral regions, found no evidence of direct coupling between the two VDLs. In MbAzCO, both VDLs reported similar time scale motions: very fast homogeneous dynamics, fast, ~1 ps dynamics, and dynamics on a much slower time scale. Therefore, each VDL reports independently on the protein dynamics and interactions, and the measured dynamics are reflective of the protein motions rather than intrinsic to the chemical nature of the VDL. The AzPhe VDL also permitted study of oxidized Mb dynamics, which could not be accessed previously with 2D IR spectroscopy. The experiments demonstrate that the combined application of 2D IR spectroscopy and site-specific incorporation of VDLs can provide information on dynamics, structure, and interactions at virtually any site throughout any protein. PMID:21823631

  13. Newly identified essential amino acid residues affecting ^8-sphingolipid desaturase activity revealed by site-directed mutagenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to identify amino acid residues crucial for the enzymatic activity of ^8-sphingolipid desaturases, a sequence comparison was performed among ^8-sphingolipid desaturases and ^6-fatty acid desaturase from various plants. In addition to the known conserved cytb5 (cytochrome b5) HPGG motif and...

  14. Evidence for a Dual Role of an Active Site Histidine in [alpha]-Amino-[beta]-carboxymuconate-[epsilon]-semialdehyde Decarboxylase

    SciTech Connect

    Huo, Lu; Fielding, Andrew J.; Chen, Yan; Li, Tingfeng; Iwaki, Hiroaki; Hosler, Jonathan P.; Chen, Lirong; Hasegawa, Yoshie; Que, Jr., Lawrence; Liu, Aimin

    2012-10-09

    The previously reported crystal structures of {alpha}-amino-{beta}-carboxymuconate-{epsilon}-semialdehyde decarboxylase (ACMSD) show a five-coordinate Zn(II)(His){sub 3}(Asp)(OH{sub 2}) active site. The water ligand is H-bonded to a conserved His228 residue adjacent to the metal center in ACMSD from Pseudomonas fluorescens (PfACMSD). Site-directed mutagenesis of His228 to tyrosine and glycine in this study results in a complete or significant loss of activity. Metal analysis shows that H228Y and H228G contain iron rather than zinc, indicating that this residue plays a role in the metal selectivity of the protein. As-isolated H228Y displays a blue color, which is not seen in wild-type ACMSD. Quinone staining and resonance Raman analyses indicate that the blue color originates from Fe(III)-tyrosinate ligand-to-metal charge transfer. Co(II)-substituted H228Y ACMSD is brown in color and exhibits an electron paramagnetic resonance spectrum showing a high-spin Co(II) center with a well-resolved {sup 59}Co (I = 7/2) eight-line hyperfine splitting pattern. The X-ray crystal structures of as-isolated Fe-H228Y (2.8 {angstrom}) and Co-substituted (2.4 {angstrom}) and Zn-substituted H228Y (2.0 {angstrom} resolution) support the spectroscopic assignment of metal ligation of the Tyr228 residue. The crystal structure of Zn-H228G (2.6 {angstrom}) was also determined. These four structures show that the water ligand present in WT Zn-ACMSD is either missing (Fe-H228Y, Co-H228Y, and Zn-H228G) or disrupted (Zn-H228Y) in response to the His228 mutation. Together, these results highlight the importance of His228 for PfACMSD's metal specificity as well as maintaining a water molecule as a ligand of the metal center. His228 is thus proposed to play a role in activating the metal-bound water ligand for subsequent nucleophilic attack on the substrate.

  15. Computational study on the roles of amino acid residues in the active site formation mechanism of blue-light photoreceptors

    NASA Astrophysics Data System (ADS)

    Sato, Ryuma; Kitoh-Nishioka, Hirotaka; Ando, Koji; Yamato, Takahisa

    2015-07-01

    To examine the functional roles of the active site methionine (M-site) and glutamic acid (E-site) residues of blue-light photoreceptors, we performed in silico mutation at the M-site in a systematic manner and focused on the hydrogen bonding between the E-site and the substrate: the cyclobutane-pyrimidine dimer (CPD). Fragment molecular orbital calculations with electron correlations demonstrated that substitution of the M-site methionine with either alanine or glutamine always destabilizes the interaction energy between the E-site and the CPD by more than 12.0 kcal/mol, indicating that the methionine and glutamic acid residues cooperatively facilitate the enzymatic reaction in the active site.

  16. Dual evaluation of some novel 2-amino-substituted coumarinylthiazoles as anti-inflammatory-antimicrobial agents and their docking studies with COX-1/COX-2 active sites.

    PubMed

    Chandak, Navneet; Kumar, Pawan; Kaushik, Pawan; Varshney, Parul; Sharma, Chetan; Kaushik, Dhirender; Jain, Sudha; Aneja, Kamal R; Sharma, Pawan K

    2014-08-01

    Synthesis of total eighteen 2-amino-substituted 4-coumarinylthiazoles including sixteen new compounds (3a-o and 5b) bearing the benzenesulfonamide moiety is described in the present report. All the synthesized target compounds were examined for their in vivo anti-inflammatory (AI) activity and in vitro antimicrobial activity. Results revealed that six compounds (3 d, 3 f, 3 g, 3 h, 3 j and 3 n) exhibited pronounced anti-inflammatory activity comparable to the standard drug indomethacin. AI results were further confirmed by the docking studies of the most active (3n) and the least active compound (3a) with COX-1 and COX-2 active sites. In addition, most of the compounds exhibited moderate antimicrobial activity against Gram-positive bacteria as well as fungal yeast, S. cervisiae. Comparison between 3 and 5 indicated that incorporation of additional substituted pyrazole nucleus into the scaffold significantly enhanced AI activity. PMID:23777557

  17. Active-Site Engineering of ω-Transaminase for Production of Unnatural Amino Acids Carrying a Side Chain Bulkier than an Ethyl Substituent.

    PubMed

    Han, Sang-Woo; Park, Eul-Soo; Dong, Joo-Young; Shin, Jong-Shik

    2015-10-01

    ω-Transaminase (ω-TA) is a promising enzyme for use in the production of unnatural amino acids from keto acids using cheap amino donors such as isopropylamine. The small substrate-binding pocket of most ω-TAs permits entry of substituents no larger than an ethyl group, which presents a significant challenge to the preparation of structurally diverse unnatural amino acids. Here we report on the engineering of an (S)-selective ω-TA from Ochrobactrum anthropi (OATA) to reduce the steric constraint and thereby allow the small pocket to readily accept bulky substituents. On the basis of a docking model in which L-alanine was used as a ligand, nine active-site residues were selected for alanine scanning mutagenesis. Among the resulting variants, an L57A variant showed dramatic activity improvements in activity for α-keto acids and α-amino acids carrying substituents whose bulk is up to that of an n-butyl substituent (e.g., 48- and 56-fold increases in activity for 2-oxopentanoic acid and L-norvaline, respectively). An L57G mutation also relieved the steric constraint but did so much less than the L57A mutation did. In contrast, an L57V substitution failed to induce the improvements in activity for bulky substrates. Molecular modeling suggested that the alanine substitution of L57, located in a large pocket, induces an altered binding orientation of an α-carboxyl group and thereby provides more room to the small pocket. The synthetic utility of the L57A variant was demonstrated by carrying out the production of optically pure L- and D-norvaline (i.e., enantiomeric excess [ee]>99%) by asymmetric amination of 2-oxopantanoic acid and kinetic resolution of racemic norvaline, respectively. PMID:26231640

  18. Active-Site Engineering of ω-Transaminase for Production of Unnatural Amino Acids Carrying a Side Chain Bulkier than an Ethyl Substituent

    PubMed Central

    Han, Sang-Woo; Park, Eul-Soo; Dong, Joo-Young

    2015-01-01

    ω-Transaminase (ω-TA) is a promising enzyme for use in the production of unnatural amino acids from keto acids using cheap amino donors such as isopropylamine. The small substrate-binding pocket of most ω-TAs permits entry of substituents no larger than an ethyl group, which presents a significant challenge to the preparation of structurally diverse unnatural amino acids. Here we report on the engineering of an (S)-selective ω-TA from Ochrobactrum anthropi (OATA) to reduce the steric constraint and thereby allow the small pocket to readily accept bulky substituents. On the basis of a docking model in which l-alanine was used as a ligand, nine active-site residues were selected for alanine scanning mutagenesis. Among the resulting variants, an L57A variant showed dramatic activity improvements in activity for α-keto acids and α-amino acids carrying substituents whose bulk is up to that of an n-butyl substituent (e.g., 48- and 56-fold increases in activity for 2-oxopentanoic acid and l-norvaline, respectively). An L57G mutation also relieved the steric constraint but did so much less than the L57A mutation did. In contrast, an L57V substitution failed to induce the improvements in activity for bulky substrates. Molecular modeling suggested that the alanine substitution of L57, located in a large pocket, induces an altered binding orientation of an α-carboxyl group and thereby provides more room to the small pocket. The synthetic utility of the L57A variant was demonstrated by carrying out the production of optically pure l- and d-norvaline (i.e., enantiomeric excess [ee] > 99%) by asymmetric amination of 2-oxopantanoic acid and kinetic resolution of racemic norvaline, respectively. PMID:26231640

  19. Probing the Active Site of MIO-dependent Aminomutases, Key Catalysts in the Biosynthesis of amino Acids Incorporated in Secondary Metabolites

    SciTech Connect

    Cooke, H.; Bruner, S

    2010-01-01

    The tyrosine aminomutase SgTAM produces (S)-{beta}-tyrosine from L-tyrosine in the biosynthesis of the enediyne antitumor antibiotic C-1027. This conversion is promoted by the methylideneimidazole-5-one (MIO) prosthetic group. MIO was first identified in the homologous family of ammonia lyases, which deaminate aromatic amino acids to form {alpha},{beta}-unsaturated carboxylates. Studies of substrate specificity have been described for lyases but there have been limited reports in altering the substrate specificity of aminomutases. Furthermore, it remains unclear as to what structural properties are responsible for catalyzing the presumed readdition of the amino group into the {alpha},{beta}-unsaturated intermediates to form {beta}-amino acids. Attempts to elucidate specificity and mechanistic determinants of SgTAM have also proved to be difficult as it is recalcitrant to perturbations to the active site via mutagenesis. An X-ray cocrystal structure of the SgTAM mutant of the catalytic base with L-tyrosine verified important substrate binding residues as well as the enzymatic base. Further mutagenesis revealed that removal of these crucial interactions renders the enzyme inactive. Proposed structural determinants for mutase activity probed via mutagenesis, time-point assays and X-ray crystallography revealed a complicated role for these residues in maintaining key quaternary structure properties that aid in catalysis.

  20. Probing the active site of MIO-dependent aminomutases, key catalysts in the biosynthesis of beta-amino acids incorporated in secondary metabolites.

    PubMed

    Cooke, Heather A; Bruner, Steven D

    2010-09-01

    The tyrosine aminomutase SgTAM produces (S)-ss-tyrosine from L-tyrosine in the biosynthesis of the enediyne antitumor antibiotic C-1027. This conversion is promoted by the methylideneimidazole-5-one (MIO) prosthetic group. MIO was first identified in the homologous family of ammonia lyases, which deaminate aromatic amino acids to form alpha,ss-unsaturated carboxylates. Studies of substrate specificity have been described for lyases but there have been limited reports in altering the substrate specificity of aminomutases. Furthermore, it remains unclear as to what structural properties are responsible for catalyzing the presumed readdition of the amino group into the alpha,ss-unsaturated intermediates to form ss-amino acids. Attempts to elucidate specificity and mechanistic determinants of SgTAM have also proved to be difficult as it is recalcitrant to perturbations to the active site via mutagenesis. An X-ray cocrystal structure of the SgTAM mutant of the catalytic base with L-tyrosine verified important substrate binding residues as well as the enzymatic base. Further mutagenesis revealed that removal of these crucial interactions renders the enzyme inactive. Proposed structural determinants for mutase activity probed via mutagenesis, time-point assays and X-ray crystallography revealed a complicated role for these residues in maintaining key quaternary structure properties that aid in catalysis. PMID:20577998

  1. Active-Site Residues of Escherichia coli DNA Gyrase Required in Coupling ATP Hydrolysis to DNA Supercoiling and Amino Acid Substitutions Leading to Novobiocin Resistance

    PubMed Central

    Gross, Christian H.; Parsons, Jonathan D.; Grossman, Trudy H.; Charifson, Paul S.; Bellon, Steven; Jernee, James; Dwyer, Maureen; Chambers, Stephen P.; Markland, William; Botfield, Martyn; Raybuck, Scott A.

    2003-01-01

    DNA gyrase is a bacterial type II topoisomerase which couples the free energy of ATP hydrolysis to the introduction of negative supercoils into DNA. Amino acids in proximity to bound nonhydrolyzable ATP analog (AMP · PNP) or novobiocin in the gyrase B (GyrB) subunit crystal structures were examined for their roles in enzyme function and novobiocin resistance by site-directed mutagenesis. Purified Escherichia coli GyrB mutant proteins were complexed with the gyrase A subunit to form the functional A2B2 gyrase enzyme. Mutant proteins with alanine substitutions at residues E42, N46, E50, D73, R76, G77, and I78 had reduced or no detectable ATPase activity, indicating a role for these residues in ATP hydrolysis. Interestingly, GyrB proteins with P79A and K103A substitutions retained significant levels of ATPase activity yet demonstrated no DNA supercoiling activity, even with 40-fold more enzyme than the wild-type enzyme, suggesting that these amino acid side chains have a role in the coupling of the two activities. All enzymes relaxed supercoiled DNA to the same extent as the wild-type enzyme did, implying that only ATP-dependent reactions were affected. Mutant genes were examined in vivo for their abilities to complement a temperature-sensitive E. coli gyrB mutant, and the activities correlated well with the in vitro activities. We show that the known R136 novobiocin resistance mutations bestow a significant loss of inhibitor potency in the ATPase assay. Four new residues (D73, G77, I78, and T165) that, when changed to the appropriate amino acid, result in both significant levels of novobiocin resistance and maintain in vivo function were identified in E. coli. PMID:12604539

  2. Analysis of the Role of the Active Site Residue Arg98 in the Flavoprotein Tryptophan 2-Monooxygenase, a Member of the l-Amino Oxidase Family†

    PubMed Central

    Sobrado, Pablo; Fitzpatrick, Paul F.

    2006-01-01

    The flavoprotein tryptophan 2-monooxygenase catalyzes the oxidative decarboxylation of tryptophan to indoleacetamide. We have previously identified tryptophan 2-monooxygenase as a homologue of l-amino acid oxidase [Sobrado, P., and Fitzpatrick, P. F. (2002) Arch. Biochem. Biophys. 402, 24–30]. On the basis of the sequence comparisons of the different LAAO family members, Arg98 of tryptophan 2-monooxygenase can be identified as an active site residue which interacts with the carboxylate of the amino acid substrate. The catalytic properties of R98K and R98A tryptophan 2-monooxygenase have been characterized to evaluate the role of this residue. Mutation of Arg98 to lysine decreases the first-order rate constant for flavin reduction by 180-fold and the second-order rate constant for flavin oxidation by 26-fold, has no significant effect on the Kd value for tryptophan or the Ki value for the competitive inhibitor indoleacetamide, and increases the Ki value for indolepyruvate less than 2-fold. Mutation of this residue to alanine decreases the rate constants for reduction and oxidation an additional 5- and 2-fold, respectively, and increases the Kd value for tryptophan and the Ki value for indolepyruvate by 31- and 17-fold, respectively, while having an only 2-fold effect on the Ki value for indoleacetamide. Both mutations increase the value of the primary deuterium isotope effect with tryptophan as a substrate, consistent with a later transition state. Both mutant enzymes catalyze a simple oxidase reaction, producing indolepyruvate and hydrogen peroxide. The pH dependences of the V/Ktrp values for the mutant enzymes show that the anionic form of the substrate is preferred but that the zwitterionic form is a substrate. The results are consistent with the interaction between Arg98 and the carboxylate of the amino acid substrate being critical for correct positioning of the substrate in the active site for efficient catalysis. PMID:14636049

  3. Pseudomonas aeruginosa 4-Amino-4-Deoxychorismate Lyase: Spatial Conservation of an Active Site Tyrosine and Classification of Two Types of Enzyme

    PubMed Central

    O'Rourke, Patrick E. F.; Eadsforth, Thomas C.; Fyfe, Paul K.; Shepherd, Sharon M.; Hunter, William N.

    2011-01-01

    4-Amino-4-deoxychorismate lyase (PabC) catalyzes the formation of 4-aminobenzoate, and release of pyruvate, during folate biosynthesis. This is an essential activity for the growth of Gram-negative bacteria, including important pathogens such as Pseudomonas aeruginosa. A high-resolution (1.75 Å) crystal structure of PabC from P. aeruginosa has been determined, and sequence-structure comparisons with orthologous structures are reported. Residues around the pyridoxal 5′-phosphate cofactor are highly conserved adding support to aspects of a mechanism generic for enzymes carrying that cofactor. However, we suggest that PabC can be classified into two groups depending upon whether an active site and structurally conserved tyrosine is provided from the polypeptide that mainly forms an active site or from the partner subunit in the dimeric assembly. We considered that the conserved tyrosine might indicate a direct role in catalysis: that of providing a proton to reduce the olefin moiety of substrate as pyruvate is released. A threonine had previously been suggested to fulfill such a role prior to our observation of the structurally conserved tyrosine. We have been unable to elucidate an experimentally determined structure of PabC in complex with ligands to inform on mechanism and substrate specificity. Therefore we constructed a computational model of the catalytic intermediate docked into the enzyme active site. The model suggests that the conserved tyrosine helps to create a hydrophobic wall on one side of the active site that provides important interactions to bind the catalytic intermediate. However, this residue does not appear to participate in interactions with the C atom that undergoes an sp2 to sp3 conversion as pyruvate is produced. The model and our comparisons rather support the hypothesis that an active site threonine hydroxyl contributes a proton used in the reduction of the substrate methylene to pyruvate methyl in the final stage of the mechanism. PMID

  4. Non-coding nucleotides and amino acids near the active site regulate peptide deformylase expression and inhibitor susceptibility in Chlamydia trachomatis.

    PubMed

    Bao, Xiaofeng; Pachikara, Niseema D; Oey, Christopher B; Balakrishnan, Amit; Westblade, Lars F; Tan, Ming; Chase, Theodore; Nickels, Bryce E; Fan, Huizhou

    2011-09-01

    Chlamydia trachomatis, an obligate intracellular bacterium, is a highly prevalent human pathogen. Hydroxamic-acid-based matrix metalloprotease inhibitors can effectively inhibit the pathogen both in vitro and in vivo, and have exhibited therapeutic potential. Here, we provide genome sequencing data indicating that peptide deformylase (PDF) is the sole target of the inhibitors in this organism. We further report molecular mechanisms that control chlamydial PDF (cPDF) expression and inhibition efficiency. In particular, we identify the σ⁶⁶-dependent promoter that controls cPDF gene expression and demonstrate that point mutations in this promoter lead to resistance by increasing cPDF transcription. Furthermore, we show that substitution of two amino acids near the active site of the enzyme alters enzyme kinetics and protein stability. PMID:21719536

  5. Site-selective chemical modification of chymotrypsin using peptidyl derivatives bearing optically active diphenyl 1-amino-2-phenylethylphosphonate: Stereochemical effect of the diphenyl phosphonate moiety.

    PubMed

    Ono, Shin; Nakai, Takahiko; Kuroda, Hirofumi; Miyatake, Ryuta; Horino, Yoshikazu; Abe, Hitoshi; Umezaki, Masahito; Oyama, Hiroshi

    2016-11-01

    Diphenyl (α-aminoalkyl)phosphonates act as mechanism-based inhibitors against serine proteases by forming a covalent bond with the hydroxy group of the active center Ser residue. Because the covalent bond was found to be broken and replaced by 2-pyridinaldoxime methiodide (2PAM), we employed a peptidyl derivative bearing diphenyl 1-amino-2-phenylethylphosphonate moiety (Phe(p) (OPh)2 ) to target the active site of chymotrypsin and to selectively anchor to Lys175 in the vicinity of the active site. Previously, it was reported that the configuration of the α-carbon of phosphorus in diphenyl (α-aminoalkyl)phosphonates affects the inactivation reaction of serine proteases, i.e., the (R)-enantiomeric diphenyl phosphonate is comparable to l-amino acids and it effectively reacts with serine proteases, whereas the (S)-enantiomeric form does not. In this study, we evaluated the stereochemical effect of the phosphonate moiety on the selective chemical modification. Epimeric dipeptidyl derivatives, Ala-(R or S)-Phe(p) (OPh)2 , were prepared by separation with RP-HPLC. A tripeptidyl (R)-epimer (Ala-Ala-(R)-Phe(p) (OPh)2 ) exhibited a more potent inactivation ability against chymotrypsin than the (S)-epimer. The enzyme inactivated by the (R)-epimer was more effectively reactivated with 2PAM than the enzyme inactivated by the (S)-epimer. Finally, N-succinimidyl (NHS) active ester derivatives, NHS-Suc-Ala-Ala- (R or S)-Phe(p) (OPh)2 , were prepared, and we evaluated their action when modifying Lys175 in chymotrypsin. We demonstrated that the epimeric NHS derivative that possessed the diphenyl phosphonate moiety with the (R)-configuration effectively modified Lys175 in chymotrypsin, whereas that with the (S)-configuration did not. These results demonstrate the utility of peptidyl derivatives that bear an optically active diphenyl phosphonate moiety as affinity labeling probes in protein bioconjugation. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 521-530, 2016

  6. Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor.

    PubMed

    Van Zeebroeck, Griet; Bonini, Beatriz Monge; Versele, Matthias; Thevelein, Johan M

    2009-01-01

    Transporter-related nutrient sensors, called transceptors, mediate nutrient activation of signaling pathways through the plasma membrane. The mechanism of action of transporting and nontransporting transceptors is unknown. We have screened 319 amino acid analogs to identify compounds that act on Gap1, a transporting amino acid transceptor in yeast that triggers activation of the protein kinase A pathway. We identified competitive and noncompetitive inhibitors of transport, either with or without agonist action for signaling, including nontransported agonists. Using substituted cysteine accessibility method (SCAM) analysis, we identified Ser388 and Val389 as being exposed into the amino acid binding site, and we show that agonist action for signaling uses the same binding site as used for transport. Our results provide the first insight, to our knowledge, into the mechanism of action of transceptors. They indicate that signaling requires a ligand-induced specific conformational change that may be part of but does not require the complete transport cycle. PMID:19060912

  7. Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation.

    PubMed

    Hong, Seok Hoon; Ntai, Ioanna; Haimovich, Adrian D; Kelleher, Neil L; Isaacs, Farren J; Jewett, Michael C

    2014-06-20

    Site-specific incorporation of nonstandard amino acids (NSAAs) into proteins enables the creation of biopolymers, proteins, and enzymes with new chemical properties, new structures, and new functions. To achieve this, amber (TAG codon) suppression has been widely applied. However, the suppression efficiency is limited due to the competition with translation termination by release factor 1 (RF1), which leads to truncated products. Recently, we constructed a genomically recoded Escherichia coli strain lacking RF1 where 13 occurrences of the amber stop codon have been reassigned to the synonymous TAA codon (rEc.E13.ΔprfA). Here, we assessed and characterized cell-free protein synthesis (CFPS) in crude S30 cell lysates derived from this strain. We observed the synthesis of 190±20 μg/mL of modified soluble superfolder green fluorescent protein (sfGFP) containing a single p-propargyloxy-L-phenylalanine (pPaF) or p-acetyl-L-phenylalanine. As compared to the parent rEc.E13 strain with RF1, this results in a modified sfGFP synthesis improvement of more than 250%. Beyond introducing a single NSAA, we further demonstrated benefits of CFPS from the RF1-deficient strains for incorporating pPaF at two- and five-sites per sfGFP protein. Finally, we compared our crude S30 extract system to the PURE translation system lacking RF1. We observed that our S30 extract based approach is more cost-effective and high yielding than the PURE translation system lacking RF1, ∼1000 times on a milligram protein produced/$ basis. Looking forward, using RF1-deficient strains for extract-based CFPS will aid in the synthesis of proteins and biopolymers with site-specifically incorporated NSAAs. PMID:24328168

  8. Amino acid sequence and molecular structure of an alkaline amylopullulanase from Bacillus that hydrolyzes alpha-1,4 and alpha-1,6 linkages in polysaccharides at different active sites.

    PubMed

    Hatada, Y; Igarashi, K; Ozaki, K; Ara, K; Hitomi, J; Kobayashi, T; Kawai, S; Watabe, T; Ito, S

    1996-09-27

    An amylopullulanase from alkalophilic Bacillus sp. KSM-1378 hydrolyzes both alpha-1,6 linkages in pullulan and alpha-1,4 linkages in other polysaccharides, with maximum activity in each case at an alkaline pH, to generate oligosaccharides (Ara, K., Saeki, K., Igarashi, K., Takaiwa, M., Uemura, T., Hagihara, H., Kawai, S., and Ito, S. (1995) Biochim. Biophys. Acta 1243, 315-324). Here, we report the molecular cloning and sequencing of the gene for and the structure of this enzyme and show that its dual hydrolytic activities are associated with two independent active sites. The structural gene contained a single, long open reading frame of 5,814 base pairs, corresponding to 1,938 amino acids that included a signal peptide of 32 amino acids. The molecular mass of the extracellular mature enzyme (Glu33 through Leu1938) was calculated to be 211,450 Da, a value close to the 210 kDa determined for the amylopullulanase produced by Bacillus sp. KSM-1378. The amylase and the pullulanase domains were located in the amino-terminal half and in the carboxyl-terminal half of the enzyme, respectively, being separated by a tandem repeat of a sequence of 35 amino acids. Four regions, designated I, II, III, and IV, were highly conserved in each catalytic domain, and they included a putative catalytic triad Asp550-Glu579-Asp645 for the amylase activity and Asp1464-Glu1493-Asp1581 for the pullulanase activity. The purified enzyme was rotary shadowed at a low angle and observed by transmission electron microscopy; it appeared to be a "castanet-like" or "bent dumbbell-like" molecule with a diameter of approximately 25 nm. PMID:8798645

  9. Improving Evolutionary Models for Mitochondrial Protein Data with Site-Class Specific Amino Acid Exchangeability Matrices

    PubMed Central

    Dunn, Katherine A.; Jiang, Wenyi; Field, Christopher; Bielawski, Joseph P.

    2013-01-01

    Adequate modeling of mitochondrial sequence evolution is an essential component of mitochondrial phylogenomics (comparative mitogenomics). There is wide recognition within the field that lineage-specific aspects of mitochondrial evolution should be accommodated through lineage-specific amino-acid exchangeability matrices (e.g., mtMam for mammalian data). However, such a matrix must be applied to all sites and this implies that all sites are subject to the same, or largely similar, evolutionary constraints. This assumption is unjustified. Indeed, substantial differences are expected to arise from three-dimensional structures that impose different physiochemical environments on individual amino acid residues. The objectives of this paper are (1) to investigate the extent to which amino acid evolution varies among sites of mitochondrial proteins, and (2) to assess the potential benefits of explicitly modeling such variability. To achieve this, we developed a novel method for partitioning sites based on amino acid physiochemical properties. We apply this method to two datasets derived from complete mitochondrial genomes of mammals and fish, and use maximum likelihood to estimate amino acid exchangeabilities for the different groups of sites. Using this approach we identified large groups of sites evolving under unique physiochemical constraints. Estimates of amino acid exchangeabilities differed significantly among such groups. Moreover, we found that joint estimates of amino acid exchangeabilities do not adequately represent the natural variability in evolutionary processes among sites of mitochondrial proteins. Significant improvements in likelihood are obtained when the new matrices are employed. We also find that maximum likelihood estimates of branch lengths can be strongly impacted. We provide sets of matrices suitable for groups of sites subject to similar physiochemical constraints, and discuss how they might be used to analyze real data. We also discuss how

  10. His-65 in the proton–sucrose symporter is an essential amino acid whose modification with site-directed mutagenesis increases transport activity

    PubMed Central

    Lu, Jade M.-Y.; Bush, Daniel R.

    1998-01-01

    The proton–sucrose symporter that mediates phloem loading is a key component of assimilate partitioning in many higher plants. Previous biochemical investigations showed that a diethyl pyrocarbonate-sensitive histidine residue is at or near the substrate-binding site of the symporter. Among the proton–sucrose symporters cloned to date, only the histidine residue at position 65 of AtSUC1 from Arabidopsis thaliana is conserved across species. To test whether His-65 is involved in the transport reaction, we have used site-directed mutagenesis and functional expression in yeast to determine the significance of this residue in the reaction mechanism. Symporters with mutations at His-65 exhibited a range of activities; for example, the H65C mutant resulted in the complete loss of transport capacity, whereas H65Q was almost as active as wild type. Surprisingly, the H65K and H65R symporters transport sucrose at significantly higher rates (increased Vmax) than the wild-type symporter, suggesting His-65 may be associated with a rate-limiting step in the transport reaction. RNA gel blot and protein blot analyses showed that, with the exception of H65C, the variation in transport activity was not because of alterations in steady-state levels of mRNA or symporter protein. Significantly, those symporters with substitutions of His-65 that remained transport competent were no longer sensitive to inactivation by diethyl pyrocarbonate, demonstrating that this is the inhibitor-sensitive histidine residue. Taken together with our previous results, these data show that His-65 is involved in sucrose binding, and increased rates of transport implicate this region of the protein in the transport reaction. PMID:9671798

  11. Crystal Structures of Human Choline Kinase Isoforms in Complex with Hemicholinium-3 Single Amino Acid near the Active Site Influences Inhibitor Sensitivity

    SciTech Connect

    Hong, Bum Soo; Allali-Hassani, Abdellah; Tempel, Wolfram; Finerty, Jr., Patrick J.; MacKenzie, Farrell; Dimov, Svetoslav; Vedadi, Masoud; Park, Hee-Won

    2010-07-06

    Human choline kinase (ChoK) catalyzes the first reaction in phosphatidylcholine biosynthesis and exists as ChoK{alpha} ({alpha}1 and {alpha}2) and ChoK{beta} isoforms. Recent studies suggest that ChoK is implicated in tumorigenesis and emerging as an attractive target for anticancer chemotherapy. To extend our understanding of the molecular mechanism of ChoK inhibition, we have determined the high resolution x-ray structures of the ChoK{alpha}1 and ChoK{beta} isoforms in complex with hemicholinium-3 (HC-3), a known inhibitor of ChoK. In both structures, HC-3 bound at the conserved hydrophobic groove on the C-terminal lobe. One of the HC-3 oxazinium rings complexed with ChoK{alpha}1 occupied the choline-binding pocket, providing a structural explanation for its inhibitory action. Interestingly, the HC-3 molecule co-crystallized with ChoK{beta} was phosphorylated in the choline binding site. This phosphorylation, albeit occurring at a very slow rate, was confirmed experimentally by mass spectroscopy and radioactive assays. Detailed kinetic studies revealed that HC-3 is a much more potent inhibitor for ChoK{alpha} isoforms ({alpha}1 and {alpha}2) compared with ChoK{beta}. Mutational studies based on the structures of both inhibitor-bound ChoK complexes demonstrated that Leu-401 of ChoK{alpha}2 (equivalent to Leu-419 of ChoK{alpha}1), or the corresponding residue Phe-352 of ChoK{beta}, which is one of the hydrophobic residues neighboring the active site, influences the plasticity of the HC-3-binding groove, thereby playing a key role in HC-3 sensitivity and phosphorylation.

  12. Characterization of the Functional Roles of Amino Acid Residues in Acceptor-binding Subsite +1 in the Active Site of the Glucansucrase GTF180 from Lactobacillus reuteri 180.

    PubMed

    Meng, Xiangfeng; Pijning, Tjaard; Dobruchowska, Justyna M; Gerwig, Gerrit J; Dijkhuizen, Lubbert

    2015-12-11

    α-Glucans produced by glucansucrase enzymes hold strong potential for industrial applications. The exact determinants of the linkage specificity of glucansucrase enzymes have remained largely unknown, even with the recent elucidation of glucansucrase crystal structures. Guided by the crystal structure of glucansucrase GTF180-ΔN from Lactobacillus reuteri 180 in complex with the acceptor substrate maltose, we identified several residues (Asp-1028 and Asn-1029 from domain A, as well as Leu-938, Ala-978, and Leu-981 from domain B) near subsite +1 that may be critical for linkage specificity determination, and we investigated these by random site-directed mutagenesis. First, mutants of Ala-978 (to Leu, Pro, Phe, or Tyr) and Asp-1028 (to Tyr or Trp) with larger side chains showed reduced degrees of branching, likely due to the steric hindrance by these bulky residues. Second, Leu-938 mutants (except L938F) and Asp-1028 mutants showed altered linkage specificity, mostly with increased (α1 → 6) linkage synthesis. Third, mutation of Leu-981 and Asn-1029 significantly affected the transglycosylation reaction, indicating their essential roles in acceptor substrate binding. In conclusion, glucansucrase product specificity is determined by an interplay of domain A and B residues surrounding the acceptor substrate binding groove. Residues surrounding the +1 subsite thus are critical for activity and specificity of the GTF180 enzyme and play different roles in the enzyme functions. This study provides novel insights into the structure-function relationships of glucansucrase enzymes and clearly shows the potential of enzyme engineering to produce tailor-made α-glucans. PMID:26507662

  13. Isolation and sequencing of an active-site peptide from Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase after affinity labeling with 2-((Bromoacetyl)amino)pentitol 1,5-bisphosphate

    SciTech Connect

    Fraij, B.; Hartman, F.C.

    1983-01-01

    2-((Bromoacetyl)amino)pentitol 1,5-bisphosphate was reported to be a highly selective affinity label for ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. The enzyme has now been inactivated with a /sup 14/C-labeled reagent in order to identify the target residue at the sequence level. Subsequent to inactivation, the enzyme was carboxymethylated with iodoacetate and then digested with trypsin. The only radioactive peptide in the digest was obtained at a high degree of purity by successive chromatography on DEAE-cellulose, SP-Sephadex, and Sephadex G-25. On the basis of amino acid analysis of the purified peptide, the derivatized residue was a methionyl sulfonium salt. Automated Edman degradation confirmed the purity of the labeled peptide and established its sequence as Leu-Gln-Gly-Ala-Ser-Gly-Ile-His-Thr-Gly-Thr-Met-Gly-Phe-Gly-Lys-Met-Glu-Gly-Glu-Ser-Ser-Asp-Arg. Cleavage of this peptide with cyanogen bromide showed that the reagent moiety was covalently attached to the second methionyl residue. Sequence homology with the carboxylase/oxygenase from spinach indicates that the lysyl residue immediately preceding the alkylated methionine corresponds to Lys-334, a residue previously implicated at the active site. 31 references, 4 figures, 3 tables.

  14. Site-Specific Characterization of d-Amino Acid Containing Peptide Epimers by Ion Mobility Spectrometry

    PubMed Central

    2013-01-01

    Traditionally, the d-amino acid containing peptide (DAACP) candidate can be discovered by observing the differences of biological activity and chromatographic retention time between the synthetic peptides and naturally occurring peptides. However, it is difficult to determine the exact position of d-amino acid in the DAACP candidates. Herein, we developed a novel site-specific strategy to rapidly and precisely localize d-amino acids in peptides by ion mobility spectrometry (IMS) analysis of mass spectrometry (MS)-generated epimeric fragment ions. Briefly, the d/l-peptide epimers were separated by online reversed-phase liquid chromatography and fragmented by collision-induced dissociation (CID), followed by IMS analysis. The epimeric fragment ions resulting from d/l-peptide epimers exhibit conformational differences, thus showing different mobilities in IMS. The arrival time shift between the epimeric fragment ions was used as criteria to localize the d-amino acid substitution. The utility of this strategy was demonstrated by analysis of peptide epimers with different molecular sizes, [d-Trp]-melanocyte-stimulating hormone, [d-Ala]-deltorphin, [d-Phe]-achatin-I, and their counterparts that contain all-l amino acids. Furthermore, the crustacean hyperglycemia hormones (CHHs, 8.5 kDa) were isolated from the American lobster Homarus americanus and identified by integration of MS-based bottom-up and top-down sequencing approaches. The IMS data acquired using our novel site-specific strategy localized the site of isomerization of l- to d-Phe at the third residue of the CHHs from the N-terminus. Collectively, this study demonstrates a new method for discovery of DAACPs using IMS technique with the ability to localize d-amino acid residues. PMID:24328107

  15. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  16. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  17. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  18. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  19. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2009-04-28

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  20. Active site specificity of plasmepsin II.

    PubMed Central

    Westling, J.; Cipullo, P.; Hung, S. H.; Saft, H.; Dame, J. B.; Dunn, B. M.

    1999-01-01

    Members of the aspartic proteinase family of enzymes have very similar three-dimensional structures and catalytic mechanisms. Each, however, has unique substrate specificity. These distinctions arise from variations in amino acid residues that line the active site subsites and interact with the side chains of the amino acids of the peptides that bind to the active site. To understand the unique binding preferences of plasmepsin II, an enzyme of the aspartic proteinase class from the malaria parasite, Plasmodium falciparum, chromogenic octapeptides having systematic substitutions at various positions in the sequence were analyzed. This enabled the design of new, improved substrates for this enzyme (Lys-Pro-Ile-Leu-Phe*Nph-Ala/Glu-Leu-Lys, where * indicates the cleavage point). Additionally, the crystal structure of plasmepsin II was analyzed to explain the binding characteristics. Specific amino acids (Met13, Ser77, and Ile287) that were suspected of contributing to active site binding and specificity were chosen for site-directed mutagenesis experiments. The Met13Glu and Ile287Glu single mutants and the Met13Glu/Ile287Glu double mutant gain the ability to cleave substrates containing Lys residues. PMID:10548045

  1. Complete amino acid sequence of globin chains and biological activity of fragmented crocodile hemoglobin (Crocodylus siamensis).

    PubMed

    Srihongthong, Saowaluck; Pakdeesuwan, Anawat; Daduang, Sakda; Araki, Tomohiro; Dhiravisit, Apisak; Thammasirirak, Sompong

    2012-08-01

    Hemoglobin, α-chain, β-chain and fragmented hemoglobin of Crocodylus siamensis demonstrated both antibacterial and antioxidant activities. Antibacterial and antioxidant properties of the hemoglobin did not depend on the heme structure but could result from the compositions of amino acid residues and structures present in their primary structure. Furthermore, thirteen purified active peptides were obtained by RP-HPLC analyses, corresponding to fragments in the α-globin chain and the β-globin chain which are mostly located at the N-terminal and C-terminal parts. These active peptides operate on the bacterial cell membrane. The globin chains of Crocodylus siamensis showed similar amino acids to the sequences of Crocodylus niloticus. The novel amino acid substitutions of α-chain and β-chain are not associated with the heme binding site or the bicarbonate ion binding site, but could be important through their interactions with membranes of bacteria. PMID:22648692

  2. Comparison of the autoradiographic binding distribution of [3H]-gabapentin with excitatory amino acid receptor and amino acid uptake site distributions in rat brain.

    PubMed Central

    Thurlow, R. J.; Hill, D. R.; Woodruff, G. N.

    1996-01-01

    1. Gabapentin is a novel anticonvulsant with an unknown mechanism of action. Recent homogenate binding studies with [3H]-gabapentin have suggested a structure-activity relationship similar to that shown for the amino acid transport system responsible for the uptake of large neutral amino acids (LNAA). 2. The autoradiographic binding distribution of [3H]-gabapentin in rat brain was compared with the distributions for excitatory amino acid receptor subtypes and the uptake sites for excitatory and large neutral amino acids in consecutive rat brain sections. 3. Densitometric measurement of the autoradiographic images followed by normalisation with respect to the hippocampus CA1 stratum radiatum, was carried out before comparison of each binding distribution with that of [3H]-gabapentin by linear regression analysis. The correlation coefficients observed showed no absolute correlation was observed between the binding distributions of [3H]-gabapentin and those of the excitatory amino acid receptor subtypes. The acidic and large neutral amino acid uptake site distributions demonstrated a much closer correlation to the [3H]-gabapentin binding site distribution. The correlation coefficients for D-[3H]-aspartate, L-[3H]-leucine and L-[3H]-isoleucine binding site distributions were 0.76, 0.90 and 0.88 respectively. 4. Concentration-dependent inhibition by unlabelled gabapentin of autoradiographic binding of L-[3H]-leucine and L-[3H]-isoleucine was observed, with non-specific binding levels being reached at concentrations between 10 and 100 microM. 5. Excitotoxic quinolinic acid lesion studies in rat brain caudate putamen and autoradiography were carried out for the amino acid uptake sites mentioned above. The resulting glial infiltration of the lesioned areas was visualized by autoradiography using the peripheral benzodiazepine receptor specific ligand [3H]-PK11195. A significant decrease in binding density in the lesioned area compared with sham-operated animals was observed

  3. The role of basic amino acid surface clusters on the collagenase activity of cathepsin K

    PubMed Central

    Nallaseth, Ferez S.; Lecaille, Fabien; Li, Zhenqiang; Brömme, Dieter

    2013-01-01

    Cathepsin K is a highly potent collagenase in osteoclasts and responsible for bone degradation. We have previously demonstrated that its unique collagenolytic activity is modulated by glycosaminoglycans that form high molecular complexes with the protease. However, mutational analysis of a specific glycosaminoglycan-cathepsin K binding site only led to a 60% reduction of the collagenolytic activity suggesting additional glycosaminoglycan binding sites or other determinants controlling this activity. We identified 8 cathepsin K specific arginine/lysine residues that form three positively charged clusters at the bottom part of the protease opposing the active site. These residues are highly conserved among mammalian, avian, and reptilian cathepsin K orthologues and to a lesser degree in amphibian and fish specimens. Mutational analysis of these residues revealed an approximately 50% reduction of the collagenolytic activity when the basic amino acids in cluster 2 (K106, K108, R108, R111) were mutated into alanine residues and resulted in a 100% loss of this activity when the mutations were expanded into cluster 3 (K122, R127). Cluster 1 mutations (K77, R79) had no effect. A partial rescue effect was observed when the hexa-mutant variant was combined with three mutations in the previously identified glycosaminoglycan binding site (N190, K101, L195K) indicating the relevance of at least two independent interaction sites. Amino acid substitutions in all sites had no effect on the catalytic efficacy of the protease variants as reflected in their unaltered peptidolytic and gelatinolytic activities and their overall protein stabilities. This study suggests that the basic amino acid clusters in cathepsin K are either involved in alternative glycoasaminoglycan binding sites, play other roles in the formation of collagenolytically active protease complexes or contribute in a yet unknown manner to the specific binding to collagen. PMID:24088021

  4. Evolution of HLA class II molecules: Allelic and amino acid site variability across populations.

    PubMed Central

    Salamon, H; Klitz, W; Easteal, S; Gao, X; Erlich, H A; Fernandez-Viña, M; Trachtenberg, E A; McWeeney, S K; Nelson, M P; Thomson, G

    1999-01-01

    Analysis of the highly polymorphic beta1 domains of the HLA class II molecules encoded by the DRB1, DQB1, and DPB1 loci reveals contrasting levels of diversity at the allele and amino acid site levels. Statistics of allele frequency distributions, based on Watterson's homozygosity statistic F, reveal distinct evolutionary patterns for these loci in ethnically diverse samples (26 populations for DQB1 and DRB1 and 14 for DPB1). When examined over all populations, the DQB1 locus allelic variation exhibits striking balanced polymorphism (P < 10(-4)), DRB1 shows some evidence of balancing selection (P < 0.06), and while there is overall very little evidence for selection of DPB1 allele frequencies, there is a trend in the direction of balancing selection (P < 0.08). In contrast, at the amino acid level all three loci show strong evidence of balancing selection at some sites. Averaged over polymorphic amino acid sites, DQB1 and DPB1 show similar deviation from neutrality expectations, and both exhibit more balanced polymorphic amino acid sites than DRB1. Across ethnic groups, polymorphisms at many codons show evidence for balancing selection, yet data consistent with directional selection were observed at other codons. Both antigen-binding pocket- and non-pocket-forming amino acid sites show overall deviation from neutrality for all three loci. Only in the case of DRB1 was there a significant difference between pocket- and non-pocket-forming amino acid sites. Our findings indicate that balancing selection at the MHC occurs at the level of polymorphic amino acid residues, and that in many cases this selection is consistent across populations. PMID:10224269

  5. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    DOEpatents

    Xie, Jianming; Wang, Lei; Wu, Ning; Schultz, Peter G.

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.

  6. Site-specific incorporation of keto amino acids into functional G protein-coupled receptors using unnatural amino acid mutagenesis.

    PubMed

    Ye, Shixin; Köhrer, Caroline; Huber, Thomas; Kazmi, Manija; Sachdev, Pallavi; Yan, Elsa C Y; Bhagat, Aditi; RajBhandary, Uttam L; Sakmar, Thomas P

    2008-01-18

    G protein-coupled receptors (GPCRs) are ubiquitous heptahelical transmembrane proteins involved in a wide variety of signaling pathways. The work described here on application of unnatural amino acid mutagenesis to two GPCRs, the chemokine receptor CCR5 (a major co-receptor for the human immunodeficiency virus) and rhodopsin (the visual photoreceptor), adds a new dimension to studies of GPCRs. We incorporated the unnatural amino acids p-acetyl-L-phenylalanine (Acp) and p-benzoyl-L-phenylalanine (Bzp) into CCR5 at high efficiency in mammalian cells to produce functional receptors harboring reactive keto groups at three specific positions. We obtained functional mutant CCR5, at levels up to approximately 50% of wild type as judged by immunoblotting, cell surface expression, and ligand-dependent calcium flux. Rhodopsin containing Acp at three different sites was also purified in high yield (0.5-2 microg/10(7) cells) and reacted with fluorescein hydrazide in vitro to produce fluorescently labeled rhodopsin. The incorporation of reactive keto groups such as Acp or Bzp into GPCRs allows their reaction with different reagents to introduce a variety of spectroscopic and other probes. Bzp also provides the possibility of photo-cross-linking to identify precise sites of protein-protein interactions, including GPCR binding to G proteins and arrestins, and for understanding the molecular basis of ligand recognition by chemokine receptors. PMID:17993461

  7. Development of amino acid uptake activity in Neurospora.

    PubMed

    Railey, R M; Kinsey, J A

    1976-02-01

    During the germination and growth of Neurospora conidia, amino acid permease systems I (neutral) and II (general) increase in specific activity. System III (basic) decreases in specific activity with the onset of germination. System I shows two peaks of activity during the logarithmic phase of growth. One peak occurs at 6 h, the other at 12 h of growth. Both peaks are abolished in the mtr mutant. Both peaks have a Km for phenylalanine of 40 muM. The peaks of system I activity appear to correlate with morphological changes. PMID:4208

  8. Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory receptor sites in the catfish.

    PubMed

    Caprio, J; Byrd, R P

    1984-09-01

    Electrophysiological experiments indicate that olfactory receptors of the channel catfish, Ictalurus punctatus, contain different receptor sites for the acidic (A), basic (B), and neutral amino acids; further, at least two partially interacting neutral sites exist, one for the hydrophilic neutral amino acids containing short side chains (SCN), and the second for the hydrophobic amino acids containing long side chains (LCN). The extent of cross-adaptation was determined by comparing the electro-olfactogram (EOG) responses to 20 "test" amino acids during continuous bathing of the olfactory mucosa with water only (control) to those during each of the eight "adapting" amino acid regimes. Both the adapting and test amino acids were adjusted in concentrations to provide approximately equal response magnitudes in the unadapted state. Under all eight adapting regimes, the test EOG responses were reduced from those obtained in the unadapted state, but substantial quantitative differences resulted, depending upon the molecular structure of the adapting stimulus. Analyses of the patterns of EOG responses to the test stimuli identified and characterized the respective "transduction processes," a term used to describe membrane events initiated by a particular subset of amino acid stimuli that are intricately linked to the origin of the olfactory receptor potential. Only when the stimulus compounds interact with different transduction processes are the stimuli assumed to bind to different membrane "sites." Four relatively independent L-alpha-amino acid transduction processes (and thus at least four binding sites) identified in this report include: (a) the A process for aspartic and glutamic acids; (b) the B process for arginine and lysine; (c) the SCN process for glycine, alanine, serine, glutamine, and possibly cysteine; (d) the LCN process for methionine, ethionine, valine, norvaline, leucine, norleucine, glutamic acid-gamma-methyl ester, histidine, phenylalanine, and also

  9. Biochemical Evaluation of the Decarboxylation and Decarboxylation-Deamination Activities of Plant Aromatic Amino Acid Decarboxylases*

    PubMed Central

    Torrens-Spence, Michael P.; Liu, Pingyang; Ding, Haizhen; Harich, Kim; Gillaspy, Glenda; Li, Jianyong

    2013-01-01

    Plant aromatic amino acid decarboxylase (AAAD) enzymes are capable of catalyzing either decarboxylation or decarboxylation-deamination on various combinations of aromatic amino acid substrates. These two different activities result in the production of arylalkylamines and the formation of aromatic acetaldehydes, respectively. Variations in product formation enable individual enzymes to play different physiological functions. Despite these catalytic variations, arylalkylamine and aldehyde synthesizing AAADs are indistinguishable without protein expression and characterization. In this study, extensive biochemical characterization of plant AAADs was performed to identify residues responsible for differentiating decarboxylation AAADs from aldehyde synthase AAADs. Results demonstrated that a tyrosine residue located on a catalytic loop proximal to the active site of plant AAADs is primarily responsible for dictating typical decarboxylase activity, whereas a phenylalanine at the same position is primarily liable for aldehyde synthase activity. Mutagenesis of the active site phenylalanine to tyrosine in Arabidopsis thaliana and Petroselinum crispum aromatic acetaldehyde synthases primarily converts the enzymes activity from decarboxylation-deamination to decarboxylation. The mutation of the active site tyrosine to phenylalanine in the Catharanthus roseus and Papaver somniferum aromatic amino acid decarboxylases changes the enzymes decarboxylation activity to a primarily decarboxylation-deamination activity. Generation of these mutant enzymes enables the production of unusual AAAD enzyme products including indole-3-acetaldehyde, 4-hydroxyphenylacetaldehyde, and phenylethylamine. Our data indicates that the tyrosine and phenylalanine in the catalytic loop region could serve as a signature residue to reliably distinguish plant arylalkylamine and aldehyde synthesizing AAADs. Additionally, the resulting data enables further insights into the mechanistic roles of active site

  10. Creatinyl amino acids: new hybrid compounds with neuroprotective activity.

    PubMed

    Burov, Sergey; Leko, Maria; Dorosh, Marina; Dobrodumov, Anatoliy; Veselkina, Olga

    2011-09-01

    Prolonged oral creatine administration resulted in remarkable neuroprotection in experimental models of brain stroke. However, because of its polar nature creatine has poor ability to penetrate the blood-brain barrier (BBB) without specific creatine transporter (CRT). Thus, synthesis of hydrophobic derivatives capable of crossing the BBB by alternative pathway is of great importance for the treatment of acute and chronic neurological diseases including stroke, traumatic brain injury and hereditary CRT deficiency. Here we describe synthesis of new hybrid compounds-creatinyl amino acids, their neuroprotective activity in vivo and stability to degradation in different media. The title compounds were synthesized by guanidinylation of corresponding sarcosyl peptides or direct creatine attachment using isobutyl chloroformate method. Addition of lipophilic counterion (p-toluenesulfonate) ensures efficient creatine dissolution in DMF with simultaneous protection of guanidino group towards intramolecular cyclization. It excludes the application of expensive guanidinylating reagents, permits to simplify synthetic procedure and adapt it to large-scale production. The biological activity of creatinyl amino acids was tested in vivo on ischemic stroke and NaNO(2) -induced hypoxia models. One of the most effective compounds-creatinyl-glycine ethyl ester increases life span of experimental animals more than two times in hypoxia model and has neuroprotective action in brain stroke model when applied both before and after ischemia. These data evidenced that creatinyl amino acids can represent promising candidates for the development of new drugs useful in stroke treatment. PMID:21644247

  11. Synthesis, antifungal activity and docking study of 2-amino-4H-benzochromene-3-carbonitrile derivatives

    NASA Astrophysics Data System (ADS)

    Mirjalili, BiBi Fatemeh; Zamani, Leila; Zomorodian, Kamiar; Khabnadideh, Soghra; Haghighijoo, Zahra; Malakotikhah, Zahra; Ayatollahi Mousavi, Seyyed Amin; Khojasteh, Shaghayegh

    2016-07-01

    Pathogenic fungi are associated with diseases ranging from simple dermatosis to life-threatening infections, particularly in immunocompromised patients. During the past two decades, resistance to established antifungal drugs has increased dramatically and has made it crucial to identify novel antimicrobial compounds. Here, we selected 12 new compounds of 2-amino-4H-benzochromene-3-carbonitrile drivetives (C1-C12) for synthesis by using nano-TiCl4.SiO2 as efficient and green catalyst, then nine of synthetic compounds were evaluated against different species of fungi, positive gram and negative gram of bacteria. Standard and clinical strains of antibiotics sensitive and resistant fungi and bacteria were cultured in appropriate media. Biological activity of the 2-amino-4H-benzochromene-3-carbonitrile derivatives against fungi and bacteries were estimated by the broth micro-dilution method as recommended by clinical and laboratory standard institute (CLSI). In addition minimal fangicidal and bactericial concenteration of the compounds were also determined. Considering our results showed that compound 2-amino-4-(4-methyl benzoate)-4H-benzo[f]chromen-3-carbonitrile (C9) had the most antifungal activity against Aspergillus clavatus, Candida glabarata, Candida dubliniensis, Candida albicans and Candida tropicalis at concentrations ranging from 8 to ≤128 μg/mL. Also compounds 2-amino-4-(3,4-dimethoxyphenyl)-4H-benzo[f]chromen-3-carbonitrile (C4) and 2-amino-4-(4-isopropylphenyl)-4H-benzo[f]chromen-3-carbonitrile (C3) had significant inhibitory activities against Epidermophyton floccosum following 2-amino-4-(4-methylbenzoate)-4H-benzo[f]chromen-3-carbonitrile (C9), respectively. Docking simulation was performed to insert compounds C3, C4 and C9 in to CYP51 active site to determine the probable binding model.

  12. Synthesis, antifungal activity and docking study of 2-amino-4H-benzochromene-3-carbonitrile derivatives

    NASA Astrophysics Data System (ADS)

    Mirjalili, BiBi Fatemeh; Zamani, Leila; Zomorodian, Kamiar; Khabnadideh, Soghra; Haghighijoo, Zahra; Malakotikhah, Zahra; Ayatollahi Mousavi, Seyyed Amin; Khojasteh, Shaghayegh

    2016-07-01

    Pathogenic fungi are associated with diseases ranging from simple dermatosis to life-threatening infections, particularly in immunocompromised patients. During the past two decades, resistance to established antifungal drugs has increased dramatically and has made it crucial to identify novel antimicrobial compounds. Here, we selected 12 new compounds of 2-amino-4H-benzochromene-3-carbonitrile drivetives (C1-C12) for synthesis by using nano-TiCl4.SiO2 as efficient and green catalyst, then nine of synthetic compounds were evaluated against different species of fungi, positive gram and negative gram of bacteria. Standard and clinical strains of antibiotics sensitive and resistant fungi and bacteria were cultured in appropriate media. Biological activity of the 2-amino-4H-benzochromene-3-carbonitrile derivatives against fungi and bacteries were estimated by the broth micro-dilution method as recommended by clinical and laboratory standard institute (CLSI). In addition minimal fangicidal and bactericial concenteration of the compounds were also determined. Considering our results showed that compound 2-amino-4-(4-methyl benzoate)-4H-benzo[f]chromen-3-carbonitrile (C9) had the most antifungal activity against Aspergillus clavatus, Candida glabarata, Candida dubliniensis, Candida albicans and Candida tropicalis at concentrations ranging from 8 to ≤128 μg/mL. Also compounds 2-amino-4-(3,4-dimethoxyphenyl)-4H-benzo[f]chromen-3-carbonitrile (C4) and 2-amino-4-(4-isopropylphenyl)-4H-benzo[f]chromen-3-carbonitrile (C3) had significant inhibitory activities against Epidermophyton floccosum following 2-amino-4-(4-methylbenzoate)-4H-benzo[f]chromen-3-carbonitrile (C9), respectively. Docking simulation was performed to insert compounds C3, C4 and C9 in to CYP51 active site to determine the probable binding model.

  13. Multi-Molar Absorption of CO2 by the Activation of Carboxylate Groups in Amino Acid Ionic Liquids.

    PubMed

    Chen, Feng-Feng; Huang, Kuan; Zhou, Yan; Tian, Zi-Qi; Zhu, Xiang; Tao, Duan-Jian; Jiang, De-En; Dai, Sheng

    2016-06-13

    A new strategy for multi-molar absorption of CO2 is reported based on activating a carboxylate group in amino acid ionic liquids. It was illustrated that introducing an electron-withdrawing site to amino acid anions could reduce the negative inductive effect of the amino group while simultaneously activating the carboxylate group to interact with CO2 very efficiently. An extremely high absorption capacity of CO2 (up to 1.69 mol mol(-1) ) in aminopolycarboxylate-based amino acid ionic liquids was thus achieved. The evidence of spectroscopic investigations and quantum-chemical calculations confirmed the interactions between two kinds of sites in the anion and CO2 that resulted in superior CO2 capacities. PMID:27136274

  14. Mutation-selection models of coding sequence evolution with site-heterogeneous amino acid fitness profiles.

    PubMed

    Rodrigue, Nicolas; Philippe, Hervé; Lartillot, Nicolas

    2010-03-01

    Modeling the interplay between mutation and selection at the molecular level is key to evolutionary studies. To this end, codon-based evolutionary models have been proposed as pertinent means of studying long-range evolutionary patterns and are widely used. However, these approaches have not yet consolidated results from amino acid level phylogenetic studies showing that selection acting on proteins displays strong site-specific effects, which translate into heterogeneous amino acid propensities across the columns of alignments; related codon-level studies have instead focused on either modeling a single selective context for all codon columns, or a separate selective context for each codon column, with the former strategy deemed too simplistic and the latter deemed overparameterized. Here, we integrate recent developments in nonparametric statistical approaches to propose a probabilistic model that accounts for the heterogeneity of amino acid fitness profiles across the coding positions of a gene. We apply the model to a dozen real protein-coding gene alignments and find it to produce biologically plausible inferences, for instance, as pertaining to site-specific amino acid constraints, as well as distributions of scaled selection coefficients. In their account of mutational features as well as the heterogeneous regimes of selection at the amino acid level, the modeling approaches studied here can form a backdrop for several extensions, accounting for other selective features, for variable population size, or for subtleties of mutational features, all with parameterizations couched within population-genetic theory. PMID:20176949

  15. Plasmin inhibitors with hydrophobic amino acid-based linker between hydantoin moiety and benzimidazole scaffold enhance inhibitory activity.

    PubMed

    Teno, Naoki; Gohda, Keigo; Yamashita, Yukiko; Otsubo, Tadamune; Yamaguchi, Masafumi; Wanaka, Keiko; Tsuda, Yuko

    2016-05-01

    In this letter we report the design and synthesis of a series of plasmin inhibitors, which share the amino acid-based linker with limited free rotation between the hydantoin moiety and the benzimidazole scaffold. Our studies led to potent plasmin inhibitors and yielded important new insights into their structure-activity relationship for binding to the active site of plasmin. PMID:27009905

  16. Mapping of the active site of Escherichia coli methionyl-tRNA synthetase: Identification of amino acid residues labeled by periodate-oxidized tRNA sup fMet molecules having modified lengths at the 3 prime -acceptor end

    SciTech Connect

    Hountondji, C.; Schmitter, J.M.; Beauvallet, C.; Blanquet, S. )

    1990-09-04

    Initiator tRNA molecules modified at the 3{prime}-end and lacking either A{sub 76} (tRNA-C{sub 75}), the C{sub 75}-A{sub 76} (tRNA-C{sub 74}), the C{sub 74}-C{sub 75}-A{sub 76} (tRNA-A{sub 73}), or the A{sub 73}-C{sub 74}-C{sub 75}-A{sub 76} (tRNA-A{sub 72}) nucleotides were prepared stepwise by repeated periodate, lysine, and alkaline phosphatase treatments. When incubated with trypsin-modified methionyl-tRNA synthetase (MTS{sub T}), excess amounts of the dialdehyde derivative of each of these shortened tRNAs (tRNA-C{sub 75}ox, tRNA-A{sub 73}ox, and tRNA-A{sub 72}ox) abolished both the isotopic ({sup 32}P)PP{sub i}ATP exchange and the tRNA aminoacylation activities of the enzyme. In the presence of limiting concentrations of the various tRNAox species, the relative extents of inactivation of the enzyme were consistent with the formation of 1:1 complexes of the reacting tRNAs with the monomeric modified synthetase. Specificity of the labeling was further established by demonstrating that tRNA-C{sub 75}ox binds the enzyme with an equilibrium constant and stoichiometry values in good agreement with those for the binding of nonoxidized tRNA-C{sub 75}. The peptides of MTS{sub T} labeled with either tRNA-C{sub 75}ox or tRNA-C{sub 74}ox were identified. In a previous work all these peptides but one (peptide D) had been already found labeled upon MTS{sub T} incubation with ({sup 14}C)tRNA-A{sub 76}ox. According to the crystallographic structure of MTS{sub T}, the labeled residues K335, K61, K142, K147, and K149 are within a sphere of about 5.5-{angstrom} radius. The present results therefore argue for a marked flexibility of the 3{prime}-end of the enzyme-bound tRNA, enabling it to contact any of the identified reacting residues. Such a cluster of basic amino acids may reflect ionic requirements in the guiding of the negatively charged CCA arm of tRNA toward enzyme-bound methionyl-adenylate.

  17. The biosynthetic gene cluster for coronamic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid-activating enzymes and thioesterases.

    PubMed Central

    Ullrich, M; Bender, C L

    1994-01-01

    Coronamic acid (CMA), an ethylcyclopropyl amino acid derived from isoleucine, functions as an intermediate in the biosynthesis of coronatine, a chlorosis-inducing phytotoxin produced by Pseudomonas syringae pv. glycinea PG4180. The DNA required for CMA biosynthesis (6.9 kb) was sequenced, revealing three distinct open reading frames (ORFs) which share a common orientation for transcription. The deduced amino acid sequence of a 2.7-kb ORF designated cmaA contained six core sequences and two conserved motifs which are present in a variety of amino acid-activating enzymes, including nonribosomal peptide synthetases. Furthermore, CmaA contained a spatial arrangement of histidine, aspartate, and arginine residues which are conserved in the ferrous active site of some nonheme iron(II) enzymes which catalyze oxidative cyclizations. The deduced amino acid sequence of a 1.2-kb ORF designated cmaT was related to thioesterases of both procaryotic and eucaryotic origins. These data suggest that CMA assembly is similar to the thiotemplate mechanism of nonribosomal peptide synthesis. No significant similarities between a 0.9-kb ORF designated cmaU and other database entries were found. The start sites of two transcripts required for CMA biosynthesis were identified in the present study. pRG960sd, a vector containing a promoterless glucuronidase gene, was used to localize and study the promoter regions upstream of the two transcripts. Data obtained in the present study indicate that CMA biosynthesis is regulated at the transcriptional level by temperature. Images PMID:8002582

  18. New potent inhibitors of tyrosinase: novel clues to binding of 1,3,4-thiadiazole-2(3H)-thiones, 1,3,4-oxadiazole-2(3H)-thiones, 4-amino-1,2,4-triazole-5(4H)-thiones, and substituted hydrazides to the dicopper active site.

    PubMed

    Ghani, Usman; Ullah, Nisar

    2010-06-01

    A series of 1,3,4-thiadiazole-2(3H)-thiones, 1,3,4-oxadiazole-2(3H)-thiones, 4-amino-1,2,4-triazole-5(4H)-thiones, and substituted hydrazides were tailored and synthesized as new potent inhibitors of tyrosinase. The rationale for inhibitor design was based on the active site structural evidence from the crystal structures of bacterial tyrosinase and potato catechol oxidase enzymes. Kinetic and active site binding studies suggested mono-dentate binding of thiadiazole, oxadiazole, and triazole rings to the active site dicopper center of tyrosinase including hydrophobicity contributing to the potent inhibition. Kinetic plots showed mixed-type of inhibition by all 25 compounds. Substitutions at C3 of the triazole ring and C5 of the thiadiazole/oxadiazole rings were found to be playing a major role in the high binding affinity to tyrosinase. The current work may help develop new potent tyrosinase inhibitors against hyperpigmentation including potential insecticides. PMID:20452224

  19. Odorant receptors activated by amino acids in sensory neurons of the channel catfish Ictalurus punctatus.

    PubMed

    Ivanova, T T; Caprio, J

    1993-12-01

    Odorant receptors activated by amino acids were investigated with patch-clamp techniques in olfactory receptor neurons of the channel catfish, Ictalurus punctatus. The L-isomers of alanine, norvaline, arginine, and glutamate, known to act predominantly on different olfactory receptor sites, activated nondesensitizing inward currents with amplitudes of -2.5 to -280 pA in olfactory neurons voltage-clamped at membrane potentials of -72 or -82 mV. Different amino acids were shown to induce responses in the same sensory neurons; however, the amplitude and the kinetics of the observed whole cell currents differed among the stimuli and may therefore reflect activation of different amino acid receptor types or combinations of receptor types in these cells. Amino acid-induced currents appeared to have diverse voltage dependence and could also be classified according to the amplitude of the spontaneous channel fluctuations underlying the macroscopic currents. A mean single-channel conductance (gamma) of 360 fS was estimated from small noise whole-cell currents evoked by arginine within the same olfactory neuron in which a mean gamma value of 23.6 pS was estimated from 'large noise' response to norvaline. Quiescent olfactory neurons fired bursts of action potentials in response to either amino acid stimulation or application of 8-Br-cyclic GMP (100 microM), and voltage-gated channels underlying generation of action potentials were similar in these neurons. However, in whole-cell voltage-clamp, 8-Br-cyclic GMP evoked large rectangular current pulses, and single-channel conductances of 275, 220, and 110 pS were obtained from the discrete current levels. These results suggest that in addition to the cyclic nucleotide-gated transduction channels, olfactory neurons of the channel catfish possess a variety of odor receptors coupled to different types of transduction channels. PMID:8133240

  20. Site-specific analysis of protein hydration based on unnatural amino acid fluorescence.

    PubMed

    Amaro, Mariana; Brezovský, Jan; Kováčová, Silvia; Sýkora, Jan; Bednář, David; Němec, Václav; Lišková, Veronika; Kurumbang, Nagendra Prasad; Beerens, Koen; Chaloupková, Radka; Paruch, Kamil; Hof, Martin; Damborský, Jiří

    2015-04-22

    Hydration of proteins profoundly affects their functions. We describe a simple and general method for site-specific analysis of protein hydration based on the in vivo incorporation of fluorescent unnatural amino acids and their analysis by steady-state fluorescence spectroscopy. Using this method, we investigate the hydration of functionally important regions of dehalogenases. The experimental results are compared to findings from molecular dynamics simulations. PMID:25815779

  1. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    PubMed

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins. PMID:27080133

  2. Mutational Studies on Resurrected Ancestral Proteins Reveal Conservation of Site-Specific Amino Acid Preferences throughout Evolutionary History

    PubMed Central

    Risso, Valeria A.; Manssour-Triedo, Fadia; Delgado-Delgado, Asunción; Arco, Rocio; Barroso-delJesus, Alicia; Ingles-Prieto, Alvaro; Godoy-Ruiz, Raquel; Gavira, Jose A.; Gaucher, Eric A.; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2015-01-01

    Local protein interactions (“molecular context” effects) dictate amino acid replacements and can be described in terms of site-specific, energetic preferences for any different amino acid. It has been recently debated whether these preferences remain approximately constant during evolution or whether, due to coevolution of sites, they change strongly. Such research highlights an unresolved and fundamental issue with far-reaching implications for phylogenetic analysis and molecular evolution modeling. Here, we take advantage of the recent availability of phenotypically supported laboratory resurrections of Precambrian thioredoxins and β-lactamases to experimentally address the change of site-specific amino acid preferences over long geological timescales. Extensive mutational analyses support the notion that evolutionary adjustment to a new amino acid may occur, but to a large extent this is insufficient to erase the primitive preference for amino acid replacements. Generally, site-specific amino acid preferences appear to remain conserved throughout evolutionary history despite local sequence divergence. We show such preference conservation to be readily understandable in molecular terms and we provide crystallographic evidence for an intriguing structural-switch mechanism: Energetic preference for an ancestral amino acid in a modern protein can be linked to reorganization upon mutation to the ancestral local structure around the mutated site. Finally, we point out that site-specific preference conservation naturally leads to one plausible evolutionary explanation for the existence of intragenic global suppressor mutations. PMID:25392342

  3. Mutational studies on resurrected ancestral proteins reveal conservation of site-specific amino acid preferences throughout evolutionary history.

    PubMed

    Risso, Valeria A; Manssour-Triedo, Fadia; Delgado-Delgado, Asunción; Arco, Rocio; Barroso-delJesus, Alicia; Ingles-Prieto, Alvaro; Godoy-Ruiz, Raquel; Gavira, Jose A; Gaucher, Eric A; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2015-02-01

    Local protein interactions ("molecular context" effects) dictate amino acid replacements and can be described in terms of site-specific, energetic preferences for any different amino acid. It has been recently debated whether these preferences remain approximately constant during evolution or whether, due to coevolution of sites, they change strongly. Such research highlights an unresolved and fundamental issue with far-reaching implications for phylogenetic analysis and molecular evolution modeling. Here, we take advantage of the recent availability of phenotypically supported laboratory resurrections of Precambrian thioredoxins and β-lactamases to experimentally address the change of site-specific amino acid preferences over long geological timescales. Extensive mutational analyses support the notion that evolutionary adjustment to a new amino acid may occur, but to a large extent this is insufficient to erase the primitive preference for amino acid replacements. Generally, site-specific amino acid preferences appear to remain conserved throughout evolutionary history despite local sequence divergence. We show such preference conservation to be readily understandable in molecular terms and we provide crystallographic evidence for an intriguing structural-switch mechanism: Energetic preference for an ancestral amino acid in a modern protein can be linked to reorganization upon mutation to the ancestral local structure around the mutated site. Finally, we point out that site-specific preference conservation naturally leads to one plausible evolutionary explanation for the existence of intragenic global suppressor mutations. PMID:25392342

  4. N-Amino acid linoleoyl conjugates: anti-inflammatory activities.

    PubMed

    Burstein, Sumner; McQuain, Catherine; Salmonsen, Rebecca; Seicol, Benjamin

    2012-01-15

    Several N-linked amino acid-linoleic acid conjugates were studied for their potential as anti inflammatory agents. The parent molecule, N-linoleoylglycine was tested in an in vivo model, the mouse peritonitis assay where it showed activity in reducing leukocyte migration at doses as low as 0.3mg/kg when administered by mouth in safflower oil. Harvested peritoneal cells produced elevated levels of the inflammation-resolving eicosanoid 15-deoxy-Δ(13,14)-PGJ(2). These results are similar to those obtained in earlier studies with N-arachidonoylglycine. An in vitro model using mouse macrophage RAW cells was used to evaluate a small group of structural analogs for their ability to stimulate 15-deoxy-Δ(13,14)-PGJ(2) production. The d-alanine derivative was the most active while the d-phenylalanine showed almost no response. A high degree of stereo specificity was observed comparing the d and l alanine isomers; the latter being the less active. It was concluded that linoleic acid conjugates could provide suitable templates in a drug discovery program leading to novel agents for promoting the resolution of chronic inflammation. PMID:22217875

  5. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  6. Site-directed mutagenesis of conserved amino acids in the alpha subunit of toluene dioxygenase: potential mononuclear non-heme iron coordination sites.

    PubMed Central

    Jiang, H; Parales, R E; Lynch, N A; Gibson, D T

    1996-01-01

    The terminal oxygenase component of toluene dioxygenase from Pseudomonas putida F1 is an iron-sulfur protein (ISP(TOL)) that requires mononuclear iron for enzyme activity. Alignment of all available predicted amino acid sequences for the large (alpha) subunits of terminal oxygenases showed a conserved cluster of potential mononuclear iron-binding residues. These were between amino acids 210 and 230 in the alpha subunit (TodC1) of ISP(TOL). The conserved amino acids, Glu-214, Asp-219, Tyr-221, His-222, and His-228, were each independently replaced with an alanine residue by site-directed mutagenesis. Tyr-266 in TodC1, which has been suggested as an iron ligand, was treated in an identical manner. To assay toluene dioxygenase activity in the presence of TodC1 and its mutant forms, conditions for the reconstitution of wild-type ISP(TOL) activity from TodC1 and purified TodC2 (beta subunit) were developed and optimized. A mutation at Glu-214, Asp-219, His-222, or His-228 completely abolished toluene dioxygenase activity. TodC1 with an alanine substitution at either Tyr-221 or Tyr-266 retained partial enzyme activity (42 and 12%, respectively). In experiments with [14C]toluene, the two Tyr-->Ala mutations caused a reduction in the amount of Cis-[14C]-toluene dihydrodiol formed, whereas a mutation at Glu-214, Asp-219, His-222, or His-228 eliminated cis-toluene dihydrodiol formation. The expression level of all of the mutated TWO proteins was equivalent to that of wild-type TodC1 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analyses. These results, in conjunction with the predicted amino acid sequences of 22 oxygenase components, suggest that the conserved motif Glu-X3-4,-Asp-X2-His-X4-5-His is critical for catalytic function and the glutamate, aspartate, and histidine residues may act as mononuclear iron ligands at the site of oxygen activation. PMID:8655491

  7. Terminal Amino Acids Disturb Xylanase Thermostability and Activity*

    PubMed Central

    Liu, Liangwei; Zhang, Guoqiang; Zhang, Zhang; Wang, Suya; Chen, Hongge

    2011-01-01

    Protein structure is composed of regular secondary structural elements (α-helix and β-strand) and non-regular region. Unlike the helix and strand, the non-regular region consists of an amino acid defined as a disordered residue (DR). When compared with the effect of the helix and strand, the effect of the DR on enzyme structure and function is elusive. An Aspergillus niger GH10 xylanase (Xyn) was selected as a model molecule of (β/α)8 because the general structure consists of ∼10% enzymes. The Xyn has five N-terminal DRs and one C-terminal DR, respectively, which were deleted to construct three mutants, XynΔN, XynΔC, and XynΔNC. Each mutant was ∼2-, 3-, or 4-fold more thermostable and 7-, 4-, or 4-fold more active than the Xyn. The N-terminal deletion decreased the xylanase temperature optimum for activity (Topt) 6 °C, but the C-terminal deletion increased its Topt 6 °C. The N- and C-terminal deletions had opposing effects on the enzyme Topt but had additive effects on its thermostability. The five N-terminal DR deletions had more effect on the enzyme kinetics but less effect on its thermo property than the one C-terminal DR deletion. CD data showed that the terminal DR deletions increased regular secondary structural contents, and hence, led to slow decreased Gibbs free energy changes (ΔG0) in the thermal denaturation process, which ultimately enhanced enzyme thermostabilities. PMID:22072708

  8. A poly(phenyleneethynylene) polymer bearing amino acid substituents as active layer in enantioselective solid-state sensors

    NASA Astrophysics Data System (ADS)

    Tanese, M. C.; Hassan Omar, O.; Torsi, L.; Marinelli, F.; Colangiuli, D.; Farinola, G. M.; Babudri, F.; Naso, F.; Sabbatini, L.; Zambonin, P. G.

    2006-04-01

    A poly(phenyleneethynylene) polymer bearing amino acid pendant groups is used as enantioselective active layer in solid-state sensing devices. The chiral analyte in the present study is menthol in both the natural (-) and synthetic (+) enantiomers. The polymer bearing amino acid chiral sites is demonstrated to interact more favorably with the natural menthol than the synthetic one in a quartz crystal microbalance revealing system. Promising perspectives are seen for the use of such polymers in chiral discriminating, chemically sensitive resistors or even transistors.

  9. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  10. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined. PMID:27243042

  11. 12-Amino-andrographolide analogues: synthesis and cytotoxic activity.

    PubMed

    Kasemsuk, Sakkasem; Sirion, Uthaiwan; Suksen, Kanoknetr; Piyachaturawat, Pawinee; Suksamrarn, Apichart; Saeeng, Rungnapha

    2013-12-01

    Andrographolide, a diterpenoid lactone of the plant Andrographis paniculata, has been shown to be cytotoxic against various cancer cells in vitro. In the present study, a series of β-amino-γ-butyrolactone analogues has been synthesized from naturally occurring andrographolide via one pot tandem aza-conjugate addition-elimination reaction. By using economic procedure without any base or catalyst at room temperature, the products obtained were in fair to excellent yields with high stereoselectivity. The cytotoxicity of all new amino analogues were evaluated against six cancer cell lines and revealed their potential for being developed as promising anti-cancer agents. PMID:23709127

  12. Key amino acids of arabidopsis VKOR in the activity of phylloquinone reduction and disulfide bond formation.

    PubMed

    Yang, Xiao-Jian; Cui, Hao-Ran; Yu, Zhi-Bo; Du, Jia-Jia; Xu, Jia-Ning; Wang, Xiao-Yun

    2015-01-01

    Many proteins in chloroplast are regulated through the disulfide bond/thiol transformation to realize their activities. A homologue of VKOR (Vitamin K epoxide reductase) in Arabidopsis chloroplast is found to catalyze the disulfide bond formation in vivo and to mediate the specific phylloquinone reduction in vitro. It is also called LTO1 (Lumen Thiol Oxidoreductase 1). Investigations about functions and essential amino acid residues of AtVKOR have important theoretical significance to clarify the chloroplast redox regulation mechanism. In this study, several amino acids in the VKOR domain of AtVKOR were identified to be involved in binding of phylloquinone. Site-directed mutagenesis was used to study the function of these positions. The results suggested that residues Ser77, Leu87, Phe137 and Leu141 were quite important in the binding and catalyzing the reduction of phylloquinone. These residues were also involved in the electron transferring and disulfide bond formation of substrate proteins by motility assays in vivo, suggesting that the binding of phylloquinone not only affected the delivery of electrons to phylloquinone but also affected the whole electron transfer process. The conserved cysteines in the AtVKOR domain also played critical roles in phylloquinone reduction. When each of the four conserved cysteines was mutated to alanine, the mutants lost reduction activity entirely, suggesting that the four conserved cysteines played crucial roles in the electron transfer process. PMID:25267254

  13. Analysis of a nucleotide-binding site of 5-lipoxygenase by affinity labelling: binding characteristics and amino acid sequences.

    PubMed Central

    Zhang, Y Y; Hammarberg, T; Radmark, O; Samuelsson, B; Ng, C F; Funk, C D; Loscalzo, J

    2000-01-01

    5-Lipoxygenase (5LO) catalyses the first two steps in the biosynthesis of leukotrienes, which are inflammatory mediators derived from arachidonic acid. 5LO activity is stimulated by ATP; however, a consensus ATP-binding site or nucleotide-binding site has not been found in its protein sequence. In the present study, affinity and photoaffinity labelling of 5LO with 5'-p-fluorosulphonylbenzoyladenosine (FSBA) and 2-azido-ATP showed that 5LO bound to the ATP analogues quantitatively and specifically and that the incorporation of either analogue inhibited ATP stimulation of 5LO activity. The stoichiometry of the labelling was 1.4 mol of FSBA/mol of 5LO (of which ATP competed with 1 mol/mol) or 0.94 mol of 2-azido-ATP/mol of 5LO (of which ATP competed with 0.77 mol/mol). Labelling with FSBA prevented further labelling with 2-azido-ATP, indicating that the same binding site was occupied by both analogues. Other nucleotides (ADP, AMP, GTP, CTP and UTP) also competed with 2-azido-ATP labelling, suggesting that the site was a general nucleotide-binding site rather than a strict ATP-binding site. Ca(2+), which also stimulates 5LO activity, had no effect on the labelling of the nucleotide-binding site. Digestion with trypsin and peptide sequencing showed that two fragments of 5LO were labelled by 2-azido-ATP. These fragments correspond to residues 73-83 (KYWLNDDWYLK, in single-letter amino acid code) and 193-209 (FMHMFQSSWNDFADFEK) in the 5LO sequence. Trp-75 and Trp-201 in these peptides were modified by the labelling, suggesting that they were immediately adjacent to the C-2 position of the adenine ring of ATP. Given the stoichiometry of the labelling, the two peptide sequences of 5LO were probably near each other in the enzyme's tertiary structure, composing or surrounding the ATP-binding site of 5LO. PMID:11042125

  14. Site-specific incorporation of probes into RNA polymerase by unnatural-amino-acid mutagenesis and Staudinger-Bertozzi ligation

    PubMed Central

    Chakraborty, Anirban; Mazumder, Abhishek; Lin, Miaoxin; Hasemeyer, Adam; Xu, Qumiao; Wang, Dongye; Ebright, Yon W.; Ebright, Richard H.

    2015-01-01

    Summary A three-step procedure comprising (i) unnatural-amino-acid mutagenesis with 4-azido-phenylalanine, (ii) Staudinger-Bertozzi ligation with a probe-phosphine derivative, and (iii) in vitro reconstitution of RNA polymerase (RNAP) enables the efficient site-specific incorporation of a fluorescent probe, a spin label, a crosslinking agent, a cleaving agent, an affinity tag, or any other biochemical or biophysical probe, at any site of interest in RNAP. Straightforward extensions of the procedure enable the efficient site-specific incorporation of two or more different probes in two or more different subunits of RNAP. We present protocols for synthesis of probe-phosphine derivatives, preparation of RNAP subunits and the transcription initiation factor σ, unnatural amino acid mutagenesis of RNAP subunits and σ, Staudinger ligation with unnatural-amino-acid-containing RNAP subunits and σ, quantitation of labelling efficiency and labelling specificity, and reconstitution of RNAP. PMID:25665560

  15. Novel sulfamides and sulfamates derived from amino esters: Synthetic studies and anticonvulsant activity.

    PubMed

    Villalba, Maria L; Enrique, Andrea V; Higgs, Josefina; Castaño, Rocío A; Goicoechea, Sofía; Taborda, Facundo D; Gavernet, Luciana; Lick, Ileana D; Marder, Mariel; Bruno Blanch, Luis E

    2016-03-01

    We report herein the design and optimization of a novel series of sulfamides and sulfamates derived from amino esters with anticonvulsant properties. The structures were designed based on the pharmacophoric pattern previously proposed, with the aim of improving the anticonvulsant action. The compounds were obtained by a new synthetic procedure with microwave assisted heating and the use of adsorbents in the isolation process. All the derivatives showed protection against the maximal electroshock seizure test (MES test) in mice at the lowest dose tested (30mg/kg) but they did not show significant protection against the chemical induced convulsion by pentylenetetrazole. These results verify the ability of the computational model for designing new anticonvulsants structures with anti-MES activity. Additionally, we evaluated the capacity of the synthesized structures to bind to the benzodiazepine binding site (BDZ-bs) of the γ-aminobutiric acid receptor (GABAA receptor). Some of them showed medium to low affinity for the BDZ-bs. PMID:26849942

  16. Sensitive determination of D-amino acids in mammals and the effect of D-amino-acid oxidase activity on their amounts.

    PubMed

    Hamase, Kenji; Konno, Ryuichi; Morikawa, Akiko; Zaitsu, Kiyoshi

    2005-09-01

    The determination of small amounts of D-amino acids in mammalian tissues is still a challenging theme in the separation sciences. In this review, various gas-chromatographic and high-performance liquid chromatographic methods are discussed including highly selective and sensitive column-switching procedures. Based on these methods, the distributions of D-aspartic acid, D-serine, D-alanine, D-leucine and D-proline have been clarified in the mouse brain. As the regulation mechanisms of D-amino acid amounts in mammals, we focused on the D-amino-acid oxidase, which catalyzes the degradation of D-amino acids. Using the mutant mouse strain lacking D-amino-acid oxidase activity, the effects of the enzymatic activity on the amounts and distributions of various D-amino acids have been investigated. PMID:16141519

  17. Active Site and Remote Contributions to Catalysis in Methylthioadenosine Nucleosidases

    PubMed Central

    Thomas, Keisha; Cameron, Scott A.; Almo, Steven C.; Burgos, Emmanuel S.; Gulab, Shivali A.; Schramm, Vern L.

    2015-01-01

    5′-Methylthioadenosine/S-adenosyl-L-homocysteine nucleosidases (MTANs) catalyze the hydrolysis of 5′-methylthioadenosine to adenine and 5-methylthioribose. The amino acid sequences of the MTANs from Vibrio cholerae (VcMTAN) and Escherichia coli (EcMTAN) are 60% identical and 75% similar. Protein structure folds and kinetic properties are similar. However, binding of transition-state analogues is dominated by favorable entropy in VcMTAN and by enthalpy in EcMTAN. Catalytic sites of VcMTAN and EcMTAN in contact with reactants differ by two residues; Ala113 and Val153 in VcMTAN are Pro113 and Ile152, respectively, in EcMTAN. We mutated the VcMTAN catalytic site residues to match those of EcMTAN in anticipation of altering its properties toward EcMTAN. Inhibition of VcMTAN by transition-state analogues required filling both active sites of the homodimer. However, in the Val153Ile mutant or double mutants, transition-state analogue binding at one site caused complete inhibition. Therefore, a single amino acid, Val153, alters the catalytic site cooperativity in VcMTAN. The transition-state analogue affinity and thermodynamics in mutant VcMTAN became even more unlike those of EcMTAN, the opposite of expectations from catalytic site similarity; thus, catalytic site contacts in VcMTAN are unable to recapitulate the properties of EcMTAN. X-ray crystal structures of EcMTAN, VcMTAN, and a multiple-site mutant of VcMTAN most closely resembling EcMTAN in catalytic site contacts show no major protein conformational differences. The overall protein architectures of these closely related proteins are implicated in contributing to the catalytic site differences. PMID:25806409

  18. The amino acid sequence of monal pheasant lysozyme and its activity.

    PubMed

    Araki, T; Matsumoto, T; Torikata, T

    1998-10-01

    The amino acid sequence of monal pheasant lysozyme and its activity were analyzed. Carboxymethylated lysozyme was digested with trypsin and the resulting peptides were sequenced. The established amino acid sequence had one amino acid substitution at position 102 (Arg to Gly) comparing with Indian peafowl lysozyme and four amino acid substitutions at positions 3 (Phe to Tyr), 15 (His to Leu), 41 (Gln to His), and 121 (Gln to His) with chicken lysozyme. Analysis of the time-courses of reaction using N-acetylglucosamine pentamer as a substrate showed a difference of binding free energy change (-0.4 kcal/mol) at subsites A between monal pheasant and Indian peafowl lysozyme. This was assumed to be caused by the amino acid substitution at subsite A with loss of a positive charge at position 102 (Arg102 to Gly). PMID:9836434

  19. Indications of human activity from amino acid and amino sugar analyses on Holocene sediments from lake Lonar, central India

    NASA Astrophysics Data System (ADS)

    Menzel, P.; Gaye, B.; Wiesner, M.; Prasad, S.; Basavaiah, N.; Stebich, M.; Anoop, A.; Riedel, N.; Brauer, A.

    2012-04-01

    The DFG funded HIMPAC (Himalaya: Modern and Past Climates) programme aims to reconstruct Holocene Indian Monsoon climate using a multi-proxy and multi-archive approach. First investigations made on sediments from a ca. 10 m long core covering the whole Holocene taken from the lake Lonar in central India's state Maharashtra, Buldhana District, serve to identify changes in sedimentation, lake chemistry, local vegetation and regional to supra-regional climate patterns. Lake Lonar occupies the floor of an impact crater that formed on the ~ 65 Ma old basalt flows of the Deccan Traps. It covers an area of ca. 1 km2 and is situated in India's core monsoon area. The modern lake has a maximum depth of about 5 m, is highly alkaline, and hyposaline, grouped in the Na-Cl-CO3 subtype of saline lakes. No out-flowing stream is present and only three small streams feed the lake, resulting in a lake level highly sensitive to precipitation and evaporation. The lake is eutrophic and stratified throughout most of the year with sub- to anoxic waters below 2 m depth. In this study the core sediments were analysed for their total amino acid (AA) and amino sugar (AS) content, the amino acid bound C and N percentage of organic C and total N in the sediment and the distribution of individual amino acids. The results roughly show three zones within the core separated by distinct changes in their AA content and distribution. (i) The bottom part of the core from ca. 12000 cal a BP to 11400 cal a BP with very low AA and AS percentage indicating high lithogenic contribution, most probably related to dry conditions. (ii) From 11400 cal a BP to 1200 cal a BP the sediments show moderate AA and AS percentages and low values for the ratios of proteinogenic AAs to their non-proteinogenic degradation products (e.g. ASP/β-ALA; GLU/γ-ABA). (iii) The top part of the core (< 1200 cal a BP) is characterised by an intense increase in total AA and AS, AA-C/Corg and AA-N/Ntotas well as in the ratio of

  20. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    PubMed Central

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea

    2015-01-01

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. This study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin. PMID:25724962

  1. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    SciTech Connect

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.

  2. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    DOE PAGESBeta

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential formore » mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.« less

  3. Site-Specific Labeling of Protein Lysine Residues and N-Terminal Amino Groups with Indoles and Indole-Derivatives.

    PubMed

    Larda, Sacha Thierry; Pichugin, Dmitry; Prosser, Robert Scott

    2015-12-16

    Indoles and indole-derivatives can be used to site-specifically label proteins on lysine and N-terminal amino groups under mild, nondenaturing reaction conditions. Hen egg white lysozyme (HEWL) and α-lactalbumin were labeled with indole, fluoroindole, or fluoroindole-2-carboxylate via electrophilic aromatic substitutions to lysine side chain Nε- and N-terminal amino imines, formed in situ in the presence of formaldehyde. The reaction is highly site-selective, easily controlled by temperature, and does not eliminate the native charge of the protein, unlike many other common lysine-specific labeling strategies. (19)F NMR was used to monitor reaction progression, and in the case of HEWL, unique resonances for each labeled side chain could be resolved. We demonstrate that the indole tags are highly selective for primary amino groups. (19)F NMR demonstrates that each lysine exhibits a different rate of conjugation to indoles making it possible to employ these tags as a means of probing surface topology by NMR or mass spectrometry. Given the site-specificity of this tagging method, the mildness of the reaction conditions (aqueous, buffered, or unbuffered) and the low stoichiometry required for the reaction, indole-derivatives should serve as a valuable addition to the bioconjugation toolkit. We propose that labeling lysine side chains and N-terminal amino groups with indoles is a versatile and general strategy for bioconjugations with substituted indoles having broad implications for protein functionalization. PMID:26587689

  4. Design, Synthesis, and Antimycobacterial Activity of Novel Theophylline-7-Acetic Acid Derivatives With Amino Acid Moieties.

    PubMed

    Stavrakov, Georgi; Valcheva, Violeta; Voynikov, Yulian; Philipova, Irena; Atanasova, Mariyana; Konstantinov, Spiro; Peikov, Plamen; Doytchinova, Irini

    2016-03-01

    The theophylline-7-acetic acid (7-TAA) scaffold is a promising novel lead compound for antimycobacterial activity. Here, we derive a model for antitubercular activity prediction based on 14 7-TAA derivatives with amino acid moieties and their methyl esters. The model is applied to a combinatorial library, consisting of 40 amino acid and methyl ester derivatives of 7-TAA. The best three predicted compounds are synthesized and tested against Mycobacterium tuberculosis H37Rv. All of them are stable, non-toxic against human cells and show antimycobacterial activity in the nanomolar range being 60 times more active than ethambutol. PMID:26502828

  5. A Unique Dual Activity Amino Acid Hydroxylase in Toxoplasma gondii

    PubMed Central

    Gaskell, Elizabeth A.; Smith, Judith E.; Pinney, John W.; Westhead, Dave R.; McConkey, Glenn A.

    2009-01-01

    The genome of the protozoan parasite Toxoplasma gondii was found to contain two genes encoding tyrosine hydroxylase; that produces l-DOPA. The encoded enzymes metabolize phenylalanine as well as tyrosine with substrate preference for tyrosine. Thus the enzymes catabolize phenylalanine to tyrosine and tyrosine to l-DOPA. The catalytic domain descriptive of this class of enzymes is conserved with the parasite enzyme and exhibits similar kinetic properties to metazoan tyrosine hydroxylases, but contains a unique N-terminal extension with a signal sequence motif. One of the genes, TgAaaH1, is constitutively expressed while the other gene, TgAaaH2, is induced during formation of the bradyzoites of the cyst stages of the life cycle. This is the first description of an aromatic amino acid hydroxylase in an apicomplexan parasite. Extensive searching of apicomplexan genome sequences revealed an ortholog in Neospora caninum but not in Eimeria, Cryptosporidium, Theileria, or Plasmodium. Possible role(s) of these bi-functional enzymes during host infection are discussed. PMID:19277211

  6. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1990-10-01

    DOE Order 5820.2A requires that low-level waste (LLW) disposal sites active on or after September 1988 and all transuranic (TRU) waste storage sites be monitored periodically to assure that radioactive contamination does not escape from the waste sites and pose a threat to the public or to the environment. This plan describes such a monitoring program for the active LLW disposal sites in SWSA 6 and the TRU waste storage sites in SWSA 5 North. 14 refs., 8 figs.

  7. Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid

    PubMed Central

    Kwon, Inchan; Choi, Eun Sil

    2016-01-01

    Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation. PMID:27028506

  8. [Analgesic activity of derivatives of 7-amino-2,3-polymethylenindoles and their congeners].

    PubMed

    Cerri, R; Boatto, G; Pau, A; Sparatore, F; Manca, P

    1988-02-01

    Some N-trifluoromethylsulphonyl and N-trifluoroacetylderivatives of 7-amino-2,3-polymethyleneindoles and of 7-amino-3-propylindole [(I) - (XIII)] were prepared and tested, together with corresponding aniline derivates [(XIV) - (XIX)] and with N-trifluoromethylsulphonylcyclopentylamine (XX), against formic acid induced writhings in mice. With very few exceptions, at the oral dose of 0.167 mmole/kg, they proved from 2 to 3.4 times more active than acetanilide. PMID:3391261

  9. Sulfur amino acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We recently showed that the developing gut is a significant site of methionine transmethylation to homocysteine and transsulfuration to cysteine. We hypothesized that sulfur amino acid (SAA) deficiency would preferentially reduce mucosal growth and antioxidant function in neonatal pigs. Neonatal pi...

  10. SuccinSite: a computational tool for the prediction of protein succinylation sites by exploiting the amino acid patterns and properties.

    PubMed

    Hasan, Md Mehedi; Yang, Shiping; Zhou, Yuan; Mollah, Md Nurul Haque

    2016-03-01

    Lysine succinylation is an emerging protein post-translational modification, which plays an important role in regulating the cellular processes in both eukaryotic and prokaryotic cells. However, the succinylation modification site is particularly difficult to detect because the experimental technologies used are often time-consuming and costly. Thus, an accurate computational method for predicting succinylation sites may help researchers towards designing their experiments and to understand the molecular mechanism of succinylation. In this study, a novel computational tool termed SuccinSite has been developed to predict protein succinylation sites by incorporating three sequence encodings, i.e., k-spaced amino acid pairs, binary and amino acid index properties. Then, the random forest classifier was trained with these encodings to build the predictor. The SuccinSite predictor achieves an AUC score of 0.802 in the 5-fold cross-validation set and performs significantly better than existing predictors on a comprehensive independent test set. Furthermore, informative features and predominant rules (i.e. feature combinations) were extracted from the trained random forest model for an improved interpretation of the predictor. Finally, we also compiled a database covering 4411 experimentally verified succinylation proteins with 12 456 lysine succinylation sites. Taken together, these results suggest that SuccinSite would be a helpful computational resource for succinylation sites prediction. The web-server, datasets, source code and database are freely available at http://systbio.cau.edu.cn/SuccinSite/. PMID:26739209

  11. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    SciTech Connect

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  12. Identification of Domains and Amino Acids Essential to the Collagen Galactosyltransferase Activity of GLT25D1

    PubMed Central

    Perrin-Tricaud, Claire; Rutschmann, Christoph; Hennet, Thierry

    2011-01-01

    Collagen is modified by hydroxylation and glycosylation of hydroxylysine residues. This glycosylation is initiated by the β1,O galactosyltransferases GLT25D1 and GLT25D2. The structurally similar protein cerebral endothelial cell adhesion molecule CEECAM1 was previously reported to be inactive when assayed for collagen glycosyltransferase activity. To address the cause of the absent galactosyltransferase activity, we have generated several chimeric constructs between the active human GLT25D1 and inactive human CEECAM1 proteins. The assay of these chimeric constructs pointed to a short central region and a large C-terminal region of CEECAM1 leading to the loss of collagen galactosyltransferase activity. Examination of the three DXD motifs of the active GLT25D1 by site-directed mutagenesis confirmed the importance of the first (amino acids 166–168) and second motif (amino acids 461–463) for enzymatic activity, whereas the third one was dispensable. Since the second DXD motif is incomplete in CEECAM1, we have restored the motif by introducing the substitution S461D. This change did not restore the activity of the C-terminal region, thereby showing that additional amino acids were required in this C-terminal region to confer enzymatic activity. Finally, we have introduced the substitution Q471R-V472M-N473Q-P474V in the CEECAM1-C-terminal construct, which is found in most animal GLT25D1 and GLT25D2 isoforms but not in CEECAM1. This substitution was shown to partially restore collagen galactosyltransferase activity, underlining its importance for catalytic activity in the C-terminal domain. Because multiple mutations in different regions of CEECAM1 contribute to the lack of galactosyltransferase activity, we deduced that CEECAM1 is functionally different from the related GLT25D1 protein. PMID:22216269

  13. Hepatic SRC-1 Activity Orchestrates Transcriptional Circuitries of Amino Acid Pathways with Potential Relevance for Human Metabolic Pathogenesis

    PubMed Central

    Tannour-Louet, Mounia; York, Brian; Tang, Ke; Stashi, Erin; Bouguerra, Hichem; Zhou, Suoling; Yu, Hui; Wong, Lee-Jun C.; Stevens, Robert D.; Xu, Jianming; Newgard, Christopher B.; O'Malley, Bert W.

    2014-01-01

    Disturbances in amino acid metabolism are increasingly recognized as being associated with, and serving as prognostic markers for chronic human diseases, such as cancer or type 2 diabetes. In the current study, a quantitative metabolomics profiling strategy revealed global impairment in amino acid metabolism in mice deleted for the transcriptional coactivator steroid receptor coactivator (SRC)-1. Aberrations were hepatic in origin, because selective reexpression of SRC-1 in the liver of SRC-1 null mice largely restored amino acids concentrations to normal levels. Cistromic analysis of SRC-1 binding sites in hepatic tissues confirmed a prominent influence of this coregulator on transcriptional programs regulating amino acid metabolism. More specifically, SRC-1 markedly impacted tyrosine levels and was found to regulate the transcriptional activity of the tyrosine aminotransferase (TAT) gene, which encodes the rate-limiting enzyme of tyrosine catabolism. Consequently, SRC-1 null mice displayed low TAT expression and presented with hypertyrosinemia and corneal alterations, 2 clinical features observed in the human syndrome of TAT deficiency. A heterozygous missense variant of SRC-1 (p.P1272S) that is known to alter its coactivation potential, was found in patients harboring idiopathic tyrosinemia-like disorders and may therefore represent one risk factor for their clinical symptoms. Hence, we reinforce the concept that SRC-1 is a central factor in the fine orchestration of multiple pathways of intermediary metabolism, suggesting it as a potential therapeutic target that may be exploitable in human metabolic diseases and cancer. PMID:25148457

  14. Light-activated amino acid transport in Halobacterium halobium envelope vesicles

    NASA Technical Reports Server (NTRS)

    Macdonald, R. E.; Lanyi, J. K.

    1977-01-01

    Vesicles prepared from Halobacterium halobium cell envelopes accumulate amino acids in response to light-induced electrical and chemical gradients. Nineteen of 20 commonly occurring amino acids have been shown to be actively accumulated by these vesicles in response to illumination or in response to an artificially created Na+ gradient. On the basis of shared common carriers the transport systems can be divided into eight classes, each responsible for the transport of one or several amino acids: arginine, lysine, histidine; asparagine, glutamine; alanine, glycine, threonine, serine; leucine, valine, isoleucine, methionine; phenylalanine, tyrosine, tryptophan; aspartate; glutamate; proline. Available evidence suggests that these carriers are symmetrical in that amino acids can be transported equally well in both directions across the vesicle membranes. A tentative working model to account for these observations is presented.

  15. Factors influencing the rate of non-enzymatic activation of carboxylic and amino acids by ATP

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1981-01-01

    The nonenzymatic formation of adenylate anhydrides of carboxylic and amino acids is discussed as a necessary step in the origin of the genetic code and protein biosynthesis. Results of studies are presented which have shown the rate of activation to depend on the pKa of the carboxyl group, the pH of the medium, temperature, the divalent metal ion catalyst, salt concentration, and the nature of the amino acid. In particular, it was found that of the various amino acids investigated, phenylalanine had the greatest affinity for the adenine derivatives adenosine and ATP. Results thus indicate that selective affinities between amino acids and nucleotides were important during prebiotic chemical evolution, and may have played a major role in the origin of protein synthesis and genetic coding.

  16. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation.

    PubMed

    Ravindran, Rajesh; Loebbermann, Jens; Nakaya, Helder I; Khan, Nooruddin; Ma, Hualing; Gama, Leonardo; Machiah, Deepa K; Lawson, Benton; Hakimpour, Paul; Wang, Yi-chong; Li, Shuzhao; Sharma, Prachi; Kaufman, Randal J; Martinez, Jennifer; Pulendran, Bali

    2016-03-24

    The integrated stress response (ISR) is a homeostatic mechanism by which eukaryotic cells sense and respond to stress-inducing signals, such as amino acid starvation. General controlled non-repressed (GCN2) kinase is a key orchestrator of the ISR, and modulates protein synthesis in response to amino acid starvation. Here we demonstrate in mice that GCN2 controls intestinal inflammation by suppressing inflammasome activation. Enhanced activation of ISR was observed in intestinal antigen presenting cells (APCs) and epithelial cells during amino acid starvation, or intestinal inflammation. Genetic deletion of Gcn2 (also known as Eif2ka4) in CD11c(+) APCs or intestinal epithelial cells resulted in enhanced intestinal inflammation and T helper 17 cell (TH17) responses, owing to enhanced inflammasome activation and interleukin (IL)-1β production. This was caused by reduced autophagy in Gcn2(-/-) intestinal APCs and epithelial cells, leading to increased reactive oxygen species (ROS), a potent activator of inflammasomes. Thus, conditional ablation of Atg5 or Atg7 in intestinal APCs resulted in enhanced ROS and TH17 responses. Furthermore, in vivo blockade of ROS and IL-1β resulted in inhibition of TH17 responses and reduced inflammation in Gcn2(-/-) mice. Importantly, acute amino acid starvation suppressed intestinal inflammation via a mechanism dependent on GCN2. These results reveal a mechanism that couples amino acid sensing with control of intestinal inflammation via GCN2. PMID:26982722

  17. Synthesis and Cytotoxic Activity on Human Cancer Cells of Novel Isoquinolinequinone-Amino Acid Derivatives.

    PubMed

    Valderrama, Jaime A; Delgado, Virginia; Sepúlveda, Sandra; Benites, Julio; Theoduloz, Cristina; Buc Calderon, Pedro; Muccioli, Giulio G

    2016-01-01

    A variety of aminoisoquinoline-5,8-quinones bearing α-amino acids moieties were synthesized from 3-methyl-4-methoxycarbonylisoquinoline-5,8-quinone and diverse l- and d-α-amino acid methyl esters. The members of the series were evaluated for their cytotoxic activity against normal and cancer cell lines by using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. From the current investigation, structure-activity relationships demonstrate that the location and structure of the amino acid fragment plays a significant role in the cytotoxic effects. Moderate to high cytotoxic activity was observed and four members, derived from l-alanine, l-leucine, l-phenylalanine, and d-phenylalanine, were selected as promising compounds by their IC50 ranging from 0.5 to 6.25 μM and also by their good selectivity indexes (≥2.24). PMID:27617997

  18. Housefly larvae hydrolysate: orthogonal optimization of hydrolysis, antioxidant activity, amino acid composition and functional properties

    PubMed Central

    2013-01-01

    Background Antioxidant, one of the most important food additives, is widely used in food industry. At present, antioxidant is mostly produced by chemical synthesis, which would accumulate to be pathogenic. Therefore, a great interest has been developed to identify and use natural antioxidants. It was showed that there are a lot of antioxidative peptides in protein hydrolysates, possessing strong capacity of inhibiting peroxidation of macro-biomolecular and scavenging free redicals in vivo. Enzymatic hydrolysis used for preparation of antioxidative peptides is a new hot-spot in the field of natural antioxidants. It reacts under mild conditions, with accurate site-specific degradation, good repeatability and few damages to biological activity of protein. Substrates for enzymatic hydrolysis are usually plants and aqua-animals. Insects are also gaining attention because of their rich protein and resource. Antioxidative peptides are potential to be exploited as new natural antioxidant and functional food. There is a huge potential market in medical and cosmetic field as well. Result Protein hydrolysate with antioxidant activity was prepared from housefly larvae, by a two-step hydrolysis. Through orthogonal optimization of the hydrolysis conditions, the degree of hydrolysis was determined to be approximately 60%. Fractionated hydrolysate at 25 mg/mL, 2.5 mg/mL and 1 mg/mL exhibited approximately 50%, 60% and 50% of scavenging capacity on superoxide radicals, 1, 1-Diphenyl-2-picrylhydrazyl radicals and hydroxyl radicals, respectively. Hydrolysate did not exhibit substantial ion chelation. Using a linoneic peroxidation system, the inhibition activity of hydrolysate at 20 mg/mL was close to that of 20 μg/mL tertiary butylhydroquinone, suggesting a potential application of hydrolysate in the oil industry as an efficient antioxidant. The lyophilized hydrolysate presented almost 100% solubility at pH 3-pH 9, and maintained nearly 100% activity at pH 5-pH 8 at 0

  19. Amino- and Sulfo-Bifunctionalized Metal-Organic Frameworks: One-Pot Tandem Catalysis and the Catalytic Sites.

    PubMed

    Liu, Hui; Xi, Fu-Gui; Sun, Wei; Yang, Ning-Ning; Gao, En-Qing

    2016-06-20

    New MIL-101 metal-organic frameworks (MOFs) dually functionalized with amino and sulfo groups were fabricated by postsynthetic modification and used to catalyze one-pot deacetalization-Knoevenagel condensation. We proved that the MOFs take the zwitterionic form, with the catalytic acid site being the ammonium group rather than the sulfo one. The acid and base concentrations in the materials are correlated, and the ratio can be readily tuned to achieve optimal catalytic performance. PMID:27254287

  20. Proton-assisted amino acid transporters are conserved regulators of proliferation and amino acid-dependent mTORC1 activation

    PubMed Central

    Heublein, S; Kazi, S; Ögmundsdóttir, M H; Attwood, E V; Kala, S; Boyd, C A R; Wilson, C; Goberdhan, D C I

    2011-01-01

    The PI3-kinase (PI3K)/Akt and downstream mammalian target of rapamycin complex 1 (mTORC1) signalling cascades promote normal growth and are frequently hyperactivated in tumour cells. mTORC1 is also regulated by local nutrients, particularly amino acids, but the mechanisms involved are poorly understood. Unexpectedly, members of the proton-assisted amino acid transporter (PAT or SLC36) family emerged from in vivo genetic screens in Drosophila as transporters with uniquely potent effects on mTORC1-mediated growth. Here we show the two human PATs that are widely expressed in normal tissues and cancer cell lines, PAT1 and PAT4, behave similarly to fly PATs when expressed in Drosophila. siRNA knockdown reveals that these molecules are required for activation of mTORC1 targets and for proliferation in human MCF-7 breast cancer and HEK-293 embryonic kidney cell lines. Furthermore, activation of mTORC1 in starved HEK-293 cells stimulated by amino acids requires PAT1 and PAT4, and is elevated in PAT1-overexpressing cells. Importantly, in HEK-293 cells, PAT1 is highly concentrated in intracellular compartments, including endosomes, where mTOR shuttles upon amino acid stimulation. Our data are therefore consistent with a model in which PATs modulate mTORC1's activity not by transporting amino acids into the cell, but by modulating the intracellular response to amino acids. PMID:20498635

  1. Educational Activity Sites for High School Students

    ERIC Educational Resources Information Center

    Troutner, Joanne

    2005-01-01

    Finding quality Internet resources for high school students is a continuing challenge. Several high-quality web sites are presented for educators and students. These sites offer activities to learn how an art conservator looks at paintings, create a newspaper, research and develop an end product, build geometry and physics skills, explore science…

  2. Naturally occurring amino acid derivatives with herbicidal, fungicidal or insecticidal activity.

    PubMed

    Lamberth, Clemens

    2016-04-01

    Several naturally occurring amino acid derivatives display significant activities against weeds, fungi and insects: some of them have been even commercialized and are applied as crop protection agents. The 53 most important amino acid natural products with such efficacy are presented in this review together with their natural source, mode of action and biological activity. The diversity of the manifold bacterial, fungal and plantal sources of these compounds is impressive as well as their completely different structural scaffolds, ranging from cyclopeptides via unique non-proteinogenic amino acids to peptidyl nucleosides, the broad range of target enzymes from several different biochemical pathways, which they inhibit and also the plethora of different weeds, fungi and insects they are able to control. PMID:26801938

  3. Identification of amino acids important for the catalytic activity of the collagen glucosyltransferase associated with the multifunctional lysyl hydroxylase 3 (LH3).

    PubMed

    Wang, Chunguang; Risteli, Maija; Heikkinen, Jari; Hussa, Anna-Kaisa; Uitto, Lahja; Myllyla, Raili

    2002-05-24

    Collagen glucosyltransferase (GGT) activity has recently been shown to be associated with human lysyl hydroxylase (LH) isoform 3 (LH3) (Heikkinen, J., Risteli, M., Wang, C., Latvala, J., Rossi, M., Valtavaara, M., Myllylä, R. (2000) J. Biol. Chem. 275, 36158-36163). The LH and GGT activities of the multifunctional LH3 protein modify lysyl residues in collagens posttranslationally to form hydroxylysyl and glucosylgalactosyl hydroxylysyl residues respectively. We now report that in the nematode, Caenorhabditis elegans, where only one ortholog is found for lysyl hydroxylase, the LH and GGT activities are also associated with the same gene product. The aim of the present studies is the identification of amino acids important for the catalytic activity of GGT. Our data indicate that the GGT active site is separate from the carboxyl-terminal LH active site of human LH3, the amino acids important for the GGT activity being located at the amino-terminal part of the molecule. Site-directed mutagenesis of a conserved cysteine at position 144 to isoleucine and a leucine at position 208 to isoleucine caused a marked reduction in GGT activity. These amino acids were conserved in C. elegans LH and mammalian LH3, but not in LH1 or LH2, which lack GGT activity. The data also reveal a DXD-like motif in LH3 characteristic of many glycosyltransferases and the mutagenesis of aspartates of this motif eliminated the GGT activity. Reduction in GGT activity was not accompanied by a change in the LH activity of the molecule. Thus GGT activity can be manipulated independently of LH activity in LH3. These data provide the information needed to design knock-out studies for investigation of the function of glucosylgalactosyl hydroxylysyl residues of collagens in vivo. PMID:11896059

  4. Effect alteration of methamphetamine by amino acids or their salts on ambulatory activity in mice.

    PubMed

    Kuribara, H; Tadokoro, S

    1983-02-01

    Effect alterations of methamphetamine by pretreatment of amino acids or their salts on ambulatory activity in mice were investigated to confirm a fact that certain amino acids, particularly monosodium L-glutamate, are added to methamphetamine by the street users, and that the amino acids augment the effect of methamphetamine. The ambulatory activity of mouse was measured by a tilting-type round activity cage of 25 cm in diameter. The amino acids or their salts tested were monosodium L-glutamate, monosodium L-aspartate, gamma-amino-butyric acid, L-alanine, L-lysine hydrochloride and L-arginine hydrochloride. A single administration of each chemical at doses of 1 and 2 g/kg i.p. did not induce a marked change in the ambulatory activity in mice. Methamphetamine 2 mg/kg s.c. induced an increase in the ambulatory activity with a peak at 40 min after the administration, and the increased ambulatory activity persisted for 3 hr. The ambulation-increasing effect of methamphetamine was augmented by the pretreatment of monosodium L-glutamate and monosodium L-aspartate at 30 min before the methamphetamine administration, while attenuated by the pretreatment of L-lysine hydrochloride and L-arginine hydrochloride in a dose-dependent manner. Gamma-aminobutyric acid and L-alanine did not affect the effect of methamphetamine. Similar augmentation and attenuation in the ambulation-increasing effect of methamphetamine were induced by the pretreatment of sodium bicarbonate 0.9 g/kg i.p. (urinary alkalizer) and ammonium chloride 0.07 g/kg i.p. (urinary acidifier), respectively. The urinary pH level was elevated by the administration of monosodium L-glutamate, monosodium L-aspartate and sodium bicarbonate, and decreased by L-lysine hydrochloride, L-arginine hydrochloride and ammonium chloride. Gamma-aminobutyric acid and L-alanine did not elicit a marked change in the urinary pH level. The present experiment confirms the fact in human that monosodium L-glutamate augments the effect of

  5. Further work on sodium montmorillonite as catalyst for the polymerization of activated amino acids

    NASA Technical Reports Server (NTRS)

    Eirich, F. R.; Paecht-Horowitz, M.

    1986-01-01

    When the polycondensation of amino acid acylates was catalyzed with Na-montmorillonite, the polypeptides were consistently found to exhibit a distribution of discrete molecular weights, for as yet undiscovered reasons. One possible explanation was connected to the stepwise mode of monomer addition. New experiments have eliminated this possibility, so that there is the general assumption that this discreteness is the result of a preference of shorter oligomers to add to others of the same length, a feature that could be attributed to some structure of the platelet aggregates of the montmorillonite. The production of optical stereoisomers is anticipated when D,L-amino acids are polymerized on montmorillonite. Having used an optically active surface, the essence of the results lies not only in the occurrence of optically active oligomers and polymers, but also in the fact that the latter exhibit the same molecular weight characteristics as the D,L-polymers. Preparatory to work contemplated on a parallel synthesis of amino acid and nucleotide oligomers, studies were continued on the co-adsorption of amino acids, nucleotides, and amino acid-nucleotides on montmorillonite.

  6. Amino ozonides exhibit in vitro activity against Echinococcus multilocularis metacestodes.

    PubMed

    Küster, Tatiana; Kriegel, Nadja; Stadelmann, Britta; Wang, Xiaofang; Dong, Yuxiang; Vennerstrom, Jonathan L; Keiser, Jennifer; Hemphill, Andrew

    2014-01-01

    Artemisinin is an antimalarial sesquiterpene lactone that contains a 1,2,4-trioxane heterocycle. Dihydroartemisinin and artesunate demonstrated activity against Echinococcus multilocularis metacestodes in vitro but were not effective in a mouse model. In this study, the in vitro effects of a small library of synthetic ozonides (1,2,4-trioxolanes) were investigated. Initial compound screening against E. multilocularis metacestodes was performed at 20μM, and selected ozonides were further assessed in dose-response studies in metacestode cultures and mammalian cells. Transmission electron microscopy (TEM) was employed to characterise compound-induced structural alterations. At 20μM, the most potent ozonides (OZ401, OZ455, OZ491 and OZ494) led to death of ca. 60-100% of the parasites. Subsequent dose-response experiments demonstrated that OZ401, OZ455 and OZ491, which contain an aminopropylether substructure, were the most potent, with 50% inhibitory concentrations ranging from 11μM to 14μM. Cytotoxicity for these three ozonides, assessed in human foreskin fibroblasts, rat hepatoma cells and green monkey epithelial kidney (Vero) cells, was evident only at high concentrations. TEM demonstrated that OZ401 and OZ491 treatment induced considerable metabolic impairment in metacestodes at 1 day post exposure. At Day 3 post exposure, the germinal layer was severely distorted, although some intact cells were still visible, demonstrating that not all cell types in the parasite tissue were equally affected. Complete destruction of the germinal layer was noted at 5 days post exposure. Synthetic ozonides could represent interesting leads that will be further investigated in a suitable in vivo model of E. multilocularis infection. PMID:24239405

  7. Screening of Bothrops snake venoms for L-amino acid oxidase activity.

    PubMed

    Pessatti, M; Fontana, J D; Furtado, M F; Guimãraes, M F; Zanette, L R; Costa, W T; Baron, M

    1995-01-01

    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venom LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use of biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom. PMID:7668847

  8. Screening of Bothrops snake venoms for L-amino acid oxidase activity

    SciTech Connect

    Pessati, M.L.; Fontana, J.D.; Guimaraes, M.F.

    1995-12-31

    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venom LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use in biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom.

  9. In Vitro and In Vivo Activities of Antimicrobial Peptides Developed Using an Amino Acid-Based Activity Prediction Method

    PubMed Central

    Wu, Xiaozhe; Wang, Zhenling; Li, Xiaolu; Fan, Yingzi; He, Gu; Wan, Yang; Yu, Chaoheng; Tang, Jianying; Li, Meng; Zhang, Xian; Zhang, Hailong; Xiang, Rong; Pan, Ying; Liu, Yan; Lu, Lian

    2014-01-01

    To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections. PMID:24982064

  10. A single amino acid change, Q114R, in the cleavage-site sequence of Newcastle disease virus fusion protein attenuates viral replication and pathogenicity.

    PubMed

    Samal, Sweety; Kumar, Sachin; Khattar, Sunil K; Samal, Siba K

    2011-10-01

    A key determinant of Newcastle disease virus (NDV) virulence is the amino acid sequence at the fusion (F) protein cleavage site. The NDV F protein is synthesized as an inactive precursor, F(0), and is activated by proteolytic cleavage between amino acids 116 and 117 to produce two disulfide-linked subunits, F(1) and F(2). The consensus sequence of the F protein cleavage site of virulent [(112)(R/K)-R-Q-(R/K)-R↓F-I(118)] and avirulent [(112)(G/E)-(K/R)-Q-(G/E)-R↓L-I(118)] strains contains a conserved glutamine residue at position 114. Recently, some NDV strains from Africa and Madagascar were isolated from healthy birds and have been reported to contain five basic residues (R-R-R-K-R↓F-I/V or R-R-R-R-R↓F-I/V) at the F protein cleavage site. In this study, we have evaluated the role of this conserved glutamine residue in the replication and pathogenicity of NDV by using the moderately pathogenic Beaudette C strain and by making Q114R, K115R and I118V mutants of the F protein in this strain. Our results showed that changing the glutamine to a basic arginine residue reduced viral replication and attenuated the pathogenicity of the virus in chickens. The pathogenicity was further reduced when the isoleucine at position 118 was substituted for valine. PMID:21677091

  11. Amino acid depletion activates TonEBP and sodium-coupled inositol transport.

    PubMed

    Franchi-Gazzola, R; Visigalli, R; Dall'Asta, V; Sala, R; Woo, S K; Kwon, H M; Gazzola, G C; Bussolati, O

    2001-06-01

    The expression of the osmosensitive sodium/myo-inositol cotransporter (SMIT) is regulated by multiple tonicity-responsive enhancers (TonEs) in the 5'-flanking region of the gene. In response to hypertonicity, the nuclear abundance of the transcription factor TonE-binding protein (TonEBP) is increased, and the transcription of the SMIT gene is induced. Transport system A for neutral amino acids, another osmosensitive mechanism, is progressively stimulated if amino acid substrates are not present in the extracellular compartment. Under this condition, as in hypertonicity, cells shrink and mitogen-activated protein kinases are activated. We demonstrate here that a clear-cut nuclear redistribution of TonEBP, followed by SMIT expression increase and inositol transport activation, is observed after incubation of cultured human fibroblasts in Earle's balanced salts (EBSS), an isotonic, amino acid-free saline. EBSS-induced SMIT stimulation is prevented by substrates of system A, although these compounds do not compete with inositol for transport through SMIT. We conclude that the incubation in isotonic, amino acid-free saline triggers an osmotic stimulus and elicits TonEBP-dependent responses like hypertonic treatment. PMID:11350742

  12. Probing structural features of Alzheimer's amyloid-β pores in bilayers using site-specific amino acid substitutions.

    PubMed

    Capone, Ricardo; Jang, Hyunbum; Kotler, Samuel A; Kagan, Bruce L; Nussinov, Ruth; Lal, Ratnesh

    2012-01-24

    A current hypothesis for the pathology of Alzheimer's disease (AD) proposes that amyloid-β (Aβ) peptides induce uncontrolled, neurotoxic ion flux across cellular membranes. The mechanism of ion flux is not fully understood because no experiment-based Aβ channel structures at atomic resolution are currently available (only a few polymorphic states have been predicted by computational models). Structural models and experimental evidence lend support to the view that the Aβ channel is an assembly of loosely associated mobile β-sheet subunits. Here, using planar lipid bilayers and molecular dynamics (MD) simulations, we show that amino acid substitutions can be used to infer which residues are essential for channel structure. We created two Aβ(1-42) peptides with point mutations: F19P and F20C. The substitution of Phe19 with Pro inhibited channel conductance. MD simulation suggests a collapsed pore of F19P channels at the lower bilayer leaflet. The kinks at the Pro residues in the pore-lining β-strands induce blockage of the solvated pore by the N-termini of the chains. The cysteine mutant is capable of forming channels, and the conductance behavior of F20C channels is similar to that of the wild type. Overall, the mutational analysis of the channel activity performed in this work tests the proposition that the channels consist of a β-sheet rich organization, with the charged/polar central strand containing the mutation sites lining the pore, and the C-terminal strands facing the hydrophobic lipid tails. A detailed understanding of channel formation and its structure should aid studies of drug design aiming to control unregulated Aβ-dependent ion fluxes. PMID:22242635

  13. Importance of Hydrogen-Bonding Sites in the Chiral Recognition Mechanism Between Racemic D3 Terbium(III) Complexes and Amino Acids

    PubMed Central

    MOUSSA, AHMED; PHAM, CHRISTINE; BOMMIREDDY, SHRUTHI; MULLER, GILLES

    2009-01-01

    The perturbation of the racemic equilibrium of luminescent D3 terbium(III) complexes with chelidamic acid (CDA), a hydroxylated derivative of 2,6-pyridine-dicarboxylic acid (DPA), by added chiral biomolecules such as l-amino acids has been studied using circularly polarized luminescence and 13C NMR spectroscopy. It is shown in this work that the chiral-induced equilibrium shift of [Tb(CDA)3]6− by l-amino acids (i.e. l-proline or l-arginine) was largely influenced by the hydrogen-bonding networks formed between the ligand interface of racemic [Tb(CDA)3]6− and these added chiral agents. The capping of potential hydrogen-bonding sites by acetylation in l-proline led to a ∼100-fold drop in the induced optical activity of the [Tb(CDA)3]6−:N-acetyl-l-proline system. This result suggested that the hydrogen-bonding networks serve as the basis for further noncovalent discriminatory interactions between racemic [Tb(CDA)3]6− and added l-amino acids. PMID:18698640

  14. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  15. Amino ketone formation and aminopropanol-dehydrogenase activity in rat-liver preparations

    PubMed Central

    Turner, J. M.; Willetts, A. J.

    1967-01-01

    1. Rat tissue homogenates convert dl-1-aminopropan-2-ol into aminoacetone. Liver homogenates have relatively high aminopropanol-dehydrogenase activity compared with kidney, heart, spleen and muscle preparations. 2. Maximum activity of liver homogenates is exhibited at pH9·8. The Km for aminopropanol is approx. 15mm, calculated for a single enantiomorph, and the maximum activity is approx. 9mμmoles of aminoacetone formed/mg. wet wt. of liver/hr.at 37°. Aminoacetone is also formed from l-threonine, but less rapidly. An unidentified amino ketone is formed from dl-4-amino-3-hydroxybutyrate, the Km for which is approx. 200mm at pH9·8. 3. Aminopropanol-dehydrogenase activity in homogenates is inhibited non-competitively by dl-3-hydroxybutyrate, the Ki being approx. 200mm. EDTA and other chelating agents are weakly inhibitory, and whereas potassium chloride activates slightly at low concentrations, inhibition occurs at 50–100mm. 4. It is concluded that aminopropanol-dehydrogenase is located in mitochondria, and in contrast with l-threonine dehydrogenase can be readily solubilized from mitochondrial preparations by ultrasonic treatment. 5. Soluble extracts of disintegrated mitochondria exhibit maximum aminopropanol-dehydrogenase activity at pH9·1 At this pH, Km values for the amino alcohol and NAD+ are approx. 200 and 1·3mm respectively. Under optimum conditions the maximum velocity is approx. 70mμmoles of aminoacetone formed/mg. of protein/hr. at 37°. Chelating agents and thiol reagents appear to have little effect on enzyme activity, but potassium chloride inhibits at all concentrations tested up to 80mm. dl-3-Hydroxybutyrate is only slightly inhibitory. 6. Dehydrogenase activities for l-threonine and dl-4-amino-3-hydroxybutyrate appear to be distinct from that for aminopropanol. 7. Intraperitoneal injection of aminopropanol into rats leads to excretion of aminoacetone in the urine. Aminoacetone excretion proportional to the amount of the amino alcohol

  16. Amino acid-dependent NPRL2 interaction with Raptor determines mTOR Complex 1 activation.

    PubMed

    Kwak, Sang Su; Kang, Kyung Hwa; Kim, Seyun; Lee, Seoeun; Lee, Jeung-Hoon; Kim, Jin Woo; Byun, Boohyeong; Meadows, Gary G; Joe, Cheol O

    2016-02-01

    We assign a new function to a tumor suppressor NPRL2 that activates the mTOR complex 1 (mTORC1) activity. The positive regulation of mTORC1 activity by NPRL2 is mediated through NPRL2 interaction with Raptor. While NPRL2 interacts with Rag GTPases, RagD in particular, to interfere with mTORC1 activity in amino acid scarcity, NPRL2 interacts with Raptor in amino acid sufficiency to activate mTORC1. A reciprocal relationship exists between NPRL2 binding to Rag GTPases and Raptor. NPRL2 majorly locates in the lysosomal membranes and has a higher binding affinity to the dominant negative mutant heterodimer of RagA(GDP)/RagD(GTP) that inactivates mTORC1. However, the binding affinity of NPRL2 with Raptor is much less pronounced in cells expressing the dominant negative mutant heterodimer of RagA(GDP)/RagD(GTP) than in cells expressing the dominant positive mutant heterodimer, RagA(GTP)/RagD(GDP). The positive effect of NPRL2 on TORC1 pathway was also evidenced in Drosophila animal model. Here, we propose a 'seesaw' model in which the interactive behavior of NPRL2 with Raptor determines mTORC1 activation by amino acid signaling in animal cells. PMID:26582740

  17. Molecular Basis of Prodrug Activation by Human Valacyclovirase, an [alpha]-Amino Acid Ester Hydrolase

    SciTech Connect

    Lai, Longsheng; Xu, Zhaohui; Zhou, Jiahai; Lee, Kyung-Dall; Amidon, Gordon L.

    2008-07-08

    Chemical modification to improve biopharmaceutical properties, especially oral absorption and bioavailability, is a common strategy employed by pharmaceutical chemists. The approach often employs a simple structural modification and utilizes ubiquitous endogenous esterases as activation enzymes, although such enzymes are often unidentified. This report describes the crystal structure and specificity of a novel activating enzyme for valacyclovir and valganciclovir. Our structural insights show that human valacyclovirase has a unique binding mode and specificity for amino acid esters. Biochemical data demonstrate that the enzyme hydrolyzes esters of {alpha}-amino acids exclusively and displays a broad specificity spectrum for the aminoacyl moiety similar to tricorn-interacting aminopeptidase F1. Crystal structures of the enzyme, two mechanistic mutants, and a complex with a product analogue, when combined with biochemical analysis, reveal the key determinants for substrate recognition; that is, a flexible and mostly hydrophobic acyl pocket, a localized negative electrostatic potential, a large open leaving group-accommodating groove, and a pivotal acidic residue, Asp-123, after the nucleophile Ser-122. This is the first time that a residue immediately after the nucleophile has been found to have its side chain directed into the substrate binding pocket and play an essential role in substrate discrimination in serine hydrolases. These results as well as a phylogenetic analysis establish that the enzyme functions as a specific {alpha}-amino acid ester hydrolase. Valacyclovirase is a valuable target for amino acid ester prodrug-based oral drug delivery enhancement strategies.

  18. A remarkable activity of human leukotriene A4 hydrolase (LTA4H) toward unnatural amino acids.

    PubMed

    Byzia, Anna; Haeggström, Jesper Z; Salvesen, Guy S; Drag, Marcin

    2014-05-01

    Leukotriene A4 hydrolase (LTA4H--EC 3.3.2.6) is a bifunctional zinc metalloenzyme, which processes LTA4 through an epoxide hydrolase activity and is also able to trim one amino acid at a time from N-terminal peptidic substrates via its aminopeptidase activity. In this report, we have utilized a library of 130 individual proteinogenic and unnatural amino acid fluorogenic substrates to determine the aminopeptidase specificity of this enzyme. We have found that the best proteinogenic amino acid recognized by LTA4H is arginine. However, we have also observed several unnatural amino acids, which were significantly better in terms of cleavage rate (k cat/K m values). Among them, the benzyl ester of aspartic acid exhibited a k cat/K m value that was more than two orders of magnitude higher (1.75 × 10(5) M(-1) s(-1)) as compared to L-Arg (1.5 × 10(3) M(-1) s(-1)). This information can be used for design of potent inhibitors of this enzyme, but may also suggest yet undiscovered functions or specificities of LTA4H. PMID:24573245

  19. A steric tethering approach enables palladium-catalysed C-H activation of primary amino alcohols

    NASA Astrophysics Data System (ADS)

    Calleja, Jonas; Pla, Daniel; Gorman, Timothy W.; Domingo, Victoriano; Haffemayer, Benjamin; Gaunt, Matthew J.

    2015-12-01

    Aliphatic primary amines are a class of chemical feedstock essential to the synthesis of higher-order nitrogen-containing molecules, commonly found in biologically active compounds and pharmaceutical agents. New methods for the construction of complex amines remain a continuous challenge to synthetic chemists. Here, we outline a general palladium-catalysed strategy for the functionalization of aliphatic C-H bonds within amino alcohols, an important class of small molecule. Central to this strategy is the temporary conversion of catalytically incompatible primary amino alcohols into hindered secondary amines that are capable of undergoing a sterically promoted palladium-catalysed C-H activation. Furthermore, a hydrogen bond between amine and catalyst intensifies interactions around the palladium and orients the aliphatic amine substituents in an ideal geometry for C-H activation. This catalytic method directly transforms simple, easily accessible amines into highly substituted, functionally concentrated and structurally diverse products, and can streamline the synthesis of biologically important amine-containing molecules.

  20. Synthesis, antimicrobial activity of Schiff base compounds of cinnamaldehyde and amino acids.

    PubMed

    Wang, Hui; Yuan, Haijian; Li, Shujun; Li, Zhuo; Jiang, Mingyue

    2016-02-01

    The purpose of this study was to synthesize hydrophilic cinnamaldehyde Schiff base compounds and investigate those bioactivity. A total of 24 Schiff base compounds were synthesized using a simple approach with 3 cinnamaldehyde derivates and 8 amino acids as raw materials. The structures of synthesized compounds were confirmed using FTIR, (1)HNMR, HRMS purity and melting point. The antimicrobial activities of new compounds were evaluated with fluconazole and ciprofloxacin as the control against Aspergillus niger, Penicillium citrinum, Escherichia coli and Staphylococcus aureus. Findings show that major compounds exhibited significant bioactivity. Results from the structure-activity relationship suggest that both -p-Cl on benzene ring of cinnamaldehyde and the number of -COOK of amino acid salts significantly contributed to antimicrobial activity. PMID:26774583

  1. Ontogenetic changes in digestive enzyme activities and the amino acid profile of starry flounder Platichthys stellatus

    NASA Astrophysics Data System (ADS)

    Song, Zhidong; Wang, Jiying; Qiao, Hongjin; Li, Peiyu; Zhang, Limin; Xia, Bin

    2016-01-01

    Ontogenetic changes in digestive enzyme activities and the amino acid (AA) profile of starry flounder, Platichthys stellatus, were investigated and limiting amino acids were estimated compared with the essential AA profile between larvae and live food to clarify starry flounder larval nutritional requirements. Larvae were collected at the egg stage and 0, 2, 4, 7, 12, 17, 24 days after hatching (DAH) for analysis. Larvae grew from 1.91 mm at hatching to 12.13 mm at 24 DAH. Trypsin and chymotrypsin activities changed slightly by 4 DAH and then increased significantly 4 DAH. Pepsin activity increased sharply beginning 17 DAH. Lipase activity increased significantly 4 DAH and increased progressively with larval growth. Amylase activity was also detected in newly hatched larvae and increased 7 DAH followed by a gradual decrease. High free amino acid (FAA) content was detected in starry flounder eggs (110.72 mg/g dry weight). Total FAA content dropped to 43.29 mg/g in 4-DAH larvae and then decreased gradually to 13.74 mg/g in 24-DAH larvae. Most FAAs (except lysine and methionine) decreased >50% in 4-DAH larvae compared with those in eggs and then decreased to the lowest values in 24-DAH larvae. Changes in the protein amino acid (PAA) profile were much milder than those observed for FAAs. Most PAAs increased gradually during larval development, except lysine and phenylalanine. The percentages of free threonine, valine, isoleucine, and leucine decreased until the end of the trial, whereas the protein forms of these four AAs followed the opposite trend. A comparison of the essential AA composition of live food (rotifers, Artemia nauplii, and Artemia metanauplii) and larvae suggested that methionine was potentially the first limiting AA. These results may help develop starry flounder larviculture methods by solving the AA imbalance in live food. Moreover, the increased digestive enzyme activities indicate the possibility of introducing artificial compound feed.

  2. Ontogenetic changes in digestive enzyme activities and the amino acid profile of starry flounder Platichthys stellatus

    NASA Astrophysics Data System (ADS)

    Song, Zhidong; Wang, Jiying; Qiao, Hongjin; Li, Peiyu; Zhang, Limin; Xia, Bin

    2016-09-01

    Ontogenetic changes in digestive enzyme activities and the amino acid (AA) profile of starry flounder, Platichthys stellatus, were investigated and limiting amino acids were estimated compared with the essential AA profile between larvae and live food to clarify starry flounder larval nutritional requirements. Larvae were collected at the egg stage and 0, 2, 4, 7, 12, 17, 24 days after hatching (DAH) for analysis. Larvae grew from 1.91 mm at hatching to 12.13 mm at 24 DAH. Trypsin and chymotrypsin activities changed slightly by 4 DAH and then increased significantly 4 DAH. Pepsin activity increased sharply beginning 17 DAH. Lipase activity increased significantly 4 DAH and increased progressively with larval growth. Amylase activity was also detected in newly hatched larvae and increased 7 DAH followed by a gradual decrease. High free amino acid (FAA) content was detected in starry flounder eggs (110.72 mg/g dry weight). Total FAA content dropped to 43.29 mg/g in 4-DAH larvae and then decreased gradually to 13.74 mg/g in 24-DAH larvae. Most FAAs (except lysine and methionine) decreased >50% in 4-DAH larvae compared with those in eggs and then decreased to the lowest values in 24-DAH larvae. Changes in the protein amino acid (PAA) profile were much milder than those observed for FAAs. Most PAAs increased gradually during larval development, except lysine and phenylalanine. The percentages of free threonine, valine, isoleucine, and leucine decreased until the end of the trial, whereas the protein forms of these four AAs followed the opposite trend. A comparison of the essential AA composition of live food (rotifers, Artemia nauplii, and Artemia metanauplii) and larvae suggested that methionine was potentially the first limiting AA. These results may help develop starry flounder larviculture methods by solving the AA imbalance in live food. Moreover, the increased digestive enzyme activities indicate the possibility of introducing artificial compound feed.

  3. Synthesis and copper-dependent antimycoplasmal activity of amides and amidines derived from 2-amino-1,10-phenanthroline.

    PubMed

    de Zwart, M A; Bastiaans, H M; van der Goot, H; Timmerman, H

    1991-03-01

    A series of both aliphatic and aromatic amides and aromatic amidines derived from 2-amino-1,10-phenanthroline (3) according to the Topliss scheme were synthesized and subsequently tested for antimycoplasmal potency. Although the compounds themselves showed no activity, in the presence of a nontoxic copper concentration of 40 microM all compounds appeared to be very active against Mycoplasma gallisepticum K154. The most active compounds were found in the amide series and show growth inhibition in the nanomolar range. These compounds are 4 times more active than tylosin, a macrolide antibiotic, which is used therapeutically in veterinary practice. In the presence of copper, amides derived from 3 are more active than corresponding amidines. Increased activity following derivatization of 3 may be due to the presence of a third coordination site for copper in the title compounds. Evaluation of biological data revealed that antimycoplasmal activity of amides derived from 3 is dependent on lipophilicity. For these amides a good linear correlation was found between antimycoplasmal activity and hydrophobic fragmental values for substituents considered. This quantitative structure-activity relationship study indicated that antimycoplasmal activity was increased upon a decrease of these hydrophobic fragmental values. PMID:2002460

  4. Direct photoaffinity labeling of cellular retinoic acid-binding protein I (CRABP-I) with all-trans-retinoic acid: identification of amino acids in the ligand binding site.

    PubMed

    Chen, G; Radominska-Pandya, A

    2000-10-17

    Cellular retinoic acid-binding proteins I and II (CRABP-I and -II, respectively) are transport proteins for all-trans-retinoic acid (RA), an active metabolite of vitamin A (retinol), and have been reported to be directly involved in the metabolism of RA. In this study, direct photoaffinity labeling with [11,12-(3)H]RA was used to identify amino acids comprising the ligand binding site of CRABP-I. Photoaffinity labeling of CRABP-I with [(3)H]RA was light- and concentration-dependent and was protected by unlabeled RA and various retinoids, indicating that the labeling was directed to the RA-binding site. Photolabeled CRABP-I was hydrolyzed with endoproteinase Lys-C to yield radioactive peptides, which were separated by reversed-phase HPLC for analysis by Edman degradation peptide sequencing. This method identified five modified amino acids from five separate HPLC fractions: Trp7, Lys20, Arg29, Lys38, and Trp109. All five amino acids are located within one side of the "barrel" structure in the area indicated by the reported crystal structure as the ligand binding site. This is the first direct identification of specific amino acids in the RA-binding site of CRABPs by photoaffinity labeling. These results provide significant information about the ligand binding site of the CRABP-I molecule in solution. PMID:11027136

  5. Amino acids and peptides activate at least five members of the human bitter taste receptor family.

    PubMed

    Kohl, Susann; Behrens, Maik; Dunkel, Andreas; Hofmann, Thomas; Meyerhof, Wolfgang

    2013-01-01

    Amino acids and peptides represent important flavor molecules eliciting various taste sensations. Here, we present a comprehensive assessment of the interaction of various peptides and all proteinogenic amino acids with the 25 human TAS2Rs expressed in cell lines. L-Phenylalanine and L-tryptophan activate TAS2R1 and TAS2R4, respectively, whereas TAS2R4 and TAS2R39 responded to D-tryptophan. Structure-function analysis uncovered the basis for the lack of stereoselectivity of TAS2R4. The same three TAS2Rs or subsets thereof were also sensitive to various dipeptides containing L-tryptophan, L-phenylalanine, or L-leucine and to Trp-Trp-Trp, whereas Leu-Leu-Leu specifically activated TAS2R4. Trp-Trp-Trp also activated TAS2R46 and TAS2R14. Two key bitter peptides from Gouda cheese, namely, Tyr-Pro-Phe-Pro-Gly-Pro-Ile-His-Asn-Ser and Leu-Val-Tyr-Pro-Phe-Pro-Gly-Pro-Ile-His-Asn, both activated TAS2R1 and TAS2R39. Thus, the data demonstrate that the bitterness of amino acids and peptides is not mediated by specifically tuned TAS2Rs but rather is brought about by an unexpectedly complex pattern of sensitive TAS2Rs. PMID:23214402

  6. Controlled trial of oligopeptide versus amino acid diet in treatment of active Crohn's disease.

    PubMed Central

    Mansfield, J C; Giaffer, M H; Holdsworth, C D

    1995-01-01

    Elemental diets are effective in inducing remission in active Crohn's disease, but how they exert this therapeutic effect is unclear. In a previous study a whole protein containing diet proved less effective than one in which food antigens were excluded, suggesting that exclusion of food antigens from the gut was a possible mechanism. This study was designed to test whether an oligopeptide diet of hydrolysed proteins was as effective as an amino acid based diet. These diets were equally antigen free but with different nitrogen sources. Forty four patients with active Crohn's disease were randomised in a controlled trial of amino acid versus oligopeptide diet. The feeds were given by nasogastric tube in equicaloric quantities and were the sole form of nutrition. Treatment was continued for four weeks although failure to improve by day 10 resulted in withdrawal. Quantitative leucocyte scintigraphy was used to investigate the effect of diet treatment on gut inflammation. Clinical and nutritional responses to treatment were also measured. Sixteen patients entered remission (including withdrawal of corticosteroids), six patients could not tolerate the nasogastric tube, and 22 patients failed to respond. The two diets were equally effective. Patients who responded had a rapid drop in clinical index of disease activity and a major reduction in the bowel uptake of leucocytes on scintigraphy. The oligopeptide and amino acid based enteral feeds were equally effective at inducing remission in active Crohn's disease. With both diets clinical improvement was accompanied by a reduction in intestinal inflammation. Images Figure 3 PMID:7890238

  7. Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity

    PubMed Central

    Wu, Zhuo-Fu; Wang, Zhi; Zhang, Ye; Ma, Ya-Li; He, Cheng-Yan; Li, Heng; Chen, Lei; Huo, Qi-Sheng; Wang, Lei; Li, Zheng-Qiang

    2016-01-01

    Functional molecules synthesized by self-assembly between inorganic salts and amino acids have attracted much attention in recent years. A simple method is reported here for fabricating hybrid organic–inorganic nanoflowers using copper (II) ions as the inorganic component and natural amino acids as the organic component. The results indicate that the interactions between amino acid and copper ions cause the growth of the nanoflowers composed by C, N, Cu, P and O elements. The Cu ions and Cu(AA)n complexes containing Cu-O bond are present in the nanoflowers. The nanoflowers have flower-like porous structure dominated by the R groups of amino acids with high surface-to-volume ratios, which is beneficial for exerting its peroxidase-like activity depending on Fenton-like reaction mechanism with ABTS and Rhodamine B as the substrates. It is expected that the nanoflowers hold great promise as enzyme mimics for application in the field of biosensor, bioanalysis and biocatalysis. PMID:26926099

  8. Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity

    NASA Astrophysics Data System (ADS)

    Wu, Zhuo-Fu; Wang, Zhi; Zhang, Ye; Ma, Ya-Li; He, Cheng-Yan; Li, Heng; Chen, Lei; Huo, Qi-Sheng; Wang, Lei; Li, Zheng-Qiang

    2016-03-01

    Functional molecules synthesized by self-assembly between inorganic salts and amino acids have attracted much attention in recent years. A simple method is reported here for fabricating hybrid organic-inorganic nanoflowers using copper (II) ions as the inorganic component and natural amino acids as the organic component. The results indicate that the interactions between amino acid and copper ions cause the growth of the nanoflowers composed by C, N, Cu, P and O elements. The Cu ions and Cu(AA)n complexes containing Cu-O bond are present in the nanoflowers. The nanoflowers have flower-like porous structure dominated by the R groups of amino acids with high surface-to-volume ratios, which is beneficial for exerting its peroxidase-like activity depending on Fenton-like reaction mechanism with ABTS and Rhodamine B as the substrates. It is expected that the nanoflowers hold great promise as enzyme mimics for application in the field of biosensor, bioanalysis and biocatalysis.

  9. Cerebrospinal fluid as a reflector of central cholinergic and amino acid neurotransmitter activity in cerebellar ataxia.

    PubMed

    Manyam, B V; Giacobini, E; Ferraro, T N; Hare, T A

    1990-11-01

    Cerebrospinal fluid (CSF) amino acid neurotransmitters, related compounds, and their precursors, choline levels, and acetylcholinesterase activity were measured in the CSF of patients with cerebellar ataxia during a randomized, double-blind, crossover, placebo-controlled clinical trial of physostigmine salicylate. The CSF gamma-aminobutyric acid, methionine, and choline levels, adjusted for age, were significantly lower in patients with cerebellar ataxia compared with controls. Physostigmine selectively reduced the level of CSF isoleucine and elevated the levels of phosphoethanolamine. No change occurred in CSF acetylcholinesterase activity and in the levels of plasma amino compounds in patients with cerebellar ataxia when compared with controls. Median ataxia scores did not statistically differ between placebo and physostigmine nor did functional improvement occur in any of the patients. PMID:1978660

  10. Novel Amino-pyrazole Ureas with Potent In Vitro and In Vivo Antileishmanial Activity.

    PubMed

    Mowbray, Charles E; Braillard, Stéphanie; Speed, William; Glossop, Paul A; Whitlock, Gavin A; Gibson, Karl R; Mills, James E J; Brown, Alan D; Gardner, J Mark F; Cao, Yafeng; Hua, Wen; Morgans, Garreth L; Feijens, Pim-Bart; Matheeussen, An; Maes, Louis J

    2015-12-24

    Visceral leishmaniasis is a severe parasitic disease that is one of the most neglected tropical diseases. Treatment options are limited, and there is an urgent need for new therapeutic agents. Following an HTS campaign and hit optimization, a novel series of amino-pyrazole ureas has been identified with potent in vitro antileishmanial activity. Furthermore, compound 26 shows high levels of in vivo efficacy (>90%) against Leishmania infantum, thus demonstrating proof of concept for this series. PMID:26571076

  11. Chemical Synthesis and Biological Activities of Novel Pleuromutilin Derivatives with Substituted Amino Moiety

    PubMed Central

    Shang, Ruofeng; Wang, Shengyu; Xu, Ximing; Yi, Yunpeng; Guo, Wenzhu; YuLiu; Liang, Jianping

    2013-01-01

    Novel pleuromutilin derivatives designed based on the structure of valnemulin were synthesized and evaluated for their in vitro antibacterial activities. These pleuromutilin derivatives with substituted amino moiety exhibited excellent activities against methicillin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis, Escherichia coli, and Streptococcus agalactiae. Compound 5b showed the highest antibacterial activities and even exceeded tiamulin. Moreover, the docking experiments provided information about the binding model between the synthesized compounds and peptidyl transferase center (PTC) of 23S rRNA. PMID:24376551

  12. Computational Identification of Protein Pupylation Sites by Using Profile-Based Composition of k-Spaced Amino Acid Pairs.

    PubMed

    Hasan, Md Mehedi; Zhou, Yuan; Lu, Xiaotian; Li, Jinyan; Song, Jiangning; Zhang, Ziding

    2015-01-01

    Prokaryotic proteins are regulated by pupylation, a type of post-translational modification that contributes to cellular function in bacterial organisms. In pupylation process, the prokaryotic ubiquitin-like protein (Pup) tagging is functionally analogous to ubiquitination in order to tag target proteins for proteasomal degradation. To date, several experimental methods have been developed to identify pupylated proteins and their pupylation sites, but these experimental methods are generally laborious and costly. Therefore, computational methods that can accurately predict potential pupylation sites based on protein sequence information are highly desirable. In this paper, a novel predictor termed as pbPUP has been developed for accurate prediction of pupylation sites. In particular, a sophisticated sequence encoding scheme [i.e. the profile-based composition of k-spaced amino acid pairs (pbCKSAAP)] is used to represent the sequence patterns and evolutionary information of the sequence fragments surrounding pupylation sites. Then, a Support Vector Machine (SVM) classifier is trained using the pbCKSAAP encoding scheme. The final pbPUP predictor achieves an AUC value of 0.849 in 10-fold cross-validation tests and outperforms other existing predictors on a comprehensive independent test dataset. The proposed method is anticipated to be a helpful computational resource for the prediction of pupylation sites. The web server and curated datasets in this study are freely available at http://protein.cau.edu.cn/pbPUP/. PMID:26080082

  13. Computational Identification of Protein Pupylation Sites by Using Profile-Based Composition of k-Spaced Amino Acid Pairs

    PubMed Central

    Lu, Xiaotian; Li, Jinyan; Song, Jiangning; Zhang, Ziding

    2015-01-01

    Prokaryotic proteins are regulated by pupylation, a type of post-translational modification that contributes to cellular function in bacterial organisms. In pupylation process, the prokaryotic ubiquitin-like protein (Pup) tagging is functionally analogous to ubiquitination in order to tag target proteins for proteasomal degradation. To date, several experimental methods have been developed to identify pupylated proteins and their pupylation sites, but these experimental methods are generally laborious and costly. Therefore, computational methods that can accurately predict potential pupylation sites based on protein sequence information are highly desirable. In this paper, a novel predictor termed as pbPUP has been developed for accurate prediction of pupylation sites. In particular, a sophisticated sequence encoding scheme [i.e. the profile-based composition of k-spaced amino acid pairs (pbCKSAAP)] is used to represent the sequence patterns and evolutionary information of the sequence fragments surrounding pupylation sites. Then, a Support Vector Machine (SVM) classifier is trained using the pbCKSAAP encoding scheme. The final pbPUP predictor achieves an AUC value of 0.849 in10-fold cross-validation tests and outperforms other existing predictors on a comprehensive independent test dataset. The proposed method is anticipated to be a helpful computational resource for the prediction of pupylation sites. The web server and curated datasets in this study are freely available at http://protein.cau.edu.cn/pbPUP/. PMID:26080082

  14. Synthesis and Site-Specific Incorporation of Red-Shifted Azobenzene Amino Acids into Proteins.

    PubMed

    John, Alford A; Ramil, Carlo P; Tian, Yulin; Cheng, Gang; Lin, Qing

    2015-12-18

    A series of red-shifted azobenzene amino acids were synthesized in moderate-to-excellent yields via a two-step procedure in which tyrosine derivatives were first oxidized to the corresponding quinonoidal spirolactones followed by ceric ammonium nitrate-catalyzed azo formation with the substituted phenylhydrazines. The resulting azobenzene-alanine derivatives exhibited efficient trans/cis photoswitching upon irradiation with a blue (448 nm) or green (530 nm) LED light. Moreover, nine superfolder green fluorescent protein (sfGFP) mutants carrying the azobenzene-alanine analogues were expressed in E. coli in good yields via amber codon suppression with an orthogonal tRNA/PylRS pair, and one of the mutants showed durable photoswitching with the LED light. PMID:26650435

  15. Tunable translational control using site-specific unnatural amino acid incorporation in Escherichia coli

    PubMed Central

    2015-01-01

    Translation of target gene transcripts in Escherichia coli harboring UAG amber stop codons can be switched on by the amber-codon-specific incorporation of an exogenously supplied unnatural amino acid, 3-iodo-L-tyrosine. Here, we report that this translational switch can control the translational efficiency at any intermediate magnitude by adjustment of the 3-iodo-L-tyrosine concentration in the medium, as a tunable translational controller. The translational efficiency of a target gene reached maximum levels with 10−5 M 3-iodo-L-tyrosine, and intermediate levels were observed with suboptimal concentrations (approximately spanning a 2-log10 concentration range, 10−7–10−5 M). Such intermediate-level expression was also confirmed in individual bacteria. PMID:25945307

  16. Genetic Incorporation of the Unnatural Amino Acid p-Acetyl Phenylalanine into Proteins for Site-Directed Spin Labeling

    PubMed Central

    Evans, Eric G.B.; Millhauser, Glenn L.

    2016-01-01

    Site-directed spin labeling (SDSL) is a powerful tool for the characterization of protein structure and dynamics; however, its application in many systems is hampered by the reliance on unique and benign cysteine substitutions for the site-specific attachment of the spin label. An elegant solution to this problem involves the use of genetically encoded unnatural amino acids (UAAs) containing reactive functional groups that are chemically orthogonal to those of the 20 amino acids found naturally in proteins. These unique functional groups can then be selectively reacted with an appropriately functionalized spin probe. In this chapter, we detail the genetic incorporation of the ketone-bearing amino acid p-acetyl phenylalanine (pAcPhe) into recombinant proteins expressed in E. coli. Incorporation of pAcPhe is followed by chemoselective reaction of the ketone side chain with a hydroxylamine-functionalized nitroxide to afford the spin-labeled side chain “K1,” and we present two protocols for successful K1 labeling of proteins bearing site-specific pAcPhe. We outline the basic requirements for pAcPhe incorporation and labeling, with an emphasis on practical aspects that must be considered by the researcher if high yields of UAA incorporation and efficient labeling reactions are to be achieved. To this end, we highlight recent advances that have led to increased yields of pAcPhe incorporation, and discuss the use of aniline-based catalysts allowing for facile conjugation of the hydroxylamine spin label under mild reaction conditions. To illustrate the utility of K1 labeling in proteins where traditional cysteine-based SDSL methods are problematic, we site-specifically K1 label the cellular prion protein at two positions in the C-terminal domain and determine the interspin distance using double electron–electron resonance EPR. Recent advances in UAA incorporation and ketone-based bioconjugation, in combination with the commercial availability of all requisite

  17. Activation of Aro80 transcription factor by heat-induced aromatic amino acid influx in Saccharomyces cerevisiae.

    PubMed

    Lee, Kyusung; Sung, Changmin; Kim, Byung-Gee; Hahn, Ji-Sook

    2013-08-16

    In Saccharomyces cerevisiae, transcription of ARO9 and ARO10 genes, involved in the catabolism of aromatic amino acids, is activated by Aro80 transcription factor in response to aromatic amino acids. Here we show that the transcription of ARO9 and ARO10 is also induced by heat shock in an Aro80-dependent manner. However, heat shock-related signaling pathways including PKA, PKC, and HOG pathways are not involved in the heat shock activation of Aro80. We elucidate that heat-induced increase in aromatic amino acid influx can lead to the inducer-dependent activation of Aro80 upon heat shock. Known aromatic amino acid permeases play an insignificant role in the heat-induced expression of ARO9 and ARO10, suggesting that an increase in plasma membrane fluidity might be responsible for the influx of aromatic amino acids during heat shock stress. PMID:23860270

  18. The copper active site of CBM33 polysaccharide oxygenases.

    PubMed

    Hemsworth, Glyn R; Taylor, Edward J; Kim, Robbert Q; Gregory, Rebecca C; Lewis, Sally J; Turkenburg, Johan P; Parkin, Alison; Davies, Gideon J; Walton, Paul H

    2013-04-24

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme's three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  19. The Copper Active Site of CBM33 Polysaccharide Oxygenases

    PubMed Central

    2013-01-01

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme’s three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  20. Gold(I) thiolates containing amino acid moieties. Cytotoxicity and structure-activity relationship studies.

    PubMed

    Gutiérrez, Alejandro; Gracia-Fleta, Lucia; Marzo, Isabel; Cativiela, Carlos; Laguna, Antonio; Gimeno, M Concepción

    2014-12-01

    Several gold(I) complexes containing a thiolate ligand functionalised with several amino acid or peptide moieties of the type [Au(SPyCOR)(PPh2R')] (where R = OH, amino acid or dipeptide and R' = Ph or Py) were prepared. These thiolate gold complexes bearing biological molecules possess potential use as antitumor agents. Cytotoxicity assays in different tumour cell lines such as A549 (lung carcinoma), Jurkat (T-cell leukaemia) and MiaPaca2 (pancreatic carcinoma) revealed that the complexes exhibit good antiproliferative activity, with IC50 values in the low micromolar range. Several structural modifications such as in the type of phosphine, number of metal atoms and amino acid (type, stereochemistry and functionalisation) were carried out in order to establish the structure-activity relationship in this family of complexes, which has led to the design of new and more potent cytotoxic complexes. Observations of different cellular events after addition of the complexes indicated the possible mechanism of action or the biological targets of this type of new gold(I) drug. PMID:25302929

  1. Discovery of 2-aryloxy-4-amino-quinazoline derivatives as novel protease-activated receptor 2 (PAR2) antagonists.

    PubMed

    Cho, Nam-Chul; Cha, Ji Hyoun; Kim, Hyojin; Kwak, Jinsook; Kim, Dohee; Seo, Seung-Hwan; Shin, Ji-Sun; Kim, TaeHun; Park, Ki Duk; Lee, Jiyoun; No, Kyoung Tai; Kim, Yun Kyung; Lee, Kyung-Tae; Pae, Ae Nim

    2015-12-15

    Protease-activated receptor 2 (PAR2) is a member of G protein-coupled receptor and its activation initiates diverse inflammatory responses. Recent studies suggest that antagonists of PAR2 may provide a novel therapeutic strategy for inflammatory diseases. In this study, we have developed a series of 2-aryloxy-4-amino-quinazoline derivatives as PAR2 antagonists and examined their effects against LPS-induced inflammatory responses in RAW 264.7 macrophages. Among these derivatives, compound 2f displayed the greatest antagonistic activity with the IC50 value of 2.8μM. Binding modes of the newly identified PAR2 antagonists were analyzed by molecular docking using IFD/MM-GBSA methods in the putative binding site of PAR2 homology model. Moreover, 2f demonstrated significant inhibitory effects on the LPS-activated pro-inflammatory mediators including nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) through the regulation of various intracellular signaling pathways involving nuclear factor-κB (NF-κB), activator protein 1 (AP-1) and the mitogen-activated protein kinases (MAPK). Furthermore, administration of 2f significantly reduced the mortality of LPS-induced sepsis in mice. These results provide useful insights into the development of novel PAR2 antagonists with anti-inflammatory activity in vitro and in vivo. PMID:26631441

  2. Amino acid residues 201-205 in C-terminal acidic tail region plays a crucial role in antibacterial activity of HMGB1

    PubMed Central

    2009-01-01

    Background Antibacterial activity is a novel function of high-mobility group box 1 (HMGB1). However, the functional site for this new effect is presently unknown. Methods and Results In this study, recombinant human HMGB1 A box and B box (rHMGB1 A box, rHMGB1 B box), recombinant human HMGB1 (rHMGB1) and the truncated C-terminal acidic tail mutant (tHMGB1) were prepared by the prokaryotic expression system. The C-terminal acidic tail (C peptide) was synthesized, which was composed of 30 amino acid residues. Antibacterial assays showed that both the full length rHMGB1 and the synthetic C peptide alone could efficiently inhibit bacteria proliferation, but rHMGB1 A box and B box, and tHMGB1 lacking the C-terminal acidic tail had no antibacterial function. These results suggest that C-terminal acidic tail is the key region for the antibacterial activity of HMGB1. Furthermore, we prepared eleven different deleted mutants lacking several amino acid residues in C-terminal acidic tail of HMGB1. Antibacterial assays of these mutants demonstrate that the amino acid residues 201-205 in C-terminal acidic tail region is the core functional site for the antibacterial activity of the molecule. Conclusion In sum, these results define the key region and the crucial site in HMGB1 for its antibacterial function, which is helpful to illustrating the antibacterial mechanisms of HMGB1. PMID:19751520

  3. Potent and selective MAO-B inhibitory activity: amino- versus nitro-3-arylcoumarin derivatives.

    PubMed

    Matos, Maria João; Rodríguez-Enríquez, Fernanda; Vilar, Santiago; Santana, Lourdes; Uriarte, Eugenio; Hripcsak, George; Estrada, Martín; Rodríguez-Franco, María Isabel; Viña, Dolores

    2015-02-01

    In this study we synthesized and evaluated a new series of amino and nitro 3-arylcoumarins as hMAO-A and hMAO-B inhibitors. Compounds 2, 3, 5 and 6 presented a better activity and selectivity profile against the hMAO-B isoform (IC50 values between 2 and 6nM) than selegiline. In general, the amino derivatives (4-6) proved to be more selective against MAO-B than the nitro derivatives (1-3). Additionally, a theoretical study of some physicochemical properties, PAMPA and reversibility assays for the most potent derivative, and molecular docking simulations were carried out to further explain the pharmacological results, and to identify the hypothetical binding mode for the compounds inside the hMAO-B. PMID:25532905

  4. Oncogenic transformation by vrel requires an amino-terminal activation domain

    SciTech Connect

    Kamens, J.; Brent, R. . Dept. of Molecular Biology); Richardson, P.; Gilmore, T. . Dept. of Biology); Mosialos, G. . Dept. of Chemistry)

    1990-06-01

    The mechanism by which the products of the v-{ital rel} oncogene, the corresponding c-{ital rel} proto-oncogene, and the related {ital dorsal} gene of {ital Drosophila melanogaster} exert their effects is not clear. The authors show that the v-{ital rel}, chicken c-{ital rel}, and {ital dorsal} proteins activated gene expression when fused to LexA sequences and bound to DNA upstream of target genes in {ital Saccharomyces cerevisiae}. They have defined two distinct activation regions in the c-{ital rel} protein. Region I, located in the amino-terminal half of {ital rel} and {ital dorsal} proteins, contains no stretches of glutamines, prolines, or acidic amino acids and therefore may be a novel activation domain. Lesions in the v-{ital rel} protein that diminished or abolished oncogenic transformation of avian spleen cells correspondingly affected transcription activation by region I. Region II, located in the carboxy terminus of the c-{ital rel} protein, is highly acidic. Region II is not present in the v-{ital rel} protein or in a transforming mutant derivative of the c-{ital rel} protein. The authors' results show that the oncogenicity of Rel proteins requires activation region I and suggest that the biological function of {ital rel} and {ital dorsal} proteins depends on transcription activation by this region.

  5. A subset of enteroendocrine cells is activated by amino acids in the Drosophila midgut.

    PubMed

    Park, Jeong-Ho; Chen, Ji; Jang, Sooin; Ahn, Tae Jung; Kang, KyeongJin; Choi, Min Sung; Kwon, Jae Young

    2016-02-01

    The intestine is involved in digestion and absorption, as well as the regulation of metabolism upon sensation of the internal intestinal environment. Enteroendocrine cells are thought to mediate these internal intestinal chemosensory functions. Using the CaLexA (calcium-dependent nuclear import of LexA) method, we examined the enteroendocrine cell populations that are activated when flies are subjected to various dietary conditions such as starvation, sugar, high fat, protein, or pathogen exposure. We find that a specific subpopulation of enteroendocrine cells in the posterior midgut which express Dh31 and tachykinin are activated by the presence of proteins and amino acids. PMID:26801353

  6. The contribution of SNAT1 to system A amino acid transporter activity in human placental trophoblast

    SciTech Connect

    Desforges, M.; Greenwood, S.L.; Glazier, J.D.; Westwood, M.; Sibley, C.P.

    2010-07-16

    Research highlights: {yields} mRNA levels for SNAT1 are higher than other system A subtype mRNAs in primary human cytotrophoblast. {yields} SNAT1 knockdown in cytotrophoblast cells significantly reduces system A activity. {yields} SNAT1 is a key contributor to system A-mediated amino acid transport in human placenta. -- Abstract: System A-mediated amino acid transport across the placenta is important for the supply of neutral amino acids needed for fetal growth. All three system A subtypes (SNAT1, 2, and 4) are expressed in human placental trophoblast suggesting there is an important biological role for each. Placental system A activity increases as pregnancy progresses, coinciding with increased fetal nutrient demands. We have previously shown SNAT4-mediated system A activity is higher in first trimester than at term, suggesting that SNAT1 and/or SNAT2 are responsible for the increased system A activity later in gestation. However, the relative contribution of each subtype to transporter activity in trophoblast at term has yet to be evaluated. The purpose of this study was to identify the predominant subtype of system A in cytotrophoblast cells isolated from term placenta, maintained in culture for 66 h, by: (1) measuring mRNA expression of the three subtypes and determining the Michaelis-Menten constants for uptake of the system A-specific substrate, {sup 14}C-MeAIB, (2) investigating the contribution of SNAT1 to total system A activity using siRNA. Results: mRNA expression was highest for the SNAT1 subtype of system A. Kinetic analysis of {sup 14}C-MeAIB uptake revealed two distinct transport systems; system 1: K{sub m} = 0.38 {+-} 0.12 mM, V{sub max} = 27.8 {+-} 9.0 pmol/mg protein/20 min, which resembles that reported for SNAT1 and SNAT2 in other cell types, and system 2: K{sub m} = 45.4 {+-} 25.0 mM, V{sub max} = 1190 {+-} 291 pmol/mg protein/20 min, which potentially represents SNAT4. Successful knockdown of SNAT1 mRNA using target-specific si

  7. New stereoselective titanium reductive amination synthesis of 3-amino and polyaminosterol derivatives possessing antimicrobial activities.

    PubMed

    Salmi, Chanaz; Loncle, Celine; Vidal, Nicolas; Letourneux, Yves; Brunel, Jean Michel

    2008-03-01

    A series of 3-amino and polyaminosterol analogues of squalamine and trodusquemine were synthesized involving a new stereoselective titanium reductive amination reaction in high chemical yields of up to 95% in numerous cases. These derivatives were evaluated for their in vitro antimicrobial properties against human pathogens. Activity was highly dependent on the different compounds' structures involved and best results have been obtained with aminosterol derivatives 4b, 4e and 6i exhibiting activities against yeasts, Gram positive and Gram negative bacteria at average concentrations of 6.25-12.5 microg/mL. PMID:17566609

  8. Identification of the active-site serine in human lecithin: cholesterol acyltransferase

    SciTech Connect

    Farooqui, J.; Wohl, R.C.; Kezdy, F.J.; Scanu, A.M.

    1987-05-01

    Lecithin:cholesterol acyltransferase (LCAT) from human plasma reacts stoichiometrically with diisopropylphosphorofluoridate (DFP) resulting in the complete loss of transacylase activity. Purified LCAT was covalently labeled with (TH) DFP and the labeled protein was reduced and carboxymethylated. Cyanogen bromide cleavage followed by gel permeation chromatography yielded a peptide of 4-5 KDa (LCAT CNBr-III) containing most of the radioactive label. Preliminary studies comparing the amino acid composition of the LCAT-CNBr-III with the sequence of LCAT indicate that this peptide corresponds to fragment 168-220. Automated Edman degradation of the radioactive peptide recovered a radioactive PTC-amino acid at cycle 14. Of all predicted CNBr fragments only peptide 168-220 contained a serine at residue 14 from the amino terminus of the peptide. The authors conclude that serine 181 is the active site serine of LCAT.

  9. Corrosion Research And Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  10. Corrosion Research and Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2002-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  11. Prediction of posttranslational modification sites from amino acid sequences with kernel methods.

    PubMed

    Xu, Yan; Wang, Xiaobo; Wang, Yongcui; Tian, Yingjie; Shao, Xiaojian; Wu, Ling-Yun; Deng, Naiyang

    2014-03-01

    Post-translational modification (PTM) is the chemical modification of a protein after its translation and one of the later steps in protein biosynthesis for many proteins. It plays an important role which modifies the end product of gene expression and contributes to biological processes and diseased conditions. However, the experimental methods for identifying PTM sites are both costly and time-consuming. Hence computational methods are highly desired. In this work, a novel encoding method PSPM (position-specific propensity matrices) is developed. Then a support vector machine (SVM) with the kernel matrix computed by PSPM is applied to predict the PTM sites. The experimental results indicate that the performance of new method is better or comparable with the existing methods. Therefore, the new method is a useful computational resource for the identification of PTM sites. A unified standalone software PTMPred is developed. It can be used to predict all types of PTM sites if the user provides the training datasets. The software can be freely downloaded from http://www.aporc.org/doc/wiki/PTMPred. PMID:24291233

  12. Yeast allosteric chorismate mutase is locked in the activated state by a single amino acid substitution

    SciTech Connect

    Schmidheini, T.; Moesch, H.U.; Braus, G. ); Evans, J.N.S. )

    1990-04-17

    Chorismate mutase, a branch-point enzyme in the aromatic amino acid pathway of Saccharomyces cerevisiae, and also a mutant chorismate mutase with a single amino acid substitution in the C-terminal part of the protein have been purified approximately 20-fold and 64-fold from overproducing strains, respectively. The wild-type enzyme is activated by tryptophan and subject to feedback inhibition by tyrosine, whereas the mutant enzyme does not respond to activation by tryptophan nor inhibition by tyrosine. Both enzymes are dimers consisting of two identical subunits of M{sub r} 30,000, each one capable of binding one substrate and one activator molecule. Each subunit of the wild-type enzyme also binds one inhibitor molecule, whereas the mutant enzyme lost this ability. The enzyme reaction was observed by {sup 1}H NMR and shows a direct and irreversible conversion of chorismate to prephenate without the accumulation of any enzyme-free intermediates. The kinetic data of the wild-type chorismate mutase show positive cooperativity toward the substrate with a Hill coefficient of 1.71 and a (S){sub 0.5} value of 4.0 mM. In the presence of the activator tryptophan, the cooperativity is lost. The enzyme has an (S){sub 0.5} value of 1.2 mM in the presence of 10 {mu}M tryptophan and an increased (S){sub 0.5} value of 8.6 mM in the presence of 300 {mu}M tyrosine. In the mutant enzyme, a loss of the cooperativity was observed, and (S){sub 0.5} was reduced to 1.0 mM. This enzyme is therefore locked in the activated state by a single amino acid substitution.

  13. Site-Specifically Labeled Immunoconjugates for Molecular Imaging—Part 2: Peptide Tags and Unnatural Amino Acids

    PubMed Central

    Adumeau, Pierre; Sharma, Sai Kiran; Brent, Colleen; Zeglis, Brian M.

    2016-01-01

    Molecular imaging using radioisotope- or fluorophore-labeled antibodies is increasingly becoming a critical component of modern precision medicine. Yet despite this promise, the vast majority of these immunoconjugates are synthesized via the random coupling of amine-reactive bifunctional probes to lysines within the antibody, a process that can result in heterogeneous and poorly defined constructs with suboptimal pharmacological properties. In an effort to circumvent these issues, the last 5 years have played witness to a great deal of research focused on the creation of effective strategies for the site-specific attachment of payloads to antibodies. These chemoselective modification methods yield immunoconjugates that are more homogenous and better defined than constructs created using traditional synthetic approaches. Moreover, site-specifically labeled immunoconjugates have also been shown to exhibit superior in vivo behavior compared to their randomly modified cousins. The over-arching goal of this two-part review is to provide a broad yet detailed account of the various site-specific bioconjugation approaches that have been used to create immunoconjugates for positron emission tomography (PET), single photon emission computed tomography (SPECT), and fluorescence imaging. In Part 1, we covered site-specific bioconjugation techniques based on the modification of cysteine residues and the chemoenzymatic manipulation of glycans. In Part 2, we will detail two families of bioconjugation approaches that leverage biochemical tools to achieve site-specificity. First, we will discuss modification methods that employ peptide tags either as sites for enzyme-catalyzed ligations or as radiometal coordination architectures. And second, we will examine bioconjugation strategies predicated on the incorporation of unnatural or non-canonical amino acids into antibodies via genetic engineering. Finally, we will compare the advantages and disadvantages of the modification

  14. Site-Specifically Labeled Immunoconjugates for Molecular Imaging--Part 2: Peptide Tags and Unnatural Amino Acids.

    PubMed

    Adumeau, Pierre; Sharma, Sai Kiran; Brent, Colleen; Zeglis, Brian M

    2016-04-01

    Molecular imaging using radioisotope- or fluorophore-labeled antibodies is increasingly becoming a critical component of modern precision medicine. Yet despite this promise, the vast majority of these immunoconjugates are synthesized via the random coupling of amine-reactive bifunctional probes to lysines within the antibody, a process that can result in heterogeneous and poorly defined constructs with suboptimal pharmacological properties. In an effort to circumvent these issues, the last 5 years have played witness to a great deal of research focused on the creation of effective strategies for the site-specific attachment of payloads to antibodies. These chemoselective modification methods yield immunoconjugates that are more homogenous and better defined than constructs created using traditional synthetic approaches. Moreover, site-specifically labeled immunoconjugates have also been shown to exhibit superior in vivo behavior compared to their randomly modified cousins. The over-arching goal of this two-part review is to provide a broad yet detailed account of the various site-specific bioconjugation approaches that have been used to create immunoconjugates for positron emission tomography (PET), single photon emission computed tomography (SPECT), and fluorescence imaging. In Part 1, we covered site-specific bioconjugation techniques based on the modification of cysteine residues and the chemoenzymatic manipulation of glycans. In Part 2, we will detail two families of bioconjugation approaches that leverage biochemical tools to achieve site-specificity. First, we will discuss modification methods that employ peptide tags either as sites for enzyme-catalyzed ligations or as radiometal coordination architectures. And second, we will examine bioconjugation strategies predicated on the incorporation of unnatural or non-canonical amino acids into antibodies via genetic engineering. Finally, we will compare the advantages and disadvantages of the modification

  15. Effects of Activating Mutations on EGFR Cellular Protein Turnover and Amino Acid Recycling Determined Using SILAC Mass Spectrometry

    PubMed Central

    Greig, Michael J.; Niessen, Sherry; Weinrich, Scott L.; Feng, Jun Li; Shi, Manli; Johnson, Ted O.

    2015-01-01

    Rapid mutations of proteins that are targeted in cancer therapy often lead to drug resistance. Often, the mutation directly affects a drug's binding site, effectively blocking binding of the drug, but these mutations can have other effects such as changing the protein turnover half-life. Utilizing SILAC MS, we measured the cellular turnover rates of an important non-small cell lung cancer target, epidermal growth factor receptor (EGFR). Wild-type (WT) EGFR, EGFR with a single activating mutant (Del 746–750 or L858R), and the drug-resistant double mutant (L858R/T790M) EGFR were analyzed. In non-small cell lung cancer cell lines, EGFR turnover rates ranged from 28 hours in A431 cells (WT) to 7.5 hours in the PC-9 cells (Del 746–750 mutant). The measurement of EGFR turnover rate in PC-9 cells dosed with irreversible inhibitors has additional complexity due to inhibitor effects on cell viability and results were reported as a range. Finally, essential amino acid recycling (K and R) was measured in different cell lines. The recycling was different in each cell line, but the overall inclusion of the effect of amino acid recycling on calculating EGFR turnover rates resulted in a 10–20% reduction in rates. PMID:26689952

  16. Activity of D-amino acid oxidase is widespread in the human central nervous system

    PubMed Central

    Sasabe, Jumpei; Suzuki, Masataka; Imanishi, Nobuaki; Aiso, Sadakazu

    2014-01-01

    It has been proposed that D-amino acid oxidase (DAO) plays an essential role in degrading D-serine, an endogenous coagonist of N-methyl-D-aspartate (NMDA) glutamate receptors. DAO shows genetic association with amyotrophic lateral sclerosis (ALS) and schizophrenia, in whose pathophysiology aberrant metabolism of D-serine is implicated. Although the pathology of both essentially involves the forebrain, in rodents, enzymatic activity of DAO is hindbrain-shifted and absent in the region. Here, we show activity-based distribution of DAO in the central nervous system (CNS) of humans compared with that of mice. DAO activity in humans was generally higher than that in mice. In the human forebrain, DAO activity was distributed in the subcortical white matter and the posterior limb of internal capsule, while it was almost undetectable in those areas in mice. In the lower brain centers, DAO activity was detected in the gray and white matters in a coordinated fashion in both humans and mice. In humans, DAO activity was prominent along the corticospinal tract, rubrospinal tract, nigrostriatal system, ponto-/olivo-cerebellar fibers, and in the anterolateral system. In contrast, in mice, the reticulospinal tract and ponto-/olivo-cerebellar fibers were the major pathways showing strong DAO activity. In the human corticospinal tract, activity-based staining of DAO did not merge with a motoneuronal marker, but colocalized mostly with excitatory amino acid transporter 2 and in part with GFAP, suggesting that DAO activity-positive cells are astrocytes seen mainly in the motor pathway. These findings establish the distribution of DAO activity in cerebral white matter and the motor system in humans, providing evidence to support the involvement of DAO in schizophrenia and ALS. Our results raise further questions about the regulation of D-serine in DAO-rich regions as well as the physiological/pathological roles of DAO in white matter astrocytes. PMID:24959138

  17. Leucyl-tRNA synthetase activates Vps34 in amino acid-sensing mTORC1 signaling

    PubMed Central

    Yoon, Mee-Sup; Son, Kook; Arauz, Edwin; Han, Jung Min; Kim, Sunghoon; Chen, Jie

    2016-01-01

    SUMMARY Amino acid availability activates signaling by the mammalian target of rapamycin (mTOR) complex 1, mTORC1, a master regulator of cell growth. The class III PI-3-kinase Vps34 mediates amino acid signaling to mTORC1 by regulating lysosomal translocation and activation of the phospholipase PLD1. Here we identify leucyl-tRNA synthetase (LRS) as a leucine sensor for the activation of Vps34-PLD1 upstream of mTORC1. LRS is necessary for amino acid-induced Vps34 activation, cellular PI(3)P level increase, PLD1 activation, and PLD1 lysosomal translocation. Leucine binding but not tRNA charging activity of LRS is required for this regulation. Moreover, LRS physically interacts with Vps34 in amino acid-stimulatable non-autophagic complexes. Finally, purified LRS protein activates Vps34 kinase in vitro in a leucine-dependent manner. Collectively, our findings provide compelling evidence for a direct role of LRS in amino acid activation of Vps34 via a non-canonical mechanism, and fill a gap in the amino acid-sensing mTORC1 signaling network. PMID:27477288

  18. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections

    PubMed Central

    Mingo, Janire; Erramuzpe, Asier; Luna, Sandra; Aurtenetxe, Olaia; Amo, Laura; Diez, Ibai; Schepens, Jan T. G.; Hendriks, Wiljan J. A. J.; Cortés, Jesús M.; Pulido, Rafael

    2016-01-01

    Site-directed mutagenesis (SDM) is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates comprehensive collections of amino acid substitution variants, including scanning- and single site-multiple mutations. The approach combines unified mutagenic primer design with the mixing of multiple distinct primer pairs and/or plasmid templates to increase the yield of a single inverse-PCR mutagenesis reaction. Also, a user-friendly program for automatic design of standardized primers for Ala-scanning mutagenesis is made available. Experimental results were compared with a modeling approach together with stochastic simulation data. For single site-multiple mutagenesis purposes and for simultaneous mutagenesis in different plasmid backgrounds, combination of primer sets and/or plasmid templates in a single reaction tube yielded the distinct mutations in a stochastic fashion. For scanning mutagenesis, we found that a combination of overlapping primer sets in a single PCR reaction allowed the yield of different individual mutations, although this yield did not necessarily follow a stochastic trend. Double mutants were generated when the overlap of primer pairs was below 60%. Our results illustrate that one-tube-only SDM effectively reduces the number of reactions required in large-scale mutagenesis strategies, facilitating the generation of comprehensive collections of protein variants suitable for functional analysis. PMID:27548698

  19. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections.

    PubMed

    Mingo, Janire; Erramuzpe, Asier; Luna, Sandra; Aurtenetxe, Olaia; Amo, Laura; Diez, Ibai; Schepens, Jan T G; Hendriks, Wiljan J A J; Cortés, Jesús M; Pulido, Rafael

    2016-01-01

    Site-directed mutagenesis (SDM) is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates comprehensive collections of amino acid substitution variants, including scanning- and single site-multiple mutations. The approach combines unified mutagenic primer design with the mixing of multiple distinct primer pairs and/or plasmid templates to increase the yield of a single inverse-PCR mutagenesis reaction. Also, a user-friendly program for automatic design of standardized primers for Ala-scanning mutagenesis is made available. Experimental results were compared with a modeling approach together with stochastic simulation data. For single site-multiple mutagenesis purposes and for simultaneous mutagenesis in different plasmid backgrounds, combination of primer sets and/or plasmid templates in a single reaction tube yielded the distinct mutations in a stochastic fashion. For scanning mutagenesis, we found that a combination of overlapping primer sets in a single PCR reaction allowed the yield of different individual mutations, although this yield did not necessarily follow a stochastic trend. Double mutants were generated when the overlap of primer pairs was below 60%. Our results illustrate that one-tube-only SDM effectively reduces the number of reactions required in large-scale mutagenesis strategies, facilitating the generation of comprehensive collections of protein variants suitable for functional analysis. PMID:27548698

  20. NMR structure of the amino-terminal domain from the Tfb1 subunit of TFIIH and characterization of its phosphoinositide and VP16 binding sites.

    PubMed

    Di Lello, Paola; Nguyen, Bao D; Jones, Tamara N; Potempa, Krzysztof; Kobor, Michael S; Legault, Pascale; Omichinski, James G

    2005-05-31

    General transcription factor IIH (TFIIH) is recruited to the preinitiation complex (PIC) through direct interactions between its p62 (Tfb1) subunit and the carboxyl-terminal domain of TFIIEalpha. TFIIH has also been shown to interact with a number of transcriptional activator proteins through interactions with the same p62 (Tfb1) subunit. We have determined the NMR solution structure of the amino-terminal domain from the Tfb1 subunit of yeast TFIIH (Tfb1(1-115)). Like the corresponding domain from the human p62 protein, Tfb1(1-115) contains a PH domain fold despite a low level of sequence identity between the two functionally homologous proteins. In addition, we have performed in vitro binding studies that demonstrate that the PH domains of Tfb1 and p62 specifically bind to monophosphorylated inositides [PtdIns(5)P and PtdIns(3)P]. NMR chemical shift mapping demonstrated that the PtdIns(5)P binding site on Tfb1 (p62) is located in the basic pocket formed by beta-strands beta5-beta7 of the PH domain fold. Interestingly, the structural composition of the PtdIns(5)P binding site is different from the composition of the binding sites for phosphoinositides on prototypic PH domains. We have also determined that the PH domains from Tfb1 and p62 are sufficient for binding to the activation domain of VP16. NMR chemical shift mapping demonstrated that the VP16 binding site within the PH domain of Tfb1 (p62) overlaps with the PtdIns(5)P binding site on Tfb1 (p62). These results provide new information about the recognition of phosphoinositides by PH domains, and point to a potential role for phosphoinositides in VP16 regulation. PMID:15909982

  1. Chemical modification studies on arginine kinase: essential cysteine and arginine residues at the active site.

    PubMed

    Zhu, Wen-Jing; Li, Miao; Wang, Xiao-Yun

    2007-12-01

    Chemical modification was used to elucidate the essential amino acids in the catalytic activity of arginine kinase (AK) from Migratoria manilensis. Among six cysteine (Cys) residues only one Cys residue was determined to be essential in the active site by Tsou's method. Furthermore, the AK modified by DTNB can be fully reactivated by dithiothreitol (DTT) in a monophasic kinetic course. At the same time, this reactivation can be slowed down in the presence of ATP, suggesting that the essential Cys is located near the ATP binding site. The ionizing groups at the AK active site were studied and the standard dissociation enthalpy (DeltaH degrees ) was 12.38kcal/mol, showing that the dissociation group may be the guanidino of arginine (Arg). Using the specific chemical modifier phenylglyoxal (PG) demonstrated that only one Arg, located near the ATP binding site, is essential for the activity of AK. PMID:17765964

  2. Synthesis and molecular modeling of antimicrobial active fluoroquinolone-pyrazine conjugates with amino acid linkers.

    PubMed

    Panda, Siva S; Detistov, Oleksandr S; Girgis, Adel S; Mohapatra, Prabhu P; Samir, Ahmed; Katritzky, Alan R

    2016-05-01

    Novel fluoroquinolone-pyrazine conjugates 7a-h with amino acid linkers were synthesized in good yields utilizing benzotriazole chemistry. Antimicrobial bioassay showed that the synthesized bis-conjugates have antimicrobial properties comparable to the parent drugs. Compound 7h showed superior antibacterial activity against Staphylococcus aureus and Streptococcus pyogenes (MIC=74.6μM and 149.3μM, respectively). This matched well with the estimated values obtained from 3D-pharmacophore and 2D-QSAR studies (MIC=67μM and 92.9μM, respectively). PMID:27025339

  3. Antimicrobial activities of 3-amino- and polyaminosterol analogues of squalamine and trodusquemine.

    PubMed

    Salmi, Chanaz; Loncle, Celine; Vidal, Nicolas; Laget, Michéle; Letourneux, Yves; Brunel, Jean Michel

    2008-12-01

    A series of 3-amino- and polyaminosterol analogues of squalamine and trodusquemine were synthesized and evaluated for their in vitro antimicrobial properties against human pathogens. The activity was highly dependent on the structure of the different compounds involved and the best results were obtained with aminosterol derivatives 4b, 4e, 8b, 8e and 8n exhibiting minimum inhibitory concentrations (MICs) against yeasts, Gram positive and Gram negative bacteria at average concentrations of 3.12-12.5 microM. PMID:19005944

  4. Hybridoma antibodies to the lipid-binding site(s) in the amino-terminal region of fibronectin inhibits binding of streptococcal lipoteichoic acid.

    PubMed

    Stanislawski, L; Courtney, H S; Simpson, W A; Hasty, D L; Beachey, E H; Robert, L; Ofek, I

    1987-08-01

    In this report, we present evidence to suggest that streptococci and lipoteichoic acid (LTA) interact with a fatty acid binding site located near the NH2-terminus of fibronectin. The evidence is based on the following observations. Antibodies directed against a synthetic peptide (residues 1-30 of the amino-terminus of fibronectin) reacted with the two thermolysin-generated peptides (24 and 28 kilodaltons [kDa]) that were adsorbed by and eluted from streptococci. The adsorption of the 24- and 28-kDa peptides to streptococci was inhibited by LTA. The two monoclonal antibodies that inhibited the binding of LTA to fibronectin reacted only with the 24- and 28-kDa fragments of fibronectin. Conversely, LTA, as well as lauric acid and oleic acid, blocked the binding of the same monoclonal antibodies to fibronectin. LTA had no effect on the binding of hybridoma antibodies directed against the collagen or cell-binding domain. PMID:3298457

  5. Microcrystalline Zinc Coordination Polymers as Single-site Heterogeneous Catalysts for the Selective Synthesis of Mono-oxazolines from Amino Alcohol and Dinitriles.

    PubMed

    Wang, Junning; Huang, Chao; Gao, Kuan; Wang, Xiaolu; Liu, Mengjia; Ma, Haoran; Wu, Jie; Hou, Hongwei

    2016-06-21

    In our effort to develop coordination polymers (CPs)-based single-site catalysts for the selective synthesis of mono-oxazolines, two Zn-based CPs, [{Zn6 (idbt)4 (phen)4 } ⋅3 H2 O]n  (1) and [{Zn3 (idbt)2 (H2 O)4 }⋅2 H2 O]n  (2) (H3 idbt= 5,5'-(1H-imidazole-4,5-diyl)-bis-(2H-tetrazole), phen=1,10-phenanthroline) have been synthesized. They exhibit two-dimensional structure and contain isolated and accessible catalytically active sites, mimicking the site isolation of many catalytic enzymes. Micro CPs 1 and 2 are obtained by using surfactant-mediated hydrothermal methods, and an investigation is conducted to explore how different surfactants affect their morphologies and particle sizes. Furthermore, micro 1 and 2 have shown to be effective heterogeneous catalysts for the reaction of amino alcohols and aromatic dinitriles, and exerted a significant influence on the selectivity of the catalytic reactions, yielding mono-oxazolines as the major reaction product. PMID:27136746

  6. Quantitative structure-activity relationship study of antioxidative peptide by using different sets of amino acids descriptors

    NASA Astrophysics Data System (ADS)

    Li, Yao-Wang; Li, Bo; He, Jiguo; Qian, Ping

    2011-07-01

    A database consisting of 214 tripeptides which contain either His or Tyr residue was applied to study quantitative structure-activity relationships (QSAR) of antioxidative tripeptides. Partial Least-Squares Regression analysis (PLSR) was conducted using parameters individually of each amino acid descriptor, including Divided Physico-chemical Property Scores (DPPS), Hydrophobic, Electronic, Steric, and Hydrogen (HESH), Vectors of Hydrophobic, Steric, and Electronic properties (VHSE), Molecular Surface-Weighted Holistic Invariant Molecular (MS-WHIM), isotropic surface area-electronic charge index (ISA-ECI) and Z-scale, to describe antioxidative tripeptides as X-variables and antioxidant activities measured with ferric thiocyanate methods were as Y-variable. After elimination of outliers by Hotelling's T 2 method and residual analysis, six significant models were obtained describing the entire data set. According to cumulative squared multiple correlation coefficients ( R2), cumulative cross-validation coefficients ( Q2) and relative standard deviation for calibration set (RSD c), the qualities of models using DPPS, HESH, ISA-ECI, and VHSE descriptors are better ( R2 > 0.6, Q2 > 0.5, RSD c < 0.39) than that of models using MS-WHIM and Z-scale descriptors ( R2 < 0.6, Q2 < 0.5, RSD c > 0.44). Furthermore, the predictive ability of models using DPPS descriptor is best among the six descriptors systems (cumulative multiple correlation coefficient for predict set ( Rext2) > 0.7). It was concluded that the DPPS is better to describe the amino acid of antioxidative tripeptides. The results of DPPS descriptor reveal that the importance of the center amino acid and the N-terminal amino acid are far more than the importance of the C-terminal amino acid for antioxidative tripeptides. The hydrophobic (positively to activity) and electronic (negatively to activity) properties of the N-terminal amino acid are suggested to play the most important significance to activity, followed

  7. From a marine neuropeptide to antimicrobial pseudopeptides containing aza-β(3)-amino acids: structure and activity

    PubMed Central

    Laurencin, Mathieu; Legrand, Baptiste; Duval, Emilie; Henry, Joël; Baudy-Floc'H, Michèle; Zatylny-Gaudin, Céline; Bondon, Arnaud

    2012-01-01

    Incorporation of aza-β3-amino acids into endogenous neuropeptide from mollusks (ALSGDAFLRF-NH2) with weak antimicrobial activities allows us to design new AMPs sequences. We find that, depending on the nature of the substitution, these could result either in inactive pseudopeptides or in a drastic enhancement of the antimicrobial activity without high cytotoxicity resulted. Structural studies perform by NMR and circular dichroism on the pseudopeptides show the impact of aza-β3-amino acids on the peptide structures. We obtain the first three-dimensional structures of pseudopeptides containing aza-β3-amino acids in aqueous micellar SDS and demonstrate that hydrazino turn can be formed in aqueous solution. Overall, these results demonstrate the ability to modulate AMPs activities through structural modifications induced by the nature and the position of these amino acid analogs in the peptide sequences. PMID:22320306

  8. Light-Activated Amino Acid Transport Systems in Halobacterium halobium Envelope Vesicles: Role of Chemical and Electrical Gradients

    NASA Technical Reports Server (NTRS)

    MacDonald, Russell E.; Greene, Richard V.; Lanyi, Janos K.

    1977-01-01

    The accumulation of 20 commonly occurring L-amino acids by cell envelope vesicles of Halobacterium halobium, in response to light-induced membrane potential and an artificially created sodium gradient, has been studied. Nineteen of these amino acids are actively accumulated under either or both of these conditions. Glutamate is unique in that its uptake is driven only by a chemical gradient for sodium. Amino acid concentrations at half-maximal uptake rates (Km) and maximal transport rates (V(sub max) have been determined for the uptake of all 19 amino acids. The transport systems have been partially characterized with respect to groups of amino acids transported by common carriers, cation effects, and relative response to the electrical and chemical components of the sodium gradient, the driving forces for uptake. The data presented clearly show that the carrier systems, which are responsible for uptake of individual amino acids, are as variable in their properties as those found in other organisms, i. e., some are highly specific for individual amino acids, some transport several amino acids competitively, some are activated by a chemical gradient of sodium only, and some function also in the complete absence of such a gradient. For all amino acids, Na(+) and K(+) are both required for maximal rate of uptake. The carriers for L-leucine and L-histidine are symmetrical in that these amino acids are transported in both directions across the vesicle membrane. It is suggested that coupling of substrate transport to metabolic energy via transient ionic gradients may be a general phenomenon in procaryotes.

  9. Characterization of the activity of tyrosinase on betaxanthins derived from (R)-amino acids.

    PubMed

    Gandía-Herrero, Fernando; Escribano, Josefa; García-Carmona, Francisco

    2005-11-16

    The activity of tyrosinase (EC 1.14.18.1) on selected (R)-betaxanthins is characterized in depth, demonstrating that the activity of the enzyme is not restricted to betaxanthins derived from (S)-amino acids. Conversion of (R)-tyrosine-betaxanthin [(R)-portulacaxanthin II] to the pigment (R)-dopaxanthin and its further oxidation to a series of products is described. Compound identity was studied by high performance liquid chromatography and electrospray ionization-mass spectrometry. The reaction rate on the (R)-isomer of dopaxanthin is 1.9-fold lower than that obtained for the (S)-isomer in previous studies. Tyrosinase showed stereospecificity in its affinity toward betaxanthins. The characterization of the activity of tyrosinase on (R)-betaxanthins reinforces the role of the enzyme in the biosynthetic scheme of betalains. PMID:16277424

  10. Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis.

    PubMed

    Marx, Vanessa M; Sullivan, Alexandra H; Melaimi, Mohand; Virgil, Scott C; Keitz, Benjamin K; Weinberger, David S; Bertrand, Guy; Grubbs, Robert H

    2015-02-01

    An expanded family of ruthenium-based metathesis catalysts bearing cyclic alkyl amino carbene (CAAC) ligands was prepared. These catalysts exhibited exceptional activity in the ethenolysis of the seed-oil derivative methyl oleate. In many cases, catalyst turnover numbers (TONs) of more than 100,000 were achieved, at a catalyst loading of only 3 ppm. Remarkably, the most active catalyst system was able to achieve a TON of 340,000, at a catalyst loading of only 1 ppm. This is the first time a series of metathesis catalysts has exhibited such high performance in cross-metathesis reactions employing ethylene gas, with activities sufficient to render ethenolysis applicable to the industrial-scale production of linear α-olefins (LAOs) and other terminal-olefin products. PMID:25522160

  11. Effects of amino acid derivatives on physical, mental, and physiological activities.

    PubMed

    Luckose, Feby; Pandey, Mohan Chandra; Radhakrishna, Kolpe

    2015-01-01

    Nutritional ergogenic aids have been in use for a long time to enhance exercise and sports performance. Dietary components that exhibit ergogenic activity are numerous and their consumption is common and popular among athletes. They often come under scrutiny by legal authorities for their claimed benefits and safety concerns. Amino acid derivatives are propagated as being effective aids to enhance physical and mental performance in many ways, even though studies have pointed out that individuals who are deficient are more likely to benefit from dietary supplementation of amino acid derivatives than normal humans. In this review, some of the most common and widely used amino acids derivatives in sports and athletics namely creatine, tyrosine, carnitine, HMB, and taurine have been discussed for their effects on exercise performance, mental activity as well as body strength and composition. Creatine, carnitine, HMB, and taurine are reported to delay the onset of fatigue, improve exercise performance, and body strength. HMB helps in increasing fat-free mass and reduce exercise induced muscle injury. Taurine has been found to reduce oxidative stress during exercise and also act as an antihypertensive agent. Although, studies have not been able to find any favorable effect of tyrosine administration on exercise performance, it has been proved to be very effective in fighting stress, improving mood and cognitive performance particularly in sleep-deprived subjects. While available data from published studies and findings are equivocal about the efficacy of creatine, tyrosine, and HMB, more comprehensive researches on carnitine and taurine are necessary to provide evidence for the theoretical basis of their ergogenic role in nutritional modification and supplementation. PMID:24279396

  12. Anti-coccidial activity of 2-picoline, 6-amino-4-nitro-, 1-oxide.

    PubMed

    Folz, S D; Lee, B L; Nowakowski, L H; Rector, D L; Folz, B M

    1989-10-01

    An investigational drug (2-picoline, 6-amino-4-nitro-, 1-oxide) was evaluated to characterize the anti-coccidial spectrum of the compound. Two concentrations of the drug (125 and 250 ppm) were evaluated for bioactivity; weight gain, survival, dropping, and lesion scores were the response variables utilized to ascertain activity. The activities of the picoline derivative were compared with monensin, maduramicin, and a narasin/nicarbazin (1:1) combination. The investigational drug had significant activity against Eimeria tenella and Eimeria necatrix, and the 250-ppm level was significantly more active than 125 ppm. At 250 ppm, the E. tenella activity of the picoline derivative was comparable to both monensin (120 ppm) and the 50-ppm narasin/nicarbazin combination, significantly less effective than maduramicin (6 ppm), and significantly more efficacious than 30 ppm narasin/nicarbazin. At the same level (250 ppm), the picoline derivative had significantly less E. necatrix activity than monensin (120 ppm), maduramicin (6 ppm), and narasin/nicarbazin (50 ppm), and significantly greater activity than 30 ppm narasin/nicarbazin. At best, only extremely weak Eimeria acervulina, Eimeria brunetti, and Eimeria maxima activities were noted with the investigational drug; higher concentrations of the picoline derivative may achieve greater anti-coccidial activity against these species. The efficacy of narasin/nicarbazin compared favorably with monensin and maduramicin; the 50-ppm level of the combination appeared significantly more efficacious than 30-ppm. PMID:2795373

  13. Amino Acid Region 1000–1008 of Factor V Is a Dynamic Regulator for the Emergence of Procoagulant Activity*

    PubMed Central

    Wiencek, Joesph R.; Na, Mahesheema; Hirbawi, Jamila; Kalafatis, Michael

    2013-01-01

    Single chain factor V (fV) circulates as an Mr 330,000 quiescent pro-cofactor. Removal of the B domain and generation of factor Va (fVa) are vital for procoagulant activity. We investigated the role of the basic amino acid region 1000–1008 within the B domain of fV by constructing a recombinant mutant fV molecule with all activation cleavage sites (Arg709/Arg1018/Arg1545) mutated to glutamine (fVQ3), a mutant fV molecule with region 1000–1008 deleted (fVΔB9), and a mutant fV molecule containing the same deletion with activation cleavage sites changed to glutamine (fVΔB9/Q3). The recombinant molecules along with wild type fV (fVWT) were transiently expressed in COS-7L cells, purified, and assessed for their ability to bind factor Xa (fXa) prior to and following incubation with thrombin. The data showed that fVQ3 was severely impaired in its interaction with fXa before and after incubation with thrombin. In contrast, KD(app) values for fVΔB9 (0.9 nm), fVaΔB9 (0.4 nm), and fVΔB9/Q3 (0.7 nm) were similar to the affinity of fVaWT for fXa (0.3 nm). Two-stage clotting assays revealed that although fVQ3 was deficient in its clotting activity, fVΔB9/Q3 had clotting activity comparable with fVaWT. The kcat value of prothrombinase assembled with fVΔB9/Q3 was minimally affected, whereas the Km value of the reaction was increased 57-fold compared with the Km value obtained with prothrombinase assembled with fVaWT. These findings strongly suggest that amino acid region 1000–1008 of fV is a regulatory sequence protecting the organisms from spontaneous binding to fXa and unnecessary prothrombinase complex formation, which in turn results in catastrophic physiological consequences. PMID:24178294

  14. Multiplex Detection of Functional G Protein-Coupled Receptors Harboring Site-Specifically Modified Unnatural Amino Acids

    PubMed Central

    2015-01-01

    We developed a strategy for identifying positions in G protein-coupled receptors that are amenable to bioorthogonal modification with a peptide epitope tag under cell culturing conditions. We introduced the unnatural amino acid p-azido-l-phenylalanine (azF) into human CC chemokine receptor 5 (CCR5) at site-specific amber codon mutations. We then used strain-promoted azide–alkyne [3+2] cycloaddition to label the azF-CCR5 variants with a FLAG peptide epitope-conjugated aza-dibenzocyclooctyne (DBCO) reagent. A microtiter plate-based sandwich fluorophore-linked immunosorbent assay was used to probe simultaneously the FLAG epitope and the receptor using infrared dye-conjugated antibodies so that the extent of DBCO incorporation, corresponding nominally to labeling efficiency, could be quantified ratiometrically. The extent of incorporation of DBCO at the various sites was evaluated in the context of a recent crystal structure of maraviroc-bound CCR5. We observed that labeling efficiency varied dramatically depending on the topological location of the azF in CCR5. Interestingly, position 109 in transmembrane helix 3, located in a hydrophobic cavity on the extracellular side of the receptor, was labeled most efficiently. Because the bioorthogonal labeling and detection strategy described might be used to introduce a variety of different peptide epitopes or fluorophores into engineered expressed receptors, it might prove to be useful for a wide range of applications, including single-molecule detection studies of receptor trafficking and signaling mechanism. PMID:25524496

  15. Active site of ribulosebisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.; Stringer, C.D.; Milanez, S.; Lee, E.H.

    1985-01-01

    Previous affinity labeling studies and comparative sequence analyses have identified two different lysines at the active site of ribulosebisphosphate carboxylase/oxygenase and have suggested their essentiality to function. The essential lysines occupy positions 166 and 329 in the Rhodospirillum rubrum enzyme and positions 175 and 334 in the spinach enzyme. Based on the pH-dependencies of inactivations of the two enzymes by trinitrobenzene sulfonate, Lys-166 (R. rubrum enzyme) exhibits a pK/sub a/ of 7.9 and Lys-334 (spinach enzyme) exhibits a pK/sub a/ of 9.0. These low pK/sub a/ values as well as the enhanced nucleophilicities of the lysyl residues argue that both are important to catalysis rather than to substrate binding. Lys-166 may correspond to the essential base that initiates catalysis and that displays a pK/sub a/ of 7.5 in the pH-curve for V/sub max//K/sub m/. Cross-linking experiments with 4,4'-diisothiocyano-2,2'-disulfonate stilbene demonstrate that the two active-site lysines are within 12 A. 50 refs., 7 figs., 1 tab.

  16. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions

    PubMed Central

    Herter, Susanne; Kranz, David C; Turner, Nicholas J

    2015-01-01

    Summary Cytochrome P450 monooxygenases are useful biocatalysts for C–H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations. PMID:26664590

  17. Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C.

    PubMed

    Poreba, Marcin; Mihelic, Marko; Krai, Priscilla; Rajkovic, Jelena; Krezel, Artur; Pawelczak, Malgorzata; Klemba, Michael; Turk, Dusan; Turk, Boris; Latajka, Rafal; Drag, Marcin

    2014-04-01

    Mammalian cathepsin C is primarily responsible for the removal of N-terminal dipeptides and activation of several serine proteases in inflammatory or immune cells, while its malarial parasite ortholog dipeptidyl aminopeptidase 1 plays a crucial role in catabolizing the hemoglobin of its host erythrocyte. In this report, we describe the systematic substrate specificity analysis of three cathepsin C orthologs from Homo sapiens (human), Bos taurus (bovine) and Plasmodium falciparum (malaria parasite). Here, we present a new approach with a tailored fluorogenic substrate library designed and synthesized to probe the S1 and S2 pocket preferences of these enzymes with both natural and a broad range of unnatural amino acids. Our approach identified very efficiently hydrolyzed substrates containing unnatural amino acids, which resulted in the design of significantly better substrates than those previously known. Additionally, in this study significant differences in terms of the structures of optimal substrates for human and malarial orthologs are important from the therapeutic point of view. These data can be also used for the design of specific inhibitors or activity-based probes. PMID:24381006

  18. Protein stability: a single recorded mutation aids in predicting the effects of other mutations in the same amino acid site

    PubMed Central

    Wainreb, Gilad; Wolf, Lior; Ashkenazy, Haim; Dehouck, Yves; Ben-Tal, Nir

    2011-01-01

    Motivation: Accurate prediction of protein stability is important for understanding the molecular underpinnings of diseases and for the design of new proteins. We introduce a novel approach for the prediction of changes in protein stability that arise from a single-site amino acid substitution; the approach uses available data on mutations occurring in the same position and in other positions. Our algorithm, named Pro-Maya (Protein Mutant stAbilitY Analyzer), combines a collaborative filtering baseline model, Random Forests regression and a diverse set of features. Pro-Maya predicts the stability free energy difference of mutant versus wild type, denoted as ΔΔG. Results: We evaluated our algorithm extensively using cross-validation on two previously utilized datasets of single amino acid mutations and a (third) validation set. The results indicate that using known ΔΔG values of mutations at the query position improves the accuracy of ΔΔG predictions for other mutations in that position. The accuracy of our predictions in such cases significantly surpasses that of similar methods, achieving, e.g. a Pearson's correlation coefficient of 0.79 and a root mean square error of 0.96 on the validation set. Because Pro-Maya uses a diverse set of features, including predictions using two other methods, it also performs slightly better than other methods in the absence of additional experimental data on the query positions. Availability: Pro-Maya is freely available via web server at http://bental.tau.ac.il/ProMaya. Contact: nirb@tauex.tau.ac.il; wolf@cs.tau.ac.il Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21998155

  19. Peptide synthesis catalyzed by an antibody containing a binding site for variable amino acids.

    PubMed

    Hirschmann, R; Smith, A B; Taylor, C M; Benkovic, P A; Taylor, S D; Yager, K M; Sprengeler, P A; Benkovic, S J

    1994-07-01

    Monoclonal antibodies, induced with a phosphonate diester hapten, catalyzed the coupling of p-nitrophenyl esters of N-acetyl valine, leucine, and phenylalanine with tryptophan amide to form the corresponding dipeptides. All possible stereoisomeric combinations of the ester and amide substrates were coupled at comparable rates. The antibodies did not catalyze the hydrolysis of the dipeptide product nor hydrolysis or racemization of the activated esters. The yields of the dipeptides ranged from 44 to 94 percent. The antibodies were capable of multiple turnovers at rates that exceeded the rate of spontaneous ester hydrolysis. This achievement suggests routes toward creating a small number of antibody catalysts for polypeptide syntheses. PMID:8023141

  20. Thiolactomycin inhibits D-aspartate oxidase: a novel approach to probing the active site environment.

    PubMed

    Katane, Masumi; Saitoh, Yasuaki; Hanai, Toshihiko; Sekine, Masae; Furuchi, Takemitsu; Koyama, Nobuhiro; Nakagome, Izumi; Tomoda, Hiroshi; Hirono, Shuichi; Homma, Hiroshi

    2010-10-01

    D-Aspartate oxidase (DDO) and D-amino acid oxidase (DAO) are flavin adenine dinucleotide (FAD)-containing flavoproteins that catalyze the oxidative deamination of D-amino acids. While several functionally and structurally important amino acid residues have been identified in the DAO protein, little is known about the structure-function relationships of DDO. In the search for a potent DDO inhibitor as a novel tool for investigating its structure-function relationships, a large number of biologically active compounds of microbial origin were screened for their ability to inhibit the enzymatic activity of mouse DDO. We discovered several compounds that inhibited the activity of mouse DDO, and one of the compounds identified, thiolactomycin (TLM), was then characterized and evaluated as a novel DDO inhibitor. TLM reversibly inhibited the activity of mouse DDO with a mixed type of inhibition more efficiently than meso-tartrate and malonate, known competitive inhibitors of mammalian DDOs. The selectivity of TLM was investigated using various DDOs and DAOs, and it was found that TLM inhibits not only DDO, but also DAO. Further experiments with apoenzymes of DDO and DAO revealed that TLM is most likely to inhibit the activities of DDO and DAO by competition with both the substrate and the coenzyme, FAD. Structural models of mouse DDO/TLM complexes supported this finding. The binding mode of TLM to DDO was validated further by site-directed mutagenesis of an active site residue, Arg-237. Collectively, our findings show that TLM is a novel, active site-directed DDO inhibitor that will be useful for elucidating the molecular details of the active site environment of DDO. PMID:20603179

  1. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  2. Identification of active site residues of Fenugreek β-amylase: chemical modification and in silico approach.

    PubMed

    Srivastava, Garima; Singh, Vinay K; Kayastha, Arvind M

    2014-10-01

    The amino acid sequence of Fenugreek β-amylase is not available in protein data bank. Therefore, an attempt has been made to identify the catalytic amino acid residues of enzyme by employing studies of pH dependence of enzyme catalysis, chemical modification and bioinformatics. Treatment of purified Fenugreek β-amylase with EDAC in presence of glycine methyl ester and sulfhydryl group specific reagents (IAA, NEM and p-CMB), followed a pseudo first-order kinetics and resulted in effective inactivation of enzyme. The reaction with EDAC in presence of NTEE (3-nitro-l-tyrosine ethylester) resulted into modification of two carboxyl groups per molecule of enzyme and presence of one accessible sulfhydryl group at the active site, per molecule of enzyme was ascertained by titration with DTNB. The above results were supported by the prevention of inactivation of enzyme in presence of substrate. Based on MALDI-TOF analysis of purified Fenugreek β-amylase and MASCOT search, β-amylase of Medicago sativa was found to be the best match. To further confirm the amino acid involved in catalysis, homology modelling of β-amylase of M. sativa was performed. The sequence alignment, superimposition of template and target models, along with study of interactions involved in docking of sucrose and maltose at the active site, led to identification of Glu187, Glu381 and Cys344 as active site residues. PMID:25179433

  3. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    NASA Astrophysics Data System (ADS)

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-01

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5‧-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  4. Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis.

    PubMed

    Tian, Li; Liu, Shijia; Wang, Shuai; Wang, Lushan

    2016-01-01

    Biomass can be converted into sugars by a series of lignocellulolytic enzymes, which belong to the glycoside hydrolase (GH) families summarized in CAZy databases. Here, using a structural bioinformatics method, we analyzed the active site architecture of the main lignocellulolytic enzyme families. The aromatic amino acids Trp/Tyr and polar amino acids Glu/Asp/Asn/Gln/Arg occurred at higher frequencies in the active site architecture than in the whole enzyme structure. And the number of potential subsites was significantly different among different families. In the cellulase and xylanase families, the conserved amino acids in the active site architecture were mostly found at the -2 to +1 subsites, while in β-glucosidase they were mainly concentrated at the -1 subsite. Families with more conserved binding amino acid residues displayed strong selectivity for their ligands, while those with fewer conserved binding amino acid residues often exhibited promiscuity when recognizing ligands. Enzymes with different activities also tended to bind different hydroxyl oxygen atoms on the ligand. These results may help us to better understand the common and unique structural bases of enzyme-ligand recognition from different families and provide a theoretical basis for the functional evolution and rational design of major lignocellulolytic enzymes. PMID:27009476

  5. Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis

    PubMed Central

    Tian, Li; Liu, Shijia; Wang, Shuai; Wang, Lushan

    2016-01-01

    Biomass can be converted into sugars by a series of lignocellulolytic enzymes, which belong to the glycoside hydrolase (GH) families summarized in CAZy databases. Here, using a structural bioinformatics method, we analyzed the active site architecture of the main lignocellulolytic enzyme families. The aromatic amino acids Trp/Tyr and polar amino acids Glu/Asp/Asn/Gln/Arg occurred at higher frequencies in the active site architecture than in the whole enzyme structure. And the number of potential subsites was significantly different among different families. In the cellulase and xylanase families, the conserved amino acids in the active site architecture were mostly found at the −2 to +1 subsites, while in β-glucosidase they were mainly concentrated at the −1 subsite. Families with more conserved binding amino acid residues displayed strong selectivity for their ligands, while those with fewer conserved binding amino acid residues often exhibited promiscuity when recognizing ligands. Enzymes with different activities also tended to bind different hydroxyl oxygen atoms on the ligand. These results may help us to better understand the common and unique structural bases of enzyme-ligand recognition from different families and provide a theoretical basis for the functional evolution and rational design of major lignocellulolytic enzymes. PMID:27009476

  6. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    SciTech Connect

    Shao, Yanqiu; Liu, Heng; Yu, Xiaofang; Guan, Jingqi; Kan, Qiubin

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  7. Incorporating substrate sequence motifs and spatial amino acid composition to identify kinase-specific phosphorylation sites on protein three-dimensional structures

    PubMed Central

    2013-01-01

    Background Protein phosphorylation catalyzed by kinases plays crucial regulatory roles in cellular processes. Given the high-throughput mass spectrometry-based experiments, the desire to annotate the catalytic kinases for in vivo phosphorylation sites has motivated. Thus, a variety of computational methods have been developed for performing a large-scale prediction of kinase-specific phosphorylation sites. However, most of the proposed methods solely rely on the local amino acid sequences surrounding the phosphorylation sites. An increasing number of three-dimensional structures make it possible to physically investigate the structural environment of phosphorylation sites. Results In this work, all of the experimental phosphorylation sites are mapped to the protein entries of Protein Data Bank by sequence identity. It resulted in a total of 4508 phosphorylation sites containing the protein three-dimensional (3D) structures. To identify phosphorylation sites on protein 3D structures, this work incorporates support vector machines (SVMs) with the information of linear motifs and spatial amino acid composition, which is determined for each kinase group by calculating the relative frequencies of 20 amino acid types within a specific radial distance from central phosphorylated amino acid residue. After the cross-validation evaluation, most of the kinase-specific models trained with the consideration of structural information outperform the models considering only the sequence information. Furthermore, the independent testing set which is not included in training set has demonstrated that the proposed method could provide a comparable performance to other popular tools. Conclusion The proposed method is shown to be capable of predicting kinase-specific phosphorylation sites on 3D structures and has been implemented as a web server which is freely accessible at http://csb.cse.yzu.edu.tw/PhosK3D/. Due to the difficulty of identifying the kinase-specific phosphorylation

  8. Contribution of Amino Acid Region 659−663 of Factor Va Heavy Chain to the Activity of Factor Xa within Prothrombinase†,‡

    PubMed Central

    2010-01-01

    Factor Va, the cofactor of prothrombinase, is composed of heavy and light chains associated noncovalently in the presence of divalent metal ions. The COOH-terminal region of the heavy chain contains acidic amino acid clusters that are important for cofactor activity. In this work, we have investigated the role of amino acid region 659−663, which contains five consecutive acidic amino acid residues, by site-directed mutagenesis. We have generated factor V molecules in which all residues were mutated to either lysine (factor V5K) or alanine (factor V5A). We have also constructed a mutant molecule with this region deleted (factor VΔ659−663). The recombinant molecules along with wild-type factor V (factor VWT) were transiently expressed in mammalian cells, purified, and assessed for cofactor activity. Two-stage clotting assays revealed that the mutant molecules had reduced clotting activities compared to that of factor VaWT. Kinetic analyses of prothrombinase assembled with the mutant molecules demonstrated diminished kcat values, while the affinity of all mutant molecules for factor Xa was similar to that for factor VaWT. Gel electrophoresis analyses of plasma-derived and recombinant mutant prothrombin activation demonstrated delayed cleavage of prothrombin at both Arg320 and Arg271 by prothrombinase assembled with the mutant molecules, resulting in meizothrombin lingering throughout the activation process. These results were confirmed after analysis of the cleavage of FPR-meizothrombin. Our findings provide new insights into the structural contribution of the acidic COOH-terminal region of factor Va heavy chain to factor Xa activity within prothrombinase and demonstrate that amino acid region 659−663 from the heavy chain of the cofactor contributes to the regulation of the rate of cleavage of prothrombin by prothrombinase. PMID:20722419

  9. The amino acid sequences and activities of synergistic hemolysins from Staphylococcus cohnii.

    PubMed

    Mak, Pawel; Maszewska, Agnieszka; Rozalska, Malgorzata

    2008-10-01

    Staphylococcus cohnii ssp. cohnii and S. cohnii ssp. urealyticus are a coagulase-negative staphylococci considered for a long time as unable to cause infections. This situation changed recently and pathogenic strains of these bacteria were isolated from hospital environments, patients and medical staff. Most of the isolated strains were resistant to many antibiotics. The present work describes isolation and characterization of several synergistic peptide hemolysins produced by these bacteria and acting as virulence factors responsible for hemolytic and cytotoxic activities. Amino acid sequences of respective hemolysins from S. cohnii ssp. cohnii (named as H1C, H2C and H3C) and S. cohnii ssp. urealyticus (H1U, H2U and H3U) were identical. Peptides H1 and H3 possessed significant amino acid homology to three synergistic hemolysins secreted by Staphylococcus lugdunensis and to putative antibacterial peptide produced by Staphylococcus saprophyticus ssp. saprophyticus. On the other hand, hemolysin H2 had a unique sequence. All isolated peptides lysed red cells from different mammalian species and exerted a cytotoxic effect on human fibroblasts. PMID:18752624

  10. Identification and Functions of Amino Acid Residues in PotB and PotC Involved in Spermidine Uptake Activity*

    PubMed Central

    Higashi, Kyohei; Sakamaki, Yoshiharu; Herai, Emiko; Demizu, Risa; Uemura, Takeshi; Saroj, Sunil D.; Zenda, Risa; Terui, Yusuke; Nishimura, Kazuhiro; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei

    2010-01-01

    Amino acid residues on PotB and PotC involved in spermidine uptake were identified by random and site-directed mutagenesis. It was found that Trp8, Tyr43, Trp100, Leu110, and Tyr261 in PotB and Trp46, Asp108, Glu169, Ser196, Asp198, and Asp199 in PotC were strongly involved in spermidine uptake and that Tyr160, Glu172, and Leu274 in PotB and Tyr19, Tyr88, Tyr148, Glu160, Leu195, and Tyr211 in PotC were moderately involved in spermidine uptake. Among 11 amino acid residues that were strongly involved in spermidine uptake, Trp8 in PotB was important for insertion of PotB and PotC into membranes. Tyr43, Trp100, and Leu110 in PotB and Trp46, Asp108, Ser196, and Asp198 in PotC were found to be involved in the interaction with PotD. Leu110 and Tyr261 in PotB and Asp108, Asp198, and Asp199 in PotC were involved in the recognition of spermidine, and Trp100 and Tyr261 in PotB and Asp108, Glu169, and Asp198 in PotC were involved in ATPase activity of PotA. Accordingly, Trp100 in PotB was involved in both PotD recognition and ATPase activity, Leu110 in PotB was involved in both PotD and spermidine recognition, and Tyr261 in PotB was involved in both spermidine recognition and ATPase activity. Asp108 and Asp198 in PotC were involved in PotD and spermidine recognition as well as ATPase activity. These results suggest that spermidine passage from PotD to the cytoplasm is coupled to the ATPase activity of PotA through a structural change of PotA by its ATPase activity. PMID:20937813

  11. Characterization and cDNA sequence of Bothriechis schlegeliil-amino acid oxidase with antibacterial activity.

    PubMed

    Vargas Muñoz, Leidy Johana; Estrada-Gomez, Sebastian; Núñez, Vitelbina; Sanz, Libia; Calvete, Juan J

    2014-08-01

    Snake venoms are complex mixtures of proteins including l-amino acid oxidase (lAAO). A lAAO (named BslAAO) with a mass of 56kDa and a theoretical Ip of 5.79, was purified from Bothriechis schlegelii venom through size-exclusion, ion exchange and affinity chromatography. The entire protein sequence of 498 amino acids, was determined from cDNA using reverse-transcribed mRNA isolated from venom gland. The enzyme showed dose-dependent inhibition of bacterial growth. BslAAO showed inhibitory effect against S. aureus with a MIC of 4μg/mL and a MBC of 8μg/mL. Against Acinetobacter baumannii, showed a MIC of 2μg/mL and MBC of 4μg/mL, No effect was observed in Escherichia coli. This antibacterial activity was inhibited by catalase, indicating that antimicrobial activity was due to H2O2 production. BslAAO did not show any cytotoxic activity toward mouse myoblast cell line C2C12 or peripheral blood mononuclear cells. The enzyme oxidated l-Leu, with a Km of 16.37μM and a Vmax of 0.39μM/min. Snake venoms lAAOs, are potential frames of different therapeutics molecules since these enzymes exhibit low MICs and MBCs and show to be harmless to human cells due to microorganisms being generally several fold more sensitive to reactive oxygen species than human tissues. PMID:24875315

  12. The Use of Gel Electrophoresis to Study the Reactions of Activated Amino Acids with Oligonucleotides

    NASA Technical Reports Server (NTRS)

    Zieboll, Gerhard; Orgel, Leslie E.

    1994-01-01

    We have used gel electrophoresis to study the primary covalent addition of amino acids to oligonu-cleotides or their analogs and the subsequent addition of further molecules of the amino acids to generate peptides covalently linked to the oligonucleotides. We have surveyed the reactions of a variety of amino acids with the phosphoramidates derived from oligonucleotide 5 inches phosphates and ethylenediamine. We find that arginine and amino acids can interact with oligonucleotidesl through stacking interactions react most efficiently. D- and L-amino acids give indistinguishable families of products.

  13. Amino acid sequence homology between Piv, an essential protein in site-specific DNA inversion in Moraxella lacunata, and transposases of an unusual family of insertion elements.

    PubMed Central

    Lenich, A G; Glasgow, A C

    1994-01-01

    Deletion analysis of the subcloned DNA inversion region of Moraxella lacunata indicates that Piv is the only M. lacunata-encoded factor required for site-specific inversion of the tfpQ/tfpI pilin segment. The predicted amino acid sequence of Piv shows significant homology solely with the transposases/integrases of a family of insertion sequence elements, suggesting that Piv is a novel site-specific recombinase. Images PMID:8021196

  14. Probing the active site tryptophan of Staphylococcus aureus thioredoxin with an analog

    PubMed Central

    Englert, Markus; Nakamura, Akiyoshi; Wang, Yane-Shih; Eiler, Daniel; Söll, Dieter; Guo, Li-Tao

    2015-01-01

    Genetically encoded non-canonical amino acids are powerful tools of protein research and engineering; in particular they allow substitution of individual chemical groups or atoms in a protein of interest. One such amino acid is the tryptophan (Trp) analog 3-benzothienyl-l-alanine (Bta) with an imino-to-sulfur substitution in the five-membered ring. Unlike Trp, Bta is not capable of forming a hydrogen bond, but preserves other properties of a Trp residue. Here we present a pyrrolysyl-tRNA synthetase-derived, engineered enzyme BtaRS that enables efficient and site-specific Bta incorporation into proteins of interest in vivo. Furthermore, we report a 2.1 Å-resolution crystal structure of a BtaRS•Bta complex to show how BtaRS discriminates Bta from canonical amino acids, including Trp. To show utility in protein mutagenesis, we used BtaRS to introduce Bta to replace the Trp28 residue in the active site of Staphylococcus aureus thioredoxin. This experiment showed that not the hydrogen bond between residues Trp28 and Asp58, but the bulky aromatic side chain of Trp28 is important for active site maintenance. Collectively, our study provides a new and robust tool for checking the function of Trp in proteins. PMID:26582921

  15. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise.

    PubMed

    Moberg, Marcus; Apró, William; Ekblom, Björn; van Hall, Gerrit; Holmberg, Hans-Christer; Blomstrand, Eva

    2016-06-01

    Protein synthesis is stimulated by resistance exercise and intake of amino acids, in particular leucine. Moreover, activation of mammalian target of rapamycin complex 1 (mTORC1) signaling by leucine is potentiated by the presence of other essential amino acids (EAA). However, the contribution of the branched-chain amino acids (BCAA) to this effect is yet unknown. Here we compare the stimulatory role of leucine, BCAA, and EAA ingestion on anabolic signaling following exercise. Accordingly, eight trained volunteers completed four sessions of resistance exercise during which they ingested either placebo, leucine, BCAA, or EAA (including the BCAA) in random order. Muscle biopsies were taken at rest, immediately after exercise, and following 90 and 180 min of recovery. Following 90 min of recovery the activity of S6 kinase 1 (S6K1) was greater than at rest in all four trials (Placebo

  16. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  17. Antiproliferative activity of king cobra (Ophiophagus hannah) venom L-amino acid oxidase.

    PubMed

    Li Lee, Mui; Chung, Ivy; Yee Fung, Shin; Kanthimathi, M S; Hong Tan, Nget

    2014-04-01

    King cobra (Ophiophagus hannah) venom L-amino acid oxidase (LAAO), a heat-stable enzyme, is an extremely potent antiproliferative agent against cancer cells when compared with LAAO isolated from other snake venoms. King cobra venom LAAO was shown to exhibit very strong antiproliferative activities against MCF-7 (human breast adenocarcinoma) and A549 (human lung adenocarcinoma) cells, with an IC50 value of 0.04±0.00 and 0.05±0.00 μg/mL, respectively, after 72-hr treatment. In comparison, its cytotoxicity was about 3-4 times lower when tested against human non-tumourigenic breast (184B5) and lung (NL 20) cells, suggesting selective antitumour activity. Furthermore, its potency in MCF-7 and A549 cell lines was greater than the effects of doxorubicin, a clinically established cancer chemotherapeutic agent, which showed an IC50 value of 0.18±0.03 and 0.63±0.21 μg/mL, respectively, against the two cell lines. The selective cytotoxic action of the LAAO was confirmed by phycoerythrin (PE) annexin V/7-amino-actinomycin (AAD) apoptotic assay, in which a significant increase in apoptotic cells was observed in LAAO-treated tumour cells than in their non-tumourigenic counterparts. The ability of LAAO to induce apoptosis in tumour cells was further demonstrated using caspase-3/7 and DNA fragmentation assays. We also determined that this enzyme may target oxidative stress in its killing of tumour cells, as its cytotoxicity was significantly reduced in the presence of catalase (a H2O2 scavenger). In view of its heat stability and selective and potent cytotoxic action on cancer cells, king cobra venom LAAO can be potentially developed for treating solid tumours. PMID:24118879

  18. Characterization of Amino Acid Profile and Enzymatic Activity in Adult Rat Astrocyte Cultures.

    PubMed

    Souza, Débora Guerini; Bellaver, Bruna; Hansel, Gisele; Arús, Bernardo Assein; Bellaver, Gabriela; Longoni, Aline; Kolling, Janaina; Wyse, Angela T S; Souza, Diogo Onofre; Quincozes-Santos, André

    2016-07-01

    Astrocytes are multitasking players in brain complexity, possessing several receptors and mechanisms to detect, participate and modulate neuronal communication. The functionality of astrocytes has been mainly unraveled through the study of primary astrocyte cultures, and recently our research group characterized a model of astrocyte cultures derived from adult Wistar rats. We, herein, aim to characterize other basal functions of these cells to explore the potential of this model for studying the adult brain. To characterize the astrocytic phenotype, we determined the presence of GFAP, GLAST and GLT 1 proteins in cells by immunofluorescence. Next, we determined the concentrations of thirteen amino acids, ATP, ADP, adenosine and calcium in astrocyte cultures, as well as the activities of Na(+)/K(+)-ATPase and acetylcholine esterase. Furthermore, we assessed the presence of the GABA transporter 1 (GAT 1) and cannabinoid receptor 1 (CB 1) in the astrocytes. Cells demonstrated the presence of glutamine, consistent with their role in the glutamate-glutamine cycle, as well as glutamate and D-serine, amino acids classically known to act as gliotransmitters. ATP was produced and released by the cells and ADP was consumed. Calcium levels were in agreement with those reported in the literature, as were the enzymatic activities measured. The presence of GAT 1 was detected, but the presence of CB 1 was not, suggesting a decreased neuroprotective capacity in adult astrocytes under in vitro conditions. Taken together, our results show cellular functionality regarding the astrocytic role in gliotransmission and neurotransmitter management since they are able to produce and release gliotransmitters and to modulate the cholinergic and GABAergic systems. PMID:26915106

  19. Site-directed mutagenesis of amino acid residues of D1 protein interacting with phosphatidylglycerol affects the function of plastoquinone QB in photosystem II.

    PubMed

    Endo, Kaichiro; Mizusawa, Naoki; Shen, Jian-Ren; Yamada, Masato; Tomo, Tatsuya; Komatsu, Hirohisa; Kobayashi, Masami; Kobayashi, Koichi; Wada, Hajime

    2015-12-01

    Recent X-ray crystallographic analysis of photosystem (PS) II at 1.9-Å resolution identified 20 lipid molecules in the complex, five of which are phosphatidylglycerol (PG). In this study, we mutagenized amino acid residues S232 and N234 of D1, which interact with two of the PG molecules (PG664 and PG694), by site-directed mutagenesis in Synechocystis sp. PCC 6803 to investigate the role of the interaction in PSII. The serine and asparagine residues at positions 232 and 234 from the N-terminus were mutagenized to alanine and aspartic acid, respectively, and a mutant carrying both amino acid substitutions was also produced. Although the obtained mutants, S232A, N234D, and S232AN234D, exhibited normal growth, they showed decreased photosynthetic activities and slower electron transport from QA to QB than the control strain. Thermoluminescence analysis suggested that this slower electron transfer in the mutants was caused by more negative redox potential of QB, but not in those of QA and S2. In addition, the levels of extrinsic proteins, PsbV and PsbU, were decreased in PSII monomer purified from the S232AN234D mutant, while that of Psb28 was increased. In the S232AN234D mutant, the content of PG in PSII was slightly decreased, whereas that of monogalactosyldiacylglycerol was increased compared with the control strain. These results suggest that the interactions of S232 and N234 with PG664 and PG694 are important to maintain the function of QB and to stabilize the binding of extrinsic proteins to PSII. PMID:25921208

  20. S-2-amino-5-(2-nitroimidazol-1-yl)pentanoic acid: a model for potential bioreductively activated prodrugs for inhibitors of nitric oxide synthase (NOS) activity.

    PubMed

    Ulhaq, S; Naylor, M A; Chinje, E C; Threadgill, M D; Stratford, I J

    1997-01-01

    Treatment of 1,1-dimethylethyl S-(2-1,1-dimethylethoxycarbonylamino)-5-bromopentanoate with 1-potassio-2-nitroimidazole, followed by deprotection, afforded S-2-amino-5-(2-nitroimidazol-1-yl)pentanoic acid, which was reduced to S-2-amino-5-(2-aminoimidazol-1-yl)pentanoic acid. This aminoimadazole inhibited rat brain nitric oxide synthase (NOS) activity 3.2 times more potently than did the nitro analogue. Thus S-2-amino-5-(2-nitroimidazol-1-yl)pentanoic acid is a potent prodrug which may be bioreductively activated to a NOS inhibitor in hypoxic solid tumours. PMID:9051114

  1. Sex-dependent activity of the spinal excitatory amino acid transporter: Role of estrous cycle.

    PubMed

    Sajjad, Jahangir; Felice, Valeria D; Golubeva, Anna V; Cryan, John F; O'Mahony, Siobhain M

    2016-10-01

    Females are more likely to experience visceral pain than males, yet mechanisms underlying this sex bias are not fully elucidated. Moreover, pain sensitivity can change throughout the menstrual cycle. Alterations in the glutamatergic system have been implicated in several pain-disorders; however, whether these are sex-dependent is unclear. Thus, we aimed to investigate sex differences in the spinal cord glutamate uptake and how it varies across the estrous cycle. The activity of the glutamate transporters, excitatory amino acid transporters (EAATs) was assessed using an ex vivo aspartate radioactive uptake assay in the lumbosacral spinal cord in Sprague-Dawley male and female rats. The gene expression of EAATs, glutamate receptor subunits NR1 and NR2B and the estrogen receptors ERα & ERβ in the spinal cord were also analyzed. EAAT activity was lower in females, particularly during the estrus phase, and this was the only cycle stage that was responsive to the pharmacological effects of the EAATs activator riluzole. Interestingly, EAAT1 mRNA expression was lower in high-estrogen and high-ERα states compared to diestrus in females. We conclude that the Spinal EAAT activity in females is different to that in males, and varies across the estrous cycle. Furthermore, the expression levels of estrogen receptors also showed a cycle-dependent pattern that may affect EAATs function and expression. PMID:27471194

  2. Cationic Amino Acid Transporter-2 Regulates Immunity by Modulating Arginase Activity

    PubMed Central

    Thompson, Robert W.; Pesce, John T.; Ramalingam, Thirumalai; Wilson, Mark S.; White, Sandy; Cheever, Allen W.; Ricklefs, Stacy M.; Porcella, Stephen F.; Li, Lili; Ellies, Lesley G.; Wynn, Thomas A.

    2008-01-01

    Cationic amino acid transporters (CAT) are important regulators of NOS2 and ARG1 activity because they regulate L-arginine availability. However, their role in the development of Th1/Th2 effector functions following infection has not been investigated. Here we dissect the function of CAT2 by studying two infectious disease models characterized by the development of polarized Th1 or Th2-type responses. We show that CAT2−/− mice are significantly more susceptible to the Th1-inducing pathogen Toxoplasma gondii. Although T. gondii infected CAT2−/− mice developed stronger IFN-γ responses, nitric oxide (NO) production was significantly impaired, which contributed to their enhanced susceptibility. In contrast, CAT2−/− mice infected with the Th2-inducing pathogen Schistosoma mansoni displayed no change in susceptibility to infection, although they succumbed to schistosomiasis at an accelerated rate. Granuloma formation and fibrosis, pathological features regulated by Th2 cytokines, were also exacerbated even though their Th2 response was reduced. Finally, while IL-13 blockade was highly efficacious in wild-type mice, the development of fibrosis in CAT2−/− mice was largely IL-13-independent. Instead, the exacerbated pathology was associated with increased arginase activity in fibroblasts and alternatively activated macrophages, both in vitro and in vivo. Thus, by controlling NOS2 and arginase activity, CAT2 functions as a potent regulator of immunity. PMID:18369473

  3. Evidence from molecular dynamics simulations of conformational preorganization in the ribonuclease H active site

    PubMed Central

    Stafford, Kate A.; Palmer III, Arthur G.

    2014-01-01

    Ribonuclease H1 (RNase H) enzymes are well-conserved endonucleases that are present in all domains of life and are particularly important in the life cycle of retroviruses as domains within reverse transcriptase. Despite extensive study, especially of the E. coli homolog, the interaction of the highly negatively charged active site with catalytically required magnesium ions remains poorly understood. In this work, we describe molecular dynamics simulations of the E. coli homolog in complex with magnesium ions, as well as simulations of other homologs in their apo states. Collectively, these results suggest that the active site is highly rigid in the apo state of all homologs studied and is conformationally preorganized to favor the binding of a magnesium ion. Notably, representatives of bacterial, eukaryotic, and retroviral RNases H all exhibit similar active-site rigidity, suggesting that this dynamic feature is only subtly modulated by amino acid sequence and is primarily imposed by the distinctive RNase H protein fold. PMID:25075292

  4. Changes in growth, photosynthetic activities, biochemical parameters and amino acid profile of Thompson Seedless grapes (Vitis vinifera L.).

    PubMed

    Somkuwar, R G; Bahetwar, Anita; Khan, I; Satisha, J; Ramteke, S D; Itroutwar, Prerna; Bhongale, Aarti; Oulkar, Dashrath

    2014-11-01

    The study on photosynthetic activity and biochemical parameters in Thompson Seedless grapes grafted on Dog Ridge rootstock and its impact on growth, yield and amino acid profile at various stages of berry development was conducted during the year 2012-2013. Leaf and berry samples from ten year old vines of Thompson Seedless were collected at different growth and berry developmental stages. The analysis showed difference in photosynthetic activity, biochemical parameters and amino acid status with the changes in berry development stage. Higher photosynthetic rate of 17.39 umol cm(-2) s(-1) was recorded during 3-4mm berry size and the lowest (10.08 umol cm(-2) s(-1)) was recorded during the veraison stage. The photosynthetic activity showed gradual decrease with the onset of harvest while the different biochemical parameters showed increase and decrease from one stage to another in both berry and leaves. Changes in photosynthetic activity and biochemical parameters thereby affected the growth, yield and amino acid content of the berry. Positive correlation of leaf area and photosynthetic rate was recorded during the period of study. Reducing sugar (352.25 mg g(-1)) and total carbohydrate (132.52 mg g(-1)) was more in berries as compared to leaf. Amino acid profile showed variations in different stages of berry development. Marked variations in photosynthetic as well as biochemical and amino acid content at various berry development stages was recorded and thereby its cumulative effect on the development of fruit quality. PMID:25522520

  5. Regulation of taste-active components of meat by dietary branched-chain amino acids; effects of branched-chain amino acid antagonism.

    PubMed

    Imanari, M; Kadowaki, M; Fujimura, S

    2008-05-01

    1. The effects of dietary branched-chain amino acids (BCAAs) including leucine (Leu), isoleucine (Ile) and valine (Val) on taste-active components, especially free glutamate (Glu), in meat were investigated. 2. Broiler chickens (28 d old) were given varied dietary BCAA levels for 10 d before marketing. Dietary BCAA content ratios were either 100:100:100 (Low Leu group), 150:100:100 (Control group) or 150:150:150 (High Ile + Val group) for Leu:Ile:Val (% of each BCAA requirement according to NRC, 1994). Taste-related components of meat (free amino acids and ATP metabolites) and sensory scores of meat soup were estimated. 3. Free Glu content, the main taste-active component of meat, was significantly increased by dietary BCAA. Compared to the Control group, free Glu content increased by 30% in the High Ile + Val group. However, the inosine monophosphate (IMP) content in meat did not change among groups. 4. Sensory evaluation of meat soups showed that Control and High Ile + Val groups had different meat flavours. The sensory score of overall taste intensity was significantly higher in the High Ile + Val group. 5. These results suggest that dietary BCAA concentrations regulate free Glu in meat. Increasing dietary Ile + Val induces an increase in free Glu content of meat, improves meat taste and is more effective for increasing free Glu content in meat than decreasing dietary Leu level. PMID:18568754

  6. Synthesis, characterization, electrochemical studies and DFT calculations of amino acids ternary complexes of copper (II) with isonitrosoacetophenone. Biological activities

    NASA Astrophysics Data System (ADS)

    Tidjani-Rahmouni, Nabila; Bensiradj, Nour el Houda; Djebbar, Safia; Benali-Baitich, Ouassini

    2014-10-01

    Three mixed complexes having formula [Cu(INAP)L(H2O)2] where INAP = deprotonated isonitrosoacetophenone and L = deprotonated amino acid such as histidine, phenylalanine and tryptophan have been synthesized. They have also been characterized using elemental analyses, molar conductance, UV-Vis, IR and ESR spectra. The value of molar conductance indicates them to be non-electrolytes. The spectral studies support the binding of the ligands with two N and two O donor sites to the copper (II) ion, giving an arrangement of N2O2 donor groups. Density Functional Theory (DFT) calculations were applied to evaluate the cis and trans coordination modes of the two water molecules. The trans form was shown to be energetically more stable than the cis one. The ESR data indicate that the covalent character of the metal-ligand bonding in the copper (II) complexes increases on going from histidine to phenylalanine to tryptophan. The electrochemical behavior of the copper (II) complexes was determined by cyclic voltammetry which shows that the chelate structure and electron donating effects of the ligands substituent are among the factors influencing the redox potentials of the complexes. The antimicrobial activities of the complexes were evaluated against several pathogenic microorganisms to assess their antimicrobial potentials. The copper complexes were found to be more active against Gram-positive than Gram-negative bacteria. Furthermore, the antioxidant efficiencies of the metal complexes were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The antioxidant activity of the complexes indicates their moderate scavenging activity against the radical DPPH.

  7. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    DOE PAGESBeta

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active sitemore » metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.« less

  8. A Single Amino Acid Determines the Immunostimulatory Activity of Interleukin 10

    PubMed Central

    Ding, Yaozhong; Qin, Lihui; Kotenko, Serguei V.; Pestka, Sidney; Bromberg, Jonathan S.

    2000-01-01

    Cellular interleukin 10s (cIL-10s) of human and murine origin have extensive sequence and structural homology to the Epstein-Barr virus BCRF-I gene product, known as viral IL-10 (vIL-10). Although these cytokines share many immunosuppressive properties, vIL-10 lacks several of the immunostimulatory activities of cIL-10 on certain cell types. The molecular and cellular bases for this dichotomy are not currently defined. Here, we show that the single amino acid isoleucine at position 87 of cIL-10 is required for its immunostimulatory function. Substitution of isoleucine in cIL-10 with alanine, which corresponds to the vIL-10 residue, abrogates immunostimulatory activity for thymocytes, mast cells, and alloantigenic responses while preserving immunosuppressive activity for inhibition of interferon γ production and prolongation of cardiac allograft survival. Conversely, substitution of alanine with isoleucine in vIL-10 converts it to a cIL-10–like molecule with immunostimulatory activity. This single conservative residue alteration significantly affects ligand affinity for receptor; however, affinity changes do not necessarily alter specific activities for biologic responses in a predictable fashion. These results suggest complex regulation of IL-10 receptor–ligand interactions and subsequent biological responses. These results demonstrate that vIL-10 may represent a captured and selectively mutated cIL-10 gene that benefits viral pathogenesis by leading to ineffective host immune responses. The ability to manipulate the activity of IL-10 in either a stimulatory or suppressive direction may be of practical value for regulating immune responses for disease therapy, and of theoretical value for determining what aspects of IL-10 activity are important for normal T cell responses. PMID:10637267

  9. Amino acids

    MedlinePlus

    Amino acids are organic compounds that combine to form proteins . Amino acids and proteins are the building blocks of life. When proteins are digested or broken down, amino acids are left. The human body uses amino acids ...

  10. Active site of the replication protein of the rolling circle plasmid pC194.

    PubMed Central

    Noirot-Gros, M F; Bidnenko, V; Ehrlich, S D

    1994-01-01

    Mutation analysis of the rolling circle (RC) replication initiator protein RepA of plasmid pC194 was targeted to tyrosine and acidic amino acids (glutamate and aspartate) which are well conserved among numerous related plasmids. The effect of mutations was examined by an in vivo activity test. Mutations of one tyrosine and two glutamate residues were found to greatly impair or abolish activity, without affecting affinity for the origin, as deduced from in vitro gel mobility assays. We conclude that all three amino acids have a catalytic role. Tyrosine residues were found previously in active sites of different RC plasmid Rep proteins and topoisomerases, but not in association with acidic residues, which are a hallmark of the active sites of DNA hydrolyzing enzymes, such as the exo- and endonucleases. We propose that the active site of RepA contains two different catalytic centers, corresponding to a tyrosine and a glutamate. The former may be involved in the formation of the covalent DNA-protein intermediate at the initiation step of RC replication, and the latter may catalyze the release of the protein from the intermediate at the termination step. Images PMID:7925284

  11. Synthesis and in vitro antiproliferative activity of amido and amino analogues of the marine alkaloid isogranulatimide.

    PubMed

    Lavrard, Hubert; Salvetti, Béatrice; Mathieu, Véronique; Rodriguez, Frédéric; Kiss, Robert; Delfourne, Evelyne

    2015-04-01

    Marine organisms have proven to be a promising source of new compounds with activity against tumor cell lines. Granulatimide and isogranulatimide are marine alkaloids that have been shown to inhibit checkpoint kinase 1 (Chk1), a key protein in the DNA damage response and an emerging target for anticancer therapeutics. Here, we describe the synthesis and preliminary evaluation of amido and amino analogues of isogranulatimide. The new derivatives were prepared in three steps from 2-imidazol-1-yl-1H-indol-5-ylamine. Two of the compounds synthesized exhibited more potent in vitro antiproliferative activity (single-digit micromolar concentration range), by at least one log of magnitude, than the natural product isogranulatimide when evaluated in six human tumor cell lines: non-small-cell lung cancer (A549), colon cancer (LoVo), breast cancer (MCF7), oligodendroglioma (Hs683), glioblastoma (U373), and melanoma (SKMEL28). The mechanism of action of these derivatives remains to be elucidated, given that they did not significantly inhibit Chk1, however these compounds are easily synthesized and exhibit potent anticancer activity and are thus worthy of further study. PMID:25735892

  12. Probing Gαi1 Protein Activation at Single Amino Acid Resolution

    PubMed Central

    Sun, Dawei; Maeda, Shoji; Matkovic, Milos; Mendieta, Sandro; Mayer, Daniel; Dawson, Roger; Schertler, Gebhard F.X.; Madan Babu, M.; Veprintsev, Dmitry B.

    2016-01-01

    We present comprehensive single amino acid resolution maps of the residues stabilising the human Gαi1 subunit in nucleotide- and receptor-bound states. We generated these maps by measuring the effects of alanine mutations on the stability of Gαi1 and of the rhodopsin-Gαi1 complex. We identified stabilization clusters in the GTPase and helical domains responsible for structural integrity and the conformational changes associated with activation. In activation cluster I, helices α1 and α5 pack against strands β1-3 to stabilize the nucleotide-bound states. In the receptor-bound state, these interactions are replaced by interactions between α5 and strands β4-6. Key residues in this cluster are Y320, crucial for the stabilization of the receptor-bound state, and F336, which stabilizes nucleotide-bound states. Destabilization of helix α1, caused by rearrangement of this activation cluster, leads to the weakening of the inter-domain interface and release of GDP. PMID:26258638

  13. Synthesis and herbicidal activity evaluation of novel α-amino phosphonate derivatives containing a uracil moiety.

    PubMed

    Che, Jian-yi; Xu, Xiao-yun; Tang, Zi-long; Gu, Yu-cheng; Shi, De-qing

    2016-02-15

    A series of novel α-amino phosphonate derivatives containing a uracil moiety 3a-3l were designed and synthesized by a Lewis acid (magnesium perchlorate) catalyzed the Kabachnik-Fields reaction. The bioassays {in vitro, in vivo [Glass House 1 (GH1) and Glass House 2 (GH2)]} showed that most of compounds 3 exhibited excellent and selective herbicidal activities; for example, in GH1 test, compounds 3b, 3d, 3f, 3h and 3j showed excellent and wide spectrum herbicidal activities at the dose of 1000 g/ha, and compounds 3b and 3j exhibited 100% inhibition activities against the four plants in both post- and pre-emergence treatments. Moreover, most of compounds 3 showed higher inhibition against Amaranthus retroflexus and Digitaria sanguinalis than Glyphosate did in pre-emergence treatment. In GH2 test, the four compounds (3b, 3d, 3h and 3j) exhibited 100% inhibition against Solanum nigrum, Amaranthus retroflexus and Ipomoea hederacea in post-emergence treatment and displayed 100% inhibition against Solanum nigrum, Amaranthus retroflexus in pre-emergence treatment at the rate of 250 g/ha, and compound 3b showed the best and broad spectrum herbicidal activities against the six test plants. However, the four compounds displayed weaker herbicidal activities against Lolium perenne and Echinochloa crus-galli than the other four plants at the rate of 250 g/ha in both pre- and post-emergence treatments. So, compounds 3 can be used as a lead compound for further structure optimization for developing potential selective herbicidal agent. Their preliminary structure-activity relationships were also investigated. PMID:26786699

  14. Comparison of amino acid v peptide based enteral diets in active Crohn's disease: clinical and nutritional outcome.

    PubMed Central

    Royall, D; Jeejeebhoy, K N; Baker, J P; Allard, J P; Habal, F M; Cunnane, S C; Greenberg, G R

    1994-01-01

    Elemental diets are considered an effective primary treatment for active Crohn's disease. This study examined the hypothesis that improvement occurs because of the presence of amino acids or the low fat content, or both. A randomised, controlled trial was undertaken in 40 patients with active Crohn's disease to evaluate clinical and nutritional outcomes after an amino acid based diet containing 3% fat was given by a feeding tube compared with a peptide based diet containing 33% fat. After three weeks' treatment, clinical remission occurred in 84% of patients who were given the amino acid diet and 75% of patients who received the peptide diet (p = 0.38). Plasma linoleic acid concentration was reduced after the amino acid but not the peptide diet. An increase in total body nitrogen was associated with the magnitude of nutritional depletion before treatment and at six months' follow up, only patients who showed gains in total body nitrogen after enteral nutrition had a sustained clinical remission. This study shows that peptide based high fat diets are as effective as amino acid low fat diets for achieving clinical remission in active Crohn's disease. Improved total body protein stores but not essential fatty acid depletion may be an important indicator of a sustained remission. PMID:8020806

  15. Identification of active-site residues in protease 3C of hepatitis A virus by site-directed mutagenesis.

    PubMed Central

    Gosert, R; Dollenmaier, G; Weitz, M

    1997-01-01

    Picornavirus 3C proteases (3Cpro) are cysteine proteases related by amino acid sequence to trypsin-like serine proteases. Comparisons of 3Cpro of hepatitis A virus (HAV) to those of other picornaviruses have resulted in prediction of active-site residues: histidine at position 44 (H44), aspartic acid (D98), and cysteine (C172). To test whether these residues are key members of a putative catalytic triad, oligonucleotide-directed mutagenesis was targeted to 3Cpro in the context of natural polypeptide precursor P3. Autocatalytic processing of the polyprotein containing wild-type or variant 3Cpro was tested by in vivo expression of vaccinia virus-HAV chimeras in an animal cell-T7 hybrid system and by in vitro translation of corresponding RNAs. Comparison with proteins present in HAV-infected cells showed that both expression systems mimicked authentic polyprotein processing. Individual substitutions of H44 by tyrosine and of C172 by glycine or serine resulted in complete loss of the virus-specific proteolytic cascade. In contrast, a P3 polyprotein in which D98 was substituted by asparagine underwent only slightly delayed processing, while an additional substitution of valine (V47) by glycine within putative protein 3A caused a more pronounced loss of processing. Therefore, apparently H44 and C172 are active-site constituents whereas D98 is not. The results, furthermore, suggest that substitution of amino acid residues distant from polyprotein cleavage sites may reduce proteolytic activity, presumably by altering substrate conformation. PMID:9060667

  16. Cooperative Regulation of the Activity of Factor Xa within Prothrombinase by Discrete Amino Acid Regions from Factor Va Heavy Chain†

    PubMed Central

    2008-01-01

    The prothrombinase complex catalyzes the activation of prothrombin to α-thrombin. We have repetitively shown that amino acid region 695DYDY698 from the COOH terminus of the heavy chain of factor Va regulates the rate of cleavage of prothrombin at Arg271 by prothrombinase. We have also recently demonstrated that amino acid region 334DY335 is required for the optimal activity of prothrombinase. To assess the effect of these six amino acid residues on cofactor activity, we created recombinant factor Va molecules combining mutations at amino acid regions 334–335 and 695−698 as follows: factor V3K (334DY335 → KF and 695DYDY698 → KFKF), factor VKF/4A (334DY335 → KF and 695DYDY698 → AAAA), and factor V6A (334DY335 → AA and 695DYDY698 → AAAA). The recombinant factor V molecules were expressed and purified to homogeneity. Factor Va3K, factor VaK4/4A, and factor Va6A had reduced affinity for factor Xa, when compared to the affinity of the wild-type molecule (factor VaWt) for the enzyme. Prothrombinase assembled with saturating concentrations of factor Va3K had a 6-fold reduced second-order rate constant for prothrombin activation compared to the value obtained with prothrombinase assembled with factor VaWt, while prothrombinase assembled with saturating concentrations of factor VaKF/4A and factor Va6A had approximately 1.5-fold reduced second-order rate constants. Overall, the data demonstrate that amino acid region 334–335 together with amino acid region 695−698 from factor Va heavy chain are part of a cooperative mechanism within prothrombinase regulating cleavage and activation of prothrombin by factor Xa. PMID:18991406

  17. Structure-Activity Relationship of Amino Acid Tunable Lipidated Norspermidine Conjugates: Disrupting Biofilms with Potent Activity against Bacterial Persisters.

    PubMed

    Konai, Mohini M; Adhikary, Utsarga; Samaddar, Sandip; Ghosh, Chandradhish; Haldar, Jayanta

    2015-12-16

    The emergence of bacterial resistance and biofilm associated infections has created a challenging situation in global health. In this present state of affairs where conventional antibiotics are falling short of being able to provide a solution to these problems, development of novel antibacterial compounds possessing the twin prowess of antibacterial and antibiofilm efficacy is imperative. Herein, we report a library of amino acid tunable lipidated norspermidine conjugates that were prepared by conjugating both amino acids and fatty acids with the amine functionalities of norspermidine through amide bond formation. These lipidated conjugates displayed potent antibacterial activity against various planktonic Gram-positive and Gram-negative bacteria including drug-resistant superbugs such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and β-lactam-resistant Klebsiella pneumoniae. This class of nontoxic and fast-acting antibacterial molecules (capable of killing bacteria within 15 min) did not allow bacteria to develop resistance against them after several passages. Most importantly, an optimized compound in the series was also capable of killing metabolically inactive persisters and stationary phase bacteria. Additionally, this compound was capable of disrupting the preformed biofilms of S. aureus and E. coli. Therefore, this class of antibacterial conjugates have potential in tackling the challenging situation posed by both bacterial resistance as well as drug tolerance due to biofilm formation. PMID:26452096

  18. Purification and sequencing of the active site tryptic peptide from penicillin-binding protein 1b of Escherichia coli

    SciTech Connect

    Nicholas, R.A.; Suzuki, H.; Hirota, Y.; Strominger, J.L.

    1985-07-02

    This paper reports the sequence of the active site peptide of penicillin-binding protein 1b from Escherichia coli. Purified penicillin-binding protein 1b was labeled with (/sup 14/C)penicillin G, digested with trypsin, and partially purified by gel filtration. Upon further purification by high-pressure liquid chromatography, two radioactive peaks were observed, and the major peak, representing over 75% of the applied radioactivity, was submitted to amino acid analysis and sequencing. The sequence Ser-Ile-Gly-Ser-Leu-Ala-Lys was obtained. The active site nucleophile was identified by digesting the purified peptide with aminopeptidase M and separating the radioactive products on high-pressure liquid chromatography. Amino acid analysis confirmed that the serine residue in the middle of the sequence was covalently bonded to the (/sup 14/C)penicilloyl moiety. A comparison of this sequence to active site sequences of other penicillin-binding proteins and beta-lactamases is presented.

  19. Role of methionine in the active site of alpha-galactosidase from Trichoderma reesei.

    PubMed Central

    Kachurin, A M; Golubev, A M; Geisow, M M; Veselkina, O S; Isaeva-Ivanova, L S; Neustroev, K N

    1995-01-01

    alpha-Galactosidase from Trichoderma reesei when treated with H2O2 shows a 12-fold increase in activity towards p-nitrophenyl alpha-D-galactopyranoside. A similar effect is produced by the treatment of alpha-galactosidase with other non-specific oxidants: NaIO4, KMnO4 and K4S4O8. In addition to the increase in activity, the Michaelis constant rises from 0.2 to 1.4 mM, the temperature coefficient decreases by a factor of 1.5 and the pH-activity curve falls off sharply with increasing pH. Galactose (a competitive inhibitor of alpha-galactosidase; Ki 0.09 mM for the native enzyme at pH 4.4) effectively inhibits oxidative activation of the enzyme, because the observed activity changes are related to oxidation of the catalytically important methionine in the active site. NMR measurements and amino acid analysis show that oxidation to methionine sulphoxide of one of five methionines is sufficient to activate alpha-galactosidase. Binding of galactose prevents this. Oxidative activation does not lead to conversion of other H2O2-sensitive amino acid residues, such as histidine, tyrosine, tryptophan and cysteine. The catalytically important cysteine thiol group is quantitatively titrated after protein oxidative activation. Further oxidation of methionines (up to four of five residues) can be achieved by increasing the oxidation time and/or by prior denaturation of the protein. Obviously, a methionine located in the active site of alpha-galactosidase is more accessible. The oxidative-activation phenomenon can be explained by a conformational change in the active site as a result of conversion of non-polar methionine into polar methionine sulphoxide. Images Figure 10 PMID:8948456

  20. Uniquely Localized Intra-Molecular Amino Acid Concentrations at the Glycolytic Enzyme Catalytic/Active Centers of Archaea, Bacteria and Eukaryota are Associated with Their Proposed Temporal Appearances on Earth

    NASA Astrophysics Data System (ADS)

    Pollack, J. Dennis; Gerard, David; Pearl, Dennis K.

    2013-04-01

    The distributions of amino acids at most-conserved sites nearest catalytic/active centers (C/AC) in 4,645 sequences of ten enzymes of the glycolytic Embden-Meyerhof-Parnas pathway in Archaea, Bacteria and Eukaryota are similar to the proposed temporal order of their appearance on Earth. Glycine, isoleucine, leucine, valine, glutamic acid and possibly lysine often described as prebiotic, i.e., existing or occurring before the emergence of life, were localized in positional and conservational defined aggregations in all enzymes of all Domains. The distributions of all 20 biologic amino acids in most-conserved sites nearest their C/ACs were quite different either from distributions in sites less-conserved and further from their C/ACs or from all amino acids regardless of their position or conservation. The major concentrations of glycine, e.g., perhaps the earliest prebiotic amino acid, occupies ≈16 % of all the most-conserved sites within a volume of ≈7-8 Å radius from their C/ACs and decreases linearly towards the molecule's peripheries. Spatially localized major concentrations of isoleucine, leucine and valine are in the mid-conserved and mid-distant sites from their C/ACs in protein interiors. Lysine and glutamic acid comprise ≈25-30 % of all amino acids within an irregular volume bounded by ≈24-28 Å radii from their C/ACs at the most-distant least-conserved sites. The unreported characteristics of these amino acids: their spatially and conservationally identified concentrations in Archaea, Bacteria and Eukaryota, suggest some common structural organization of glycolytic enzymes that may be relevant to their evolution and that of other proteins. We discuss our data in relation to enzyme evolution, their reported prebiotic putative temporal appearances on Earth, abundances, biological "cost", neighbor-sequence preferences or "ordering" and some thermodynamic parameters.

  1. Uniquely localized intra-molecular amino acid concentrations at the glycolytic enzyme catalytic/active centers of Archaea, Bacteria and Eukaryota are associated with their proposed temporal appearances on earth.

    PubMed

    Pollack, J Dennis; Gerard, David; Pearl, Dennis K

    2013-04-01

    The distributions of amino acids at most-conserved sites nearest catalytic/active centers (C/AC) in 4,645 sequences of ten enzymes of the glycolytic Embden-Meyerhof-Parnas pathway in Archaea, Bacteria and Eukaryota are similar to the proposed temporal order of their appearance on Earth. Glycine, isoleucine, leucine, valine, glutamic acid and possibly lysine often described as prebiotic, i.e., existing or occurring before the emergence of life, were localized in positional and conservational defined aggregations in all enzymes of all Domains. The distributions of all 20 biologic amino acids in most-conserved sites nearest their C/ACs were quite different either from distributions in sites less-conserved and further from their C/ACs or from all amino acids regardless of their position or conservation. The major concentrations of glycine, e.g., perhaps the earliest prebiotic amino acid, occupies ≈ 16 % of all the most-conserved sites within a volume of ≈ 7-8 Å radius from their C/ACs and decreases linearly towards the molecule's peripheries. Spatially localized major concentrations of isoleucine, leucine and valine are in the mid-conserved and mid-distant sites from their C/ACs in protein interiors. Lysine and glutamic acid comprise ≈ 25-30 % of all amino acids within an irregular volume bounded by ≈ 24-28 Å radii from their C/ACs at the most-distant least-conserved sites. The unreported characteristics of these amino acids: their spatially and conservationally identified concentrations in Archaea, Bacteria and Eukaryota, suggest some common structural organization of glycolytic enzymes that may be relevant to their evolution and that of other proteins. We discuss our data in relation to enzyme evolution, their reported prebiotic putative temporal appearances on Earth, abundances, biological "cost", neighbor-sequence preferences or "ordering" and some thermodynamic parameters. PMID:23715690

  2. Structural plasticity of an aminoacyl-tRNA synthetase active site

    PubMed Central

    Turner, James M.; Graziano, James; Spraggon, Glen; Schultz, Peter G.

    2006-01-01

    Recently, tRNA aminoacyl-tRNA synthetase pairs have been evolved that allow one to genetically encode a large array of unnatural amino acids in both prokaryotic and eukaryotic organisms. We have determined the crystal structures of two substrate-bound Methanococcus jannaschii tyrosyl aminoacyl-tRNA synthetases that charge the unnatural amino acids p-bromophenylalanine and 3-(2-naphthyl)alanine (NpAla). A comparison of these structures with the substrate-bound WT synthetase, as well as a mutant synthetase that charges p-acetylphenylalanine, shows that altered specificity is due to both side-chain and backbone rearrangements within the active site that modify hydrogen bonds and packing interactions with substrate, as well as disrupt the α8-helix, which spans the WT active site. The high degree of structural plasticity that is observed in these aminoacyl-tRNA synthetases is rarely found in other mutant enzymes with altered specificities and provides an explanation for the surprising adaptability of the genetic code to novel amino acids. PMID:16618920

  3. On the reported optical activity of amino acids in the Murchison meteorite

    USGS Publications Warehouse

    Bada, J.L.; Cronin, J.R.; Ho, M.-S.; Kvenvolden, K.A.; Lawless, J.G.; Miller, S.L.; Oro, J.; Steinberg, S.

    1983-01-01

    In analyses of extracts from the Murchison meteorite (a carbonaceous chondrite), Engel and Nagy1 reported an excess of L-enantiomers for several protein amino acids but found that the non-protein amino acids were racemic. They suggested that the excess of L-isomers might have resulted from an asymmetric synthesis or decomposition. Their results disagree with those obtained previously2-4 and they claim this is due to improved methodology. In fact, their extraction method and analytical procedure (gas chromatography-mass spectrometry, GC-MS) was similar to those used in the original report2 of amino acids in the Murchison meteorite except that they used specific ion monitoring in the GC-MS measurements. We found the results of Engel and Nagy odd in that likely contaminants (the protein amino acids ala, leu, glu, asp and pro) were nonracemic while unlikely contaminants (isovaline and ??-amino-n-butyric acid) were racemic. For example, Engel and Nagy report that the leucine is ???90% L-enantiomer in the water-extracted sample whereas isovaline (??-methyl-??-aminobutyric acid) is racemic. It would be most unusual for an abiotic stereoselective decomposition or synthesis of amino acids to occur with protein amino acids but not with non-protein amino acids. We now show here that the explanation of terrestrial contamination is consistent with their results and is much more probable. ?? 1983 Nature Publishing Group.

  4. Quantitative structure retention/activity relationships of biologically relevant 4-amino-7-chloroquinoline based compounds.

    PubMed

    Šegan, Sandra; Opsenica, Igor; Zlatović, Mario; Milojković-Opsenica, Dušanka; Šolaja, Bogdan

    2016-02-15

    The chromatographic behaviour of series of 4-amino-7-chloroquinoline (4,7-ACQ) based compounds was studied by reversed-phase thin-layer chromatography (RPTLC) with binary mobile phases containing water and the organic modifiers, DMSO or acetone. The lipophilicity of the studied compounds was determined by extrapolation of retention parameters RM to pure water content in mobile phase. In order to obtain some basic insight into the chromatographic behaviour and structural features of investigated compounds, PCA was performed on both chromatographic data (RM values) and calculated 2D and 3D structural descriptors. Both QSRR and QSAR models were built by means of the partial least squares (PLS) statistical method. It was found that descriptors which encode hydrophobic (dispersive) interactions have positive influence on retention, while influence of descriptors encoding polar interactions was negative. According to the obtained PLS model for inhibition of botulinum neurotoxin serotype A light chain, hydrophobic interactions influence positively on the mechanism of action of the investigated 4,7-ACQ, while polar interactions are less favoured. Contrary, the results of PLS modelling of activity against Plasmodium falciparum strains (W2, D6 and TM91C235) indicate that higher polarity of 4,7-ACQ contribute to their higher antimalarial activity. PMID:26827282

  5. Amino acids of the Torpedo marmorata acetylcholine receptor. cap alpha. subunit labeled by a photoaffinity ligand for the acetylcholine binding site

    SciTech Connect

    Dennis, M.; Giraudat, J.; Kotzyba-Hibert, F.; Goeldner, M.; Hirth, C.; Chang, J.Y.; Lazure, C.; Chretien, M.; Changeux, J.P.

    1988-04-05

    The acetylcholine-binding sites on the native, membrane-bound acetylcholine receptor from Torpedo marmorata were covalently labeled with the photoaffinity reagent (/sup 3/H)-p-(dimethylamino)-benzenediazonium fluoroborate (DDF) in the presence of phencyclidine by employing an energy-transfer photolysis procedure. The ..cap alpha..-chains isolated from receptor-rich membranes photolabeled in the absence or presence of carbamoylcholine were cleaved with CNBr and the radiolabeled fragments purified by high-performance liquid chromatography. Amino acid and/or sequence analysis demonstrated that the ..cap alpha..-chain residues Trp-149, Tyr-190, Cys-192, and Cys-193 and an unidentified residue(s) in the segment ..cap alpha.. 31-105 were all labeled by the photoaffinity reagent in an agonist-protectable manner. The labeled amino acids are located within three distinct regions of the large amino-terminal hydrophilic domain of the ..cap alpha..-subunit primary structure and plausibly lie in proximity to one another at the level of the acetylcholine-binding sites in the native receptor. These findings are in accord with models proposed for the transmembrane topology of the ..cap alpha..-chain that assign the amino-terminal segment ..cap alpha.. 1-210 to the synaptic cleft. Furthermore, the results suggest that the four identified (/sup 3/H)DDF-labeled resides, which are conserved in muscle and neuronal ..cap alpha..-chains but not in the other subunits, may be directly involved in agonist binding.

  6. Chemical compositions, free amino acid contents and antioxidant activities of Hanwoo (Bos taurus coreanae) beef by cut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate chemical compositions, free amino acid contents, and antioxidant activities of different cuts of Hanwoo (Bos taurus coreanae) beef. Beef preferences and prices in the Korean market depend on cut. Therefore, comparisons were made between high-preference (gr...

  7. Dissecting the active site of a photoreceptor protein

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter; Hara, Miwa; Ren, Jie; Moghadam, Farzaneh; Xie, Aihua; Kumauchi, Masato

    While enzymes are quite large molecules, functionally important chemical events are often limited to a small region of the protein: the active site. The physical and chemical properties of residues at such active sites are often strongly altered compared to the same groups dissolved in water. Understanding such effects is important for unraveling the mechanisms underlying protein function and for protein engineering, but has proven challenging. Here we report on our ongoing efforts on using photoactive yellow protein (PYP), a bacterial photoreceptor, as a model system for such effects. We will report on the following questions: How many residues affect active site properties? Are these residues in direct physical contact with the active site? Can functionally important residues be recognized in the crystal structure of a protein? What structural resolution is needed to understand active sites? What spectroscopic techniques are most informative? Which weak interactions dominate active site properties?

  8. Biosynthesis of a Novel Glutamate Racemase Containing a Site-Specific 7-Hydroxycoumarin Amino Acid: Enzyme–Ligand Promiscuity Revealed at the Atomistic Level

    PubMed Central

    2015-01-01

    Glutamate racemase (GR) catalyzes the cofactor independent stereoinversion of l- to d-glutamate for biosynthesis of bacterial cell walls. Because of its essential nature, this enzyme is under intense scrutiny as a drug target for the design of novel antimicrobial agents. However, the flexibility of the enzyme has made inhibitor design challenging. Previous steered molecular dynamics (MD), docking, and experimental studies have suggested that the enzyme forms highly varied complexes with different competitive inhibitor scaffolds. The current study employs a mutant orthogonal tRNA/aminoacyl-tRNA synthetase pair to genetically encode a non-natural fluorescent amino acid, l-(7-hydroxycoumarin-4-yl) ethylglycine (7HC), into a region (Tyr53) remote from the active site (previously identified by MD studies as undergoing ligand-associated changes) to generate an active mutant enzyme (GRY53/7HC). The GRY53/7HC enzyme is an active racemase, which permitted us to examine the nature of these idiosyncratic ligand-associated phenomena. One type of competitive inhibitor resulted in a dose-dependent quenching of the fluorescence of GRY53/7HC, while another type of competitive inhibitor resulted in a dose-dependent increase in fluorescence of GRY53/7HC. In order to investigate the environmental changes of the 7HC ring system that are distinctly associated with each of the GRY53/7HC–ligand complexes, and thus the source of the disparate quenching phenomena, a parallel computational study is described, which includes essential dynamics, ensemble docking and MD simulations of the relevant GRY53/7HC–ligand complexes. The changes in the solvent exposure of the 7HC ring system due to ligand-associated GR changes are consistent with the experimentally observed quenching phenomena. This study describes an approach for rationally predicting global protein allostery resulting from enzyme ligation to distinctive inhibitor scaffolds. The implications for fragment-based drug discovery and

  9. Delta-elimination by T4 endonuclease V at a thymine dimer site requires a secondary binding event and amino acid Glu-23.

    PubMed

    Latham, K A; Lloyd, R S

    1995-07-11

    Endonuclease V from bacteriophage T4 is a well characterized enzyme that initiates the repair of ultraviolet light induced pyrimidine dimers. Scission of the phosphodiester backbone between the pyrimidines within a dimer, or 3' to an abasic (AP) site, occurs by a beta-elimination mechanism. In addition, high concentrations of endonuclease V have been reported to catalyze the cleavage of the C5'-O-P bond in a reaction referred to as delta-elimination. To better understand the enzymology of endonuclease V, the delta-elimination reaction of the enzyme has been investigated using an oligonucleotide containing a site-specific cis-syn cyclobutane thymine dimer. The slower kinetics of the delta-elimination reaction compared to beta-elimination and the ability of unlabeled dimer-containing DNA to compete more efficiently for delta-elimination than beta-elimination indicate that delta-elimination most likely occurs during a separate enzyme encounter with the incised DNA. Previous studies have shown that both the alpha-amino group of the N-terminus and the acidic residue Glu-23 are necessary for the N-glycosylase and AP lyase activities of endonuclease V. Experiments with T2P, E23Q, and E23D mutants, which are defective in pyrimidine dimer-specific nicking, demonstrated that delta-elimination requires Glu-23, but not the primary amine at the N-terminus. In fact, the T2P mutant was much more efficient at promoting delta-elimination than the wild-type enzyme. Besides lending further proof that delta-elimination requires a second encounter between enzyme and DNA, this result may reflect an enhanced binding of the T2P mutant to dimer-containing DNA. PMID:7612620

  10. From The Cover: Poly- amino ester-containing microparticles enhance the activity of nonviral genetic vaccines

    NASA Astrophysics Data System (ADS)

    Little, Steven R.; Lynn, David M.; Ge, Qing; Anderson, Daniel G.; Puram, Sidharth V.; Chen, Jianzhu; Eisen, Herman N.; Langer, Robert

    2004-06-01

    Current nonviral genetic vaccine systems are less effective than viral vaccines, particularly in cancer systems where epitopes can be weakly immunogenic and antigen-presenting cell processing and presentation to T cells is down-regulated. A promising nonviral delivery method for genetic vaccines involves microencapsulation of antigen-encoding DNA, because such particles protect plasmid payloads and target them to phagocytic antigen-presenting cells. However, conventional microparticle formulations composed of poly lactic-co-glycolic acid take too long to release encapsulated payload and fail to induce high levels of target gene expression. Here, we describe a microparticle-based DNA delivery system composed of a degradable, pH-sensitive poly- amino ester and poly lactic-co-glycolic acid. These formulations generate an increase of 3-5 orders of magnitude in transfection efficiency and are potent activators of dendritic cells in vitro. When used as vaccines in vivo, these microparticle formulations, unlike conventional formulations, induce antigen-specific rejection of transplanted syngenic tumor cells.

  11. Further in vitro biological activity evaluation of amino-, thio- and ester-derivatives of avarol.

    PubMed

    Tommonaro, Giuseppina; Pejin, Boris; Iodice, Carmine; Tafuto, Antonietta; De Rosa, Salvatore

    2016-08-01

    The acetylcholinesterase inhibitory and/or antitumour activities of amino-, thio- and ester-derivatives of avarol selected were evaluated for the first time at in vitro conditions. Avarol-3',4'-dithioglycol (1) and avarol-4'-(3)mercaptopropionic acid (3) were shown to be the best inhibitors of the enzyme tested (0.50 µg and IC50 0.05 mM and 0.50 µg and IC50 0.12 mM, respectively), while 4'-tryptamine-avarone (9) and avarol-3'-(3)mercaptopropionic acid (2) exhibited the highest cytotoxicity against the human breast T-47D cancer cell line (IC50 0.66 µg/mL and 1.25 µg/mL, respectively). According to experimental data obtained, the sesquiterpenoid hydroquinone structure of bioactive avarol derivatives may inspire development of new pharmacologically useful substances to be used in the treatment of Alzheimer's disease and/or human breast tumour. PMID:26114310

  12. The relationship of physicochemical properties to the antioxidative activity of free amino acids in Fenton system.

    PubMed

    Milić, Sonja; Bogdanović Pristov, Jelena; Mutavdžić, Dragosav; Savić, Aleksandar; Spasić, Mihajlo; Spasojević, Ivan

    2015-04-01

    Herein we compared antioxidative activities (AA) of 25 free L-amino acids (FAA) against Fenton system-mediated hydroxyl radical (HO(•)) production in aqueous solution, and examined the relation between AA and a set of physicochemical properties. The rank order according to AA was: Trp > norleucine > Phe, Leu > Ile > His >3,4-dihydroxyphenylalanine, Arg > Val > Lys, Tyr, Pro > hydroxyproline > α-aminobutyric acid > Gln, Thr, Ser > Glu, Ala, Gly, Asn, Asp. Sulfur-containing FAA generated different secondary reactive products, which were discriminated by the means of electron paramagnetic resonance spin-trapping spectroscopy. AA showed a general positive correlation with hydrophobicity. However, when taken separately, uncharged FAA exhibited strong positive correlation of AA with hydrophobicity whereas charged FAA showed negative or no significant correlation depending on the scale applied. A general strong negative correlation was found between AA and polarity. Steric parameters and hydration numbers correlated positively with AA of nonpolar side-chain FAA. In addition, a decrease of temperature which promotes hydrophobic hydration resulted in increased AA. This implies that HO(•)-provoked oxidation of FAA is strongly affected by hydrophobic hydration. Our findings are important for the understanding of oxidation processes in natural and waste waters. PMID:25764263

  13. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    SciTech Connect

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  14. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program --now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history The missions will develop technology and acquire data necessary for eventual human Exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines be opportunities for the Mars community to provide input into the landing site selection process.

  15. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program -- now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history. The missions will develop technology and acquire data necessary for eventual human exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines the opportunities for the Mars community to provide input into the landing site selection process.

  16. Antioxidant activities, distribution of phenolics and free amino acids of Erica australis L. leaves and flowers collected in Algarve, Portugal.

    PubMed

    Nunes, Ricardo; Carvalho, Isabel S

    2013-01-01

    Leaves and flowers from Erica plant possess nutritional and medicinal properties. We determined the antioxidant activity, phenolic, flavonoid and amino acid profiles of the leaves and flowers of this plant. Total amino acid content varied from 28 to 49 and essential amino acids from 8 to 20 mg/g for flowers and leaves, respectively, with different distributions within the plant. From 16 phenolic compounds identified, delphinidin-3-glucoside, caffeic acid and cyanidin-3,5-glucoside in leaves and pelargonidin-3,5-glucoside in flowers were the compounds in highest amount, all with over 500 μg/g. Although flowers had higher contents of phenolic compounds (4000 μg/g) than leaves (3400 μg/g), they showed lower antioxidant activity, indicating that the antioxidant activity depends not only on the content of phenolics, but also on their type. This study shows that this plant has the potential to be used as an extra dietary source of amino acids and phenolic compounds and its consumption may provide health benefits. PMID:23237569

  17. Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles.

    PubMed

    Wang, Sheng; Chen, Wei; Liu, Ai-Lin; Hong, Lei; Deng, Hao-Hua; Lin, Xin-Hua

    2012-04-10

    The origin of the peroxidase-like activity of gold nanoparticles and the impact of surface modification are studied. Furthermore, some influencing factors, such as fabrication process, redox property of the modifier, and charge property of the substrate, are investigated. Compared to amino-modified or citrate-capped gold nanoparticles, unmodified gold nanoparticles show significantly higher catalytic activity toward peroxidase substrates, that is, the superficial gold atoms are a contributing factor to the observed peroxidase-like activity. The different catalytic activities of amino-modified and citrate-capped gold nanoparticles toward 3,3',5,5'-tetramethylbenzidine (TMB) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) show that the charge characteristics of the nanoparticles and the substrate also play an important role in the catalytic reactions. PMID:22383315

  18. Mapping the X(+1) binding site of the Grb2-SH2 domain with alpha,alpha-disubstituted cyclic alpha-amino acids.

    PubMed

    García-Echeverría, C; Gay, B; Rahuel, J; Furet, P

    1999-10-18

    A series of phosphopeptides containing alpha,alpha-disubstituted cyclic alpha-amino acids (Ac(n)c, 3 < or = n < or = 7; n refers to the number of carbons in the ring) at the X(+1) position of Ac-Tyr(PO3H2)-X(+1)-Asn-NH2 has been synthesised and their inhibitory activity as antagonists of the Grb2-SH2 domain has been determined in competitive binding assays. The SAR data obtained have been interpreted by using models constructed from the X-ray structure of the ligand-bound Grb2-SH2 domain. The used of alpha,alpha-disubstituted cyclic alpha-amino acids to map the binding pockets of proteins expands the classical alanine scan concept and takes advantage of the known conformational preferences of these amino acids. PMID:10571147

  19. The bifunctional active site of s-adenosylmethionine synthetase. Roles of the active site aspartates.

    PubMed

    Taylor, J C; Markham, G D

    1999-11-12

    S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the

  20. Antibacterial and anticancer activity of a series of novel peptides incorporating cyclic tetra-substituted C(α) amino acids.

    PubMed

    Hicks, Rickey P

    2016-09-15

    Eleven antimicrobial peptides (AMP) based on the incorporation of cyclic tetra substituted C(α) amino acids, as well as other unnatural amino acids were designed, synthesized and screened for in vitro activity against 18 strains of bacteria as well as 12 cancer cell lines. The AMPs discussed herein are derived from the following peptide sequence: Ac-GF(X)G(X)B(X)G(X)F(X)G(X)GB(X)BBBB-amide, X=any one of the following residues, A5c, A6c, Tic or Oic and B=any one of the following residues, Arg, Lys, Orn, Dpr or Dab. A diversity of in vitro inhibitory activity was observed for these AMPs. Several analogs exhibited single digit μM activity against drug resistant bacteria including; multiple drug resistant Mycobacterium tuberculosis, extremely drug resistant Mycobacterium tuberculosis and MRSA. The physicochemical properties of the basic amino acid residues incorporated into these AMPs seem to play a major role in defining antibacterial activity. Overall hydrophobicity seems to play a limited role in defining antibacterial activity. The ESKAPE pathogens were used to compare the activity of these AMPs to another family of synthetic AMPs incorporating the unnatural amino acids Tic and Oic. In most cases similarly substituted members of both families exhibited similar inhibitory activity against the ESKAPE pathogens. In specific cases differences in activity as high as 15 fold were observed between analogs. In addition four of these AMPs exhibited promising IC50 (<7.5μM) values against 12 different and diverse cancer cell lines. Five other AMPs exhibited promising IC50 (<7.5μM) values against selected cancer cell lines. PMID:27387357

  1. The in vitro activity of fatty diamines and amino alcohols against mixed amastigote and trypomastigote Trypanosoma cruzi forms

    PubMed Central

    Sales, Policarpo Ademar; Rezende, Celso Oliveira; Le Hyaric, Mireille; de Almeida, Mauro Vieira; Romanha, Alvaro José

    2014-01-01

    Four diamines and three amino alcohols derived from 1-decanol, 1-dodecanol and 1,2-dodecanediol were evaluated in an in vitro assay against a mixture of trypomastigote and intracellular amastigote forms of Trypanosoma cruzi. Two of these compounds (6 and 7) showed better activity against both proliferative stages of T. cruzi than the positive control benznidazole, three were of similar potency (1, 2 and 5) and two were less active (3 and 4). PMID:24831550

  2. Acylpeptide hydrolase: inhibitors and some active site residues of the human enzyme.

    PubMed

    Scaloni, A; Jones, W M; Barra, D; Pospischil, M; Sassa, S; Popowicz, A; Manning, L R; Schneewind, O; Manning, J M

    1992-02-25

    Acylpeptide hydrolase may be involved in N-terminal deacetylation of nascent polypeptide chains and of bioactive peptides. The activity of this enzyme from human erythrocytes is sensitive to anions such as chloride, nitrate, and fluoride. Furthermore, blocked amino acids act as competitive inhibitors of the enzyme. Acetyl leucine chloromethyl ketone has been employed to identify one active site residue as His-707. Diisopropylfluorophosphate has been used to identify a second active site residue as Ser-587. Chemical modification studies with a water-soluble carbodiimide implicate a carboxyl group in catalytic activity. These results and the sequence around these active site residues, especially near Ser-587, suggest that acylpeptide hydrolase contains a catalytic triad. The presence of a cysteine residue in the vicinity of the active site is suggested by the inactivation of the enzyme by sulfhydryl-modifying agents and also by a low amount of modification by the peptide chloromethyl ketone inhibitor. Ebelactone A, an inhibitor of the formyl aminopeptidase, the bacterial counterpart of eukaryotic acylpeptide hydrolase, was found to be an effective inhibitor of this enzyme. These findings suggest that acylpeptidase hydrolase is a member of a family of enzymes with extremely diverse functions. PMID:1740429

  3. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  4. Amino Acid Utilization in Seeds of Loblolly Pine during Germination and Early Seedling Growth (I. Arginine and Arginase Activity).

    PubMed Central

    King, J. E.; Gifford, D. J.

    1997-01-01

    The mobilization and utilization of the major storage proteins in loblolly pine (Pinus taeda L.) seeds following imbibition were investigated. Most of the seed protein reserves were contained within the megagametophyte. Breakdown of these proteins occurred primarily following radicle emergence and correlated with a substantial increase in the free amino acid pool in the seedling; the majority of this increase appeared to be the result of export from the megagametophyte. The megagametophyte was able to break down storage proteins and export free amino acids in the absence of the seedling. Arginine (Arg) was the most abundant amino acid among the principal storage proteins of the megagametophyte and was a major component of the free amino acid pools in both the seedling and the megagametophyte. The increase in free Arg coincided with a marked increase in arginase activity, mainly localized within the cotyledons and epicotyl of the seedling. Arginase activity was negligible in isolated seedlings. Experiments with phenylphosphorodiamidate, a urease inhibitor, supported the hypothesis that arginase participates in Arg metabolism in the seedling. The results of this study indicate that Arg could play an important role in the nutrition of loblolly pine during early seedling growth. PMID:12223664

  5. A study on the flexibility of enzyme active sites

    PubMed Central

    2011-01-01

    Background A common assumption about enzyme active sites is that their structures are highly conserved to specifically distinguish between closely similar compounds. However, with the discovery of distinct enzymes with similar reaction chemistries, more and more studies discussing the structural flexibility of the active site have been conducted. Results Most of the existing works on the flexibility of active sites focuses on a set of pre-selected active sites that were already known to be flexible. This study, on the other hand, proposes an analysis framework composed of a new data collecting strategy, a local structure alignment tool and several physicochemical measures derived from the alignments. The method proposed to identify flexible active sites is highly automated and robust so that more extensive studies will be feasible in the future. The experimental results show the proposed method is (a) consistent with previous works based on manually identified flexible active sites and (b) capable of identifying potentially new flexible active sites. Conclusions This proposed analysis framework and the former analyses on flexibility have their own advantages and disadvantage, depending on the cause of the flexibility. In this regard, this study proposes an alternative that complements previous studies and helps to construct a more comprehensive view of the flexibility of enzyme active sites. PMID:21342563

  6. Evaluation of antioxidant activity, polyphenolic compounds, amino acids and mineral elements of representative genotypes of Lonicera edulis.

    PubMed

    Sochor, Jiri; Jurikova, Tunde; Pohanka, Miroslav; Skutkova, Helena; Baron, Mojmir; Tomaskova, Lenka; Balla, Stefan; Klejdus, Borivoj; Pokluda, Robert; Mlcek, Jiri; Trojakova, Zuzana; Saloun, Jan

    2014-01-01

    The aim of this study was to evaluate the bioactive substances in 19 berry cultivars of edible honeysuckle (Lonicera edulis). A statistical evaluation was used to determine the relationship between the content of selected bioactive substances and individual cultivars. Regarding mineral elements, the content of sodium was measured using potentiometry and spectrophotometry. The content of selected polyphenolic compounds with high antioxidant activity was determined by a HPLC-UV/ED method. The total amount of polyphenols was determined by the Folin-Ciocalteu method. The antioxidant activity was determined using five methods (DPPH, FRAP, ABTS, FR and DMPD) that differ in their principles. The content of 13 amino acids was determined by ion-exchange chromatography. The experimental results obtained for the different cultivars were evaluated and compared by statistical and bioinformatic methods. A unique feature of this study lies in the exhaustive analysis of the chosen parameters (amino acids, mineral elements, polyphenolic compounds and antioxidant activity) during one growing season. PMID:24853714

  7. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  8. DOE site performance assessment activities. Radioactive Waste Technical Support Program

    SciTech Connect

    Not Available

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

  9. Savannah River Site prioritization of transition activities

    SciTech Connect

    Finley, R.H.

    1993-11-01

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D&D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities.

  10. Protein turnover, amino acid requirements and recommendations for athletes and active populations.

    PubMed

    Poortmans, J R; Carpentier, A; Pereira-Lancha, L O; Lancha Jr, A

    2012-10-01

    Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sessions. Stable isotopic tracers ((13)C-lysine, (15)N-glycine, ²H5-phenylalanine) and arteriovenous differences have been used in studies of skeletal muscle and collagen tissues under resting and exercise conditions. There are different fractional synthesis rates in skeletal muscle and tendon tissues, but there is no major difference between collagen and myofibrillar protein synthesis. Strenuous exercise provokes increased proteolysis and decreased protein synthesis, the opposite occurring during the recovery period. Individuals who exercise respond differently when resistance and endurance types of contractions are compared. Endurance exercise induces a greater oxidative capacity (enzymes) compared to resistance exercise, which induces fiber hypertrophy (myofibrils). Nitrogen balance (difference between protein intake and protein degradation) for athletes is usually balanced when the intake of protein reaches 1.2 g · kg(-1) · day(-1) compared to 0.8 g · kg(-1) · day(-1) in resting individuals. Muscular activities promote a cascade of signals leading to the stimulation of eukaryotic initiation of myofibrillar protein synthesis. As suggested in several publications, a bolus of 15-20 g protein (from skimmed milk or whey proteins) and carbohydrate (± 30 g maltodextrine) drinks is needed immediately after stopping exercise to stimulate muscle protein and tendon collagen turnover within 1 h. PMID:22666780

  11. Protein turnover, amino acid requirements and recommendations for athletes and active populations

    PubMed Central

    Poortmans, J.R.; Carpentier, A.; Pereira-Lancha, L.O.; Lancha, A.

    2012-01-01

    Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sessions. Stable isotopic tracers (13C-lysine, 15N-glycine, 2H5-phenylalanine) and arteriovenous differences have been used in studies of skeletal muscle and collagen tissues under resting and exercise conditions. There are different fractional synthesis rates in skeletal muscle and tendon tissues, but there is no major difference between collagen and myofibrillar protein synthesis. Strenuous exercise provokes increased proteolysis and decreased protein synthesis, the opposite occurring during the recovery period. Individuals who exercise respond differently when resistance and endurance types of contractions are compared. Endurance exercise induces a greater oxidative capacity (enzymes) compared to resistance exercise, which induces fiber hypertrophy (myofibrils). Nitrogen balance (difference between protein intake and protein degradation) for athletes is usually balanced when the intake of protein reaches 1.2 g·kg−1·day−1 compared to 0.8 g·kg−1·day−1 in resting individuals. Muscular activities promote a cascade of signals leading to the stimulation of eukaryotic initiation of myofibrillar protein synthesis. As suggested in several publications, a bolus of 15-20 g protein (from skimmed milk or whey proteins) and carbohydrate (± 30 g maltodextrine) drinks is needed immediately after stopping exercise to stimulate muscle protein and tendon collagen turnover within 1 h. PMID:22666780

  12. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis.

    PubMed

    Neshat, Armin; Mentz, Almut; Rückert, Christian; Kalinowski, Jörn

    2014-11-20

    The Gram-positive bacterium Corynebacterium glutamicum belongs to the order Corynebacteriales and is used as a producer of amino acids at industrial scales. Due to its economic importance, gene expression and particularly the regulation of amino acid biosynthesis has been investigated extensively. Applying the high-resolution technique of transcriptome sequencing (RNA-seq), recently a vast amount of data has been generated that was used to comprehensively analyze the C. glutamicum transcriptome. By analyzing RNA-seq data from a small RNA cDNA library of C. glutamicum, short transcripts in the known transcriptional attenuators sites of the trp operon, the ilvBNC operon and the leuA gene were verified. Furthermore, whole transcriptome RNA-seq data were used to elucidate the transcriptional organization of these three amino acid biosynthesis operons. In addition, we discovered and analyzed the novel attenuator aroR, located upstream of the aroF gene (cg1129). The DAHP synthase encoded by aroF catalyzes the first step in aromatic amino acid synthesis. The AroR leader peptide contains the amino acid sequence motif F-Y-F, indicating a regulatory effect by phenylalanine and tyrosine. Analysis by real-time RT-PCR suggests that the attenuator regulates the transcription of aroF in dependence of the cellular amount of tRNA loaded with phenylalanine when comparing a phenylalanine-auxotrophic C. glutamicum mutant fed with limiting and excess amounts of a phenylalanine-containing dipeptide. Additionally, the very interesting finding was made that all analyzed attenuators are leaderless transcripts. PMID:24910972

  13. Loop substitution as a tool to identify active sites of interleukin-1 beta.

    PubMed

    Palla, E; Bensi, G; Solito, E; Buonamassa, D T; Fassina, G; Raugei, G; Spano, F; Galeotti, C; Mora, M; Domenighini, M

    1993-06-25

    By computer analysis of the amino acid sequence of human interleukin-1 beta (IL-1 beta) and of the human type I IL-1 receptor (IL-1RI), we have identified two hydropathically complementary peptides (Fassina, G., Roller, P. P., Olson, A. D., Thorgeirsson, S. S., and Omichinski, J. G. (1989) J. Biol. Chem. 264, 11252-11257) capable of binding to each other. The sequence of the IL-1 beta peptide corresponds to that of residues 88-99 (loop 7 of the crystal structure of mature IL-1 beta) of mature IL-1 beta, one of the exposed and highly charged regions of the molecule. The substitution of this loop with an amino acid sequence of the same length but different hydropathic profile generates a mutant with drastically reduced binding activity to IL-1RI. In contrast, the binding affinity to the type II IL-1R (IL-1RII) is the same as that of wild type IL-1 beta. The results show that 1) loop 7 is part of the binding site of IL-1 beta to IL-1RI, but not to IL-1RII. 2) The structure of the mutant protein is not grossly altered except locally at the position of the substituted loop. 3) The substitution of amino acids by site-directed mutagenesis of the loop 7 region generates mutants with binding affinity constants slightly lower than that of wild type IL-1 beta and not comparable to that of the loop substitution analogue. 4. All mutants analyzed, including the loop substitutions, are biologically active, confirming the structural integrity of the proteins. We propose a binding site in which the cooperation of several low energy bonds extended over a wide area results in a high affinity complex between IL-1 and the type I receptor. PMID:7685764

  14. The Amino Acid Specificity for Activation of Phenylalanine Hydroxylase Matches the Specificity for Stabilization of Regulatory Domain Dimers

    PubMed Central

    2016-01-01

    Liver phenylalanine hydroxylase is allosterically activated by phenylalanine. The structural changes that accompany activation have not been identified, but recent studies of the effects of phenylalanine on the isolated regulatory domain of the enzyme support a model in which phenylalanine binding promotes regulatory domain dimerization. Such a model predicts that compounds that stabilize the regulatory domain dimer will also activate the enzyme. Nuclear magnetic resonance spectroscopy and analytical ultracentrifugation were used to determine the ability of different amino acids and phenylalanine analogues to stabilize the regulatory domain dimer. The abilities of these compounds to activate the enzyme were analyzed by measuring their effects on the fluorescence change that accompanies activation and on the activity directly. At concentrations of 10–50 mM, d-phenylalanine, l-methionine, l-norleucine, and (S)-2-amino-3-phenyl-1-propanol were able to activate the enzyme to the same extent as 1 mM l-phenylalanine. Lower levels of activation were seen with l-4-aminophenylalanine, l-leucine, l-isoleucine, and 3-phenylpropionate. The ability of these compounds to stabilize the regulatory domain dimer agreed with their ability to activate the enzyme. These results support a model in which allosteric activation of phenylalanine hydroxylase is linked to dimerization of regulatory domains. PMID:26252467

  15. FT-IR, Raman and DFT study of 2-amino-5-fluorobenzoic acid and its biological activity with other halogen (Cl, Br) substitution

    NASA Astrophysics Data System (ADS)

    Xavier, T. S.; Hubert, Joe I.

    2011-07-01

    The Fourier-transform Raman and infrared spectra of 2-amino-5-fluoro benzoic acid has been recorded and analyzed. The optimized geometry of the other halogen substitution (Cl, Br) have been computed with the help of density functional theory. The detailed interpretation of vibrational spectra of 2-amino-5-fluoro benzoic acid have performed in terms of potential energy distribution analysis. Natural bond orbital analysis on 2-amino-5-fluoro benzoic acid, 2-amino-5-chloro benzoic acid and 2-amino-5-bromo benzoic acid has been carried out for various intramolecular interactions that are responsible for the stabilization of the molecule. The p Ka values of 2-amino-5-fluoro benzoic acid, 2-amino-5-chloro benzoic acid and 2-amino-5-bromo benzoic acid are computed using MOPAC and it is related with HOMO-LUMO energy difference obtained from Gaussian 03 software. The biological activity of 2-amino-5-fluoro benzoic acid has been predicted based on these values. The inhibition activity of 2-amino-5-bromo benzoic acid with the protein tyrosine kinase 3LQ8 is simulated by using Autodock software.

  16. FT-IR, Raman and DFT study of 2-amino-5-fluorobenzoic acid and its biological activity with other halogen (Cl, Br) substitution.

    PubMed

    Xavier, T S; Joe, I Hubert

    2011-07-01

    The Fourier-transform Raman and infrared spectra of 2-amino-5-fluoro benzoic acid has been recorded and analyzed. The optimized geometry of the other halogen substitution (Cl, Br) have been computed with the help of density functional theory. The detailed interpretation of vibrational spectra of 2-amino-5-fluoro benzoic acid have performed in terms of potential energy distribution analysis. Natural bond orbital analysis on 2-amino-5-fluoro benzoic acid, 2-amino-5-chloro benzoic acid and 2-amino-5-bromo benzoic acid has been carried out for various intramolecular interactions that are responsible for the stabilization of the molecule. The pKa values of 2-amino-5-fluoro benzoic acid, 2-amino-5-chloro benzoic acid and 2-amino-5-bromo benzoic acid are computed using MOPAC and it is related with HOMO-LUMO energy difference obtained from Gaussian 03 software. The biological activity of 2-amino-5-fluoro benzoic acid has been predicted based on these values. The inhibition activity of 2-amino-5-bromo benzoic acid with the protein tyrosine kinase 3LQ8 is simulated by using Autodock software. PMID:21497545

  17. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    SciTech Connect

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  18. Autographa californica multiple nucleopolyhedrovirus GP64 protein: Analysis of domain I and V amino acid interactions and membrane fusion activity.

    PubMed

    Yu, Qianlong; Blissard, Gary W; Liu, Tong-Xian; Li, Zhaofei

    2016-01-15

    The Autographa californica multiple nucleopolyhedrovirus GP64 is a class III viral fusion protein. Although the post-fusion structure of GP64 has been solved, its pre-fusion structure and the detailed mechanism of conformational change are unknown. In GP64, domain V is predicted to interact with two domain I segments that flank fusion loop 2. To evaluate the significance of the amino acids involved in these interactions, we examined 24 amino acid positions that represent interacting and conserved residues within domains I and V. In several cases, substitution of a single amino acid involved in a predicted interaction disrupted membrane fusion activity, but no single amino acid pair appears to be absolutely required. We identified 4 critical residues in domain V (G438, W439, T452, and T456) that are important for membrane fusion, and two residues (G438 and W439) that appear to be important for formation or stability of the pre-fusion conformation of GP64. PMID:26655244

  19. Molecular cloning and expression in Escherichia coli of an active fused Zea mays L. D-amino acid oxidase.

    PubMed

    Gholizadeh, A; Kohnehrouz, B B

    2009-02-01

    D-Amino acid oxidase (DAAO) is an FAD-dependent enzyme that metabolizes D-amino acids in microbes and animals. However, such ability has not been identified in plants so far. We predicted a complete DAAO coding sequence consisting of 1158 bp and encoding a protein of 386 amino acids. We cloned this sequence from the leaf cDNA population of maize plants that could utilize D-alanine as a nitrogen source and grow normally on media containing D-Ala at the concentrations of 100 and 1000 ppm. For more understanding of DAAO ability in maize plant, we produced a recombinant plasmid by the insertion of isolated cDNA into the pMALc2X Escherichia coli expression vector, downstream of the maltose-binding protein coding sequence. The pMALc2X-DAAO vector was used to transform the TB1 strain of E. coli cells. Under normal growth conditions, fused DAAO (with molecular weight of about 78 kDa) was expressed up to 5 mg/liter of bacterial cells. The expressed product was purified by affinity chromatography and subjected to in vitro DAAO activity assay in the presence of five different D-amino acids. Fused DAAO could oxidize D-alanine and D-aspartate, but not D-leucine, D-isoleucine, and D-serine. The cDNA sequence reported in this paper has been submitted to EMBL databases under accession number AM407717. PMID:19267668

  20. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid

    NASA Astrophysics Data System (ADS)

    Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem

    2016-02-01

    Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.

  1. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase.

    PubMed Central

    Petrosino, J F; Palzkill, T

    1996-01-01

    Beta-Lactamase is a bacterial protein that provides resistance against beta-lactam antibiotics. TEM-1 beta-lactamase is the most prevalent plasmid-mediated beta-lactamase in gram-negative bacteria. Normally, this enzyme has high levels of hydrolytic activity for penicillins, but mutant beta-lactamases have evolved with activity toward a variety of beta-lactam antibiotics. It has been shown that active site substitutions are responsible for changes in the substrate specificity. Since mutant beta-lactamases pose a serious threat to antimicrobial therapy, the mechanisms by which mutations can alter the substrate specificity of TEM-1 beta-lactamase are of interest. Previously, screens of random libraries encompassing 31 of 55 active site amino acid positions enabled the identification of the residues responsible for maintaining the substrate specificity of TEM-1 beta-lactamase. In addition to substitutions found in clinical isolates, many other specificity-altering mutations were also identified. Interestingly, many nonspecific substitutions in the N-terminal half of the active site omega loop were found to increase ceftazidime hydrolytic activity and decrease ampicillin hydrolytic activity. To complete the active sight study, eight additional random libraries were constructed and screened for specificity-altering mutations. All additional substitutions found to alter the substrate specificity were located in the C-terminal half of the active site loop. These mutants, much like the N-terminal omega loop mutants, appear to be less stable than the wild-type enzyme. Further analysis of a 165-YYG-167 triple mutant, selected for high levels of ceftazidime hydrolytic activity, provides an example of the correlation which exists between enzyme instability and increased ceftazidime hydrolytic activity in the ceftazidime-selected omega loop mutants. PMID:8606154

  2. Complete amino acid sequence of the lentil trypsin-chymotrypsin inhibitor LCI-1.7 and a discussion of atypical binding sites of Bowman-Birk inhibitors.

    PubMed

    Weder, Jürgen K P; Hinkers, Sabine C

    2004-06-30

    The complete primary structure of the lentil (Lens culinaris) trypsin-chymotrypsin inhibitor LCI-1.7 was determined by conventional methods in order to find relationships between partial sequences and the difference in action against human and bovine chymotrypsin. As other Bowman-Birk type inhibitors, LCI-1.7 contained 68 amino acid residues, seven disulfide bridges, and two reactive sites, Arg16-Ser17 for trypsin and Tyr42-Ser43 for chymotrypsin. Evaluation of sequence homologies showed that it belonged to the group III Bowman-Birk inhibitors. The atypical additional binding site of LCI-1.7 for human chymotrypsin was discussed and compared with such binding sites of two other Bowman-Birk inhibitors, the Bowman-Birk soybean proteinase inhibitor BBI, and the lima bean proteinase inhibitor LBI I, for human and bovine trypsin and chymotrypsin. A concept to reduce the action of these inhibitors against human enzymes by genetic engineering was proposed. PMID:15212472

  3. Building, characterising and catalytic activity testing of Co-C-protected amino acid complexes covalently grafted onto chloropropylated silica gel

    NASA Astrophysics Data System (ADS)

    Varga, G.; Timár, Z.; Csendes, Z.; Bajnóczi, É. G.; Carlson, S.; Canton, S. E.; Bagi, L.; Sipos, P.; Pálinkó, I.

    2015-06-01

    Co-C-protected amino acid (C-protected L-histidine, L-tyrosine, L-cysteine and L-cystine) complexes were covalently grafted onto chloropropylated silica gel, and the materials thus obtained were structurally characterised by mid/far IR and X-ray absorption spectroscopies. The superoxide dismutase-like activities of the substances were determined via the Beauchamp-Fridovich test reaction. It was found that covalent grafting and the preparation of the anchored complexes were successful in most cases. The coordinating groups varied upon changing the conditions of the syntheses. All materials displayed catalytic activity, although catalytic activities differed widely.

  4. Chemically Non-Innocent Cyclic (Alkyl)(Amino)Carbenes: Ligand Rearrangement, C-H and C-F Bond Activation.

    PubMed

    Turner, Zoë R

    2016-08-01

    A cyclic (alkyl)(amino)carbene (CAAC) was found to undergo unprecedented rearrangements and transformations of its core structure in the presence of Group 1 and 2 metals. Although the carbene was also found to be prone to intramolecular C-H activation, it was competent for intermolecular activation of a variety of sp-, sp(2) -, and sp(3) -hybridized C-H bonds. Double C-F activation of hexafluorobenzene was also observed in this work. These processes all hold relevance to the role of these carbenes in catalysis, as well as to their use in the synthesis of new and unusual main group or transition metal complexes. PMID:27363588

  5. Active sites residues of beef liver carnitine octanoyltransferase (COT) and carnitine palmitoyltransferase (CPT-II).

    PubMed Central

    Nic a'Bháird, N; Yankovskaya, V; Ramsay, R R

    1998-01-01

    The carnitine acyltransferases which catalyse the reversible transfer of fatty acyl groups between carnitine and coenzyme A have been proposed to contain a catalytic histidine. Here, the chemical reactivity of active site groups has been used to demonstrate differences between the active sites of beef liver carnitine octanoyltransferase (COT) and carnitine palmitoyltransferase-II (CPT-II). Treatment of CPT-II with the histidine-selective reagent, diethyl pyrocarbonate (DEPC), resulted in simple linear pseudo-first-order kinetics. The reversal of the inhibition by hydroxylamine and the pKa (7.1) of the modified residue indicated that the residue was a histidine. The order of the inactivation kinetics showed that 1mol of histidine was modified per mol of CPT-II.When COT was treated with DEPC the kinetics of inhibition were biphasic with an initial rapid loss of activity followed by a slower loss of activity. The residue reacting in the faster phase of inhibition was not a histidine but possibly a serine. The modification of this residue did not lead to complete loss of activity suggesting that a direct role in catalysis is unlikely. It was deduced that the residue modified by DEPC in the slower phase was a lysine and indeed fluorodinitrobenzene (FDNB) inactivated COT with linear pseudo-first-order kinetics. The COT peptide containing the FDNB-labelled lysine was isolated and sequenced. Alignment of this sequence placed it 10 amino acids downstream of the putative active-site histidine. PMID:9480926

  6. Metallo-β-lactamase inhibitory activity of 3-alkyloxy and 3-amino phthalic acid derivatives and their combination effect with carbapenem.

    PubMed

    Hiraiwa, Yukiko; Morinaka, Akihiro; Fukushima, Takayoshi; Kudo, Toshiaki

    2013-09-15

    3-Alkyloxy and 3-amino phthalic acid derivatives were found to have metallo-β-lactamase inhibitory activity. Among them, 3-amino phthalic acid derivatives showed both potent activity against metallo-β-lactamase, IMP-1 inhibitory activity and a strong combination effect with biapenem (BIPM), carbapenem antibiotic. In particular, the 4'-hydroxy-piperidine derivative showed strong IMP-1 inhibitory activity and a combination effect with various antibiotics. PMID:23920484

  7. On the reported optical activity of amino acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Ho, M.-S.; Steinberg, S.; Cronin, J. R.; Kvenvolden, K. A.; Lawless, J. G.; Miller, S. L.; Oro, J.

    1983-01-01

    It is shown that the explanation of terrestrial contamination of the Murchison meteorite is consistent with the analysis of extracts from the meteorite reported by Engel and Nagy (EN) (1982) and is much more probable than their suggestion that the excess of L-enantiomers for several protein amino acids is due to asymmetric synthesis or decomposition. The low abundance of serine and threonine reported by EN may be due to their decomposition during the derivatization procedure, and the absence of methionine, tyrosine, and phenylalanine can be attributed to various causes. The amount of contamination in EN's extracts are estimated from a mass balance of the amino acid enantiomers, and it is found that the amino acids in the HCl could be due entirely to contamination while in the water extract the amount of contamination ranges from about 40 to 97 percent, depending on the amino acid. The argument that contaminants were preferentially extracted by EN's procedure cannot account for the failure to detect methionine, tyrosine, and phenylalanine.

  8. Active role of fatty acid amino acid conjugates in nitrogen metabolidm by Spodoptera litura larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the first fatty acid amino acid conjugate (FAC) was isolated from regurgitant of Spodoptera exigua larvae in 1997 [volicitin: N-(17-hydroxylinolenoyl)- L-glutamine], their role as elicitors of induced responses in plants has been well documented. However, studies of the biosyntheses as well as...

  9. Chemical compositions, free amino acid contents and antioxidant activities of Hanwoo (Bos taurus coreanae) beef by cut.

    PubMed

    Oh, Mirae; Kim, Eun-Kyung; Jeon, Byong-Tae; Tang, Yujiao; Kim, Moon S; Seong, Hye-Jin; Moon, Sang-Ho

    2016-09-01

    The objective of this study was to evaluate chemical compositions, free amino acid contents, and antioxidant activities of different cuts of Hanwoo (Bos taurus coreanae) beef. Beef preferences and prices in the Korean market depend on cut. Therefore, comparisons were made between high-preference cuts (group 1 [G1], including loin, tenderloin, and rib) and low-preference cuts (group 2 [G2], including brisket, topside, and shank). Meat samples were collected from 10 fattened cows. Crude fat content was significantly higher in G1 than in G2 (p<0.05). The amounts of crude protein and total free amino acid were negatively correlated with crude fat content (p<0.05). Overall G2 contained higher levels of free amino acids with antioxidant activity than G1. Antioxidant activities were also significantly higher in G2 compared with G1 (p<0.05). In conclusion, providing consumers with positive information about G2 as found in this study could help health-conscious consumers choosing among beef products and further promote increased consumption of low-preference beef cuts. PMID:27115864

  10. Active Sites Environmental Monitoring Program FY 1996 annual report

    SciTech Connect

    Morrissey, C.M.; Marshall, D.S.; Cunningham, G.R.

    1997-11-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1995 through September 1996. The Radioactive Solid Waste Operations Group (RSWOG) of the Waste Management and Remedial Action Division (WMRAD) and the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) established ASEMP in 1989. The purpose of the program is to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 North as required by Chapters 2 and 3 of US Department of Energy Order 5820.2A.

  11. Active sites environmental monitoring Program - Program Plan: Revision 2

    SciTech Connect

    Morrissey, C.M.; Hicks, D.S.; Ashwood, T.L.; Cunningham, G.R.

    1994-05-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of active low-level-waste (LLW) and transuranic (TRU) waste facilities at Oak Ridge National Laboratory (ORNL). Several changes have recently occurred in regard to the sites that are currently used for waste storage and disposal. These changes require a second set of revisions to the ASEMP program plan. This document incorporates those revisions. This program plan presents the organization and procedures for monitoring the active sites. The program plan also provides internal reporting levels to guide the evaluation of monitoring results.

  12. Stimulation of proteinase and amidase activities in Porphyromonas (Bacteroides) gingivalis by amino acids and dipeptides.

    PubMed Central

    Chen, Z X; Potempa, J; Polanowski, A; Renvert, S; Wikström, M; Travis, J

    1991-01-01

    Proteolytic enzymes from the organism Porphyromonas gingivalis are believed to be involved in the development of periodontitis. Studies on both crude extracts and purified trypsinlike enzymes from this organism indicate that substantial stimulation of both amidase and proteinase activities can be obtained during incubation with glycine-containing compounds. We postulate that P. gingivalis may have developed this unusual property to take advantage of the glycine-rich environment which occurs during the periodontitis-associated degradation of gingival collagen. The finding of such a stimulation in crevicular fluids from discrete periodontal sites has been correlated with the presence of P. gingivalis and could be utilized for the early detection of infection by this organism during the onset of periodontitis. PMID:1855999

  13. trans-(3S,4S)-Disubstituted pyrrolidines as inhibitors of the human aspartyl protease renin. Part I: prime site exploration using an amino linker.

    PubMed

    Lorthiois, Edwige; Cumin, Frederic; Ehrhardt, Claus; Kosaka, Takatoshi; Sellner, Holger; Ostermann, Nils; Francotte, Eric; Wagner, Trixie; Maibaum, Jürgen

    2015-04-15

    Recently, we reported on the discovery of (3S,4S)-disubstituted pyrrolidines (e.g., 2) as inhibitors of the human aspartyl protease renin. In our effort to further expand the scope of this novel class of direct renin inhibitors, a new sub-series was designed in which the prime site substituents are linked to the pyrrolidine core by a (3S)-amino functional group. In particular, analogs bearing the corresponding sulfonamide spacer (50, 51 and 54a) demonstrated a pronounced increase in in vitro potency compared to compound 2. PMID:25782742

  14. Increased Biomass Yield of Lactococcus lactis by Reduced Overconsumption of Amino Acids and Increased Catalytic Activities of Enzymes

    PubMed Central

    Adamberg, Kaarel; Seiman, Andrus; Vilu, Raivo

    2012-01-01

    Steady state cultivation and multidimensional data analysis (metabolic fluxes, absolute proteome, and transcriptome) are used to identify parameters that control the increase in biomass yield of Lactococcus lactis from 0.10 to 0.12 C-mol C-mol−1 with an increase in specific growth rate by 5 times from 0.1 to 0.5 h−1. Reorganization of amino acid consumption was expressed by the inactivation of the arginine deiminase pathway at a specific growth rate of 0.35 h−1 followed by reduced over-consumption of pyruvate directed amino acids (asparagine, serine, threonine, alanine and cysteine) until almost all consumed amino acids were used only for protein synthesis at maximal specific growth rate. This balanced growth was characterized by a high glycolytic flux carrying up to 87% of the carbon flow and only amino acids that relate to nucleotide synthesis (glutamine, serine and asparagine) were consumed in higher amounts than required for cellular protein synthesis. Changes in the proteome were minor (mainly increase in the translation apparatus). Instead, the apparent catalytic activities of enzymes and ribosomes increased by 3.5 times (0.1 vs 0.5 h−1). The apparent catalytic activities of glycolytic enzymes and ribosomal proteins were seen to follow this regulation pattern while those of enzymes involved in nucleotide metabolism increased more than the specific growth rate (over 5.5 times). Nucleotide synthesis formed the most abundant biomonomer synthetic pathway in the cells with an expenditure of 6% from the total ATP required for biosynthesis. Due to the increase in apparent catalytic activity, ribosome translation was more efficient at higher growth rates as evidenced by a decrease of protein to mRNA ratios. All these effects resulted in a 30% decrease of calculated ATP spilling (0.1 vs 0.5 h−1). Our results show that bioprocesses can be made more efficient (using a balanced metabolism) by varying the growth conditions. PMID:23133574

  15. Modulation of Enzymatic Activity and Biological Function of Listeria monocytogenes Broad-Range Phospholipase C by Amino Acid Substitutions and by Replacement with the Bacillus cereus Ortholog

    PubMed Central

    Zückert, Wolfram R.; Marquis, Hélène; Goldfine, Howard

    1998-01-01

    The secreted broad-range phosphatidylcholine (PC)-preferring phospholipase C (PC-PLC) of Listeria monocytogenes plays a role in the bacterium’s ability to escape from phagosomes and spread from cell to cell. Based on comparisons with two orthologs, Clostridium perfringens α-toxin and Bacillus cereus PLC (PLCBc), we generated PC-PLC mutants with altered enzymatic activities and substrate specificities and analyzed them for biological function in tissue culture and mouse models of infection. Two of the conserved active-site zinc-coordinating histidines were confirmed by single amino acid substitutions H69G and H118G, which resulted in proteins inactive in broth culture and unstable intracellularly. Substitutions D4E and H56Y remodeled the PC-PLC active site to more closely resemble the PLCBc active site, while a gene replacement resulted in L. monocytogenes secreting PLCBc. All of these mutants yielded similar amounts of active enzyme as wild-type PC-PLC both in broth culture and intracellularly. D4E increased activity on and specificity for PC, while H56Y and D4E H56Y showed higher activity on both PC and sphingomyelin, with reduced specificity for PC. As expected, PLCBc expressed by L. monocytogenes was highly specific for PC. During early intracellular growth in human epithelial cells, the D4E mutant and the PLCBc-expressing strain performed significantly better than the wild type, while the H56Y and D4E H56Y mutants showed a significant defect. In assays for cell-to-cell spread, the H56Y and D4E mutants had close to wild-type characteristics, while the spreading efficiency of PLCBc was significantly lower. These studies emphasize the species-specific features of PC-PLC important for growth in mammalian cells. PMID:9746585

  16. Engineering D-Amino Acid Containing Collagen Like Peptide at the Cleavage Site of Clostridium histolyticum Collagenase for Its Inhibition

    PubMed Central

    Velmurugan, Punitha; Jonnalagadda, Raghava Rao; Unni Nair, Balachandran

    2015-01-01

    Collagenase is an important enzyme which plays an important role in degradation of collagen in wound healing, cancer metastasis and even in embryonic development. However, the mechanism of this degradation has not yet been completely understood. In the field of biomedical and protein engineering, the design and development of new peptide based materials is of main concern. In the present work an attempt has been made to study the effect of DAla in collagen like peptide (imino-poor region of type I collagen) on the structure and stability of peptide against enzyme hydrolysis. Effect of replacement of DAla in the collagen like peptide has been studied using circular dichroic spectroscopy (CD). Our findings suggest that, DAla substitution leads to conformational changes in the secondary structure and favours the formation of polyproline II conformation than its L-counterpart in the imino-poor region of collagen like peptides. Change in the chirality of alanine at the cleavage site of collagenase in the imino-poor region inhibits collagenolytic activity. This may find application in design of peptides and peptidomimics for enzyme-substrate interaction, specifically with reference to collagen and other extra cellular matrix proteins. PMID:25973613

  17. Changes in the Cytoplasmic Composition of Amino Acids and Proteins Observed in Staphylococcus aureus during Growth under Variable Growth Conditions Representative of the Human Wound Site

    PubMed Central

    Alreshidi, Mousa M.; Dunstan, R. Hugh; Gottfries, Johan; Macdonald, Margaret M.; Crompton, Marcus J.; Ang, Ching-Seng; Williamson, Nicholas A.; Roberts, Tim K.

    2016-01-01

    Staphylococcus aureus is an opportunistic pathogen responsible for a high proportion of nosocomial infections. This study was conducted to assess the bacterial responses in the cytoplasmic composition of amino acids and ribosomal proteins under various environmental conditions designed to mimic those on the human skin or within a wound site: pH6-8, temperature 35–37°C, and additional 0–5% NaCl. It was found that each set of environmental conditions elicited substantial adjustments in cytoplasmic levels of glutamic acid, aspartic acid, proline, alanine and glycine (P< 0.05). These alterations generated characteristic amino acid profiles assessed by principle component analysis (PCA). Substantial alterations in cytoplasmic amino acid and protein composition occurred during growth under conditions of higher salinity stress implemented via additional levels of NaCl in the growth medium. The cells responded to additional NaCl at pH 6 by reducing levels of ribosomal proteins, whereas at pH 8 there was an upregulation of ribosomal proteins compared with the reference control. The levels of two ribosomal proteins, L32 and S19, remained constant across all experimental conditions. The data supported the hypothesis that the bacterium was continually responding to the dynamic environment by modifying the proteome and optimising metabolic homeostasis. PMID:27442022

  18. Prediction of mucin-type O-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs

    PubMed Central

    Chen, Yong-Zi; Tang, Yu-Rong; Sheng, Zhi-Ya; Zhang, Ziding

    2008-01-01

    Background As one of the most common protein post-translational modifications, glycosylation is involved in a variety of important biological processes. Computational identification of glycosylation sites in protein sequences becomes increasingly important in the post-genomic era. A new encoding scheme was employed to improve the prediction of mucin-type O-glycosylation sites in mammalian proteins. Results A new protein bioinformatics tool, CKSAAP_OGlySite, was developed to predict mucin-type O-glycosylation serine/threonine (S/T) sites in mammalian proteins. Using the composition of k-spaced amino acid pairs (CKSAAP) based encoding scheme, the proposed method was trained and tested in a new and stringent O-glycosylation dataset with the assistance of Support Vector Machine (SVM). When the ratio of O-glycosylation to non-glycosylation sites in training datasets was set as 1:1, 10-fold cross-validation tests showed that the proposed method yielded a high accuracy of 83.1% and 81.4% in predicting O-glycosylated S and T sites, respectively. Based on the same datasets, CKSAAP_OGlySite resulted in a higher accuracy than the conventional binary encoding based method (about +5.0%). When trained and tested in 1:5 datasets, the CKSAAP encoding showed a more significant improvement than the binary encoding. We also merged the training datasets of S and T sites and integrated the prediction of S and T sites into one single predictor (i.e. S+T predictor). Either in 1:1 or 1:5 datasets, the performance of this S+T predictor was always slightly better than those predictors where S and T sites were independently predicted, suggesting that the molecular recognition of O-glycosylated S/T sites seems to be similar and the increase of the S+T predictor's accuracy may be a result of expanded training datasets. Moreover, CKSAAP_OGlySite was also shown to have better performance when benchmarked against two existing predictors. Conclusion Because of CKSAAP encoding's ability of

  19. Amino Acid Substitutions in the V Domain of Nectin-1 (HveC) That Impair Entry Activity for Herpes Simplex Virus Types 1 and 2 but Not for Pseudorabies Virus or Bovine Herpesvirus 1

    PubMed Central

    Martinez, Wanda M.; Spear, Patricia G.

    2002-01-01

    The entry of herpes simplex virus (HSV) into cells requires the interaction of viral glycoprotein D (gD) with a cellular gD receptor to trigger the fusion of viral and cellular membranes. Nectin-1, a member of the immunoglobulin superfamily, can serve as a gD receptor for HSV types 1 and 2 (HSV-1 and HSV-2, respectively) as well as for the animal herpesviruses porcine pseudorabies virus (PRV) and bovine herpesvirus 1 (BHV-1). The HSV-1 gD binding domain of nectin-1 is hypothesized to overlap amino acids 64 to 104 of the N-terminal variable domain-like immunoglobulin domain. Moreover, the HSV-1 and PRV gDs compete for binding to nectin-1. Here we report that two amino acids within this region, at positions 77 and 85, are critical for HSV-1 and HSV-2 entry but not for the entry of PRV or BHV-1. Replacement of either amino acid 77 or amino acid 85 reduced HSV-1 and HSV-2 gD binding but had a lesser effect on HSV entry activity, suggesting that weak interactions between gD and nectin-1 are sufficient to trigger the mechanism of HSV entry. Substitution of both amino acid 77 and amino acid 85 in nectin-1 significantly impaired entry activity for HSV-1 and HSV-2 and eliminated binding to soluble forms of HSV-1 and HSV-2 gDs but did not impair the entry of PRV and BHV-1. Thus, amino acids 77 and 85 of nectin-1 form part of the interface with HSV gD or influence the conformation of that interface. Moreover, the binding sites for HSV and PRV or BHV-1 gDs on nectin-1 may overlap but are not identical. PMID:12072525

  20. Engineering the substrate specificity of Escherichia coli asparaginase. II. Selective reduction of glutaminase activity by amino acid replacements at position 248.

    PubMed Central

    Derst, C.; Henseling, J.; Röhm, K. H.

    2000-01-01

    The use of Escherichia coli asparaginase II as a drug for the treatment of acute lymphoblastic leukemia is complicated by the significant glutaminase side activity of the enzyme. To develop enzyme forms with reduced glutaminase activity, a number of variants with amino acid replacements in the vicinity of the substrate binding site were constructed and assayed for their kinetic and stability properties. We found that replacements of Asp248 affected glutamine turnover much more strongly than asparagine hydrolysis. In the wild-type enzyme, N248 modulates substrate binding to a neighboring subunit by hydrogen bonding to side chains that directly interact with the substrate. In variant N248A, the loss of transition state stabilization caused by the mutation was 15 kJ mol(-1) for L-glutamine compared to 4 kJ mol(-1) for L-aspartic beta-hydroxamate and 7 kJ mol(-1) for L-asparagine. Smaller differences were seen with other N248 variants. Modeling studies suggested that the selective reduction of glutaminase activity is the result of small conformational changes that affect active-site residues and catalytically relevant water molecules. PMID:11106175

  1. The active site behaviour of electrochemically synthesised gold nanomaterials.

    PubMed

    Plowman, Blake J; O'Mullane, Anthony P; Bhargava, Suresh K

    2011-01-01

    Even though gold is the noblest of metals, a weak chemisorber and is regarded as being quite inert, it demonstrates significant electrocatalytic activity in its nanostructured form. It is demonstrated here that nanostructured and even evaporated thin films of gold are covered with active sites which are responsible for such activity. The identification of these sites is demonstrated with conventional electrochemical techniques such as cyclic voltammetry as well as a large amplitude Fourier transformed alternating current (FT-ac) method under acidic and alkaline conditions. The latter technique is beneficial in determining if an electrode process is either Faradaic or capacitive in nature. The observed behaviour is analogous to that observed for activated gold electrodes whose surfaces have been severely disrupted by cathodic polarisation in the hydrogen evolution region. It is shown that significant electrochemical oxidation responses occur at discrete potential values well below that for the formation of the compact monolayer oxide of bulk gold and are attributed to the facile oxidation of surface active sites. Several electrocatalytic reactions are explored in which the onset potential is determined by the presence of such sites on the surface. Significantly, the facile oxidation of active sites is used to drive the electroless deposition of metals such as platinum, palladium and silver from their aqueous salts on the surface of gold nanostructures. The resultant surface decoration of gold with secondary metal nanoparticles not only indicates regions on the surface which are rich in active sites but also provides a method to form interesting bimetallic surfaces. PMID:22455038

  2. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.

    PubMed

    Stiti, Naim; Chandrasekar, Balakumaran; Strubl, Laura; Mohammed, Shabaz; Bartels, Dorothea; van der Hoorn, Renier A L

    2016-06-17

    Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes. PMID:26990764

  3. SET7/9 Catalytic Mutants Reveal the Role of Active Site Water Molecules in Lysine Multiple Methylation

    SciTech Connect

    Del Rizzo, Paul A.; Couture, Jean-François; Dirk, Lynnette M.A.; Strunk, Bethany S.; Roiko, Marijo S.; Brunzelle, Joseph S.; Houtz, Robert L.; Trievel, Raymond C.

    2010-11-15

    SET domain lysine methyltransferases (KMTs) methylate specific lysine residues in histone and non-histone substrates. These enzymes also display product specificity by catalyzing distinct degrees of methylation of the lysine {epsilon}-amino group. To elucidate the molecular mechanism underlying this specificity, we have characterized the Y245A and Y305F mutants of the human KMT SET7/9 (also known as KMT7) that alter its product specificity from a monomethyltransferase to a di- and a trimethyltransferase, respectively. Crystal structures of these mutants in complex with peptides bearing unmodified, mono-, di-, and trimethylated lysines illustrate the roles of active site water molecules in aligning the lysine {epsilon}-amino group for methyl transfer with S-adenosylmethionine. Displacement or dissociation of these solvent molecules enlarges the diameter of the active site, accommodating the increasing size of the methylated {epsilon}-amino group during successive methyl transfer reactions. Together, these results furnish new insights into the roles of active site water molecules in modulating lysine multiple methylation by SET domain KMTs and provide the first molecular snapshots of the mono-, di-, and trimethyl transfer reactions catalyzed by these enzymes.

  4. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase*

    PubMed Central

    Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W.

    2016-01-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites. PMID:26893379

  5. Affinity labeling and characterization of the active site histidine of glucosephosphate isomerase

    SciTech Connect

    Gibson, D.R.; Gracy, R.W.; Hartman, F.C.

    1980-10-10

    N-bromoacetylethanolamine phosphate was found to act as a specific affinity label for the active center of glucosephosphate isomerase. The inactivation process followed pseudo-first order kinetics, was irreversible, and exhibited rate saturation kinetics with minimal half-lives of inactivation of 4.5 and 6.3 min for the enzyme isolated from human placenta and rabbit muscle, respectively. The pH dependence of the inactivation process closely paralleled the pH dependence of the overall catalytic process with pK/sub a/ values at pH 6.4 and 9.0. The stoichiometry of labeling of either enzyme, as determined with N-bromo(/sup 14/C/sub 2/)acetylethanolamine phosphate, was 1 eq of the affinity label/subunit of enzyme. After acid hydrolysis and amino acid analysis of the radioactive affinity-labeled human enzyme, only radioactive 3-carboxymethyl histidine was found. In the case of the rabbit enzyme, the only radioactive derivative obtained was 1-carboxymethyl histidine. Active site tryptic peptides were isolated by solvent extraction, thin layer peptide fingerprinting, and ion exchange chromatography before and after removal of the phosphate from the active site peptide. Amino acid analysis of the labeled peptides from the two species were very similar. Using high sensitivity methods for sequence analysis, the primary structure of the active site was established as Val-Leu-His-Ala-Glu-Asn-Val-Asp (Gly,Thr,Ser) Glu-Ile (Thr-Gly-His-Lys-Glx)-Tyr-Phe. Apparent sequence homology between the catalytic center of glucosephosphate isomerase and triosephosphate isomerase suggest that the two enzymes may have evolved from a common ancestral gene.

  6. Activities of enzymes related to NADPH generation and amino acid metabolism in the ruminal mucosa of sheep.

    PubMed

    Weekes, T E

    1984-09-01

    Experiments were performed with growing lambs to investigate dietary influences on enzymes involved in the metabolism of propionate, amino acids and NADPH in the ruminal mucosa. Glutamate dehydrogenase (GDH) was the only enzyme assayed that was consistently affected by diet. First, lambs were fed either rolled barley, resulting in epithelial hyperkeratosis, or whole unprocessed barley, resulting in keratin aplasia and reduced GDH activity. Secondly, lambs were fed isonitrogenous diets containing either fish meal or urea. GDH activity was greater when fish meal was fed. NADP-isocitrate dehydrogenase was more active than other NADPH-generating enzymes in ruminal mucosa and several other lamb tissues, but the operation of the isocitrate cycle in rumen epithelium may be restricted by a low activity of aconitate hydratase. These results suggest that enzyme activities in ruminal mucosa are generally unresponsive to diet and that adaptations in GDH are related to changes in rumen morphology, rather than to isocitrate cycle activity or ammonia assimilation. PMID:6470829

  7. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity.

    PubMed

    Tien, Jason; Peters, Christian J; Wong, Xiu Ming; Cheng, Tong; Jan, Yuh Nung; Jan, Lily Yeh; Yang, Huanghe

    2014-01-01

    TMEM16A forms calcium-activated chloride channels (CaCCs) that regulate physiological processes such as the secretions of airway epithelia and exocrine glands, the contraction of smooth muscles, and the excitability of neurons. Notwithstanding intense interest in the mechanism behind TMEM16A-CaCC calcium-dependent gating, comprehensive surveys to identify and characterize potential calcium sensors of this channel are still lacking. By aligning distantly related calcium-activated ion channels in the TMEM16 family and conducting systematic mutagenesis of all conserved acidic residues thought to be exposed to the cytoplasm, we identify four acidic amino acids as putative calcium-binding residues. Alterations of the charge, polarity, and size of amino acid side chains at these sites alter the ability of different divalent cations to activate the channel. Furthermore, TMEM16A mutant channels containing double cysteine substitutions at these residues are sensitive to the redox potential of the internal solution, providing evidence for their physical proximity and solvent accessibility. PMID:24980701

  8. Indole-3-acetic acid biosynthetic pathway and aromatic amino acid aminotransferase activities in Pantoea dispersa strain GPK.

    PubMed

    Kulkarni, G B; Nayak, A S; Sajjan, S S; Oblesha, A; Karegoudar, T B

    2013-05-01

    This investigation deals with the production of IAA by a bacterial isolate Pantoea dispersa strain GPK (PDG) identified by 16S rRNA gene sequence analysis. HPLC and Mass spectral analysis of metabolites from bacterial spent medium revealed that, IAA production by PDG is Trp-dependent and follows indole-3-pyruvic acid (IPyA) pathway. Substrate specificity study of aromatic amino acid aminotransferase (AAT) showed high activities, only when tryptophan (Trp) and α-ketoglutarate (α-kg) were used as substrates. AAT is highly specific for Trp and α-kg as amino group donor and acceptor, respectively. The effect of exogenous IAA on bacterial growth was established. Low concentration of exogenous IAA induced the growth, whereas high concentration decreased the growth of bacterium. PDG treatment significantly increased the root length, shoot length and dry mass of the chickpea and pigeon pea plants. PMID:23448265

  9. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review.

    PubMed

    Chalamaiah, M; Dinesh Kumar, B; Hemalatha, R; Jyothirmayi, T

    2012-12-15

    The fish processing industry produces more than 60% by-products as waste, which includes skin, head, viscera, trimmings, liver, frames, bones, and roes. These by-product wastes contain good amount of protein rich material that are normally processed into low market-value products, such as animal feed, fish meal and fertilizer. In view of utilizing these fish industry wastes, and for increasing the value to several underutilised fish species, protein hydrolysates from fish proteins are being prepared by several researchers all over the world. Fish protein hydrolysates are breakdown products of enzymatic conversion of fish proteins into smaller peptides, which normally contain 2-20 amino acids. In recent years, fish protein hydrolysates have attracted much attention of food biotechnologists due to the availability of large quantities of raw material for the process, and presence of high protein content with good amino acid balance and bioactive peptides (antioxidant, antihypertensive, immunomodulatory and antimicrobial peptides). PMID:22980905

  10. Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model.

    PubMed

    Huang, Xiaoqiang; Xue, Jing; Lin, Min; Zhu, Yushan

    2016-01-01

    Active site preorganization helps native enzymes electrostatically stabilize the transition state better than the ground state for their primary substrates and achieve significant rate enhancement. In this report, we hypothesize that a complex active site model for active site preorganization modeling should help to create preorganized active site design and afford higher starting activities towards target reactions. Our matching algorithm ProdaMatch was improved by invoking effective pruning strategies and the native active sites for ten scaffolds in a benchmark test set were reproduced. The root-mean squared deviations between the matched transition states and those in the crystal structures were < 1.0 Å for the ten scaffolds, and the repacking calculation results showed that 91% of the hydrogen bonds within the active sites are recovered, indicating that the active sites can be preorganized based on the predicted positions of transition states. The application of the complex active site model for de novo enzyme design was evaluated by scaffold selection using a classic catalytic triad motif for the hydrolysis of p-nitrophenyl acetate. Eighty scaffolds were identified from a scaffold library with 1,491 proteins and four scaffolds were native esterase. Furthermore, enzyme design for complicated substrates was investigated for the hydrolysis of cephalexin using scaffold selection based on two different catalytic motifs. Only three scaffolds were identified from the scaffold library by virtue of the classic catalytic triad-based motif. In contrast, 40 scaffolds were identified using a more flexible, but still preorganized catalytic motif, where one scaffold corresponded to the α-amino acid ester hydrolase that catalyzes the hydrolysis and synthesis of cephalexin. Thus, the complex active site modeling approach for de novo enzyme design with the aid of the improved ProdaMatch program is a promising approach for the creation of active sites with high catalytic

  11. Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model

    PubMed Central

    Huang, Xiaoqiang; Xue, Jing; Lin, Min; Zhu, Yushan

    2016-01-01

    Active site preorganization helps native enzymes electrostatically stabilize the transition state better than the ground state for their primary substrates and achieve significant rate enhancement. In this report, we hypothesize that a complex active site model for active site preorganization modeling should help to create preorganized active site design and afford higher starting activities towards target reactions. Our matching algorithm ProdaMatch was improved by invoking effective pruning strategies and the native active sites for ten scaffolds in a benchmark test set were reproduced. The root-mean squared deviations between the matched transition states and those in the crystal structures were < 1.0 Å for the ten scaffolds, and the repacking calculation results showed that 91% of the hydrogen bonds within the active sites are recovered, indicating that the active sites can be preorganized based on the predicted positions of transition states. The application of the complex active site model for de novo enzyme design was evaluated by scaffold selection using a classic catalytic triad motif for the hydrolysis of p-nitrophenyl acetate. Eighty scaffolds were identified from a scaffold library with 1,491 proteins and four scaffolds were native esterase. Furthermore, enzyme design for complicated substrates was investigated for the hydrolysis of cephalexin using scaffold selection based on two different catalytic motifs. Only three scaffolds were identified from the scaffold library by virtue of the classic catalytic triad-based motif. In contrast, 40 scaffolds were identified using a more flexible, but still preorganized catalytic motif, where one scaffold corresponded to the α-amino acid ester hydrolase that catalyzes the hydrolysis and synthesis of cephalexin. Thus, the complex active site modeling approach for de novo enzyme design with the aid of the improved ProdaMatch program is a promising approach for the creation of active sites with high catalytic

  12. Synthesis and antimycobacterial activity of N-(2-aminopurin-6-yl) and N-(purin-6-yl) amino acids and dipeptides.

    PubMed

    Krasnov, Victor P; Vigorov, Alexey Yu; Musiyak, Vera V; Nizova, Irina A; Gruzdev, Dmitry A; Matveeva, Tatyana V; Levit, Galina L; Kravchenko, Marionella A; Skornyakov, Sergey N; Bekker, Olga B; Danilenko, Valery N; Charushin, Valery N

    2016-06-01

    Synthetic routes to novel N-(purin-6-yl)- and N-(2-aminopurin-6-yl) conjugates with amino acids and glycine-containing dipeptides were developed. In vitro testing of 42 new and known compounds made it possible to reveal a series of N-(purin-6-yl)- and N-(2-aminopurin-6-yl) conjugates exhibiting significant antimycobacterial activity against Mycobacterium tuberculosis H37Rv, Mycobacterium avium, Mycobacterium terrae, and multidrug-resistant M. tuberculosis strain isolated from tuberculosis patients in the Ural region (Russia). N-(2-Aminopurin-6-yl)- and N-(purin-6-yl)-glycyl-(S)-glutamic acids were the most active compounds. PMID:27107949

  13. N-Alkyl derivatives of diosgenyl 2-amino-2-deoxy-β-D-glucopyranoside; synthesis and antimicrobial activity.

    PubMed

    Walczewska, Agata; Grzywacz, Daria; Bednarczyk, Dorota; Dawgul, Małgorzata; Nowacki, Andrzej; Kamysz, Wojciech; Liberek, Beata; Myszka, Henryk

    2015-01-01

    Diosgenyl 2-amino-2-deoxy-β-D-glucopyranoside is a synthetic saponin exhibiting attractive pharmacological properties. Different pathways tested by us to obtain this glycoside are summarized here. Moreover, the synthesis of N-alkyl and N,N-dialkyl derivatives of the glucopyranoside is presented. Evaluation of antibacterial and antifungal activities of these derivatives indicates that they have no inhibitory activity against Gram-negative bacteria, whereas many of the tested N-alkyl saponins were found to inhibit the growth of Gram-positive bacteria and human pathogenic fungi. PMID:26124888

  14. From β-amino-γ-sultone to unusual bicyclic pyridine and pyrazine heterocyclic systems: synthesis and cytostatic and antiviral activities.

    PubMed

    de Castro, Sonia; Familiar, Olga; Andrei, Graciela; Snoeck, Robert; Balzarini, Jan; Camarasa, María-José; Velázquez, Sonsoles

    2011-04-01

    Herein we describe the first successful application of the β-amino-γ-sultone system as an intermediate for the synthesis of hitherto virtually unknown 3H-[1,2]-oxathiole [4,3-b]pyridine and pyrazine 1,1-dioxide bicyclic heterocyclic systems. All novel compounds were evaluated for their antiviral and cytostatic activities. Compounds 3 a, 15 a, and 21 a inhibited HIV-1-induced cytopathicity. Compound 7 showed remarkable cytostatic activity, and can be regarded as a potential antitumor candidate for further exploration. PMID:21370477

  15. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    SciTech Connect

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-03-20

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme.

  16. Amino acid sequence of mouse nidogen, a multidomain basement membrane protein with binding activity for laminin, collagen IV and cells.

    PubMed Central

    Mann, K; Deutzmann, R; Aumailley, M; Timpl, R; Raimondi, L; Yamada, Y; Pan, T C; Conway, D; Chu, M L

    1989-01-01

    The whole amino acid sequence of nidogen was deduced from cDNA clones isolated from expression libraries and confirmed to approximately 50% by Edman degradation of peptides. The protein consists of some 1217 amino acid residues and a 28-residue signal peptide. The data support a previously proposed dumb-bell model of nidogen by demonstrating a large N-terminal globular domain (641 residues), five EGF-like repeats constituting the rod-like domain (248 residues) and a smaller C-terminal globule (328 residues). Two more EGF-like repeats interrupt the N-terminal and terminate the C-terminal sequences. Weak sequence homologies (25%) were detected between some regions of nidogen, the LDL receptor, thyroglobulin and the EGF precursor. Nidogen contains two consensus sequences for tyrosine sulfation and for asparagine beta-hydroxylation, two N-linked carbohydrate acceptor sites and, within one of the EGF-like repeats an Arg-Gly-Asp sequence. The latter was shown to be functional in cell attachment to nidogen. Binding sites for laminin and collagen IV are present on the C-terminal globule but not yet precisely localized. Images PMID:2496973

  17. A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations.

    PubMed

    Schweikardt, Thorsten; Olivares, Concepción; Solano, Francisco; Jaenicke, Elmar; García-Borrón, José Carlos; Decker, Heinz

    2007-10-01

    Tyrosinases are the first and rate-limiting enzymes in the synthesis of melanin pigments responsible for colouring hair, skin and eyes. Mutation of tyrosinases often decreases melanin production resulting in albinism, but the effects are not always understood at the molecular level. Homology modelling of mouse tyrosinase based on recently published crystal structures of non-mammalian tyrosinases provides an active site model accounting for loss-of-function mutations. According to the model, the copper-binding histidines are located in a helix bundle comprising four densely packed helices. A loop containing residues M374, S375 and V377 connects the CuA and CuB centres, with the peptide oxygens of M374 and V377 serving as hydrogen acceptors for the NH-groups of the imidazole rings of the copper-binding His367 and His180. Therefore, this loop is essential for the stability of the active site architecture. A double substitution (374)MS(375) --> (374)GG(375) or a single M374G mutation lead to a local perturbation of the protein matrix at the active site affecting the orientation of the H367 side chain, that may be unable to bind CuB reliably, resulting in loss of activity. The model also accounts for loss of function in two naturally occurring albino mutations, S380P and V393F. The hydroxyl group in S380 contributes to the correct orientation of M374, and the substitution of V393 for a bulkier phenylalanine sterically impedes correct side chain packing at the active site. Therefore, our model explains the mechanistic necessity for conservation of not only active site histidines but also adjacent amino acids in tyrosinase. PMID:17850513

  18. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme.

    PubMed

    Ibba, M; Hong, K W; Sherman, J M; Sever, S; Söll, D

    1996-07-01

    Sequence-specific interactions between aminoacyl-tRNA synthetases and their cognate tRNAs both ensure accurate RNA recognition and prevent the binding of noncognate substrates. Here we show for Escherichia coli glutaminyl-tRNA synthetase (GlnRS; EC 6.1.1.18) that the accuracy of tRNA recognition also determines the efficiency of cognate amino acid recognition. Steady-state kinetics revealed that interactions between tRNA identity nucleotides and their recognition sites in the enzyme modulate the amino acid affinity of GlnRS. Perturbation of any of the protein-RNA interactions through mutation of either component led to considerable changes in glutamine affinity with the most marked effects seen at the discriminator base, the 10:25 base pair, and the anticodon. Reexamination of the identity set of tRNA(Gln) in the light of these results indicates that its constituents can be differentiated based upon biochemical function and their contribution to the apparent Gibbs' free energy of tRNA binding. Interactions with the acceptor stem act as strong determinants of tRNA specificity, with the discriminator base positioning the 3' end. The 10:25 base pair and U35 are apparently the major binding sites to GlnRS, with G36 contributing both to binding and recognition. Furthermore, we show that E. coli tryptophanyl-tRNA synthetase also displays tRNA-dependent changes in tryptophan affinity when charging a noncognate tRNA. The ability of tRNA to optimize amino acid recognition reveals a novel mechanism for maintaining translational fidelity and also provides a strong basis for the coevolution of tRNAs and their cognate synthetases. PMID:8692925

  19. Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition.

    PubMed

    Jia, Jianhua; Liu, Zi; Xiao, Xuan; Liu, Bingxiang; Chou, Kuo-Chen

    2016-09-01

    With the explosive growth of protein sequences entering into protein data banks in the post-genomic era, it is highly demanded to develop automated methods for rapidly and effectively identifying the protein-protein binding sites (PPBSs) based on the sequence information alone. To address this problem, we proposed a predictor called iPPBS-PseAAC, in which each amino acid residue site of the proteins concerned was treated as a 15-tuple peptide segment generated by sliding a window along the protein chains with its center aligned with the target residue. The working peptide segment is further formulated by a general form of pseudo amino acid composition via the following procedures: (1) it is converted into a numerical series via the physicochemical properties of amino acids; (2) the numerical series is subsequently converted into a 20-D feature vector by means of the stationary wavelet transform technique. Formed by many individual "Random Forest" classifiers, the operation engine to run prediction is a two-layer ensemble classifier, with the 1st-layer voting out the best training data-set from many bootstrap systems and the 2nd-layer voting out the most relevant one from seven physicochemical properties. Cross-validation tests indicate that the new predictor is very promising, meaning that many important key features, which are deeply hidden in complicated protein sequences, can be extracted via the wavelets transform approach, quite consistent with the facts that many important biological functions of proteins can be elucidated with their low-frequency internal motions. The web server of iPPBS-PseAAC is accessible at http://www.jci-bioinfo.cn/iPPBS-PseAAC , by which users can easily acquire their desired results without the need to follow the complicated mathematical equations involved. PMID:26375780

  20. Peptide Synthesis through Cell-Free Expression of Fusion Proteins Incorporating Modified Amino Acids as Latent Cleavage Sites for Peptide Release.

    PubMed

    Liutkus, Mantas; Fraser, Samuel A; Caron, Karine; Stigers, Dannon J; Easton, Christopher J

    2016-05-17

    Chlorinated analogues of Leu and Ile are incorporated during cell-free expression of peptides fused to protein, by exploiting the promiscuity of the natural biosynthetic machinery. They then act as sites for clean and efficient release of the peptides simply by brief heat treatment. Dehydro analogues of Leu and Ile are similarly incorporated as latent sites for peptide release through treatment with iodine under cold conditions. These protocols complement enzyme-catalyzed methods and have been used to prepare calcitonin, gastrin-releasing peptide, cholecystokinin-7, and prolactin-releasing peptide prohormones, as well as analogues substituted with unusual amino acids, thus illustrating their practical utility as alternatives to more traditional chemical peptide synthesis. PMID:26918308

  1. A small ribozyme with dual-site kinase activity

    PubMed Central

    Biondi, Elisa; Maxwell, Adam W.R.; Burke, Donald H.

    2012-01-01

    Phosphoryl transfer onto backbone hydroxyls is a recognized catalytic activity of nucleic acids. We find that kinase ribozyme K28 possesses an unusually complex active site that promotes (thio)phosphorylation of two residues widely separated in primary sequence. After allowing the ribozyme to radiolabel itself by phosphoryl transfer from [γ-32P]GTP, DNAzyme-mediated cleavage yielded two radiolabeled cleavage fragments, indicating phosphorylation sites within each of the two cleavage fragments. These sites were mapped by alkaline digestion and primer extension pausing. Enzymatic digestion and mutational analysis identified nucleotides important for activity and established the active structure as being a constrained pseudoknot with unusual connectivity that may juxtapose the two reactive sites. Nuclease sensitivities for nucleotides near the pseudoknot core were altered in the presence of GTPγS, indicating donor-induced folding. The 5′ target site was more strongly favored in full-length ribozyme K28 (128 nt) than in truncated RNAs (58 nt). Electrophoretic mobilities of self-thiophosphorylated products on organomercurial gels are distinct from the 5′ mono-thiophosphorylated product produced by reaction with polynucleotide kinase, potentially indicating simultaneous labeling of both sites within individual RNA strands. Our evidence supports a single, compact structure with local dynamics, rather than global rearrangement, as being responsible for dual-site phosphorylation. PMID:22618879

  2. ENHANCEMENT OF SPHINGOSINE KINASE 1 CATALYTIC ACTIVITY BY DELETION OF 21 AMINO ACIDS FROM THE COOH-TERMINUS*

    PubMed Central

    Hengst, Jeremy A.; Guilford, Jacquelyn M.; Conroy, Elizabeth J.; Wang, Xujun; Yun, Jong K.

    2009-01-01

    Sphingosine kinase 1 (SphK1) responds to a variety of growth factor signals by increasing catalytic activity as it translocates to the plasma membrane (PM). Several studies have identified amino acids residues involved in translocation yet how SphK1 increases its catalytic activity remains to be elucidated. Herein, we report that deletion of 21 amino acids from the COOH terminus of SphK1 (1-363) results in increased catalytic activity relative to wild-type SphK1 (1-384) which is independent of the phosphorylation state of Serine 225 and PMA stimulation. Importantly, HEK293 cells stably expressing the 1-363 protein exhibit enhanced cell growth under serum-deprived cell culture conditions. Together the evidence indicates that the COOH-terminal region of SphK1 encompasses a structural element that is necessary for the increase in catalytic activity in response to PMA treatment and that its deletion renders SphK1 constitutively active with respect to PMA treatment. PMID:19914200

  3. Substrate conformational transitions in the active site of chorismate mutase: Their role in the catalytic mechanism

    PubMed Central

    Guo, Hong; Cui, Qiang; Lipscomb, William N.; Karplus, Martin

    2001-01-01

    Chorismate mutase acts at the first branch-point of aromatic amino acid biosynthesis and catalyzes the conversion of chorismate to prephenate. The results of molecular dynamics simulations of the substrate in solution and in the active site of chorismate mutase are reported. Two nonreactive conformers of chorismate are found to be more stable than the reactive pseudodiaxial chair conformer in solution. It is shown by QM/MM molecular dynamics simulations, which take into account the motions of the enzyme, that when these inactive conformers are bound to the active site, they are rapidly converted to the reactive chair conformer. This result suggests that one contribution of the enzyme is to bind the more prevalent nonreactive conformers and transform them into the active form in a step before the chemical reaction. The motion of the reactive chair conformer in the active site calculated by using the QM/MM potential generates transient structures that are closer to the transition state than is the stable CHAIR conformer. PMID:11481470

  4. Amino acids

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  5. Site-specific solvent exposure analysis of a membrane protein using unnatural amino acids and {sup 19}F nuclear magnetic resonance

    SciTech Connect

    Shi, Pan; Li, Dong; Chen, Hongwei; Xiong, Ying; Tian, Changlin

    2011-10-22

    Highlights: {yields} Solvent isotope shift analysis of {sup 19}F-tfmF in different H{sub 2}O/D{sub 2}O molar ratio. {yields} Correlation between solvent isotope shift of {sup 19}F-spins and solvent exposure analysis. {yields} Solvent exposure analysis of membrane proteins. -- Abstract: Membrane proteins play an essential role in cellular metabolism, transportation and signal transduction across cell membranes. The scarcity of membrane protein structures has thus far prevented a full understanding of their molecular mechanisms. Preliminary topology studies and residue solvent exposure analysis have the potential to provide valuable information on membrane proteins of unknown structure. Here, a {sup 19}F-containing unnatural amino acid (trimethylfluoro-phenylalanine, tfmF) was applied to accomplish site-specific {sup 19}F spin incorporation at different sites in diacylglycerol kinase (DAGK, an Escherichia coli membrane protein) for site-specific solvent exposure analysis. Due to isotope effect on {sup 19}F spins, a standard curve for {sup 19}F-tfmF chemical shifts was drawn for varying solvent H{sub 2}O/D{sub 2}O ratios. Further site-specific {sup 19}F solvent isotope shift analysis was conducted for DAGK to distinguish residues in water-soluble loops, interfacial areas or hydrophobic membrane regions. This site-specific solvent exposure analysis method could be applied for further topological analysis of other membrane proteins.

  6. Concentration of Specific Amino Acids at the Catalytic/Active Centers of Highly-Conserved ``Housekeeping'' Enzymes of Central Metabolism in Archaea, Bacteria and Eukaryota: Is There a Widely Conserved Chemical Signal of Prebiotic Assembly?

    NASA Astrophysics Data System (ADS)

    Pollack, J. Dennis; Pan, Xueliang; Pearl, Dennis K.

    2010-06-01

    In alignments of 1969 protein sequences the amino acid glycine and others were found concentrated at most-conserved sites within ˜15 Å of catalytic/active centers (C/AC) of highly conserved kinases, dehydrogenases or lyases of Archaea, Bacteria and Eukaryota. Lysine and glutamic acid were concentrated at least-conserved sites furthest from their C/ACs. Logistic-regression analyses corroborated the “movement” of glycine towards and lysine away from their C/ACs: the odds of a glycine occupying a site were decreased by 19%, while the odds for a lysine were increased by 53%, for every 10 Å moving away from the C/AC. Average conservation of MSA consensus sites was highest surrounding the C/AC and directly decreased in transition toward model’s peripheries. Findings held with statistical confidence using sequences restricted to individual Domains or enzyme classes or to both. Our data describe variability in the rate of mutation and likelihoods for phylogenetic trees based on protein sequence data and endorse the extension of substitution models by incorporating data on conservation and distance to C/ACs rather than only using cumulative levels. The data support the view that in the most-conserved environment immediately surrounding the C/AC of taxonomically distant and highly conserved essential enzymes of central metabolism there are amino acids whose identity and degree of occupancy is similar to a proposed amino acid set and frequency associated with prebiotic evolution.

  7. Pharmacological PPARα Activation Markedly Alters Plasma Turnover of the Amino Acids Glycine, Serine and Arginine in the Rat

    PubMed Central

    Ericsson, Anette; Turner, Nigel; Hansson, Göran I.; Wallenius, Kristina; Oakes, Nicholas D.

    2014-01-01

    The current study extends previously reported PPARα agonist WY 14,643 (30 µmol/kg/day for 4 weeks) effects on circulating amino acid concentrations in rats fed a 48% saturated fat diet. Steady-state tracer experiments were used to examine in vivo kinetic mechanisms underlying altered plasma serine, glycine and arginine levels. Urinary urea and creatinine excretion were measured to assess whole-body amino acid catabolism. WY 14,643 treated animals demonstrated reduced efficiency to convert food consumed to body weight gain while liver weight was increased compared to controls. WY 14,643 raised total amino acid concentration (38%), largely explained by glycine, serine and threonine increases. 3H-glycine, 14C-serine and 14C-arginine tracer studies revealed elevated rates of appearance (Ra) for glycine (45.5±5.8 versus 17.4±2.7 µmol/kg/min) and serine (21.0±1.4 versus 12.0±1.0) in WY 14,643 versus control. Arginine was substantially decreased (−62%) in plasma with estimated Ra reduced from 3.1±0.3 to 1.2±0.2 µmol/kg/min in control versus WY 14,643. Nitrogen excretion over 24 hours was unaltered. Hepatic arginase activity was substantially decreased by WY 14,643 treatment. In conclusion, PPARα agonism potently alters metabolism of several specific amino acids in the rat. The changes in circulating levels of serine, glycine and arginine reflected altered fluxes into the plasma rather than changes in clearance or catabolism. This suggests that PPARα has an important role in modulating serine, glycine and arginine de novo synthesis. PMID:25486018

  8. Upregulation of RNase E activity by mutation of a site that uncompetitively interferes with RNA binding

    PubMed Central

    Lee, Minho; Shin, Eunkyoung; Jeon, Che Ok; Cha, Chang-Jun; Han, Seung Hyun; Kim, Su-Jin; Lee, Sang-Won; Lee, Younghoon; Ha, Nam-Chul

    2011-01-01

    Escherichia coli RNase E contains a site that selectively binds to RNAs containing 5′-monophosphate termini, increasing the efficiency of endonucleolytic cleavage of these RNAs. Random mutagenesis of N-Rne, the N-terminal catalytic region of RNase E, identified a hyperactive variant that remains preferentially responsive to phosphorylation at 5′ termini. Biochemical analyses showed that the mutation (Q36R), which replaces glutamine with arginine at a position distant from the catalytic site, increases formation of stable RNA-protein complexes without detectably affecting the enzyme's secondary or tertiary structure. Studies of cleavage of fluorogenic substrate and EMSA experiments indicated that the Q36R mutation increases catalytic activity and RNA binding. however, UV crosslinking and mass spectrometry studies suggested that the mutant enzyme lacks an RNA binding site present in its wild-type counterpart. Two substrate-bound tryptic peptides, 65HGFLPLK71—which includes amino acids previously implicated in substrate binding and catalysis—and 24LYDLDIESPGHEQK37—which includes the Q36 locus—were identified in wild-type enzyme complexes, whereas only the shorter peptide was observed for complexes containing Q36R. Our results identify a novel RNase E locus that disparately affects the number of substrate binding sites and catalytic activity of the enzyme. We propose a model that may account for these surprising effects. PMID:22186084

  9. Dashboard applications to monitor experiment activities at sites

    NASA Astrophysics Data System (ADS)

    Andreeva, Julia; Belforte, Stefano; Boehm, Max; Casajus, Adrian; Flix, Josep; Gaidioz, Benjamin; Grigoras, Costin; Kokoszkiewicz, Lukasz; Lanciotti, Elisa; Rocha, Ricardo; Saiz, Pablo; Santinelli, Roberto; Sidorova, Irina; Sciabà, Andrea; Tsaregorodtsev, Andrei

    2010-04-01

    In the framework of a distributed computing environment, such as WLCG, monitoring has a key role in order to keep under control activities going on in sites located in different countries and involving people based in many different sites. To be able to cope with such a large scale heterogeneous infrastructure, it is necessary to have monitoring tools providing a complete and reliable view of the overall performance of the sites. Moreover, the structure of a monitoring system critically depends on the object to monitor and on the users it is addressed to. In this article we will describe two different monitoring systems both aimed to monitor activities and services provided in the WLCG framework, but designed in order to meet the requirements of different users: Site Status Board has an overall view of the services available in all the sites supporting an experiment, whereas Siteview provides a complete view of all the activities going on at a site, for all the experiments supported by the site.

  10. Architecture and active site of particulate methane monooxygenase

    PubMed Central

    Culpepper, Megen A.; Rosenzweig, Amy C.

    2012-01-01

    Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria, organisms that live on methane gas as their sole carbon source. Understanding pMMO function has important implications for bioremediation applications and for the development of new, environmentally friendly catalysts for the direct conversion of methane to methanol. Crystal structures of pMMOs from three different methanotrophs reveal a trimeric architecture, consisting of three copies each of the pmoB, pmoA, and pmoC subunits. There are three distinct metal centers in each protomer of the trimer, mononuclear and dinuclear copper sites in the periplasmic regions of pmoB and a mononuclear site within the membrane that can be occupied by copper or zinc. Various models for the pMMO active site have been proposed within these structural constraints, including dicopper, tricopper, and diiron centers. Biochemical and spectroscopic data on pMMO and recombinant soluble fragments, denoted spmoB proteins, indicate that the active site involves copper and is located at the site of the dicopper center in the pmoB subunit. Initial spectroscopic evidence for O2 binding at this site has been obtained. Despite these findings, questions remain about the active site identity and nuclearity and will be the focus of future studies. PMID:22725967

  11. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site.

    PubMed

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-04-20

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2domains reveal that the (HhH)2domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  12. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  13. Reverse evolution leads to genotypic incompatibility despite functional and active site convergence.

    PubMed

    Kaltenbach, Miriam; Jackson, Colin J; Campbell, Eleanor C; Hollfelder, Florian; Tokuriki, Nobuhiko

    2015-01-01

    Understanding the extent to which enzyme evolution is reversible can shed light on the fundamental relationship between protein sequence, structure, and function. Here, we perform an experimental test of evolutionary reversibility using directed evolution from a phosphotriesterase to an arylesterase, and back, and examine the underlying molecular basis. We find that wild-type phosphotriesterase function could be restored (>10(4)-fold activity increase), but via an alternative set of mutations. The enzyme active site converged towards its original state, indicating evolutionary constraints imposed by catalytic requirements. We reveal that extensive epistasis prevents reversions and necessitates fixation of new mutations, leading to a functionally identical sequence. Many amino acid exchanges between the new and original enzyme are not tolerated, implying sequence incompatibility. Therefore, the evolution was phenotypically reversible but genotypically irreversible. Our study illustrates that the enzyme's adaptive landscape is highly rugged, and different functional sequences may constitute separate fitness peaks. PMID:26274563

  14. Substitution of glutamine for lysine at the pyridoxal phosphate binding site of bacterial D-amino acid transaminase. Effects of exogenous amines on the slow formation of intermediates.

    PubMed

    Futaki, S; Ueno, H; Martinez del Pozo, A; Pospischil, M A; Manning, J M; Ringe, D; Stoddard, B; Tanizawa, K; Yoshimura, T; Soda, K

    1990-12-25

    In bacterial D-amino acid transaminase, Lys-145, which binds the coenzyme pyridoxal 5'-phosphate in Schiff base linkage, was changed to Gln-145 by site-directed mutagenesis (K145Q). The mutant enzyme had 0.015% the activity of the wild-type enzyme and was capable of forming a Schiff base with D-alanine; this external aldimine was formed over a period of minutes depending upon the D-alanine concentration. The transformation of the pyridoxal-5'-phosphate form of the enzyme to the pyridoxamine-5'-phosphate form (i.e. the half-reaction of transamination) occurred over a period of hours with this mutant enzyme. Thus, information on these two steps in the reaction and on the factors that influence them can readily be obtained with this mutant enzyme. In contrast, these reactions with the wild-type enzyme occur at much faster rates and are not easily studied separately. The mutant enzyme shows distinct preference for D- over L-alanine as substrates but it does so about 50-fold less effectively than the wild-type enzyme. Thus, Lys-145 probably acts in concert with the coenzyme and other functional side chain(s) to lead to efficient and stereochemically precise transamination in the wild-type enzyme. The addition of exogenous amines, ethanolamine or methyl amine, increased the rate of external aldimine formation with D-alanine and the mutant enzyme but the subsequent transformation to the pyridoxamine-5'-phosphate form of the enzyme was unaffected by exogenous amines. The wild-type enzyme displayed a large negative trough in the circular dichroic spectrum at 420 nm, which was practically absent in the mutant enzyme. However, addition of D-alanine to the mutant enzyme generated this negative Cotton effect (due to formation of the external aldimine with D-alanine). This circular dichroism band gradually collapsed in parallel with the transformation to the pyridoxamine-5'-phosphate enzyme. Further studies on this mutant enzyme, which displays the characteristics of the wild

  15. Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat.

    PubMed Central

    Cazalets, J R; Sqalli-Houssaini, Y; Clarac, F

    1992-01-01

    1. The role of serotonin (5-HT) and excitatory amino-acids (EAAs) in the activation of the neural networks (i.e. the central pattern generators) that organize locomotion in mammals was investigated in an isolated brainstem-spinal cord preparation from the newborn rat. 2. The neuroactive substances were bath applied and the activity of fictive locomotion was recorded in the ventral roots. 3. Serotonin initiated an alternating pattern of right and left action potential bursts. The period of this rhythm was dose dependent, i.e. it decreased from around 10 s at 2 x 10(-5) M to 5 s at 10(-4) M. The effects of serotonin were blocked by a 5-HT1 antagonist (propranolol) and by 5-HT2 antagonists (ketanserin, cyproheptadine, mianserin). 5-HT3 antagonists were ineffective. The effects of methoxytryptamine, a non-selective 5-HT agonist, mimicked the 5-HT effects. 4. The endogenous EAAs, glutamate and aspartate, also triggered an alternating rhythmic pattern. Their effects were blocked by 2-amino-5-phosphonovaleric acid (AP-5; a N-methyl-D-aspartate (NMDA) receptor blocker) and 6,7-dinitro-quinoxaline-2,3-dione (a non-NMDA receptor blocker). 5. Several EAA agonists (N-methyl-D,L-aspartate (NMA) and kainate) initiated rhythmic activity. The period of the induced rhythm (from 3 to 1 s) was similar with both of these substances but in a range of concentrations which was ten times lower in the case of kainate (10(-6) to 5 x 10(-6) M) than in that of NMA (10(-5) to 4 x 10(-5) M). alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionate and quisqualate occasionally triggered some episodes of fictive locomotion with a threshold at 6 x 10(-7) and 10(-5) M, respectively. PMID:1362441

  16. Investigation of the active site and the conformational stability of nucleoside diphosphate kinase by site-directed mutagenesis.

    PubMed

    Tepper, A D; Dammann, H; Bominaar, A A; Véron, M

    1994-12-23

    Nucleoside-diphosphate kinase (EC 2.7.4.6) catalyzes phosphate exchange between nucleoside triphosphates and nucleoside diphosphates. Its 17 kDa subunits are highly conserved throughout evolution in both sequence and tertiary structure. Using site-directed mutagenesis we investigated the function of 8 amino acids (Lys16, Tyr56, Arg92, Thr98, Arg109, Asn119, Ser124, and Glu133) that are totally conserved among all nucleoside diphosphate kinases known to date. The mutant proteins all show decreased specific activity and support roles for these residues in catalysis, substrate binding, or both, as was previously proposed on the basis of the x-ray structure (Moréra, S., Lascu, I., Dumas, C., LeBras, G., Briozzo, P., Véron, M., and Janin, J. (1994) Biochemistry 33, 459-467). Furthermore, residues Lys16, Arg109, and Asn 119 were identified to play important roles in conformational stability or subunit interactions. We show that Lys16 and Asn119 form a rigid structure that is important for enzymatic function and that Arg109, known to interact with the phosphate moiety of the substrate, also plays an important role in subunit association. The dual roles of Lys16, Arg109, and Asn119 in both substrate binding and subunit assembly provide further evidence for a functional coupling between catalytic activity and quaternary structure in nucleoside diphosphate kinase. PMID:7798215

  17. Structure-Activity Relationship Studies of Amino Acid Substitutions in Radiolabeled Neurotensin Conjugates.

    PubMed

    Mascarin, Alba; Valverde, Ibai E; Mindt, Thomas L

    2016-01-01

    Radiolabeled derivatives of the peptide neurotensin (NT) and its binding sequence NT(8-13) have been studied as potential imaging probes and therapeutics for NT-1-receptor-positive cancer. However, a direct comparison of reported NT analogues, even if radiolabeled with the same radionuclide, is difficult because different techniques and models have been used for preclinical evaluations. In an effort to identify a suitable derivative of NT(8-13) for radiotracer development, we herein report a side-by-side in vitro comparison of radiometallated NT derivatives bearing some of the most commonly reported amino acid substitutions in their sequence. Performed investigations include cell internalization experiments, determinations of receptor affinity, measurements of the distribution coefficient, and blood serum stability studies. Of the [(177)Lu]-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-labeled examples studied, analogues of NT(8-13) containing a short hydrophilic tetraethylene glycol (PEG4 ) spacer between the peptide and the radiometal complex, and a minimum number of substitutions of amino acid residues, exhibited the most promising properties in vitro. PMID:26593062

  18. Activation of human 5-hydroxytryptamine type 3 receptors via an allosteric transmembrane site.

    PubMed

    Lansdell, Stuart J; Sathyaprakash, Chaitra; Doward, Anne; Millar, Neil S

    2015-01-01

    In common with other members of the Cys-loop family of pentameric ligand-gated ion channels, 5-hydroxytryptamine type 3 receptors (5-HT3Rs) are activated by the binding of a neurotransmitter to an extracellular orthosteric site, located at the interface of two adjacent receptor subunits. In addition, a variety of compounds have been identified that modulate agonist-evoked responses of 5-HT3Rs, and other Cys-loop receptors, by binding to distinct allosteric sites. In this study, we examined the pharmacological effects of a group of monoterpene compounds on recombinant 5-HT3Rs expressed in Xenopus oocytes. Two phenolic monoterpenes (carvacrol and thymol) display allosteric agonist activity on human homomeric 5-HT3ARs (64 ± 7% and 80 ± 4% of the maximum response evoked by the endogenous orthosteric agonist 5-HT, respectively). In addition, at lower concentrations, where agonist effects are less apparent, carvacrol and thymol act as potentiators of responses evoked by submaximal concentrations of 5-HT. By contrast, carvacrol and thymol have no agonist or potentiating activity on the closely related mouse 5-HT3ARs. Using subunit chimeras containing regions of the human and mouse 5-HT3A subunits, and by use of site-directed mutagenesis, we have identified transmembrane amino acids that either abolish the agonist activity of carvacrol and thymol on human 5-HT3ARs or are able to confer this property on mouse 5-HT3ARs. By contrast, these mutations have no significant effect on orthosteric activation of 5-HT3ARs by 5-HT. We conclude that 5-HT3ARs can be activated by the binding of ligands to an allosteric transmembrane site, a conclusion that is supported by computer docking studies. PMID:25338672

  19. Structural analysis of the active site architecture of the VapC toxin from Shigella flexneri.

    PubMed

    Xu, Kehan; Dedic, Emil; Brodersen, Ditlev E

    2016-07-01

    The VapC toxin from the Shigella flexneri 2a virulence plasmid pMYSH6000 belongs to the PIN domain protein family, which is characterized by a conserved fold with low amino acid sequence conservation. The toxin is a bona fide Mg(2+) -dependent ribonuclease and has been shown to target initiator tRNA(fMet) in vivo. Here, we present crystal structures of active site catalytic triad mutants D7A, D7N, and D98N of the VapC toxin in absence of antitoxin. In all structures, as well as in solution, VapC forms a dimer. In the D98N structure, a Hepes molecule occupies both active sites of the dimer and comparison with the structure of RNase H bound to a DNA/RNA hybrid suggests that the Hepes molecule mimics the position of an RNA nucleotide in the VapC active site. Proteins 2016; 84:892-899. © 2016 Wiley Periodicals, Inc. PMID:26833558

  20. Antimicrobial Activity of Metal & Metal Oxide Nanoparticles Interfaced With Ligand Complexes Of 8-Hydroxyquinoline And α-Amino Acids

    NASA Astrophysics Data System (ADS)

    Bhanjana, Gaurav; Kumar, Neeraj; Thakur, Rajesh; Dilbaghi, Neeraj; Kumar, Sandeep

    2011-12-01

    Antimicrobial nanotechnology is a recent addition to the fight against disease causing organisms, replacing heavy metals and toxins. In the present work, mixed ligand complexes of metals like zinc, silver etc. and metal oxide have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and N-and/O-donor amino acids such as L-serine, L-alanine, glycine, cysteine and histidine as secondary ligands. These complexes were characterized using different spectroscopic techniques. The complexes were tested for antifungal and antibacterial activity by using agar well diffusion bioassay.

  1. Synthesis of Some Novel 2-Amino-5-arylazothiazole Disperse Dyes for Dyeing Polyester Fabrics and Their Antimicrobial Activity.

    PubMed

    Gaffer, Hatem E; Fouda, Moustafa M G; Khalifa, Mohamed E

    2016-01-01

    The present work describes the synthesis of a series of four novel biologically active 2-amino-5-arylazothiazole disperse dyes containing the sulfa drug nucleus. The structures of the synthesized thiazole derivatives are confirmed using UV-spectrophotometry, infrared and nuclear magnetic resonance techniques and elemental analysis. The synthesized dyes are applied to polyester fabrics as disperse dyes and their fastness properties to washing, perspiration, rubbing, sublimation, and light are evaluated. The synthesized compounds exhibit promising biological efficiency against selected Gram-positive and Gram-negative pathogenic bacteria as well as fungi. PMID:26805797

  2. Genetically Encoded Azide Containing Amino Acid in Mammalian Cells Enables Site-Specific Antibody-Drug Conjugates Using Click Cycloaddition Chemistry.

    PubMed

    VanBrunt, Michael P; Shanebeck, Kurt; Caldwell, Zachary; Johnson, Jeffrey; Thompson, Pamela; Martin, Thomas; Dong, Huifang; Li, Gary; Xu, Hengyu; D'Hooge, Francois; Masterson, Luke; Bariola, Pauline; Tiberghien, Arnaud; Ezeadi, Ebele; Williams, David G; Hartley, John A; Howard, Philip W; Grabstein, Kenneth H; Bowen, Michael A; Marelli, Marcello

    2015-11-18

    Antibody-drug conjugates (ADC) have emerged as potent antitumor drugs that provide increased efficacy, specificity, and tolerability over chemotherapy for the treatment of cancer. ADCs generated by targeting cysteines and lysines on the antibody have shown efficacy, but these products are heterogeneous, and instability may limit their dosing. Here, a novel technology is described that enables site-specific conjugation of toxins to antibodies using chemistry to produce homogeneous, potent, and highly stable conjugates. We have developed a cell-based mammalian expression system capable of site-specific integration of a non-natural amino acid containing an azide moiety. The azide group enables click cycloaddition chemistry that generates a stable heterocyclic triazole linkage. Antibodies to Her2/neu were expressed to contain N6-((2-azidoethoxy)carbonyl)-l-lysine at four different positions. Each site allowed over 95% conjugation efficacy with the toxins auristatin F or a pyrrolobenzodiazepine (PBD) dimer to generate ADCs with a drug to antibody ratio of >1.9. The ADCs were potent and specific in in vitro cytotoxicity assays. An anti Her2/neu conjugate demonstrated stability in vivo and a PBD containing ADC showed potent efficacy in a mouse tumor xenograph model. This technology was extended to generate fully functional ADCs with four toxins per antibody. The high stability of the azide-alkyne linkage, combined with the site-specific nature of the expression system, provides a means for the generation of ADCs with optimized pharmacokinetic, biological, and biophysical properties. PMID:26332743

  3. Preparation of 1,7- and 3,9-dideazapurines from 2-amino-3-iodo- and 3-amino-4-iodopyridines and activated acetylenes by conjugate addition and copper-catalyzed intramolecular arylation.

    PubMed

    Zhu, Ying; Back, Thomas G

    2014-11-21

    The conjugate addition of N-formyl derivatives of 2-amino-3-iodo- and 3-amino-4-iodopyridines to acetylenes activated by sulfone, ester, or ketone groups, followed by intramolecular arylation, affords variously substituted 1,7- and 3,9-dideazapurines. The method employs DMF-water as the solvent and copper(II) acetate as the catalyst for the cyclization step. Neither added ligands nor the exclusion of oxygen is necessary. The process therefore provides a simple, convenient, and inexpensive route to this biologically interesting class of products. PMID:25333726

  4. Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation.

    PubMed

    Yamano, Koji; Queliconi, Bruno B; Koyano, Fumika; Saeki, Yasushi; Hirokawa, Takatsugu; Tanaka, Keiji; Matsuda, Noriyuki

    2015-10-16

    Damaged mitochondria are eliminated through autophagy machinery. A cytosolic E3 ubiquitin ligase Parkin, a gene product mutated in familial Parkinsonism, is essential for this pathway. Recent progress has revealed that phosphorylation of both Parkin and ubiquitin at Ser(65) by PINK1 are crucial for activation and recruitment of Parkin to the damaged mitochondria. However, the mechanism by which phosphorylated ubiquitin associates with and activates phosphorylated Parkin E3 ligase activity remains largely unknown. Here, we analyze interactions between phosphorylated forms of both Parkin and ubiquitin at a spatial resolution of the amino acid residue by site-specific photo-crosslinking. We reveal that the in-between-RING (IBR) domain along with RING1 domain of Parkin preferentially binds to ubiquitin in a phosphorylation-dependent manner. Furthermore, another approach, the Fluoppi (fluorescent-based technology detecting protein-protein interaction) assay, also showed that pathogenic mutations in these domains blocked interactions with phosphomimetic ubiquitin in mammalian cells. Molecular modeling based on the site-specific photo-crosslinking interaction map combined with mass spectrometry strongly suggests that a novel binding mechanism between Parkin and ubiquitin leads to a Parkin conformational change with subsequent activation of Parkin E3 ligase activity. PMID:26260794

  5. Kinetic model of ethopropazine interaction with horse serum butyrylcholinesterase and its docking into the active site.

    PubMed

    Golicnik, Marko; Sinko, Goran; Simeon-Rudolf, Vera; Grubic, Zoran; Stojan, Jure

    2002-02-01

    The action of a potent tricyclic cholinesterase inhibitor ethopropazine on the hydrolysis of acetylthiocholine and butyrylthiocholine by purified horse serum butyrylcholinesterase (EC 3.1.1.8) was investigated at 25 and 37 degrees C. The enzyme activities were measured on a stopped-flow apparatus and the analysis of experimental data was done by applying a six-parameter model for substrate hydrolysis. The model, which was introduced to explain the kinetics of Drosophila melanogaster acetylcholinesterase [Stojan et al. (1998) FEBS Lett. 440, 85-88], is defined with two dissociation constants and four rate constants and can describe both cooperative phenomena, apparent activation at low substrate concentrations and substrate inhibition by excess of substrate. For the analysis of the data in the presence of ethopropazine at two temperatures, we have enlarged the reaction scheme to allow primarily its competition with the substrate at the peripheral site, but the competition at the acylation site was not excluded. The proposed reaction scheme revealed, upon analysis, competitive effects of ethopropazine at both sites; at 25 degrees C, three enzyme-inhibitor dissociation constants could be evaluated; at 37 degrees C, only two constants could be evaluated. Although the model considers both cooperative phenomena, it appears that decreased enzyme sensitivity at higher temperature, predominantly for the ligands at the peripheral binding site, makes the determination of some expected enzyme substrate and/or inhibitor complexes technically impossible. The same reason might also account for one of the paradoxes in cholinesterases: activities at 25 degrees C at low substrate concentrations are higher than at 37 degrees C. Positioning of ethopropazine in the active-site gorge by molecular dynamics simulations shows that A328, W82, D70, and Y332 amino acid residues stabilize binding of the inhibitor. PMID:11811945

  6. Crystal Structure of a Bacterial Type IB DNA Topoisomerase Reveals a Preassembled Active Site in the Absence of DNA

    SciTech Connect

    Patel, Asmita; Shuman, Stewart; Mondragon, Alfonso

    2010-03-08

    Type IB DNA topoisomerases are found in all eukarya, two families of eukaryotic viruses (poxviruses and mimivirus), and many genera of bacteria. They alter DNA topology by cleaving and resealing one strand of duplex DNA via a covalent DNA-(3-phosphotyrosyl)-enzyme intermediate. Bacterial type IB enzymes were discovered recently and are described as poxvirus-like with respect to their small size, primary structures, and bipartite domain organization. Here we report the 1.75-{angstrom} crystal structure of Deinococcus radiodurans topoisomerase IB (DraTopIB), a prototype of the bacterial clade. DraTopIB consists of an amino-terminal (N) {beta}-sheet domain (amino acids 1-90) and a predominantly {alpha}-helical carboxyl-terminal (C) domain (amino acids 91-346) that closely resemble the corresponding domains of vaccinia virus topoisomerase IB. The five amino acids of DraTopIB that comprise the catalytic pentad (Arg-137, Lys-174, Arg-239, Asn-280, and Tyr-289) are preassembled into the active site in the absence of DNA in a manner nearly identical to the pentad configuration in human topoisomerase I bound to DNA. This contrasts with the apoenzyme of vaccinia topoisomerase, in which three of the active site constituents are either displaced or disordered. The N and C domains of DraTopIB are splayed apart in an 'open' conformation, in which the surface of the catalytic domain containing the active site is exposed for DNA binding. A comparison with the human topoisomerase I-DNA cocrystal structure suggests how viral and bacterial topoisomerase IB enzymes might bind DNA circumferentially via movement of the N domain into the major groove and clamping of a disordered loop of the C domain around the helix.

  7. Amino acids flanking the central core of Cu,Zn superoxide dismutase are important in retaining enzyme activity after autoclaving.

    PubMed

    Kumar, Arun; Randhawa, Vinay; Acharya, Vishal; Singh, Kashmir; Kumar, Sanjay

    2016-01-01

    Enzymes are known to be denatured upon boiling, although Cu,Zn superoxide dismutase of Potentilla atrosanguinea (Pot-SOD) retains significant catalytic activity even after autoclaving (heating at 121 °C at a pressure of 1.1 kg per square cm for 20 min). The polypeptide backbone of Pot-SOD consists of 152 amino acids with a central core spanning His45 to Cys145 that is involved in coordination of Cu(2+) and Zn(2+) ions. While the central core is essential for imparting catalytic activity and structural stability to the enzyme, the role of sequences flanking the central core was not understood. Experiments with deletion mutants showed that the amino acid sequences flanking the central core were important in retaining activity of Pot-SOD after autoclaving. Molecular dynamics simulations demonstrated the unfavorable structure of mutants due to increased size of binding pocket and enhanced negative charge on the electrostatic surface, resulting in unavailability of the substrate superoxide radical ([Formula: see text]) to the catalytic pocket. Deletion caused destabilization of structural elements and reduced solvent accessibility that further produced unfavorable structural geometry of the protein. PMID:25990646

  8. Killing of Mycobacterium avium by Lactoferricin Peptides: Improved Activity of Arginine- and d-Amino-Acid-Containing Molecules

    PubMed Central

    Silva, Tânia; Magalhães, Bárbara; Maia, Sílvia; Gomes, Paula; Nazmi, Kamran; Bolscher, Jan G. M.; Rodrigues, Pedro N.; Bastos, Margarida

    2014-01-01

    Mycobacterium avium causes respiratory disease in susceptible individuals, as well as disseminated infections in immunocompromised hosts, being an important cause of morbidity and mortality among these populations. Current therapies consist of a combination of antibiotics taken for at least 6 months, with no more than 60% overall clinical success. Furthermore, mycobacterial antibiotic resistance is increasing worldwide, urging the need to develop novel classes of antimicrobial drugs. One potential and interesting alternative strategy is the use of antimicrobial peptides (AMP). These are present in almost all living organisms as part of their immune system, acting as a first barrier against invading pathogens. In this context, we investigated the effect of several lactoferrin-derived AMP against M. avium. Short peptide sequences from both human and bovine lactoferricins, namely, hLFcin1-11 and LFcin17-30, as well as variants obtained by specific amino acid substitutions, were evaluated. All tested peptides significantly inhibited the axenic growth of M. avium, the bovine peptides being more active than the human. Arginine residues were found to be crucial for the display of antimycobacterial activity, whereas the all-d-amino-acid analogue of the bovine sequence displayed the highest mycobactericidal activity. These findings reveal the promising potential of lactoferricins against mycobacteria, thus opening the way for further research on their development and use as a new weapon against mycobacterial infections. PMID:24709266

  9. Interplay of Aro80 and GATA activators in regulation of genes for catabolism of aromatic amino acids in Saccharomyces cerevisiae.

    PubMed

    Lee, Kyusung; Hahn, Ji-Sook

    2013-06-01

    Aro80, a member of the Zn(2)Cys(6) family proteins, activates expression of the ARO9 and ARO10 genes involved in catabolism of aromatic amino acids in response to aromatic amino acids that act as inducers. ARO9 and ARO10 are also under the control of nitrogen catabolite repression, but the direct roles for GATA factors, Gat1 and Gln3, in this regulation have not yet been elucidated. Here, we demonstrate that Aro80 is constitutively bound to its target promoters and activated by inducers at the level of transactivation. Although Aro80 also binds to its own promoter, ARO80 expression is induced only by rapamycin, but not by tryptophan. We show that Aro80 is absolutely required for Gat1 binding to the ARO9, ARO10 and ARO80 promoters upon rapamycin treatment. Gln3 binding to these promoters shows a partial requirement for Aro80. Rapamycin-dependent Gat1 and Gln3 binding to the Aro80 target promoters is not affected by tryptophan availability, suggesting that transactivation activity of Aro80 is not necessary for the recruitment of GATA factors. Rapamycin-dependent induction of Aro80 target genes also requires PP2A phosphatase complex, but not Sit4 phosphatase, acting downstream of TORC1. PMID:23651256

  10. Site-directed mutagenesis of Escherichia coli acetylglutamate kinase and aspartokinase III probes the catalytic and substrate-binding mechanisms of these amino acid kinase family enzymes and allows three-dimensional modelling of aspartokinase.

    PubMed

    Marco-Marín, Clara; Ramón-Maiques, Santiago; Tavárez, Sandra; Rubio, Vicente

    2003-11-28

    We test, using site-directed mutagenesis, predictions based on the X-ray structure of N-acetyl-L-glutamate kinase (NAGK), the paradigm of the amino acid kinase protein family, about the roles of specific residues on substrate binding and catalysis. The mutations K8R and D162E decreased V([sustrate]= infinity ) 100-fold and 1000-fold, respectively, in agreement with the predictions that K8 catalyzes phosphoryl transfer and D162 organizes the catalytic groups. R66K and N158Q increased selectively K(m)(Asp) three to four orders of magnitude, in agreement with the binding of R66 and N158 to the C(alpha) substituents of NAG. Mutagenesis in parallel of aspartokinase III (AKIII phosphorylates aspartate instead of acetylglutamate), another important amino acid kinase family member of unknown 3-D structure, identified in AKIII two residues, K8 and D202, that appear to play roles similar to those of K8 and D162 of NAGK, and supports the involvement of E119 and R198, similarly to R66 and N158 of NAGK, in the binding of the amino acid substrate, apparently interacting, respectively, with the alpha-NH(3)(+) and alpha-COO(-) of aspartate. These results and an improved alignment of the NAGK and AKIII sequences have guided us into 3-D modelling of the amino acid kinase domain of AKIII using NAGK as template. The model has good stereochemistry and validation parameters. It provides insight into substrate binding and catalysis, agreeing with mutagenesis results with another aspartokinase that were not considered when building the model.AKIII is homodimeric and is inhibited by lysine. Lysine may bind to a regulatory region that is C-terminal to the amino acid kinase domain. We make a C-terminally truncated AKIII (AKIIIt) and show that the C-region is involved in intersubunit interactions, since AKIIIt is found to be monomeric. Further, it is inactive, as demanded if dimer formation is essential for activity. Models for AKIII architecture are proposed that account for these findings

  11. iSulf-Cys: Prediction of S-sulfenylation Sites in Proteins with Physicochemical Properties of Amino Acids

    PubMed Central

    Xu, Yan; Ding, Jun; Wu, Ling-Yun

    2016-01-01

    Cysteine S-sulfenylation is an important post-translational modification (PTM) in proteins, and provides redox regulation of protein functions. Bioinformatics and structural analyses indicated that S-sulfenylation could impact many biological and functional categories and had distinct structural features. However, major limitations for identifying cysteine S-sulfenylation were expensive and low-throughout. In view of this situation, the establishment of a useful computational method and the development of an efficient predictor are highly desired. In this study, a predictor iSulf-Cys which incorporated 14 kinds of physicochemical properties of amino acids was proposed. With the 10-fold cross-validation, the value of area under the curve (AUC) was 0.7155 ± 0.0085, MCC 0.3122 ± 0.0144 on the training dataset for 20 times. iSulf-Cys also showed satisfying performance in the independent testing dataset with AUC 0.7343 and MCC 0.3315. Features which were constructed from physicochemical properties and position were carefully analyzed. Meanwhile, a user-friendly web-server for iSulf-Cys is accessible at http://app.aporc.org/iSulf-Cys/. PMID:27104833

  12. Molecular Imprint of Enzyme Active Site by Camel Nanobodies

    PubMed Central

    Li, Jiang-Wei; Xia, Lijie; Su, Youhong; Liu, Hongchun; Xia, Xueqing; Lu, Qinxia; Yang, Chunjin; Reheman, Kalbinur

    2012-01-01

    Screening of inhibitory Ab1 antibodies is a critical step for producing catalytic antibodies in the anti-idiotypic approach. However, the incompatible surface of the active site of the enzyme and the antigen-binding site of heterotetrameric conventional antibodies become the limiting step. Because camelid-derived nanobodies possess the potential to preferentially bind to the active site of enzymes due to their small size and long CDR3, we have developed a novel approach to produce antibodies with alliinase activities by exploiting the molecular mimicry of camel nanobodies. By screening the camelid-derived variable region of the heavy chain cDNA phage display library with alliinase, we obtained an inhibitory nanobody VHHA4 that recognizes the active site. Further screening with VHHA4 from the same variable domain of the heavy chain of a heavy-chain antibody library led to a higher incidence of anti-idiotypic Ab2 abzymes with alliinase activities. One of the abzymes, VHHC10, showed the highest activity that can be inhibited by Ab1 VHHA4 and alliinase competitive inhibitor penicillamine and significantly suppressed the B16 tumor cell growth in the presence of alliin in vitro. The results highlight the feasibility of producing abzymes via anti-idiotypic nanobody approach. PMID:22374998

  13. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  14. An active-site peptide from pepsin C

    PubMed Central

    Kay, J.; Ryle, A. P.

    1971-01-01

    Porcine pepsin C is inactivated rapidly and irreversibly by diazoacetyl-dl-norleucine methyl ester in the presence of cupric ions at pH values above 4.5. The inactivation is specific in that complete inactivation accompanies the incorporation of 1mol of inhibitor residue/mol of enzyme and evidence has been obtained to suggest that the reaction occurs with an active site residue. The site of reaction is the β-carboxyl group of an aspartic acid residue in the sequence Ile-Val-Asp-Thr. This sequence is identical with the active-site sequence in pepsin and the significance of this in terms of the different activities of the two enzymes is discussed. PMID:4942834

  15. Synthesis and in vitro antibacterial activity of 7-(3-alkoxyimino-4-amino-4-methylpiperidin-1-yl) fluoroquinolone derivatives.

    PubMed

    Wang, Ju-Xian; Zhang, Yi-Bin; Liu, Ming-Liang; Wang, Bo; Chai, Yun; Li, Su-Jie; Guo, Hui-Yuan

    2011-06-01

    A series of novel 7-(3-alkoxyimino-4-amino-4-methylpiperidin-1-yl)fluoroquinolone derivatives were designed, synthesized and evaluated for their in vitro antibacterial activity and cytotoxicity. All of the target compounds have potent antibacterial activity against the tested Gram-positive and Gram-negative strains, and exhibit good potency in inhibiting the growth of Staphylococcus aureus including MRSA, Staphylococcus epidermidis including MRSE and Streptococcus pneumoniae (MICs: 0.125-4 μg/mL). Compound 22, with the best activity against Gram-positive strains, is 4-16 fold more potent than gemifloxacin, gatifloxacin and levofloxacin against Enterococcus faecalis, and 16- and 4-fold more potent than levofloxacin against S. epidermidis 09-6 and S. pneumoniae 08-4, respectively. PMID:21481984

  16. Activity of MMP1 and MMP13 and Amino Acid Metabolism in Patients with Alcoholic Liver Cirrhosis

    PubMed Central

    Prystupa, Andrzej; Szpetnar, Maria; Boguszewska-Czubara, Anna; Grzybowski, Andrzej; Sak, Jarosław; Załuska, Wojciech

    2015-01-01

    Background Alcoholic liver disease remains one of the most common causes of chronic liver disease worldwide. The aim of this study was to assess the usefulness of metalloproteinases (MMP1 and MMP13) as diagnostic markers of alcoholic liver disease and to determine the changes in free amino acid profile in the patients with alcoholic liver cirrhosis. Material/Methods Sixty patients with alcoholic liver cirrhosis treated in various hospitals of the Lublin region were randomly enrolled. The control group consisted of 10 healthy individuals without liver disease, who did not drink alcohol. Additionally, a group of alcoholics (22 persons) without liver cirrhosis was included in the study. The activity of MMP-1 and MMP-13 in blood plasma of patients and controls was measured using the sandwich enzyme immunoassay technique with commercially available quantitative ELISA test kits. Amino acids were determined by automated ion-exchange chromatography. Results No significant differences were observed in the activity of MMP-1 in alcoholics with or without liver cirrhosis or in controls. Increased serum MMP-13 was found in patients with liver cirrhosis (stage A, B, C) compared to the control group. Patients with alcoholic liver cirrhosis (stage A, B, C) demonstrated reduced concentrations of glutamic acid and glutamine compared to the control group. Plasma levels of valine, isoleucine, leucine, and tryptophan were significantly lower in patients with alcoholic liver cirrhosis (stage C) than in controls. Conclusions MMP-13 can be useful to confirm the diagnosis of alcoholic liver cirrhosis, but levels of MMP-1 are not significantly increased in patients with liver cirrhosis compared to controls. The serum branched-chain amino acid (BCAA) is markedly reduced in patients with stage C alcoholic liver cirrhosis. PMID:25863779

  17. LEU3 of Saccharomyces cerevisiae activates multiple genes for branched-chain amino acid biosynthesis by binding to a common decanucleotide core sequence

    SciTech Connect

    Friden, P.; Schimmel, P.

    1988-07-01

    LEU3 of Saccharomyces cerevisiae encodes an 886-amino-acid polypeptide that regulates transcription of a group of genes involved in leucine biosynthesis and has been shown to bind specifically to a 114-base-pair DNA fragment of the LEU2 upstream region. The authors show here that, in addition to LEU2, LEU3 binds in vitro to sequences in the promoter regions of LEU1, LEU4, ILV2, and, by inference, ILV5. The largely conserved decanucleotide core sequence shared by the binding sites in these genes is CCGGNNCCGG. Methylation interference footprinting experiements show that LEU 3 makes symmetrical contacts with the conserved bases that lie in the major groove. Synthetic oligonucleides (19 to 29 base pairs) which contain the core decanucleotide and flanking sequences of LEU1, LEU2, LEU4, and ILV2 have individually been placed upstream of a LEU3-insensitive test promoter. The expression of each construction is activated by LEU3, although the degree of activation varies considerably according to the specific oligonucleotide which is introduced. A promoter construction with substitutions in the core sequence remains LEU3 insensitive, however. One of the oligonucleotides (based on a LEU2 sequence) was also tested and shown to confer leucine-sensitive expression on the test promoter. The results demonstrate that only a short sequence element is necessary for LEU3-dependent promoter binding and activation and provide direct evidence for an expanded repertoire of genes that are activated by LEU3.

  18. Syntheses and biological evaluation of 2-amino-3-acyl-tetrahydrobenzothiophene derivatives; antibacterial agents with antivirulence activity

    PubMed Central

    Dang, Hung The; Chorell, Erik; Uvell, Hanna; Pinkner, Jerome S.; Hultgren, Scott J.

    2014-01-01

    Developing new compounds targeting virulence factors (e.g., inhibition of pilus assembly by pilicides) is a promising approach to combating bacterial infection. A high-throughput screening campaign of a library of 17,500 small molecules identified 2-amino-3-acyl-tetrahydrobenzothiophene derivatives (hits 2 and 3) as novel inhibitors of pili-dependent biofilm formation in an uropathogenic Escherichia coli strain UTI89. Based on compounds 2 and 3 as a starting point, we designed and synthesized a series of structurally related analogs and investigated their activity against biofilm formation of E.coli UTI89. Systematic structural modification of the initial hits provided valuable information on their SARs for further optimization. In addition, small structural changes to the parent molecules resulted in low micromolar inhibitors (20–23) of E.coli biofilm development without effect on bacterial growth. The hit compound 3 and its analog 20 were confirmed to prevent pili formation in a hemagglutination (HA) titer assay and electron microscopy (EM) measurements. These findings suggest that 2-amino-3-acyl-tetrahydrobenzothiophenes may serve as a new class of compounds for further elaboration as antibacterial agents with antivirulence activity. PMID:24531242

  19. Inhibitory activity of thermal copolymers of amino acids for the metal-catalyzed hydrolysis of an RNA dinucleotide

    NASA Astrophysics Data System (ADS)

    Kawamura, Kunio; Nagahama, Minoru; Yao, Toshio

    2006-01-01

    It is well known that the hydrolysis of RNA is substantially catalyzed by several metal ions. Although this fact poses a problem for the RNA world hypothesis, there may have been unknown pathways for the protection of RNA molecules against the hydrolytic degradation under the primitive earth conditions. Thus, we have investigated whether or not thermal copolymers of amino acids (TCAA) inhibit the catalytic activity of metal ions for the RNA hydrolyses; TCAA is a suitable model material for prebiotic protein-like molecules since TCAA involving peptide bonding is readily prepared by heating amino acid mixtures under prebiotic conditions. The activities of metal ions that Fe(III) and Co(II) enhance somewhat the 3',5'-cytidylylguanosine (CpG) hydrolysis and Ce(III) and Eu(III) accelerate greatly the CpG hydrolysis were notably reduced by TCAA. This fact indicates that protein-like molecules would have played important roles for the accumulation of RNA under the primitive earth conditions.

  20. Rat intestinal trehalase. Studies of the active site.

    PubMed

    Chen, C C; Guo, W J; Isselbacher, K J

    1987-11-01

    Rat intestinal trehalase was solubilized, purified and reconstituted into proteoliposomes. With octyl glucoside as the solubilizing detergent, the purified protein appeared as a single band on SDS/polyacrylamide-gel electrophoresis with an apparent molecular mass of 67 kDa. Kinetic studies indicated that the active site of this enzyme can be functionally divided into two adjacent regions, namely a binding site (with pKa 4.8) and a catalytic site (with pKa 7.2). Other findings suggested that the catalytic site contains a functional thiol group, which is sensitive to inhibition by N-ethylmaleimide, Hg2+ and iodoacetate. Substrate protection and iodoacetate labelling of the thiol group demonstrated that only a protein of 67 kDa was labelled. Furthermore, sucrose and phlorizin protected the thiol group, but Tris-like inhibitors did not. Structure-inhibition analysis of Tris-like inhibitors, the pH effect of Tris inhibition and Tris protection of 1-(3-dimethylaminopropyl)-3-ethylcarbodi-imide inactivation permitted characterization and location of a separate site containing a carboxy group for Tris binding, which may also be the binding region. On the basis of these findings, a possible structure for the active site of trehalase is proposed. PMID:3426558

  1. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  2. Synthesis and Biological Activity Evaluation of Novel α-Amino Phosphonate Derivatives Containing a Pyrimidinyl Moiety as Potential Herbicidal Agents.

    PubMed

    Chen, Jin-Long; Tang, Wu; Che, Jian-Yi; Chen, Kai; Yan, Gang; Gu, Yu-Cheng; Shi, De-Qing

    2015-08-19

    To find novel high-activity and low-toxicity herbicide lead compounds with novel herbicidal mode of action, series of novel α-amino phosphonate derivatives containing a pyrimidinyl moiety, I, II, III, and IV, were designed and synthesized by Lewis acid (magnesium perchlorate) catalyzed Mannich-type reaction of aldehydes, amines, and phosphites. Their structures were clearly identified by spectroscopy data (IR, (1)H NMR, (31)P NMR, EI-MS) and elemental analyses. The bioassay [in vitro, in vivo (GH1 and GH2)] showed that most compounds I exhibited good herbicidal activities; for example, the activities of compounds Ib, Ic, Ig, Ii, Ik, and Im were as good as the positive control herbicides (acetochlor, atrazine, mesotrione, and glyphosate). However, their structural isomers II and III and analogues IV did not display any herbicidal activities in vivo, although some of them possessed selective inhibitory activity against Arabidopsis thaliana in vitro. Interestingly, it was found that compounds IVs, IVt, and IVl showed selective insecticidal activities against Aphis species or Plutella xylostella, respectively. Their preliminary herbicidal mode of action and structure-activity relationships were also studied. PMID:26222653

  3. Water in the Active Site of Ketosteroid Isomerase

    PubMed Central

    Hanoian, Philip; Hammes-Schiffer, Sharon

    2011-01-01

    Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two waters in the Y16S mutant, one water in the Y16F and FFF mutants, and intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of 1H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less

  4. Amino-terminal residues of ΔNp63, mutated in ectodermal dysplasia, are required for its transcriptional activity.

    PubMed

    Lena, Anna Maria; Duca, Sara; Novelli, Flavia; Melino, Sonia; Annicchiarico-Petruzzelli, Margherita; Melino, Gerry; Candi, Eleonora

    2015-11-13

    p63, a member of the p53 family, is a crucial transcription factor for epithelial development and skin homeostasis. Heterozygous mutations in TP63 gene have been associated with human ectodermal dysplasia disorders. Most of these TP63 mutations are missense mutations causing amino acidic substitutions at p63 DNA binding or SAM domains that reduce or abolish the transcriptional activity of mutants p63. A significant number of mutants, however, resides in part of the p63 protein that apparently do not affect DNA binding and/or transcriptional activity, such as the N-terminal domain. Here, we characterize five p63 mutations at the 5' end of TP63 gene aiming to understand the pathogenesis of the diseases and to uncover the role of ΔNp63α N-terminus residues in determining its transactivation potential. PMID:26408908

  5. Synthesis and Structure–Activity Relationships of α-Amino-γ-lactone Ketolides: A Novel Class of Macrolide Antibiotics

    PubMed Central

    2014-01-01

    An efficient synthesis of α-amino-γ-lactone ketolide (3) was developed, which provided a versatile intermediate for the incorporation of a variety of aryl and heteroaryl groups onto the C-21 position of clarithromycin via HBTU-mediated amidation. The biological data for this important new class of macrolides revealed significantly potent activity against erythromycin-susceptible strains as well as efflux-resistant and erythromycin MLSB-resistant strains of S. pneumoniae and S. pyogenes. In addition, ketolide 11o showed excellent in vitro antibacterial activity against H. influenzae strain as compared to telithromycin. These results indicate that C-21 substituted γ-lactone ketolides have potential as a next generation macrolide antibiotics. PMID:25313326

  6. Anticancer activity of ruthenium(II) arene complexes bearing 1,2,3,4-tetrahydroisoquinoline amino alcohol ligands.

    PubMed

    Chelopo, Madichaba P; Pawar, Sachin A; Sokhela, Mxolisi K; Govender, Thavendran; Kruger, Hendrik G; Maguire, Glenn E M

    2013-08-01

    Ruthenium complexes offer potential reduced toxicity compared to current platinum anticancer drugs. 1,2,3,4-tetrahydrisoquinoline amino alcohol ligands were synthesised, characterised and coordinated to an organometallic Ru(II) centre. These complexes were evaluated for activity against the cancer cell lines MCF-7, A549 and MDA-MB-231 as well as for toxicity in the normal cell line MDBK. They were observed to be moderately active against only the MCF-7 cells with the best IC₅₀ value of 34 μM for the cis-diastereomeric complex C4. They also displayed excellent selectivity by being relatively inactive against the normal MDBK cell line with SI values ranging from 2.3 to 7.4. PMID:23827181

  7. Energy transfer at the active sites of heme proteins

    SciTech Connect

    Dlott, D.D.; Hill, J.R.

    1995-12-31

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes.

  8. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  9. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    PubMed

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  10. Identification of the active-site lysine residues of two biosynthetic 3-dehydroquinases.

    PubMed Central

    Chaudhuri, S; Duncan, K; Graham, L D; Coggins, J R

    1991-01-01

    The lysine residues involved in Schiff-base formation at the active sites of both the 3-dehydroquinase component of the pentafunctional arom enzyme of Neurospora crassa and of the monofunctional 3-dehydroquinase of Escherichia coli were labelled by treatment with 3-dehydroquinate in the presence of NaB3H4. Radioactive peptides were isolated by h.p.l.c. following digestion with CNBr (and in one case after further digestion with trypsin). The sequence established for the N. crassa peptide was ALQHGDVVKLVVGAR, and that for the E. coli peptide was QSFDADIPKIA. An amended nucleotide sequence for the E. coli gene (aroD) that encode 3-dehydroquinase is also presented, along with a revised alignment of the deduced amino acid sequences for the biosynthetic enzymes. PMID:1826831

  11. On the binding mode of urease active site inhibitors: A density functional study

    NASA Astrophysics Data System (ADS)

    Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M.

    The way with which boric acid, a rapid reversible competitive inhibitor, binds the urease active site was explored at density functional B3LYP level of theory. The catalytic core of the enzyme was simulated by two models of different size. In both cases, amino acid residues belonging to the inner and to the outer coordination spheres of nickel ions were replaced by smaller molecular species. Contrary to the experimental indication that attributes the inhibitory ability of this acid to the lack of a nucleophilic attack by the enzyme to the boron atom, we instead found that another possibility exists based on the presence of a strong covalent sigma bond between boron and urease that we think can be hardly broken to allow any course of the reaction.

  12. Inhibition of topoisomerase II{alpha} activity in CHO K1 cells by 2-[(aminopropyl)amino]ethanethiol (WR-1065)

    SciTech Connect

    Grdina, D.J. |; Constantinou, A.; Shigematsu, N.; Murley, J.S.

    1993-06-01

    The aminothiol 2-[(aminopropyl)amino]ethanethiol (WR-1065) is the active thiol of the clinically studied radioprotective agent S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR-2721). WR-1065 is an effective radiation protector and antimutagenic agent when it is administered 30 min prior to radiation exposure to Chinese hamster ovary Kl cells at a concentration of 4 mM. Under these exposure conditions, topoisomerase (topo) I and II activities and associated protein contents were measured in the K1 cell line using the DNA relaxation assay, the P4 unknotting assay, and immunoblotting, respectively. WR-1065 was ineffective in modifying topo I activity, but it did reduce topo IIa activity by an average of 50 percent. The magnitude of topo IIa protein content, however, was not affected by these exposure conditions. Cell cycle effects were monitored by the method of flow cytometry. Exposure of cells to 4 mM WR-1065 for a period of up to 6 h resulted in a buildup of cells in the G2 compartment. However, in contrast to topo II inhibitors used in chemotherapy, WR-1065 is an effective radioprotector agent capable of protecting against both radiation-induced cell lethality and mutagenesis. One of several mechanisms of radiation protection attributed to aminothiol compounds such as WR-1065 has been their ability to affect endogenous enzymatic reactions involved in DNA synthesis, repair, and cell cycle progression. These results are consistent with such a proposed mechanism and demonstrate in particular a modifying effect by 2-[(aminopropyl)amino]ethanethiol on type II topoisomerase, which is involved in DNA synthesis.

  13. Sex pheromones and amino acids evoke distinctly different spatial patterns of electrical activity in the goldfish olfactory bulb.

    PubMed

    Hanson, L R; Sorensen, P W; Cohen, Y

    1998-11-30

    Until now, electrophysiological studies of the vertebrate olfactory bulb have tested only 'generalist' cues. These studies suggest that odorants are discriminated by a broadly distributed spatial map. In this study, we tested for the first time in a vertebrate the hypothesis that 'specialist' cues (pheromones) are discriminated by a more restricted component of the olfactory bulb. Our model is the male goldfish, Carassius auratus, for which five sex pheromones with both behavioral and physiological activity have now been identified. Electrical activity (electroencephalography: EEG) was recorded over a 12-point grid from the surface of the olfactory bulb, while fish were exposed to one of ten stimuli including: five sex pheromones, two amino acids, two bile steroids and a control. Evoked activity was evaluated by time series analysis. Power ratios were calculated by dividing the power of the dominant frequency in the power spectrum before stimulation by the power of the dominant frequency during stimulation. Next, the average magnitudes of odorant responses were compared using analysis of variance (ANOVA). The spatial patterning of these responses was also described using cluster analysis, which grouped odorants based on the similarity of their spatial patterns of activity. Although all odorants elicited EEG responses with similar dominant frequencies, odorant-specific differences were evident in the size and distribution of these responses. Sex pheromones and bile steroids elicited relatively small responses that were spatially restricted in distinctive manners, although some overlap was evident. In contrast, amino acids consistently produced large responses at all positions. These results are consistent with the hypothesis that vertebrate pheromones are discriminated by a distinctive subcomponent of the vertebrate olfactory system comprised of a relatively small number of olfactory neurons. PMID:10049233

  14. Sediment amino acids as indicators of anthropogenic activities and potential environmental risk in Erhai Lake, Southwest China.

    PubMed

    Ni, Zhaokui; Wang, Shengrui; Zhang, Mianmian

    2016-05-01

    Total hydrolysable amino acids (THAAs) constitute the most important fraction of labile nitrogen. Anthropogenic activities directly influence various biogeochemical cycles and then accelerate lake ecosystem deterioration. This is the first study that has established the relationship between sediment THAAs and anthropogenic activities using dated sediment cores, and evaluated the possibility of THAAs release at the sediment interface based on changes in environmental conditions in Erhai Lake. The results showed that historical distribution and fractions of THAAs could be divided into three stages: a stable period before the 1970s, a clear increasing period from the 1970s to 1990s, and a gradually steady period that started after the 1990s. The chemical fraction, aromatic and sulfur amino acids (AAs) accounted for only ≤3% of THAAs. Basic AAs accounted for 5-17% of THAAs, and remained at a relatively stable level. However, acidic and neutral AAs, which accounted for 19-44% and 35-69% of THAAs, respectively, were the predominant factors causing THAAs to increase due to rapid agricultural intensification and intensification of contemporary sedimentation of phytoplankton or macrophytes since the 1970s. These trends were closely related to both anthropogenic activities and natural processes, which implied that sediment THAAs could act as an effective indicator that reflects anthropogenic activities and aquatic environmental characteristics. The current contributions of sediment THAAs on TN and TOC were <5% and 1.5%, respectively. However, the dramatic increase in THAAs in the sediment cores indicated that there was a huge potential source of labile nitrogen for the overlying water under certain environmental conditions. Correlation analysis suggested that the release of THAAs was negatively correlated with pH, whereas positively correlated with bacterial number and degree of OM mineralization, which particularly depend on the stability of HFOM. Therefore, the risk of

  15. Proteolytic regulation of epithelial sodium channels by urokinase plasminogen activator: cutting edge and cleavage sites.

    PubMed

    Ji, Hong-Long; Zhao, Runzhen; Komissarov, Andrey A; Chang, Yongchang; Liu, Yongfeng; Matthay, Michael A

    2015-02-27

    Plasminogen activator inhibitor 1 (PAI-1) level is extremely elevated in the edematous fluid of acutely injured lungs and pleurae. Elevated PAI-1 specifically inactivates pulmonary urokinase-type (uPA) and tissue-type plasminogen activators (tPA). We hypothesized that plasminogen activation and fibrinolysis may alter epithelial sodium channel (ENaC) activity, a key player in clearing edematous fluid. Two-chain urokinase (tcuPA) has been found to strongly stimulate heterologous human αβγ ENaC activity in a dose- and time-dependent manner. This activity of tcuPA was completely ablated by PAI-1. Furthermore, a mutation (S195A) of the active site of the enzyme also prevented ENaC activation. By comparison, three truncation mutants of the amino-terminal fragment of tcuPA still activated ENaC. uPA enzymatic activity was positively correlated with ENaC current amplitude prior to reaching the maximal level. In sharp contrast to uPA, neither single-chain tPA nor derivatives, including two-chain tPA and tenecteplase, affected ENaC activity. Furthermore, γ but not α subunit of ENaC was proteolytically cleaved at ((177)GR↓KR(180)) by tcuPA. In summary, the underlying mechanisms of urokinase-mediated activation of ENaC include release of self-inhibition, proteolysis of γ ENaC, incremental increase in opening rate, and activation of closed (electrically "silent") channels. This study for the first time demonstrates multifaceted mechanisms for uPA-mediated up-regulation of ENaC, which form the cellular and molecular rationale for the beneficial effects of urokinase in mitigating mortal pulmonary edema and pleural effusions. PMID:25555911

  16. Active sites environmental monitoring program. Annual report FY 1992

    SciTech Connect

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.

    1994-04-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) at ORNL from October 1991 through September 1992. Solid Waste Operations and the Environmental Sciences Division established ASEMP in 1989 to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by Chapter 2 and 3 of US Department of Energy Order 5820.2A. The Interim Waste Management Facility (IWMF) began operation in December 1991. Monitoring results from the tumulus and IWMF disposal pads continue to indicate that no LLW is leaching from the storage vaults. Storm water falling on the IWMF active pad was collected and transported to the Process Waste Treatment Plant while operators awaited approval of the National Pollutant Discharge Elimination System (NPDES) permit. Several of the recent samples collected from the active IWMF pad had pH levels above the NPDES limit of 9.0 because of alkali leached from the concrete. The increase in gross beta activity has been slight; only 1 of the 21 samples collected contained activity above the 5.0 Bq/L action level. Automated sample-collection and flow-measurement equipment has been installed at IWMF and is being tested. The flume designed to electronically measure flow from the IWMF pads and underpads is too large to be of practical value for measuring most flows at this site. Modification of this system will be necessary. A CO{sub 2} bubbler system designed to reduce the pH of water from the pads is being tested at IWMF.

  17. Localization of the active site of an enzyme, bacterial luciferase, using two-quantum affinity modification

    NASA Astrophysics Data System (ADS)

    Benimetskaya, L. Z.; Gitelzon, I. I.; Kozionov, Andrew L.; Novozhilov, S. Y.; Petushkov, V. N.; Rodionova, N. S.; Stockman, Mark I.

    1991-11-01

    For the first time the method of two-quantum affinity modification has been employed to probe the structure of an enzyme, bacterial luciferase. Position of the flavin-binding site of this enzyme, which was previously unknown, has been established. The obtained data indicate that the flavin site is positioned on the (alpha) -subunit. The closest contact of the protein chain of the enzyme with the chromophoric group of the flavin takes place near 80 +/- 10 and 120 +/- 10 amino acid residues; the regions 50 +/- 10 and 215 +/- 10 are also close to the flavin. The established localization does not contradict suggestions on positions of the flavin and phosphate sites of the bacterial luciferase, which had earlier been made from the data on evolutionary stability of various luciferases. The present method can, in principle, be applied to a great number of enzymes, including all flavin-dependent enzymes. Enzymatic catalysis has high speed and specificity. Creation of a method of determination of the elements of the primary structure of a protein, making up the active site (in which substratum conversion occurs), could be a significant advance in clearing up mechanisms of enzymatic catalysis. It was proposed to localize active sites of the enzymes, whose substrata are chromophores, using this method of two-quantum affinity modification. An enzyme- substratum complex is irradiated with laser light of sufficiently long wavelength ((lambda) 300 nm) which is not directly absorbed by the enzyme. Two-quantum quasiresonant excitation of the substratum activates it to the state with energy 5-7 eV, which is then radiativelessly transferred to neighboring protein groups. This energy exceeds the energy of activation of peptide bond breakage. Therefore, the enzyme will be disrupted in the vicinity of its active site. In the present paper the above approach has been implemented for the first time. Information has been obtained about the position of the flavin-binding site of bacterial

  18. A Unique Chitinase with Dual Active Sites and Triple Substrate Binding Sites from the Hyperthermophilic Archaeon Pyrococcus kodakaraensis KOD1

    PubMed Central

    Tanaka, Takeshi; Fujiwara, Shinsuke; Nishikori, Shingo; Fukui, Toshiaki; Takagi, Masahiro; Imanaka, Tadayuki

    1999-01-01

    We have found that the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 produces an extracellular chitinase. The gene encoding the chitinase (chiA) was cloned and sequenced. The chiA gene was found to be composed of 3,645 nucleotides, encoding a protein (1,215 amino acids) with a molecular mass of 134,259 Da, which is the largest among known chitinases. Sequence analysis indicates that ChiA is divided into two distinct regions with respective active sites. The N-terminal and C-terminal regions show sequence similarity with chitinase A1 from Bacillus circulans WL-12 and chitinase from Streptomyces erythraeus (ATCC 11635), respectively. Furthermore, ChiA possesses unique chitin binding domains (CBDs) (CBD1, CBD2, and CBD3) which show sequence similarity with cellulose binding domains of various cellulases. CBD1 was classified into the group of family V type cellulose binding domains. In contrast, CBD2 and CBD3 were classified into that of the family II type. chiA was expressed in Escherichia coli cells, and the recombinant protein was purified to homogeneity. The optimal temperature and pH for chitinase activity were found to be 85°C and 5.0, respectively. Results of thin-layer chromatography analysis and activity measurements with fluorescent substrates suggest that the enzyme is an endo-type enzyme which produces a chitobiose as a major end product. Various deletion mutants were constructed, and analyses of their enzyme characteristics revealed that both the N-terminal and C-terminal halves are independently functional as chitinases and that CBDs play an important role in insoluble chitin binding and hydrolysis. Deletion mutants which contain the C-terminal half showed higher thermostability than did N-terminal-half mutants and wild-type ChiA. PMID:10583986

  19. Surface active molecules: preparation and properties of long chain n-acyl-l-alpha-amino-omega-guanidine alkyl acid derivatives.

    PubMed

    Infante, R; Dominguez, J G; Erra, P; Julia, R; Prats, M

    1984-12-01

    Synopsis A new route for the synthesis of long chain N(alpha)-acyl-l-alpha-amino-omega-guamdine alkyl acid derivatives, with cationic or amphoteric character has been established. The general formula of these compounds is shown below. A physico-chemical and antimicrobial study of these products as a function of the alkyl ester or sodium salt (R), the straight chain length of the fatty acid residue (x) and the number of carbons between the omega-guanidine and omega-carboxyl group (n) has been investigated. The water solubility, surface tension, critical micelle concentration (c.m.c.) and minimum inhibitory concentration (MIC) against Gram-positive and Gram-negative bacteria (including Pseudomonas) has been determined. Dicyclohexylcarbodiimide has been used to condense fatty acids and alpha-amino-omega-guanidine alkyl acids. In these conditions protection of the omega-guanidine group is not necessary. The main characteristic of this synthetic procedure is the use of very mild experimental conditions (temperature, pH) to form the amide linkage which leads to pure optical compounds in high yield in the absence of electrolytes. The results show that some structural modifications, particularly the protection of the carboxyl group, promote variations of the surfactant and antimicrobial properties. Only those molecules with the blocked carboxyl group (cationic molecules, where R = Me, Et or Pr) showed a good surfactant and antimicrobial activity. When the carboxyl group was unprotected (amphoteric molecules, where R = Na(+)) the resulting compounds were inactive. PMID:19467126

  20. Structure-activity relationship studies of new rifamycins containing l-amino acid esters as inhibitors of bacterial RNA polymerases.

    PubMed

    Czerwonka, Dominika; Domagalska, Joanna; Pyta, Krystian; Kubicka, Marcelina M; Pecyna, Paulina; Gajecka, Marzena; Przybylski, Piotr

    2016-06-30

    New rifamycins (1-12) combined with different l-amino acids, containing methyl, ethyl, tert-butyl and benzyl groups at the ester part, via amine linkage, were synthesized and their structures in solution were determined by spectroscopic FT-IR and 1D and 2D NMR methods as well as visualized by DFT calculations. Two types of rifamycin structures were detected in solution: a zwitterionic one with the transferred proton from O(8)H phenol to secondary N(38) atom and a pseudocyclic structure stabilized via formation of intramolecular H-bond within the protonated basic C(3)-substituent. The presence of these rifamycins' structures influenced physico-chemical (logP, solubility) parameters and antibacterial properties. The bulkiness at the ester substituent of new rifamycins containing aromatic l-amino acids was found to be an important factor, besides the solubility, to achieve relatively high antibacterial activity against reference S. epidermidis and reference S. aureus and MRSA strains (MICs 0.016-0.063 μg/mL), comparable to that of rifampicin. SAR for the novel derivatives was discussed in view of the calculated structures of rifamycin-RNAP complexes. PMID:27061985

  1. MALDI TOF/TOF-Based Approach for the Identification of d- Amino Acids in Biologically Active Peptides and Proteins.

    PubMed

    Koehbach, Johannes; Gruber, Christian W; Becker, Christian; Kreil, David P; Jilek, Alexander

    2016-05-01

    Several biologically active peptides contain a d- amino acid in a well-defined position, which is position 2 in all peptide epimers isolated to date from vertebrates and also some from invertebrates. The detection of such D- residues by standard analytical techniques is challenging. In tandem mass spectrometric (MS) analysis, although fragment masses are the same for all stereoisomers, peak intensities are known to depend on chirality. Here, we observe that the effect of a d- amino acid in the second N-terminal position on the fragmentation pattern in matrix assisted laser desorption time-of-flight spectrometry (MALDI-TOF/TOF MS) strongly depends on the peptide sequence. Stereosensitive fragmentation (SF) is correlated to a neighborhood effect, but the d- residue also exerts an overall effect influencing distant bonds. In a fingerprint analysis, multiple peaks can thus serve to identify the chirality of a sample in short time and potentially high throughput. Problematic variations between individual spots could be successfully suppressed by cospotting deuterated analogues of the epimers. By identifying the [d-Leu2] isomer of the predicted peptide GH-2 (gene derived bombininH) in skin secretions of the toad Bombina orientalis, we demonstrated the analytical power of SF-MALDI-TOF/TOF measurements. In conclusion, SF-MALDI-TOF/TOF MS combines high sensitivity, versatility, and the ability to complement other methods. PMID:26985971

  2. MALDI TOF/TOF-Based Approach for the Identification of d- Amino Acids in Biologically Active Peptides and Proteins

    PubMed Central

    2016-01-01

    Several biologically active peptides contain a d- amino acid in a well-defined position, which is position 2 in all peptide epimers isolated to date from vertebrates and also some from invertebrates. The detection of such D- residues by standard analytical techniques is challenging. In tandem mass spectrometric (MS) analysis, although fragment masses are the same for all stereoisomers, peak intensities are known to depend on chirality. Here, we observe that the effect of a d- amino acid in the second N-terminal position on the fragmentation pattern in matrix assisted laser desorption time-of-flight spectrometry (MALDI-TOF/TOF MS) strongly depends on the peptide sequence. Stereosensitive fragmentation (SF) is correlated to a neighborhood effect, but the d- residue also exerts an overall effect influencing distant bonds. In a fingerprint analysis, multiple peaks can thus serve to identify the chirality of a sample in short time and potentially high throughput. Problematic variations between individual spots could be successfully suppressed by cospotting deuterated analogues of the epimers. By identifying the [d-Leu2] isomer of the predicted peptide GH-2 (gene derived bombininH) in skin secretions of the toad Bombina orientalis, we demonstrated the analytical power of SF-MALDI-TOF/TOF measurements. In conclusion, SF-MALDI-TOF/TOF MS combines high sensitivity, versatility, and the ability to complement other methods. PMID:26985971

  3. Probing the promiscuous active site of myo-inositol dehydrogenase using synthetic substrates, homology modeling, and active site modification.

    PubMed

    Daniellou, Richard; Zheng, Hongyan; Langill, David M; Sanders, David A R; Palmer, David R J

    2007-06-26

    The active site of myo-inositol dehydrogenase (IDH, EC 1.1.1.18) from Bacillus subtilis recognizes a variety of mono- and disaccharides, as well as 1l-4-O-substituted inositol derivatives. It catalyzes the NAD+-dependent oxidation of the axial alcohol of these substrates with comparable kinetic constants. We have found that 4-O-p-toluenesulfonyl-myo-inositol does not act as a substrate for IDH, in contrast to structurally similar compounds such as those bearing substituted benzyl substituents in the same position. X-ray crystallographic analysis of 4-O-p-toluenesulfonyl-myo-inositol and 4-O-(2-naphthyl)methyl-myo-inositol, which is a substrate for IDH, shows a distinct difference in the preferred conformation of the aryl substituent. Conformational analysis of known substrates of IDH suggests that this conformational difference may account for the difference in reactivity of 4-O-p-toluenesulfonyl-myo-inositol in the presence of IDH. A sequence alignment of IDH with the homologous glucose-fructose oxidoreductase allowed the construction of an homology model of inositol dehydrogenase, to which NADH and 4-O-benzyl-scyllo-inosose were docked and the active site energy minimized. The active site model is consistent with all experimental results and suggests that a conserved tyrosine-glycine-tyrosine motif forms the hydrophobic pocket adjoining the site of inositol recognition. Y233F and Y235F retain activity, while Y233R and Y235R do not. A histidine-aspartate pair, H176 and D172, are proposed to act as a dyad in which H176 is the active site acid/base. The enzyme is inactivated by diethyl pyrocarbonate, and the mutants H176A and D172N show a marked loss of activity. Kinetic isotope effect experiments with D172N indicate that chemistry is rate-determining for this mutant. PMID:17539607

  4. The delta EEG (sleep)-inducing peptide (DSIP). XI. Amino-acid analysis, sequence, synthesis and activity of the nonapeptide.

    PubMed

    Schoenenberger, G A; Maier, P F; Tobler, H J; Wilson, K; Monnier, M

    1978-09-01

    A peptide which induces slow-wave EEG (sleep) after intraventricular infusion into the brain has been isolated from the extracorporeal dialysate of cerebral venous blood in rabbits submitted to hypnogenic electrical stimulation of the intralaminar thalamic area. It was shown by amino-acid analysis and sequence determination to be Trp-Ala-Gly-Gly-Asp-Ala-Ser-Gly-Glu and named "Delta Sleep-Inducing Peptide" (DSIP). This compound was synthesized as well as 5 possible metabolic products (1--8, 2--9, 2--8, 1--4 and 5--9), 2 nonapeptide analogues (with one and two amino-acids exchanged) and a related tripeptide (Trp-Ser-Glu). All 9 synthetic peptides were infused intraventricularly in rabbits (6 nmol/kg in 0.05 ml of CSF-like solution over 3.5 min) and tested under double-blind conditions. A total of 61 rabbits including controls were used. The EEG from the frontal neocortex and the limbic archicortex were subjected to direct fast-Fourier transformation and analyzed by an 1108 computer system. A highly specific delta and spindle EEG-enhancing effect of the synthetic DSIP could be demonstrated. The mean increase of EEG delta activity reached 35% in the neocortex and limbic cortex as compared to control animals receiving CSF-like solution or any of the other 8 peptides. The final chemical characterization of the synthetic DSIP revealed that only the pure alpha-aspartyl peptide is highly active in contrast to its beta-Asp isomer. A neurohumoral modulating and programming activity was suggested. PMID:568769

  5. Asymmetric Synthesis and Bioselective Activities of α-Amino-phosphonates Based on the Dufulin Motif.

    PubMed

    Zhang, Guoping; Hao, Gefei; Pan, Jianke; Zhang, Jian; Hu, Deyu; Song, Baoan

    2016-06-01

    The asymmetric synthesis of enantiomerically pure α-aminophosphonates with high and bioselective activities is a challenge. Here, we report that both enantiomers of α-aminophosphonates bearing the N-benzothiazole moiety can be prepared in high yields (up to 99%) and excellent enantioselectivities (up to 99% ee) by using chiral thiourea organocatalysts. Evaluation of the antiviral activities of our reaction products against cucumber mosaic virus (CMV) led to promising hits with high and selective biological activities, wherein (R)-enantiomers exhibit higher biological activities than the corresponding (S)-enantiomers. Especially, compound (R)-3b with excellent anti-CMV activity (curative activity, 72.3%; protection activity, 56.9%; and inactivation activity, 96.9%) at 500 μg/mL emerged as a potential inhibitor of the plant virus. The difference in the selective bioactivity could be affected by the combination mode of the three-dimensional space between the enantiomers of α-aminophosphonate and cucumber mosaic virus coat protein (CMV-CP) via florescence spectroscopy and molecular docking. PMID:27166879

  6. N4-amino-acid derivatives of 6-azacytidine: structure-activity relationship.

    PubMed

    Alexeeva, I; Palchikovskaya, L; Shalamay, A; Nosach, L; Zhovnovataya, V; Povnitsa, O; Dyachenko, N

    2000-01-01

    Several N4-derivatives of 6-azacytidine were synthesized using of Vorbrüggen's condensation method. Their antiviral activity with respect to the adenovirus serotypes 2 and 5 in Hep-2 cells culture was studied and primary specific activity was determined. Correlation between chemical structure of new 6-azacytidine derivatives and their biological properties is discussed. PMID:10961682

  7. Probing the steric requirements of the γ-aminobutyric acid aminotransferase active site with fluorinated analogues of vigabatrin

    PubMed Central

    Juncosa, Jose I.; Groves, Andrew P.; Xia, Guoyao; Silverman, Richard B.

    2012-01-01

    We have synthesized three analogues of 4-amino-5-fluorohexanoic acids as potential inactivators of γ-aminobutyric acid aminotransferase (GABA-AT), which were designed to combine the potency of their shorter chain analogue, 4-amino-5-fluoropentanoic acid (AFPA), with the greater enzyme selectivity of the antiepileptic vigabatrin (Sabril®). Unexpectedly, these compounds failed to inactivate or inhibit the enzyme, even at high concentrations. On the basis of molecular modeling studies, we propose that the GABA-AT active site has an accessory binding pocket that accommodates the vinyl group of vigabatrin and the fluoromethyl group of AFPA, but is too narrow to support the extra width of one distal methyl group in the synthesized analogues. PMID:23306054

  8. Active-Site-Accessible, Porphyrinic Metal;#8722;Organic Framework Materials

    SciTech Connect

    Farha, Omar K.; Shultz, Abraham M.; Sarjeant, Amy A.; Nguyen, SonBinh T.; Hupp, Joseph T.

    2012-02-06

    On account of their structural similarity to cofactors found in many metallo-enzymes, metalloporphyrins are obvious potential building blocks for catalytically active, metal-organic framework (MOF) materials. While numerous porphyrin-based MOFs have already been described, versions featuring highly accessible active sites and permanent microporosity are remarkably scarce. Indeed, of the more than 70 previously reported porphyrinic MOFs, only one has been shown to be both permanently microporous and contain internally accessible active sites for chemical catalysis. Attempts to generalize the design approach used in this single successful case have failed. Reported here, however, is the synthesis of an extended family of MOFs that directly incorporate a variety of metalloporphyrins (specifically Al{sup 3+}, Zn{sup 2+}, Pd{sup 2+}, Mn{sup 3+}, and Fe{sup 3+} complexes). These robust porphyrinic materials (RPMs) feature large channels and readily accessible active sites. As an illustrative example, one of the manganese-containing RPMs is shown to be catalytically competent for the oxidation of alkenes and alkanes.

  9. Nest predation increases with parental activity: Separating nest site and parental activity effects

    USGS Publications Warehouse

    Martin, T.E.; Scott, J.; Menge, C.

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection.

  10. Nest predation increases with parental activity: separating nest site and parental activity effects.

    PubMed Central

    Martin, T E; Scott, J; Menge, C

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection. PMID:11413645

  11. Synthesis, photophysical characterization, and photoinduced antibacterial activity of methylene blue-loaded amino- and mannose-targeted mesoporous silica nanoparticles.

    PubMed

    Planas, Oriol; Bresolí-Obach, Roger; Nos, Jaume; Gallavardin, Thibault; Ruiz-González, Rubén; Agut, Montserrat; Nonell, Santi

    2015-01-01

    Over the last 20 years, the number of pathogenic multi-resistant microorganisms has grown steadily, which has stimulated the search for new strategies to combat antimicrobial resistance. Antimicrobial photodynamic therapy (aPDT), also called photodynamic inactivation, is emerging as a promising alternative to treatments based on conventional antibiotics. We have explored the effectiveness of methylene blue-loaded targeted mesoporous silica nanoparticles (MSNP) in the photodynamic inactivation of two Gram negative bacteria, namely Escherichia coli and Pseudomonas aeruginosa. For E. coli, nanoparticle association clearly reduced the dark toxicity of MB while preserving its photoinactivation activity. For P. aeruginosa, a remarkable difference was observed between amino- and mannose-decorated nanoparticles. The details of singlet oxygen production in the nanoparticles have been characterized, revealing the presence of two populations of this cytotoxic species. Strong quenching of singlet oxygen within the nanoparticles is observed. PMID:25859784

  12. Synthesis, spectral features and biological activity of some novel hetarylazo dyes derived from 6-amino-1,3-dimethyluracil

    NASA Astrophysics Data System (ADS)

    Yousefi, Hessamoddin; Yahyazadeh, Asieh; Yazdanbakhsh, Mohammad Reza; Rassa, Mehdi; Moradi-e-Rufchahi, Enayat O.'llah

    2012-05-01

    A series of hetarylazoaminouracil dyes were prepared by coupling of 6-amino-1,3-dimethyluracil with eight diazotized heterocyclic amines in nitrosyl sulphuric acid. The prepared azo dyes were characterized by UV-Vis, FT-IR, 13C NMR, 1H NMR spectroscopic techniques and elemental analysis. The solvatochromism of dyes was evaluated with respect to wavelength of maximum absorption (λmax) in seven solvents with different polarities: acetic acid, methanol, water, chloroform, acetonitrile, dimethyl sulfoxide and dimethyl formamide. The effects of acid, base and concentration of the dye on the visible absorption spectra were also reported. In addition, the antimicrobial activity of the synthesized dyes was evaluated on Escherichia coli, Bacillus subtilis, Micrococcus leuteus and Pseudomonas aeruginosa.

  13. Acute effects of acephate and methamidophos on acetylcholinesterase activity, endocrine system and amino acid concentrations in rats.

    PubMed

    Spassova, D; White, T; Singh, A K

    2000-05-01

    Acute effects of acephate (Ace) and methamidophos (Met) on acetylcholinesterase activity, endocrine system and amino acid concentrations were studied in rats. The rats were injected intraperitoneally with Ace (500 mg/kg) or Met (5 mg/kg) and then sacrificed at 15 or 60 min after the injection (A15 and A60 for Ace and M15 and M60 for Met). The primary aim of this study was to determine whether the mammalian toxicity of Ace is solely due to its conversion to Met or the protection of Ace against Met-inhibited AChE is also an important factor. The second aim of this study was to study the effects of Ace and Met on the endocrine system and amino acid concentrations and whether or not these effects correlate with AChE inhibition and Met accumulation. The Ace or Met injected animals did not exhibit the signs of organophosphate (OP) poisoning within 15 min after the injection, but exhibited tremors at 45 min after the injection. Blood and brain AChE activity in A15 and M15 rats exhibited 55 to 75% inhibition while the enzyme activity in A60 and M60 rats exhibited 80 to 95% inhibition. Ace was metabolized to Met in rats both in vivo and in vitro. A 5 rats had significantly higher Met concentration in their liver, brain and adrenal glands compared to M 5 rats, and A60 rats had significantly higher Met concentrations in their blood, liver, brain and adrenal glands compared to M60 rats. Thus, tissue Met concentrations in Ace-treated rats were significantly higher than in Met-treated rats and the inhibition of AChE activity was not consistent with the amount of metabolically formed Met, supporting the hypothesis that the Ace protection plays a role in the overall toxicity. Ace and Met both impaired circulating blood hormone and amino acid concentrations in rats. The endocrine effects of Ace and Met differed from their cholinergic effects, and were not proportional to the amount of Met present in different tissues obtained from the treatment groups. Plasma ACTH concentration was

  14. Identification of Ice Nucleation Active Sites on Silicate Dust Particles

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-04-01

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts [1-3]. Nevertheless, among those structures K-feldspar showed by far the highest ice nucleation activity. In this study, the reasons for its activity and the difference in the activity of the different feldspars were investigated in closer details. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. We give a potential explanation of the increased ice nucleation activity of K-feldspar. The ice nucleating sites are very much dependent on the alkali ion present by altering the water structure and the feldspar surface. The higher activity of K-feldspar can be attributed to the presence of potassium ions on the surface and surface bilayer. The alkali-ions have different hydration shells and thus an influence on the ice nucleation activity of feldspar. Chaotropic behavior of Calcium and Sodium ions are lowering the ice nucleation potential of the other feldspars, while kosmotropic Potassium has a neutral or even positive effect. Furthermore we investigated the influence of milling onto the ice nucleation of quartz particles. The ice nucleation activity can be increased by mechanical milling, by introducing more molecular, nucleation active defects to the particle surface. This effect is larger than expected by plane surface increase. [1] Atkinson et al. The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature 2013, 498, 355-358. [2] Yakobi-Hancock et al.. Feldspar Minerals as Efficient Deposition Ice Nuclei. Atmos. Chem. Phys. 2013, 13, 11175-11185. [3] Zolles et al. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles. J. Phys. Chem. A 2015 accepted.

  15. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.

    PubMed

    Ginovska-Pangovska, Bojana; Dutta, Arnab; Reback, Matthew L; Linehan, John C; Shaw, Wendy J

    2014-08-19

    Redox active metalloenzymes play a major role in energy transformation reactions in biological systems. Examples include formate dehydrogenases, nitrogenases, CO dehydrogenase, and hydrogenases. Many of these reactions are also of interest to humans as potential energy storage or utilization reactions for photoelectrochemical, electrolytic, and fuel cell applications. These metalloenzymes consist of redox active metal centers where substrates are activated and undergo transformation to products accompanied by electron and proton transfer to or from the substrate. These active sites are typically buried deep within a protein matrix of the enzyme with channels for proton transport, electron transport, and substrate/product transport between the active site and the surface of the protein. In addition, there are amino acid residues that lie in close proximity to the active site that are thought to play important roles in regulating and enhancing enzyme activity. Directly studying the outer coordination sphere of enzymes can be challenging due to their complexity, and the use of modified molecular catalysts may allow us to provide some insight. There are two fundamentally different approaches to understand these important interactions. The "bottom-up" approach involves building an amino acid or peptide containing outer coordination sphere around a functional molecular catalyst, and the "top-down" approach involves attaching molecular catalyst to a structured protein. Both of these approaches have been undertaken for hydrogenase mimics and are the emphasis of this Account. Our focus has been to utilize amino acid or peptide based scaffolds on an active functional enzyme mimic for H2 oxidation and production, [Ni(P(R)2N(R('))2)2](2+). This "bottom-up" approach has allowed us to evaluate individual functional group and structural contributions to electrocatalysts for H2 oxidation and production. For instance, using amine, ether, and carboxylic acid functionalities in the

  16. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction.

    PubMed Central

    Cavarelli, J; Eriani, G; Rees, B; Ruff, M; Boeglin, M; Mitschler, A; Martin, F; Gangloff, J; Thierry, J C; Moras, D

    1994-01-01

    The crystal structures of the various complexes formed by yeast aspartyl-tRNA synthetase (AspRS) and its substrates provide snapshots of the active site corresponding to different steps of the aminoacylation reaction. Native crystals of the binary complex tRNA-AspRS were soaked in solutions containing the two other substrates, ATP (or its analog AMPPcP) and aspartic acid. When all substrates are present in the crystal, this leads to the formation of the aspartyl-adenylate and/or the aspartyl-tRNA. A class II-specific pathway for the aminoacylation reaction is proposed which explains the known functional differences between the two classes while preserving a common framework. Extended signature sequences characteristic of class II aaRS (motifs 2 and 3) constitute the basic functional unit. The ATP molecule adopts a bent conformation, stabilized by the invariant Arg531 of motif 3 and a magnesium ion coordinated to the pyrophosphate group and to two class-invariant acidic residues. The aspartic acid substrate is positioned by a class II invariant acidic residue, Asp342, interacting with the amino group and by amino acids conserved in the aspartyl synthetase family. The amino acids in contact with the substrates have been probed by site-directed mutagenesis for their functional implication. Images PMID:8313877

  17. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    SciTech Connect

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  18. Assessment of the mutagenic and genotoxic activity of cyanobacterial toxin beta-N-methyl-amino-L-alanine in Salmonella typhimurium.

    PubMed

    Novak, Matjaž; Hercog, Klara; Žegura, Bojana

    2016-08-01

    A neurotoxin β-N-methylamino-L-alanine (L-BMAA) is a non-protein amino acid produced by most cyanobacteria ubiquitously present in aquatic and terrestrial environments. Due to its global presence in surface waters, a widespread human exposure is possible and therefore this toxin represents a health risk for humans and animals. L-BMAA has been linked to the development of a variety of neurodegenerative diseases. Its neurotoxic activity has been extensively studied, while nothing is known on its genotoxic properties. In the present study we evaluated for the first time L-BMAA mutagenic potential using Ames assay on several Salmonella typhimurium strains (TA97a, TA98, TA100, TA102 and TA1535). The results showed that the toxin (up to 0.9 mg/plate) did not induce mutations without or with S9 metabolic activation. Its genotoxic activity was further studied with the SOS/umuC assay on S. typhimurium TA1535/pSK1002 and the results showed that it was not cytotoxic nor genotoxic for bacteria. The present study represents the first evidence that L-BMAA is not mutagenic nor genotoxic for bacteria even at concentrations much higher than those typically found in the environment. However, as most of the cyanobacterial toxins are not bacterial mutagens it is very important to further elucidate its genotoxic activity in eukaryotic cells. PMID:27137670

  19. The abundance and activation of mTORC1 regulators in skeletal muscle of neonatal pigs are modulated by insulin, amino acids, and age

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we demonstrated that the insulin (INS) and amino acid (AA) -induced activation of the mammalian target of rapamycin complex 1 (mTORC1) is developmentally regulated in neonatal pigs. This study aimed to determine the effects of the post-prandial rise in INS and AA on the activation and abu...

  20. Active Sites Environmental Monitoring Program. FY 1993: Annual report

    SciTech Connect

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.; Marsh, J.D.

    1994-08-01

    This report continues a series of annual and semiannual reports that present the results of the Active Sites Environmental Monitoring Program (ASEMP) monitoring activities. The report details monitoring data for fiscal year (FY) 1993 and is divided into three major areas: SWSA 6 [including tumulus pads, Interim Waste Management Facility (IWMF), and other sites], the low-level Liquid-Waste Solidification Project (LWSP), and TRU-waste storage facilities in SWSA 5 N. The detailed monitoring methodology is described in the second revision of the ASEMP program plan. This report also presents a summary of the methodology used to gather data for each major area along with the results obtained during FY 1993.

  1. The role of active site aromatic residues in substrate degradation by the human chitotriosidase.

    PubMed

    Eide, Kristine Bistrup; Stockinger, Linn Wilhelmsen; Lewin, Anna Sofia; Tøndervik, Anne; Eijsink, Vincent G H; Sørlie, Morten

    2016-02-01

    Human chitotriosidase (HCHT) is a glycoside hydrolase family 18 chitinase synthesized and secreted in human macrophages thought be an innate part of the human immune system. It consists of a catalytic domain with the (β/α)8 TIM barrel fold having a large area of solvent-exposed aromatic amino acids in the active site and an additional family 14 carbohydrate-binding module. To gain further insight into enzyme functionality, especially the effect of the active site aromatic residues, we expressed two variants with mutations in subsites on either side of the catalytic acid, subsite -3 (W31A) and +2 (W218A), and compared their catalytic properties on chitin and high molecular weight chitosans. Exchange of Trp to Ala in subsite -3 resulted in a 12-fold reduction in extent of degradation and a 20-fold reduction in kcat(app) on chitin, while the values are 5-fold and 10-fold for subsite +2. Moreover, aromatic residue mutation resulted in a decrease of the rate of chitosan degradation contrasting previous observations for bacterial family 18 chitinases. Interestingly, the presence of product polymers of 40 sugar moieties and higher starts to disappear already at 8% degradation for HCHT50-W31A. Such behavior contrast that of the wild type and HCHT-W218A and resembles the action of endo-nonprocessive chitinases. PMID:26621384

  2. Role of active site loop in coenzyme binding and flavin reduction in cytochrome P450 reductase.

    PubMed

    Mothersole, Robert G; Meints, Carla E; Louder, Alex; Wolthers, Kirsten R

    2016-09-15

    Cytochrome P450 reductase (CPR) contains a loop within the active site (comprising Asp(634), Ala(635), Arg(636) and Asn(637); human CPR numbering) that relocates upon NADPH binding. Repositioning of the loop triggers the reorientation of an FAD-shielding tryptophan (Trp(679)) to a partially stacked conformer, reducing the energy barrier for displacement of the residue by the NADPH nicotinamide ring: an essential step for hydride transfer. We used site-directed mutagenesis and kinetic analysis to investigate if the amino acid composition of the loop influences the catalytic properties of CPR. The D634A and D634N variants elicited a modest increase in coenzyme binding affinity coupled with a 36- and 10-fold reduction in cytochrome c(3+) turnover and a 17- and 3-fold decrease in the pre-steady state rate of flavin reduction. These results, in combination with a reduction in the kinetic isotope effect for hydride transfer, suggest that diminished activity is due to destabilization of the partially stacked conformer of Trp(677) and slower release of NADP(+). In contrast, R636A, R636S and an A635G/R636S double mutant led to a modest increase in cytochrome c(3+) reduction, which is linked to weaker coenzyme binding and faster interflavin electron transfer. A potential mechanism by which Arg(636) influences catalysis is discussed. PMID:27461959

  3. Polyribosome binding by GCN1 is required for full activation of eukaryotic translation initiation factor 2{alpha} kinase GCN2 during amino acid starvation.

    PubMed

    Sattlegger, Evelyn; Hinnebusch, Alan G

    2005-04-22

    The protein kinase GCN2 mediates translational control of gene expression in amino acid-starved cells by phosphorylating eukaryotic translation initiation factor 2alpha. In Saccharomyces cerevisiae, activation of GCN2 by uncharged tRNAs in starved cells requires its direct interaction with both the GCN1.GCN20 regulatory complex and ribosomes. GCN1 also interacts with ribosomes in cell extracts, but it was unknown whether this activity is crucial for its ability to stimulate GCN2 function in starved cells. We describe point mutations in two conserved, noncontiguous segments of GCN1 that lead to reduced polyribosome association by GCN1.GCN20 in living cells without reducing GCN1 expression or its interaction with GCN20. Mutating both segments simultaneously produced a greater reduction in polyribosome binding by GCN1.GCN20 and a stronger decrease in eukaryotic translation initiation factor 2alpha phosphorylation than did mutating in one segment alone. These findings provide strong evidence that ribosome binding by GCN1 is required for its role as a positive regulator of GCN2. A particular mutation in the GCN1 domain, related in sequence to translation elongation factor 3 (eEF3), decreased GCN2 activation much more than it reduced ribosome binding by GCN1. Hence, the eEF3-like domain appears to have an effector function in GCN2 activation. This conclusion supports the model that an eEF3-related activity of GCN1 influences occupancy of the ribosomal decoding site by uncharged tRNA in starved cells. PMID:15722345

  4. Active sites in char gasification: Final technical report

    SciTech Connect

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  5. Incorporation of Non-natural Amino Acids Improves Cell Permeability and Potency of Specific Inhibitors of Proteasome Trypsin-like Sites

    PubMed Central

    Geurink, Paul P.; van der Linden, Wouter A.; Mirabella, Anne C.; Gallastegui, Nerea; de Bruin, Gerjan; Blom, Annet E. M.; Voges, Mathias J.; Mock, Elliot D.; Florea, Bogdan I.; van der Marel, Gijs A.; Driessen, Christoph; van der Stelt, Mario; Groll, Michael; Overkleeft, Herman S.; Kisselev, Alexei F.

    2013-01-01

    Proteasomes degrade the majority of proteins in mammalian cells by a concerted action of three distinct pairs of active sites. The chymotrypsin-like sites are targets of antimyeloma agents bortezomib and carfilzomib. Inhibitors of the trypsin-like site sensitize multiple myeloma cells to these agents. Here we describe systematic effort to develop inhibitors with improved potency and cell permeability, yielding azido-Phe-Leu-Leu-4-aminomethyl-Phe-methyl vinyl sulfone (4a, LU-102), and a fluorescent activity-based probe for this site. X-ray structures of 4a and related inhibitors complexed with yeast proteasomes revealed the structural basis for specificity. Nontoxic to myeloma cells when used as a single agent, 4a sensitized them to bortezomib and carfilzomib. This sensitizing effect was much stronger than the synergistic effects of histone acetylase inhibitors or additive effects of doxorubicin and dexamethasone, raising the possibility that combinations of inhibitors of the trypsin-like site with bortezomib or carfilzomib would have stronger antineoplastic activity than combinations currently used clinically. PMID:23320547

  6. Key amino acid residues for the endo-processive activity of GH74 xyloglucanase.

    PubMed

    Matsuzawa, Tomohiko; Saito, Yuji; Yaoi, Katsuro

    2014-05-01

    Unlike endo-dissociative-xyloglucanases, Paenibacillus XEG74 is an endo-processive xyloglucanase that contains four unique tryptophan residues in the negative subsites (W61 and W64) and the positive subsites (W318 and W319), as indicated by three-dimensional homology modelling. Selective replacement of the positive subsite residues with alanine mutations reduced the degree of processive activity and resulted in the more endo-dissociative-activity. The results showed that W318 and W319, which are found in the positive subsites, are essential for processive degradation and are responsible for maintaining binding interactions with xyloglucan polysaccharide through a stacking effect. PMID:24657616

  7. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-01

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.

  8. Potential sites of CFTR activation by tyrosine kinases.

    PubMed

    Billet, Arnaud; Jia, Yanlin; Jensen, Timothy J; Hou, Yue-Xian; Chang, Xiu-Bao; Riordan, John R; Hanrahan, John W

    2016-05-01

    The CFTR chloride channel is tightly regulated by phosphorylation at multiple serine residues. Recently it has been proposed that its activity is also regulated by tyrosine kinases, however the tyrosine phosphorylation sites remain to be identified. In this study we examined 2 candidate tyrosine residues near the boundary between the first nucleotide binding domain and the R domain, a region which is important for channel function but devoid of PKA consensus sequences. Mutating tyrosines at positions 625 and 627 dramatically reduced responses to Src or Pyk2 without altering the activation by PKA, suggesting they may contribute to CFTR regulation. PMID:26645934

  9. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  10. Identification of S-glutathionylation sites in species-specific proteins by incorporating five sequence-derived features into the general pseudo-amino acid composition.

    PubMed

    Zhao, Xiaowei; Ning, Qiao; Ai, Meiyue; Chai, Haiting; Yang, Guifu

    2016-06-01

    As a selective and reversible protein post-translational modification, S-glutathionylation generates mixed disulfides between glutathione (GSH) and cysteine residues, and plays an important role in regulating protein activity, stability, and redox regulation. To fully understand S-glutathionylation mechanisms, identification of substrates and specific S-Glutathionylated sites is crucial. Experimental identification of S-glutathionylated sites is labor-intensive and time consuming, so establishing an effective computational method is much desirable due to their convenient and fast speed. Therefore, in this study, a new bioinformatics tool named SSGlu (Species-Specific identification of Protein S-glutathionylation Sites) was developed to identify species-specific protein S-glutathionylated sites, utilizing support vector machines that combine multiple sequence-derived features with a two-step feature selection. By 5-fold cross validation, the performance of SSGlu was measured with an AUC of 0.8105 and 0.8041 for Homo sapiens and Mus musculus, respectively. Additionally, SSGlu was compared with the existing methods, and the higher MCC and AUC of SSGlu demonstrated that SSGlu was very promising to predict S-glutathionylated sites. Furthermore, a site-specific analysis showed that S-glutathionylation intimately correlated with the features derived from its surrounding sites. The conclusions derived from this study might help to understand more of the S-glutathionylation mechanism and guide the related experimental validation. For public access, SSGlu is freely accessible at http://59.73.198.144:8080/SSGlu/. PMID:27025952

  11. Catalytic roles of flexible regions at the active site of ribulose-bisphosphate carboxylase/oxygenase (Rubisco)

    SciTech Connect

    Hartman, F.C.; Harpel, M.R.; Chen, Yuh-Ru; Larson, E.M.; Larimer, F.W.

    1995-12-31

    Chemical and mutagenesis studies of Rubisco have identified Lys329 and Glu48 as active-site residues that are located in distinct, interacting domains from adjacent subunits. Crystallographic analyses have shown that Lys329 is the apical residue in a 12-residue flexible loop (loop 6) of the {Beta},{alpha}-barrel domain of the active site and that Glu48 resides at the end of helix B of the N-terminal domain of the active site. When phosphorylated ligands are bound by the enzyme, loop 6 adopts a closed conformation and, in concert with repositioning of helix B, thereby occludes the active site from the external environment. In this closed conformation, the {gamma}-carboxylate of Glu48 and the {epsilon}-amino group of Lys329 engage in intersubunit electrostatic interaction. By use of appropriate site-directed mutants of Rhodospirillum rubrum Rubisco, we are addressing several issues: the catalytic roles of Lys329 and Glu48, the functional significance of the intersubunit salt bridge comprised of these two residues, and the roles of loop 6 and helix B in stabilizing labile reaction intermediates. Characterization of novel products derived from misprocessing of D-ribulose-1,5-bisphosphate (RuBP) by the mutant proteins have illuminated the structure of the key intermediate in the normal oxygenase pathway.

  12. Synthesis and structure-activity relationships of 2-amino-3-carboxy-4-phenylthiophenes as novel atypical protein kinase C inhibitors

    PubMed Central

    Titchenell, Paul M.; Hollis Showalter, H. D.; Pons, Jean-François; Barber, Alistair J.; Jin, Yafei

    2013-01-01

    Recent evidence suggests atypical protein kinase C (aPKC) isoforms are required for both TNF- and VEGF-induced breakdown of the blood-retinal barrier (BRB) and endothelial permeability to 70kDa dextran or albumin. A chemical library screen revealed a series of novel small molecule phenylthiophene based inhibitors of aPKC isoforms that effectively block permeability in cell culture and in vivo. In an effort to further elucidate the structural requirements of this series of inhibitors, we detail in this study a structure-activity relationship (SAR) built on screening hit 1, which expands on our initial pharmacophore model. The biological activity of our analogues was evaluated in models of bona fide aPKC-dependent signaling including NFκB driven-gene transcription as a marker for an inflammatory response and VEGF/TNF-induced vascular endothelial permeability. The EC50 for the most efficacious inhibitors (6, 32) was in the low nanomolar range in these two cellular assays. Our study demonstrates the key structural elements that confer inhibitory activity and highlights the requirement for electron-donating moieties off the C-4 aryl moiety of the 2-amino-3-carboxy-4-phenylthiophene backbone. These studies suggest that this class has potential for further development into small molecule aPKC inhibitors with therapeutic efficacy in a host of diseases involving increased vascular permeability and inflammation. PMID:23566515

  13. Chimeric human mitochondrial PheRS exhibits editing activity to discriminate nonprotein amino acids.

    PubMed

    Kartvelishvili, Ekaterine; Peretz, Moshe; Tworowski, Dmitry; Moor, Nina; Safro, Mark

    2016-03-01

    Mitochondria are considered as the primary source of reactive oxygen species (ROS) in nearly all eukaryotic cells during respiration. The harmful effects of these compounds range from direct neurotoxicity to incorporation into proteins producing aberrant molecules with multiple physiological problems. Phenylalanine exposure to ROS produces multiple oxidized isomers: tyrosine, Levodopa, ortho-Tyr, meta-Tyr (m-Tyr), and so on. Cytosolic phenylalanyl-tRNA synthetase (PheRS) exerts control over the translation accuracy, hydrolyzing misacylated products, while monomeric mitochondrial PheRS lacks the editing activity. Recently we showed that "teamwork" of cytosolic and mitochondrial PheRSs cannot prevent incorporation of m-Tyr and l-Dopa into proteins. Here, we present human mitochondrial chimeric PheRS with implanted editing module taken from EcPheRS. The monomeric mitochondrial chimera possesses editing activity, while in bacterial and cytosolic PheRSs this type of activity was detected for the (αβ)2 architecture only. The fusion protein catalyzes aminoacylation of tRNA(Phe) with cognate phenylalanine and effectively hydrolyzes the noncognate aminoacyl-tRNAs: Tyr-tRNA(Phe) and m-Tyr-tRNA(Phe) . PMID:26645192

  14. Excitatory amino acid transporters tonically restrain nTS synaptic and neuronal activity to modulate cardiorespiratory function.

    PubMed

    Matott, Michael P; Ruyle, Brian C; Hasser, Eileen M; Kline, David D

    2016-03-01

    The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extracellular milieu by excitatory amino acid transporters (EAATs). The goal of this study was to elucidate the role of EAATs in the nTS on basal synaptic and neuronal function and cardiorespiratory regulation. The majority of glutamate clearance in the central nervous system is believed to be mediated by astrocytic EAAT 1 and 2. We confirmed the presence of EAAT 1 and 2 within the nTS and their colocalization with astrocytic markers. EAAT blockade withdl-threo-β-benzyloxyaspartic acid (TBOA) produced a concentration-related depolarization, increased spontaneous excitatory postsynaptic current (EPSC) frequency, and enhanced action potential discharge in nTS neurons. Solitary tract-evoked EPSCs were significantly reduced by EAAT blockade. Microinjection of TBOA into the nTS of anesthetized rats induced apneic, sympathoinhibitory, depressor, and bradycardic responses. These effects mimicked the response to microinjection of exogenous glutamate, and glutamate responses were enhanced by EAAT blockade. Together these data indicate that EAATs tonically restrain nTS excitability to modulate cardiorespiratory function. PMID:26719090

  15. Resistance of a human serum-selected human immunodeficiency virus type 1 escape mutant to neutralization by CD4 binding site monoclonal antibodies is conferred by a single amino acid change in gp120.

    PubMed Central

    McKeating, J A; Bennett, J; Zolla-Pazner, S; Schutten, M; Ashelford, S; Brown, A L; Balfe, P

    1993-01-01

    We have selected an HXB2 variant which can replicate in the presence of a neutralizing human serum. Sequencing of the gp120 region of the env gene from the variant and parental viruses identified a single amino acid substitution in the third conserved region of gp120 at residue 375 (AGT-->AAT, Ser-->Asn; designated 375 S/N). The escape mutant was found to be resistant to neutralization by soluble CD4 (sCD4) and four monoclonal antibodies (MAbs), 39.13g, 1.5e, G13, and 448, binding to epitopes overlapping that of the CD4 binding site (CD4 b.s.). Introduction of the 375 S/N mutation into HXB2 by site-directed mutagenesis confirmed that this mutation is responsible for the neutralization-resistant phenotype. Both sCD4 and three of the CD4 b.s. MAbs (39.13g, 1.5e, and G13) demonstrated reduced binding to the native 375 S/N mutant gp120. The ability to select for an escape variant resistant to multiple independent CD4 b.s. MAbs by a human serum confirms the reports that antibodies to the discontinuous CD4 b.s. are a major component of the group-specific neutralizing activity in human sera. PMID:7688820

  16. A Conserved Surface Loop in Type I Dehydroquinate Dehydratases Positions an Active Site Arginine and Functions in Substrate Binding

    SciTech Connect

    Light, Samuel H.; Minasov, George; Shuvalova, Ludmilla; Peterson, Scott N.; Caffrey, Michael; Anderson, Wayne F.; Lavie, Arnon

    2012-04-18

    Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. We present three crystal structures of the Salmonella enterica type I DHQD that address the functionality of a surface loop that is observed to close over the active site following substrate binding. Two wild-type structures with differing loop conformations and kinetic and structural studies of a mutant provide evidence of both direct and indirect mechanisms of involvement of the loop in substrate binding. In addition to allowing amino acid side chains to establish a direct interaction with the substrate, closure of the loop necessitates a conformational change of a key active site arginine, which in turn positions the substrate productively. The absence of DHQD in humans and its essentiality in many pathogenic bacteria make the enzyme a target for the development of nontoxic antimicrobials. The structures and ligand binding insights presented here may inform the design of novel type I DHQD inhibiting molecules.

  17. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-β-Lactamase is Fragile to Mutations.

    PubMed

    Sun, Zhizeng; Mehta, Shrenik C; Adamski, Carolyn J; Gibbs, Richard A; Palzkill, Timothy

    2016-01-01

    CphA is a Zn(2+)-dependent metallo-β-lactamase that efficiently hydrolyzes only carbapenem antibiotics. To understand the sequence requirements for CphA function, single codon random mutant libraries were constructed for residues in and near the active site and mutants were selected for E. coli growth on increasing concentrations of imipenem, a carbapenem antibiotic. At high concentrations of imipenem that select for phenotypically wild-type mutants, the active-site residues exhibit stringent sequence requirements in that nearly all residues in positions that contact zinc, the substrate, or the catalytic water do not tolerate amino acid substitutions. In addition, at high imipenem concentrations a number of residues that do not directly contact zinc or substrate are also essential and do not tolerate substitutions. Biochemical analysis confirmed that amino acid substitutions at essential positions decreased the stability or catalytic activity of the CphA enzyme. Therefore, the CphA active - site is fragile to substitutions, suggesting active-site residues are optimized for imipenem hydrolysis. These results also suggest that resistance to inhibitors targeted to the CphA active site would be slow to develop because of the strong sequence constraints on function. PMID:27616327

  18. Improving adsorption and activation of the lipase immobilized in amino-functionalized ordered mesoporous SBA-15

    NASA Astrophysics Data System (ADS)

    Xu, Yun-qiang; Zhou, Guo-wei; Wu, Cui-cui; Li, Tian-duo; Song, Hong-bin

    2011-05-01

    Ordered mesoporous SBA-15 was prepared by hydrothermal process and was functionalized with(3-aminopropyl) triethoxysilane (APTES) by post-synthesis-grafting method. The materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectrometer (EDS), small-angle X-ray powder diffraction (SAXRD), N 2 adsorption-desorption and Fourier transform infrared spectroscopy (FT-IR). The results indicated that SBA-15 had a 2-dimensional hexagonal p6 mm mesoscopic structure and the mesoscopic structure was remained after the functionalization procedure. The activities of porcine pancreatic lipase (PPL) immobilized in SBA-15 by physical adsorption and in APTES functionalized SBA-15 by chemical adsorption were studied by hydrolysis of triacetin. Chemically adsorbed PPL showed higher loading amount and catalytic activity comparing with physically adsorbed PPL. The stability of immobilized PPL against thermal and pH of reaction medium was significantly improved. Recycling experiments showed that chemically adsorbed PPL exhibited better reusability than physically adsorbed PPL.

  19. A mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)-dependent transcriptional program controls activation of the early growth response 1 (EGR1) gene during amino acid limitation.

    PubMed

    Shan, Jixiu; Balasubramanian, Mukundh N; Donelan, William; Fu, Lingchen; Hayner, Jaclyn; Lopez, Maria-Cecilia; Baker, Henry V; Kilberg, Michael S

    2014-08-29

    Amino acid (AA) limitation in mammalian cells triggers a collection of signaling cascades jointly referred to as the AA response (AAR). In human HepG2 hepatocellular carcinoma, the early growth response 1 (EGR1) gene was induced by either AA deprivation or endoplasmic reticulum stress. AAR-dependent EGR1 activation was discovered to be independent of the well characterized GCN2-ATF4 pathway and instead dependent on MEK-ERK signaling, one of the MAPK pathways. ChIP showed that constitutively bound ELK1 at the EGR1 proximal promoter region was phosphorylated after AAR activation. Increased p-ELK1 binding was associated with increased de novo recruitment of RNA polymerase II to the EGR1 promoter. EGR1 transcription was not induced in HEK293T cells lacking endogenous MEK activity, but overexpression of exogenous constitutively active MEK in HEK293T cells resulted in increased basal and AAR-induced EGR1 expression. ChIP analysis of the human vascular endothelial growth factor A (VEGF-A) gene, a known EGR1-responsive gene, revealed moderate increases in AAR-induced EGR1 binding within the proximal promoter and highly inducible binding to a site within the first intron. Collectively, these data document a novel AA-activated MEK-ERK-ELK1 signaling mechanism. PMID:25028509

  20. A Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase (MEK)-dependent Transcriptional Program Controls Activation of the Early Growth Response 1 (EGR1) Gene during Amino Acid Limitation*

    PubMed Central

    Shan, Jixiu; Balasubramanian, Mukundh N.; Donelan, William; Fu, Lingchen; Hayner, Jaclyn; Lopez, Maria-Cecilia; Baker, Henry V.; Kilberg, Michael S.

    2014-01-01

    Amino acid (AA) limitation in mammalian cells triggers a collection of signaling cascades jointly referred to as the AA response (AAR). In human HepG2 hepatocellular carcinoma, the early growth response 1 (EGR1) gene was induced by either AA deprivation or endoplasmic reticulum stress. AAR-dependent EGR1 activation was discovered to be independent of the well characterized GCN2-ATF4 pathway and instead dependent on MEK-ERK signaling, one of the MAPK pathways. ChIP showed that constitutively bound ELK1 at the EGR1 proximal promoter region was phosphorylated after AAR activation. Increased p-ELK1 binding was associated with increased de novo recruitment of RNA polymerase II to the EGR1 promoter. EGR1 transcription was not induced in HEK293T cells lacking endogenous MEK activity, but overexpression of exogenous constitutively active MEK in HEK293T cells resulted in increased basal and AAR-induced EGR1 expression. ChIP analysis of the human vascular endothelial growth factor A (VEGF-A) gene, a known EGR1-responsive gene, revealed moderate increases in AAR-induced EGR1 binding within the proximal promoter and highly inducible binding to a site within the first intron. Collectively, these data document a novel AA-activated MEK-ERK-ELK1 signaling mechanism. PMID:25028509

  1. Synthesis and Anti-Influenza A Virus Activity of 6'-amino-6'-deoxy-glucoglycerolipids Analogs.

    PubMed

    Ren, Li; Zhang, Jun; Ma, Haizhen; Sun, Linlin; Zhang, Xiaoshuang; Yu, Guangli; Guan, Huashi; Wang, Wei; Li, Chunxia

    2016-01-01

    A series of aminoglucoglycerolipids derivatives had been synthesized, including 6'-acylamido-glucoglycerolipids 1a-1f and corresponding 2'-acylamido-glucoglycerolipids 2a-2c bearing different fatty acids, glucosyl diglycerides 3a-3e bearing different functional groups at C-6' and ether-linked glucoglycerolipids 4a-4c with double-tailed alkyl alcohol. The anti-influenza A virus (IAV) activity was evaluated by the cytopathic effects (CPE) inhibition assay. The results indicated that the integral structure of the aminoglycoglycerolipid was essential for the inhibition of IAV in MDCK cells. Furthermore, oral administration of compound 1d was able to significantly improve survival and decrease pulmonary viral titers in IAV-infected mice, which suggested that compound 1d merited further investigation as a novel anti-IAV candidate in the future. PMID:27322292

  2. Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starved cells

    PubMed Central

    Sattlegger, Evelyn; Hinnebusch, Alan G.

    2000-01-01

    GCN2 stimulates GCN4 translation in amino acid-starved cells by phosphorylating the α-subunit of translation initiation factor 2. GCN2 function in vivo requires the GCN1/GCN20 complex, which binds to the N-terminal domain of GCN2. A C-terminal segment of GCN1 (residues 2052–2428) was found to be necessary and sufficient for binding GCN2 in vivo and in vitro. Overexpression of this fragment in wild-type cells impaired association of GCN2 with native GCN1 and had a dominant Gcn– phenotype, dependent on Arg2259 in the GCN1 fragment. Substitution of Arg2259 with Ala in full-length GCN1 abolished complex formation with native GCN2 and destroyed GCN1 regulatory function. Consistently, the Gcn– phenotype of gcn1-R2259A, but not that of gcn1Δ, was suppressed by overexpressing GCN2. These findings prove that GCN2 binding to the C-terminal domain of GCN1, dependent on Arg2259, is required for high level GCN2 function in vivo. GCN1 expression conferred sensitivity to paromomycin in a manner dependent on its ribosome binding domain, supporting the idea that GCN1 binds near the ribosomal acceptor site to promote GCN2 activation by uncharged tRNA. PMID:11101534

  3. Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starved cells.

    PubMed

    Sattlegger, E; Hinnebusch, A G

    2000-12-01

    GCN2 stimulates GCN4 translation in amino acid-starved cells by phosphorylating the alpha-subunit of translation initiation factor 2. GCN2 function in vivo requires the GCN1/GCN20 complex, which binds to the N-terminal domain of GCN2. A C-terminal segment of GCN1 (residues 2052-2428) was found to be necessary and sufficient for binding GCN2 in vivo and in vitro. Overexpression of this fragment in wild-type cells impaired association of GCN2 with native GCN1 and had a dominant Gcn(-) phenotype, dependent on Arg2259 in the GCN1 fragment. Substitution of Arg2259 with Ala in full-length GCN1 abolished complex formation with native GCN2 and destroyed GCN1 regulatory function. Consistently, the Gcn(-) phenotype of gcn1-R2259A, but not that of gcn1Delta, was suppressed by overexpressing GCN2. These findings prove that GCN2 binding to the C-terminal domain of GCN1, dependent on Arg2259, is required for high level GCN2 function in vivo. GCN1 expression conferred sensitivity to paromomycin in a manner dependent on its ribosome binding domain, supporting the idea that GCN1 binds near the ribosomal acceptor site to promote GCN2 activation by uncharged tRNA. PMID:11101534

  4. Transcriptional Activation of the General Amino Acid Permease Gene per1 by the Histone Deacetylase Clr6 Is Regulated by Oca2 Kinase ▿ † ¶

    PubMed Central

    Kaufmann, Isabelle; White, Eleanor; Azad, Abul; Marguerat, Samuel; Bähler, Jürg; Proudfoot, Nicholas J.

    2010-01-01

    Expression of nitrogen metabolism genes is regulated by the quality of the nitrogen supply. Here, we describe a mechanism for the transcriptional regulation of the general amino acid permease gene per1 in Schizosaccharomyces pombe. We show that when ammonia is used as the nitrogen source, low levels of per1 are transcribed and histones in the coding and surrounding regions of per1 are acetylated. In the presence of proline, per1 transcription is upregulated and initiates from a more upstream site, generating 5′-extended mRNAs. Concomitantly, histones at per1 are deacetylated in a Clr6-dependent manner, suggesting a positive role for Clr6 in transcriptional regulation of per1. Upstream initiation and histone deactylation of per1 are constitutive in cells lacking the serine/threonine kinase oca2, indicating that Oca2 is a repressor of per1. Oca2 interacts with a protein homologous to the Saccharomyces cerevisiae transcriptional activator Cha4 and with Ago1. Loss of Cha4 or Ago1 causes aberrant induction of per1 under noninducing conditions, suggesting that these proteins are also involved in per1 regulation and hence in nitrogen utilization. PMID:20404084

  5. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect

    1981-02-27

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  6. Vibrational spectroscopic, structural and nonlinear optical activity studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The conformational analysis was carried out for 2-amino-3-chloro-5-trifluoromethylpyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the molecule were carried out. The nonlinear optical (NLO) activity was studied and the first order hyperpolarizability value was computed, which was 3.48 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ACTP molecule is a promising candidate for NLO materials.

  7. Effect of arsenic and chromium on the serum amino-transferases activity in Indian major carp, Labeo rohita.

    PubMed

    Vutukuru, Sesha Srinivas; Prabhath, N Arun; Raghavender, M; Yerramilli, Anjaneyulu

    2007-09-01

    Arsenic and hexavalent chromium toxicity results from their ability to interact with sulfahydryl groups of proteins and enzymes, and to substitute phosphorus in a variety of biochemical reactions. Alanine aminotransferase (ALT; E.C: 2.6.1.2) and Aspartate amino transferase (AST; EC 2.6.1.1) play a crucial role in transamination reactions and can be used as potential biomarkers to indicate hepatotoxicity and cellular damage. While histopathological studies in liver tissue require more time and expertise, simple and reliable biochemical analysis of ALT and AST can be used for a rapid assessment of tissue and cellular damage within 96 h. The main objective of this study was to determine the acute effects of arsenic and hexavalent chromium on the activity of ALT and AST in the Indian major carp, Labeo rohita for 24 h and 96 h. Significant increase in the activity of ALT (P < 0.01) from controls in arsenic exposed fish indicates serious hepatic damage and distress condition to the fish. However, no such significant changes were observed in chromium-exposed fish suggesting that arsenic is more toxic to the fish. These findings indicate that ALT and AST are candidate biomarkers for arsenic-induced hepatotoxicity in Labeo rohita. PMID:17911661

  8. Effect of Arsenic and Chromium on the Serum Amino-Transferases Activity in Indian Major Carp, Labeo rohita

    PubMed Central

    Vutukuru, Sesha Srinivas; Arun Prabhath, N.; Raghavender, M.; Yerramilli, Anjaneyulu

    2007-01-01

    Arsenic and hexavalent chromium toxicity results from their ability to interact with sulfahydryl groups of proteins and enzymes, and to substitute phosphorus in a variety of biochemical reactions. Alanine aminotransferase (ALT; E.C: 2.6.1.2) and Aspartate amino transferase (AST; EC 2.6.1.1) play a crucial role in transamination reactions and can be used as potential biomarkers to indicate hepatotoxicity and cellular damage. While histopathological studies in liver tissue require more time and expertise, simple and reliable biochemical analysis of ALT and AST can be used for a rapid assessment of tissue and cellular damage within 96 h. The main objective of this study was to determine the acute effects of arsenic and hexavalent chromium on the activity of ALT and AST in the Indian major carp, Labeo rohita for 24 h and 96 h. Significant increase in the activity of ALT (P < 0.01) from controls in arsenic exposed fish indicates serious hepatic damage and distress condition to the fish. However, no such significant changes were observed in chromium-exposed fish suggesting that arsenic is more toxic to the fish. These findings indicate that ALT and AST are candidate biomarkers for arsenic-induced hepatotoxicity in Labeo rohita. PMID:17911661

  9. Merging the Structural Motifs of Functionalized Amino Acids and α-Aminoamides: Compounds with Significant Anticonvulsant Activities

    PubMed Central

    Salomé, Christophe; Salomé-Grosjean, Elise; Stables, James P.; Kohn, Harold

    2010-01-01

    Functional amino acids (FAAs) and α-aminoamides (AAAs) are two classes of antiepileptic drugs (AEDs) that exhibit pronounced anticonvulsant activities. We combined key structural pharmacophores present in FAAs and AAAs to generate a new series of compounds and document that select compounds exhibit activity superior to either the prototypical FAA (lacosamide) or the prototypical AAA (safinamide) in the maximal electroshock (MES) seizure model in rats. A representative compound, (R)-N-4′-((3″-fluoro)benzyloxy)benzyl 2-acetamido-3-methoxypropionamide ((R)-10), was tested in the MES (mice, ip), MES (rat, po), psychomotor 6 Hz (32 mA) (mice, ip), and hippocampal kindled (rat, ip) seizure tests providing excellent protection with ED50 values of 13, 14, ~10 mg/kg, and 12 mg/kg, respectively. In the rat sciatic nerve ligation model (ip), (R)-10 (12 mg/kg) provided an 11.2-fold attenuation of mechanical allodynia. In the mouse biphasic formalin pain model (ip), (R)-10 (15 mg/kg) reduced pain responses in the acute and the chronic inflammatory phases. PMID:20394379

  10. IGF-I regulates redox status in breast cancer cells by activating the amino acid transport molecule xC−

    PubMed Central

    Yang, Yuzhe; Yee, Douglas

    2014-01-01

    Insulin-like growth factors (IGFs) stimulate cell growth in part by increasing amino acid uptake. xCT (SLC7A11) encodes the functional subunit of the cell surface transport system xC− which mediates cystine uptake, a pivotal step in glutathione synthesis and cellular redox control. In this study, we show that IGF-I regulates cystine uptake and cellular redox status by activating the expression and function of xCT in estrogen receptor-positive (ER+) breast cancer cells by a mechanism that relies on the IGF receptor substrate-1 (IRS-1). Breast cancer cell proliferation mediated by IGF-I was suppressed by attenuating xCT expression or blocking xCT activity with the pharmacological inhibitor sulfasalazine (SASP). Notably, SASP sensitized breast cancer cells to inhibitors of the IGF-I receptor in a manner reversed by the ROS scavenger N-acetyl-L-cysteine. Thus, IGF-I promoted the proliferation of ER+ breast cancer cells by regulating xC− transporter function to protect cancer cells from ROS in an IRS-1 dependent manner. Our findings suggest that inhibiting xC− transporter function may synergize with modalities that target the IGF-I receptor to heighten their therapeutic effects. PMID:24686172

  11. Analysis of the free amino acid content in pollen of nine Asteraceae species of known allergenic activity.

    PubMed

    Mondal, A K; Parui, S; Mandal, S

    1998-01-01

    The study reports the free amino acid composition of the pollen of nine members of the family Asteraceae, i.e. Ageratum conyzoides L., Blumea oxyodonta DC., Eupatorium odoratum L., Gnaphalium indicum L., Mikania scandens Willd., Parthenium hysterophorus L., Spilanthes acmella Murr., Vernonia cinerea (L.) Lees. and Xanthium strumarium L. by thin layer chromatography. The amino acid content was found to vary from 0.5-4.0% of the total dry weight. Fourteen amino acids were identified, among which amino-n-butyric acid, aspartic acid and proline were present in almost all pollen samples. The other major amino acids present in free form included arginine, cystine, glutamic acid, glycine, isoleucine, leucine, methionine, ornithine, tryptophan and tyrosine. PMID:9852488

  12. Kinetic and structural evaluation of selected active site mutants of the Aspergillus fumigatus KDNase (sialidase).

    PubMed

    Yeung, Juliana H F; Telford, Judith C; Shidmoossavee, Fahimeh S; Bennet, Andrew J; Taylor, Garry L; Moore, Margo M

    2013-12-23

    Aspergillus fumigatus is an airborne fungal pathogen. We previously cloned and characterized an exo-sialidase from A. fumigatus and showed that it preferred 2-keto-3-deoxynononic acid (KDN) as a substrate to N-acetylneuraminic acid (Neu5Ac). The purpose of this study was to investigate the structure-function relationships of critical catalytic site residues. Site-directed mutagenesis was used to create three mutant recombinant enzymes: the catalytic nucleophile (Y358H), the general acid/base catalyst (D84A), and an enlargement of the binding pocket to attempt to accommodate the N-acetyl group of Neu5Ac (R171L). Crystal structures for all enzymes were determined. The D84A mutation had an effect in decreasing the activity of AfKDNase that was stronger than that of the same mutation in the structurally similar sialidase from the bacterium Micromonospora viridifaciens. These data suggest that the catalytic acid is more important in the reaction of AfKDNase and that catalysis is less dependent on nucleophilic or electrostatic stabilization of the developing positive charge at the transition state for hydrolysis. Removal of the catalytic nucleophile (Y358H) significantly lowered the activity of the enzyme, but this mutant remained a retaining glycosidase as demonstrated by nuclear magnetic resonance spectroscopic analysis. This is a novel finding that has not been shown with other sialidases. Kinetic activity measured at pH 5.2 revealed that R171L had higher activity on a Neu5Ac-based substrate than wild-type KDNase; hence, leucine in place of arginine in the binding pocket improved catalysis toward Neu5Ac substrates. Hence, whether a sialidase is primarily a KDNase or a neuraminidase is due in part to the presence of an amino acid that creates a steric clash with the N-acetyl group. PMID:24295366

  13. Identification of the Enterobacteriaceae in Montasio cheese and assessment of their amino acid decarboxylase activity.

    PubMed

    Maifreni, Michela; Frigo, Francesca; Bartolomeoli, Ingrid; Innocente, Nadia; Biasutti, Marialuisa; Marino, Marilena

    2013-02-01

    The aim of the study was to identify the species of Enterobacteriaceae present in Montasio cheese and to assess their potential to produce biogenic amines. Plate count methods and an Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) approach, combined with 16S rDNA sequencing, were used to investigate the Enterobacteriaceae community present during the cheesemaking and ripening of 6 batches of Montasio cheese. Additionally, the potential decarboxylation abilities of selected bacterial isolates were qualitatively and quantitatively assessed against tyrosine, histidine, ornithine and lysine. The most predominant species detected during cheese manufacturing and ripening were Enterobacter cloacae, Escherichia coli and Hafnia alvei. The non-limiting physico-chemical conditions (pH, NaCl% and a(w)) during ripening were probably the cause of the presence of detectable levels of Enterobacteriaceae up to 120 d of ripening. The HPLC test showed that cadaverine and putrescine were the amines produced in higher amounts by almost all isolates, indicating that the presence of these amines in cheese can be linked to the presence of high counts of Enterobacteriaceae. 44 isolates produced low amounts of histamine (<300 ppm), and four isolates produced more than 1000 ppm of this amine. Only 9 isolates, belonging to the species Citrobacter freundii, Esch. coli and Raoultella ornithinolytica, appeared to produce tyramine. These data provided new information regarding the decarboxylase activity of some Enterobacteriaceae species, including Pantoea agglomerans, Esch. fergusonii and R. ornithinolytica. PMID:23298547

  14. Active-site Arg --> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase.

    PubMed

    Vacca, R A; Giannattasio, S; Graber, R; Sandmeier, E; Marra, E; Christen, P

    1997-08-29

    Arg386 and Arg292 of aspartate aminotransferase bind the alpha and the distal carboxylate group, respectively, of dicarboxylic substrates. Their substitution with lysine residues markedly decreased aminotransferase activity. The kcat values with L-aspartate and 2-oxoglutarate as substrates under steady-state conditions at 25 degrees C were 0.5, 2.0, and 0.03 s-1 for the R292K, R386K, and R292K/R386K mutations, respectively, kcat of the wild-type enzyme being 220 s-1. Longer dicarboxylic substrates did not compensate for the shorter side chain of the lysine residues. Consistent with the different roles of Arg292 and Arg386 in substrate binding, the effects of their substitution on the activity toward long chain monocarboxylic (norleucine/2-oxocaproic acid) and aromatic substrates diverged. Whereas the R292K mutation did not impair the aminotransferase activity toward these substrates, the effect of the R386K substitution was similar to that on the activity toward dicarboxylic substrates. All three mutant enzymes catalyzed as side reactions the beta-decarboxylation of L-aspartate and the racemization of amino acids at faster rates than the wild-type enzyme. The changes in reaction specificity were most pronounced in aspartate aminotransferase R292K, which decarboxylated L-aspartate to L-alanine 15 times faster (kcat = 0.002 s-1) than the wild-type enzyme. The rates of racemization of L-aspartate, L-glutamate, and L-alanine were 3, 5, and 2 times, respectively, faster than with the wild-type enzyme. Thus, Arg --> Lys substitutions in the active site of aspartate aminotransferase decrease aminotransferase activity but increase other pyridoxal 5'-phosphate-dependent catalytic activities. Apparently, the reaction specificity of pyridoxal 5'-phosphate-dependent enzymes is not only achieved by accelerating the specific reaction but also by preventing potential side reactions of the coenzyme substrate adduct. PMID:9268327

  15. Murine T cell activation is regulated by surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide)

    SciTech Connect

    Warford, Jordan; Doucette, Carolyn D.; Hoskin, David W.; Easton, Alexander S.

    2014-01-10

    Highlights: •Surfen is the first inhibitor of glycosaminoglycan function to be studied in murine T cells. •Surfen reduces T cell proliferation stimulated in vitro and in vivo. •Surfen reduces CD25 expression in T cells activated in vivo but not in vitro. •Surfen increases T cell proliferation when T cell receptor activation is bypassed. •Surfen’s effects are blocked by co-administration of heparin sulfate. -- Abstract: Surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide) binds to glycosaminoglycans (GAGs) and has been shown to influence their function, and the function of proteoglycans (complexes of GAGs linked to a core protein). T cells synthesize, secrete and express GAGs and proteoglycans which are involved in several aspects of T cell function. However, there are as yet no studies on the effect of GAG-binding agents such as surfen on T cell function. In this study, surfen was found to influence murine T cell activation. Doses between 2.5 and 20 μM produced a graduated reduction in the proliferation of T cells activated with anti-CD3/CD28 antibody-coated T cell expander beads. Surfen (20 mg/kg) was also administered to mice treated with anti-CD3 antibody to activate T cells in vivo. Lymphocytes from surfen-treated mice also showed reduced proliferation and lymph node cell counts were reduced. Surfen reduced labeling with a cell viability marker (7-ADD) but to a much lower extent than its effect on proliferation. Surfen also reduced CD25 (the α-subunit of the interleukin (IL)-2 receptor) expression with no effect on CD69 expression in T cells treated in vivo but not in vitro. When receptor activation was bypassed by treating T cells in vitro with phorbyl myristate acetate (10 ng/ml) and ionomycin (100 ng/ml), surfen treatment either increased proliferation (10 μM) or had no effect (2.5, 5 and 20 μM). In vitro treatment of T cells with surfen had no effect on IL-2 or interferon-γ synthesis and did not alter proliferation of the IL-2 dependent cell

  16. Identification of covalent active site inhibitors of dengue virus protease

    PubMed Central

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  17. AADS--an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors.

    PubMed

    Singh, Tanya; Biswas, D; Jayaram, B

    2011-10-24

    We report here a robust automated active site detection, docking, and scoring (AADS) protocol for proteins with known structures. The active site finder identifies all cavities in a protein and scores them based on the physicochemical properties of functional groups lining the cavities in the protein. The accuracy realized on 620 proteins with sizes ranging from 100 to 600 amino acids with known drug active sites is 100% when the top ten cavity points are considered. These top ten cavity points identified are then submitted for an automated docking of an input ligand/candidate molecule. The docking protocol uses an all atom energy based Monte Carlo method. Eight low energy docked structures corresponding to different locations and orientations of the candidate molecule are stored at each cavity point giving 80 docked structures overall which are then ranked using an effective free energy function and top five structures are selected. The predicted structure and energetics of the complexes agree quite well with experiment when tested on a data set of 170 protein-ligand complexes with known structures and binding affinities. The AADS methodology is implemented on an 80 processor cluster and presented as a freely accessible, easy to use tool at http://www.scfbio-iitd.res.in/dock/ActiveSite_new.jsp . PMID:21877713

  18. The thrombin receptor extracellular domain contains sites crucial for peptide ligand-induced activation.

    PubMed Central

    Bahou, W F; Coller, B S; Potter, C L; Norton, K J; Kutok, J L; Goligorsky, M S

    1993-01-01

    A thrombin receptor (TR) demonstrating a unique activation mechanism has recently been isolated from a megakaryocytic (Dami) cell line. To further study determinants of peptide ligand-mediated activation phenomenon, we have isolated, cloned, and stably expressed the identical receptor from a human umbilical vein endothelial cell (HUVEC) library. Chinese hamster ovary (CHO) cells expressing a functional TR (CHO-TR), platelets, and HUVECs were then used to specifically characterize alpha-thrombin- and peptide ligand-induced activation responses using two different antibodies: anti-TR34-52 directed against a 20-amino acid peptide spanning the thrombin cleavage site, and anti-TR1-160 generated against the NH2-terminal 160 amino acids of the TR expressed as a chimeric protein in Escherichia coli. Activation-dependent responses to both alpha-thrombin (10 nM) and peptide ligand (20 microM) were studied using fura 2-loaded cells and microspectrofluorimetry. Whereas preincubation of CHO-TR with anti-TR34-52 abolished only alpha-thrombin-induced [Ca2+]i transients, preincubation with anti-TR1-160 abrogated both alpha-thrombin- and peptide ligand-induced responses. This latter inhibitory effect was dose dependent and similar for both agonists, with an EC50 of approximately 90 micrograms/ml. Anti-TR1-160 similarly abolished peptide ligand-induced [Ca2+]i transients in platelets and HUVECs, whereas qualitatively different responses characterized by delayed but sustained elevations in [Ca2+]i transients were evident using alpha-thrombin. Platelet aggregation to low concentrations of both ligands was nearly abolished by anti-TR1-160, although some shape change remained; anti-TR34-52 only inhibited alpha-thrombin-induced aggregation. These data establish that a critical recognition sequence for peptide ligand-mediated receptor activation is contained on the NH2-terminal portion of the receptor, upstream from the first transmembrane domain. Furthermore, alpha

  19. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer.

    PubMed

    Dinpajooh, Mohammadhasan; Martin, Daniel R; Matyushov, Dmitry V

    2016-01-01

    Enzymes in biology's energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  20. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-06-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work.

  1. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    PubMed Central

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-01-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  2. Abundance of amino acid transporters involved in mTORC1 activation in skeletal muscle of neonatal pigs is developmentally regulated

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we demonstrated that the insulinand amino acid-induced activation of the mammalian target of rapamycin complex 1 (mTORC1) is developmentally regulated in neonatal pigs. Recent studies have indicated that members of the System A transporter (SNAT2), the System N transporter (SNAT3), the Sy...

  3. Activation by insulin and amino acids of signaling components leading to translation initiation in skeletal muscle of neonatal pigs is developmentally regulated

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin and amino acids act independently to stimulate protein synthesis in skeletal muscle of neonatal pigs, and the responses decrease with development. The purpose of this study was to compare the separate effects of fed levels of INS and AA on the activation of signaling components leading to tr...

  4. Use Of Amino Acid Racemization To Investigate The Metabolic Activity Of ?Dormant? Microorganisms In Siberian Permafrost

    NASA Astrophysics Data System (ADS)

    Tsapin, A.; McDonald, G.

    2002-12-01

    search for extraterrestrial life or its remnants is based on studying the most probable environments in which life (extant or extinct) may be found, and determining the maximum period of time over which such life could be preserved. The terrestrial permafrost, inhabited by cold adapted microbes, can be considered as an extraterrestrial analog environment. The cells and their metabolic end-products in Earth's permafrost can be used in the search for possible ecosystems and potential inhabitants on extraterrestrial cryogenic bodies. The study of microorganisms (or their remnants) that were buried for a few million years in permafrost provides us with a unique opportunity to determine the long-term viability of (micro)organisms. We have analyzed the degree of racemization of aspartic acid in permafrost samples from Northern Siberia (Brinton et al. 2002, Astrobiology 2, 77), an area from which microorganisms of apparent ages up to a few million years have previously been isolated and cultured. We find that the extent of aspartic acid racemization in permafrost cores increases very slowly up to an age of approximately 25,000 years (around 5 m depth). The apparent temperature of racemization over the age range 0-25,000 years, determined using measured aspartic acid racemization rate constants, is ?19 C. This apparent racemization temperature is significantly lower than the measured environmental temperature (?11 to ?13 C), and suggests active recycling of D-aspartic acid in Siberian permafrost up to an age of around 25,000 years. This indicates that permafrost organisms are capable of repairing some molecular damage incurred while they are in a ?dormant? state over geologic time.

  5. Effect of site-directed mutagenic alterations on ADP-ribosyltransferase activity of the A subunit of Escherichia coli heat-labile enterotoxin.

    PubMed Central

    Lobet, Y; Cluff, C W; Cieplak, W

    1991-01-01

    Previous studies of the S1 subunit of pertussis toxin, an NAD(+)-dependent ADP-ribosyltransferase, suggested that a small amino-terminal region of amino acid sequence similarity to the active fragments of both cholera toxin and Escherichia coli heat-labile enterotoxin represents a region containing critical active-site residues that might be involved in the binding of the substrate NAD+. Other studies of two other bacterial toxins possessing ADP-ribosyltransferase activity, diphtheria toxin and Pseudomonas exotoxin A, have revealed the presence of essential glutamic acid residues vicinal to the active site. To help determine the relevance of these observations to activities of the enterotoxins, the A-subunit gene of the E. coli heat-labile enterotoxin was subjected to site-specific mutagenesis in the region encoding the amino-terminal region of similarity to the S1 subunit of pertussis toxin delineated by residues 6 through 17 and at two glutamic acid residues, 110 and 112, that are conserved in the active domains of all of the heat-labile enterotoxin variants and in cholera toxin. Mutant proteins in which arginine 7 was either deleted or replaced with lysine exhibited undetectable levels of ADP-ribosyltransferase activity. However, limited trypsinolysis of the arginine 7 mutants yielded fragmentation kinetics that were different from that yielded by the wild-type recombinant subunit or the authentic A subunit. In contrast, mutant proteins in which glutamic acid residues at either position 110 or 112 were replaced with aspartic acid responded like the wild-type subunit upon limited trypsinolysis, while exhibiting severely depressed, but detectable, ADP-ribosyltransferase activity. The latter results may indicate that either glutamic acid 110 or glutamic acid 112 of the A subunit of heat-labile enterotoxin is analogous to those active-site glutamic acids identified in several other ADP-ribosylating toxins. Images PMID:1908825

  6. Site-directed mutagenesis of the human DNA repair enzyme HAP1: identification of residues important for AP endonuclease and RNase H activity.

    PubMed

    Barzilay, G; Walker, L J; Robson, C N; Hickson, I D

    1995-05-11

    HAP1 protein, the major apurinic/apyrimidinic (AP) endonuclease in human cells, is a member of a homologous family of multifunctional DNA repair enzymes including the Escherichia coli exonuclease III and Drosophila Rrp1 proteins. The most extensively characterised member of this family, exonuclease III, exhibits both DNA- and RNA-specific nuclease activities. Here, we show that the RNase H activity characteristic of exonuclease III has been conserved in the human homologue, although the products resulting from RNA cleavage are dissimilar. To identify residues important for enzymatic activity, five mutant HAP1 proteins containing single amino acid substitutions were purified and analysed in vitro. The substitutions were made at sites of conserved amino acids and targeted either acidic or histidine residues because of their known participation in the active sites of hydrolytic nucleases. One of the mutant proteins (replacement of Asp-219 by alanine) showed a markedly reduced enzymatic activity, consistent with a greatly diminished capacity to bind DNA and RNA. In contrast, replacement of Asp-90, Asp-308 or Glu-96 by alanine led to a reduction in enzymatic activity without significantly compromising nucleic acid binding. Replacement of His-255 by alanine led to only a very small reduction in enzymatic activity. Our data are consistent with the presence of a single catalytic active site for the DNA- and RNA-specific nuclease activities of the HAP1 protein. PMID:7784208

  7. cDNA cloning and structural characterization of a lectin from the mussel Crenomytilus grayanus with a unique amino acid sequence and antibacterial activity.

    PubMed

    Kovalchuk, Svetlana N; Chikalovets, Irina V; Chernikov, Oleg V; Molchanova, Valentina I; Li, Wei; Rasskazov, Valery A; Lukyanov, Pavel A

    2013-10-01

    An amino acid sequence of GalNAc/Gal-specific lectin from the mussel Crenomytilus grayanus (CGL) was determined by cDNA sequencing. CGL consists of 150 amino acid residues, contains three tandem repeats with high sequence similarities to each other (up to 73%) and does not belong to any known lectins family. According to circular dichroism results CGL is a β/α-protein with the predominance of β-structure. CGL was predicted to adopt a ß-trefoil fold. The lectin exhibits antibacterial activity and might be involved in the recognition and clearance of bacterial pathogens in the shellfish. PMID:23886951

  8. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    SciTech Connect

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  9. Efficient identification of photolabelled amino acid residues by combining immunoaffinity purification with MS: revealing the semotiadil-binding site and its relevance to binding sites for myristates in domain III of human serum albumin.

    PubMed Central

    Kawahara, Kohichi; Kuniyasu, Akihiko; Masuda, Katsuyoshi; Ishiguro, Masaji; Nakayama, Hitoshi

    2002-01-01

    To identify photoaffinity-labelled amino acid residue(s), we devised an effective method utilizing immunoaffinity purification of photolabelled fragments, followed by matrix-assisted laser-desorption ionization-time of flight (MALDI-TOF) MS and nanoelectrospray ionization tandem MS (nano-ESI-MS/MS) analysis. Human serum albumin (HSA) was photolabelled with an azidophenyl derivative of semotiadil, FNAK [(+)-(R)-3,4-dihydro-2-[5-methoxy-2-[3-[N-methyl-N-[2-(3-azidophenoxy)-ethyl]amino]propoxyl]phenyl]-4-methyl-2H-1,4-benzothiazin-3-(4H)-one], since HSA is a major binding protein for semotiadil in serum. After lysyl endopeptidase digestion, photolabelled HSA fragments were adsorbed selectively on to Sepharose beads on which an anti-semotiadil antibody was immobilized, and fractions were eluted quantitatively by 50% acetonitrile/10 mM HCl. MALDI-TOF MS analysis of the eluted fraction showed that it contained two photolabelled fragments of m/z 2557.54 (major) and 1322.44 (minor), corresponding to Lys-414-Lys-432 and Ala-539-Lys-545, respectively. Further nano-ESI-MS/MS analysis revealed that Lys-414 was the photolabelled amino acid residue in fragment 414-432 and Lys-541 was a likely candidate in fragment 539-545. Based on the photolabelling results, we constructed a three-dimensional model of the FNAK-HSA complex, revealing that FNAK resides in a pocket that overlaps considerably with myristate (Myr)-binding sites, Myr-3 and -4, by comparison with crystallographic data of HSA-Myr complexes described in Curry, Mandelkow, Brick and Franks (1998) Nat. Struct. Biol. 5, 827-835. Moreover, addition of Myr increased photo-incorporation into Lys-414, whereas incorporation into Lys-541 decreased under conditions of [Myr]/[HSA]<1. Further addition of Myr, however, uniformly decreased photo-incorporation into both Lys residues. These results indicate that FNAK labelling can also be used to monitor Myr binding in domain III. An interpretation for the concomitant local

  10. Target-classification approach applied to active UXO sites

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Shamatava, Irma; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    This study is designed to illustrate the discrimination performance at two UXO active sites (Oklahoma's Fort Sill and the Massachusetts Military Reservation) of a set of advanced electromagnetic induction (EMI) inversion/discrimination models which include the orthonormalized volume magnetic source (ONVMS), joint diagonalization (JD), and differential evolution (DE) approaches and whose power and flexibility greatly exceed those of the simple dipole model. The Fort Sill site is highly contaminated by a mix of the following types of munitions: 37-mm target practice tracers, 60-mm illumination mortars, 75-mm and 4.5'' projectiles, 3.5'', 2.36'', and LAAW rockets, antitank mine fuzes with and without hex nuts, practice MK2 and M67 grenades, 2.5'' ballistic windshields, M2A1-mines with/without bases, M19-14 time fuzes, and 40-mm practice grenades with/without cartridges. The site at the MMR site contains targets of yet different sizes. In this work we apply our models to EMI data collected using the MetalMapper (MM) and 2 × 2 TEMTADS sensors. The data for each anomaly are inverted to extract estimates of the extrinsic and intrinsic parameters associated with each buried target. (The latter include the total volume magnetic source or NVMS, which relates to size, shape, and material properties; the former includes location, depth, and orientation). The estimated intrinsic parameters are then used for classification performed via library matching and the use of statistical classification algorithms; this process yielded prioritized dig-lists that were submitted to the Institute for Defense Analyses (IDA) for independent scoring. The models' classification performance is illustrated and assessed based on these independent evaluations.

  11. Differential Active Site Loop Conformations Mediate Promiscuous Activities in the Lactonase SsoPox

    PubMed Central

    Elias, Mikael; Chabriere, Eric

    2013-01-01

    Enzymes are proficient catalysts that enable fast rates of Michaelis-complex formation, the chemical step and products release. These different steps may require different conformational states of the active site that have distinct binding properties. Moreover, the conformational flexibility of the active site mediates alternative, promiscuous functions. Here we focused on the lactonase SsoPox from Sulfolobus solfataricus. SsoPox is a native lactonase endowed with promiscuous phosphotriesterase activity. We identified a position in the active site loop (W263) that governs its flexibility, and thereby affects the substrate specificity of the enzyme. We isolated two different sets of substitutions at position 263 that induce two distinct conformational sampling of the active loop and characterized the structural and kinetic effects of these substitutions. These sets of mutations selectively and distinctly mediate the improvement of the promiscuous phosphotriesterase and oxo-lactonase activities of SsoPox by increasing active-site loop flexibility. These observations corroborate the idea that conformational diversity governs enzymatic promiscuity and is a key feature of protein evolvability. PMID:24086491

  12. Spectroscopic Definition of the Ferroxidase Site in M Ferritin: Comparison of Binuclear Substrate vs. Cofactor Active Sites

    PubMed Central

    Schwartz, Jennifer K.; Liu, Xiaofeng S.; Tosha, Takehiko; Theil, Elizabeth C.; Solomon, Edward I.

    2008-01-01

    Maxi ferritins, 24 subunit protein nanocages, are essential in humans, plants, bacteria, and other animals for the concentration and storage of iron as hydrated ferric oxide, while minimizing free radical generation or use by pathogens. Formation of the precursors to these ferric oxides is catalyzed at a non-heme biferrous substrate site, which has some parallels with the cofactor sites in other biferrous enzymes. A combination of circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD (VTVH MCD) has been used to probe Fe(II) binding to the substrate active site in frog M ferritin. These data determined that the active site within each subunit consists of two inequivalent five-coordinate (5C) ferrous centers that are weakly anti-ferromagnetically coupled, consistent with a μ-1,3 carboxylate bridge. The active site ligand set is unusual and likely includes a terminal water bound to each Fe(II) center. The Fe(II) ions bind to the active sites in a concerted manner, and cooperativity among the sites in each subunit is observed, potentially providing a mechanism for the control of ferritin iron loading. Differences in geometric and electronic structure – including a weak ligand field, availability of two water ligands at the biferrous substrate site, and the single carboxylate bridge in ferritin – coincide with the divergent reaction pathways observed between this substrate site and the previously studied cofactor active sites. PMID:18576633

  13. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    SciTech Connect

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  14. Evidence for segmental mobility in the active site of pepsin

    SciTech Connect

    Pohl, J.; Strop, P.; Senn, H.; Foundling, S.; Kostka, V.

    1986-05-01

    The low hydrolytic activity (k/sub cat/ < 0.001 s/sup -1/) of chicken pepsin (CP) towards tri- and tetrapeptides is enhanced at least 100 times by modification of its single sulfhydryl group of Cys-115, with little effect on K/sub m/-values. Modification thus simulates the effect of secondary substrate binding on pepsin catalysis. The rate of Cys-115 modification is substantially decreased in the presence of some competitive inhibitors, suggesting its active site location. Experiments with CP alkylated at Cys-115 with Acrylodan as a fluorescent probe or with N-iodoacetyl-(4-fluoro)-aniline as a /sup 19/F-nmr probe suggest conformation change around Cys-115 to occur on substrate or substrate analog binding. The difference /sup 1/H-nmr spectra (500 MHz) of unmodified free and inhibitor-complexed CP reveal chemical shifts almost exclusively in the aromatic region. The effects of Cu/sup + +/ on /sup 19/F- and /sup 1/H-nmr spectra have been studied. Examination of a computer graphics model of CP based on E. parasitica pepsin-inhibitor complex X-ray coordinates suggests that Cys-115 is located near the S/sub 3//S/sub 5/ binding site. The results are interpreted in favor of segmental mobility of this region important for pepsin substrate binding and catalysis.

  15. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. PMID:26940877

  16. Eel calcitonin binding site distribution and antinociceptive activity in rats

    SciTech Connect

    Guidobono, F.; Netti, C.; Sibilia, V.; Villa, I.; Zamboni, A.; Pecile, A.

    1986-03-01

    The distribution of binding site for (/sup 125/I)-eel-calcitonin (ECT) to rat central nervous system, studied by an autoradiographic technique, showed concentrations of binding in the diencephalon, the brain stem and the spinal cord. Large accumulations of grains were seen in the hypothalamus, the amygdala, in the fasciculus medialis prosencephali, in the fasciculus longitudinalis medialis, in the ventrolateral part of the periventricular gray matter, in the lemniscus medialis and in the raphe nuclei. The density of grains in the reticular formation and in the nucleus tractus spinalis nervi trigemini was more moderate. In the spinal cord, grains were scattered throughout the dorsal horns. Binding of the ligand was displaced equally by cold ECT and by salmon CT(sCT), indicating that both peptides bind to the same receptors. Human CT was much weaker than sCT in displacing (/sup 125/I)-ECT binding. The administration of ECT into the brain ventricles of rats dose-dependently induced a significant and long-lasting enhancement of hot-plate latencies comparable with that obtained with sCT. The antinociceptive activity induced by ECT is compatible with the topographical distribution of binding sites for the peptide and is a further indication that fish CTs are active in the mammalian brain.

  17. A Threonine on the Active Site Loop Controls Transition State Formation in Escherichia Coli Respiratory Complex II

    SciTech Connect

    Tomasiak, T.M.; Maklashina, E.; Cecchini, G.; Iverson, T.M.

    2009-05-26

    In Escherichia coli, the complex II superfamily members succinate:ubiquinone oxidoreductase (SQR) and quinol:fumarate reductase (QFR) participate in aerobic and anaerobic respiration, respectively. Complex II enzymes catalyze succinate and fumarate interconversion at the interface of two domains of the soluble flavoprotein subunit, the FAD binding domain and the capping domain. An 11-amino acid loop in the capping domain (Thr-A234 to Thr-A244 in quinol:fumarate reductase) begins at the interdomain hinge and covers the active site. Amino acids of this loop interact with both the substrate and a proton shuttle, potentially coordinating substrate binding and the proton shuttle protonation state. To assess the loop's role in catalysis, two threonine residues were mutated to alanine: QFR Thr-A244 (act-T; Thr-A254 in SQR), which hydrogen-bonds to the substrate at the active site, and QFR Thr-A234 (hinge-T; Thr-A244 in SQR), which is located at the hinge and hydrogen-bonds the proton shuttle. Both mutations impair catalysis and decrease substrate binding. The crystal structure of the hinge-T mutation reveals a reorientation between the FAD-binding and capping domains that accompanies proton shuttle alteration. Taken together, hydrogen bonding from act-T to substrate may coordinate with interdomain motions to twist the double bond of fumarate and introduce the strain important for attaining the transition state.

  18. Probing the structure-activity relationship of Escherichia coli LT-A by site-directed mutagenesis.

    PubMed

    Pizza, M; Domenighini, M; Hol, W; Giannelli, V; Fontana, M R; Giuliani, M M; Magagnoli, C; Peppoloni, S; Manetti, R; Rappuoli, R

    1994-10-01

    Computer analysis of the crystallographic structure of the A subunit of Escherichia coli heat-labile toxin (LT) was used to predict residues involved in NAD binding, catalysis and toxicity. Following site-directed mutagenesis, the mutants obtained could be divided into three groups. The first group contained fully assembled, non-toxic new molecules containing mutations of single amino acids such as Val-53-->Glu or Asp, Ser-63-->Lys, Val-97-->Lys, Tyr-104-->Lys or Asp, and Ser-114-->Lys or Glu. This group also included mutations in amino acids such as Arg-7, Glu-110 and Glu-112 that were already known to be important for enzymatic activity. The second group was formed by mutations that caused the collapse or prevented the assembly of the A subunit: Leu-41-->Phe, Ala-45-->Tyr or Glu, Val-53-->Tyr, Val-60-->Gly, Ser-68-->Pro, His-70-->Pro, Val-97-->Tyr and Ser-114-->Tyr. The third group contained those molecules that maintained a wild-type level of toxicity in spite of the mutations introduced: Arg-54-->Lys or Ala, Tyr-59-->Met, Ser-68-->Lys, Ala-72-->Arg, His or Asp and Arg-192-->Asn. The results provide a further understanding of the structure-function of the active site and new, non-toxic mutants that may be useful for the development of vaccines against diarrhoeal diseases. PMID:7830560

  19. Kinetics of Hydrogen Atom Abstraction from Substrate by an Active Site Thiyl Radical in Ribonucleotide Reductase

    PubMed Central

    2015-01-01

    Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides in all organisms. Active E. coli class Ia RNR is an α2β2 complex that undergoes reversible, long-range proton-coupled electron transfer (PCET) over a pathway of redox active amino acids (β-Y122 → [β-W48] → β-Y356 → α-Y731 → α-Y730 → α-C439) that spans ∼35 Å. To unmask PCET kinetics from rate-limiting conformational changes, we prepared a photochemical RNR containing a [ReI] photooxidant site-specifically incorporated at position 355 ([Re]-β2), adjacent to PCET pathway residue Y356 in β. [Re]-β2 was further modified by replacing Y356 with 2,3,5-trifluorotyrosine to enable photochemical generation and spectroscopic observation of chemically competent tyrosyl radical(s). Using transient absorption spectroscopy, we compare the kinetics of Y· decay in the presence of substrate and wt-α2, Y731F-α2 ,or C439S-α2, as well as with 3′-[2H]-substrate and wt-α2. We find that only in the presence of wt-α2 and the unlabeled substrate do we observe an enhanced rate of radical decay indicative of forward radical propagation. This observation reveals that cleavage of the 3′-C–H bond of substrate by the transiently formed C439· thiyl radical is rate-limiting in forward PCET through α and has allowed calculation of a lower bound for the rate constant associated with this step of (1.4 ± 0.4) × 104 s–1. Prompting radical propagation with light has enabled observation of PCET events heretofore inaccessible, revealing active site chemistry at the heart of RNR catalysis. PMID:25353063

  20. Purification and complete amino acid sequence of a new type of sweet protein taste-modifying activity, curculin.

    PubMed

    Yamashita, H; Theerasilp, S; Aiuchi, T; Nakaya, K; Nakamura, Y; Kurihara, Y

    1990-09-15

    A new taste-modifying protein named curculin was extracted with 0.5 M NaCl from the fruits of Curculigo latifolia and purified by ammonium sulfate fractionation, CM-Sepharose ion-exchange chromatography, and gel filtration. Purified curculin thus obtained gave a single band having a Mr of 12,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of 8 M urea. The molecular weight determined by low-angle laser light scattering was 27,800. These results suggest that native curculin is a dimer of a 12,000-Da polypeptide. The complete amino acid sequence of curculin was determined by automatic Edman degradation. Curculin consists of 114 residues. Curculin itself elicits a sweet taste. After curculin, water elicits a sweet taste, and sour substances induce a stronger sense of sweetness. No protein with both sweet-tasting and taste-modifying activities has ever been found. There are five sets of tripeptides common to miraculin (a taste-modifying protein), six sets of tripeptides common to thaumatin (a sweet protein), and two sets of tripeptides common to monellin (a sweet protein). Anti-miraculin serum was not immunologically reactive with curculin. The mechanism of the taste-modifying action of curculin is discussed. PMID:2394746

  1. Synthesis, characterization and antibacterial activity of mixed ligand dioxouranium complexes of 8-hydroxyquinoline and some amino acids.

    PubMed

    Patil, Sunil S; Shaikh, Manzoor M

    2012-01-01

    Mixed ligand complexes of dioxouranium(VI) of the type [UO2(Q)(L)-2H2O] have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and N- and/or O- donor amino acids (HL) such as L-lysine, L-aspartic acid and L-cysteine as secondary ligands. The metal complexes have been characterized on the basis of elemental analysis, electrical conductance, room temperature magnetic susceptibility measurements, spectral and thermal studies. The electrical conductance studies of the complexes in DMF in 10(-3) M concentration indicate their non-electrolytic nature. Room temperature magnetic susceptibility measurements revealed diamagnetic nature of the complexes. Electronic absorption spectra of the complexes show intra-ligand and charge transfer transitions, respectively. Bonding of the metal ion through N- and O- donor atoms of the ligands is revealed by IR studies and the chemical environment of the protons is also confirmed by NMR studies. The thermal analysis data of the complexes indicate the presence of coordinated water molecules. The agar cup and tube dilution methods have been used to study the antibacterial activity of the complexes against the pathogenic bacteria S. aureus, C. diphtherinae, S. typhi and E. coli. PMID:22876610

  2. Chiral sensing of amino acids and proteins chelating with Eu(III) complexes by Raman optical activity spectroscopy.

    PubMed

    Wu, Tao; Kessler, Jiří; Bouř, Petr

    2016-09-14

    Chiroptical spectroscopy of lanthanides sensitively reflects their environment and finds various applications including probing protein structures. However, the measurement is often hampered by instrumental detection limits. In the present study circularly polarized luminescence (CPL) of a europium complex induced by amino acids is monitored by Raman optical activity (ROA) spectroscopy, which enables us to detect weak CPL bands invisible to conventional CPL spectrometers. In detail, the spectroscopic response to the protonation state could be studied, e.g. histidine at pH = 2 showed an opposite sign of the strongest CPL band in contrast to that at pH = 7. The spectra were interpreted qualitatively on the basis of the ligand-field theory and related to CPL induced by an external magnetic field. Free energy profiles obtained by molecular dynamic simulations for differently charged alanine and histidine forms are in qualitative agreement with the spectroscopic data. The sensitivity and specificity of the detection promise future applications in probing peptide and protein side chains, chemical imaging and medical diagnosis. This potential is observed for human milk and hen egg-white lysozymes; these proteins have a similar structure, but very different induced CPL spectra. PMID:27523964

  3. Enzyme catalysis via control of activation entropy: site-directed mutagenesis of 6,7-dimethyl-8-ribityllumazine synthase.

    PubMed

    Fischer, Markus; Haase, Ilka; Kis, Klaus; Meining, Winfried; Ladenstein, Rudolf; Cushman, Mark; Schramek, Nicholas; Huber, Robert; Bacher, Adelbert

    2003-02-21

    6,7-Dimethyl-8-ribityllumazine synthase (lumazine synthase) catalyses the penultimate step in the biosynthesis of riboflavin. In Bacillus subtilis, 60 lumazine synthase subunits form an icosahedral capsid enclosing a homotrimeric riboflavin synthase unit. The ribH gene specifying the lumazine synthase subunit can be expressed in high yield. All amino acid residues exposed at the surface of the active site cavity were modified by PCR assisted mutagenesis. Polar amino acid residues in direct contact with the enzyme substrates, 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione and 3,4-dihydroxy-2-butanone 4-phosphate, could be replaced with relative impunity with regard to the catalytic properties. Only the replacement of Arg127, which forms a salt bridge with the phosphate group of 3,4-dihydroxy-2-butanone 4-phosphate, reduced the catalytic rate by more than one order of magnitude. Replacement of His88, which is believed to assist in proton transfer reactions, reduced the catalytic activity by about one order of magnitude. Surprisingly, the activation enthalpy deltaH of the lumazine synthase reaction exceeds that of the uncatalysed reaction. On the other hand, the free energy of activation deltaG of the uncatalysed reaction is characterised by a large entropic term (TdeltaS) of -37.8 kJmol(-1), whereas the entropy of activation (TdeltaS) of the enzyme-catalysed reaction is -6.7 kJmol(-1). This suggests that the rate enhancement by the enzyme is predominantly achieved by establishing a favourable topological relation of the two substrates, whereas acid/base catalysis may play a secondary role. PMID:12581640

  4. Synthesis, characterization, and antibacterial activities of novel sulfonamides derived through condensation of amino group containing drugs, amino acids, and their analogs.

    PubMed

    Abdul Qadir, Muhammad; Ahmed, Mahmood; Iqbal, Muhammad

    2015-01-01

    Novel sulfonamides were developed and structures of the new products were confirmed by elemental and spectral analysis (FT-IR, ESI-MS, (1)HNMR, and (13)CNMR). In vitro, developed compounds were screened for their antibacterial activities against medically important gram (+) and gram (-) bacterial strains, namely, S. aureus, B. subtilis, E. coli, and K. pneumoniae. The antibacterial activities have been determined by measuring MIC values (μg/mL) and zone of inhibitions (mm). Among the tested compounds, it was found that compounds 5a and 9a have most potent activity against E. coli with zone of inhibition: 31 ± 0.12 mm (MIC: 7.81 μg/mL) and 30 ± 0.12 mm (MIC: 7.81 μg/mL), respectively, nearly as active as ciprofloxacin (zone of inhibition: 32 ± 0.12 mm). In contrast, all the compounds were totally inactive against the gram (+) B. subtilis. PMID:25802872

  5. Synthesis, Characterization, and Antibacterial Activities of Novel Sulfonamides Derived through Condensation of Amino Group Containing Drugs, Amino Acids, and Their Analogs

    PubMed Central

    Abdul Qadir, Muhammad; Ahmed, Mahmood; Iqbal, Muhammad

    2015-01-01

    Novel sulfonamides were developed and structures of the new products were confirmed by elemental and spectral analysis (FT-IR, ESI-MS, 1HNMR, and 13CNMR). In vitro, developed compounds were screened for their antibacterial activities against medically important gram (+) and gram (−) bacterial strains, namely, S. aureus, B. subtilis, E. coli, and K. pneumoniae. The antibacterial activities have been determined by measuring MIC values (μg/mL) and zone of inhibitions (mm). Among the tested compounds, it was found that compounds 5a and 9a have most potent activity against E. coli with zone of inhibition: 31 ± 0.12 mm (MIC: 7.81 μg/mL) and 30 ± 0.12 mm (MIC: 7.81 μg/mL), respectively, nearly as active as ciprofloxacin (zone of inhibition: 32 ± 0.12 mm). In contrast, all the compounds were totally inactive against the gram (+) B. subtilis. PMID:25802872

  6. Site-directed mutagenesis of dicarboxylic acids near the active site of Bacillus cereus 5/B/6 beta-lactamase II.

    PubMed Central

    Lim, H M; Iyer, R K; Pène, J J

    1991-01-01

    An amino acid residue functioning as a general base has been proposed to assist in the hydrolysis of beta-lactam antibiotics by the zinc-containing Bacillus cereus beta-lactamase II [Bicknell & Waley (1985) Biochemistry 24, 6876-6887]. Oligonucleotide-directed mutagenesis of cloned Bacillus cereus 5/B/6 beta-lactamase II was used in an 'in vivo' study to investigate the role of carboxy-group-containing amino acids near the active site of the enzyme. Substitution of asparagine for the wild-type aspartic acid residue at position 81 resulted in fully functional enzyme. An aspartic acid residue at position 90 is essential for beta-lactamase II to confer any detectable ampicillin and cephalosporin C resistance to Escherichia coli. Conversion of Asp90 into Asn90 or Glu90 lead to the synthesis of inactive enzyme, suggesting that the spatial position of the beta-carboxy group of Asp90 is critical for enzyme function. Images Fig. 2. Fig. 3. PMID:1904717

  7. In vitro gene fusions that join an enzymatically active beta-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals.

    PubMed Central

    Casadaban, M J; Chou, J; Cohen, S N

    1980-01-01

    We report the construction and use of a series of plasmid vectors suitable for the detection and cloning of translational control signals and 5' coding sequences of exogenously derived genes. In these plasmids, the first eight codons of the amino-terminal end of the lactose operon beta-galactosidase gene, lacZ, were removed, and unique BamHI, EcoRI, and SmaI (XmaI) endonuclease cleavage sites were incorporated adjacent to the eighth codon of lacZ. Introduction of deoxyribonucleic acid fragments containing appropriate regulatory signals and 5' coding sequences into such lac fusion plasmids led to the production of hybrid proteins consisting of the carboxyl-terminal segment of a beta-galactosidase remnant plus a peptide fragment that contained the amino-terminal amino acids encoded by the exogenous deoxyribonucleic acid sequence. These hybrid peptides retained beta-galactosidase enzymatic activity and yielded a Lac+ phenotype. Such hybrid proteins are useful for purifying peptide sequences encoded by exogenous deoxyribonucleic acid fragments and for studies relating the structure and function of specific peptide segments. Images PMID:6162838

  8. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  9. Reverse evolution leads to genotypic incompatibility despite functional and active site convergence

    PubMed Central

    Kaltenbach, Miriam; Jackson, Colin J; Campbell, Eleanor C; Hollfelder, Florian; Tokuriki, Nobuhiko

    2015-01-01

    Understanding the extent to which enzyme evolution is reversible can shed light on the fundamental relationship between protein sequence, structure, and function. Here, we perform an experimental test of evolutionary reversibility using directed evolution from a phosphotriesterase to an arylesterase, and back, and examine the underlying molecular basis. We find that wild-type phosphotriesterase function could be restored (>104-fold activity increase), but via an alternative set of mutations. The enzyme active site converged towards its original state, indicating evolutionary constraints imposed by catalytic requirements. We reveal that extensive epistasis prevents reversions and necessitates fixation of new mutations, leading to a functionally identical sequence. Many amino acid exchanges between the new and original enzyme are not tolerated, implying sequence incompatibility. Therefore, the evolution was phenotypically reversible but genotypically irreversible. Our study illustrates that the enzyme's adaptive landscape is highly rugged, and different functional sequences may constitute separate fitness peaks. DOI: http://dx.doi.org/10.7554/eLife.06492.001 PMID:26274563

  10. Synthesis, electrochemical, structural, spectroscopic and biological activities of mixed ligand copper (II) complexes with 2-{[(Z)-(5-bromo-2-hydroxyphenyl)methylidene]amino}benzoic acid and nitrogenous bases

    NASA Astrophysics Data System (ADS)

    Choudhary, Mukesh; Patel, R. N.; Rawat, S. P.

    2014-02-01

    Three new copper (II) complexes viz. [Cu(L1)(bipy)]ṡ2H2O 1, [Cu(L1)(dmp)]ṡCH3CN 2, [Cu(L1)(phen)] 3 where L1H2 = 2-{[(Z)-(5-bromo-2-hydroxyphenyl)methylidene]amino}benzoic acid, bipy = 2,2‧-bipyridine; dmp = 2,9-dimethyl 1,10-phenanthroline, phen = 1,10-phenanthroline have been synthesized and characterized by physic-chemical and spectroscopic methods. The solid-state structures of 1 and 2 were determined by single crystal X-ray crystallography, which revealed distorted square pyramidal geometry. In solid-state structure, 1 is self-assembled via intermolecular π…π stacking and the distances between centroids of aromatic ring is 3.525 Å. L1H2 is a diprotic tridentate Schiff base ligand having ONO donor site. Infrared spectra, ligand field spectra and magnetic susceptibility measurements agree with the observed crystal structures. The EPR spectra of these complexes in frozen DMSO solutions showed a single at g ca. 2. The trend in g-value (g|| > g⊥ > 2.0023) suggests that the unpaired electron on copper (II) has d character. Copper (II) complexes 1-3 yielded an irreversible couple corresponding to the Cu (II)/Cu (I) redox process. Superoxide dismutase activity of all these complexes has been revealed to catalyze the dismutation of superoxide (O2-) and IC50 values were evaluated and discussed. Antimicrobial and antifungal activities of these complexes were also investigated.

  11. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  12. Active site and laminarin binding in glycoside hydrolase family 55.

    PubMed

    Bianchetti, Christopher M; Takasuka, Taichi E; Deutsch, Sam; Udell, Hannah S; Yik, Eric J; Bergeman, Lai F; Fox, Brian G

    2015-05-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  13. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  14. Active sites of salivary proline-rich protein for binding to Porphyromonas gingivalis fimbriae.

    PubMed Central

    Kataoka, K; Amano, A; Kuboniwa, M; Horie, H; Nagata, H; Shizukuishi, S

    1997-01-01

    Porphyromonas gingivalis fimbriae specifically bind salivary acidic proline-rich protein 1 (PRP1) through protein-protein interactions. The binding domains of fimbrillin (a subunit of fimbriae) for PRP1 were analyzed previously (A. Amano, A. Sharma, J.-Y. Lee, H. T. Sojar, P. A. Raj, and R. J. Genco, Infect. Immun. 64:1631-1637, 1996). In this study, we investigated the sites of binding of the PRP1 molecules to the fimbriae. PRP1 (amino acid residues 1 to 150) was proteolysed to three fragments (residues 1 to 74 [fragment 1-74], 75 to 129, and 130 to 150). 125I-labeled fimbriae clearly bound fragments 75-129 and 130-150, immobilized on a polyvinylidene difluoride membrane; both fragments also inhibited whole-cell binding to PRP1-coated hydroxyapatite (HAP) beads by 50 and 83%, respectively. However, the N-terminal fragment failed to show any effect. Analogous peptides corresponding to residues 75 to 89, 90 to 106, 107 to 120, 121 to 129, and 130 to 150 of PRP1 were synthesized. The fimbriae significantly bound peptide 130-150, immobilized on 96-well plates, and the peptide also inhibited binding of 125I-labeled fimbriae to PRP1-coated HAP beads by almost 100%. Peptides 75-89, 90-106, and 121-129, immobilized on plates, showed considerable ability to bind fimbriae. For further analysis of active sites in residues 130 to 150, synthetic peptides corresponding to residues 130 to 137, 138 to 145, and 146 to 150 were prepared. Peptide 138-145 (GRPQGPPQ) inhibited fimbrial binding to PRP1-coated HAP beads by 97%. This amino acid sequence was shared in the alignment of residues 75 to 89, 90 to 106, and 107 to 120. Six synthetic peptides were prepared by serial deletions of individual residues from the N and C termini of peptide GRPQGPPQ. Peptide PQGPPQ was as inhibitory as peptide GRPQGPPQ. Further deletions of the dipeptide Pro-Gln from the N and C termini of peptide PQGPPQ resulted in significant loss of the inhibitory effect. These results strongly suggest that PQGPPQ

  15. Anti-epileptogenic and anticonvulsant activity of L-2-amino-4-phosphonobutyrate, a presynaptic glutamate receptor agonist.

    PubMed

    Abdul-Ghani, A S; Attwell, P J; Singh Kent, N; Bradford, H F; Croucher, M J; Jane, D E

    1997-05-01

    The protective effect of amygdaloid (focally administered) doses of the presynaptic metabotropic glutamate receptor agonist, L-2-amino-4-phosphonobutyrate (L-AP4) was tested on the development of electrical kindling and in fully kindled animals. L-AP4 inhibited epileptogenesis at 10 nmol in 0.5 microl buffer, by preventing the increase in both seizure score and afterdischarge duration. The effects were reversible after withdrawal of the drug, with all treated animals subsequently progressing to the fully kindled state at the same rate as control animals. The same concentration of the drug was also effective when injected into fully kindled animals. It significantly decreased the mean seizure score by 88% (P < 0.005) and increased the mean generalized seizure threshold (GST) by 85% (P < 0.005). The increase in GST was accompanied by a significant delay before the onset of generalized seizure and by a 37% reduction in generalized seizure duration. MPPG ((RS)-alpha-methyl-4-phosphonophenyl glycine) a selective antagonist of L-AP4 at glutamate pre-synaptic receptors inhibited the depressant effect of L-AP4 in a dose-dependent manner. MPPG (10 nmol) inhibited the antiseizure activity of L-AP4, whilst MPPG (40 nmol) reduced both the anti-epileptogenic and antiseizure activities of L-AP4. MPPG (40 nmol) by itself had no effect on generalized seizure activity, and it had no detectable influence on the normal rate of kindled epileptogenesis. During in vitro studies using a microsuperfusion method, L-AP4 inhibited depolarization-induced release of [3H]D-aspartate from rat cortical synaptosomes (IC50 125.1 microM) and decreased the depolarization-evoked uptake of 45Ca2+ in a dose-dependent manner. Both actions of L-AP4 were reduced by the selective antagonist MPPG. When applied alone MPPG (200 microM) had no detectable action on veratridine-evoked 45Ca2+ uptake by the synaptosomes. These results suggest the mechanisms by which presynaptically active glutamate receptor

  16. Synthesis, spectroscopic identification, thermal, potentiometric and antibacterial activity studies of 4-amino-5-mercapto-S-triazole Schiff's base complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.; Ammar, Reda A. A.; Chinnathambi, Arunachalam

    2015-05-01

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) of general composition [M(L)2] have been synthesized [L = 4-pyridin-2-yl-methylene amino-4H-1,2,4-triazole-3-thiol]. The elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR, mass), magnetic moment and thermal measurements studies of the compounds led to the conclusion that the ligand acts as a tridentate manner (SNN). The molar conductance of the metal complexes in fresh solution of DMSO lies in the range of 8.34-10.46 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of analytical and spectroscopic techniques, octahedral geometry of the complexes was proposed. The Schiff base acts as tridentate ligand coordinated through deprotonated thiolic sulfur, azomethine nitrogen and pyridine nitrogen atoms. The ligand field parameters were calculated for Co(II), Ni(II) and Cu(II) complexes and their values were found in the range reported for a octahedral structure. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using Coast-Redfern, Horowitz-Metzger (HM), Piloyan-Novikova (PN) and Broido's equations. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M potassium nitrate. Both the Schiff's base ligand and its complexes have been screened for antibacterial activities.

  17. Molecular characterization of the body site-specific human epidermal cytokeratin 9: cDNA cloning, amino acid sequence, and tissue specificity of gene expression.

    PubMed

    Langbein, L; Heid, H W; Moll, I; Franke, W W

    1993-12-01

    Differentiation of human plantar and palmar epidermis is characterized by the suprabasal synthesis of a major special intermediate-sized filament (IF) protein, the type I (acidic) cytokeratin 9 (CK 9). Using partial amino acid (aa) sequence information obtained by direct Edman sequencing of peptides resulting from proteolytic digestion of purified CK 9, we synthesized several redundant primers by 'back-translation'. Amplification by polymerase chain reaction (PCR) of cDNAs obtained by reverse transcription of mRNAs from human foot sole epidermis, including 5'-primer extension, resulted in multiple overlapping cDNA clones, from which the complete cDNA (2353 bp) could be constructed. This cDNA encoded the CK 9 polypeptide with a calculated molecular weight of 61,987 and an isoelectric point at about pH 5.0. The aa sequence deduced from cDNA was verified in several parts by comparison with the peptide sequences and showed the typical structure of type I CKs, with a head (153 aa), and alpha-helical coiled-coil-forming rod (306 aa), and a tail (163 aa) domain. The protein displayed the highest homology to human CK 10, not only in the highly conserved rod domain but also in large parts of the head and the tail domains. On the other hand, the aa sequence revealed some remarkable differences from CK 10 and other CKs, even in the most conserved segments of the rod domain. The nuclease digestion pattern seen on Southern blot analysis of human genomic DNA indicated the existence of a unique CK 9 gene. Using CK 9-specific riboprobes for hybridization on Northern blots of RNAs from various epithelia, a mRNA of about 2.4 kb in length could be identified only in foot sole epidermis, and a weaker cross-hybridization signal was seen in RNA from bovine heel pad epidermis at about 2.0 kb. A large number of tissues and cell cultures were examined by PCR of mRNA-derived cDNAs, using CK 9-specific primers. But even with this very sensitive signal amplification, only palmar

  18. The role of redox-active amino acids on compound I stability, substrate oxidation, and protein cross-linking in yeast cytochrome C peroxidase.

    PubMed

    Pfister, T D; Gengenbach, A J; Syn, S; Lu, Y

    2001-12-11

    The role of two tryptophans (Trp51 and Trp191) and six tyrosines (Tyr36, Tyr39, Tyr42, Tyr187, Tyr229, and Tyr236) in yeast cytochrome c peroxidase (CcP) has been probed by site-directed mutagenesis. A series of sequential mutations of these redox-active amino acid residues to the corresponding, less oxidizable residues in lignin peroxidase (LiP) resulted in an increasingly more stable compound I, with rate constants for compound I decay decreasing from 57 s(-1) for CcP(MI, W191F) to 7 s(-1) for CcP(MI, W191F,W51F,Y187F,Y229F,Y236F,Y36F,Y39E,Y42F). These results provide experimental support for the proposal that the stability of compound I depends on the number of endogenous oxidizable amino acids in proteins. The higher stability of compound I in the variant proteins also makes it possible to observe its visible absorption spectroscopic features more clearly. The effects of the mutations on oxidation of ferrocytochrome c and 2,6-dimethoxyphenol were also examined. Since the first mutation in the series involved the change of Trp191, a residue that plays a critical role in the electron transfer pathway between CcP and cyt c, the ability to oxidize cyt c was negligible for all mutant proteins. On the other hand, the W191F mutation had little effect on the proteins' ability to oxidize 2,6-dimethoxyphenol. Instead, the W51F mutation resulted in the largest increase in the k(cat)/K(M), from 2.1 x 10(2) to 5.0 x 10(3) M(-1) s(-1), yielding an efficiency that is comparable to that of manganese peroxidase (MnP). The effect in W51F mutation can be attributed to the residue's influence on the stability and thus reactivity of the ferryl oxygen of compound II, whose substrate oxidation is the rate-determining step in the reaction mechanism. Finally, out of all mutant proteins in this study, only the variant containing the Y36F, Y39E, and Y42F mutations was found to prevent covalent protein cross-links in the presence of excess hydrogen peroxide and in the absence of exogenous

  19. Amino-Acid Sequence of Porcine Pepsin

    PubMed Central

    Tang, J.; Sepulveda, P.; Marciniszyn, J.; Chen, K. C. S.; Huang, W-Y.; Tao, N.; Liu, D.; Lanier, J. P.

    1973-01-01

    As the culmination of several years of experiments, we propose a complete amino-acid sequence for porcine pepsin, an enzyme containing 327 amino-acid residues in a single polypeptide chain. In the sequence determination, the enzyme was treated with cyanogen bromide. Five resulting fragments were purified. The amino-acid sequence of four of the fragments accounted for 290 residues. Because the structure of a 37-residue carboxyl-terminal fragment was already known, it was not studied. The alignment of these fragments was determined from the sequence of methionyl-peptides we had previously reported. We also discovered the locations of activesite aspartyl residues, as well as the pairing of the three disulfide bridges. A minor component of commercial crystalline pepsin was found to contain two extra amino-acid residues, Ala-Leu-, at the amino-terminus of the molecule. This minor component was apparently derived from a different site of cleavage during the activation of porcine pepsinogen. PMID:4587252

  20. Mapping the triphosphatase active site of baculovirus mRNA capping enzyme LEF4 and evidence for a two-metal mechanism

    PubMed Central

    Martins, Alexandra; Shuman, Stewart

    2003-01-01

    The 464-amino acid baculovirus LEF4 protein is a bifunctional mRNA capping enzyme with triphosphatase and guanylyltransferase activities. The N-terminal half of LEF4 constitutes an autonomous triphosphatase catalytic domain. The LEF4 triphosphatase belongs to a family of metal-dependent phosphohydrolases, which includes the RNA triphosphatases of fungi, protozoa, Chlorella virus and poxviruses. The family is defined by two glutamate-containing motifs (A and C), which form a metal-binding site. Most of the family members resemble the fungal and Chlorella virus enzymes, which have a complex active site located within the hydrophilic interior of a topologically closed eight stranded β barrel (the so-called ‘triphosphate tunnel’). Here we probed whether baculovirus LEF4 is a member of the tunnel subfamily, via mutational mapping of amino acids required for triphosphatase activity. We identified four new essential side chains in LEF4 via alanine scanning and illuminated structure–activity relationships by conservative substitutions. Our results, together with previous mutational data, highlight five acidic and four basic amino acids that are likely to comprise the LEF4 triphosphatase active site (Glu9, Glu11, Arg51, Arg53, Glu97, Lys126, Arg179, Glu181 and Glu183). These nine essential residues are conserved in LEF4 orthologs from all strains of baculoviruses. We discerned no pattern of clustering of the catalytic residues of the baculovirus triphosphatase that would suggest structural similarity to the tunnel proteins (exclusive of motifs A and C). However, there is similarity to the active site of vaccinia RNA triphosphatase. We infer that the baculovirus and poxvirus triphosphatases are a distinct lineage within the metal-dependent RNA triphosphatase family. Synergistic activation of the LEF4 triphosphatase by manganese and magnesium suggests a two-metal mechanism of γ phosphate hydrolysis. PMID:12595553

  1. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. PMID:25902402

  2. The E3 ubiquitin ligase ZNRF2 is a substrate of mTORC1 and regulates its activation by amino acids.

    PubMed

    Hoxhaj, Gerta; Caddye, Edward; Najafov, Ayaz; Houde, Vanessa P; Johnson, Catherine; Dissanayake, Kumara; Toth, Rachel; Campbell, David G; Prescott, Alan R; MacKintosh, Carol

    2016-01-01

    The mechanistic Target of Rapamycin complex 1 (mTORC1) senses intracellular amino acid levels through an intricate machinery, which includes the Rag GTPases, Ragulator and vacuolar ATPase (V-ATPase). The membrane-associated E3 ubiquitin ligase ZNRF2 is released into the cytosol upon its phosphorylation by Akt. In this study, we show that ZNRF2 interacts with mTOR on membranes, promoting the amino acid-stimulated translocation of mTORC1 to lysosomes and its activation in human cells. ZNRF2 also interacts with the V-ATPase and preserves lysosomal acidity. Moreover, knockdown of ZNRF2 decreases cell size and cell proliferation. Upon growth factor and amino acid stimulation, mTORC1 phosphorylates ZNRF2 on Ser145, and this phosphosite is dephosphorylated by protein phosphatase 6. Ser145 phosphorylation stimulates vesicle-to-cytosol translocation of ZNRF2 and forms a novel negative feedback on mTORC1. Our findings uncover ZNRF2 as a component of the amino acid sensing machinery that acts upstream of Rag-GTPases and the V-ATPase to activate mTORC1. PMID:27244671

  3. The E3 ubiquitin ligase ZNRF2 is a substrate of mTORC1 and regulates its activation by amino acids

    PubMed Central

    Hoxhaj, Gerta; Caddye, Edward; Najafov, Ayaz; Houde, Vanessa P; Johnson, Catherine; Dissanayake, Kumara; Toth, Rachel; Campbell, David G; Prescott, Alan R; MacKintosh, Carol

    2016-01-01

    The mechanistic Target of Rapamycin complex 1 (mTORC1) senses intracellular amino acid levels through an intricate machinery, which includes the Rag GTPases, Ragulator and vacuolar ATPase (V-ATPase). The membrane-associated E3 ubiquitin ligase ZNRF2 is released into the cytosol upon its phosphorylation by Akt. In this study, we show that ZNRF2 interacts with mTOR on membranes, promoting the amino acid-stimulated translocation of mTORC1 to lysosomes and its activation in human cells. ZNRF2 also interacts with the V-ATPase and preserves lysosomal acidity. Moreover, knockdown of ZNRF2 decreases cell size and cell proliferation. Upon growth factor and amino acid stimulation, mTORC1 phosphorylates ZNRF2 on Ser145, and this phosphosite is dephosphorylated by protein phosphatase 6. Ser145 phosphorylation stimulates vesicle-to-cytosol translocation of ZNRF2 and forms a novel negative feedback on mTORC1. Our findings uncover ZNRF2 as a component of the amino acid sensing machinery that acts upstream of Rag-GTPases and the V-ATPase to activate mTORC1. DOI: http://dx.doi.org/10.7554/eLife.12278.001 PMID:27244671

  4. Metavanadate at the active site of the phosphatase VHZ.

    PubMed

    Kuznetsov, Vyacheslav I; Alexandrova, Anastassia N; Hengge, Alvan C

    2012-09-01

    Vanadate is a potent modulator of a number of biological processes and has been shown by crystal structures and NMR spectroscopy to interact with numerous enzymes. Although these effects often occur under conditions where oligomeric forms dominate, the crystal structures and NMR data suggest that the inhibitory form is usually monomeric orthovanadate, a particularly good inhibitor of phosphatases because of its ability to form stable trigonal-bipyramidal complexes. We performed a computational analysis of a 1.14 Å structure of the phosphatase VHZ in complex with an unusual metavanadate species and compared it with two classical trigonal-bipyramidal vanadate-phosphatase complexes. The results support extensive delocalized bonding to the apical ligands in the classical structures. In contrast, in the VHZ metavanadate complex, the central, planar VO(3)(-) moiety has only one apical ligand, the nucleophilic Cys95, and a gap in electron density between V and S. A computational analysis showed that the V-S interaction is primarily ionic. A mechanism is proposed to explain the formation of metavanadate in the active site from a dimeric vanadate species that previous crystallographic evidence has shown to be able to bind to the active sites of phosphatases related to VHZ. Together, the results show that the interaction of vanadate with biological systems is not solely reliant upon the prior formation of a particular inhibitory form in solution. The catalytic properties of an enzyme may act upon the oligomeric forms primarily present in solution to generate species such as the metavanadate ion observed in the VHZ structure. PMID:22876963

  5. The active site of hydroxynitrile lyase from Prunus amygdalus: Modeling studies provide new insights into the mechanism of cyanogenesis

    PubMed Central

    Dreveny, Ingrid; Kratky, Christoph; Gruber, Karl

    2002-01-01

    The FAD-dependent hydroxynitrile lyase from almond (Prunus amygdalus, PaHNL) catalyzes the cleavage of R-mandelonitrile into benzaldehyde and hydrocyanic acid. Catalysis of the reverse reaction—the enantiospecific formation of α-hydroxynitriles—is now widely utilized in organic syntheses as one of the few industrially relevant examples of enzyme-mediated C–C bond formation. Starting from the recently determined X-ray crystal structure, systematic docking calculations with the natural substrate were used to locate the active site of the enzyme and to identify amino acid residues involved in substrate binding and catalysis. Analysis of the modeled substrate complexes supports an enzymatic mechanism that includes the flavin cofactor as a mere "spectator" of the reaction and relies on general acid/base catalysis by the conserved His-497. Stabilization of the negative charge of the cyanide ion is accomplished by a pronounced positive electrostatic potential at the binding site. PaHNL activity requires the FAD cofactor to be bound in its oxidized form, and calculations of the pKa of enzyme-bound HCN showed that the observed inactivation upon cofactor reduction is largely caused by the reversal of the electrostatic potential within the active site. The suggested mechanism closely resembles the one proposed for the FAD-independent, and structurally unrelated HNL from Hevea brasiliensis. Although the actual amino acid residues involved in the catalytic cycle are completely different in the two enzymes, a common motif for the mechanism of cyanogenesis (general acid/base catalysis plus electrostatic stabilization of the cyanide ion) becomes evident. PMID:11790839

  6. The active site of hydroxynitrile lyase from Prunus amygdalus: modeling studies provide new insights into the mechanism of cyanogenesis.

    PubMed

    Dreveny, Ingrid; Kratky, Christoph; Gruber, Karl

    2002-02-01

    The FAD-dependent hydroxynitrile lyase from almond (Prunus amygdalus, PaHNL) catalyzes the cleavage of R-mandelonitrile into benzaldehyde and hydrocyanic acid. Catalysis of the reverse reaction-the enantiospecific formation of alpha-hydroxynitriles--is now widely utilized in organic syntheses as one of the few industrially relevant examples of enzyme-mediated C-C bond formation. Starting from the recently determined X-ray crystal structure, systematic docking calculations with the natural substrate were used to locate the active site of the enzyme and to identify amino acid residues involved in substrate binding and catalysis. Analysis of the modeled substrate complexes supports an enzymatic mechanism that includes the flavin cofactor as a mere "spectator" of the reaction and relies on general acid/base catalysis by the conserved His-497. Stabilization of the negative charge of the cyanide ion is accomplished by a pronounced positive electrostatic potential at the binding site. PaHNL activity requires the FAD cofactor to be bound in its oxidized form, and calculations of the pKa of enzyme-bound HCN showed that the observed inactivation upon cofactor reduction is largely caused by the reversal of the electrostatic potential within the active site. The suggested mechanism closely resembles the one proposed for the FAD-independent, and structurally unrelated HNL from Hevea brasiliensis. Although the actual amino acid residues involved in the catalytic cycle are completely different in the two enzymes, a common motif for the mechanism of cyanogenesis (general acid/base catalysis plus electrostatic stabilization of the cyanide ion) becomes evident. PMID:11790839

  7. The WD protein Cpc2p is required for repression of Gcn4 protein activity in yeast in the absence of amino-acid starvation.

    PubMed

    Hoffmann, B; Mösch, H U; Sattlegger, E; Barthelmess, I B; Hinnebusch, A; Braus, G H

    1999-02-01

    The CPC2 gene of the budding yeast Saccharomyces cerevisiae encodes a G beta-like WD protein which is involved in regulating the activity of the general control activator Gcn4p. The CPC2 gene encodes a premRNA which is spliced and constitutively expressed in the presence or absence of amino acids. Loss of CPC2 gene function suppresses a deletion of the GCN2 gene encoding the general control sensor kinase, but not a deletion in the GCN4 gene. The resulting phenotype has resistance against amino-acid analogues. The Neurospora crassa cpc-2 and the rat RACK1 genes are homologues of CPC2 that complement the yeast cpc2 deletion. The cpc2 delta mutation leads to increased transcription of Gcn4p-dependent genes under non-starvation conditions without increasing GCN4 expression or the DNA binding activity of Gcn4p. Cpc2p-mediated transcriptional repression requires the Gcn4p transcriptional activator and a Gcn4p recognition element in the target promoter. Frameshift mutations resulting in a shortened G beta-like protein cause a different phenotype that has sensitivity against amino-acid analogues similar to a gcn2 deletion. Cpc2p seems to be part of an additional control of Gcn4p activity, independent of its translational regulation. PMID:10048025

  8. The DNA binding specificity of the basic region of the yeast transcriptional activator GCN4 can be changed by substitution of a single amino acid.

    PubMed Central

    Suckow, M; von Wilcken-Bergmann, B; Müller-Hill, B

    1993-01-01

    The X-ray structure of a GCN4 DNA complex (1) shows, that specific DNA binding of the GCN4 basic region is mediated by a complicated network of base pair and DNA backbone contacts. According to the X-ray structure, alanine -14 of the basic region of GCN4 (we define the first leucine of the leucine zipper as +1) makes a hydrophobic contact to the methyl group of the thymine next to the center of the GCN4 binding site 5' ATGACTCAT 3'. We tested the DNA binding properties of the nineteen derivatives of GCN4, which carry all possible amino acids in position -14 of the basic region. Substitution of alanine -14 of GCN4 by either asparagine or cysteine changes the DNA binding specificity. Serine in this position broadens the specificity for position 1 of the target, whereas other amino acids either retain or decrease GCN4 specificity. Images PMID:8502548

  9. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.

    PubMed

    Gutzler, Rico; Stepanow, Sebastian; Grumelli, Doris; Lingenfelder, Magalí; Kern, Klaus

    2015-07-21

    Metal-organic supramolecular chemistry on surfaces has matured to a point where its underlying growth mechanisms are well understood and structures of defined coordination environments of metal atoms can be synthesized in a controlled and reproducible procedure. With surface-confined molecular self-assembly, scientists have a tool box at hand which can be used to prepare structures with desired properties, as for example a defined oxidation number and spin state of the transition metal atoms within the organic matrix. From a structural point of view, these coordination sites in the supramolecular structure resemble the catalytically active sites of metallo-enzymes, both characterized by metal centers coordinated to organic ligands. Several chemical reactions take place at these embedded metal ions in enzymes and the question arises whether these reactions also take place using metal-organic networks as catalysts. Mimicking the active site of metal atoms and organic ligands of enzymes in artificial systems is the key to understanding the selectivity and efficiency of enzymatic reactions. Their catalytic activity depends on various parameters including the charge and spin configuration in the metal ion, but also on the organic environment, which can stabilize intermediate reaction products, inhibits catalytic deactivation, and serves mostly as a transport channel for the reactants and products and therefore ensures the selectivity of the enzyme. Charge and spin on the transition metal in enzymes depend on the one hand on the specific metal element, and on the other hand on its organic coordination environment. These two parameters can carefully be adjusted in surface confined metal-organic networks, which can be synthesized by virtue of combinatorial mixing of building synthons. Different organic ligands with varying functional groups can be combined with several transition metals and spontaneously assemble into ordered networks. The catalytically active metal

  10. Coadministration of branched-chain amino acids and lipopolysaccharide causes matrix metalloproteinase activation and blood-brain barrier breakdown.

    PubMed

    Scaini, Giselli; Morais, Meline O S; Galant, Leticia S; Vuolo, Francieli; Dall'Igna, Dhébora M; Pasquali, Matheus A B; Ramos, Vitor M; Gelain, Daniel P; Moreira, Jose Claudio F; Schuck, Patrícia F; Ferreira, Gustavo C; Soriano, Francisco G; Dal-Pizzol, Felipe; Streck, Emilio L

    2014-10-01

    Maple syrup urine disease (MSUD) is an inborn error of metabolism caused by a severe deficiency in the activity of the branched-chain α-keto acid dehydrogenase complex, leading to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine. Infections have a significant role in precipitating acute metabolic decompensation in patients with MSUD; however, the mechanisms underlying the neurotoxicity in this disorder are poorly understood. In this study, we subjected rats to the coadministration of lipopolysaccharide (LPS), which is a major component of gram-negative bacteria cell walls, and high concentrations of BCAA (H-BCAA) to determine their effects on the permeability of the blood-brain barrier (BBB) and on the levels of matrix metalloproteinases (MMP-2 and MMP-9). Our results demonstrated that the coadministration of H-BCAA and LPS causes breakdown of the BBB and increases the levels of MMP-2 and MMP-9 in the hippocampus of these rats. On the other hand, examination of the cerebral cortex of the 10- and 30-day-old rats revealed a significant difference in Evan's Blue content after coadministration of H-BCAA and LPS, as MMP-9 levels only increased in the cerebral cortex of the 10-day-old rats. In conclusion, these results suggest that the inflammatory process associated with high levels of BCAA causes BBB breakdown. Thus, we suggest that BBB breakdown is relevant to the perpetuation of brain inflammation and may be related to the brain dysfunction observed in MSUD patients. PMID:24390570

  11. Intestinal metabolism of sulfur amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract (GIT) serves a key function in the digestion of dietary protein and absorption of amino acids. However, the GIT is also an important site of amino acid metabolism in the body. Methionine is an indispensable amino acid and must be supplied in the diet. In addition, consider...

  12. Anti-Inflammation Activities of Mycosporine-Like Amino Acids (MAAs) in Response to UV Radiation Suggest Potential Anti-Skin Aging Activity

    PubMed Central

    Suh, Sung-Suk; Hwang, Jinik; Park, Mirye; Seo, Hyo Hyun; Kim, Hyoung-Shik; Lee, Jeong Hun; Moh, Sang Hyun; Lee, Taek-Kyun

    2014-01-01