Science.gov

Sample records for active site arginine

  1. Chemical modification studies on arginine kinase: essential cysteine and arginine residues at the active site.

    PubMed

    Zhu, Wen-Jing; Li, Miao; Wang, Xiao-Yun

    2007-12-01

    Chemical modification was used to elucidate the essential amino acids in the catalytic activity of arginine kinase (AK) from Migratoria manilensis. Among six cysteine (Cys) residues only one Cys residue was determined to be essential in the active site by Tsou's method. Furthermore, the AK modified by DTNB can be fully reactivated by dithiothreitol (DTT) in a monophasic kinetic course. At the same time, this reactivation can be slowed down in the presence of ATP, suggesting that the essential Cys is located near the ATP binding site. The ionizing groups at the AK active site were studied and the standard dissociation enthalpy (DeltaH degrees ) was 12.38kcal/mol, showing that the dissociation group may be the guanidino of arginine (Arg). Using the specific chemical modifier phenylglyoxal (PG) demonstrated that only one Arg, located near the ATP binding site, is essential for the activity of AK. PMID:17765964

  2. Recombinant expression and isolation of human L-arginine:glycine amidinotransferase and identification of its active-site cysteine residue.

    PubMed Central

    Humm, A; Fritsche, E; Mann, K; Göhl, M; Huber, R

    1997-01-01

    Creatine and its phosphorylated form play a central role in the energy metabolism of muscle and nerve tissues. l-Arginine:glycine amidinotransferase (AT) catalyses the committed step in the formation of creatine. The mitochondrial and cytosolic forms of the enzyme are believed to derive from the same gene by alternative splicing. We have expressed recombinant human AT in Escherichia coli with two different N-termini, resembling the longest two forms of the enzyme that we had isolated recently from porcine kidney mitochondria as a mixture. The enzymes were expressed with N-terminal histidine tags followed by factor Xa-cleavage sites. We established a new method for the removal of N-terminal fusion peptides by means of an immobilized snake venom prothrombin activator. We identified cysteine-407 as the active-site residue of AT by radioactive labelling and isolation of labelled peptides, and by site-directed mutagenesis of the protein. PMID:9148748

  3. A Conserved Surface Loop in Type I Dehydroquinate Dehydratases Positions an Active Site Arginine and Functions in Substrate Binding

    SciTech Connect

    Light, Samuel H.; Minasov, George; Shuvalova, Ludmilla; Peterson, Scott N.; Caffrey, Michael; Anderson, Wayne F.; Lavie, Arnon

    2012-04-18

    Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. We present three crystal structures of the Salmonella enterica type I DHQD that address the functionality of a surface loop that is observed to close over the active site following substrate binding. Two wild-type structures with differing loop conformations and kinetic and structural studies of a mutant provide evidence of both direct and indirect mechanisms of involvement of the loop in substrate binding. In addition to allowing amino acid side chains to establish a direct interaction with the substrate, closure of the loop necessitates a conformational change of a key active site arginine, which in turn positions the substrate productively. The absence of DHQD in humans and its essentiality in many pathogenic bacteria make the enzyme a target for the development of nontoxic antimicrobials. The structures and ligand binding insights presented here may inform the design of novel type I DHQD inhibiting molecules.

  4. Mammalian Protein Arginine Methyltransferase 7 (PRMT7) Specifically Targets RXR Sites in Lysine- and Arginine-rich Regions*

    PubMed Central

    Feng, You; Maity, Ranjan; Whitelegge, Julian P.; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T.; Bedford, Mark T.; Masson, Jean-Yves; Clarke, Steven G.

    2013-01-01

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7. PMID:24247247

  5. Site-directed mutagenesis studies of acetylglutamate synthase delineate the site for the arginine inhibitor.

    PubMed

    Sancho-Vaello, Enea; Fernández-Murga, M Leonor; Rubio, Vicente

    2008-04-01

    N-acetyl-L-glutamate synthase (NAGS), the first enzyme of bacterial/plant arginine biosynthesis and an essential activator of the urea cycle in animals, is, respectively, arginine-inhibited and activated. Site-directed mutagenesis of recombinant Pseudomonas aeruginosa NAGS (PaNAGS) delineates the arginine site in the PaNAGS acetylglutamate kinase-like domain, and, by extension, in human NAGS. Key residues for glutamate binding are identified in the acetyltransferase domain. However, the acetylglutamate kinase-like domain may modulate glutamate binding, since one mutation affecting this domain increases the K(m) for glutamate. The effects on PaNAGS of two mutations found in human NAGS deficiency support the similarity of bacterial and human NAGSs despite their low sequence identity. PMID:18319063

  6. Neisseria meningitidis Translation Elongation Factor P and Its Active-Site Arginine Residue Are Essential for Cell Viability

    PubMed Central

    Yanagisawa, Tatsuo; Takahashi, Hideyuki; Suzuki, Takehiro; Masuda, Akiko; Dohmae, Naoshi; Yokoyama, Shigeyuki

    2016-01-01

    Translation elongation factor P (EF-P), a ubiquitous protein over the entire range of bacterial species, rescues ribosomal stalling at consecutive prolines in proteins. In Escherichia coli and Salmonella enterica, the post-translational β-lysyl modification of Lys34 of EF-P is important for the EF-P activity. The β-lysyl EF-P modification pathway is conserved among only 26–28% of bacteria. Recently, it was found that the Shewanella oneidensis and Pseudomonas aeruginosa EF-P proteins, containing an Arg residue at position 32, are modified with rhamnose, which is a novel post-translational modification. In these bacteria, EF-P and its Arg modification are both dispensable for cell viability, similar to the E. coli and S. enterica EF-P proteins and their Lys34 modification. However, in the present study, we found that EF-P and Arg32 are essential for the viability of the human pathogen, Neisseria meningitidis. We therefore analyzed the modification of Arg32 in the N. meningitidis EF-P protein, and identified the same rhamnosyl modification as in the S. oneidensis and P. aeruginosa EF-P proteins. N. meningitidis also has the orthologue of the rhamnosyl modification enzyme (EarP) from S. oneidensis and P. aeruginosa. Therefore, EarP should be a promising target for antibacterial drug development specifically against N. meningitidis. The pair of genes encoding N. meningitidis EF-P and EarP suppressed the slow-growth phenotype of the EF-P-deficient mutant of E. coli, indicating that the activity of N. meningitidis rhamnosyl–EF-P for rescuing the stalled ribosomes at proline stretches is similar to that of E. coli β-lysyl–EF-P. The possible reasons for the unique requirement of rhamnosyl–EF-P for N. meningitidis cells are that more proline stretch-containing proteins are essential and/or the basal ribosomal activity to synthesize proline stretch-containing proteins in the absence of EF-P is lower in this bacterium than in others. PMID:26840407

  7. Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo.

    PubMed

    Miraki-Moud, Farideh; Ghazaly, Essam; Ariza-McNaughton, Linda; Hodby, Katharine A; Clear, Andrew; Anjos-Afonso, Fernando; Liapis, Konstantinos; Grantham, Marianne; Sohrabi, Fareeda; Cavenagh, Jamie; Bomalaski, John S; Gribben, John G; Szlosarek, Peter W; Bonnet, Dominique; Taussig, David C

    2015-06-25

    The strategy of enzymatic degradation of amino acids to deprive malignant cells of important nutrients is an established component of induction therapy of acute lymphoblastic leukemia. Here we show that acute myeloid leukemia (AML) cells from most patients with AML are deficient in a critical enzyme required for arginine synthesis, argininosuccinate synthetase-1 (ASS1). Thus, these ASS1-deficient AML cells are dependent on importing extracellular arginine. We therefore investigated the effect of plasma arginine deprivation using pegylated arginine deiminase (ADI-PEG 20) against primary AMLs in a xenograft model and in vitro. ADI-PEG 20 alone induced responses in 19 of 38 AMLs in vitro and 3 of 6 AMLs in vivo, leading to caspase activation in sensitive AMLs. ADI-PEG 20-resistant AMLs showed higher relative expression of ASS1 than sensitive AMLs. This suggests that the resistant AMLs survive by producing arginine through this metabolic pathway and ASS1 expression could be used as a biomarker for response. Sensitive AMLs showed more avid uptake of arginine from the extracellular environment consistent with their auxotrophy for arginine. The combination of ADI-PEG 20 and cytarabine chemotherapy was more effective than either treatment alone resulting in responses in 6 of 6 AMLs tested in vivo. Our data show that arginine deprivation is a reasonable strategy in AML that paves the way for clinical trials. PMID:25896651

  8. Identification of arginine 331 as an important active site residue in the class II fructose-1,6-bisphosphate aldolase of Escherichia coli.

    PubMed Central

    Qamar, S.; Marsh, K.; Berry, A.

    1996-01-01

    Treatment of the Class II fructose-1,6-bisphosphate aldolase of Escherichia coli with the arginine-specific alpha-dicarbonyl reagents, butanedione or phenylglyoxal, results in inactivation of the enzyme. The enzyme is protected from inactivation by the substrate, fructose 1,6-bisphosphate, or by inorganic phosphate. Modification with [7-14C] phenylglyoxal in the absence of substrate demonstrates that enzyme activity is abolished by the incorporation of approximately 2 moles of reagent per mole of enzyme. Sequence alignment of the eight known Class II FBP-aldolases shows that only one arginine residue is conserved in all the known sequences. This residue, Arg-331, was mutated to either alanine or glutamic acid. The mutant enzymes were much less susceptible to inactivation by phenylglyoxal. Measurement of the steady-state kinetic parameters revealed that mutation of Arg-331 dramatically increased the K(m) for fructose 1,6-bisphosphate. Comparatively small differences in the inhibitor constant Ki for dihydroxyacetone phosphate or its analogue, 2-phosphoglycolate, were found between the wild-type and mutant enzymes. In contrast, the mutation caused large changes in the kinetic parameters when glyceraldehyde 3-phosphate was used as an inhibitor. Kinetic analysis of the oxidation of the carbanionic aldolase-substrate intermediate of the reaction by hexacyanoferrate (III) revealed that the K(m) for dihydroxyacetone phosphate was again unaffected, whereas that for fructose 1,6-bisphosphate was dramatically increased. Taken together, these results show that Arg-331 is critically involved in the binding of fructose bisphosphate by the enzyme and demonstrate that it interacts with the C-6 phosphate group of the substrate. PMID:8771208

  9. Resveratrol inhibits Trypanosoma cruzi arginine kinase and exerts a trypanocidal activity.

    PubMed

    Valera Vera, Edward A; Sayé, Melisa; Reigada, Chantal; Damasceno, Flávia S; Silber, Ariel M; Miranda, Mariana R; Pereira, Claudio A

    2016-06-01

    Arginine kinase catalyzes the reversible transphosphorylation between ADP and phosphoarginine which plays a critical role in the maintenance of cellular energy homeostasis. Arginine kinase from the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, meets the requirements to be considered as a potential therapeutic target for rational drug design including being absent in its mammalian hosts. In this study a group of polyphenolic compounds was evaluated as potential inhibitors of arginine kinase using molecular docking techniques. Among the analyzed compounds with the lowest free binding energy to the arginine kinase active site (<-6.96kcal/mol), resveratrol was chosen for subsequent assays. Resveratrol inhibits 50% of recombinant arginine kinase activity at 325μM. The trypanocidal effect of resveratrol was evaluated on the T. cruzi trypomastigotes bursting from infected CHO K1 cells, with IC50=77μM. Additionally epimastigotes overexpressing arginine kinase were 5 times more resistant to resveratrol compared to controls. Taking into account that: (1) resveratrol is considered as completely nontoxic; (2) is easily accessible due to its low market price; and (3) has as a well-defined target enzyme which is absent in the mammalian host, it is a promising compound as a trypanocidal drug for Chagas disease. PMID:26976067

  10. Mechanistic and computational studies of the reductive half-reaction of tyrosine to phenylalanine active site variants of D-arginine dehydrogenase.

    PubMed

    Gannavaram, Swathi; Sirin, Sarah; Sherman, Woody; Gadda, Giovanni

    2014-10-21

    The flavin-mediated enzymatic oxidation of a CN bond in amino acids can occur through hydride transfer, carbanion, or polar nucleophilic mechanisms. Previous results with D-arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) using multiple deuterium kinetic isotope effects (KIEs) and computational studies established preferred binding of the substrate protonated on the α-amino group, with cleavages of the NH and CH bonds occurring in asynchronous fashion, consistent with the three possible mechanisms. The hydroxyl groups of Y53 and Y249 are ≤4 Å from the imino and carboxylate groups of the reaction product iminoarginine, suggesting participation in binding and catalysis. In this study, we have investigated the reductive half-reactions of the Y53F and Y249F variants of PaDADH using substrate and solvent deuterium KIEs, solvent viscosity and pH effects, and quantum mechanical/molecular mechanical computational approaches to gain insights into the catalytic roles of the tyrosines and evaluate whether their mutations affect the transition state for substrate oxidation. Both Y53F and Y249F enzymes oxidized D-arginine with steady-state kinetic parameters similar to those of the wild-type enzyme. Rate constants for flavin reduction (k(red)) with D-leucine, a slow substrate amenable to rapid kinetics, were 3-fold smaller than the wild-type value with similar pKa values for an unprotonated group of ∼10.0. Similar pKa values were observed for (app)Kd in the variant and wild-type enzymes. However, cleavage of the substrate NH and CH bonds in the enzyme variants occurred in synchronous fashion, as suggested by multiple deuterium KIEs on k(red). These data can be reconciled with a hydride transfer mechanism, but not with carbanion and polar nucleophilic mechanisms. PMID:25243743

  11. A Potent, Selective, and Cell-Active Inhibitor of Human Type I Protein Arginine Methyltransferases.

    PubMed

    Eram, Mohammad S; Shen, Yudao; Szewczyk, Magdalena M; Wu, Hong; Senisterra, Guillermo; Li, Fengling; Butler, Kyle V; Kaniskan, H Ümit; Speed, Brandon A; dela Seña, Carlo; Dong, Aiping; Zeng, Hong; Schapira, Matthieu; Brown, Peter J; Arrowsmith, Cheryl H; Barsyte-Lovejoy, Dalia; Liu, Jing; Vedadi, Masoud; Jin, Jian

    2016-03-18

    Protein arginine methyltransferases (PRMTs) play a crucial role in a variety of biological processes. Overexpression of PRMTs has been implicated in various human diseases including cancer. Consequently, selective small-molecule inhibitors of PRMTs have been pursued by both academia and the pharmaceutical industry as chemical tools for testing biological and therapeutic hypotheses. PRMTs are divided into three categories: type I PRMTs which catalyze mono- and asymmetric dimethylation of arginine residues, type II PRMTs which catalyze mono- and symmetric dimethylation of arginine residues, and type III PRMT which catalyzes only monomethylation of arginine residues. Here, we report the discovery of a potent, selective, and cell-active inhibitor of human type I PRMTs, MS023, and characterization of this inhibitor in a battery of biochemical, biophysical, and cellular assays. MS023 displayed high potency for type I PRMTs including PRMT1, -3, -4, -6, and -8 but was completely inactive against type II and type III PRMTs, protein lysine methyltransferases and DNA methyltransferases. A crystal structure of PRMT6 in complex with MS023 revealed that MS023 binds the substrate binding site. MS023 potently decreased cellular levels of histone arginine asymmetric dimethylation. It also reduced global levels of arginine asymmetric dimethylation and concurrently increased levels of arginine monomethylation and symmetric dimethylation in cells. We also developed MS094, a close analog of MS023, which was inactive in biochemical and cellular assays, as a negative control for chemical biology studies. MS023 and MS094 are useful chemical tools for investigating the role of type I PRMTs in health and disease. PMID:26598975

  12. Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production.

    PubMed

    Xu, Meijuan; Rao, Zhiming; Dou, Wenfang; Yang, Juan; Jin, Jian; Xu, Zhenghong

    2012-07-01

    N-acetyl-L-glutamate kinase (EC 2.7.2.8) is first committed in the specific L-arginine pathway of Corynebacterium sp. A limited increase of L-arginine production for the argB overexpression in the engineering C. creantum SYPA-CCB strain indicated that L-arginine feedback inhibition plays an influence on the L-arginine production. In this study, we have performed site-directed mutagenesis of the key enzyme (NAGK) and the three mutations (E19R, H26E and H268D) exhibited the increase of I0.5R efficiently. Thereby, the multi-mutated NAGKM3 (including E19R/H26E/H268D) was generated and its I0.5R of L-arginine of the mutant was increased remarkably, whereas the NAGK enzyme activities did not declined. To get a feedback-resistant and robust L-arginine producer, the engineered strains SYPA-CCBM3 were constructed. Introducing the argBM3 gene enabled the NAGK enzyme activity insensitive to the intracellular arginine concentrations resulted in an enhanced arginine biosynthesis flux and decreased formation of by-products. The L-arginine synthesis was largely enhanced due to the overexpression of the argBM3, which is resistant to feedback resistant by L-arginine. Thus L-arginine production could reach 45.6 g/l, about 41.7% higher compared with the initial strain. This is an example of up-modulation of the flux through the L-arginine metabolic pathway by deregulating the key enzyme of the pathway. PMID:21901472

  13. Site-directed mutagenesis studies on the L-arginine-binding sites of feedback inhibition in N-acetyl-L-glutamate kinase (NAGK) from Corynebacterium glutamicum.

    PubMed

    Xu, Meijuan; Rao, Zhiming; Dou, Wenfang; Jin, Jian; Xu, Zhenghong

    2012-02-01

    Arginine biosynthesis in Corynebacterium glutamicum proceeds via a pathway that is controlled by arginine through feedback inhibition of NAGK, the enzyme that converts N-acetyl-L-glutamate (NAG) to N-acety-L-glutamy-L-phosphate. In this study, the gene argB encoding NAGK from C. glutamicum ATCC 13032 was site-directed, and the L-arginine-binding sites of feedback inhibition in Cglu_NAGK are described. The N-helix and C-terminal residues were first deleted, and the results indicated that they are both necessary for Cglu_NAGK, whereas, the complete N-helix deletion (the front 28 residues) abolished the L-arginine inhibition. Further, we study here the impact on these functions of 12 site-directed mutations affecting seven residues of Cglu_NAGK, chosen on the basis of homology structural alignment. The E19R, H26E, and H268N variants could increase the I₀.₅ (R) 50-60 fold, and the G287D and R209A mutants could increase the I₀.₅ (R) 30-40 fold. The E281A mutagenesis resulted in the substrate kinetics being greatly influenced. The W23A variant had a lower specific enzyme activity. These results explained that the five amino acid residues (E19, H26, R209, H268, and G287) located in or near N-helix are all essential for the formation of arginine inhibition. PMID:22101454

  14. Citrulline Supplementation Improves Organ Perfusion and Arginine Availability under Conditions with Enhanced Arginase Activity

    PubMed Central

    Wijnands, Karolina A.P.; Meesters, Dennis M.; van Barneveld, Kevin W.Y.; Visschers, Ruben G.J.; Briedé, Jacob J.; Vandendriessche, Benjamin; van Eijk, Hans M.H.; Bessems, Babs A.F.M.; van den Hoven, Nadine; von Wintersdorff, Christian J.H.; Brouckaert, Peter; Bouvy, Nicole D.; Lamers, Wouter H.; Cauwels, Anje; Poeze, Martijn

    2015-01-01

    Enhanced arginase-induced arginine consumption is believed to play a key role in the pathogenesis of sickle cell disease-induced end organ failure. Enhancement of arginine availability with l-arginine supplementation exhibited less consistent results; however, l-citrulline, the precursor of l-arginine, may be a promising alternative. In this study, we determined the effects of l-citrulline compared to l-arginine supplementation on arginine-nitric oxide (NO) metabolism, arginine availability and microcirculation in a murine model with acutely-enhanced arginase activity. The effects were measured in six groups of mice (n = 8 each) injected intraperitoneally with sterile saline or arginase (1000 IE/mouse) with or without being separately injected with l-citrulline or l-arginine 1 h prior to assessment of the microcirculation with side stream dark-field (SDF)-imaging or in vivo NO-production with electron spin resonance (ESR) spectroscopy. Arginase injection caused a decrease in plasma and tissue arginine concentrations. l-arginine and l-citrulline supplementation both enhanced plasma and tissue arginine concentrations in arginase-injected mice. However, only the citrulline supplementation increased NO production and improved microcirculatory flow in arginase-injected mice. In conclusion, the present study provides for the first time in vivo experimental evidence that l-citrulline, and not l-arginine supplementation, improves the end organ microcirculation during conditions with acute arginase-induced arginine deficiency by increasing the NO concentration in tissues. PMID:26132994

  15. Redox Control of Protein Arginine Methyltransferase 1 (PRMT1) Activity.

    PubMed

    Morales, Yalemi; Nitzel, Damon V; Price, Owen M; Gui, Shanying; Li, Jun; Qu, Jun; Hevel, Joan M

    2015-06-12

    Elevated levels of asymmetric dimethylarginine (ADMA) correlate with risk factors for cardiovascular disease. ADMA is generated by the catabolism of proteins methylated on arginine residues by protein arginine methyltransferases (PRMTs) and is degraded by dimethylarginine dimethylaminohydrolase. Reports have shown that dimethylarginine dimethylaminohydrolase activity is down-regulated and PRMT1 protein expression is up-regulated under oxidative stress conditions, leading many to conclude that ADMA accumulation occurs via increased synthesis by PRMTs and decreased degradation. However, we now report that the methyltransferase activity of PRMT1, the major PRMT isoform in humans, is impaired under oxidative conditions. Oxidized PRMT1 displays decreased activity, which can be rescued by reduction. This oxidation event involves one or more cysteine residues that become oxidized to sulfenic acid (-SOH). We demonstrate a hydrogen peroxide concentration-dependent inhibition of PRMT1 activity that is readily reversed under physiological H2O2 concentrations. Our results challenge the unilateral view that increased PRMT1 expression necessarily results in increased ADMA synthesis and demonstrate that enzymatic activity can be regulated in a redox-sensitive manner. PMID:25911106

  16. Arginine kinase shows nucleoside diphosphate kinase-like activity toward deoxythymidine diphosphate.

    PubMed

    Lopez-Zavala, Alonso A; Sotelo-Mundo, Rogerio R; Hernandez-Flores, Jose M; Lugo-Sanchez, Maria E; Sugich-Miranda, Rocio; Garcia-Orozco, Karina D

    2016-06-01

    Arginine kinase (AK) (ATP: L-arginine phosphotransferase, E.C. 2.7.3.3) catalyzes the reversible transfer of ATP γ-phosphate group to L-arginine to synthetize phospho-arginine as a high-energy storage. Previous studies suggest additional roles for AK in cellular processes. Since AK is found only in invertebrates and it is homologous to creatine kinase from vertebrates, the objective of this work was to demonstrate nucleoside diphosphate kinase-like activity for shrimp AK. For this, AK from marine shrimp Litopenaeus vannamei (LvAK) was purified and its activity was assayed for phosphorylation of TDP using ATP as phosphate donor. Moreover, by using high-pressure liquid chromatography (HPLC) the phosphate transfer reaction was followed. Also, LvAK tryptophan fluorescence emission changes were detected by dTDP titration, suggesting that the hydrophobic environment of Trp 221, which is located in the top of the active site, is perturbed upon dTDP binding. The kinetic constants for both substrates Arg and dTDP were calculated by isothermal titration calorimetry (ITC). Besides, docking calculations suggested that dTDP could bind LvAK in the same cavity where ATP bind, and LvAK basic residues (Arg124, 126 and 309) stabilize the dTDP phosphate groups and the pyrimidine base interact with His284 and Ser122. These results suggest that LvAK bind and phosphorylate dTDP being ATP the phosphate donor, thus describing a novel alternate nucleoside diphosphate kinase-like activity for this enzyme. PMID:27072556

  17. Autocitrullination of human peptidyl arginine deiminase type 4 regulates protein citrullination during cell activation

    PubMed Central

    Andrade, Felipe; Darrah, Erika; Gucek, Marjan; Cole, Robert N.; Rosen, Antony; Zhu, Xiaoming

    2010-01-01

    Objective To address mechanisms that control the activity of human peptidyl arginine deiminase type 4 (PAD-4). Methods PAD-4 autocitrullination was determined by anti–modified citrulline immunoblotting, using purified recombinant and endogenous PAD-4 from activated human primary neutrophils and cell lines expressing PAD-4. The citrullination sites in PAD-4 were determined by mass spectrometry. Mechanisms of autocitrullination-induced inactivation and the functional consequences of autocitrullination in PAD-4 polymorphic variants were addressed using purified components and cell lines expressing PAD-4 wild-type, PAD-4 mutant, and PAD-4 polymorphic variants relevant to rheumatoid arthritis (RA). Results PAD-4 is autocitrullinated in vitro and during activation of primary cells and cell lines expressing PAD-4. Interestingly, this modification inactivated the function of the enzyme. The efficiency of inactivation differed among genetically defined PAD-4 variants relevant to RA. PAD-4 was citrullinated at 10 sites, which are clustered into 3 distinct regions, including a cluster of arginines around the active site cleft where Arg-372 and -374 were identified as the potential autocitrullination targets that inactivate the enzyme. Autocitrullination also modified the structure of PAD-4, abrogating its recognition by multiple rabbit antibodies, but augmenting its recognition by human anti–PAD-4 autoantibodies. Conclusion Our findings suggest that autocitrullination regulates the production of citrullinated proteins during cell activation, and that this is affected by structural polymorphisms in PAD-4. Autocitrullination also influences PAD-4 structure and immune response. PMID:20201080

  18. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity.

    PubMed

    Carroll, Bernadette; Maetzel, Dorothea; Maddocks, Oliver Dk; Otten, Gisela; Ratcliff, Matthew; Smith, Graham R; Dunlop, Elaine A; Passos, João F; Davies, Owen R; Jaenisch, Rudolf; Tee, Andrew R; Sarkar, Sovan; Korolchuk, Viktor I

    2016-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) is the key signaling hub that regulates cellular protein homeostasis, growth, and proliferation in health and disease. As a prerequisite for activation of mTORC1 by hormones and mitogens, there first has to be an available pool of intracellular amino acids. Arginine, an amino acid essential during mammalian embryogenesis and early development is one of the key activators of mTORC1. Herein, we demonstrate that arginine acts independently of its metabolism to allow maximal activation of mTORC1 by growth factors via a mechanism that does not involve regulation of mTORC1 localization to lysosomes. Instead, arginine specifically suppresses lysosomal localization of the TSC complex and interaction with its target small GTPase protein, Rheb. By interfering with TSC-Rheb complex, arginine relieves allosteric inhibition of Rheb by TSC. Arginine cooperates with growth factor signaling which further promotes dissociation of TSC2 from lysosomes and activation of mTORC1. Arginine is the main amino acid sensed by the mTORC1 pathway in several cell types including human embryonic stem cells (hESCs). Dependence on arginine is maintained once hESCs are differentiated to fibroblasts, neurons, and hepatocytes, highlighting the fundamental importance of arginine-sensing to mTORC1 signaling. Together, our data provide evidence that different growth promoting cues cooperate to a greater extent than previously recognized to achieve tight spatial and temporal regulation of mTORC1 signaling. PMID:26742086

  19. Activation of human blood platelets by arginine-vasopressin. Role of bivalent cations

    SciTech Connect

    Pletscher, A.; Erne, P.; Buergisser, E.F.; Ferracin, F.

    1985-12-01

    Arginine-vasopressin caused platelet activation, i.e., a shape change reaction and a rise in intracellular free Ca/sup 2 +/ ((Ca/sup 2 +/)i) only in the presence of certain bivalent cations. The EC50 of arginine-vasopressin (concentration causing half-maximal shape change) decreased with rising concentrations of Mn/sup 2 +/, Mg/sup 2 +/, or Ca/sup 2 +/ in the medium, but was at least an order higher with Ca/sup 2 +/ than with Mn/sup 2 +/ or Mg/sup 2 +/. The EC50 of the active bivalent cations (concentrations enabling 100 nM arginine-vasopressin to exert half-maximal shape change and rise in (Ca/sup 2 +/)i) varied with the individual cations, being by far the highest for Ca/sup 2 +/. The KD of (3H)arginine-vasopressin binding to platelet membranes and intact platelets markedly decreased when extracellular Mg/sup 2 +/ or Mn/sup 2 +/ were present, and the KD values were inversely related to the concentration of the cations. Ca/sup 2 +/ also lowered the KD values; however, the effect was less marked than that of Mg/sup 2 +/ or Mn/sup 2 +/ and, in physiological conditions, significant only in intact platelets. Vasopressin-1 antagonists counteracted arginine-vasopressin binding and the shape change reaction and (Ca/sup 2 +/)i rise induced by arginine-vasopressin. In the presence of Mn/sup 2 +/ in the medium, administration of arginine-vasopressin led to quenching of the intracellular fluorescence of 2-methyl-6-methoxy-8-nitroquinoline-loaded platelets, possibly due to influx of Mn/sup 2 +/. In conclusion, the dependency of the arginine-vasopressin-induced platelet activation on bivalent cations is at least partly due to an enhancement by these cations of the affinity of the vasopressin-1 receptor for arginine-vasopressin. Thereby, under physiological conditions, Mg/sup 2 +/ seems to be of primary importance. Other mechanisms may be involved, too, e.g., an enhancement by arginine-vasopressin of the influx of bivalent cations into the platelets.

  20. 11,12-Epoxyeicosatrienoic acid activates the L-arginine/nitric oxide pathway in human platelets.

    PubMed

    Zhang, Like; Cui, Yuying; Geng, Bing; Zeng, Xiangjun; Tang, Chaoshu

    2008-01-01

    The present study was to test the hypothesis that 11,12-epoxyeicosatrienoic acid (11,12-EET), a metabolic product of arachidonic acid by cytochrome P450 epoxygenase, regulates nitric oxide (NO) generation of the L-arginine/NO synthase (NOS) pathway in human platelets. Human platelets were incubated in the presence or absence of different concentrations of 11,12-EET for 2 h at 37 degrees C, followed by measurements of activities of the L-arginine/NOS pathway. Incubation with 11,12-EET increased the platelet NOS activity, nitrite production, cGMP content, and the platelet uptake of L-[(3)H]arginine in a concentration-dependent manner. In addition, 11,12-EET attenuated intracellular free Ca(2+) accumulation stimulated by collagen, which was at least partly mediated by EET-activated L-arginine/NOS pathway. It is suggested that 11,12-EET regulates platelet function through up-regulating the activity of the L-arginine/NOS/NO pathway. PMID:17932624

  1. PRMT11: a new Arabidopsis MBD7 protein partner with arginine methyltransferase activity.

    PubMed

    Scebba, Francesca; De Bastiani, Morena; Bernacchia, Giovanni; Andreucci, Andrea; Galli, Alvaro; Pitto, Letizia

    2007-10-01

    Plant methyl-DNA-binding proteins (MBDs), discovered by sequence homology to their animal counterparts, have not been well characterized at the physiological and functional levels. In order better to characterize the Arabidopsis AtMBD7 protein, unique in bearing three MBD domains, we used a yeast two-hybrid system to identify its partners. One of the interacting proteins we cloned is the Arabidopsis arginine methyltransferase 11 (AtPRMT11). Glutathione S-transferase pull-down and co-immunoprecipitation assays confirmed that the two proteins interact with each other and can be co-isolated. Using GFP fluorescence, we show that both AtMBD7 and AtPRMT11 are present in the nucleus. Further analyses revealed that AtPRMT11 acts as an arginine methyltransferase active on both histones and proteins of cellular extracts. The analysis of a T-DNA mutant line lacking AtPRMT11 mRNA revealed reduced levels of proteins with asymmetrically dimethylated arginines, suggesting that AtPRMT11, which is highly similar to mammalian PRMT1, is indeed a type I arginine methyltransferase. Further, AtMBD7 is a substrate for AtPRMT11, which post-translationally modifies the portion of the protein-containing C-terminal methylated DNA-binding domain. These results suggest the existence of a link between DNA methylation and arginine methylation. PMID:17711414

  2. Mapping precursor-binding site on TatC subunit of twin arginine-specific protein translocase by site-specific photo cross-linking.

    PubMed

    Zoufaly, Stefan; Fröbel, Julia; Rose, Patrick; Flecken, Tobias; Maurer, Carlo; Moser, Michael; Müller, Matthias

    2012-04-13

    A number of secreted precursor proteins of bacteria, archaea, and plant chloroplasts stand out by a conserved twin arginine-containing sequence motif in their signal peptides. Many of these precursor proteins are secreted in a completely folded conformation by specific twin arginine translocation (Tat) machineries. Tat machineries are high molecular mass complexes consisting of two types of membrane proteins, a hexahelical TatC protein, and usually one or two single-spanning membrane proteins, called TatA and TatB. TatC has previously been shown to be involved in the recognition of twin arginine signal peptides. We have performed an extensive site-specific cross-linking analysis of the Escherichia coli TatC protein under resting and translocating conditions. This strategy allowed us to map the recognition site for twin arginine signal peptides to the cytosolic N-terminal region and first cytosolic loop of TatC. In addition, discrete contact sites between TatC, TatB, and TatA were revealed. We discuss a tentative model of how a twin arginine signal sequence might be accommodated in the Tat translocase. PMID:22362773

  3. Hepatocyte growth factor, hepatocyte growth factor activator and arginine in a rat fulminant colitis model

    PubMed Central

    Zwintscher, Nathan P.; Shah, Puja M.; Salgar, Shashikumar K.; Newton, Christopher R.; Maykel, Justin A.; Samy, Ahmed; Jabir, Murad; Steele, Scott R.

    2016-01-01

    Introduction Dextran sodium sulfate (DSS) is commonly used to induce a murine fulminant colitis model. Hepatocyte growth factor (HGF) has been shown to decrease the symptoms of inflammatory bowel disease (IBD) but the effect of its activator, HGFA, is not well characterized. Arginine reduces effects of oxidative stress but its effect on IBD is not well known. The primary aim is to determine whether HGF and HGFA, or arginine will decrease IBD symptoms such as pain and diarrhea in a DSS-induced fulminant colitis murine model. Methods A severe colitis was induced in young, male Fischer 344 rats with 4% (w/v) DSS oral solution for seven days; rats were sacrificed on day 10. Rats were divided into five groups of 8 animals: control, HGF (700 mcg/kg/dose), HGF and HGFA (10 mcg/dose), HGF and arginine, and high dose HGF (2800 mcg/kg/dose). Main clinical outcomes were pain, diarrhea and weight loss. Blinded pathologists scored the terminal ileum and distal colon. Results DSS reliably induced severe active colitis in 90% of animals (n = 36/40). There were no differences in injury scores between control and treatment animals. HGF led to 1.38 fewer days in pain (p = 0.036), while arginine led to 1.88 fewer days of diarrhea (P = 0.017) compared to controls. 88% of HGFA-treated rats started regaining weight (P < 0.001). Discussion/Conclusion Although treatment was unable to reverse fulminant disease, HGF and arginine were associated with decreased days of pain and diarrhea. These clinical interventions may reduce associated symptoms for severe IBD patients, even when urgent surgical intervention remains the only viable option. PMID:27144006

  4. Arginine-rhamnosylation as new strategy to activate translation elongation factor P.

    PubMed

    Lassak, Jürgen; Keilhauer, Eva C; Fürst, Maximilian; Wuichet, Kristin; Gödeke, Julia; Starosta, Agata L; Chen, Jhong-Min; Søgaard-Andersen, Lotte; Rohr, Jürgen; Wilson, Daniel N; Häussler, Susanne; Mann, Matthias; Jung, Kirsten

    2015-04-01

    Ribosome stalling at polyproline stretches is common and fundamental. In bacteria, translation elongation factor P (EF-P) rescues such stalled ribosomes, but only when it is post-translationally activated. In Escherichia coli, activation of EF-P is achieved by (R)-β-lysinylation and hydroxylation of a conserved lysine. Here we have unveiled a markedly different modification strategy in which a conserved arginine of EF-P is rhamnosylated by a glycosyltransferase (EarP) using dTDP-L-rhamnose as a substrate. This is to our knowledge the first report of N-linked protein glycosylation on arginine in bacteria and the first example in which a glycosylated side chain of a translation elongation factor is essential for function. Arginine-rhamnosylation of EF-P also occurs in clinically relevant bacteria such as Pseudomonas aeruginosa. We demonstrate that the modification is needed to develop pathogenicity, making EarP and dTDP-L-rhamnose-biosynthesizing enzymes ideal targets for antibiotic development. PMID:25686373

  5. Arginine-rhamnosylation as new strategy to activate translation elongation factor P

    PubMed Central

    Lassak, Jürgen; Keilhauer, Eva C; Fürst, Maximilian; Wuichet, Kristin; Gödeke, Julia; Starosta, Agata L; Chen, Jhong-Min; Søgaard-Andersen, Lotte; Rohr, Jürgen; Wilson, Daniel N; Häussler, Susanne; Mann, Matthias; Jung, Kirsten

    2015-01-01

    Ribosome stalling at polyproline stretches is common and fundamental. In bacteria, translation elongation factor P (EF-P) rescues such stalled ribosomes, but only when it is post-translationally activated. In Escherichia coli, activation of EF-P is achieved by (R)-β-lysinylation and hydroxylation of a conserved lysine. Here we have unveiled a markedly different modification strategy in which a conserved arginine of EF-P is rhamnosylated by a glycosyltransferase (EarP) using dTDP-l-rhamnose as a substrate. This is to our knowledge the first report of N-linked protein glycosylation on arginine in bacteria and the first example in which a glycosylated side chain of a translation elongation factor is essential for function. Arginine-rhamnosylation of EF-P also occurs in clinically relevant bacteria such as Pseudomonas aeruginosa. We demonstrate that the modification is needed to develop pathogenicity, making EarP and dTDP-l-rhamnose-biosynthesizing enzymes ideal targets for antibiotic development. PMID:25686373

  6. 3-Nitropropionic Acid is a Suicide Inhibitor of MitochondrialRespiration that, Upon Oxidation by Complex II, Forms a Covalent AdductWith a Catalytic Base Arginine in the Active Site of the Enzyme

    SciTech Connect

    Huang, Li-shar; Sun, Gang; Cobessi, David; Wang, Andy C.; Shen,John T.; Tung, Eric Y.; Anderson, Vernon E.; Berry, Edward A.

    2005-12-01

    We report three new structures of mitochondrial respiratory Complex II (succinate ubiquinone oxidoreductase, E.C. 1.3.5.1) at up to 2.1 {angstrom} resolution, with various inhibitors. The structures define the conformation of the bound inhibitors and suggest the residues involved in substrate binding and catalysis at the dicarboxylate site. In particular they support the role of Arg297 as a general base catalyst accepting a proton in the dehydrogenation of succinate. The dicarboxylate ligand in oxaloacetate-containing crystals appears to be the same as that reported for Shewanella flavocytochrome c treated with fumarate. The plant and fungal toxin 3-nitropropionic acid, an irreversible inactivator of succinate dehydrogenase, forms a covalent adduct with the side chain of Arg297. The modification eliminates a trypsin cleavage site in the flavoprotein, and tandem mass spectroscopic analysis of the new fragment shows the mass of Arg 297 to be increased by 83 Da and to have potential of losing 44 Da, consistent with decarboxylation, during fragmentation.

  7. Arginine kinase in the demosponge Suberites domuncula: regulation of its expression and catalytic activity by silicic acid.

    PubMed

    Perovic-Ottstadt, Sanja; Wiens, Matthias; Schröder, Heinz-C; Batel, Renato; Giovine, Marco; Krasko, Anatoli; Müller, Isabel M; Müller, Werner E G

    2005-02-01

    In Demospongiae (phylum Porifera) the formation of the siliceous skeleton, composed of spicules, is an energetically expensive reaction. The present study demonstrates that primmorphs from the demosponge Suberites domuncula express the gene for arginine kinase after exposure to exogenous silicic acid. The deduced sponge arginine kinase sequence displays the two characteristic domains of the ATP:guanido phosphotransferases; it can be grouped to the 'usual' mono-domain 40 kDa guanidino kinases (arginine kinases). Phylogenetic studies indicate that the metazoan guanidino kinases evolved from this ancestral sponge enzyme; among them are also the 'unusual' two-domain 80 kDa guanidino kinases. The high expression level of the arginine kinase gene was already measurable 1 day after addition of silicic acid by northern blot, as well as by in situ hybridization analysis. Parallel determinations of enzyme activity confirmed that high levels of arginine kinase are present in primmorphs that had been exposed for 1-5 days to silicic acid. Finally, transmission electron-microscopical studies showed that primmorphs containing high levels of arginine kinase also produce siliceous spicules. These data highlight that silicic acid is an inorganic morphogenetic factor that induces the expression of the arginine kinase, which in turn probably catalyzes the reversible transfer of high-energy phosphoryl groups. PMID:15695756

  8. Arginine methylation of HSP70 regulates retinoid acid-mediated RARβ2 gene activation

    PubMed Central

    Gao, Wei-wei; Xiao, Rong-quan; Peng, Bing-ling; Xu, Huan-teng; Shen, Hai-feng; Huang, Ming-feng; Shi, Tao-tao; Yi, Jia; Zhang, Wen-juan; Wu, Xiao-nan; Gao, Xiang; Lin, Xiang-zhi; Dorrestein, Pieter C.; Rosenfeld, Michael G.; Liu, Wen

    2015-01-01

    Although “histone” methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain–containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor β2 (RARβ2) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70’s function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control. PMID:26080448

  9. Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity

    PubMed Central

    Biswas, Swati; Dodwadkar, Namita S.; Deshpande, Pranali P.; Parab, Shruti; Torchilin, Vladimir P.

    2014-01-01

    Doxorubicin-loaded PEGylated liposomes (commercially available as DOXIL® or Lipodox®) were surface functionalized with a cell-penetrating peptide, octa-arginine (R8). For this purpose, R8-peptide was conjugated to the polyethylene glycol–dioleoyl phosphatidylethanolamine (PEG–DOPE) amphiphilic co-polymer. The resultant R8–PEG–PE conjugate was introduced into the lipid bilayer of liposomes at 2 mol% of total lipid amount via spontaneous micelle-transfer technique. The liposomal modification did not alter the particle size distribution, as measured by Particle Size Analyzer and transmission electron microscopy (TEM). However, surface-associated cationic peptide increased zeta potential of the modified liposomes. R8-functionalized liposomes (R8-Dox-L) markedly increased the intracellular and intratumoral delivery of doxorubicin as measured by flow cytometry and visualizing by confocal laser scanning microscopy (CLSM) compared to unmodified Doxorubicin-loaded PEGylated liposomes (Dox-L). R8-Dox-L delivered loaded Doxorubicin to the nucleus, being released from the endosomes at higher efficiency compared to unmodified liposomes, which had marked entrapment in the endosomes at tested time point of 1 h. The significantly higher accumulation of loaded drug to its site of action for R8-Dox-L resulted in improved cytotoxic activity in vitro (cell viability of 58.5 ± 7% for R8-Dox-L compared to 90.6 ± 2% for Dox-L at Dox dose of 50 μg/mL for 4 h followed by 24 h incubation) and enhanced suppression of tumor growth (348 ± 53 mm3 for R8-Dox-L, compared to 504 ± 54 mm3 for Dox-L treatment) in vivo compared to Dox-L. R8-modification has the potential for broadening the therapeutic window of pegylated liposomal doxorubicin treatment, which could lead to lower non-specific toxicity. PMID:23333899

  10. Role of Arginine 293 and Glutamine 288 in Communication between Catalytic and Allosteric Sites in Yeast Ribonucleotide Reductase

    SciTech Connect

    Ahmad, Md. Faiz; Kaushal, Prem Singh; Wan, Qun; Wijerathna, Sanath R.; An, Xiuxiang; Huang, Mingxia; Dealwis, Chris Godfrey

    2012-11-01

    Ribonucleotide reductases (RRs) catalyze the rate-limiting step of de novo deoxynucleotide (dNTP) synthesis. Eukaryotic RRs consist of two proteins, RR1 ({alpha}) that contains the catalytic site and RR2 ({beta}) that houses a diferric-tyrosyl radical essential for ribonucleoside diphosphate reduction. Biochemical analysis has been combined with isothermal titration calorimetry (ITC), X-ray crystallography and yeast genetics to elucidate the roles of two loop 2 mutations R293A and Q288A in Saccharomyces cerevisiae RR1 (ScRR1). These mutations, R293A and Q288A, cause lethality and severe S phase defects, respectively, in cells that use ScRR1 as the sole source of RR1 activity. Compared to the wild-type enzyme activity, R293A and Q288A mutants show 4% and 15%, respectively, for ADP reduction, whereas they are 20% and 23%, respectively, for CDP reduction. ITC data showed that R293A ScRR1 is unable to bind ADP and binds CDP with 2-fold lower affinity compared to wild-type ScRR1. With the Q288A ScRR1 mutant, there is a 6-fold loss of affinity for ADP binding and a 2-fold loss of affinity for CDP compared to the wild type. X-ray structures of R293A ScRR1 complexed with dGTP and AMPPNP-CDP [AMPPNP, adenosine 5-({beta},{gamma}-imido)triphosphate tetralithium salt] reveal that ADP is not bound at the catalytic site, and CDP binds farther from the catalytic site compared to wild type. Our in vivo functional analyses demonstrated that R293A cannot support mitotic growth, whereas Q288A can, albeit with a severe S phase defect. Taken together, our structure, activity, ITC and in vivo data reveal that the arginine 293 and glutamine 288 residues of ScRR1 are crucial in facilitating ADP and CDP substrate selection.

  11. Methylation of arginine by PRMT1 regulates Nrf2 transcriptional activity during the antioxidative response.

    PubMed

    Liu, Xin; Li, Hongyuan; Liu, Lingxia; Lu, Yang; Gao, Yanyan; Geng, Pengyu; Li, Xiaoxue; Huang, Baiqu; Zhang, Yu; Lu, Jun

    2016-08-01

    The cap 'n' collar (CNC) family of transcription factors play important roles in resistance of oxidative and electrophilic stresses. Among the CNC family members, NF-E2-related factor 2 (Nrf2) is critical for regulating the antioxidant and phase II enzymes through antioxidant response element (ARE)-mediated transactivation. The activity of Nrf2 is controlled by a variety of post-translational modifications, including phosphorylation, ubiquitination, acetylation and sumoylation. Here we demonstrate that the arginine methyltransferase-1 (PRMT1) methylates Nrf2 protein at a single residue of arginine 437, both in vitro and in vivo. Using the heme oxygenase-1 (HO-1) as a model of phase II enzyme gene, we found that methylation of Nrf2 by PRMT1 led to a moderate increase of its DNA-binding activity and transactivation, which subsequently protected cells against the tBHP-induced glutathione depletion and cell death. Collectively, our results define a novel modification of Nrf2, which operates as a fine-tuning mechanism for the transcriptional activity of Nrf2 under the oxidative stress. PMID:27183873

  12. Monomeric Corynebacterium glutamicum N-acetyl glutamate kinase maintains sensitivity to L-arginine but has a lower intrinsic catalytic activity.

    PubMed

    Huang, Yuanyuan; Li, Cheng; Zhang, Hao; Liang, Shuli; Han, Shuangyan; Lin, Ying; Yang, Xiaorong; Zheng, Suiping

    2016-02-01

    N-acetyl glutamate kinase (NAGK) is a key enzyme in the synthesis of L-arginine, and L-arginine-sensitive NAGK typically has hexameric architecture. Defining the relationship between this architecture and L-arginine inhibition can provide a foundation to identify the key amino acids involved in the allosteric regulation network of L-arginine. In the present study, the key amino acids in the N-terminal helix (N-helix) of Corynebacterium glutamicum (Cg) NAGK required for hexamer formation were determined using structural homology modeling and site-directed mutagenesis. It was also verified that hexameric architecture is required for the positive cooperativity of inhibition by L-arginine and for efficient catalysis, but that it is not the determinant of inhibition by L-arginine. Monomeric mutants retained a similar sensitivity to L-arginine as the hexameric form, indicating that monomers contain an independent, sensitive signal transduction network of L-arginine to mediate allosteric regulation. Mutation studies of CgNAGKs also revealed that amino acid residues 18-23 of the N-helix are required for inhibition by L-arginine, and that E19 may be an essential amino acid influencing the apparent affinity of L-arginine. Collectively, these studies may illuminate the basic mechanism of metabolic homeostasis of C. glutamicum. PMID:26512006

  13. Expression and function of arginine-producing and consuming-enzymes in the kidney.

    PubMed

    Levillain, Olivier

    2012-04-01

    The kidney plays a key role in arginine metabolism. Arginine production is controlled by argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) which metabolize citrulline and aspartate to arginine and fumarate whereas arginine consumption is dependent on arginine:glycine amidinotransferase (GAT), which mediates creatine and ornithine synthesis. Histological and biochemical techniques have been used to study the distribution and activity of these enzymes in anatomically dissected segments, in isolated fragments of tubules and in whole tissues. ASS and ASL mRNAs and proteins are expressed in the proximal tubule. Within this nephron segment, the proximal convoluted tubule has a higher arginine synthesis capacity than the proximal straight tubules. Furthermore, this arginine-synthesizing portion of the nephron matches perfectly with the site of citrulline reabsorption from the glomerular filtrate. The kidney itself can produce citrulline from methylated arginine, but this capacity is limited. Therefore, intestinal citrulline synthesis is required for renal arginine production. Although the proximal convoluted tubule also expresses a significant amount of GAT, only 10% of renal arginine synthesis is metabolized to guanidinoacetic acid, possibly because GAT has a mitochondrial localization. Kidney arginase (AII) is expressed in the cortical and outer medullary proximal straight tubules and does not degrade significant amounts of newly synthesized arginine. The data presented in this review identify the proximal convoluted tubule as the main site of endogenous arginine biosynthesis. PMID:21567240

  14. Basis of arginine sensitivity of microbial N-acetyl-L-glutamate kinases: mutagenesis and protein engineering study with the Pseudomonas aeruginosa and Escherichia coli enzymes.

    PubMed

    Fernández-Murga, M Leonor; Rubio, Vicente

    2008-04-01

    N-acetylglutamate kinase (NAGK) catalyzes the second step of arginine biosynthesis. In Pseudomonas aeruginosa, but not in Escherichia coli, this step is rate limiting and feedback and sigmoidally inhibited by arginine. Crystal structures revealed that arginine-insensitive E. coli NAGK (EcNAGK) is homodimeric, whereas arginine-inhibitable NAGKs, including P. aeruginosa NAGK (PaNAGK), are hexamers in which an extra N-terminal kinked helix (N-helix) interlinks three dimers. By introducing single amino acid replacements in PaNAGK, we prove the functionality of the structurally identified arginine site, as arginine site mutations selectively decreased the apparent affinity for arginine. N-helix mutations affecting R24 and E17 increased and decreased, respectively, the apparent affinity of PaNAGK for arginine, as predicted from enzyme structures that revealed the respective formation by these residues of bonds favoring inaccessible and accessible arginine site conformations. N-helix N-terminal deletions spanning > or = 16 residues dissociated PaNAGK to active dimers, those of < or = 20 residues decreased the apparent affinity for arginine, and complete N-helix deletion (26 residues) abolished arginine inhibition. Upon attachment of the PaNAGK N-terminal extension to the EcNAGK N terminus, EcNAGK remained dimeric and arginine insensitive. We concluded that the N-helix and its C-terminal portion after the kink are essential but not sufficient for hexamer formation and arginine inhibition, respectively; that the N-helix modulates NAGK affinity for arginine and mediates signal transmission between arginine sites, thus establishing sigmoidal arginine inhibition kinetics; that the mobile alphaH-beta16 loop of the arginine site is the modulatory signal receiver; and that the hexameric architecture is not essential for arginine inhibition but is functionally essential for physiologically relevant arginine control of NAGK. PMID:18263723

  15. Basis of Arginine Sensitivity of Microbial N-Acetyl-l-Glutamate Kinases: Mutagenesis and Protein Engineering Study with the Pseudomonas aeruginosa and Escherichia coli Enzymes▿

    PubMed Central

    Fernández-Murga, M. Leonor; Rubio, Vicente

    2008-01-01

    N-Acetylglutamate kinase (NAGK) catalyzes the second step of arginine biosynthesis. In Pseudomonas aeruginosa, but not in Escherichia coli, this step is rate limiting and feedback and sigmoidally inhibited by arginine. Crystal structures revealed that arginine-insensitive E. coli NAGK (EcNAGK) is homodimeric, whereas arginine-inhibitable NAGKs, including P. aeruginosa NAGK (PaNAGK), are hexamers in which an extra N-terminal kinked helix (N-helix) interlinks three dimers. By introducing single amino acid replacements in PaNAGK, we prove the functionality of the structurally identified arginine site, as arginine site mutations selectively decreased the apparent affinity for arginine. N-helix mutations affecting R24 and E17 increased and decreased, respectively, the apparent affinity of PaNAGK for arginine, as predicted from enzyme structures that revealed the respective formation by these residues of bonds favoring inaccessible and accessible arginine site conformations. N-helix N-terminal deletions spanning ≥16 residues dissociated PaNAGK to active dimers, those of ≤20 residues decreased the apparent affinity for arginine, and complete N-helix deletion (26 residues) abolished arginine inhibition. Upon attachment of the PaNAGK N-terminal extension to the EcNAGK N terminus, EcNAGK remained dimeric and arginine insensitive. We concluded that the N-helix and its C-terminal portion after the kink are essential but not sufficient for hexamer formation and arginine inhibition, respectively; that the N-helix modulates NAGK affinity for arginine and mediates signal transmission between arginine sites, thus establishing sigmoidal arginine inhibition kinetics; that the mobile αH-β16 loop of the arginine site is the modulatory signal receiver; and that the hexameric architecture is not essential for arginine inhibition but is functionally essential for physiologically relevant arginine control of NAGK. PMID:18263723

  16. Effect of L-arginine on the catalytic activity and stability of nickel nanoparticles for hydrolytic dehydrogenation of ammonia borane

    NASA Astrophysics Data System (ADS)

    Umegaki, Tetsuo; Xu, Qiang; Kojima, Yoshiyuki

    2012-10-01

    Amorphous nickel catalysts were synthesized by reducing the nickel(II) species in an aqueous NaBH4/NH3BH3 solution with and without L-arginine. The nickel catalyst with L-arginine maintains relatively high activity for hydrolysis of NH3BH3 to generate a stoichiometric amount of hydrogen with the cycle number up to 11 (827 mL s-1 (mol-Ni)-1 at the 11th cycle with L-arginine = 35 mg), while the reaction rate in the presence of the bare nickel catalyst was relatively low through the cycle number up to 11 (232 mL s-1 (mol-Ni)-1 at the 11th cycle). After catalytic reaction, the nickel catalyst with L-arginine possesses the high dispersion (diameters of nickel nanoparticles <5 nm), while the agglomerate of nickel in the bare nickel catalyst is observed. The results indicate that L-arginine maintains the dispersion of nickel nanoparticles (diameters of nickel nanoparticles <10 nm), leading to higher activity against cycle tests than the bare nickel catalyst.

  17. Direct characterization of factor VIII in plasma: detection of a mutation altering a thrombin cleavage site (arginine-372----histidine).

    PubMed Central

    Arai, M; Inaba, H; Higuchi, M; Antonarakis, S E; Kazazian, H H; Fujimaki, M; Hoyer, L W

    1989-01-01

    An immunoadsorbent method has been developed for the direct analysis of normal and variant plasma factor VIII. Using this method, the molecular defect responsible for mild hemophilia A has been identified for a patient whose plasma factor VIII activity is 0.05 unit/ml, even though the factor VIII antigen content is 3.25 units/ml. Although the variant factor VIII has an apparently normal molecular mass and chain composition, the 92-kDa heavy chain accumulates when the variant protein is incubated with thrombin and the 44-kDa heavy chain fragment cannot be detected. In contrast, thrombin cleavage of the 80-kDa light chain to the 72-kDa fragment is normal. As these data indicate a loss of factor VIII cleavage by thrombin at arginine-372, the genetic defect was determined by polymerase-chain-reaction amplification of exon 8 of the factor VIII gene and direct sequencing of the amplified product. A single-base substitution (guanine----adenine) was identified that produces an arginine to histidine substitution at amino acid residue 372. These data identify the molecular basis of an abnormal factor VIII, "factor VIII-Kumamoto," that lacks procoagulant function because of impaired thrombin activation. Images PMID:2498882

  18. Coagulase-Negative Staphylococci Favor Conversion of Arginine into Ornithine despite a Widespread Genetic Potential for Nitric Oxide Synthase Activity

    PubMed Central

    Sánchez Mainar, María; Weckx, Stefan

    2014-01-01

    Within ecosystems that are poor in carbohydrates, alternative substrates such as arginine may be of importance to coagulase-negative staphylococci (CNS). However, the versatility of arginine conversion in CNS remains largely uncharted. Therefore, a set of 86 strains belonging to 17 CNS species was screened for arginine deiminase (ADI), arginase, and nitric oxide synthase (NOS) activities, in view of their ecological relevance. In fermented meats, for instance, ADI could improve bacterial competitiveness, whereas NOS may serve as an alternative nitrosomyoglobin generator to nitrate and nitrite curing. About 80% of the strains were able to convert arginine, but considerable inter- and intraspecies heterogeneity regarding the extent and mechanism of conversion was found. Overall, ADI was the most commonly employed pathway, resulting in mixtures of ornithine and small amounts of citrulline. Under aerobic conditions, which are more relevant for skin-associated CNS communities, several strains shifted toward arginase activity, leading to the production of ornithine and urea. The obtained data indeed suggest that arginase occurs relatively more in CNS isolates from a dairy environment, whereas ADI seems to be more abundant in strains from a fermented meat background. With some exceptions, a reasonable match between phenotypic ADI and arginase activity and the presence of the encoding genes (arcA and arg) was found. With respect to the NOS pathway, however, only one strain (Staphylococcus haemolyticus G110) displayed phenotypic NOS-like activity under aerobic conditions, despite a wide prevalence of the NOS-encoding gene (nos) among CNS. Hence, the group of CNS displays a strain- and condition-dependent toolbox of arginine-converting mechanisms with potential implications for competitiveness and functionality. PMID:25281381

  19. High-performance liquid chromatography method with radiochemical detection for measurement of nitric oxide synthase, arginase, and arginine decarboxylase activities.

    PubMed

    Volke, A; Wegener, G; Vasar, E; Volke, V

    2006-01-01

    Nitric oxide has been shown to be involved in numerous biological processes, and many studies have aimed to measure nitric oxide synthase (NOS) activity. Recently, it has been demonstrated that arginase and arginine decarboxylase (ADC), two enzymes that also employ arginine as a substrate, may regulate NOS activity. We aimed to develop a HPLC-based method to measure simultaneously the products of these three enzymes. Traditionally, the separation of amino acids and related compounds with HPLC has been carried out with precolumn derivatization and reverse phase chromatography. We describe here a simple and fast HPLC method with radiochemical detection to separate radiolabeled L-arginine, L-citrulline, L-ornithine, and agmatine. 3H-labeled L-arginine, L-citrulline, agmatine, and 14C-labeled L-citrulline were used as standards. These compounds were separated in the normal phase column (Allure Acidix 250 x 4.6 mm i.d.) under isocratic conditions in less than 20 min with good sensitivity. Using the current method, we have shown the formation of L-citrulline and L-ornithine in vitro using brain tissue homogenate of rats and that of agmatine by Escherichia coli ADC. PMID:16541190

  20. Differential effects of arginine, glutamate and phosphoarginine on Ca(2+)-activation properties of muscle fibres from crayfish and rat.

    PubMed

    Jame, David W; West, Jan M; Dooley, Philip C; Stephenson, D George

    2004-01-01

    The effects of two amino acids, arginine which has a positively charged side-chain and glutamate which has a negatively charged side-chain on the Ca2+-activation properties of the contractile apparatus were examined in four structurally and functionally different types of skeletal muscle; long- and short-sarcomere fibres from the claw muscle of the yabby (a freshwater decapod crustacean), and fast- and slow-twitch fibres from limb muscles of the rat. Single skinned fibres were activated in carefully balanced solutions of different pCa (-log10[Ca2+]) that either contained the test solute ("test") or not ("control"). The effect of phosphoarginine, a phosphagen that bears a nett negative charge, was also compared to the effects of arginine. Results show that (i) arginine (33-36 mmol l(-1)) significantly shifted the force-pCa curve by 0.08-0.13 pCa units in the direction of increased sensitivity to Ca2+-activated contraction in all fibre types; (ii) phosphoarginine (9-10 mmol l(-1)) induced a significant shift of the force-pCa curve by 0.18-0.24 pCa units in the direction of increased sensitivity to Ca2+ in mammalian fast- and slow-twitch fibres, but had no significant effects on the force-pCa relation in either long- or short-sarcomere crustacean fibres; (iii) glutamate (36-40 mmol l(-1)), like arginine affected the force-pCa relation of all fibre types investigated, but in the opposite direction, causing a significant decrease in the sensitivity to Ca2+-activated contraction by 0.08-0.19 pCa units; (iv) arginine, phosphoarginine and glutamate had little or no effect on the maximum Ca2+-activated force of crustacean and mammalian fibres. The results suggest that the opposing effects of glutamate and arginine are not related to simply their charge structure, but must involve complex interactions between these molecules, Ca2+ and the regulatory and other myofibrillar proteins. PMID:15711880

  1. Pharmacological PPARα Activation Markedly Alters Plasma Turnover of the Amino Acids Glycine, Serine and Arginine in the Rat

    PubMed Central

    Ericsson, Anette; Turner, Nigel; Hansson, Göran I.; Wallenius, Kristina; Oakes, Nicholas D.

    2014-01-01

    The current study extends previously reported PPARα agonist WY 14,643 (30 µmol/kg/day for 4 weeks) effects on circulating amino acid concentrations in rats fed a 48% saturated fat diet. Steady-state tracer experiments were used to examine in vivo kinetic mechanisms underlying altered plasma serine, glycine and arginine levels. Urinary urea and creatinine excretion were measured to assess whole-body amino acid catabolism. WY 14,643 treated animals demonstrated reduced efficiency to convert food consumed to body weight gain while liver weight was increased compared to controls. WY 14,643 raised total amino acid concentration (38%), largely explained by glycine, serine and threonine increases. 3H-glycine, 14C-serine and 14C-arginine tracer studies revealed elevated rates of appearance (Ra) for glycine (45.5±5.8 versus 17.4±2.7 µmol/kg/min) and serine (21.0±1.4 versus 12.0±1.0) in WY 14,643 versus control. Arginine was substantially decreased (−62%) in plasma with estimated Ra reduced from 3.1±0.3 to 1.2±0.2 µmol/kg/min in control versus WY 14,643. Nitrogen excretion over 24 hours was unaltered. Hepatic arginase activity was substantially decreased by WY 14,643 treatment. In conclusion, PPARα agonism potently alters metabolism of several specific amino acids in the rat. The changes in circulating levels of serine, glycine and arginine reflected altered fluxes into the plasma rather than changes in clearance or catabolism. This suggests that PPARα has an important role in modulating serine, glycine and arginine de novo synthesis. PMID:25486018

  2. Biochemical and biological activity of arginine deiminase from Streptococcus pyogenes M22.

    PubMed

    Starikova, Eleonora A; Sokolov, Alexey V; Vlasenko, Anna Yu; Burova, Larisa A; Freidlin, Irina S; Vasilyev, Vadim B

    2016-04-01

    Streptococcus pyogenes (group A Streptococcus; GAS) is an important gram-positive extracellular bacterial pathogen responsible for a number of suppurative infections. This micro-organism has developed complex virulence mechanisms to avoid the host's defenses. We have previously reported that SDSC from GAS type M22 causes endothelial-cell dysfunction, and inhibits cell adhesion, migration, metabolism, and proliferation in a dose-dependent manner, without affecting cell viability. This work aimed to isolate and characterize a component from GAS type M22 supernatant that suppresses the proliferation of endothelial cells (EA.hy926). In the process of isolating a protein possessing antiproliferative activity we identified arginine deiminase (AD). Further study showed that this enzyme is most active at pH 6.8. Calculating Km and Vmax gave the values of 0.67 mmol·L(-1) and 42 s(-1), respectively. A distinctive feature of AD purified from GAS type M22 is that its optimum activity and the maximal rate of the catalytic process is close to neutral pH by comparison with enzymes from other micro-organisms. AD from GAS type M22 suppressed the proliferative activity of endothelial cells in a dose-dependent mode. At the same time, in the presence of AD, the proportion of cells in G0/G1 phase increased. When l-Arg was added at increasing concentrations to the culture medium containing AD (3 μg·mL(-1)), the enzyme's capacity to inhibit cell proliferation became partially depressed. The proportion of cells in phases S/G2 increased concomitantly, although the cells did not fully recover their proliferation activity. This suggests that AD from GAS type M22 has potential for the suppression of excessive cell proliferation. PMID:26695833

  3. Arginine Patch Predicts the RNA Annealing Activity of Hfq from Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Zheng, Amy; Panja, Subrata; Woodson, Sarah A

    2016-06-01

    The Sm-protein Hfq facilitates interactions between small non-coding RNA (sRNA) and target mRNAs. In enteric Gram-negative bacteria, Hfq is required for sRNA regulation, and hfq deletion results in stress intolerance and reduced virulence. By contrast, the role of Hfq in Gram-positive is less established and varies among species. The RNA binding and RNA annealing activity of Hfq from Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Bacillus subtilis, and Staphylococcus aureus were compared using minimal RNAs and fluorescence spectroscopy. The results show that RNA annealing activity increases with the number of arginines in a semi-conserved patch on the rim of the Hfq hexamer and correlates with the previously reported requirement for Hfq in sRNA regulation. Thus, the amino acid sequence of the arginine patch can predict the chaperone function of Hfq in sRNA regulation in different organisms. PMID:27049793

  4. Heparin binding to platelet factor-4. An NMR and site-directed mutagenesis study: arginine residues are crucial for binding.

    PubMed Central

    Mayo, K H; Ilyina, E; Roongta, V; Dundas, M; Joseph, J; Lai, C K; Maione, T; Daly, T J

    1995-01-01

    Native platelet factor-4 (PF4) is an asymmetrically associated, homo-tetrameric protein (70 residues/subunit) known for binding polysulphated glycosaminoglycans like heparin. PF4 N-terminal chimeric mutant M2 (PF4-M2), on the other hand, forms symmetric tetramers [Mayo, Roongta, Ilyina, Milius, Barker, Quinlan, La Rosa and Daly (1995) Biochemistry 34, 11399-11409] making NMR studies with this 32 kDa protein tractable. PF4-M2, moreover, binds heparin with a similar affinity to that of native PF4. NMR data presented here indicate that heparin (9000 Da cut-off) binding to PF4-M2, while not perturbing the overall structure of the protein, does perturb specific side-chain proton resonances which map to spatially related residues within a ring of positively charged side chains on the surface of tetrameric PF4-M2. Contrary to PF4-heparin binding models which centre around C-terminal alpha-helix lysines, this study indicates that a loop containing Arg-20, Arg-22, His-23 and Thr-25, as well as Lys-46 and Arg-49, are even more affected by heparin binding. Site-directed mutagenesis and heparin binding data support these NMR findings by indicating that arginines more than C-terminal lysines, are crucial to the heparin binding process. Images Figure 4 PMID:8526843

  5. Contributions of arginines-43 and -94 of human choriogonadotropin. beta. to receptor binding and activation as determined by oligonucleotide-based mutagenesis

    SciTech Connect

    Fang Chen; Puett, D. )

    1991-10-22

    Members of the glycoprotein hormone family contain a common {alpha} subunit and a hormone-specific {beta} subunit. Human choriogonadotropin (hCG) {beta} is a 145 amino acid residue protein glycosylated at 6 positions (2 N-linked and 4 O-linked oligosaccharides). In an effort to elucidate receptor determinants on hCG{beta}, the authors have used site-directed mutagenesis to prepare and express several mutant cDNAs with replacements at arginines-43 and -94. Arg-43 is invariant in all known mammalian CG/lutropin {beta} amino acid sequences, and Arg-94 is conserved in 10 of the 12 sequences. Moreover, various studies involving synthetic peptides and enzymatic digestions of intact {beta} chains suggest that these residues may be important in hCG receptor binding. Point mutants were made in which these two arginines were replaced with the corresponding residues in human follitropin {beta}, Leu-43 and Asp-94. The wild-type and mutant {beta} chains were expressed in CHO cells containing a stably integrated gene for bovine {alpha}, and heterodimer formation occurred. These heterologous gonadotropins were active in assays using transformed Leydig cells, competitive binding with standard {sup 125}I-hCG, and cAMP and progesterone production, but the potency was considerably less than that associated with the hCG{beta} wild-type-containing gonadotropin. The double-mutant protein Arg-43 to Leu/Arg-94 to Asp also associated with bovine {alpha}, but the resultant heterodimer exhibited only low activity. Replacement but the Lys-43-containing {beta} chain appeared to exhibit a low degree of subunit association or reduced stability relative to the expressed hCG{beta} wild type. These results demonstrate that arginines-43 and -94 contribute to receptor binding through a positive charge.

  6. Characterization of conserved arginine residues on Cdt1 that affect licensing activity and interaction with Geminin or Mcm complex.

    PubMed

    You, Zhiying; Ode, Koji L; Shindo, Mayumi; Takisawa, Haruhiko; Masai, Hisao

    2016-05-01

    All organisms ensure once and only once replication during S phase through a process called replication licensing. Cdt1 is a key component and crucial loading factor of Mcm complex, which is a central component for the eukaryotic replicative helicase. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent rereplication. Here, we address the mechanism of DNA licensing using purified Cdt1, Mcm and Geminin proteins in combination with replication in Xenopus egg extracts. We mutagenized the 223th arginine of mouse Cdt1 (mCdt1) to cysteine or serine (R-S or R-C, respectively) and 342nd and 346th arginines constituting an arginine finger-like structure to alanine (RR-AA). The RR-AA mutant of Cdt1 could not only rescue the DNA replication activity in Cdt1-depleted extracts but also its specific activity for DNA replication and licensing was significantly increased compared to the wild-type protein. In contrast, the R223 mutants were partially defective in rescue of DNA replication and licensing. Biochemical analyses of these mutant Cdt1 proteins indicated that the RR-AA mutation disabled its functional interaction with Geminin, while R223 mutations resulted in ablation in interaction with the Mcm2∼7 complex. Intriguingly, the R223 mutants are more susceptible to the phosphorylation-induced inactivation or chromatin dissociation. Our results show that conserved arginine residues play critical roles in interaction with Geminin and Mcm that are crucial for proper conformation of the complexes and its licensing activity. PMID:26940553

  7. Macrophage activation for intracellular killing as induced by a Ca2+ ionophore. Dependence on L-arginine-derived nitrogen oxidation products.

    PubMed Central

    Buchmüller-Rouiller, Y; Corradin, S B; Mauël, J

    1992-01-01

    Mouse macrophages activated by interferon-gamma kill intracellular Leishmania by a process that depends on the generation of L-arginine-derived nitrogen oxidation products. Interferon-induced intracellular killing can be mimicked by exposure of macrophages to the Ca2+ ionophore A23187 in the presence of lipopolysaccharide. The mechanisms of this effect were therefore investigated. Destruction of the parasite was accompanied by accumulation of nitrite in the macrophage culture fluids. Leishmanicidal activity and nitrite production in cultures stimulated with ionophore A23187 and lipopolysaccharide were abrogated when cells were activated in medium containing arginase or the L-arginine analogues L-canavanine, guanidine or NG-monomethyl-L-arginine. L-Arginine was required during the lipopolysaccharide-induced triggering phase only. Indeed, macrophage priming with ionophore A23187 in L-arginine-depleted medium led to full microbicidal activity and nitrite generation provided that L-arginine was present during subsequent triggering by lipopolysaccharide. Addition of NG-monomethyl-L-arginine to ionophore-activated macrophages increased O2- production on phorbol myristate stimulation, while inhibiting glucose oxidation through the hexose monophosphate shunt pathway. Leishmanicidal activity and nitrite production were also inhibited when ionophore-treated cultures were incubated with excess iron, implying a role for iron as a defence mechanism against the toxicity of nitrogen derivatives. These results indicate that the ionophore-induced leishmanicidal activity occurs through a process similar to that evoked by interferon-gamma, i.e. the production of L-arginine-derived nitrogen oxidation products. PMID:1599422

  8. Arginine and nitrogen storage.

    PubMed

    Llácer, José L; Fita, Ignacio; Rubio, Vicente

    2008-12-01

    When nitrogen is abundant, prokaryotic and eukaryotic oxygen-producing photosynthetic organisms store nitrogen as arginine, by relieving feedback inhibition of the arginine biosynthesis controlling enzyme, N-acetylglutamate kinase (NAGK). The signalling protein PII, an ancient and widely distributed nitrogen/carbon/ADP/ATP sensor, mediates feedback inhibition relief of NAGK by binding to this enzyme. PII phosphorylation or PII binding of ADP or 2-oxoglutarate prevents PII-NAGK complex formation. Crystal structures of NAGK, cyanobacterial and plant PII and corresponding PII-NAGK complexes have been recently determined. In these complexes, two polar PII trimers sandwich one ring-like NAGK hexamer. Each PII subunit contacts one NAGK subunit, triggering a symmetry-restricted narrowing of the NAGK ring, with concomitant adoption by the arginine sites of a low-affinity conformation. PMID:19013524

  9. Comprehensive identification of arginine methylation in primary T cells reveals regulatory roles in cell signalling

    PubMed Central

    Geoghegan, Vincent; Guo, Ailan; Trudgian, David; Thomas, Benjamin; Acuto, Oreste

    2015-01-01

    The impact of protein arginine methylation on the regulation of immune functions is virtually unknown. Here, we apply a novel method—isomethionine methyl-SILAC—coupled with antibody-mediated arginine-methylated peptide enrichment to identify methylated peptides in human T cells by mass spectrometry. This approach allowed the identification of 2,502 arginine methylation sites from 1,257 tissue-specific and housekeeping proteins. We find that components of T cell antigen receptor signal machinery and several key transcription factors that regulate T cell fate determination are methylated on arginine. Moreover, we demonstrate changes in arginine methylation stoichiometry during cellular stimulation in a subset of proteins critical to T cell differentiation. Our data suggest that protein arginine methyltransferases exert key regulatory roles in T cell activation and differentiation, opening a new field of investigation in T cell biology. PMID:25849564

  10. Arginine transport in catabolic disease states.

    PubMed

    Pan, Ming; Choudry, Haroon A; Epler, Mark J; Meng, Qinghe; Karinch, Anne; Lin, Chengmao; Souba, Wiley

    2004-10-01

    Arginine appears to be a semiessential amino acid in humans during critical illness. Catabolic disease states such as sepsis, injury, and cancer cause an increase in arginine utilization, which exceeds body production, leading to arginine depletion. This is aggravated by the reduced nutrient intake that is associated with critical illness. Arginine depletion may have negative consequences on tissue function under these circumstances. Nutritional regimens containing arginine have been shown to improve nitrogen balance and lymphocyte function, and stimulate arginine transport in the liver. We have studied the effects of stress mediators on arginine transport in vascular endothelium, liver, and gut epithelium. In vascular endothelium, endotoxin stimulates arginine uptake, an effect that is mediated by the cytokine tumor necrosis factor-alpha (TNF-alpha) and by the cyclo-oxygenase pathway. This TNF-alpha stimulation involves the activation of intracellular protein kinase C (PKC). A significant increase in hepatic arginine transport activity also occurs following burn injury and in rats with progressive malignant disease. Surgical removal of the growing tumor results in a normalization of the accelerated hepatic arginine transport within days. Chronic metabolic acidosis and sepsis individually augment intestinal arginine transport in rats and Caco-2 cell culture. PKC and mitogen-activated protein kinases are involved in mediating the sepsis/acidosis stimulation of arginine transport. Understanding the regulation of plasma membrane arginine transport will enhance our knowledge of nutrition and metabolism in seriously ill patients and may lead to the design of improved nutritional support formulas. PMID:15465794

  11. The Role of Myeloid Cell Activation and Arginine Metabolism in the Pathogenesis of Virus-Induced Diseases

    PubMed Central

    Burrack, Kristina S.; Morrison, Thomas E.

    2014-01-01

    When an antiviral immune response is generated, a balance must be reached between two opposing pathways: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS) and arginase 1 (Arg1). Nitric oxide (NO) production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity not only has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s) involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections. PMID:25250029

  12. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation

    SciTech Connect

    Yu, Jungeun; Shin, Bongjin; Park, Eui-Soon; Yang, Sujeong; Choi, Seunga; Kang, Misun; Rho, Jaerang

    2010-01-01

    Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain and examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.

  13. AMP-activated protein kinase regulates L-arginine mediated cellular responses

    PubMed Central

    2013-01-01

    Background Our prior study revealed the loss in short-term L-Arginine (ARG) therapeutic efficacy after continuous exposure; resulting in tolerance development, mediated by endothelial nitric oxide synthase (eNOS) down-regulation, secondary to oxidative stress and induced glucose accumulation. However, the potential factor regulating ARG cellular response is presently unknown. Method Human umbilical vein endothelial cells were incubated with 100 μM ARG for 2 h in buffer (short-term or acute), or for 7 days in culture medium and challenged for 2 h in buffer (continuous or chronic), in the presence or absence of other agents. eNOS activity was determined by analyzing cellular nitrite/nitrate (NO2–/NO3–), and AMP-activated protein kinase (AMPK) activity was assayed using SAMS peptide. 13C6 glucose was added to medium to measure glucose uptake during cellular treatments, which were determined by LC-MS/MS. Cellular glucose was identified by o-toluidine method. Superoxide (O2•–) was identified by EPR-spin-trap, and peroxynitrite (ONOO–) was measured by flow-cytometer using aminophenyl fluorescein dye. Results Short-term incubation of cells with 100 μM ARG in the presence or absence of 30 μM L-NG-Nitroarginine methyl ester (L-NAME) or 30 μM AMPK inhibitor (compound C, CMP-C) increased cellular oxidative stress and overall glucose accumulation with no variation in glucose transporter-1 (GLUT-1), or AMPK activity from control. The increase in total NO2–/NO3– after 2 h 100 μM ARG exposure, was suppressed in cells co-incubated with 30 μM CMP-C or L-NAME. Long-term exposure of ARG with or without CMP-C or L-NAME suppressed NO2–/NO3–, glucose uptake, GLUT-1, AMPK expression and activity below control, and increased overall cellular glucose, O2•– and ONOO–. Gluconeogenesis inhibition with 30 μM 5-Chloro-2-N-2,5-dichlorobenzenesulfonamido-benzoxazole (CDB) during ARG exposure for 2 h maintained overall cellular glucose to control, but increased

  14. Arginine metabolism in wounds

    SciTech Connect

    Albina, J.E.; Mills, C.D.; Barbul, A.; Thirkill, C.E.; Henry, W.L. Jr.; Mastrofrancesco, B.; Caldwell, M.D.

    1988-04-01

    Arginine metabolism in wounds was investigated in the rat in 1) lambda-carrageenan-wounded skeletal muscle, 2) Schilling chambers, and 3) subcutaneous polyvinyl alcohol sponges. All showed decreased arginine and elevated ornithine contents and high arginase activity. Arginase could be brought to the wound by macrophages, which were found to contain arginase activity. However, arginase was expressed by macrophages only after cell lysis and no arginase was released by viable macrophages in vitro. Thus the extracellular arginase of wounds may derive from dead macrophages within the injured tissue. Wound and peritoneal macrophages exhibited arginase deiminase activity as demonstrated by the conversion of (guanido-/sup 14/C)arginine to radiolabeled citrulline during culture, the inhibition of this reaction by formamidinium acetate, and the lack of prokaryotic contamination of the cultures. These findings and the known metabolic fates of the products of arginase and arginine deiminase in the cellular populations of the wound suggest the possibility of cooperativity among cells for the production of substrates for collagen synthesis.

  15. Arginine catabolism in Aphanocapsa 6308.

    PubMed

    Weathers, P J; Chee, H L; Allen, M M

    1978-07-01

    The catabolic products of arginine metabolism were observed in Aphanocapsa 6308, a unicellular cyanobacterium, by thin layer chromatography of growth media, by limiting growth conditions, and by enzymatic analysis. Of the organic, nitrogenous compounds examined, only arginine supported growth in CO2-free media. The excretion of ornithine at a concentration level greater than citrulline suggested the existence in Aphanocapsa 6308 of the arginine dihydrolase pathway which produced ornithine, CO2,NH4,+ adenosine 5'-triphosphate. Its existence was confirmed by enzymatic analysis. Although cells could not grow on urea as a sole carbon source a very active urease and subsequently an arginase were also demonstrated, indicating that Aphanocapsa can metabolize arginine via the arginase pathway. The level of enzymes for both pathways indicates a lack of genetic control. It is suggested that the arginase pathway provides only nitrogen for the cells wheras the arginine dihydrolase pathway provides not only nitrogen, but also CO2 and adenosine 5'-triphosphate. PMID:100070

  16. The arginine repressor is essential for plasmid-stabilizing site-specific recombination at the ColE1 cer locus.

    PubMed Central

    Stirling, C J; Szatmari, G; Stewart, G; Smith, M C; Sherratt, D J

    1988-01-01

    The heritable stability in Escherichia coli of the multicopy plasmid ColE1 and its natural relatives requires that the plasmids be maintained in the monomeric state. Plasmid multimers, that arise through recA-dependent homologous recombination, are normally converted to monomers by a site-specific recombination system that acts at a specific plasmid site (cer in ColE1). No plasmid functions that act at this site have been identified. In contrast, two unlinked E.coli genes that encode functions required for cer-mediated site-specific recombination have been identified. Here we describe the isolation and characterization of one such gene (xerA) and show it to be identical to the gene encoding the repressor of the arginine biosynthetic genes (argR). The argR protein binds to cer DNA both in vivo and in vitro in the presence of arginine. We believe this binding is required to generate a higher order protein-DNA complex within the recombinational synapse. The argR gene of Bacillus subtilis complements an E.coli argR deficiency for cer-mediated recombination despite the two proteins having only 27% amino acid identity. Images PMID:3149585

  17. Effects of L-arginine immobilization on the anticoagulant activity and hemolytic property of polyethylene terephthalate films

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Yang, Yun; Wu, Feng

    2010-04-01

    Surface modification of polyethylene terephthalate (PET) films was performed with L-arginine ( L-Arg) to gain an improved anticoagulant surface. The surface chemistry changes of modified films were characterized by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The in vitro anticoagulant activities of the surface-modified PET films were evaluated by blood clotting test, hemolytic test, and the measurement of clotting time including plasma recalcification time (PRT), activated partial thromboplastin time (APTT), and prothrombin time (PT). The data of blood coagulation index (BCI) for L-arginine modified PET films (PET-Arg) was larger than that for PET at the same blood-sample contact time. The hemolysis ratio for PET-Arg was less than that for PET and within the accepted standard for biomaterials. The PRT and APTT for PET-Arg were significantly prolonged by 189 s and 25 s, respectively, compared to those for the unmodified PET. All results suggested that the currently described modification method could be a possible candidate to create antithrombogenic PET surfaces which would be useful for further medical applications.

  18. Simulated Microgravity Reduces TNF-Alpha Activity, Suppresses Glucose Uptake and Enhances Arginine Flux in Pancreatic Islets of Langerhans

    NASA Technical Reports Server (NTRS)

    Tobin, Brian W.; Leeper-Woodford, Sandra K.; Hashemi, Brian B.; Smith, Scott M.; Sams, Clarence F.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The present studies were designed to determine effects of microgravity upon lipopolysaccharide (LPS) stimulated tumor necrosis factor alpha (TNF - alpha) activity and indices of insulin and fuel homeostasis of pancreatic islets of Langerhans. Islets (1726+/-117,150 u IEU) from Wistar Furth rats were treated as: 1) HARV (High Aspect Ratio Vessel cell culture) , 2) HARV plus LPS 3) static culture, 4) static culture plus LPS TNF-alpha (L929 cytotoxicity assay) was significantly increased in LPS-induced HARV and static cultures, yet the increase was more pronounced in the static culture group (p<0.05). A decrease in insulin concentration was demonstrated in the LPS stimulated HARV culture (p<0.05). We observed a greater glucose concentration and increased disappearance of arginine in islets cultured in HARVs. While nitrogenous compound analysis indicated a ubiquitous reliance upon glutamine in all experimental groups, arginine was converted to ornithine at a two-fold greater rate in the islets cultured in the HARV microgravity paradigm (p<0.05). These studies demonstrate alterations in LPS induced TNF-alpha production of pancreatic islets of Langerhans, favoring a lesser TNF activity in the HARV paradigm. These alterations in fuel homeostasis may be promulgated by gravity averaged cell culture methods or by three dimensional cell assembly.

  19. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination

    PubMed Central

    Rowley, Paul A.; Kachroo, Aashiq H.; Ma, Chien-Hui; Maciaszek, Anna D.; Guga, Piotr; Jayaram, Makkuni

    2015-01-01

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5′ to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  20. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  1. Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis

    PubMed Central

    Elsholz, Alexander K. W.; Turgay, Kürşad; Michalik, Stephan; Hessling, Bernd; Gronau, Katrin; Oertel, Dan; Mäder, Ulrike; Bernhardt, Jörg; Becher, Dörte; Hecker, Michael; Gerth, Ulf

    2012-01-01

    Reversible protein phosphorylation is an important and ubiquitous protein modification in all living cells. Here we report that protein phosphorylation on arginine residues plays a physiologically significant role. We detected 121 arginine phosphorylation sites in 87 proteins in the Gram-positive model organism Bacillus subtilis in vivo. Moreover, we provide evidence that protein arginine phosphorylation has a functional role and is involved in the regulation of many critical cellular processes, such as protein degradation, motility, competence, and stringent and stress responses. Our results suggest that in B. subtilis the combined activity of a protein arginine kinase and phosphatase allows a rapid and reversible regulation of protein activity and that protein arginine phosphorylation can play a physiologically important and regulatory role in bacteria. PMID:22517742

  2. Actions of arginine polyamine on voltage and ligand-activated whole cell currents recorded from cultured neurones.

    PubMed Central

    Scott, R. H.; Sweeney, M. I.; Kobrinsky, E. M.; Pearson, H. A.; Timms, G. H.; Pullar, I. A.; Wedley, S.; Dolphin, A. C.

    1992-01-01

    1. Toxins from invertebrates have proved useful tools for investigation of the properties of ion channels. In this study we describe the actions of arginine polyamine which is believed to be a close analogue of FTX, a polyamine isolated from the American funnel web spider, Agelenopsis aperta. 2. Voltage-activated Ca2+ currents and Ca(2+)-dependent Cl- currents recorded from rat cultured dorsal root ganglion neurones were reversibly inhibited by arginine polyamine (AP; 0.001 to 100 microM). Low voltage-activated T-type Ca2+ currents were significantly more sensitive to AP than high voltage-activated Ca2+ currents. The IC50 values for the actions of AP on low and high voltage-activated Ca2+ currents were 10 nM and 3 microM respectively. AP was equally effective in inhibiting high voltage-activated currents carried by Ba2+, Sr2+ or Ca2+. However, AP-induced inhibition of Ca2+ currents was attenuated by increasing the extracellular Ca2+ concentration from 2 mM to 10 mM. 3. The actions of AP on a Ca(2+)-independent K+ current were more complex, 1 microM AP enhanced this current but 10 microM AP had a dual action, initially enhancing but then inhibiting the K+ current. 4. gamma-Aminobutyric acid-activated Cl- currents were also reversibly inhibited by 1 to 10 microM AP. In contrast N-methyl-D-aspartate currents recorded from rat cultured cerebellar neurones were greatly enhanced by 10 microM AP. 5. We conclude that at a concentration of 10 nM, AP is a selective inhibitor of low threshold T-type voltage-activated Ca2+ currents.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1380382

  3. Benzoyl-L-arginine methyl ester (BAME)-esterase activity in human plasma during the gravidic-puerperal cycle.

    PubMed

    Salles Meirelles, R

    1977-01-01

    Benzoyl-L-arginine methyl ester (BAME)-esterase activity of plasma was measured in women going through the gravidic-puerperal cycle and compared with plasma of non-pregnant women. Plasma from women in the 36th to 40th week of pregnancy hydrolyzes BAME two times more rapidly than that from non-pregnant women. During pregnancy, BAME-esterase activity in plasma increases progressively up to the 40th week, decreases during labor, and after delivery reaches the same level as in non-pregnant women. The BAME-esterase activity of plasma was affected by the storage temperature, with differences demonstrable between -20 and -4 C and between pregnant and non-pregnant women. PMID:754510

  4. Arginine metabolic endotypes in pulmonary arterial hypertension

    PubMed Central

    Wedes, Samuel H.; Hsu, Jean W.; Bohren, Kurt M.; Comhair, Suzy A. A.; Jahoor, Farook; Erzurum, Serpil C.

    2015-01-01

    Abstract Decreased synthesis of nitric oxide (NO) by NO synthases (NOS) is believed to play an important role in the pathogenesis of pulmonary arterial hypertension (PAH). Multiple factors may contribute to decreased NO bioavailability, including increased activity of arginase, the enzyme that converts arginine to ornithine and urea, which may compete with NOS for arginine; inadequate de novo arginine production from citrulline; and increased concentration of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NOS. We hypothesized that PAH patients with the lowest arginine availability secondary to increased arginase activity and/or inadequate de novo arginine synthesis might have a slower rate of NO synthesis and greater pulmonary vascular resistance. Nine patients with group 1 PAH and 10 healthy controls were given primed, constant intravenous infusions of 15N2-arginine, 13C,2H4-citrulline, 15N2-ornithine, and 13C-urea in the postabsorptive state. The results showed that, compared with healthy controls, PAH patients had a tendency toward increased arginine clearance and ornithine flux but no difference in arginine and citrulline flux, de novo arginine synthesis, or NO synthesis. Arginine-to-ADMA ratio was increased in PAH patients. Two endotypes of patients with low and high arginase activity were identified; compared with the low-arginase group, the patients with high arginase had increased arginine flux, slower NO synthesis, and lower plasma concentrations of ADMA. These results demonstrate that increased breakdown of arginine by arginase occurs in PAH and affects NO synthesis. Furthermore, there is no compensatory increase in de novo arginine synthesis to overcome this increased utilization of arginine by arginase. PMID:25992277

  5. Glutamine Assimilation and Feedback Regulation of L-acetyl-N-glutamate Kinase Activity in Chlorella variabilis NC64A Results in Changes in Arginine Pools.

    PubMed

    Minaeva, Ekaterina; Forchhammer, Karl; Ermilova, Elena

    2015-11-01

    Glutamine is a metabolite of central importance in nitrogen metabolism of microorganisms and plants. The Chlorella PII signaling protein controls, in a glutamine-dependent manner, the key enzyme of the ornithine/arginine biosynthesis pathway, N-acetyl-L-glutamate kinase (NAGK) that leads to arginine formation. We provide evidence that glutamine promotes effective growth of C. variabilis strain NC64A. The present study shows that externally supplied glutamine directly influences the internal pool of arginine in NC64A. Glutamine synthetase (GS) catalyzes the ATP-dependent conversion of glutamate and ammonium to glutamine. The results of this study demonstrate that glutamine acts as a negative effector of GS activity. These data emphasize the importance of glutamine-dependent coupling of metabolism and signaling as components of an efficient pathway allowing the maintenance of metabolic homeostasis and sustaining growth of Chlorella. PMID:26356535

  6. Arginine 116 stabilizes the entrance to the metal ion-binding site of the MntC protein

    PubMed Central

    Kanteev, Margarita; Adir, Noam

    2013-01-01

    The cyanobacterium Synechocystis sp. PCC 6803 imports Mn2+ ions via MntCAB, an ABC transport system that is expressed at submicromolar Mn2+ concentrations. The structures of the wild type (WT) and a site-directed mutant of the MntC solute-binding protein have been determined at 2.7 and 3.5 Å resolution, respectively. The WT structure is significantly improved over the previously determined structure (PDB entry 1xvl), showing improved Mn2+ binding site parameters, disulfide bonds in all three monomers and ions bound to the protein surface, revealing the role of Zn2+ ions in the crystallization liquor. The structure of MntC reveals that the active site is surrounded by neutral-to-­positive electrostatic potential and is dominated by a network of polar interactions centred around Arg116. The mutation of this residue to alanine was shown to destabilize loops in the entrance to the metal-ion binding site and suggests a possible role in MntC function. PMID:23519795

  7. Dietary L-arginine supplementation during mouse gestation enhances reproductive performance and Vegfr2 transcription activity in the fetoplacental unit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regarded as one of the most versatile amino acids, arginine serves as a precursor for many molecules and has been reported to improve the reproductive performance of rats and pigs. To this end, we sought to determine if dietary L-arginine alters fetoplacental vascular endothelial growth factor recep...

  8. Modulating the activity of short arginine-tryptophan containing antibacterial peptides with N-terminal metallocenoyl groups

    PubMed Central

    Albada, H Bauke; Chiriac, Alina-Iulia; Wenzel, Michaela; Penkova, Maya; Bandow, Julia E; Sahl, Hans-Georg

    2012-01-01

    Summary A series of small synthetic arginine and tryptophan containing peptides was prepared and analyzed for their antibacterial activity. The effect of N-terminal substitution with metallocenoyl groups such as ferrocene (FcCO) and ruthenocene (RcCO) was investigated. Antibacterial activity in different media, growth inhibition, and killing kinetics of the most active peptides were determined. The toxicity of selected derivatives was determined against erythrocytes and three human cancer cell lines. It was shown that the replacement of an N-terminal arginine residue with a metallocenoyl moiety modulates the activity of WRWRW-peptides against Gram-positive and Gram-negative bacteria. MIC values of 2–6 µM for RcCO-W(RW)2 and 1–11 µM for (RW)3 were determined. Interestingly, W(RW)2-peptides derivatized with ferrocene were significantly less active than those derivatized with ruthenocene which have similar structural but different electronic properties, suggesting a major influence of the latter. The high activities observed for the RcCO-W(RW)2- and (RW)3-peptides led to an investigation of the origin of activity of these peptides using several important activity-related parameters. Firstly, killing kinetics of the RcCO-W(RW)2-peptide versus killing kinetics of the (RW)3 derivative showed faster reduction of the colony forming units for the RcCO-W(RW)2-peptide, although MIC values indicated higher activity for the (RW)3-peptide. This was confirmed by growth inhibition studies. Secondly, hemolysis studies revealed that both peptides did not lead to significant destruction of erythrocytes, even up to 500 µg/mL for (RW)3 and 250 µg/mL for RcCO-W(RW)2. In addition, toxicity against three human cancer cell lines (HepG2, HT29, MCF7) showed that the (RW)3-peptide had an IC50 value of ~140 µM and the RcW(RW)2 one of ~90 µM, indicating a potentially interesting therapeutic window. Both the killing kinetics and growth inhibition studies presented in this work point to

  9. Two proteins with ornithine acetyltransferase activity show different functions in Streptomyces clavuligerus: Oat2 modulates clavulanic acid biosynthesis in response to arginine.

    PubMed

    de la Fuente, A; Martín, J F; Rodríguez-García, A; Liras, P

    2004-10-01

    The oat2 gene, located in the clavulanic acid gene cluster in Streptomyces clavuligerus, is similar to argJ, which encodes N-acetylornithine:glutamic acid acetyltransferase activity. Purified proteins obtained by expression in Escherichia coli of the argJ and oat2 genes of S. clavuligerus posses N-acetyltransferase activity. The kinetics and substrate specificities of both proteins are very similar. Deletion of the oat2 gene did not affect the total N-acetylornithine transferase activity and slightly reduced the formation of clavulanic acid under standard culture conditions. However, the oat2 mutant produced more clavulanic acid than the parental strain in cultures supplemented with high levels (above 1 mM) of arginine. The purified S. clavuligerus ArgR protein bound the arginine box in the oat2 promoter, and the expression of oat2 was higher in mutants with a disruption in argR (arginine-deregulated), confirming that the Arg boxes of oat2 are functional in vivo. Our results suggest that the Oat2 protein or one of its reaction products has a regulatory role that modulates clavulanic acid biosynthesis in response to high arginine concentrations. PMID:15375131

  10. Effect of Selectively Introducing Arginine and D-Amino Acids on the Antimicrobial Activity and Salt Sensitivity in Analogs of Human Beta-Defensins

    PubMed Central

    Olli, Sudar; Rangaraj, Nandini; Nagaraj, Ramakrishnan

    2013-01-01

    We have examined the antimicrobial activity of C-terminal analogs of human β-defensins HBD-1and-3 wherein lysines have been selectively replaced by L- and D-arginines and L-isoleucine substituted with its D-enantiomer. The analogs exhibited antibacterial and antifungal activities. Physiological concentration of NaCl did not attenuate the activity of the peptides against Gram-negative bacteria considerably, while some attenuation of activity was observed against S. aureus. Variable attenuation of activity was observed in the presence of Ca2+ and Mg2+. Introduction of D-amino acids abrogated the need for a disulfide bridge for exhibiting activity. Confocal images of carboxyfluorescein (CF) labeled peptides indicated initial localization on the membrane and subsequent translocation into the cell. Analogs corresponding to cationic rich segments of human defensins substituted with L- and D-arginine, could be attractive candidates for development as future therapeutic drugs. PMID:24086767

  11. l-arginine, an active component of salmon milt nucleoprotein, promotes thermotolerance via Sirtuin in Caenorhabditis elegans.

    PubMed

    Furuhashi, Tsubasa; Matsunaga, Masaji; Asahara, Yuji; Sakamoto, Kazuichi

    2016-03-25

    We previously showed that salmon milt nucleoprotein (NP) promotes thermotolerance in Caenorhabditis elegans; however, the active component and physiological mechanism of this effect has remained unclear. l-arginine (AR) is a major component of protamine and thus it has been proposed as the possible active component of NP. In this study, the viability of C. elegans treated with AR under heat stress was assessed and AR was shown to extend the survival term of the heat-stressed organisms. Additionally, AR was shown to restore the thrashing movement of the worms that is suppressed by heat stress. Treatment with AR was furthermore shown to promote thermotolerance in a DAF-16- and SIR-2.1-dependent manner, where DAF-16 and SIR-2.1 are homologs of FoxO and SirT1, respectively. Taken together, these data suggest that AR is one of the active components of NP and promotes thermotolerance via the activation of DAF-16 and SIR-2.1. PMID:26934207

  12. Mechanism of arginine regulation of acetylglutamate synthase, the first enzyme of arginine synthesis.

    PubMed

    Sancho-Vaello, Enea; Fernández-Murga, María L; Rubio, Vicente

    2009-01-01

    N-acetyl-L-glutamate synthase (NAGS), the first enzyme of arginine biosynthesis in bacteria/plants and an essential urea cycle activator in animals, is, respectively, arginine-inhibited and activated. Arginine binds to the hexameric ring-forming amino acid kinase (AAK) domain of NAGS. We show that arginine inhibits Pseudomonas aeruginosa NAGS by altering the functions of the distant, substrate binding/catalytic GCN5-related N-acetyltransferase (GNAT) domain, increasing K(m)(Glu), decreasing V(max) and triggering substrate inhibition by AcCoA. These effects involve centrally the interdomain linker, since we show that linker elongation or two-residue linker shortening hampers and mimics, respectively, arginine inhibition. We propose a regulatory mechanism in which arginine triggers the expansion of the hexameric NAGS ring, altering AAK-GNAT domain interactions, and the modulation by these interactions of GNAT domain functions, explaining arginine regulation. PMID:19084009

  13. Pathogenesis of periodontitis: a major arginine-specific cysteine proteinase from Porphyromonas gingivalis induces vascular permeability enhancement through activation of the kallikrein/kinin pathway.

    PubMed Central

    Imamura, T; Pike, R N; Potempa, J; Travis, J

    1994-01-01

    To elucidate the mechanism of production of an inflammatory exudate, gingival crevicular fluid (GCF), from periodontal pockets in periodontitis, we examined the vascular permeability enhancement (VPE) activity induced by an arginine-specific cysteine proteinase, Arg-gingipain-1 (RGP-1), produced by a major periopathogenic bacterium, Porphyromonas gingivalis. Intradermal injections into guinea pigs of RGP-1 (> 10(-8) M), or human plasma incubated with RGP-1 (> 10(-9) M), induced VPE in a dose- and activity-dependent manner but with different time courses for the two routes of production. VPE activity induced by RGP-1 was augmented by kininase inhibitors, inhibited by a kallikrein inhibitor and unaffected by an antihistamine drug. The VPE activity in human plasma incubated with RGP-1 also correlated closely with generation of bradykinin (BK). RGP-1 induced 30-40% less VPE activity in Hageman factor-deficient plasma and no VPE in plasma deficient in either prekallikrein (PK) or high molecular weight kininogen (HMWK). After incubation with RGP-1, plasma deficient in PK or HMWK, reconstituted with each missing protein, caused VPE, as did a mixture of purified PK and HMWK, but RGP-1 induced no VPE from HMWK. The VPE of extracts of clinically isolated P. gingivalis were reduced to about 10% by anti-RGP-1-IgG, leupeptin, or tosyl-L-lysine chloromethyl ketone, which paralleled effects observed with RGP-1. These results indicate that RGP-1 is the major VPE factor of P. gingivalis, inducing this activity through PK activation and subsequent BK release, resulting in GCF production at sites of periodontitis caused by infection with this organism. Images PMID:8040277

  14. Cationic vesicles based on biocompatible diacyl glycerol-arginine surfactants: physicochemical properties, antimicrobial activity, encapsulation efficiency and drug release.

    PubMed

    Tavano, L; Pinazo, A; Abo-Riya, M; Infante, M R; Manresa, M A; Muzzalupo, R; Pérez, L

    2014-08-01

    Physicochemical characteristics of cationic vesicular systems prepared from biocompatible diacyl glycerol-arginine surfactants are investigated. These systems form stable cationic vesicles by themselves and the average diameter of the vesicles decreases as the alkyl chain length of the surfactant increases. The addition of DPPC also modifies the physicochemical properties of these vesicles. Among the drugs these cationic formulations can encapsulate, we have considered Ciprofloxacin and 5-Fluorouracil (5-FU). We show that the percentage of encapsulated drug depends on both the physicochemical properties of the carrier and the type of drug. The capacity of these systems to carry different molecules was evaluated performing in vitro drug release studies. Finally, the antimicrobial activity of empty and Ciprofloxacin-loaded vesicles against Gram-positive and Gram-negative bacteria has been determined. Three bacteria were tested: Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae. The in vitro drug release from all formulations was effectively delayed. Empty cationic vesicles showed antimicrobial activity and Ciprofloxacin-loaded vesicles showed similar or higher antimicrobial activity than the free drug solution. These results suggest that our formulations represent a great innovation in the pharmaceutical field, due to their dual pharmacological function: one related to the nature of the vehiculated drug and the other related to the innate antibacterial properties of the surfactant-based carriers. PMID:24907585

  15. Purification of a dimeric arginine deiminase from Enterococcus faecium GR7 and study of its anti-cancerous activity.

    PubMed

    Kaur, Baljinder; Kaur, Rajinder

    2016-09-01

    The arginine deiminase (ADI, E.C 3.5.3.6) - a key enzyme of ADI pathway of Enterococcus faecium GR7 was purified to homogeneity. A sequential purification strategy involving ammonium sulfate fractionation, molecular sieve followed by Sephadex G-100 gel filtration was applied to the crude culture filtrate to obtain a pure enzyme preparation. The enzyme was purified with a fold of 16.92 and showed a final specific activity of 76.65IU/mg with a 49.17% yield. The dimeric ADI has a molecular mass of about 94,364.929Da, and comprises of hetrodimers of 49.1kDa and 46.5kDa as determined by MALDI-TOF and PAGE analysis. To assess anti-cancerous activity of ADI by MTT assay was carried out against cancer cell lines (MCF-7, Sp2/0-Ag14 and Hep-G2). Purified ADI exhibited the most profound antiproliferative activity against Hep-G2 cells; with half-maximal inhibitory concentration (IC50) of 1.95μg/ml. Purified ADI from E. faecium GR7 was observed to induce apoptosis in the Hep-G2 cells by DNA fragmentation assay. Our findings suggest the possibility of a future use of ADI from E. faecium GR7 as a potential anticancer drug. PMID:26363115

  16. Killing of Mycobacterium avium by Lactoferricin Peptides: Improved Activity of Arginine- and d-Amino-Acid-Containing Molecules

    PubMed Central

    Silva, Tânia; Magalhães, Bárbara; Maia, Sílvia; Gomes, Paula; Nazmi, Kamran; Bolscher, Jan G. M.; Rodrigues, Pedro N.; Bastos, Margarida

    2014-01-01

    Mycobacterium avium causes respiratory disease in susceptible individuals, as well as disseminated infections in immunocompromised hosts, being an important cause of morbidity and mortality among these populations. Current therapies consist of a combination of antibiotics taken for at least 6 months, with no more than 60% overall clinical success. Furthermore, mycobacterial antibiotic resistance is increasing worldwide, urging the need to develop novel classes of antimicrobial drugs. One potential and interesting alternative strategy is the use of antimicrobial peptides (AMP). These are present in almost all living organisms as part of their immune system, acting as a first barrier against invading pathogens. In this context, we investigated the effect of several lactoferrin-derived AMP against M. avium. Short peptide sequences from both human and bovine lactoferricins, namely, hLFcin1-11 and LFcin17-30, as well as variants obtained by specific amino acid substitutions, were evaluated. All tested peptides significantly inhibited the axenic growth of M. avium, the bovine peptides being more active than the human. Arginine residues were found to be crucial for the display of antimycobacterial activity, whereas the all-d-amino-acid analogue of the bovine sequence displayed the highest mycobactericidal activity. These findings reveal the promising potential of lactoferricins against mycobacteria, thus opening the way for further research on their development and use as a new weapon against mycobacterial infections. PMID:24709266

  17. Comparative Proteomics Analysis Reveals L-Arginine Activates Ethanol Degradation Pathways in HepG2 Cells

    PubMed Central

    Yan, Guokai; Lestari, Retno; Long, Baisheng; Fan, Qiwen; Wang, Zhichang; Guo, Xiaozhen; Yu, Jie; Hu, Jun; Yang, Xingya; Chen, Changqing; Liu, Lu; Li, Xiuzhi; Purnomoadi, Agung; Achmadi, Joelal; Yan, Xianghua

    2016-01-01

    L-Arginine (Arg) is a versatile amino acid that plays crucial roles in a wide range of physiological and pathological processes. In this study, to investigate the alteration induced by Arg supplementation in proteome scale, isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach was employed to comparatively characterize the differentially expressed proteins between Arg deprivation (Ctrl) and Arg supplementation (+Arg) treated human liver hepatocellular carcinoma (HepG2) cells. A total of 21 proteins were identified as differentially expressed proteins and these 21 proteins were all up-regulated by Arg supplementation. Six amino acid metabolism-related proteins, mostly metabolic enzymes, showed differential expressions. Intriguingly, Ingenuity Pathway Analysis (IPA) based pathway analysis suggested that the three ethanol degradation pathways were significantly altered between Ctrl and +Arg. Western blotting and enzymatic activity assays validated that the key enzymes ADH1C, ALDH1A1, and ALDH2, which are mainly involved in ethanol degradation pathways, were highly differentially expressed, and activated between Ctrl and +Arg in HepG2 cells. Furthermore, 10 mM Arg significantly attenuated the cytotoxicity induced by 100 mM ethanol treatment (P < 0.0001). This study is the first time to reveal that Arg activates ethanol degradation pathways in HepG2 cells. PMID:26983598

  18. Neutralization of a single arginine residue gates open a two-pore domain, alkali-activated K+ channel

    PubMed Central

    Niemeyer, María Isabel; González-Nilo, Fernando D.; Zúñiga, Leandro; González, Wendy; Cid, L. Pablo; Sepúlveda, Francisco V.

    2007-01-01

    Potassium channels share a common selectivity filter that determines the conduction characteristics of the pore. Diversity in K+ channels is given by how they are gated open. TASK-2, TALK-1, and TALK-2 are two-pore region (2P) KCNK K+ channels gated open by extracellular alkalinization. We have explored the mechanism for this alkalinization-dependent gating using molecular simulation and site-directed mutagenesis followed by functional assay. We show that the side chain of a single arginine residue (R224) near the pore senses pH in TASK-2 with an unusual pKa of 8.0, a shift likely due to its hydrophobic environment. R224 would block the channel through an electrostatic effect on the pore, a situation relieved by its deprotonation by alkalinization. A lysine residue in TALK-2 fulfills the same role but with a largely unchanged pKa, which correlates with an environment that stabilizes its positive charge. In addition to suggesting unified alkaline pH-gating mechanisms within the TALK subfamily of channels, our results illustrate in a physiological context the principle that hydrophobic environment can drastically modulate the pKa of charged amino acids within a protein. PMID:17197424

  19. Active-site mutants altering the cooperativity of E. coli phosphofructokinase.

    PubMed

    Berger, S A; Evans, P R

    1990-02-01

    Crystal structures of the high- and low-activity states of the allosteric enzyme phosphofructokinase implicate three arginines in substrate binding, catalysis and cooperativity. Arginines 162 and 243 reach into the active site from an adjacent subunit and interact with the cooperative substrate fructose 6-phosphate. Mutation of these arginines to serine results in mutant enzymes with reduced substrate binding and lowered cooperativity, but with little change in their catalytic ability (kcat). Arg 72 bridges the two substrates fructose 6-phosphate and ATP, and interacts with the 1-phosphate of the product fructose 1,6-biphosphate. Mutation of this residue to serine reduces the catalytic activity, cooperativity and binding of fructose 6-phosphate and fructose 1,6-bisphosphate. In the reverse reaction, the kinetics of wild-type and the Ser 72 mutant with respect to fructose 1,6-bisphosphate are hyperbolic, whereas those of the Ser 162 and Ser 243 mutants are sigmoidal. These results show that each of the three arginines contributes to cooperativity and to the transmission of allosteric signals between the four subunit of the enzyme. PMID:2137204

  20. A conserved arginine-containing motif crucial for the assembly and enzymatic activity of the mixed lineage leukemia protein-1 core complex.

    PubMed

    Patel, Anamika; Vought, Valarie E; Dharmarajan, Venkatasubramanian; Cosgrove, Michael S

    2008-11-21

    The mixed lineage leukemia protein-1 (MLL1) belongs to the SET1 family of histone H3 lysine 4 methyltransferases. Recent studies indicate that the catalytic subunits of SET1 family members are regulated by interaction with a conserved core group of proteins that include the WD repeat protein-5 (WDR5), retinoblastoma-binding protein-5 (RbBP5), and the absent small homeotic-2-like protein (Ash2L). It has been suggested that WDR5 functions to bridge the interactions between the catalytic and regulatory subunits of SET1 family complexes. However, the molecular details of these interactions are unknown. To gain insight into the interactions among these proteins, we have determined the biophysical basis for the interaction between the human WDR5 and MLL1. Our studies reveal that WDR5 preferentially recognizes a previously unidentified and conserved arginine-containing motif, called the "Win" or WDR5 interaction motif, which is located in the N-SET region of MLL1 and other SET1 family members. Surprisingly, our structural and functional studies show that WDR5 recognizes arginine 3765 of the MLL1 Win motif using the same arginine binding pocket on WDR5 that was previously shown to bind histone H3. We demonstrate that WDR5's recognition of arginine 3765 of MLL1 is essential for the assembly and enzymatic activity of the MLL1 core complex in vitro. PMID:18829457

  1. Role of trypsin-like cleavage at arginine 192 in the enzymatic and cytotonic activities of Escherichia coli heat-labile enterotoxin.

    PubMed Central

    Grant, C C; Messer, R J; Cieplak, W

    1994-01-01

    Previous studies of cholera toxin and Escherichia coli heat-labile enterotoxin have suggested that proteolytic cleavage plays an important role in the expression of ADP-ribosyltransferase activity and toxicity. Specifically, several studies have implicated a trypsin-like cleavage at arginine 192, which lies within an exposed region subtended by a disulfide bond in the intact A subunit, in toxicity. To investigate the role of this modification in the enzymatic and cytotonic properties of heat-labile enterotoxin, the response of purified, recombinant A subunit to tryptic activation and the effect of substituting arginine 192 with glycine on the activities of the holotoxin were examined. The recombinant A subunit of heat-labile enterotoxin exhibited significant levels of ADP-ribosyltransferase activity that were only nominally increased (approximately twofold) by prior limited trypsinolysis. The enzymatic activity also did not appear to be affected by auto-ADP-ribosylation that occurs during the high-level synthesis of the recombinant A subunit in E. coli. A mutant form of the holotoxin containing the arginine 192-to-glycine substitution exhibited levels of cytotonic activity for CHO cells that were similar to that of the untreated, wild-type holotoxin but exhibited a marked delay in the ability to increase intracellular levels of cyclic AMP in Caco-2 cells. The results indicate that trypsin-like cleavage of the A subunit of E. coli heat-labile enterotoxin at arginine 192 is not requisite to the expression of enzymatic activity by the A subunit and further reveal that this modification, although it enhances the biological and enzymatic activities of the toxin, is not absolutely required for the enterotoxin to elicit cytotonic effects. Images PMID:7927684

  2. Characterizing Active Site Conformational Heterogeneity along the Trajectory of an Enzymatic Phosphoryl Transfer Reaction.

    PubMed

    Zeymer, Cathleen; Werbeck, Nicolas D; Zimmermann, Sabine; Reinstein, Jochen; Hansen, D Flemming

    2016-09-12

    States along the phosphoryl transfer reaction catalyzed by the nucleoside monophosphate kinase UmpK were captured and changes in the conformational heterogeneity of conserved active site arginine side-chains were quantified by NMR spin-relaxation methods. In addition to apo and ligand-bound UmpK, a transition state analog (TSA) complex was utilized to evaluate the extent to which active site conformational entropy contributes to the transition state free energy. The catalytically essential arginine side-chain guanidino groups were found to be remarkably rigid in the TSA complex, indicating that the enzyme has evolved to restrict the conformational freedom along its reaction path over the energy landscape, which in turn allows the phosphoryl transfer to occur selectively by avoiding side reactions. PMID:27534930

  3. Amino Acid Utilization in Seeds of Loblolly Pine during Germination and Early Seedling Growth (I. Arginine and Arginase Activity).

    PubMed Central

    King, J. E.; Gifford, D. J.

    1997-01-01

    The mobilization and utilization of the major storage proteins in loblolly pine (Pinus taeda L.) seeds following imbibition were investigated. Most of the seed protein reserves were contained within the megagametophyte. Breakdown of these proteins occurred primarily following radicle emergence and correlated with a substantial increase in the free amino acid pool in the seedling; the majority of this increase appeared to be the result of export from the megagametophyte. The megagametophyte was able to break down storage proteins and export free amino acids in the absence of the seedling. Arginine (Arg) was the most abundant amino acid among the principal storage proteins of the megagametophyte and was a major component of the free amino acid pools in both the seedling and the megagametophyte. The increase in free Arg coincided with a marked increase in arginase activity, mainly localized within the cotyledons and epicotyl of the seedling. Arginase activity was negligible in isolated seedlings. Experiments with phenylphosphorodiamidate, a urease inhibitor, supported the hypothesis that arginase participates in Arg metabolism in the seedling. The results of this study indicate that Arg could play an important role in the nutrition of loblolly pine during early seedling growth. PMID:12223664

  4. Dietary supplementation with cholesterol and docosahexaenoic acid increases the activity of the arginine-nitric oxide pathway in tissues of young pigs

    PubMed Central

    Li, Peng; Woo Kim, Sung; Li, Xilong; Datta, Sujay; Pond, Wilson G.; Wu, Guoyao

    2008-01-01

    Nitric oxide (NO), synthesized from L-arginine by tetrahydrobiopterin (BH4)-dependent NO synthase (NOS), is critical for neurological and muscular development and function. This study was designed to test the hypothesis that cholesterol and docosahexaenoic acid (DHA) may modulate the arginine-NO pathway in tissues of the young pig. Sixteen newborn pigs were nursed by sows for 24 h and then assigned to one of 4 treatment groups, representing supplementation with 0.0%, 0.2% cholesterol, 0.2% DHA, or cholesterol plus DHA to the basal milk-formula. All piglets were euthanized at 49 days of age. Brain, liver and gastrocnemius muscle were analyzed for BH4, NADPH and arginine, GTP cyclohydrolase-I (GTP-CH) and NOS activities, and NOS protein isoforms. Hepatic NOS activity was below the detection limit in all pigs. DHA supplementation (P<0.01) increased GTP-CH activities, as well as BH4 and NADPH concentrations in brain, liver, and muscle by 24–46%, while enhancing (P<0.05) NOS activities by 45–48% in brain and muscle. Dietary cholesterol supplementation increased (P<0.05) NOS and GTP-CH activities by 17–26% in brain but had no effect in liver or muscle. The enhanced NOS activity in the brain or muscle of cholesterol- or DHA-supplemented piglets was attributable to the combined effects of increased eNOS and nNOS activation (changes in phosphorylation levels) and total iNOS protein. Additionally, DHA and cholesterol enhanced (P>0.05) arginine concentrations in brain (35–42%), but not in liver or muscle. These tissue-specific effects of cholesterol and DHA on NO synthesis may play an important role in postnatal growth and development. PMID:18555806

  5. L-arginine

    MedlinePlus

    ... Talk with your health provider.Medications that slow blood clotting (Anticoagulant / Antiplatelet drugs)L-arginine seems to slow blood clotting. Taking L-arginine along with medications that also ...

  6. Arginine kinase: differentiation of gene expression and protein activity in the red imported fire ant, Solenopsis invicta.

    PubMed

    Wang, Haichuan; Zhang, Lan; Zhang, Lee; Lin, Qin; Liu, Nannan

    2009-02-01

    Arginine kinase (AK), a primary enzyme in cell metabolism and adenosine 5'-triphosphate (ATP)-consuming processes, plays an important role in cellular energy metabolism and maintaining constant ATP levels in invertebrate cells. In order to identify genes that are differentially expressed between larvae and adults, queens and workers, and female alates (winged) and queens (wingless), AK cDNA was obtained from the red imported fire ant. The cDNA sequence of the gene has open reading frames of 1065 nucleotides, encoding a protein of 355 amino acid residues that includes the substrate recognition region, the signature sequence pattern of ATP:guanidino kinases, and an "actinin-type" actin binding domain. Northern blot analysis and protein activity analysis demonstrated that the expression of the AK gene and its protein activity were developmentally, caste specifically, and tissue specifically regulated in red imported fire ants with a descending order of worker> alate (winged adult) female> alate (winged adult) male> larvae> worker pupae approximately alate pupae. These results suggest a different demand for energy-consumption and production in the different castes of the red imported fire ant, which may be linked to their different missions and physiological activities in the colonies. The highest level of the AK gene expression and activity was identified in head tissue of both female alates and workers and thorax tissue of workers, followed by thorax tissue of female alates and abdomen tissue of male alates, suggesting the main tissues or cells in these body parts, such as brain, neurons and muscles, which have been identified as the major tissues and/or cells that display high and variable rates of energy turnover in other organisms, play a key role in energy production and its utilization in the fire ant. In contrast, in the male alate, the highest AK expression and activity were found in the abdomen, suggesting that here energy demand may relate to sperm formation

  7. The Arginine Residue within the C-Terminal Active Core of Bombyx mori Pheromone Biosynthesis-Activating Neuropeptide is Essential for Receptor Binding and Activation

    PubMed Central

    Kawai, Takeshi; Lee, Jae Min; Nagata, Koji; Matsumoto, Shogo; Tanokura, Masaru; Nagasawa, Hiromichi

    2012-01-01

    In most lepidopteran insects, the biosynthesis of sex pheromones is regulated by pheromone biosynthesis-activating neuropeptide (PBAN). Bombyx mori PBAN (BomPBAN) consists of 33 amino acid residues and contains a C-terminus FSPRLamide motif as the active core. Among neuropeptides containing the FXPRLamide motif, the arginine (Arg, R) residue at the second position from the C-terminus is highly conserved across several neuropeptides, which can be designated as RXamide peptides. The purpose of this study was to clarify the role of the Arg residue in the BomPBAN active core. We synthesized 10-residue peptides corresponding to the C-terminal part of BomPBAN with a series of replacements at the second position from the C-terminus, termed the C2 position, and measured their efficacy in stimulating Ca2+ influx in insect cells expressing a fluorescent PBAN receptor chimera (PBANR–EGFP) using the fluorescent Ca2+ indicator, Fura Red–AM. The PBAN analogs with the C2 position replaced with alanine (Ala, A), aspartic acid (Asp, D), serine (Ser, S), or l-2-aminooctanoic acid (Aoc) decreased PBAN-like activity. RC2A (SKTRYFSPALamide) and RC2D (SKTRYFSPDLamide) had the lowest activity and could not inhibit the activity of PBAN C10 (SKTRYFSPRLamide). We also prepared Rhodamine Red-labeled peptides of the PBAN analogs and examined their ability to bind PBANR. In contrast to Rhodamine Red-PBAN C10 at 100 nM, none of the synthetic analogs exhibited PBANR binding at the same concentration. Taken together, our results demonstrate that the C2 Arg residue in BomPBAN is essential for PBANR binding and activation. PMID:22654866

  8. Tumour necrosis factor (TNF-alpha) in leishmaniasis. II. TNF-alpha-induced macrophage leishmanicidal activity is mediated by nitric oxide from L-arginine.

    PubMed Central

    Liew, F Y; Li, Y; Millott, S

    1990-01-01

    Peritoneal macrophages from CBA mice incubated with recombinant murine tumour necrosis factor (TNF-alpha) are effective in killing the protozoa parasite Leishmania major in vitro. The leishmanicidal activity is directly correlated with the level of nitrite (NO2-) in the culture supernatants. The killing of intracellular parasites can be completely inhibited by L-NG-monomethyl arginine (L-NMMA), a specific inhibitor of the L-arginine:nitric oxide (NO) pathway. The level of NO2-, which is also a measurement of NO production, in the culture supernatant of TNF-alpha-activated macrophages can be progressively decreased to basal level with increasing concentrations of L-NMMA, but not with its D-enantiomer, D-NMMA. These data demonstrate that NO is an important effector mechanism in the TNF-alpha-induced macrophage killing of intracellular protozoa. PMID:2279740

  9. Type I Arginine Methyltransferases PRMT1 and PRMT-3 Act Distributively*S⃞

    PubMed Central

    Kölbel, Knut; Ihling, Christian; Bellmann-Sickert, Kathrin; Neundorf, Ines; Beck-Sickinger, Annette G.; Sinz, Andrea; Kühn, Uwe; Wahle, Elmar

    2009-01-01

    Asymmetric dimethylation of arginine residues is a common posttranslational modification of proteins carried out by type I protein arginine methyltransferases, including PRMT1 and -3. We report that the consecutive transfer of two methyl groups to a single arginine side chain by PRMT1 and -3 occurs in a distributive manner, i.e. with intermittent release of the monomethylated intermediate. The oligomeric state of PRMTs together with the clustering of methylated arginine residues in most proteins carrying this type of modification suggests that multiple methyl transfers to a single polypeptide chain might proceed in a processive manner by cooperation of multiple active sites. However, three different types of experiments provide evidence that the reaction is distributive even with substrates containing multiple methyl-accepting arginines, including one with 13 such residues. PRMT1 also does not prefer substrates already containing one or more singly or doubly methylated arginine residues. Even though the reaction is distributive, the efficiency of methylation of one particular protein strongly depends on the number of methyl-accepting arginine residues it contains. PMID:19158082

  10. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  11. Modified Active Site Coordination in a Clinical Mutant of Sulfite Oxidase

    SciTech Connect

    Doonan, C.J.; Wilson, H.L.; Rajagopalan, K.V.; Garrett, R.M.; Bennett, B.; Prince, R.C.; George, G.N.

    2009-06-02

    The molybdenum site of the Arginine 160 {yields} Glutamine clinical mutant of the physiologically vital enzyme sulfite oxidase has been investigated by a combination of X-ray absorption spectroscopy and density functional theory calculations. We conclude that the mutant enzyme has a six-coordinate pseudo-octahedral active site with coordination of Glutamine O{sup {epsilon}} to molybdenum. This contrasts with the wild-type enzyme which is five-coordinate with approximately square-based pyramidal geometry. This difference in the structure of the molybdenum site explains many of the properties of the mutant enzyme which have previously been reported.

  12. A high-resolution structure of the DNA-binding domain of AhrC, the arginine repressor/activator protein from Bacillus subtilis

    SciTech Connect

    Garnett, James A.; Baumberg, Simon; Stockley, Peter G.; Phillips, Simon E. V.

    2007-11-01

    The structure of the winged helix–turn–helix DNA-binding domain of AhrC has been determined at 1.0 Å resolution. The largely hydrophobic β-wing shows high B factors and may mediate the dimer interface in operator complexes. In Bacillus subtilis the concentration of l-arginine is controlled by the transcriptional regulator AhrC, which interacts with 18 bp DNA operator sites called ARG boxes in the promoters of arginine biosynthetic and catabolic operons. AhrC is a 100 kDa homohexamer, with each subunit having two domains. The C-terminal domains form the core, mediating intersubunit interactions and binding of the co-repressor l-arginine, whilst the N-terminal domains contain a winged helix–turn–helix DNA-binding motif and are arranged around the periphery. The N-terminal domain of AhrC has been expressed, purified and characterized and it has been shown that the fragment still binds DNA operators as a recombinant monomer. The DNA-binding domain has also been crystallized and the crystal structure refined to 1.0 Å resolution is presented.

  13. Granulocyte functions are independent of arginine availability.

    PubMed

    Kapp, Katharina; Prüfer, Steve; Michel, Christian S; Habermeier, Alice; Luckner-Minden, Claudia; Giese, Thomas; Bomalaski, John; Langhans, Claus-Dieter; Kropf, Pascale; Müller, Ingrid; Closs, Ellen I; Radsak, Markus P; Munder, Markus

    2014-12-01

    Arginine depletion via myeloid cell arginase is critically involved in suppression of the adaptive immune system during cancer or chronic inflammation. On the other hand, arginine depletion is being developed as a novel anti-tumor metabolic strategy to deprive arginine-auxotrophic cancer cells of this amino acid. In human immune cells, arginase is mainly expressed constitutively in PMNs. We therefore purified human primary PMNs from healthy donors and analyzed PMN function as the main innate effector cell and arginase producer in the context of arginine deficiency. We demonstrate that human PMN viability, activation-induced IL-8 synthesis, chemotaxis, phagocytosis, generation of ROS, and fungicidal activity are not impaired by the absence of arginine in vitro. Also, profound pharmacological arginine depletion in vivo via ADI-PEG20 did not inhibit PMN functions in a mouse model of pulmonary invasive aspergillosis; PMN invasion into the lung, activation, and successful PMN-dependent clearance of Aspergillus fumigatus and survival of mice were not impaired. These novel findings add to a better understanding of immunity during inflammation-associated arginine depletion and are also important for the development of therapeutic arginine depletion as anti-metabolic tumor therapy. PMID:25104794

  14. The structure of putative N-acetyl glutamate kinase from Thermus thermophilus reveals an intermediate active site conformation of the enzyme.

    PubMed

    Sundaresan, Ramya; Ragunathan, Preethi; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Kumarevel, Thirumananseri; Ponnuraj, Karthe

    2012-04-13

    The de novo biosynthesis of arginine in microorganisms and plants is accomplished via several enzymatic steps. The enzyme N-acetyl glutamate kinase (NAGK) catalyzes the phosphorylation of the γ-COO(-) group of N-acetyl-L-glutamate (NAG) by adenosine triphosphate (ATP) which is the second rate limiting step in arginine biosynthesis pathway. Here we report the crystal structure of putative N-acetyl glutamate kinase (NAGK) from Thermus thermophilus HB8 (TtNAGK) determined at 1.92Å resolution. The structural analysis of TtNAGK suggests that the dimeric quaternary state of the enzyme and arginine insensitive nature are similar to mesophilic Escherichia coli NAGK. These features are significantly different from its thermophilic homolog Thermatoga maritima NAGK which is hexameric and arginine-sensitive. TtNAGK is devoid of its substrates but contains two sulfates at the active site. Very interestingly the active site of the enzyme adopts a conformation which is not completely open or closed and likely represents an intermediate stage in the catalytic cycle unlike its structural homologs, which all exist either in the open or closed conformation. Engineering arginine biosynthesis pathway enzymes for the production of l-arginine is an important industrial application. The structural comparison of TtNAGK with EcNAGK revealed the structural basis of thermostability of TtNAGK and this information could be very useful to generate mutants of NAGK with increased overall stability. PMID:22452987

  15. Occurrence of Arginine Deiminase Pathway Enzymes in Arginine Catabolism by Wine Lactic Acid Bacteria

    PubMed Central

    Liu, S.; Pritchard, G. G.; Hardman, M. J.; Pilone, G. J.

    1995-01-01

    l-Arginine, an amino acid found in significant quantities in grape juice and wine, is known to be catabolized by some wine lactic acid bacteria. The correlation between the occurrence of arginine deiminase pathway enzymes and the ability to catabolize arginine was examined in this study. The activities of the three arginine deiminase pathway enzymes, arginine deiminase, ornithine transcarbamylase, and carbamate kinase, were measured in cell extracts of 35 strains of wine lactic acid bacteria. These enzymes were present in all heterofermentative lactobacilli and most leuconostocs but were absent in all the homofermentative lactobacilli and pediococci examined. There was a good correlation among arginine degradation, formation of ammonia and citrulline, and the occurrence of arginine deiminase pathway enzymes. Urea was not detected during arginine degradation, suggesting that the catabolism of arginine did not proceed via the arginase-catalyzed reaction, as has been suggested in some earlier studies. Detection of ammonia with Nessler's reagent was shown to be a simple, rapid test to assess the ability of wine lactic acid bacteria to degrade arginine, although in media containing relatively high concentrations (>0.5%) of fructose, ammonia formation is inhibited. PMID:16534912

  16. Improved synthesis of lysine- and arginine-derived Amadori and Heyns products and in vitro measurement of their angiotensin I-converting enzyme inhibitory activity.

    PubMed

    Srinivas, Sudhanva M; Harohally, Nanishankar V

    2012-02-15

    The L-lysine- and L-arginine-derived Amadori and Heyns products consisting of N-(1-deoxy-d-fructos-1-yl)amino acid and N-(2-deoxy-d-glucos-2-yl)amino acid were prepared by reaction of d-fructose and d-glucose with l-lysine hydrochloride and l-arginine hydrochloride using commercial zinc powder as deprotonating reagent and also as catalyst precursor in a simple synthetic route in high yield. These compounds were screened for angiotensin I-converting enzyme (ACE) inhibitory activity using a high-throughput colorimetric assay (utilizing porcine kidney ACE). The IC(50) values fall in the range of 1030-1175 μM, with N(α)-(1-deoxy-d-fructos-1-yl)arginine showing the best IC(50) value (1030 ± 38 μM). This study demonstrates an improved synthetic method for simple Amadori and Heyns products and their moderate ACE inhibitor activity. PMID:22242891

  17. Synthesis, characterization, and biological activity of poly(arginine)-derived cancer-targeting peptides in HepG2 liver cancer cells.

    PubMed

    Joseph, Stesha C; Blackman, Brittany A; Kelly, Megan L; Phillips, Mariana; Beaury, Michael W; Martinez, Ivonne; Parronchi, Christopher J; Bitsaktsis, Constantine; Blake, Allan D; Sabatino, David

    2014-09-01

    The solid-phase synthesis, structural characterization, and biological evaluation of a small library of cancer-targeting peptides have been determined in HepG2 hepatoblastoma cells. These peptides are based on the highly specific Pep42 motif, which has been shown to target the glucose-regulated protein 78 receptors overexpressed and exclusively localized on the cell surface of tumors. In this study, Pep42 was designed to contain varying lengths (3-12) of poly(arginine) sequences to assess their influence on peptide structure and biology. Peptides were effectively synthesized by 9-fluorenylmethoxycarbonyl-based solid-phase peptide synthesis, in which the use of a poly(ethylene glycol) resin provided good yields (14-46%) and crude purities >95% as analyzed by liquid chromatography-mass spectrometry. Peptide structure and biophysical properties were investigated using circular dichroism spectroscopy. Interestingly, peptides displayed secondary structures that were contingent on solvent and length of the poly(arginine) sequences. Peptides exhibited helical and turn conformations, while retaining significant thermal stability. Structure-activity relationship studies conducted by flow cytometry and confocal microscopy revealed that the poly(arginine) derived Pep42 sequences maintained glucose-regulated protein 78 binding on HepG2 cells while exhibiting cell translocation activity that was contingent on the length of the poly(arginine) strand. In single dose (0.15 mM) and dose-response (0-1.5 mM) cell viability assays, peptides were found to be nontoxic in human HepG2 liver cancer cells, illustrating their potential as safe cancer-targeting delivery agents. PMID:24931620

  18. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1.

    PubMed

    Saxton, Robert A; Chantranupong, Lynne; Knockenhauer, Kevin E; Schwartz, Thomas U; Sabatini, David M

    2016-08-11

    The mechanistic Target of Rapamycin Complex 1 (mTORC1) is a major regulator of eukaryotic growth that coordinates anabolic and catabolic cellular processes with inputs such as growth factors and nutrients, including amino acids. In mammals arginine is particularly important, promoting diverse physiological effects such as immune cell activation, insulin secretion, and muscle growth, largely mediated through activation of mTORC1 (refs 4, 5, 6, 7). Arginine activates mTORC1 upstream of the Rag family of GTPases, through either the lysosomal amino acid transporter SLC38A9 or the GATOR2-interacting Cellular Arginine Sensor for mTORC1 (CASTOR1). However, the mechanism by which the mTORC1 pathway detects and transmits this arginine signal has been elusive. Here, we present the 1.8 Å crystal structure of arginine-bound CASTOR1. Homodimeric CASTOR1 binds arginine at the interface of two Aspartate kinase, Chorismate mutase, TyrA (ACT) domains, enabling allosteric control of the adjacent GATOR2-binding site to trigger dissociation from GATOR2 and downstream activation of mTORC1. Our data reveal that CASTOR1 shares substantial structural homology with the lysine-binding regulatory domain of prokaryotic aspartate kinases, suggesting that the mTORC1 pathway exploited an ancient, amino-acid-dependent allosteric mechanism to acquire arginine sensitivity. Together, these results establish a structural basis for arginine sensing by the mTORC1 pathway and provide insights into the evolution of a mammalian nutrient sensor. PMID:27487210

  19. Arginine metabolism in asthma.

    PubMed

    Scott, Jeremy A; Grasemann, Hartmut

    2014-11-01

    Nitric oxide (NO) is important in the regulation of airway tone and airway responsiveness. Alterations in the L-arginine metabolism resulting in reduced availability of the substrate L-arginine for NO synthases, as well as the presence of NO synthase inhibitors such as asymmetric dimethylarginine, contribute to the reduced NO formation and airway dysfunction in asthma. Therapeutic interventions aiming to modulate the impaired L-arginine metabolism may help correct the enhanced airway tone and responsiveness in asthma. PMID:25282289

  20. Mechanism of allosteric inhibition of N-acetyl-L-glutamate synthase by L-arginine.

    PubMed

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2009-02-20

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in l-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by l-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with l-arginine bound and in the active R-state complexed with CoA and l-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of l-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by approximately 10 A and decreases its height by approximately 20A(.) AAK dimers move 5A outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by approximately 4 degrees . The NAT domains rotate approximately 109 degrees relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the l-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity. PMID:19095660

  1. Mechanism of Allosteric Inhibition of N-Acetyl-L-glutamate Synthase by L-Arginine*

    PubMed Central

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang

    2009-01-01

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in l-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by l-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with l-arginine bound and in the active R-state complexed with CoA and l-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of l-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by ∼10 Å and decreases its height by ∼20Å. AAK dimers move 5Å outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by ∼4°. The NAT domains rotate ∼109° relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the l-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity. PMID:19095660

  2. Mechanism of Allosteric Inhibition of N-Acetyl-L-glutamate Synthase by L-Arginine

    SciTech Connect

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang

    2010-01-07

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in L-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by L-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with L-arginine bound and in the active R-state complexed with CoA and L-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of L-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by {approx}10 {angstrom} and decreases its height by {approx}20{angstrom}. AAK dimers move 5{angstrom} outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by {approx}4{sup o}. The NAT domains rotate {approx}109{sup o} relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the L-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity.

  3. Arginine and Citrulline and the Immune Response in Sepsis

    PubMed Central

    Wijnands, Karolina A.P.; Castermans, Tessy M.R.; Hommen, Merel P.J.; Meesters, Dennis M.; Poeze, Martijn

    2015-01-01

    Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target. PMID:25699985

  4. Structure of the C-terminal effector-binding domain of AhrC bound to its corepressor l-arginine

    SciTech Connect

    Garnett, James A.; Baumberg, Simon; Stockley, Peter G.; Phillips, Simon E. V.

    2007-11-01

    The crystal structure of the C-terminal domain hexameric core of AhrC, with bound corepressor (l-arginine), has been solved at 1.95 Å resolution. Binding of l-arginine results in a rotation between the two trimers of the hexamer, leading to the activation of the DNA-binding state. The arginine repressor/activator protein (AhrC) from Bacillus subtilis belongs to a large family of multifunctional transcription factors that are involved in the regulation of bacterial arginine metabolism. AhrC interacts with operator sites in the promoters of arginine biosynthetic and catabolic operons, acting as a transcriptional repressor at biosynthetic sites and an activator of transcription at catabolic sites. AhrC is a hexamer of identical subunits, each having two domains. The C-terminal domains form the core of the protein and are involved in oligomerization and l-arginine binding. The N-terminal domains lie on the outside of the compact core and play a role in binding to 18 bp DNA operators called ARG boxes. The C-terminal domain of AhrC has been expressed, purified and characterized, and also crystallized as a hexamer with the bound corepressor l-arginine. Here, the crystal structure refined to 1.95 Å is presented.

  5. Diminished L-arginine bioavailability in hypertension.

    PubMed

    Moss, Monique B; Brunini, Tatiana M C; Soares De Moura, Roberto; Novaes Malagris, Lúcia E; Roberts, Norman B; Ellory, J Clive; Mann, Giovanni E; Mendes Ribeiro, Antônio C

    2004-10-01

    L-Arginine is the precursor of NO (nitric oxide), a key endogenous mediator involved in endothelium-dependent vascular relaxation and platelet function. Although the concentration of intracellular L-arginine is well above the Km for NO synthesis, in many cells and pathological conditions the transport of L-arginine is essential for NO production (L-arginine paradox). The present study was designed to investigate the modulation of L-arginine/NO pathway in systemic arterial hypertension. Transport of L-arginine into RBCs (red blood cells) and platelets, NOS (NO synthase) activity and amino acid profiles in plasma were analysed in hypertensive patients and in an animal model of hypertension. Influx of L-arginine into RBCs was mediated by the cationic amino acid transport systems y+ and y+L, whereas, in platelets, influx was mediated only via system y+L. Chromatographic analyses revealed higher plasma levels of L-arginine in hypertensive patients (175+/-19 micromol/l) compared with control subjects (137+/-8 micromol/l). L-Arginine transport via system y+L, but not y+, was significantly reduced in RBCs from hypertensive patients (60+/-7 micromol.l(-1).cells(-1).h(-1); n=16) compared with controls (90+/-17 micromol.l(-1).cells(-1).h(-1); n=18). In human platelets, the Vmax for L-arginine transport via system y+L was 86+/-17 pmol.10(9) cells(-1).min(-1) in controls compared with 36+/-9 pmol.10(9) cells(-1).min(-1) in hypertensive patients (n=10; P<0.05). Basal NOS activity was decreased in platelets from hypertensive patients (0.12+/-0.02 pmol/10(8) cells; n=8) compared with controls (0.22+/-0.01 pmol/10(8) cells; n=8; P<0.05). Studies with spontaneously hypertensive rats demonstrated that transport of L-arginine via system y+L was also inhibited in RBCs. Our findings provide the first evidence that hypertension is associated with an inhibition of L-arginine transport via system y+L in both humans and animals, with reduced availability of L-arginine limiting NO synthesis

  6. Fragment-based identification of determinants of conformational and spectroscopic change at the ricin active site

    SciTech Connect

    Carra,J.; McHugh, C.; Mulligan, S.; Machiesky, L.; Soares, A.; Millard, C.

    2007-01-01

    We found that amide ligands can bind weakly but specifically to the ricin active site, producing significant shifts in positions of the critical active site residues Arg180 and Tyr80. These results indicate that fragment-based drug discovery methods are capable of identifying minimal bonding determinants of active-site side-chain rearrangements and the mechanistic origins of spectroscopic shifts. Our results suggest that tryptophan fluorescence provides a sensitive probe for the geometric relationship of arginine-tryptophan pairs, which often have significant roles in protein function. Using the unusual characteristics of the RTA system, we measured the still controversial thermodynamic changes of site-specific urea binding to a protein, results that are relevant to understanding the physical mechanisms of protein denaturation.

  7. Structural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa.

    PubMed

    Ramón-Maiques, Santiago; Fernández-Murga, María Leonor; Gil-Ortiz, Fernando; Vagin, Alexei; Fita, Ignacio; Rubio, Vicente

    2006-02-24

    N-Acetylglutamate kinase (NAGK) catalyses the second step in the route of arginine biosynthesis. In many organisms this enzyme is inhibited by the final product of the route, arginine, and thus plays a central regulatory role. In addition, in photosynthetic organisms NAGK is the target of the nitrogen-signalling protein PII. The 3-D structure of homodimeric, arginine-insensitive, Escherichia coli NAGK, clarified substrate binding and catalysis but shed no light on arginine inhibition of NAGK. We now shed light on arginine inhibition by determining the crystal structures, at 2.75 A and 2.95 A resolution, of arginine-complexed Thermotoga maritima and arginine-free Pseudomonas aeruginosa NAGKs, respectively. Both enzymes are highly similar ring-like hexamers having a central orifice of approximately 30 A diameter. They are formed by linking three E.coli NAGK-like homodimers through the interlacing of an N-terminal mobile kinked alpha-helix, which is absent from E.coli NAGK. Arginine is bound in each subunit of T.maritima NAGK, flanking the interdimeric junction, in a site formed between the N helix and the C lobe of the subunit. This site is also present, in variable conformations, in P.aeruginosa NAGK, but is missing from E.coli NAGK. Arginine, by gluing the C lobe of each subunit to the inter-dimeric junction, may stabilize an enlarged active centre conformation, hampering catalysis. Acetylglutamate counters arginine inhibition by promoting active centre closure. The hexameric architecture justifies the observed sigmoidal arginine inhibition kinetics with a high Hill coefficient (N approximately 4), and appears essential for arginine inhibition and for NAGK-PII complex formation, since this complex may involve binding of NAGK and PII with their 3-fold axes aligned. The NAGK structures allow identification of diagnostic sequence signatures for arginine inhibition. These signatures are found also in the homologous arginine-inhibited enzyme NAG synthase. The findings

  8. Structure of N-acetyl-L-glutamate synthase/kinase from Maricaulis maris with the allosteric inhibitor L-arginine bound.

    PubMed

    Zhao, Gengxiang; Haskins, Nantaporn; Jin, Zhongmin; M Allewell, Norma; Tuchman, Mendel; Shi, Dashuang

    2013-08-01

    Maricaulis maris N-acetylglutamate synthase/kinase (mmNAGS/K) catalyzes the first two steps in L-arginine biosynthesis and has a high degree of sequence and structural homology to human N-acetylglutamate synthase, a regulator of the urea cycle. The synthase activity of both mmNAGS/K and human NAGS are regulated by L-arginine, although L-arginine is an allosteric inhibitor of mmNAGS/K, but an activator of human NAGS. To investigate the mechanism of allosteric inhibition of mmNAGS/K by L-arginine, we have determined the structure of the mmNAGS/K complexed with L-arginine at 2.8 Å resolution. In contrast to the structure of mmNAGS/K in the absence of L-arginine where there are conformational differences between the four subunits in the asymmetric unit, all four subunits in the L-arginine liganded structure have very similar conformations. In this conformation, the AcCoA binding site in the N-acetyltransferase (NAT) domain is blocked by a loop from the amino acid kinase (AAK) domain, as a result of a domain rotation that occurs when L-arginine binds. This structural change provides an explanation for the allosteric inhibition of mmNAGS/K and related enzymes by L-arginine. The allosterically regulated mechanism for mmNAGS/K differs significantly from that for Neisseria gonorrhoeae NAGS (ngNAGS). To define the active site, several residues near the putative active site were mutated and their activities determined. These experiments identify roles for Lys356, Arg386, Asn391 and Tyr397 in the catalytic mechanism. PMID:23850694

  9. Structure of N-acetyl-L-glutamate synthase/kinase from Maricaulis maris with the allosteric inhibitor L-arginine bound

    PubMed Central

    Zhao, Gengxiang; Haskins, Nantaporn; Jin, Zhongmin; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang

    2013-01-01

    Maricaulis maris N-acetylglutamate synthase/kinase (mmNAGS/K) catalyzes the first two steps in L-arginine biosynthesis and has a high degree of sequence and structural homology to human N-acetylglutamate synthase, a regulator of the urea cycle. The synthase activity of both mmNAGS/K and human NAGS are regulated by L-arginine, although L-arginine is an allosteric inhibitor of mmNAGS/K, but an activator of human NAGS. To investigate the mechanism of allosteric inhibition of mmNAGS/K by L-arginine, we have determined the structure of the mmNAGS/K complexed with L-arginine at 2.8 Å resolution. In contrast to the structure of mmNAGS/K in the absence of L-arginine where there are conformational differences between the four subunits in the asymmetric unit, all four subunits in the L-arginine liganded structure have very similar conformations. In this conformation, the AcCoA binding site in the N-acetyltransferase (NAT) domain is blocked by a loop from the amino acid kinase (AAK) domain, as a result of a domain rotation that occurs when L-arginine binds. This structural change provides an explanation for the allosteric inhibition of mmNAGS/K and related enzymes by L-arginine. The allosterically regulated mechanism for mmNAGS/K differs significantly from that for Neisseria gonorrhoeae NAGS (ngNAGS). To define the active site, several residues near the putative active site were mutated and their activities determined. These experiments identify roles for Lys356, Arg386, Asn391 and Tyr397 in the catalytic mechanism. PMID:23850694

  10. The scent of danger: arginine as an olfactory cue of reduced predation risk.

    PubMed

    Ferrer, Ryan P; Zimmer, Richard K

    2007-05-01

    Animal perception of chemosensory cues is a function of ecological context. Larvae of the California newt (Taricha torosa), for example, exhibit predator-avoidance behavior in response to a chemical from cannibalistic adults. The poison tetrodotoxin (TTX), well known as an adult chemical defense, stimulates larval escape to refuges. Although they are cannibals, adult newts feed preferentially on worms (Eisenia rosea) over conspecific young. Hence, larval avoidance reactions to TTX are suppressed in the presence of odor from these alternative prey. The free amino acid, arginine, is abundant in fluids emitted by injured worms. Here, we demonstrate that arginine is a natural suppressant of TTX-stimulated larval escape behavior. Compared to a tapwater control, larvae initiated vigorous swimming in response to 10(-7) mol l(-1) TTX. This excitatory response was eliminated when larval nasal cavities were blocked with an inert gel, but not when gel was placed on the forehead (control). In additional trials, a binary mixture of arginine and 10(-7) mol l(-1) TTX failed to induce larval swimming. The inhibitory effect of arginine was, however, dose dependent. An arginine concentration as low as 0.3-times that of TTX was significantly suppressant. Further analysis showed that suppression by arginine of TTX-stimulated behavior was eliminated by altering the positively-charged guanidinium moiety, but not by modifying the carbon chain, carboxyl group, or amine group. These results are best explained by a mechanism of competitive inhibition between arginine and TTX for common, olfactory receptor binding sites. Although arginine alone has no impact on larval behavior, it nevertheless signals active adult predation on alternative prey, and hence, reduced cannibalism risk. PMID:17488940

  11. Arginine metabolism: nitric oxide and beyond.

    PubMed Central

    Wu, G; Morris, S M

    1998-01-01

    Arginine is one of the most versatile amino acids in animal cells, serving as a precursor for the synthesis not only of proteins but also of nitric oxide, urea, polyamines, proline, glutamate, creatine and agmatine. Of the enzymes that catalyse rate-controlling steps in arginine synthesis and catabolism, argininosuccinate synthase, the two arginase isoenzymes, the three nitric oxide synthase isoenzymes and arginine decarboxylase have been recognized in recent years as key factors in regulating newly identified aspects of arginine metabolism. In particular, changes in the activities of argininosuccinate synthase, the arginases, the inducible isoenzyme of nitric oxide synthase and also cationic amino acid transporters play major roles in determining the metabolic fates of arginine in health and disease, and recent studies have identified complex patterns of interaction among these enzymes. There is growing interest in the potential roles of the arginase isoenzymes as regulators of the synthesis of nitric oxide, polyamines, proline and glutamate. Physiological roles and relationships between the pathways of arginine synthesis and catabolism in vivo are complex and difficult to analyse, owing to compartmentalized expression of various enzymes at both organ (e.g. liver, small intestine and kidney) and subcellular (cytosol and mitochondria) levels, as well as to changes in expression during development and in response to diet, hormones and cytokines. The ongoing development of new cell lines and animal models using cDNA clones and genes for key arginine metabolic enzymes will provide new approaches more clearly elucidating the physiological roles of these enzymes. PMID:9806879

  12. A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens.

    PubMed

    Borders, C L; Broadwater, J A; Bekeny, P A; Salmon, J E; Lee, A S; Eldridge, A M; Pett, V B

    1994-04-01

    We propose that arginine side chains often play a previously unappreciated general structural role in the maintenance of tertiary structure in proteins, wherein the positively charged guanidinium group forms multiple hydrogen bonds to backbone carbonyl oxygens. Using as a criterion for a "structural" arginine one that forms 4 or more hydrogen bonds to 3 or more backbone carbonyl oxygens, we have used molecular graphics to locate arginines of interest in 4 proteins: Arg 180 in Thermus thermophilus manganese superoxide dismutase, Arg 254 in human carbonic anhydrase II, Arg 31 in Streptomyces rubiginosus xylose isomerase, and Arg 313 in Rhodospirillum rubrum ribulose-1,5-bisphosphate carboxylase/oxygenase. Arg 180 helps to mold the active site channel of superoxide dismutase, whereas in each of the other enzymes the structural arginine is buried in the "mantle" (i.e., inside, but near the surface) of the protein interior well removed from the active site, where it makes 5 hydrogen bonds to 4 backbone carbonyl oxygens. Using a more relaxed criterion of 3 or more hydrogen bonds to 2 or more backbone carbonyl oxygens, arginines that play a potentially important structural role were found in yeast enolase, Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase, bacteriophage T4 and human lysozymes, Enteromorpha prolifera plastocyanin, HIV-1 protease, Trypanosoma brucei brucei and yeast triosephosphate isomerases, and Escherichia coli trp aporepressor (but not trp repressor or the trp repressor/operator complex).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8003972

  13. Structures of Bacterial Biosynthetic Arginine Decarboxylases

    SciTech Connect

    F Forouhar; S Lew; J Seetharaman; R Xiao; T Acton; G Montelione; L Tong

    2011-12-31

    Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. The TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.

  14. Arginine Coordination in Enzymatic Phosphoryl Transfer: Evaluation of the Effect of Arg166 Mutations in Escherichia Coli Alkaline Phosphatase

    SciTech Connect

    O'Brien, P.J.; Lassila, J.K.; Fenn, T.D.; Zalatan, J.G.; Herschlag, D.

    2009-05-22

    Arginine residues are commonly found in the active sites of enzymes catalyzing phosphoryl transfer reactions. Numerous site-directed mutagenesis experiments establish the importance of these residues for efficient catalysis, but their role in catalysis is not clear. To examine the role of arginine residues in the phosphoryl transfer reaction, we have measured the consequences of mutations to arginine 166 in Escherichia coli alkaline phosphatase on hydrolysis of ethyl phosphate, on individual reaction steps in the hydrolysis of the covalent enzyme-phosphoryl intermediate, and on thio substitution effects. The results show that the role of the arginine side chain extends beyond its positive charge, as the Arg166Lys mutant is as compromised in activity as Arg166Ser. Through measurement of individual reaction steps, we construct a free energy profile for the hydrolysis of the enzyme-phosphate intermediate. This analysis indicates that the arginine side chain strengthens binding by {approx}3 kcal/mol and provides an additional 1-2 kcal/mol stabilization of the chemical transition state. A 2.1 {angstrom} X-ray diffraction structure of Arg166Ser AP is presented, which shows little difference in enzyme structure compared to the wild-type enzyme but shows a significant reorientation of the bound phosphate. Altogether, these results support a model in which the arginine contributes to catalysis through binding interactions and through additional transition state stabilization that may arise from complementarity of the guanidinum group to the geometry of the trigonal bipyramidal transition state.

  15. Killing of Leishmania parasites in activated murine macrophages is based on an L-arginine-dependent process that produces nitrogen derivatives

    SciTech Connect

    Maul, J.R.; Ransijn, A.; Buchmueller-Rouiller, Y. )

    1991-01-01

    The experiments described in this report were aimed at determining whether L-arginine (L-arg)-derived nitrogen oxidation products (nitric oxide, nitrous acid, nitrites) are involved in the intracellular killing of Leishmania parasites by activated murine macrophages in vitro. Peritoneal or bone marrow-derived macrophages were infected with L. enriettii or L. major, then activated by exposure to recombinant murine interferon-gamma or to macrophage activating factor (MAF)-rich media in the presence of lipopolysaccharide. Activation of macrophages in regular (i.e., arginine-containing) culture medium led to complete destruction of the microorganisms within 24 h (L. enriettii) or 48 h (L. major), concomitant with accumulation of nitrites (NO2-) in the culture fluids. When macrophage activation was carried out in L-arg-free medium, however, neither parasite killing nor NO2- production was obtained. A similar inhibition of macrophage leishmanicidal activity and of NO2- release was observed using media treated with arginase (which converts L-arg to urea and ornithine), or supplemented with NG-monomethyl-L-arg or guanidine (which inhibit the conversion of L-arg to nitrogen oxidation products). In all these situations, an excellent correlation between the levels of NO2- production by macrophages and intracellular killing of Leishmania was observed, whereas no strict correlation was detectable between leishmanicidal activity and superoxide production. Intracellular parasite killing by activated macrophages could be prevented by addition of iron salts to the incubation fluids. Incubation of free parasites with NaNO2 at acid pH led to immobilisation, multiplication arrest, and morphological degeneration of the microorganisms. Similarly, exposure of infected cells to NaNO2 led to killing of the intracellular parasite without affecting macrophage viability.

  16. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox

    PubMed Central

    Lee, Junghee; Ryu, Hoon; Ferrante, Robert J.; Morris, Sidney M.; Ratan, Rajiv R.

    2003-01-01

    l-Arginine is the only endogenous nitrogen-containing substrate of NO synthase (NOS), and it thus governs the production of NO during nervous system development as well as in disease states such as stroke, multiple sclerosis, Parkinson's disease, and HIV dementia. The “arginine paradox” refers to the dependence of cellular NO production on exogenous l-arginine concentration despite the theoretical saturation of NOS enzymes with intracellular l-arginine. Herein, we report that decreased availability of l-arginine blocked induction of NO production in cytokine-stimulated astrocytes, owing to inhibition of inducible NOS (iNOS) protein expression. However, activity of the promoter of the iNOS gene, induction of iNOS mRNA, and stability of iNOS protein were not inhibited under these conditions. Our results indicate that inhibition of iNOS activity by arginine depletion in stimulated astrocyte cultures occurs via inhibition of translation of iNOS mRNA. After stimulation by cytokines, uptake of l-arginine negatively regulates the phosphorylation status of the eukaryotic initiation factor (eIF2α), which, in turn, regulates translation of iNOS mRNA. eIF2α phosphorylation correlates with phosphorylation of the mammalian homolog of yeast GCN2 eIF2α kinase. As the kinase activity of GCN2 is activated by phosphorylation, these findings suggest that GCN2 activity represents a proximal step in the iNOS translational regulation by availability of l-arginine. These results provide an explanation for the arginine paradox for iNOS and define a distinct mechanism by which a substrate can regulate the activity of its associated enzyme. PMID:12655043

  17. L-arginine

    MedlinePlus

    ... L-arginine is used in combination with a number of over-the-counter and prescription medications for ... to help reduce the recovery time, reduce the number of infections, and improve wound healing after surgery. ...

  18. Autophagy mediated by arginine depletion activation of the nutrient sensor GCN2 contributes to interferon-γ-induced malignant transformation of primary bovine mammary epithelial cells.

    PubMed

    Xia, X-J; Gao, Y-Y; Zhang, J; Wang, L; Zhao, S; Che, Y-Y; Ao, C-J; Yang, H-J; Wang, J-Q; Lei, L-C

    2016-01-01

    Autophagy has been linked to the regulation of both the prevention and progression of cancer. IFN-γ has been shown to induce autophagy in multiple cell lines in vitro. However, whether IFN-γ can induce autophagy and whether autophagy promotes malignant transformation in healthy lactating bovine mammary epithelial cells (BMECs) remain unclear. Here, we provide the first evidence of the correlation between IFN-γ treatment, autophagy and malignant transformation and of the mechanism underlying IFN-γ-induced autophagy and subsequent malignant transformation in primary BMECs. IFN-γ levels were significantly increased in cattle that received normal long-term dietary corn straw (CS) roughage supplementation. In addition, an increase in autophagy was clearly observed in the BMECs from the mammary tissue of cows expressing high levels of IFN-γ. In vitro, autophagy was clearly induced in primary BMECs by IFN-γ within 24 h. This induced autophagy could subsequently promote dramatic primary BMEC transformation. Furthermore, we found that IFN-γ promoted arginine depletion, activated the general control nonderepressible-2 kinase (GCN2) signalling pathway and resulted in an increase in autophagic flux and the amount of autophagy in BMECs. Overall, our findings are the first to demonstrate that arginine depletion and kinase GCN2 expression mediate IFN-γ-induced autophagy that may promote malignant progression and that immunometabolism, autophagy and cancer are strongly correlated. These results suggest new directions and paths for preventing and treating breast cancer in relation to diet. PMID:27551491

  19. Genome-wide lentiviral shRNA screen identifies serine/arginine-rich splicing factor 2 as a determinant of oncolytic virus activity in breast cancer cells.

    PubMed

    Workenhe, S T; Ketela, T; Moffat, J; Cuddington, B P; Mossman, K L

    2016-05-12

    Oncolytic human herpes simplex virus type 1 (HSV-1) shows promising treatment efficacy in late-stage clinical trials. The anticancer activity of oncolytic viruses relies on deregulated pathways in cancer cells, which make them permissive to oncolysis. To identify pathways that restrict HSV-1 KM100-mediated oncolysis, this study used a pooled genome-wide short hairpin RNA library and found that depletion of the splicing factor arginine-rich splicing factor 2 (SRSF2) leads to enhanced cytotoxicity of breast cancer cells by KM100. Serine/arginine-rich (SR) proteins are a family of RNA-binding phosphoproteins that control both constitutive and alternative pre-mRNA splicing. Further characterization showed that KM100 infection of HS578T cells under conditions of low SRSF2 leads to pronounced apoptosis without a corresponding increase in virus replication. As DNA topoisomerase I inhibitors can limit the phosphorylation of SRSF2, we combined a topoisomerase I inhibitor chemotherapeutic with KM100 and observed synergistic anticancer effect in vitro and prolonged survival of tumor-bearing mice in vivo. PMID:26257065

  20. Autophagy mediated by arginine depletion activation of the nutrient sensor GCN2 contributes to interferon-γ-induced malignant transformation of primary bovine mammary epithelial cells

    PubMed Central

    Xia, X-j; Gao, Y-y; Zhang, J; Wang, L; Zhao, S; Che, Y-y; Ao, C-j; Yang, H-j; Wang, J-q; Lei, L-c

    2016-01-01

    Autophagy has been linked to the regulation of both the prevention and progression of cancer. IFN-γ has been shown to induce autophagy in multiple cell lines in vitro. However, whether IFN-γ can induce autophagy and whether autophagy promotes malignant transformation in healthy lactating bovine mammary epithelial cells (BMECs) remain unclear. Here, we provide the first evidence of the correlation between IFN-γ treatment, autophagy and malignant transformation and of the mechanism underlying IFN-γ-induced autophagy and subsequent malignant transformation in primary BMECs. IFN-γ levels were significantly increased in cattle that received normal long-term dietary corn straw (CS) roughage supplementation. In addition, an increase in autophagy was clearly observed in the BMECs from the mammary tissue of cows expressing high levels of IFN-γ. In vitro, autophagy was clearly induced in primary BMECs by IFN-γ within 24 h. This induced autophagy could subsequently promote dramatic primary BMEC transformation. Furthermore, we found that IFN-γ promoted arginine depletion, activated the general control nonderepressible-2 kinase (GCN2) signalling pathway and resulted in an increase in autophagic flux and the amount of autophagy in BMECs. Overall, our findings are the first to demonstrate that arginine depletion and kinase GCN2 expression mediate IFN-γ-induced autophagy that may promote malignant progression and that immunometabolism, autophagy and cancer are strongly correlated. These results suggest new directions and paths for preventing and treating breast cancer in relation to diet. PMID:27551491

  1. Noncanonical Myo9b-RhoGAP Accelerates RhoA GTP Hydrolysis by a Dual-Arginine-Finger Mechanism.

    PubMed

    Yi, Fengshuang; Kong, Ruirui; Ren, Jinqi; Zhu, Li; Lou, Jizhong; Wu, Jane Y; Feng, Wei

    2016-07-31

    The GTP hydrolysis activities of Rho GTPases are stimulated by GTPase-activating proteins (GAPs), which contain a RhoGAP domain equipped with a characteristic arginine finger and an auxiliary asparagine for catalysis. However, the auxiliary asparagine is missing in the RhoGAP domain of Myo9b (Myo9b-RhoGAP), a unique motorized RhoGAP that specifically targets RhoA for controlling cell motility. Here, we determined the structure of Myo9b-RhoGAP in complex with GDP-bound RhoA and magnesium fluoride. Unexpectedly, Myo9b-RhoGAP contains two arginine fingers at its catalytic site. The first arginine finger resembles the one within the canonical RhoGAP domains and inserts into the nucleotide-binding pocket of RhoA, whereas the second arginine finger anchors the Switch I loop of RhoA and interacts with the nucleotide, stabilizing the transition state of GTP hydrolysis and compensating for the lack of the asparagine. Mutating either of the two arginine fingers impaired the catalytic activity of Myo9b-RhoGAP and affected the Myo9b-mediated cell migration. Our data indicate that Myo9b-RhoGAP accelerates RhoA GTP hydrolysis by a previously unknown dual-arginine-finger mechanism, which may be shared by other noncanonical RhoGAP domains lacking the auxiliary asparagine. PMID:27363609

  2. Dual roles for an arginine-rich motif in specific genome recognition and localization of viral coat protein to RNA replication sites in flock house virus-infected cells.

    PubMed

    Venter, P Arno; Marshall, Dawn; Schneemann, Anette

    2009-04-01

    Assembly of many RNA viruses entails the encapsidation of multiple genome segments into a single virion, and underlying mechanisms for this process are still poorly understood. In the case of the nodavirus Flock House virus (FHV), a bipartite positive-strand RNA genome consisting of RNA1 and RNA2 is copackaged into progeny virions. In this study, we investigated whether the specific packaging of FHV RNA is dependent on an arginine-rich motif (ARM) located in the N terminus of the coat protein. Our results demonstrate that the replacement of all arginine residues within this motif with alanines rendered the resultant coat protein unable to package RNA1, suggesting that the ARM represents an important determinant for the encapsidation of this genome segment. In contrast, replacement of all arginines with lysines had no effect on RNA1 packaging. Interestingly, confocal microscopic analysis demonstrated that the RNA1 packaging-deficient mutant did not localize to mitochondrial sites of FHV RNA replication as efficiently as wild-type coat protein. In addition, gain-of-function analyses showed that the ARM by itself was sufficient to target green fluorescent protein to RNA replication sites. These data suggest that the packaging of RNA1 is dependent on trafficking of coat protein to mitochondria, the presumed site of FHV assembly, and that this trafficking requires a high density of positive charge in the N terminus. Our results are compatible with a model in which recognition of RNA1 and RNA2 for encapsidation occurs sequentially and in distinct cellular microenvironments. PMID:19158251

  3. Conserved arginines on the rim of Hfq catalyze base pair formation and exchange

    PubMed Central

    Panja, Subrata; Schu, Daniel J.; Woodson, Sarah A.

    2013-01-01

    The Sm-like protein Hfq is required for gene regulation by small RNAs (sRNAs) in bacteria and facilitates base pairing between sRNAs and their mRNA targets. The proximal and distal faces of the Hfq hexamer specifically bind sRNA and mRNA targets, but they do not explain how Hfq accelerates the formation and exchange of RNA base pairs. Here, we show that conserved arginines on the outer rim of the hexamer that are known to interact with sRNA bodies are required for Hfq’s chaperone activity. Mutations in the arginine patch lower the ability of Hfq to act in sRNA regulation of rpoS translation and eliminate annealing of natural sRNAs or unstructured oligonucleotides, without preventing binding to either the proximal or distal face. Stopped-flow FRET and fluorescence anisotropy show that complementary RNAs transiently form a ternary complex with Hfq, but the RNAs are not released as a double helix in the absence of rim arginines. RNAs bound to either face of Hfq quench the fluorescence of a tryptophan adjacent to the arginine patch, demonstrating that the rim can simultaneously engage two RNA strands. We propose that the arginine patch overcomes entropic and electrostatic barriers to helix nucleation and constitutes the active site for Hfq’s chaperone function. PMID:23771143

  4. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1990-10-01

    DOE Order 5820.2A requires that low-level waste (LLW) disposal sites active on or after September 1988 and all transuranic (TRU) waste storage sites be monitored periodically to assure that radioactive contamination does not escape from the waste sites and pose a threat to the public or to the environment. This plan describes such a monitoring program for the active LLW disposal sites in SWSA 6 and the TRU waste storage sites in SWSA 5 North. 14 refs., 8 figs.

  5. Crystal structure analysis of ornithine transcarbamylase from Thermus thermophilus --HB8 provides insights on the plasticity of the active site.

    PubMed

    Sundaresan, Ramya; Ebihara, Akio; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Kumarevel, Thirumananseri; Ponnuraj, Karthe

    2015-09-18

    The enzymatic biosynthesis of L-arginine involves complex, sequential action of many enzymes and ornithine transcarbamylase (OTCase) is one of the essential enzymes in the pathway. In mammals OTCase is part of the urea cycle. Arginine is used in a variety of pharmaceutical and industrial applications and therefore engineering arginine biosynthesis pathway for overproduction of arginine has gained importance. On the other hand, it was found that detrimental mutations in the human OTCase gene resulted clinical hyperammonemia, with subsequent neurological damage. Therefore a better understanding of the structure-function relationship of this enzyme from various sources could be useful for modifying its enzymatic action. Here we report the structure of ornithine transcarbamylase of Thermus thermophilus HB8 (aTtOTCase) at 2.0 Å resolution. On comparison with its homologs, aTtOTCase showed maximum variation at the substrate binding loops namely 80s and SMG/240s loops. The active site geometry of aTtOTCase is unique among its homologs where the side chain of certain residues (Leu57, Arg58 and Arg288) is oriented differently. To study the structural insights of substrate binding in aTtOTCase, docking of carbamoyl phosphate (CP) and ornithine (Orn) was carried out sequentially. Both substrates were unable to bind in a proper orientation in the active site pocket and this could be due to the differently oriented side chains. This suggests that the active site geometry should also undergo fine tuning besides the large structural changes as the enzyme switches from completely open to a substrate bound closed state. PMID:26210451

  6. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase

    PubMed Central

    Bowles, Tawnya L.; Kim, Randie; Galante, Joseph; Parsons, Colin M.; Virudachalam, Subbulakshmi; Kung, Hsing-Jien; Bold, Richard J.

    2009-01-01

    Eukaryotic cells can synthesize the non-essential amino acid arginine from aspartate and citrulline using the enzyme argininosuccinate synthetase (ASS). It has been observed that ASS is under-expressed in various types of cancers ASS, for which arginine become auxotrophic. Arginine deiminase (ADI) is a prokaryotic enzyme that metabolizes arginine to citrulline and has been found to inhibit melanoma and hepatoma cancer cells deficient of ASS. We tested the hypothesis that pancreatic cancers have low ASS expression and therefore arginine deprivation by ADI will inhibit cell growth. ASS expression was examined in 47 malignant and 20 non-neoplastic pancreatic tissues as well as a panel of human pancreatic cancer cell lines. Arginine deprivation was achieved by treatment with a recombinant form of ADI formulated with polyethylene glycol (PEG-ADI). Effects on caspase activation, cell growth and cell death were examined. Furthermore, the effect of PEG-ADI on the in vivo growth of pancreatic xenografts was examined. Eighty-seven percent of the tumors lacked ASS expression; 5 of 7 cell lines similarly lacked ASS expression. PEG-ADI specifically inhibited growth of those cell lines lacking ASS. PEG-ADI treatment induced caspase activation and induction of apoptosis. PEG-ADI was well tolerated in mice despite complete elimination of plasma arginine; tumor growth was inhibited by ∼50%. Reduced expression of ASS occurs in pancreatic cancer and predicts sensitivity to arginine deprivation achieved by PEG-ADI treatment. Therefore, these findings suggest that arginine deprivation by ADI could provide a beneficial strategy for the treatment of pancreatic cancer, a malignancy in which new therapy is desperately needed. PMID:18661517

  7. A lysine-to-arginine mutation on NEDD8 markedly reduces the activity of cullin RING E3 ligase through the impairment of neddylation cascades

    SciTech Connect

    Sui, Yiyan; Liu, Yaobin; Xu, Guoqiang

    2015-06-12

    Neural-precursor-cell-expressed developmentally down-regulated 8 (NEDD8) is a ubiquitin-like modifier, which forms covalent conjugates on lysines of its substrates. This post-translational modification, neddylation, plays important roles in tumor cell proliferation and viability. Ubiquitin can form diverse polyubiquitin chains, on its seven lysines, which play important functions in various biological processes. However, the roles of lysines in NEDD8 have not been explored. Here, we generated nine NEDD8 point mutants, each with one lysine replaced by an arginine, to study the putative function of lysines in NEDD8. Our experiments discover that Lys27 in NEDD8 is a critical residue for protein neddylation. Replacement of this residue with arginine almost completely eliminates the conjugation of NEDD8 to its substrates. Furthermore, we find that the K27R mutant impairs NEDD8 conjugation to the E2 enzyme, which normally forms thioester bonds for further transferring NEDD8 to its ligases and substrates. Therefore, this mutation completely inhibits global protein neddylation, including neddylation of cullin family proteins, resulting in decreased activity of cullin-RING E3 ligases. This work sheds new light on the roles of NEDD8 lysines on neddylation cascades and provides a dominant negative mutant for the study of neddylation and its biological functions. - Highlights: • Lys27 in NEDD8 is critical for protein neddylation. • NEDD8 K27R mutant impairs the NEDD8 conjugation. • NEDD8 K27R mutant significantly reduces the activity of cullin-RING E3 ligases.

  8. Effect of Site-directed Mutagenesis of Methylglyoxal- Modifiable Arginine Residues on the Structure and Chaperone Function of Human αA-crystallin

    PubMed Central

    Biswas, Ashis; Miller, Antonia; Oya-Ito, Tomoko; Santhoshkumar, Puttur; Bhat, Manjunatha; Nagaraj, Ram H.

    2008-01-01

    We reported previously that chemical modification of human αA-crystallin by a metabolic dicarbonyl compound, methylglyoxal (MGO), enhances its chaperone-like function, a phenomenon which we attributed to formation of argpyrimidine at arginine residues (R) 21, 49 and 103. This structural change removes the positive charge on the arginine residues. To explore this mechanism further, we replaced these three R residues with a neutral alanine (A) residue one at time or in combination and examined the impact on the structure and chaperone function. Measurement of intrinsic tryptophan fluorescence and near-UV CD spectra revealed alteration of the microenvironment of aromatic amino acid residue in mutant proteins. When compared to wild type (wt) αA-crystallin, the chaperone function of R21A and R103A mutants increased 20% and 18% as measured by the insulin aggregation assay, and increased it as much as 39% and 28% when measured by the citrate synthase (CS) aggregation assay. While the R49A mutant lost most of its chaperone function, R21A/R103A and R21A/R49A/R103A mutants had slightly better function (6–14% and 10–14%) than the wt protein in these assays. R21A and R103A mutants had higher surface hydrophobicity than wt αA-crystallin, but the R49A mutant had lower hydrophobicity. R21A and R103A mutants, but not the R49A mutant, were more efficient than wt protein in refolding guanidine hydrochloride-treated malate dehydrogenase to its native state. Our findings indicate that the positive charges on R21, R49 and R103 are important determinants of the chaperone function of αA-crystallin and suggest that chemical modification of arginine residues may play a role in protein aggregation during lens aging and cataract formation. PMID:16584192

  9. Structure and reaction mechanism of L-arginine:glycine amidinotransferase.

    PubMed

    Humm, A; Fritsche, E; Steinbacher, S

    1997-01-01

    L-Arginine:glycine amidinotransferase (AT) catalyzes the committed step in creatine biosynthesis by formation of guanidinoacetic acid, the direct precursor of creatine. The X-ray structure of the human enzyme shows a novel fold with fivefold pseudosymmetry of beta beta alphabeta-modules. These modules enclose the active site compartment of the basket-like structure. The active site of AT lies at the bottom of a very narrow channel and contains a catalytic triad with the residues Cys-His-Asp. The transamidination reaction follows a ping-pong mechanism and is accompanied by large conformational changes. During catalysis the amidino group is covalently attached to the active site cysteine to give an amidino-cysteine intermediate. PMID:9165070

  10. The influence of isoleucine and arginine on biological activity and peptide-membrane interactions of antimicrobial peptides from the bactericidal domain of AvBD4.

    PubMed

    Hu, Wan-Ning; Jiao, Wen-Jing; Ma, Zhi; Dong, Na; Ma, Qing-Quan; Shao, Chang-Xuan; Shan, An-Shan

    2013-11-01

    In this study, the influence of isoleucine and arginine on the biological activity and peptide-membrane interactions of linear avian β-defensin-4 (RL38) analogs was investigated. Results of biological activities showed that the antimicrobial activities of AvBD-4 analogs were closely related to hydrophobicity and amphipathicity. The peptide GLI19 with high hydrophobicity value and amphipathicity displayed broad spectrum antimicrobial activity against both gram-negative and gram-positive, whereas GLR19 with increasing multiple charges only exhibited activity against gram-negative. The interaction between peptides and the liposome membrane demonstrated that the peptides preferentially bound to negatively charged phospholipids over zwitterionic phospholipids, which supported the antimicrobial activity data. The outer membranes assay further demonstrated that GLI19 had a greater capacity than the other tested peptides to penetrate the cell membrane at a low concentration. Collectively, the peptides derived from the bactericidal domain of linear β- defensins by truncation and hydrophobic amino acid substitution may be effective high-potential antibacterial agents. PMID:23746111

  11. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    PubMed Central

    Olinto, S.C.F.; Adrião, M.G.; Castro-Barbosa, T.; Goulart-Silva, F.; Nunes, M.T.

    2012-01-01

    The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (∼250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (an NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression. PMID:22641416

  12. Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant

    PubMed Central

    Li, Tingting; Kong, Ah-Ng Tony; Ma, Zhiqiang; Liu, Haiyan; Liu, Pinghua; Xiao, Yu; Jiang, Xuehua; Wang, Ling

    2016-01-01

    Purpose Pregnane x receptor (PXR) - activated overexpression of the multidrug resistance 1 (MDR1) gene is an important way for tumor cells to acquire drug resistance. However, the detailed mechanism still remains unclear. In the present study, we aimed to investigate whether protein arginine methyl transferase 1(PRMT1) is involved in PXR - activated overexpression of MDR1 during acquired multidrug resistant. Experimental Design Arginine methyltransferase inhibitor 1 (AMI-1) was used to pharmacologically block PRMT1 in resistant breast cancer cells (MCF7/adr). The mRNA and protein levels of MDR1 were detected by real-time PCR and western blotting analysis. Immunofluorescence microscopy and co-immunoprecipitation were used to investigate the physical interaction between PXR and PRMT1. Then, 136 candidate compounds were screened for PRMT1 inhibitors. Lastly, luciferase reporter gene and nude mice bearing resistant breast cancer xenografts were adopted to investigate the anti-tumor effect of PRMT1 inhibitors when combined with adriamycin. Results AMI-1 significantly suppressed the expression of MDR1 in MCF7/adr cells and increased cells sensitivity of MCF7/adr to adriamycin. Physical interaction between PRMT1 and PXR exists in MCF7/adr cells, which could be disrupted by AMI-1. Those results suggest that PRMT1 may be involved in PXR-activated overexpression of MDR1 in resistant breast cancer cells, and AMI-1 may suppress MDR1 by disrupting the interaction between PRMT1 and PXR. Then, five compounds including rutin, isoquercitrin, salvianolic acid A, naproxen, and felodipline were identified to be PRMT1 inhibitors. Finally, those PRMT1 inhibitors were observed to significantly decrease MDR1 promoter activity in vitro and enhance the antitumor effect of adriamycin in nude mice that bearing resistant breast cancer xenografts. Conclusions PRMT1 may be an important co-activator of PXR in activating MDR1 gene during acquired resistance, and PRMT1 inhibitor combined with

  13. Educational Activity Sites for High School Students

    ERIC Educational Resources Information Center

    Troutner, Joanne

    2005-01-01

    Finding quality Internet resources for high school students is a continuing challenge. Several high-quality web sites are presented for educators and students. These sites offer activities to learn how an art conservator looks at paintings, create a newspaper, research and develop an end product, build geometry and physics skills, explore science…

  14. The arginine finger of the Bloom syndrome protein: its structural organization and its role in energy coupling

    PubMed Central

    Ren, Hua; Dou, Shuo-Xing; Rigolet, Pascal; Yang, Ye; Wang, Peng-Ye; Amor-Gueret, Mounira; Xi, Xu Guang

    2007-01-01

    RecQ family helicases are essential in maintaining chromosomal DNA stability and integrity. Despite extensive studies, the mechanisms of these enzymes are still poorly understood. Crystal structures of many helicases reveal a highly conserved arginine residue located near the γ-phosphate of ATP. This residue is widely recognized as an arginine finger, and may sense ATP binding and hydrolysis, and transmit conformational changes. We investigated the existence and role of the arginine finger in the Bloom syndrome protein (BLM), a RecQ family helicase, in ATP hydrolysis and energy coupling. Our studies by combination of structural modelling, site-directed mutagenesis and biochemical and biophysical approaches, demonstrate that mutations of residues interacting with the γ-phosphate of ATP or surrounding the ATP-binding sites result in severe impairment in the ATPase activity of BLM. These mutations also impair BLM's DNA-unwinding activities, but do not affect its ATP and DNA-binding abilities. These data allow us to identify R982 as the residue that functions as a BLM arginine finger. Our findings further indicate how the arginine finger is precisely positioned by the conserved motifs with respect to the γ-phosphate. PMID:17766252

  15. Arginine, scurvy and Cartier's "tree of life"

    PubMed Central

    Durzan, Don J

    2009-01-01

    Several conifers have been considered as candidates for "Annedda", which was the source for a miraculous cure for scurvy in Jacques Cartier's critically ill crew in 1536. Vitamin C was responsible for the cure of scurvy and was obtained as an Iroquois decoction from the bark and leaves from this "tree of life", now commonly referred to as arborvitae. Based on seasonal and diurnal amino acid analyses of candidate "trees of life", high levels of arginine, proline, and guanidino compounds were also probably present in decoctions prepared in the severe winter. The semi-essential arginine, proline and all the essential amino acids, would have provided additional nutritional benefits for the rapid recovery from scurvy by vitamin C when food supply was limited. The value of arginine, especially in the recovery of the critically ill sailors, is postulated as a source of nitric oxide, and the arginine-derived guanidino compounds as controlling factors for the activities of different nitric oxide synthases. This review provides further insights into the use of the candidate "trees of life" by indigenous peoples in eastern Canada. It raises hypotheses on the nutritional and synergistic roles of arginine, its metabolites, and other biofactors complementing the role of vitamin C especially in treating Cartier's critically ill sailors. PMID:19187550

  16. L-Arginine transport in disease.

    PubMed

    Mendes Ribeiro, Antônio Cláudio; Brunini, Tatiana M C

    2004-04-01

    The importance of membrane transport in normal physiological cell function is unquestionable. However, to what extent alterations in the transport of amino acids are the cause and/or consequence of pathological changes observed in disease states is a question not yet completely clarified. Kinetic experiments with blood cells provide a simple and useful model for researching alterations in amino acid transport. The cationic amino acid L-arginine is the precursor of nitric oxide (NO), a key second messenger involved in functions such as endothelium-dependent vascular relaxation, immune defence and platelet activation. The transport of L-arginine, being rate-limiting for nitric oxide production, is extremely relevant to pathological conditions where NO synthesis and/or actions are affected. The current review provides an overview of L-arginine transport in disease, specifically in uraemia, heart failure, hypertension, diabetes mellitus, septic shock and sickle cell disease. PMID:15320795

  17. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  18. Structure-function relationships in the Na,K-ATPase. cap alpha. subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme

    SciTech Connect

    Price, E.M.; Lingrel, J.B.

    1988-11-01

    Na,K-ATPases from various species differ greatly in their sensitivity to cardiac glycosides such as ouabain. The sheep and human enzymes are a thousand times more sensitive than the corresponding ones from rat and mouse. To define the region of the ..cap alpha..1 subunit responsible for this differential sensitivity, chimeric cDNAs of sheep and rat were constructed and expressed in ouabain-sensitive HeLa cells. The construct containing the amino-terminal half of the rat ..cap alpha..1 subunit coding region and carboxyl-terminal half of the sheep conferred the ouabain-resistant phenotype to HeLa cells while the reverse construct did not. This indicates that the determinants involved in ouabain sensitivity are located in the amino-terminal half of the Na,K-ATPase ..cap alpha.. subunit. By use of site-directed mutagenesis, the amino acid sequence of the first extracellular domain (H1-H2) of the sheep ..cap alpha..1 subunit was changed to that of the rat. When expressed in HeLa cells, this mutated sheep ..cap alpha..1 construct, like the rat/sheep chimera, was able to confer ouabain resistance to these cells. Furthermore, similar results were observed when HeLa cells were transfected with a sheep ..cap alpha..1 cDNA containing only two amino acid substitutions. The resistant cells, whether transfected with the rat ..cap alpha..1 cDNA, the rat/sheep chimera, or the mutant sheep ..cap alpha..1 cDNAs, exhibited identical biochemical characteristics including ouabain-inhibitable cell growth, /sup 86/Rb/sup +/ uptake, and Na,K-ATPase activity. These results demonstrate that the presence of arginine and aspartic acid on the amino end and carboxyl end, respectively, of the H1-H2 extracellular domain of the Na,K-ATPase ..cap alpha.. subunit together is responsible for the ouabain-resistant character of the rat enzyme and the corresponding residues in the sheep ..cap alpha..1 subunit (glutamine and asparagine) are somehow involved in ouabain binding.

  19. Chemical modification of the functional arginine residues of carbon monoxide dehydrogenase from Clostridium thermoaceticum.

    PubMed

    Shanmugasundaram, T; Kumar, G K; Shenoy, B C; Wood, H G

    1989-08-22

    Carbon monoxide dehydrogenase (CODH) is the key enzyme of autotrophic growth with CO or CO2 and H2 by the acetyl-CoA pathway. The enzyme from Clostridium thermoaceticum catalyzes the formation of acetyl-CoA from the methyl, carbonyl, and CoA groups and has separate binding sites for these moieties. In this study, we have determined the role of arginine residues in binding of CoA by CODH. Phenylglyoxal, an arginine-specific reagent, inactivated CODH, and CoA afforded about 80-85% protection against this inactivation. The other ligands, such as the carbonyl and the methyl groups, gave no protection. By circular dichroism, it was shown that the loss of activity is not due to extensive structural changes in CODH. Earlier, we showed that tryptophan residues are located at the CoA binding site of CODH [Shanmugasundaram, T., Kumar, G. K., & Wood, H. G. (1988) Biochemistry 27, 6499-6503]. A comparison of the fluorescence spectra of the native and phenylglyoxal-modified enzymes indicates that the reactive arginine residues appear to be located close to fluorescing tryptophans. Fluorescence spectral studies with CoA analogues or its components showed that CoA interacts with the tryptophan(s) of CODH through its adenine moiety. In addition, evidence is presented that the arginines interact with the pyrophosphate moiety of CoA. PMID:2819052

  20. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells.

    PubMed

    Larsen, Sara C; Sylvestersen, Kathrine B; Mund, Andreas; Lyon, David; Mullari, Meeli; Madsen, Maria V; Daniel, Jeremy A; Jensen, Lars J; Nielsen, Michael L

    2016-01-01

    The posttranslational modification of proteins by arginine methylation is functionally important, yet the breadth of this modification is not well characterized. Using high-resolution mass spectrometry, we identified 8030 arginine methylation sites within 3300 human proteins in human embryonic kidney 293 cells, indicating that the occurrence of this modification is comparable to phosphorylation and ubiquitylation. A site-level conservation analysis revealed that arginine methylation sites are less evolutionarily conserved compared to arginines that were not identified as modified by methylation. Through quantitative proteomics and RNA interference to examine arginine methylation stoichiometry, we unexpectedly found that the protein arginine methyltransferase (PRMT) family of arginine methyltransferases catalyzed methylation independently of arginine sequence context. In contrast to the frequency of somatic mutations at arginine methylation sites throughout the proteome, we observed that somatic mutations were common at arginine methylation sites in proteins involved in mRNA splicing. Furthermore, in HeLa and U2OS cells, we found that distinct arginine methyltransferases differentially regulated the functions of the pre-mRNA splicing factor SRSF2 (serine/arginine-rich splicing factor 2) and the RNA transport ribonucleoprotein HNRNPUL1 (heterogeneous nuclear ribonucleoprotein U-like 1). Knocking down PRMT5 impaired the RNA binding function of SRSF2, whereas knocking down PRMT4 [also known as coactivator-associated arginine methyltransferase 1 (CARM1)] or PRMT1 increased the RNA binding function of HNRNPUL1. High-content single-cell imaging additionally revealed that knocking down CARM1 promoted the nuclear accumulation of SRSF2, independent of cell cycle phase. Collectively, the presented human arginine methylome provides a missing piece in the global and integrative view of cellular physiology and protein regulation. PMID:27577262

  1. Structure of the C-terminal domain of the arginine repressor protein from Mycobacterium tuberculosis

    SciTech Connect

    Cherney, Leonid T.; Cherney, Maia M.; Garen, Craig R.; Lu, George J.; James, Michael N. G.

    2008-09-01

    The structure of the core domain of the arginine repressor protein from M. tuberculosis has been determined with (1.85 Å resolution) and without (2.15 Å resolution) the arginine corepressor bound. Three additional arginine molecules have been found to bind to the core domain hexamer at high (0.2 M) arginine concentration. The Mycobacterium tuberculosis (Mtb) gene product encoded by open reading frame Rv1657 is an arginine repressor (ArgR). All genes involved in the l-arginine (hereafter arginine) biosynthetic pathway are essential for optimal growth of the Mtb pathogen, thus making MtbArgR a potential target for drug design. The C-terminal domains of arginine repressors (CArgR) participate in oligomerization and arginine binding. Several crystal forms of CArgR from Mtb (MtbCArgR) have been obtained. The X-ray crystal structures of MtbCArgR were determined at 1.85 Å resolution with bound arginine and at 2.15 Å resolution in the unliganded form. These structures show that six molecules of MtbCArgR are arranged into a hexamer having approximate 32 point symmetry that is formed from two trimers. The trimers rotate relative to each other by about 11° upon binding arginine. All residues in MtbCArgR deemed to be important for hexamer formation and for arginine binding have been identified from the experimentally determined structures presented. The hexamer contains six regular sites in which the arginine molecules have one common binding mode and three sites in which the arginine molecules have two overlapping binding modes. The latter sites only bind the ligand at high (200 mM) arginine concentrations.

  2. Chemotactic Activity of Cyclophilin A in the Skin Mucus of Yellow Catfish (Pelteobagrus fulvidraco) and Its Active Site for Chemotaxis.

    PubMed

    Dawar, Farman Ullah; Tu, Jiagang; Xiong, Yang; Lan, Jiangfeng; Dong, Xing Xing; Liu, Xiaoling; Khattak, Muhammad Nasir Khan; Mei, Jie; Lin, Li

    2016-01-01

    Fish skin mucus is a dynamic barrier for invading pathogens with a variety of anti-microbial enzymes, including cyclophilin A (CypA), a multi-functional protein with peptidyl-prolyl cis/trans isomerase (PPIase) activity. Beside various other immunological functions, CypA induces leucocytes migration in vitro in teleost. In the current study, we have discovered several novel immune-relevant proteins in yellow catfish skin mucus by mass spectrometry (MS). The CypA present among them was further detected by Western blot. Moreover, the CypA present in the skin mucus displayed strong chemotactic activity for yellow catfish leucocytes. Interestingly, asparagine (like arginine in mammals) at position 69 was the critical site in yellow catfish CypA involved in leucocyte attraction. These novel efforts do not only highlight the enzymatic texture of skin mucus, but signify CypA to be targeted for anti-inflammatory therapeutics. PMID:27589721

  3. Crystal Structure of the Arginine Repressor Protein in Complex With the DNA Operator From Mycobacterium Tuberculosis

    SciTech Connect

    Cherney, L.T.; Cherney, M.M.; Garen, C.R.; Lu, G.J.; James, M.N.G.

    2009-05-12

    The Mycobacterium tuberculosis (Mtb) gene product encoded by open reading frame Rv1657 is an arginine repressor (ArgR). All genes involved in the L-arginine (hereafter arginine) biosynthetic pathway are essential for optimal growth of the Mtb pathogen, thus making MtbArgR a potential target for drug design. The C-terminal domains of arginine repressors (CArgR) participate in oligomerization and arginine binding. Several crystal forms of CArgR from Mtb (MtbCArgR) have been obtained. The X-ray crystal structures of MtbCArgR were determined at 1.85 {angstrom} resolution with bound arginine and at 2.15 {angstrom} resolution in the unliganded form. These structures show that six molecules of MtbCArgR are arranged into a hexamer having approximate 32 point symmetry that is formed from two trimers. The trimers rotate relative to each other by about 11{sup o} upon binding arginine. All residues in MtbCArgR deemed to be important for hexamer formation and for arginine binding have been identified from the experimentally determined structures presented. The hexamer contains six regular sites in which the arginine molecules have one common binding mode and three sites in which the arginine molecules have two overlapping binding modes. The latter sites only bind the ligand at high (200 mM) arginine concentrations.

  4. Atomic-resolution structure of an N5 flavin adduct in D-arginine dehydrogenase.

    PubMed

    Fu, Guoxing; Yuan, Hongling; Wang, Siming; Gadda, Giovanni; Weber, Irene T

    2011-07-26

    D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 Å atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct. PMID:21707047

  5. Toxoplasma gondii lacks the enzymes required for de novo arginine biosynthesis and arginine starvation triggers cyst formation.

    PubMed

    Fox, Barbara A; Gigley, Jason P; Bzik, David J

    2004-03-01

    Two separate carbamoyl phosphate synthetase activities are required for the de novo synthesis of pyrimidines and arginine in most eukaryotes. Toxoplasma gondii is novel in possessing a single carbamoyl phosphate synthetase II gene that corresponds to a glutamine-dependent form required for pyrimidine biosynthesis. We therefore examined arginine acquisition in T. gondii to determine whether the single carbamoyl phosphate synthetase II activity could provide both pyrimidine and arginine biosynthesis. We found that arginine deprivation efficiently blocks the replication of intracellular T. gondii, yet has little effect on long-term parasite viability. Addition of citrulline, but not ornithine, rescues the growth defect observed in the absence of exogenous arginine. This rescue with citrulline is ablated when parasites are cultured in a human citrullinemia fibroblast cell line that is deficient in argininosuccinate synthetase activity. These results reveal the absence of genes and activities of the arginine biosynthetic pathway and demonstrate that T. gondii is an arginine auxotroph. Arginine starvation was also found to efficiently trigger differentiation of replicative tachyzoites into bradyzoites contained within stable cyst-like structures. These same parasites expressing bradyzoite antigens can be efficiently switched back to rapidly proliferating tachyzoites several weeks after arginine starvation. We hypothesise that the absence of gene activities that are essential for the biosynthesis of arginine from carbamoyl phosphate confers a selective advantage by increasing bradyzoite switching during the host response to T. gondii infection. These findings are consistent with a model of host-parasite evolution that allowed host control of bradyzoite induction by trading off virulence for increased transmission. PMID:15003493

  6. Arginine stimulates intestinal cell migration through a focal adhesion kinase dependent mechanism

    PubMed Central

    Rhoads, J M; Chen, W; Gookin, J; Wu, G Y; Fu, Q; Blikslager, A T; Rippe, R A; Argenzio, R A; Cance, W G; Weaver, E M; Romer, L H

    2004-01-01

    Background: l-Arginine is a nutritional supplement that may be useful for promoting intestinal repair. Arginine is metabolised by the oxidative deiminase pathway to form nitric oxide (NO) and by the arginase pathway to yield ornithine and polyamines. Aims: To determine if arginine stimulates restitution via activation of NO synthesis and/or polyamine synthesis. Methods: We determined the effects of arginine on cultured intestinal cell migration, NO production, polyamine levels, and activation of focal adhesion kinase, a key mediator of cell migration. Results: Arginine increased the rate of cell migration in a dose dependent biphasic manner, and was additive with bovine serum concentrate (BSC). Arginine and an NO donor activated focal adhesion kinase (a tyrosine kinase which localises to cell matrix contacts and mediates β1 integrin signalling) after wounding. Arginine stimulated cell migration was dependent on focal adhesion kinase (FAK) signalling, as demonstrated using adenovirus mediated transfection with a kinase negative mutant of FAK. Arginine stimulated migration was dependent on NO production and was blocked by NO synthase inhibitors. Arginine dependent migration required synthesis of polyamines but elevating extracellular arginine concentration above 0.4 mM did not enhance cellular polyamine levels. Conclusions: These results showed that l-arginine stimulates cell migration through NO and FAK dependent pathways and that combination therapy with arginine and BSC may enhance intestinal restitution via separate and convergent pathways. PMID:15016745

  7. Synthesis, characterization and anti-microbial activity of pure, Cu2+ and Cd2+ doped organic NLO l-arginine trifluoroacetate single crystals

    NASA Astrophysics Data System (ADS)

    Prasanyaa, T.; Haris, M.; Jayaramakrishnan, V.; Amgalan, M.; Mathivanan, V.

    2013-10-01

    Optically transparent Cu2+ and Cd2+ doped l-arginine trifluoroacetate (LATF) single crystals were grown from its aqueous solution using the slow solvent evaporation technique. The grown crystals were characterized by powder x-ray diffraction to confirm the monoclinic crystal structure. The percentage of transmittance measured using the ultraviolet-visible-near infrared spectrophotometer was found to be more than 80% for doped crystals. The functional group analysis of the grown crystals has been made by Fourier transform infrared spectroscopy. Thermogravimetric/differential thermal analysis was performed for the grown crystals. An atomic absorption study was carried out to determine the presence of Cu2+ and Cd2+. The hardness of the grown crystals was assessed and the results show a significant variation in the hardness value between the pure and doped LATF crystals. The second harmonic generation measurements show that Cu2+ doped LATF is 2.8 times greater and Cd2+ doped is 2.6 times greater than KDP. The anti-bacterial and anti-fungal activities of the title compound were performed using the disc diffusion method against standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillus niger and Aspergillus flavus.

  8. Altered brain arginine metabolism in schizophrenia.

    PubMed

    Liu, P; Jing, Y; Collie, N D; Dean, B; Bilkey, D K; Zhang, H

    2016-01-01

    Previous research implicates altered metabolism of l-arginine, a versatile amino acid with a number of bioactive metabolites, in the pathogenesis of schizophrenia. The present study, for we believe the first time, systematically compared the metabolic profile of l-arginine in the frontal cortex (Brodmann's area 8) obtained post-mortem from schizophrenic individuals and age- and gender-matched non-psychiatric controls (n=20 per group). The enzyme assays revealed no change in total nitric oxide synthase (NOS) activity, but significantly increased arginase activity in the schizophrenia group. Western blot showed reduced endothelial NOS protein expression and increased arginase II protein level in the disease group. High-performance liquid chromatography and liquid chromatography/mass spectrometric assays confirmed significantly reduced levels of γ-aminobutyric acid (GABA), but increased agmatine concentration and glutamate/GABA ratio in the schizophrenia cases. Regression analysis indicated positive correlations between arginase activity and the age of disease onset and between l-ornithine level and the duration of illness. Moreover, cluster analyses revealed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which were altered in the schizophrenia group. The present study provides further evidence of altered brain arginine metabolism in schizophrenia, which enhances our understanding of the pathogenesis of schizophrenia and may lead to the future development of novel preventions and/or therapeutics for the disease. PMID:27529679

  9. Pegylated arginine deiminase: a novel anticancer enzyme agent

    PubMed Central

    Feun, Lynn; Savaraj, Niramol

    2011-01-01

    Pegylated arginine deiminase (ADI-PEG20) is a novel anticancer enzyme that produces depletion of arginine, which is a nonessential amino acid in humans. Certain tumours, such as malignant melanoma and hepatocellular carcinoma, are auxotrophic for arginine. These tumours that are sensitive to arginine depletion do not express argininosuccinate synthetase, a key enzyme in the synthesis of arginine from citrulline. ADI-PEG20 inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Phase I – II trials in patients with melanoma and hepatocellular carcinomas have shown the drug to have antitumour activity and tolerable side effects. Large Phase II trials and randomised, controlled Phase III trials are needed to determine its overall efficacy in the treatment of these malignancies and others. PMID:16787144

  10. The microbicidal activity of interferon-gamma-treated macrophages against Trypanosoma cruzi involves an L-arginine-dependent, nitrogen oxide-mediated mechanism inhibitable by interleukin-10 and transforming growth factor-beta.

    PubMed

    Gazzinelli, R T; Oswald, I P; Hieny, S; James, S L; Sher, A

    1992-10-01

    The present study was carried out to determine the effector mechanism of anti-Trypanosoma cruzi activity by interferon (IFN)-gamma plus lipopolysaccharide (LPS)-treated macrophages. A macrophage cell line (IC-21) that failed to mount an appreciable oxidative burst was nevertheless found able to control T. cruzi growth after exposure to IFN-gamma alone or IFN-gamma plus LPS. Moreover, microbicidal functions of both inflammatory macrophages and IC-21 against T. cruzi was found to be inhibited in the presence of NG-monomethyl-L-arginine (NGMMA), a competitive inhibitor of L-arginine. Addition of supplemental L-arginine to the culture overcame the capacity of NGMMA to block activated macrophage anti-T. cruzi functions. The ability of NGMMA to reverse both parasite growth inhibition and killing by IFN-gamma plus LPS-activated macrophages was found to correlate with the suppression of nitrite accumulation in the culture supernatants. Together, these results implicate the L-arginine-dependent production of nitric oxide in T. cruzi killing by activated macrophages. We also tested the ability of interleukin(IL)-10 and transforming growth factor (TGF)-beta, to block regulation of T. cruzi growth in this system. Both IL-10 and TGF-beta inhibited anti-parasite function by IFN-gamma-activated macrophages, with an optimal dose of 100 units/ml and 0.5 ng/ml, respectively. Moreover, when used in combination, suboptimal doses of IL-10 and TGF-beta were found to produce a synergistic inhibitory effect in the regulation of T. cruzi growth. The ability of IL-10 and TGF-beta to suppress microbicidal function was also positively correlated with inhibition of nitrite generation in macrophage culture supernatants. These results predict an in vivo role for IL-10 and TGF-beta in promoting parasite survival in the face of the host cell-mediated immune response. PMID:1396957

  11. Effects of dietary salt intake on plasma arginine.

    PubMed

    Kitiyakara, C; Chabrashvili, T; Jose, P; Welch, W J; Wilcox, C S

    2001-04-01

    Because L-arginine is degraded by hepatic arginase to ornithine and urea and is transported by the regulated 2A cationic amino acid y(+) transporter (CAT2A), hepatic transport may regulate plasma arginine concentration. Groups of rats (n = 6) were fed a diet of either low salt (LS) or high salt (HS) for 7 days to test the hypothesis that dietary salt intake regulates plasma arginine concentration and renal nitric oxide (NO) generation by measuring plasma arginine and ornithine concentrations, renal NO excretion, and expression of hepatic CAT2A, and arginase. LS rats had lower excretion of NO metabolites and cGMP, lower plasma arginine concentration (LS: 83 +/- 7 vs. HS: 165 +/- 10 micromol/l, P < 0.001), but higher plasma ornithine concentration (LS: 82 +/- 6 vs. HS: 66 +/- 4 micromol/l, P < 0.05) and urea excretion. However, neither the in vitro hepatic arginase activity nor the mRNA for hepatic arginase I was different between groups. In contrast, LS rats had twice the abundance of mRNA for hepatic CAT2A (LS: 3.4 +/- 0.4 vs. HS: 1.6 +/- 0.5, P < 0.05). The reduced plasma arginine concentration with increased plasma ornithine concentration and urea excretion during LS indicates increased arginine metabolism by arginase. This cannot be ascribed to changes in hepatic arginase expression but may be a consequence of increased hepatic arginine uptake via CAT2A. PMID:11247829

  12. Role of aspartate 400, arginine 262, and arginine 401 in the catalytic mechanism of human coproporphyrinogen oxidase

    PubMed Central

    Stephenson, Jason R.; Stacey, Julie A.; Morgenthaler, Justin B.; Friesen, Jon A.; Lash, Timothy D.; Jones, Marjorie A.

    2007-01-01

    Coproporphyrinogen oxidase (CPO) is the sixth enzyme in the heme biosynthetic pathway, catalyzing two sequential oxidative decarboxylations of propionate moieties on coproporphyrinogen-III forming protoporphyrinogen-IX through a monovinyl intermediate, harderoporphyrinogen. Site-directed mutagenesis studies were carried out on three invariant amino acids, aspartate 400, arginine 262, and arginine 401, to determine residue contribution to substrate binding and/or catalysis by human recombinant CPO. Kinetic analyses were performed on mutant enzymes incubated with three substrates, coproporphyrinogen-III, harderoporphyrinogen, or mesoporphyrinogen-VI, in order to determine catalytic ability to perform the first and/or second oxidative decarboxylation. When Asp400 was mutated to alanine no divinyl product was detected, but the production of a small amount of monovinyl product suggested the Km value for coproporphyrinogen-III did not change significantly compared to the wild-type enzyme. Upon mutation of Arg262 to alanine, CPO was again a poor catalyst for the production of a divinyl product, with a catalytic efficiency <0.01% compared to wild-type, including a 15-fold higher Km for coproporphyrinogen-III. The efficiency of divinyl product formation for mutant enzyme Arg401Ala was ∼3% compared to wild-type CPO, with a threefold increase in the Km value for coproporphyrinogen-III. These data suggest Asp400, Arg262, and Arg401 are active site amino acids critical for substrate binding and/or catalysis. Possible roles for arginine 262 and 401 include coordination of carboxylate groups of coproporphyrinogen-III, while aspartate 400 may initiate deprotonation of substrate, resulting in an oxidative decarboxylation. PMID:17242372

  13. Active site specificity of plasmepsin II.

    PubMed Central

    Westling, J.; Cipullo, P.; Hung, S. H.; Saft, H.; Dame, J. B.; Dunn, B. M.

    1999-01-01

    Members of the aspartic proteinase family of enzymes have very similar three-dimensional structures and catalytic mechanisms. Each, however, has unique substrate specificity. These distinctions arise from variations in amino acid residues that line the active site subsites and interact with the side chains of the amino acids of the peptides that bind to the active site. To understand the unique binding preferences of plasmepsin II, an enzyme of the aspartic proteinase class from the malaria parasite, Plasmodium falciparum, chromogenic octapeptides having systematic substitutions at various positions in the sequence were analyzed. This enabled the design of new, improved substrates for this enzyme (Lys-Pro-Ile-Leu-Phe*Nph-Ala/Glu-Leu-Lys, where * indicates the cleavage point). Additionally, the crystal structure of plasmepsin II was analyzed to explain the binding characteristics. Specific amino acids (Met13, Ser77, and Ile287) that were suspected of contributing to active site binding and specificity were chosen for site-directed mutagenesis experiments. The Met13Glu and Ile287Glu single mutants and the Met13Glu/Ile287Glu double mutant gain the ability to cleave substrates containing Lys residues. PMID:10548045

  14. Arginine starvation in colorectal carcinoma cells: Sensing, impact on translation control and cell cycle distribution.

    PubMed

    Vynnytska-Myronovska, Bozhena O; Kurlishchuk, Yuliya; Chen, Oleh; Bobak, Yaroslav; Dittfeld, Claudia; Hüther, Melanie; Kunz-Schughart, Leoni A; Stasyk, Oleh V

    2016-02-01

    Tumor cells rely on a continued exogenous nutrient supply in order to maintain a high proliferative activity. Although a strong dependence of some tumor types on exogenous arginine sources has been reported, the mechanisms of arginine sensing by tumor cells and the impact of changes in arginine availability on translation and cell cycle regulation are not fully understood. The results presented herein state that human colorectal carcinoma cells rapidly exhaust the internal arginine sources in the absence of exogenous arginine and repress global translation by activation of the GCN2-mediated pathway and inhibition of mTOR signaling. Tumor suppressor protein p53 activation and G1/G0 cell cycle arrest support cell survival upon prolonged arginine starvation. Cells with the mutant or deleted TP53 fail to stop cell cycle progression at defined cell cycle checkpoints which appears to be associated with reduced recovery after durable metabolic stress triggered by arginine withdrawal. PMID:26751966

  15. Functional Genomics Enables Identification of Genes of the Arginine Transaminase Pathway in Pseudomonas aeruginosa▿

    PubMed Central

    Yang, Zhe; Lu, Chung-Dar

    2007-01-01

    Arginine utilization in Pseudomonas aeruginosa with multiple catabolic pathways represents one of the best examples of the metabolic versatility of this organism. To identify genes involved in arginine catabolism, we have employed DNA microarrays to analyze the transcriptional profiles of this organism in response to l-arginine. While most of the genes involved in arginine uptake, regulation, and metabolism have been identified as members of the ArgR (arginine-responsive regulatory protein) regulon in our previous study, they did not include any genes of the arginine dehydrogenase (ADH) pathway. In this study, 18 putative transcriptional units of 38 genes, including the two known genes of the ADH pathway, kauB and gbuA, were found to be inducible by exogenous l-arginine in the absence of ArgR. To identify the missing genes that encode enzymes for the initial steps of the ADH pathway, the potential physiological functions of those candidate genes in arginine utilization were studied by growth phenotype analysis of knockout mutants. Expression of these genes was induced by l-arginine in an aruF mutant strain devoid of a functional arginine succinyltransferase pathway, the major route of arginine utilization. Disruption of dadA, a putative catabolic alanine dehydrogenase-encoding gene, in the aruF mutant produced no growth on l-arginine, suggesting the involvement of l-alanine in arginine catabolism. This hypothesis was further supported by the detection of an l-arginine-inducible arginine:pyruvate transaminase activity in the aruF mutant. Knockout of aruH and aruI, which encode an arginine:pyruvate transaminase and a 2-ketoarginine decarboxylase in an operon, also abolished the ability of the aruF mutant to grow on l-arginine. The results of high-performance liquid chromatography analysis demonstrated consumption of 2-ketoarginine and suggested that generation of 4-guanidinobutyraldehyde occurred in the aruF mutant but not in the aruF aruI mutant. These results led

  16. Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria.

    PubMed

    Deepa, Indira; Kumar, Sasidharan N; Sreerag, Ravikumar S; Nath, Vishnu S; Mohandas, Chellapan

    2015-01-01

    Skin and chronic wound infections caused by various pathogenic bacteria are an increasing and urgent health problem worldwide. In the present investigation ethyl acetate extract of an Achromobacter sp. associated with a Rhabditis entomopathogenic nematode (EPN), displayed promising antibacterial property and was further purified by silica gel column chromatography to get three different cyclic dipeptides (CDPs). Based on the spectral data and Marfey's analyses, the CDPs were identified as cyclo(D-Leu-D-Arg) (1), cyclo(L-Trp-L-Arg) (2), and cyclo(D-Trp-D-Arg) (3), respectively. Three CDPs were active against all the 10 wound associated bacteria tested. The significant antibacterial activity was recorded by CDP 3, and highest activity of 0.5 μg/ml was recorded against Staphylococcus aureus and Pseudomonas aeruginosa. The synergistic antibacterial activities of CDPs and ampicillin were assessed using the checkerboard microdilution method. The results of the current study recorded that the combined effects of CDPs and ampicillin principally recorded synergistic activity. Interestingly, the combination of CDPs and ampicillin also recorded enhanced inhibition of biofilm formation by bacteria. Moreover, CDPs significantly stimulate the production of IL-10 and IL-4 (anti-inflammatory cytokines) by human peripheral blood mononuclear cells. CDPs do not make any significant effect on the production of pro-inflammatory cytokines like TNF-α. The three CDPs have been studied for their effect on intracellular S. aureus in murine macrophages (J774) using 24 h exposure to 0.5X, 1X, and 2X MIC concentrations. Significant decrease in intracellular S. aureus burden was recorded by CDPs. CDPs also recorded no cytotoxicity toward FS normal fibroblast, VERO, and L231 normal lung epithelial cell lines. Antimicrobial activity of the arginine containing CDPs against the wound associated bacteria is reported here for the first. Moreover, this is also the first report on the production of

  17. Hexa-D-Arginine treatment increases 7B2•PC2 activity in hyp-mouse osteoblasts and rescues the HYP phenotype

    PubMed Central

    Yuan, Baozhi; Feng, Jian Q.; Bowman, Stephen; Liu, Ying; Blank, Robert D.; Lindberg, Iris; Drezner, Marc K.

    2012-01-01

    Inactivating mutations of PHEX/Phex underlie disease in patients with X-linked hypophosphatemia (XLH) and the hyp-mouse, a murine homologue of the human disorder. Although increased serum FGF-23 underlies the HYP phenotype, the mechanism(s) by which PHEX mutations inhibit FGF-23 degradation and/or enhance production remains unknown. Here we show that treatment of wild type mice with the proprotein convertase (PC) inhibitor, Decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone, increases serum FGF-23 and produces the HYP phenotype. Since PC2 is uniquely co-localized with PHEX in osteoblasts/bone, we examined if PC2 regulates PHEX-dependent FGF-23 cleavage and production. Transfection of murine osteoblasts with PC2 and its chaperone protein 7B2 cleaved FGF-23, while Signe1 (7B2) RNAi transfection, which limited 7B2 protein production, decreased FGF-23 degradation and increased Fgf-23 mRNA and protein. The mechanism by which decreased 7B2•PC2 activity influences Fgf-23 mRNA was linked to reduced conversion of proBMP1 to active BMP1, which resulted in limited cleavage of DMP1, and consequent increased Fgf-23 mRNA. The significance of decreased 7B2•PC2 activity in XLH was confirmed by studies of hyp-mouse bone, which revealed significantly decreased Sgne1 (7B2) mRNA and 7B2 protein, and limited cleavage of proPC2 to active PC2. The expected downstream effects of these changes included decreased FGF-23 cleavage and increased FGF-23 synthesis, secondary to decreased BMP1-mediated degradation of DMP1. Subsequent Hexa-D-Arginine treatment of hyp-mice enhanced bone 7B2•PC2 activity, normalized FGF-23 degradation and production, and rescued the HYP phenotype. These data suggest decreased PHEX-dependent 7B2•PC2 activity is central to the pathogenesis of XLH. PMID:22886699

  18. Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria

    PubMed Central

    Deepa, Indira; Kumar, Sasidharan N.; Sreerag, Ravikumar S.; Nath, Vishnu S.; Mohandas, Chellapan

    2015-01-01

    Skin and chronic wound infections caused by various pathogenic bacteria are an increasing and urgent health problem worldwide. In the present investigation ethyl acetate extract of an Achromobacter sp. associated with a Rhabditis entomopathogenic nematode (EPN), displayed promising antibacterial property and was further purified by silica gel column chromatography to get three different cyclic dipeptides (CDPs). Based on the spectral data and Marfey's analyses, the CDPs were identified as cyclo(D-Leu-D-Arg) (1), cyclo(L-Trp-L-Arg) (2), and cyclo(D-Trp-D-Arg) (3), respectively. Three CDPs were active against all the 10 wound associated bacteria tested. The significant antibacterial activity was recorded by CDP 3, and highest activity of 0.5 μg/ml was recorded against Staphylococcus aureus and Pseudomonas aeruginosa. The synergistic antibacterial activities of CDPs and ampicillin were assessed using the checkerboard microdilution method. The results of the current study recorded that the combined effects of CDPs and ampicillin principally recorded synergistic activity. Interestingly, the combination of CDPs and ampicillin also recorded enhanced inhibition of biofilm formation by bacteria. Moreover, CDPs significantly stimulate the production of IL-10 and IL-4 (anti-inflammatory cytokines) by human peripheral blood mononuclear cells. CDPs do not make any significant effect on the production of pro-inflammatory cytokines like TNF-α. The three CDPs have been studied for their effect on intracellular S. aureus in murine macrophages (J774) using 24 h exposure to 0.5X, 1X, and 2X MIC concentrations. Significant decrease in intracellular S. aureus burden was recorded by CDPs. CDPs also recorded no cytotoxicity toward FS normal fibroblast, VERO, and L231 normal lung epithelial cell lines. Antimicrobial activity of the arginine containing CDPs against the wound associated bacteria is reported here for the first. Moreover, this is also the first report on the production of

  19. Corrosion Research And Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  20. Corrosion Research and Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2002-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  1. Arginine production in the neonate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endogenous arginine synthesis in adults is a complex multiorgan process, in which citrulline is synthesized in the gut, enters the general circulation, and is converted into arginine in the kidney, by what is known as the intestinal-renal axis. In neonates, the enzymes required to convert citrulline...

  2. Diamidine Compounds for Selective Inhibition of Protein Arginine Methyltransferase 1

    PubMed Central

    2015-01-01

    Protein arginine methylation is a posttranslational modification critical for a variety of biological processes. Misregulation of protein arginine methyltransferases (PRMTs) has been linked to many pathological conditions. Most current PRMT inhibitors display limited specificity and selectivity, indiscriminately targeting many methyltransferase enzymes that use S-adenosyl-l-methionine as a cofactor. Here we report diamidine compounds for specific inhibition of PRMT1, the primary type I enzyme. Docking, molecular dynamics, and MM/PBSA analysis together with biochemical assays were conducted to understand the binding modes of these inhibitors and the molecular basis of selective inhibition for PRMT1. Our data suggest that 2,5-bis(4-amidinophenyl)furan (1, furamidine, DB75), one leading inhibitor, targets the enzyme active site and is primarily competitive with the substrate and noncompetitive toward the cofactor. Furthermore, cellular studies revealed that 1 is cell membrane permeable and effectively inhibits intracellular PRMT1 activity and blocks cell proliferation in leukemia cell lines with different genetic lesions. PMID:24564570

  3. Glucose Autoxidation Induces Functional Damage to Proteins via Modification of Critical Arginine Residues†

    PubMed Central

    Chetyrkin, Sergei; Mathis, Missy; Pedchenko, Vadim; Sanchez, Otto A.; McDonald, W. Hayes; Hachey, David L.; Madu, Hartman; Stec, Donald; Hudson, Billy; Voziyan, Paul

    2011-01-01

    Non-enzymatic modification of proteins in hyperglycemia is a major mechanism causing diabetic complications. These modifications can have pathogenic consequences when they target active site residues, thus affecting protein function. In the present study, we examined the role of glucose autoxidation in functional protein damage using lysozyme and RGD-α3NC1 domain of collagen IV as model proteins in vitro. We demonstrated that glucose autoxidation induced inhibition of lysozyme activity as well as NC1 domain binding to αVβ3 integrin receptor via modification of critical arginine residues by reactive carbonyl species (RCS) glyoxal (GO) and methylglyoxal while non-oxidative glucose adduction to the protein did not affect protein function. The role of RCS in protein damage was confirmed using pyridoxamine which blocked glucose autoxidation and RCS production, thus protecting protein function, even in the presence of high concentrations of glucose. Glucose autoxidation may cause protein damage in vivo since increased levels of GO-derived modifications of arginine residues were detected within the assembly interface of collagen IV NC1 domains isolated from renal ECM of diabetic rats. Since arginine residues are frequently present within protein active sites, glucose autoxidation may be a common mechanism contributing to ECM protein functional damage in hyperglycemia and oxidative environment. Our data also point out the pitfalls in functional studies, particularly in cell culture experiments, that involve glucose treatment but do not take into account toxic effects of RCS derived from glucose autoxidation. PMID:21661747

  4. Upregulation of RNase E activity by mutation of a site that uncompetitively interferes with RNA binding

    PubMed Central

    Lee, Minho; Shin, Eunkyoung; Jeon, Che Ok; Cha, Chang-Jun; Han, Seung Hyun; Kim, Su-Jin; Lee, Sang-Won; Lee, Younghoon; Ha, Nam-Chul

    2011-01-01

    Escherichia coli RNase E contains a site that selectively binds to RNAs containing 5′-monophosphate termini, increasing the efficiency of endonucleolytic cleavage of these RNAs. Random mutagenesis of N-Rne, the N-terminal catalytic region of RNase E, identified a hyperactive variant that remains preferentially responsive to phosphorylation at 5′ termini. Biochemical analyses showed that the mutation (Q36R), which replaces glutamine with arginine at a position distant from the catalytic site, increases formation of stable RNA-protein complexes without detectably affecting the enzyme's secondary or tertiary structure. Studies of cleavage of fluorogenic substrate and EMSA experiments indicated that the Q36R mutation increases catalytic activity and RNA binding. however, UV crosslinking and mass spectrometry studies suggested that the mutant enzyme lacks an RNA binding site present in its wild-type counterpart. Two substrate-bound tryptic peptides, 65HGFLPLK71—which includes amino acids previously implicated in substrate binding and catalysis—and 24LYDLDIESPGHEQK37—which includes the Q36 locus—were identified in wild-type enzyme complexes, whereas only the shorter peptide was observed for complexes containing Q36R. Our results identify a novel RNase E locus that disparately affects the number of substrate binding sites and catalytic activity of the enzyme. We propose a model that may account for these surprising effects. PMID:22186084

  5. GABAAergic stimulation modulates intracellular protein arginine methylation.

    PubMed

    Denman, Robert B; Xie, Wen; Merz, George; Sung, Ying-Ju

    2014-06-20

    Changes in cytoplasmic pH are known to regulate diverse cellular processes and influence neuronal activities. In neurons, the intracellular alkalization is shown to occur after stimulating several channels and receptors. For example, it has previously demonstrated in P19 neurons that a sustained intracellular alkalinization can be mediated by the Na(+)/H(+) antiporter. In addition, the benzodiazepine binding subtypes of the γ-amino butyric acid type A (GABAA) receptor mediate a transient intracellular alkalinization when they are stimulated. Because the activities of many enzymes are sensitive to pH shift, here we investigate the effects of intracellular pH modulation resulted from stimulating GABAA receptor on the protein arginine methyltransferases (PRMT) activities. We show that the major benzodiazepine subtype (2α1, 2β2, 1γ2) is constitutively expressed in both undifferentiated P19 cells and retinoic acid (RA) differentiated P19 neurons. Furthermore stimulation with diazepam and, diazepam plus muscimol produce an intracellular alkalinization that can be detected ex vivo with the fluorescence dye. The alkalinization results in significant perturbation in protein arginine methylation activity as measured in methylation assays with specific protein substrates. Altered protein arginine methylation is also observed when cells are treated with the GABAA agonist muscimol but not an antagonist, bicuculline. These data suggest that pH-dependent and pH-independent methylation pathways can be activated by GABAAergic stimulation, which we verified using hippocampal slice preparations from a mouse model of fragile X syndrome. PMID:24793772

  6. Arginine depletion increases susceptibility to serious infections in preterm newborns

    PubMed Central

    Badurdeen, Shiraz; Mulongo, Musa; Berkley, James A.

    2015-01-01

    Preterm newborns are highly susceptible to bacterial infections. This susceptibility is regarded as being due to immaturity of multiple pathways of the immune system. However, it is unclear whether a mechanism that unifies these different, suppressed pathways exists. Here, we argue that the immune vulnerability of the preterm neonate is critically related to arginine depletion. Arginine, a “conditionally essential” amino acid, is depleted in acute catabolic states, including sepsis. Its metabolism is highly compartmentalized and regulated, including by arginase-mediated hydrolysis. Recent data suggest that arginase II-mediated arginine depletion is essential for the innate immune suppression that occurs in newborn models of bacterial challenge, impairing pathways critical for the immune response. Evidence that arginine depletion mediates protection from immune activation during first gut colonization suggests a regulatory role in controlling gut-derived pathogens. Clinical studies show that plasma arginine is depleted during sepsis. In keeping with animal studies, small clinical trials of L-arginine supplementation have shown benefit in reducing necrotizing enterocolitis in premature neonates. We propose a novel, broader hypothesis that arginine depletion during bacterial challenge is a key factor limiting the neonate's ability to mount an adequate immune response, contributing to the increased susceptibility to infections, particularly with respect to gut-derived sepsis. PMID:25360828

  7. Interaction of arginine oligomer with model membrane

    SciTech Connect

    Yi, Dandan . E-mail: yi_dandan@yahoo.com.cn; Guoming, Li; Gao, Li; Wei, Liang

    2007-08-10

    Short oligomers of arginine (R8) have been shown to cross readily a variety of biological barriers. A hypothesis was put forward that inverted micelles form in biological membranes in the presence of arginine oligomer peptides, facilitating their transfer through the membranes. In order to define the role of peptide-lipid interaction in this mechanism, we prepared liposomes as the model membrane to study the ability of R8 inducing calcein release from liposomes, the fusion of liposomes, R8 binding to liposomes and membrane disturbing activity of the bound R8. The results show that R8 binding to liposome membrane depends on lipid compositions, negative surface charge density and interior water phase pH values of liposomes. R8 has no activity to induce the leakage of calcein from liposomes or improve liposome fusion. R8 does not permeabilize through the membrane spontaneously. These peptides delivering drugs through membranes may depend on receptors and energy.

  8. Kinetic and Spectroscopic Studies of Bicupin Oxalate Oxidase and Putative Active Site Mutants

    PubMed Central

    Moomaw, Ellen W.; Hoffer, Eric; Moussatche, Patricia; Salerno, John C.; Grant, Morgan; Immelman, Bridget; Uberto, Richard; Ozarowski, Andrew; Angerhofer, Alexander

    2013-01-01

    Ceriporiopsis subvermispora oxalate oxidase (CsOxOx) is the first bicupin enzyme identified that catalyzes manganese-dependent oxidation of oxalate. In previous work, we have shown that the dominant contribution to catalysis comes from the monoprotonated form of oxalate binding to a form of the enzyme in which an active site carboxylic acid residue must be unprotonated. CsOxOx shares greatest sequence homology with bicupin microbial oxalate decarboxylases (OxDC) and the 241-244DASN region of the N-terminal Mn binding domain of CsOxOx is analogous to the lid region of OxDC that has been shown to determine reaction specificity. We have prepared a series of CsOxOx mutants to probe this region and to identify the carboxylate residue implicated in catalysis. The pH profile of the D241A CsOxOx mutant suggests that the protonation state of aspartic acid 241 is mechanistically significant and that catalysis takes place at the N-terminal Mn binding site. The observation that the D241S CsOxOx mutation eliminates Mn binding to both the N- and C- terminal Mn binding sites suggests that both sites must be intact for Mn incorporation into either site. The introduction of a proton donor into the N-terminal Mn binding site (CsOxOx A242E mutant) does not affect reaction specificity. Mutation of conserved arginine residues further support that catalysis takes place at the N-terminal Mn binding site and that both sites must be intact for Mn incorporation into either site. PMID:23469254

  9. New kinetic parameters for rat liver arginase measured at near-physiological steady-state concentrations of arginine and Mn2+.

    PubMed Central

    Maggini, S; Stoecklin-Tschan, F B; Mörikofer-Zwez, S; Walter, P

    1992-01-01

    A cytosolic cell-free system from rat liver containing the last three enzymes of the urea cycle, a number of cofactors and the substrates aspartate and citrulline was shown to synthesize urea at near-physiological rates ranging between 0.40 and 1.25 mumol/min per g of liver. This system was used to determine the kinetic parameters for arginase. With saturating amounts of Mn2+ (30 microM), arginine remained at a steady-state concentration of 5-35 microM depending on the aspartate and citrulline supply. Vmax. at micromolar arginine concentrations was between 1.10 and 1.25 mumol/min per g of liver, the K0.5 (arginine) between 6.0 and 6.5 microM and positive co-operativity was observed (Hill coefficient 2). Omission of Mn2+ caused a significant accumulation of arginine during the incubation, suggesting a regulatory effect of arginase. Under these conditions, Vmax. was 1.10-1.65 mumol/min per g of liver and the Km (arginine) increased up to 14.4-21.1 microM. The apparent Ka for Mn2+ in the presence of physiological concentrations of ATP, Mg2+ and arginine was calculated to be maximally 8 microM. Initial-velocity experiments with millimolar arginine concentrations as the direct substrate gave the following results, which are in good agreement with literature data. In the absence of Mn2+, Vmax. was 71.3 mumol/min per g of liver and the Km (arginine) 1.58 mM. With 30 microM-Mn2+, Vmax. was 69.4 mumol/min per g of liver and the Km (arginine) decreased to 0.94 mM. On the basis of our results, we propose the presence of high-affinity and low-affinity sites for arginine on rat liver arginase and postulate that alterations in arginase activity arising from changes in the concentration of arginine and of the cofactor Mn2+ may contribute to the regulation of ureagenesis in vivo. PMID:1590754

  10. Arginine-Containing Ligands Enhance H-2 Oxidation Catalyst Performance

    SciTech Connect

    Dutta, Arnab; Roberts, John A.; Shaw, Wendy J.

    2014-06-16

    In H2 fuel cells, performance depends on factors controlling turnover frequency and energy efficiency in the electrocatalytic oxidation of H2. Nature uses the hydrogenase enzymes to oxidize H2 at high turnover frequencies (up to 20,000 s-1) and low overpotentials (<100 mV), while the fastest synthetic catalyst reported to date only oxidizes H2 at 50 s-1 under 1 atm H2. Here we report a water-soluble complex incorporating the amino acid arginine, [NiII(PCy2NArg2)2]6+, that operates at 210 s-1 (180 mV overpotential) under 1 atm H2 and 144,000 s-1 (460 mV overpotential) under 133 atm H2. The complex functions from pH 0-14 with rates increasing at lower pH values. The arginine groups impart water solubility and play a critical role in enhancing turnover frequency, most consistent with an intramolecular Arg-Arg interaction that controls the structure of the catalyst active site. This work was funded by the Office of Science Early Career Research Program through the US DOE, BES (AD, WJS), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US DOE, BES (JASR). PNNL is operated by Battelle for the US DOE.

  11. Characterization and localization of arginine vasotocin receptors in the brain and kidney of an amphibian

    SciTech Connect

    Boyd, S.K.

    1987-01-01

    Because arginine vasotocin (AVT) activates male sexual behaviors in the rough-skinned newt (Taricha granulosa), quantitative autoradiography with radiolabeled arginine vasopressin (/sup 3/H-AVP) was used to localize and characterize putative AVT receptors in the brain of this amphibian. Binding of /sup 3/H-AVP to sites within the medial pallium was saturable, specific, reversible, of high affinity and low capacity. These binding sites appear to represent authentic central nervous system receptors for AVT. Furthermore, ligand specificity for the binding sites in this amphibian differs from that reported for AVP binding sites in rat brains. Dense concentrations of specific binding sites were located in the olfactory nerve as it entered the olfactory bulb within the medial pallium, dorsal pallium, and amygdala pars lateralis of the telencephalon, and in the tegmental region of the medulla. Concentrations of binding sites differed significantly among various brain regions. A comparison of male and female newts collected during the breeding season revealed no sexual dimorphism. These areas may represent site(s) of action where AVT elicits sexual behaviors in male T. granulosa.

  12. Evaluation of chemical labeling methods for identifying functional arginine residues of proteins by mass spectrometry.

    PubMed

    Wanigasekara, Maheshika S K; Chowdhury, Saiful M

    2016-09-01

    Arginine residues undergo several kinds of post-translational modifications (PTMs). These PTMs are associated with several inflammatory diseases, such as rheumatoid arthritis, atherosclerosis, and diabetes. Mass spectrometric studies of arginine modified proteins and peptides are very important, not only to identify the reactive arginine residues but also to understand the tandem mass spectrometry behavior of these peptides for assigning the sequences unambiguously. Herein, we utilize tandem mass spectrometry to report the performance of two widely used arginine labeling reagents, 1,2-cyclohexanedione (CHD) and phenylglyoxal (PG) with several arginine containing peptides and proteins. Time course labeling studies were performed to demonstrate the selectivity of the reagents in proteins or protein digests. Structural studies on the proteins were also explored to better understand the reaction sites and position of arginine residues. We found CHD showed better labeling efficiencies compared to phenylglyoxal. Reactive arginine profiling on a purified albumin protein clearly pointed out the cellular glycation modification site for this protein with high confidence. We believe these detailed mass-spectrometric studies will provide significant input to profile reactive arginine residues in large-scale studies; therefore, targeted proteomics can be performed to the short listed reactive sites for cellular arginine modifications. PMID:27543028

  13. Active site of ribulosebisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.; Stringer, C.D.; Milanez, S.; Lee, E.H.

    1985-01-01

    Previous affinity labeling studies and comparative sequence analyses have identified two different lysines at the active site of ribulosebisphosphate carboxylase/oxygenase and have suggested their essentiality to function. The essential lysines occupy positions 166 and 329 in the Rhodospirillum rubrum enzyme and positions 175 and 334 in the spinach enzyme. Based on the pH-dependencies of inactivations of the two enzymes by trinitrobenzene sulfonate, Lys-166 (R. rubrum enzyme) exhibits a pK/sub a/ of 7.9 and Lys-334 (spinach enzyme) exhibits a pK/sub a/ of 9.0. These low pK/sub a/ values as well as the enhanced nucleophilicities of the lysyl residues argue that both are important to catalysis rather than to substrate binding. Lys-166 may correspond to the essential base that initiates catalysis and that displays a pK/sub a/ of 7.5 in the pH-curve for V/sub max//K/sub m/. Cross-linking experiments with 4,4'-diisothiocyano-2,2'-disulfonate stilbene demonstrate that the two active-site lysines are within 12 A. 50 refs., 7 figs., 1 tab.

  14. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  15. Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC.

    PubMed

    Ilgü, Hüseyin; Jeckelmann, Jean-Marc; Gapsys, Vytautas; Ucurum, Zöhre; de Groot, Bert L; Fotiadis, Dimitrios

    2016-09-13

    Pathogenic enterobacteria need to survive the extreme acidity of the stomach to successfully colonize the human gut. Enteric bacteria circumvent the gastric acid barrier by activating extreme acid-resistance responses, such as the arginine-dependent acid resistance system. In this response, l-arginine is decarboxylated to agmatine, thereby consuming one proton from the cytoplasm. In Escherichia coli, the l-arginine/agmatine antiporter AdiC facilitates the export of agmatine in exchange of l-arginine, thus providing substrates for further removal of protons from the cytoplasm and balancing the intracellular pH. We have solved the crystal structures of wild-type AdiC in the presence and absence of the substrate agmatine at 2.6-Å and 2.2-Å resolution, respectively. The high-resolution structures made possible the identification of crucial water molecules in the substrate-binding sites, unveiling their functional roles for agmatine release and structure stabilization, which was further corroborated by molecular dynamics simulations. Structural analysis combined with site-directed mutagenesis and the scintillation proximity radioligand binding assay improved our understanding of substrate binding and specificity of the wild-type l-arginine/agmatine antiporter AdiC. Finally, we present a potential mechanism for conformational changes of the AdiC transport cycle involved in the release of agmatine into the periplasmic space of E. coli. PMID:27582465

  16. Effects of non-surgical periodontal treatment on the L-arginine-nitric oxide pathway and oxidative status in platelets.

    PubMed

    Siqueira, Mariana Alves de Sá; Fischer, Ricardo Guimarães; Pereira, Natália Rodrigues; Martins, Marcela Anjos; Moss, Monique Bandeira; Mendes-Ribeiro, Antônio Cláudio; Figueredo, Carlos Marcelo da Silva; Brunini, Tatiana Marlowe Cunha

    2013-06-01

    Several studies have suggested an increase of cardiovascular disease (CVD) risk on periodontitis patients. An enhancement has been demonstrated on both platelet activation and oxidative stress on periodontitis patients, which may contribute for this association. Therefore, the aim of this study was to evaluate the effects of non-surgical periodontal treatment on the l-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway and oxidative status in platelets. A total of eight periodontitis patients and eight controls were included in this study. Clinical, laboratory and experimental evaluations were performed on baseline and 90 days after periodontal treatment (except for western blot analysis). The clinical periodontal evaluation included measurements of probing pocket depth (PPD), clinical attachment loss (CAL), % of sites with plaque and % of sites with bleeding on probing. We evaluated: l-[(3)H]arginine influx; nitric oxide synthase (NOS) and arginase enzymes activity and expression; expression of guanylate cyclase and phosphodiesterase-5 enzymes; cGMP levels; platelet aggregation; oxidative status through superoxide dismutase (SOD) and catalase activities, and measurement of reactive oxygen species (ROS) levels and C-reactive protein (CRP) levels. The initial results showed an activation of both l-arginine influx and via system y (+ )L associated with reduced intraplatelet cGMP levels in periodontitis patients and increased systemic levels of CRP. After periodontal treatment, there was a significant reduction of the % of sites with PPD 4-5mm, % of sites with CAL 4-5 mm, and an enhancement in cGMP levels and SOD activity. Moreover, CRP levels were reduced after treatment. Therefore, alterations in the intraplatelet l-arginine-NO-cGMP pathway and oxidant-antioxidant balance associated with a systemic inflammatory response may lead to platelet dysfunction, which may contribute to a higher risk of CVD in periodontitis. PMID:23918883

  17. The effect of arginine on oral biofilm communities.

    PubMed

    Nascimento, M M; Browngardt, C; Xiaohui, X; Klepac-Ceraj, V; Paster, B J; Burne, R A

    2014-02-01

    Alkali production by oral bacteria via the arginine deiminase system (ADS) increases the pH of oral biofilms and reduces the risk for development of carious lesions. This study tested the hypothesis that increased availability of arginine in the oral environment through an exogenous source enhances the ADS activity levels in saliva and dental plaque. Saliva and supra-gingival plaque samples were collected from 19 caries-free (CF) individuals (DMFT = 0) and 19 caries-active (CA) individuals (DMFT ≥ 2) before and after treatment, which comprised the use of a fluoride-free toothpaste containing 1.5% arginine, or a regular fluoride-containing toothpaste twice daily for 4 weeks. ADS activity was measured by quantification of ammonia produced from arginine by oral samples at baseline, after washout period, 4 weeks of treatment, and 2 weeks post-treatment. Higher ADS activity levels were observed in plaque samples from CF compared to those of CA individuals (P = 0.048) at baseline. The use of the arginine toothpaste significantly increased ADS activity in plaque of CA individuals (P = 0.026). The plaque microbial profiles of CA treated with the arginine toothpaste showed a shift in bacterial composition to a healthier community, more similar to that of CF individuals. Thus, an anti-caries effect may be expected from arginine-containing formulations due in large part to the enhancement of ADS activity levels and potential favorable modification to the composition of the oral microbiome. PMID:24289808

  18. Investigation of the Roles of Allosteric Domain Arginine, Aspartate, and Glutamate Residues of Rhizobium etli Pyruvate Carboxylase in Relation to Its Activation by Acetyl CoA.

    PubMed

    Sirithanakorn, Chaiyos; Jitrapakdee, Sarawut; Attwood, Paul V

    2016-08-01

    The mechanism of allosteric activation of pyruvate carboxylase by acetyl CoA is not fully understood. Here we have examined the roles of residues near the acetyl CoA binding site in the allosteric activation of Rhizobium etli pyruvate carboxylase using site-directed mutagenesis. Arg429 was found to be especially important for acetyl CoA binding as substitution with serine resulted in a 100-fold increase in the Ka of acetyl CoA activation and a large decrease in the cooperativity of this activation. Asp420 and Arg424, which do not make direct contact with bound acetyl CoA, were nonetheless found to affect acetyl CoA binding when mutated, probably through changed interactions with another acetyl CoA binding residue, Arg427. Thermodynamic activation parameters for the pyruvate carboxylation reaction were determined from modified Arrhenius plots and showed that acetyl CoA acts to decrease the activation free energy of the reaction by both increasing the activation entropy and decreasing the activation enthalpy. Most importantly, mutations of Asp420, Arg424, and Arg429 enhanced the activity of the enzyme in the absence of acetyl CoA. A main focus of this work was the detailed investigation of how this increase in activity occurred in the R424S mutant. This mutation decreased the activation enthalpy of the pyruvate carboxylation reaction by an amount consistent with removal of a single hydrogen bond. It is postulated that Arg424 forms a hydrogen bonding interaction with another residue that stabilizes the asymmetrical conformation of the R. etli pyruvate carboxylase tetramer, constraining its interconversion to the symmetrical conformer that is required for catalysis. PMID:27379711

  19. An Arginine Deprivation Response Pathway Is Induced in Leishmania during Macrophage Invasion

    PubMed Central

    Strasser, Rona; Zeituni-Molad, Michal; Bendelak, Keren; Rentsch, Doris; Ephros, Moshe; Wiese, Martin; Jardim, Armando; Myler, Peter J.; Zilberstein, Dan

    2016-01-01

    Amino acid sensing is an intracellular function that supports nutrient homeostasis, largely through controlled release of amino acids from lysosomal pools. The intracellular pathogen Leishmania resides and proliferates within human macrophage phagolysosomes. Here we describe a new pathway in Leishmania that specifically senses the extracellular levels of arginine, an amino acid that is essential for the parasite. During infection, the macrophage arginine pool is depleted due to its use to produce metabolites (NO and polyamines) that constitute part of the host defense response and its suppression, respectively. We found that parasites respond to this shortage of arginine by up-regulating expression and activity of the Leishmania arginine transporter (LdAAP3), as well as several other transporters. Our analysis indicates the parasite monitors arginine levels in the environment rather than the intracellular pools. Phosphoproteomics and genetic analysis indicates that the arginine-deprivation response is mediated through a mitogen-activated protein kinase-2-dependent signaling cascade. PMID:27043018

  20. An Arginine Deprivation Response Pathway Is Induced in Leishmania during Macrophage Invasion.

    PubMed

    Goldman-Pinkovich, Adele; Balno, Caitlin; Strasser, Rona; Zeituni-Molad, Michal; Bendelak, Keren; Rentsch, Doris; Ephros, Moshe; Wiese, Martin; Jardim, Armando; Myler, Peter J; Zilberstein, Dan

    2016-04-01

    Amino acid sensing is an intracellular function that supports nutrient homeostasis, largely through controlled release of amino acids from lysosomal pools. The intracellular pathogen Leishmania resides and proliferates within human macrophage phagolysosomes. Here we describe a new pathway in Leishmania that specifically senses the extracellular levels of arginine, an amino acid that is essential for the parasite. During infection, the macrophage arginine pool is depleted due to its use to produce metabolites (NO and polyamines) that constitute part of the host defense response and its suppression, respectively. We found that parasites respond to this shortage of arginine by up-regulating expression and activity of the Leishmania arginine transporter (LdAAP3), as well as several other transporters. Our analysis indicates the parasite monitors arginine levels in the environment rather than the intracellular pools. Phosphoproteomics and genetic analysis indicates that the arginine-deprivation response is mediated through a mitogen-activated protein kinase-2-dependent signaling cascade. PMID:27043018

  1. BRAF inhibitor resistance enhances vulnerability to arginine deprivation in melanoma

    PubMed Central

    Li, Ying-Ying; Wu, Chunjing; Chen, Shu-Mei; Shah, Sumedh S.; Wangpaichitr, Medhi; Feun, Lynn G.; Kuo, Macus T.; Suarez, Miguel; Prince, Jeffrey; Savaraj, Niramol

    2016-01-01

    BRAF inhibitor (BRAFi) has been used for treatment of melanomas harboring V600E mutation. Despite a high initial response rate, resistance to BRAFi is inevitable. Here, we demonstrate that BRAFi-resistant (BR) melanomas are susceptible to arginine deprivation due to inability to initiate re-expression of argininosuccinate synthetase (ASS1, a key enzyme for arginine synthesis) as well as ineffective autophagy. Autophagy and ASS1 re-expression are known to protect melanoma cells from cell death upon arginine deprivation. When melanoma cells become BR cells by long-term in vitro incubation with BRAFi, c-Myc-mediated ASS1 re-expression and the levels of autophagy-associated proteins (AMPK-α1 and Atg5) are attenuated. Furthermore, our study uncovers that downregulation of deubiquitinase USP28 which results in more active c-Myc degradation via ubiquitin-proteasome machinery is the primary mechanism for inability to re-express ASS1 upon arginine deprivation in BR cells. Overexpression of USP28 in BR cells enhances c-Myc expression and hence increases ASS1 transcription upon arginine deprivation, and consequently leads to cell survival. On the other hand, overexpression of Atg5 or AMPK-α1 in BR cells can redirect arginine deprivation-induced apoptosis toward autophagy. The xenograft models also confirm that BR tumors possess lower expression of ASS1 and are hypersensitive to arginine deprivation. These biochemical changes in BRAFi resistance which make them vulnerable to arginine deprivation can be exploited for the future treatment of BR melanoma patients. PMID:26771234

  2. Effects of cadmium on the cuttlefish Sepia pharaonis' arginine kinase: unfolding kinetics integrated with computational simulations.

    PubMed

    Si, Yue-Xiu; Lee, Jinhyuk; Zhao, Feng; Yin, Shang-Jun; Park, Yong-Doo; Qian, Guo-Ying; Jiang, Xia-Min

    2016-08-01

    Arginine kinase is closely associated with adaptation to environmental stresses such as high salinity and heavy metal ion levels in marine invertebrates. In this study, the effects of Cd(2+) on the cuttlefish Sepia pharaonis' arginine kinase (SPAK) were investigated. SPAK was isolated from the muscles of S. pharaonis and upon further purification, showed a single band on SDS-PAGE. Cd(2+) effectively inactivated SPAK, and the double-reciprocal kinetics indicated that Cd(2+) induced non-competitive inhibition of arginine and ATP. Spectrofluorometry results showed that Cd(2+) induced tertiary structure changes in SPAK with the exposure of hydrophobic surfaces that directly induced SPAK aggregation. The addition of osmolytes, glycine, and proline successfully blocked SPAK aggregation and restored the conformation and activity of SPAK. Molecular dynamics simulations involving SPAK and Cd(2+) showed that Cd(2+) partly blocks the entrance of ATP to the active site, and this result is consistent with the experimental results showing Cd(2+)-induced inactivation of SPAK. These results demonstrate the effect of Cd(2+) on SPAK enzymatic function and unfolding, including aggregation and the protective effects of osmolytes on SPAK folding. This study provides concrete evidence of the toxicity of Cd(2+) in the context of the metabolic enzyme SPAK, and it illustrates the toxic effects of heavy metals and detoxification mechanisms in cuttlefish. PMID:26360528

  3. The CASTOR proteins are arginine sensors for the mTORC1 pathway

    PubMed Central

    Chantranupong, Lynne; Scaria, Sonia M.; Saxton, Robert A.; Gygi, Melanie P.; Shen, Kuang; Wyant, Gregory A.; Wang, Tim; Harper, J. Wade; Gygi, Steven P.; Sabatini, David M.

    2016-01-01

    Amino acids signal to the mTOR complex I (mTORC1) growth pathway through the Rag GTPases. Multiple distinct complexes regulate the Rags, including GATOR1, a GTPase activating protein (GAP), and GATOR2, a positive regulator of unknown molecular function. Arginine stimulation of cells activates mTORC1, but how it is sensed is not well understood. Recently, SLC38A9 was identified as a putative lysosomal arginine sensor required for arginine to activate mTORC1 but how arginine deprivation represses mTORC1 is unknown. Here, we show that CASTOR1, a previously uncharacterized protein, interacts with GATOR2 and is required for arginine deprivation to inhibit mTORC1. CASTOR1 homodimerizes and can also heterodimerize with the related protein, CASTOR2. Arginine disrupts the CASTOR1-GATOR2 complex by binding to CASTOR1 with a dissociation constant of ~30 μM, and its arginine-binding capacity is required for arginine to activate mTORC1 in cells. Collectively, these results establish CASTOR1 as an arginine sensor for the mTORC1 pathway. PMID:26972053

  4. The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway.

    PubMed

    Chantranupong, Lynne; Scaria, Sonia M; Saxton, Robert A; Gygi, Melanie P; Shen, Kuang; Wyant, Gregory A; Wang, Tim; Harper, J Wade; Gygi, Steven P; Sabatini, David M

    2016-03-24

    Amino acids signal to the mTOR complex I (mTORC1) growth pathway through the Rag GTPases. Multiple distinct complexes regulate the Rags, including GATOR1, a GTPase activating protein (GAP), and GATOR2, a positive regulator of unknown molecular function. Arginine stimulation of cells activates mTORC1, but how it is sensed is not well understood. Recently, SLC38A9 was identified as a putative lysosomal arginine sensor required for arginine to activate mTORC1 but how arginine deprivation represses mTORC1 is unknown. Here, we show that CASTOR1, a previously uncharacterized protein, interacts with GATOR2 and is required for arginine deprivation to inhibit mTORC1. CASTOR1 homodimerizes and can also heterodimerize with the related protein, CASTOR2. Arginine disrupts the CASTOR1-GATOR2 complex by binding to CASTOR1 with a dissociation constant of ∼30 μM, and its arginine-binding capacity is required for arginine to activate mTORC1 in cells. Collectively, these results establish CASTOR1 as an arginine sensor for the mTORC1 pathway. PMID:26972053

  5. Characterization of an Arginine:Pyruvate Transaminase in Arginine Catabolism of Pseudomonas aeruginosa PAO1▿

    PubMed Central

    Yang, Zhe; Lu, Chung-Dar

    2007-01-01

    The arginine transaminase (ATA) pathway represents one of the multiple pathways for l-arginine catabolism in Pseudomonas aeruginosa. The AruH protein was proposed to catalyze the first step in the ATA pathway, converting the substrates l-arginine and pyruvate into 2-ketoarginine and l-alanine. Here we report the initial biochemical characterization of this enzyme. The aruH gene was overexpressed in Escherichia coli, and its product was purified to homogeneity. High-performance liquid chromatography and mass spectrometry (MS) analyses were employed to detect the presence of the transamination products 2-ketoarginine and l-alanine, thus demonstrating the proposed biochemical reaction catalyzed by AruH. The enzymatic properties and kinetic parameters of dimeric recombinant AruH were determined by a coupled reaction with NAD+ and l-alanine dehydrogenase. The optimal activity of AruH was found at pH 9.0, and it has a novel substrate specificity with an order of preference of Arg > Lys > Met > Leu > Orn > Gln. With l-arginine and pyruvate as the substrates, Lineweaver-Burk plots of the data revealed a series of parallel lines characteristic of a ping-pong kinetic mechanism with calculated Vmax and kcat values of 54.6 ± 2.5 μmol/min/mg and 38.6 ± 1.8 s−1. The apparent Km and catalytic efficiency (kcat/Km) were 1.6 ± 0.1 mM and 24.1 mM−1 s−1 for pyruvate and 13.9 ± 0.8 mM and 2.8 mM−1 s−1 for l-arginine. When l-lysine was used as the substrate, MS analysis suggested Δ1-piperideine-2-carboxylate as its transamination product. These results implied that AruH may have a broader physiological function in amino acid catabolism. PMID:17416668

  6. Structural basis for Sfm1 functioning as a protein arginine methyltransferase

    PubMed Central

    Lv, Fengjuan; Zhang, Tianlong; Zhou, Zhen; Gao, Shuaixin; Wong, Catherine CL; Zhou, Jin-Qiu; Ding, Jianping

    2015-01-01

    SPOUT proteins constitute one class of methyltransferases, which so far are found to exert activity mainly towards RNAs. Previously, yeast Sfm1 was predicted to contain a SPOUT domain but can methylate ribosomal protein S3. Here we report the crystal structure of Sfm1, which comprises of a typical SPOUT domain and a small C-terminal domain. The active site is similar to that of protein arginine methyltransferases but different from that of RNA methyltransferases. In addition, Sfm1 exhibits a negatively charged surface surrounding the active site unsuitable for RNA binding. Our biochemical data show that Sfm1 exists as a monomer and has high activity towards ribosomal protein S3 but no activity towards RNA. It can specifically catalyze the methylation of Arg146 of S3 and the C-terminal domain is critical for substrate binding and activity. These results together provide the structural basis for Sfm1 functioning as a PRMT for ribosomal protein S3.

  7. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase.

    PubMed

    Debler, Erik W; Jain, Kanishk; Warmack, Rebeccah A; Feng, You; Clarke, Steven G; Blobel, Günter; Stavropoulos, Pete

    2016-02-23

    Trypanosoma brucei PRMT7 (TbPRMT7) is a protein arginine methyltransferase (PRMT) that strictly monomethylates various substrates, thus classifying it as a type III PRMT. However, the molecular basis of its unique product specificity has remained elusive. Here, we present the structure of TbPRMT7 in complex with its cofactor product S-adenosyl-l-homocysteine (AdoHcy) at 2.8 Å resolution and identify a glutamate residue critical for its monomethylation behavior. TbPRMT7 comprises the conserved methyltransferase and β-barrel domains, an N-terminal extension, and a dimerization arm. The active site at the interface of the N-terminal extension, methyltransferase, and β-barrel domains is stabilized by the dimerization arm of the neighboring protomer, providing a structural basis for dimerization as a prerequisite for catalytic activity. Mutagenesis of active-site residues highlights the importance of Glu181, the second of the two invariant glutamate residues of the double E loop that coordinate the target arginine in substrate peptides/proteins and that increase its nucleophilicity. Strikingly, mutation of Glu181 to aspartate converts TbPRMT7 into a type I PRMT, producing asymmetric dimethylarginine (ADMA). Isothermal titration calorimetry (ITC) using a histone H4 peptide showed that the Glu181Asp mutant has markedly increased affinity for monomethylated peptide with respect to the WT, suggesting that the enlarged active site can favorably accommodate monomethylated peptide and provide sufficient space for ADMA formation. In conclusion, these findings yield valuable insights into the product specificity and the catalytic mechanism of protein arginine methyltransferases and have important implications for the rational (re)design of PRMTs. PMID:26858449

  8. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase

    PubMed Central

    Debler, Erik W.; Jain, Kanishk; Warmack, Rebeccah A.; Feng, You; Clarke, Steven G.; Blobel, Günter; Stavropoulos, Pete

    2016-01-01

    Trypanosoma brucei PRMT7 (TbPRMT7) is a protein arginine methyltransferase (PRMT) that strictly monomethylates various substrates, thus classifying it as a type III PRMT. However, the molecular basis of its unique product specificity has remained elusive. Here, we present the structure of TbPRMT7 in complex with its cofactor product S-adenosyl-l-homocysteine (AdoHcy) at 2.8 Å resolution and identify a glutamate residue critical for its monomethylation behavior. TbPRMT7 comprises the conserved methyltransferase and β-barrel domains, an N-terminal extension, and a dimerization arm. The active site at the interface of the N-terminal extension, methyltransferase, and β-barrel domains is stabilized by the dimerization arm of the neighboring protomer, providing a structural basis for dimerization as a prerequisite for catalytic activity. Mutagenesis of active-site residues highlights the importance of Glu181, the second of the two invariant glutamate residues of the double E loop that coordinate the target arginine in substrate peptides/proteins and that increase its nucleophilicity. Strikingly, mutation of Glu181 to aspartate converts TbPRMT7 into a type I PRMT, producing asymmetric dimethylarginine (ADMA). Isothermal titration calorimetry (ITC) using a histone H4 peptide showed that the Glu181Asp mutant has markedly increased affinity for monomethylated peptide with respect to the WT, suggesting that the enlarged active site can favorably accommodate monomethylated peptide and provide sufficient space for ADMA formation. In conclusion, these findings yield valuable insights into the product specificity and the catalytic mechanism of protein arginine methyltransferases and have important implications for the rational (re)design of PRMTs. PMID:26858449

  9. Regulation of neurotoxin and protease formation in Clostridium botulinum Okra B and Hall A by arginine.

    PubMed Central

    Patterson-Curtis, S I; Johnson, E A

    1989-01-01

    Supplementation of a minimal medium with high levels of arginine (20 g/liter) markedly decreased neurotoxin titers and protease activities in cultures of Clostridium botulinum Okra B and Hall A. Nitrogenous nutrients that are known to be derived from arginine, including proline, glutamate, and ammonia, also decreased protease and toxin but less so than did arginine. Proteases synthesized during growth were rapidly inactivated after growth stopped in media containing high levels of arginine. Separation of extracellular proteins by electrophoresis and immunoblots with antibodies to toxin showed that the decrease in toxin titers in media containing high levels of arginine was caused by both reduced synthesis of protoxin and impaired proteolytic activation. In contrast, certain other nutritional conditions stimulated protease and toxin formation in C. botulinum and counteracted the repression by arginine. Supplementation of the minimal medium with casein or casein hydrolysates increased protease activities and toxin titers. Casein supplementation of a medium containing high levels of arginine prevented protease inactivation. High levels of glucose (50 g/liter) also delayed the inactivation of proteases in both the minimal medium and a medium containing high levels of arginine. These observations suggest that the availability of nitrogen and energy sources, particularly arginine, affects the production and proteolytic processing of toxins and proteases in C. botulinum. Images PMID:2669631

  10. Arginine Coordination in Enzymatic Phosphoryl Transfer: Evaluation of the Effect of Arg166 Mutations in Escherichia coli Alkaline Phosphatase†,‡

    PubMed Central

    O'Brien, Patrick J.; Lassila, Jonathan Kyle; Fenn, Timothy D.; Zalatan, Jesse G.; Herschlag, Daniel

    2008-01-01

    Arginine residues are commonly found in the active sites of enzymes catalyzing phosphoryl transfer reactions. Numerous site-directed mutagenesis experiments establish the importance of these residues for efficient catalysis, but their role in catalysis is not clear. To examine the role of arginine residues in the phosphoryl transfer reaction, we have measured the consequences of mutations to arginine 166 in Escherichia coli alkaline phosphatase on hydrolysis of ethyl phosphate, on individual reaction steps in the hydrolysis of the covalent enzyme-phosphoryl intermediate, and on thio-substitution effects. The results show that the role of the arginine side chain extends beyond its positive charge, as the Arg166Lys mutant is as compromised in activity as Arg166Ser. Through measurement of individual reaction steps, we construct a free-energy profile for the hydrolysis of the enzyme-phosphate intermediate. This analysis indicates that the arginine side chain strengthens binding by ∼3 kcal/mol and provides an additional 1-2 kcal/mol stabilization of the chemical transition state. A 2.1 Å x-ray diffraction structure of Arg166Ser AP is presented, which shows little difference in enzyme structure compared to the wild-type enzyme, but shows a significant reorientation of the bound phosphate. Altogether, these results support a model in which the arginine contributes to catalysis through binding interactions and through additional transition state stabilization that may arise from complementarity of the guanidinum group to the geometry of the trigonal bipyramidal transition state. PMID:18627128

  11. Interleukin-2 and concanavalin A upregulate a cat2 isoform encoding a high affinity L-arginine transporter in feline lymphocytes.

    PubMed Central

    Stevens, B R; Tellier, M; Harvey, W; Feldman, D H; Bosworth, J

    2000-01-01

    The immunological responses of activated lymphocytes are associated with increased nitric oxide (NO) biosynthesis. Studies in the literature have primarily approached control of NO by focusing on the regulation of the nitric oxide synthase (NOS) isoforms. However, the present study approaches the control of NO synthesis by addressing the regulation of L-arginine availability to lymphocytes via regulation of membrane transport. The guanidino nitrogen of L-arginine is the sole biosynthetic precursor of NO. We investigated cytokine and mitogen regulation of membrane L-arginine transporters for the first time in feline cells. Feline peripheral blood mononuclear cells were treated with interleukin-2 and concanavalin A, then alternatively spliced isoforms of L-arginine transporters known in other species were probed by RT-PCR, using various oligonucleotide primers that hybridized to several regions in common with the isoforms. Both high affinity and low affinity isoforms are encoded by mRNAs arising from mutually exclusive alternative splicing of the primary transcript. A region of 123 bp was obtained that encoded an extracellular polypeptide loop of 41 amino acids. The sequence of this region represented the high affinity L-arginine substrate binding site of a CAT2 transporter polypeptide isoform, but not the CAT2a isoform low affinity binding site. Neither of the inducible isoforms were constitutively expressed in unstimulated feline cells. This is the first report demonstrating that domestic cats possess the cat2 gene encoding an inducible L-arginine transporter, and, furthermore, that the high affinity isoform transcript is activated by interleukin-2 and concanavalin A in feline lymphocytes. Images Figure 1. Figure 3. PMID:10935886

  12. Protein arginine deiminase 2 binds calcium in an ordered fashion: Implications for inhibitor design

    SciTech Connect

    Slade, Daniel J.; Fang, Pengfei; Dreyton, Christina J.; Zhang, Ying; Fuhrmann, Jakob; Rempel, Don; Bax, Benjamin D.; Coonrod, Scott A.; Lewis, Huw D.; Guo, Min; Gross, Michael L.; Thompson, Paul R.

    2015-01-26

    Protein arginine deiminases (PADs) are calcium-dependent histone-modifying enzymes whose activity is dysregulated in inflammatory diseases and cancer. PAD2 functions as an Estrogen Receptor (ER) coactivator in breast cancer cells via the citrullination of histone tail arginine residues at ER binding sites. Although an attractive therapeutic target, the mechanisms that regulate PAD2 activity are largely unknown, especially the detailed role of how calcium facilitates enzyme activation. To gain insights into these regulatory processes, we determined the first structures of PAD2 (27 in total), and through calcium-titrations by X-ray crystallography, determined the order of binding and affinity for the six calcium ions that bind and activate this enzyme. These structures also identified several PAD2 regulatory elements, including a calcium switch that controls proper positioning of the catalytic cysteine residue, and a novel active site shielding mechanism. Additional biochemical and mass-spectrometry-based hydrogen/deuterium exchange studies support these structural findings. The identification of multiple intermediate calcium-bound structures along the PAD2 activation pathway provides critical insights that will aid the development of allosteric inhibitors targeting the PADs.

  13. Protein arginine deiminase 2 binds calcium in an ordered fashion: Implications for inhibitor design

    DOE PAGESBeta

    Slade, Daniel J.; Fang, Pengfei; Dreyton, Christina J.; Zhang, Ying; Fuhrmann, Jakob; Rempel, Don; Bax, Benjamin D.; Coonrod, Scott A.; Lewis, Huw D.; Guo, Min; et al

    2015-01-26

    Protein arginine deiminases (PADs) are calcium-dependent histone-modifying enzymes whose activity is dysregulated in inflammatory diseases and cancer. PAD2 functions as an Estrogen Receptor (ER) coactivator in breast cancer cells via the citrullination of histone tail arginine residues at ER binding sites. Although an attractive therapeutic target, the mechanisms that regulate PAD2 activity are largely unknown, especially the detailed role of how calcium facilitates enzyme activation. To gain insights into these regulatory processes, we determined the first structures of PAD2 (27 in total), and through calcium-titrations by X-ray crystallography, determined the order of binding and affinity for the six calcium ionsmore » that bind and activate this enzyme. These structures also identified several PAD2 regulatory elements, including a calcium switch that controls proper positioning of the catalytic cysteine residue, and a novel active site shielding mechanism. Additional biochemical and mass-spectrometry-based hydrogen/deuterium exchange studies support these structural findings. The identification of multiple intermediate calcium-bound structures along the PAD2 activation pathway provides critical insights that will aid the development of allosteric inhibitors targeting the PADs.« less

  14. Protein Arginine Deiminase 2 Binds Calcium in an Ordered Fashion: Implications for Inhibitor Design

    PubMed Central

    2015-01-01

    Protein arginine deiminases (PADs) are calcium-dependent histone-modifying enzymes whose activity is dysregulated in inflammatory diseases and cancer. PAD2 functions as an Estrogen Receptor (ER) coactivator in breast cancer cells via the citrullination of histone tail arginine residues at ER binding sites. Although an attractive therapeutic target, the mechanisms that regulate PAD2 activity are largely unknown, especially the detailed role of how calcium facilitates enzyme activation. To gain insights into these regulatory processes, we determined the first structures of PAD2 (27 in total), and through calcium-titrations by X-ray crystallography, determined the order of binding and affinity for the six calcium ions that bind and activate this enzyme. These structures also identified several PAD2 regulatory elements, including a calcium switch that controls proper positioning of the catalytic cysteine residue, and a novel active site shielding mechanism. Additional biochemical and mass-spectrometry-based hydrogen/deuterium exchange studies support these structural findings. The identification of multiple intermediate calcium-bound structures along the PAD2 activation pathway provides critical insights that will aid the development of allosteric inhibitors targeting the PADs. PMID:25621824

  15. Insight on an arginine synthesis metabolon from the tetrameric structure of yeast acetylglutamate kinase.

    PubMed

    de Cima, Sergio; Gil-Ortiz, Fernando; Crabeel, Marjolaine; Fita, Ignacio; Rubio, Vicente

    2012-01-01

    N-acetyl-L-glutamate kinase (NAGK) catalyzes the second, generally controlling, step of arginine biosynthesis. In yeasts, NAGK exists either alone or forming a metabolon with N-acetyl-L-glutamate synthase (NAGS), which catalyzes the first step and exists only within the metabolon. Yeast NAGK (yNAGK) has, in addition to the amino acid kinase (AAK) domain found in other NAGKs, a ~150-residue C-terminal domain of unclear significance belonging to the DUF619 domain family. We deleted this domain, proving that it stabilizes yNAGK, slows catalysis and modulates feed-back inhibition by arginine. We determined the crystal structures of both the DUF619 domain-lacking yNAGK, ligand-free as well as complexed with acetylglutamate or acetylglutamate and arginine, and of complete mature yNAGK. While all other known arginine-inhibitable NAGKs are doughnut-like hexameric trimers of dimers of AAK domains, yNAGK has as central structure a flat tetramer formed by two dimers of AAK domains. These dimers differ from canonical AAK dimers in the -110° rotation of one subunit with respect to the other. In the hexameric enzymes, an N-terminal extension, found in all arginine-inhibitable NAGKs, forms a protruding helix that interlaces the dimers. In yNAGK, however, it conforms a two-helix platform that mediates interdimeric interactions. Arginine appears to freeze an open inactive AAK domain conformation. In the complete yNAGK structure, two pairs of DUF619 domains flank the AAK domain tetramer, providing a mechanism for the DUF619 domain modulatory functions. The DUF619 domain exhibits the histone acetyltransferase fold, resembling the catalytic domain of bacterial NAGS. However, the putative acetyl CoA site is blocked, explaining the lack of NAGS activity of yNAGK. We conclude that the tetrameric architecture is an adaptation to metabolon formation and propose an organization for this metabolon, suggesting that yNAGK may be a good model also for yeast and human NAGSs. PMID:22529931

  16. Insight on an Arginine Synthesis Metabolon from the Tetrameric Structure of Yeast Acetylglutamate Kinase

    PubMed Central

    de Cima, Sergio; Gil-Ortiz, Fernando; Crabeel, Marjolaine; Fita, Ignacio; Rubio, Vicente

    2012-01-01

    N-acetyl-L-glutamate kinase (NAGK) catalyzes the second, generally controlling, step of arginine biosynthesis. In yeasts, NAGK exists either alone or forming a metabolon with N-acetyl-L-glutamate synthase (NAGS), which catalyzes the first step and exists only within the metabolon. Yeast NAGK (yNAGK) has, in addition to the amino acid kinase (AAK) domain found in other NAGKs, a ∼150-residue C-terminal domain of unclear significance belonging to the DUF619 domain family. We deleted this domain, proving that it stabilizes yNAGK, slows catalysis and modulates feed-back inhibition by arginine. We determined the crystal structures of both the DUF619 domain-lacking yNAGK, ligand-free as well as complexed with acetylglutamate or acetylglutamate and arginine, and of complete mature yNAGK. While all other known arginine-inhibitable NAGKs are doughnut-like hexameric trimers of dimers of AAK domains, yNAGK has as central structure a flat tetramer formed by two dimers of AAK domains. These dimers differ from canonical AAK dimers in the −110° rotation of one subunit with respect to the other. In the hexameric enzymes, an N-terminal extension, found in all arginine-inhibitable NAGKs, forms a protruding helix that interlaces the dimers. In yNAGK, however, it conforms a two-helix platform that mediates interdimeric interactions. Arginine appears to freeze an open inactive AAK domain conformation. In the complete yNAGK structure, two pairs of DUF619 domains flank the AAK domain tetramer, providing a mechanism for the DUF619 domain modulatory functions. The DUF619 domain exhibits the histone acetyltransferase fold, resembling the catalytic domain of bacterial NAGS. However, the putative acetyl CoA site is blocked, explaining the lack of NAGS activity of yNAGK. We conclude that the tetrameric architecture is an adaptation to metabolon formation and propose an organization for this metabolon, suggesting that yNAGK may be a good model also for yeast and human NAGSs. PMID:22529931

  17. L-arginine recognition by yeast arginyl-tRNA synthetase.

    PubMed Central

    Cavarelli, J; Delagoutte, B; Eriani, G; Gangloff, J; Moras, D

    1998-01-01

    The crystal structure of arginyl-tRNA synthetase (ArgRS) from Saccharomyces cerevisiae, a class I aminoacyl-tRNA synthetase (aaRS), with L-arginine bound to the active site has been solved at 2.75 A resolution and refined to a crystallographic R-factor of 19.7%. ArgRS is composed predominantly of alpha-helices and can be divided into five domains, including the class I-specific active site. The N-terminal domain shows striking similarity to some completely unrelated proteins and defines a module which should participate in specific tRNA recognition. The C-terminal domain, which is the putative anticodon-binding module, displays an all-alpha-helix fold highly similar to that of Escherichia coli methionyl-tRNA synthetase. While ArgRS requires tRNAArg for the first step of the aminoacylation reaction, the results show that its presence is not a prerequisite for L-arginine binding. All H-bond-forming capability of L-arginine is used by the protein for the specific recognition. The guanidinium group forms two salt bridge interactions with two acidic residues, and one H-bond with a tyrosine residue; these three residues are strictly conserved in all ArgRS sequences. This tyrosine is also conserved in other class I aaRS active sites but plays several functional roles. The ArgRS structure allows the definition of a new framework for sequence alignments and subclass definition in class I aaRSs. PMID:9736621

  18. Crystal structures of arginine kinase in complex with ADP, nitrate, and various phosphagen analogs.

    PubMed

    Clark, Shawn A; Davulcu, Omar; Chapman, Michael S

    2012-10-12

    Arginine kinase catalyzes the reversible transfer of a phosphoryl group between ATP and l-arginine and is a monomeric homolog of the human enzyme creatine kinase. Arginine and creatine kinases belongs to the phosphagen kinase family of enzymes, which consists of eight known members, each of which is specific for its own phosphagen. Here, the source of phosphagen specificity in arginine kinase is investigated through the use of phosphagen analogs. Crystal structures have been determined for Limulus polyphemus arginine kinase with one of four arginine analogs bound in a transition state analog complex: l-ornithine, l-citrulline, imino-l-ornithine, and d-arginine. In all complexes, the enzyme achieves a closed conformation very similar to that of the cognate transition state analog complex, but differences are observed in the configurations of bound ligands. Arginine kinase exhibits no detectable activity towards ornithine, citrulline, or imino-l-ornithine, and only trace activity towards d-arginine. The crystal structures presented here demonstrate that phosphagen specificity is derived neither from a lock-and-key mechanism nor a modulation of induced-fit conformational changes, but potentially from subtle distortions in bound substrate configurations. PMID:22995310

  19. Role of the Dinitrogenase Reductase Arginine 101 Residue in Dinitrogenase Reductase ADP-Ribosyltransferase Binding, NAD Binding, and Cleavage

    PubMed Central

    Ma, Yan; Ludden, Paul W.

    2001-01-01

    Dinitrogenase reductase is posttranslationally regulated by dinitrogenase reductase ADP-ribosyltransferase (DRAT) via ADP-ribosylation of the arginine 101 residue in some bacteria. Rhodospirillum rubrum strains in which the arginine 101 of dinitrogenase reductase was replaced by tyrosine, phenylalanine, or leucine were constructed by site-directed mutagenesis of the nifH gene. The strain containing the R101F form of dinitrogenase reductase retains 91%, the strain containing the R101Y form retains 72%, and the strain containing the R101L form retains only 28% of in vivo nitrogenase activity of the strain containing the dinitrogenase reductase with arginine at position 101. In vivo acetylene reduction assays, immunoblotting with anti-dinitrogenase reductase antibody, and [adenylate-32P]NAD labeling experiments showed that no switch-off of nitrogenase activity occurred in any of the three mutants and no ADP-ribosylation of altered dinitrogenase reductases occurred either in vivo or in vitro. Altered dinitrogenase reductases from strains UR629 (R101Y) and UR630 (R101F) were purified to homogeneity. The R101F and R101Y forms of dinitrogenase reductase were able to form a complex with DRAT that could be chemically cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. The R101F form of dinitrogenase reductase and DRAT together were not able to cleave NAD. This suggests that arginine 101 is not critical for the binding of DRAT to dinitrogenase reductase but that the availability of arginine 101 is important for NAD cleavage. Both DRAT and dinitrogenase reductase can be labeled by [carbonyl-14C]NAD individually upon UV irradiation, but most 14C label is incorporated into DRAT when both proteins are present. The ability of R101F dinitrogenase reductase to be labeled by [carbonyl-14C]NAD suggested that Arg 101 is not absolutely required for NAD binding. PMID:11114923

  20. Characterization of arginine decarboxylase from Dianthus caryophyllus.

    PubMed

    Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun

    2004-04-01

    Arginine decarboxylase (ADC, EC 4.1.1.9) is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%. PMID:15120115

  1. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    PubMed

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke

    2016-04-26

    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase. PMID:27054466

  2. 21 CFR 582.5145 - Arginine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Arginine. 582.5145 Section 582.5145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5145 Arginine. (a) Product. Arginine...

  3. Dissecting the active site of a photoreceptor protein

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter; Hara, Miwa; Ren, Jie; Moghadam, Farzaneh; Xie, Aihua; Kumauchi, Masato

    While enzymes are quite large molecules, functionally important chemical events are often limited to a small region of the protein: the active site. The physical and chemical properties of residues at such active sites are often strongly altered compared to the same groups dissolved in water. Understanding such effects is important for unraveling the mechanisms underlying protein function and for protein engineering, but has proven challenging. Here we report on our ongoing efforts on using photoactive yellow protein (PYP), a bacterial photoreceptor, as a model system for such effects. We will report on the following questions: How many residues affect active site properties? Are these residues in direct physical contact with the active site? Can functionally important residues be recognized in the crystal structure of a protein? What structural resolution is needed to understand active sites? What spectroscopic techniques are most informative? Which weak interactions dominate active site properties?

  4. Enhancement of interleukin-2 immunotherapy with L-arginine.

    PubMed Central

    Lieberman, M D; Nishioka, K; Redmond, H P; Daly, J M

    1992-01-01

    Nutrient substrates have been shown to enhance cell-mediated immunity, but their role as adjuvants to immunotherapy has not been previously determined. This study evaluated L-arginine as an essential substrate for optimal generation of lymphokine-activated killer (LAK) cells. This experiment also assessed supplemental dietary L-arginine as a means to potentiate the host antitumor response to interleukin-2 (IL-2) in a murine neuroblastoma (NRB) model. A/J mice received 1% arginine or isonitrogenous 1.7% glycine in addition to a regular diet 14 days before subcutaneous inoculation with C1300 NRB cells. Twenty-four hours later, animals received low (1 x 10(6) U/kg three times a day) or high (3 x 10(6) U/kg three times a day) doses of IL-2 or saline intraperitoneally for 4 days. On days 4 and 10 post-C1300 NRB inoculation, mice were killed for assessment of natural killer cell and tumor specific cytotoxicity. Remaining animals were followed for tumor incidence, tumor growth, and duration of host survival. Interleukin-2 therapy in mice receiving dietary arginine compared with those receiving glycine resulted in significantly augmented natural killer cell cytotoxicity (day 4) and generation of specific tumoricidal mechanisms (day 10). The addition of dietary arginine to low-dose IL-2 therapy significantly diminished C1300 NRB engraftment (p less than 0.05) and growth (p less than 0.001) and prolonged the duration of host survival (p less than 0.05) compared with the glycine treatment group. In vitro studies demonstrated that L-arginine is an essential substrate for optimal generation of LAK cells. Thus, supplemental dietary L-arginine enhances lymphocyte cytotoxic mechanisms and potentiates IL-2 immunotherapy. PMID:1546902

  5. Clinical pharmacokinetics of ibuprofen arginine.

    PubMed

    Cattaneo, Dario; Clementi, Emilio

    2010-11-01

    Currently, several ibuprofen compounds are available on the market, mainly differing in terms of pharmaceutical composition that influence the pharmacokinetic profile and eventually the onset of drug action. This review will mainly deal with the clinical pharmacokinetics of ibuprofen arginine, an alternative formulation specifically designed to improve the absorption of ibuprofen. Indeed, available data from studies in healthy volunteers have consistently shown that the formulation of ibuprofen arginine is characterized by prompt absorption of ibuprofen as compared to the conventional formulation at all tested doses with higher peak plasma concentration and lower Tmax values. This trend has been confirmed also in studies dealing with chiral ibuprofen pharmacokinetics. Most importantly, the shortening in the absorption time observed either with racemic mixture or with the S(+)-enantiomer of ibuprofen arginine did not imply a faster drug elimination eventually leading to inadequate daily drug exposure, as documented by T1/2 and AUC values being comparable to those measured with the free acid form. Taken together, the pharmacokinetic/dynamic characteristics of ibuprofen arginine can be considered particularly favorable for several clinical conditions, such as moderate/severe pain, in which a rapid pharmacologic effect is required. PMID:20925647

  6. Crystal Structure of N-succinylarginine Dihydrolase AstB, Bound to Substrate and Product, an Enzyme from the Arginine Catabolic Pathway of Escherichia Coli

    SciTech Connect

    Tocilj,A.; Schrag, J.; Li, Y.; Schneider, B.; Reitzer, L.; Matte, A.; Cygler, M.

    2005-01-01

    The ammonia-producing arginine succinyltransferase pathway is the major pathway in Escherichia coli and related bacteria for arginine catabolism as a sole nitrogen source. This pathway consists of five steps, each catalyzed by a distinct enzyme. Here we report the crystal structure of N-succinylarginine dihydrolase AstB, the second enzyme of the arginine succinyltransferase pathway, providing the first structural insight into enzymes from this pathway. The enzyme exhibits a pseudo 5-fold symmetric {alpha}/{beta} propeller fold of circularly arranged {beta}{beta}{alpha}{beta} modules enclosing the active site. The crystal structure indicates clearly that this enzyme belongs to the amidinotransferase (AT) superfamily and that the active site contains a Cys-His-Glu triad characteristic of the AT superfamily. Structures of the complexes of AstB with the reaction product and a C365S mutant with bound the N-succinylarginine substrate suggest a catalytic mechanism that consists of two cycles of hydrolysis and ammonia release, with each cycle utilizing a mechanism similar to that proposed for arginine deiminases. Like other members of the AT superfamily of enzymes, AstB possesses a flexible loop that is disordered in the absence of substrate and assumes an ordered conformation upon substrate binding, shielding the ligand from the bulk solvent, thereby controlling substrate access and product release.

  7. Important roles for the arginine family of amino acids in swine nutrition and production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arginine, glutamine, glutamate, proline, aspartate, asparagine, ornithine, and citrulline are interconvertible via complex interorgan metabolism in most mammals (including the pig). The major sites for their metabolism are the small intestine, kidneys, and liver, with cortisol being a key regulatory...

  8. Kinetic and structural evaluation of selected active site mutants of the Aspergillus fumigatus KDNase (sialidase).

    PubMed

    Yeung, Juliana H F; Telford, Judith C; Shidmoossavee, Fahimeh S; Bennet, Andrew J; Taylor, Garry L; Moore, Margo M

    2013-12-23

    Aspergillus fumigatus is an airborne fungal pathogen. We previously cloned and characterized an exo-sialidase from A. fumigatus and showed that it preferred 2-keto-3-deoxynononic acid (KDN) as a substrate to N-acetylneuraminic acid (Neu5Ac). The purpose of this study was to investigate the structure-function relationships of critical catalytic site residues. Site-directed mutagenesis was used to create three mutant recombinant enzymes: the catalytic nucleophile (Y358H), the general acid/base catalyst (D84A), and an enlargement of the binding pocket to attempt to accommodate the N-acetyl group of Neu5Ac (R171L). Crystal structures for all enzymes were determined. The D84A mutation had an effect in decreasing the activity of AfKDNase that was stronger than that of the same mutation in the structurally similar sialidase from the bacterium Micromonospora viridifaciens. These data suggest that the catalytic acid is more important in the reaction of AfKDNase and that catalysis is less dependent on nucleophilic or electrostatic stabilization of the developing positive charge at the transition state for hydrolysis. Removal of the catalytic nucleophile (Y358H) significantly lowered the activity of the enzyme, but this mutant remained a retaining glycosidase as demonstrated by nuclear magnetic resonance spectroscopic analysis. This is a novel finding that has not been shown with other sialidases. Kinetic activity measured at pH 5.2 revealed that R171L had higher activity on a Neu5Ac-based substrate than wild-type KDNase; hence, leucine in place of arginine in the binding pocket improved catalysis toward Neu5Ac substrates. Hence, whether a sialidase is primarily a KDNase or a neuraminidase is due in part to the presence of an amino acid that creates a steric clash with the N-acetyl group. PMID:24295366

  9. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program --now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history The missions will develop technology and acquire data necessary for eventual human Exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines be opportunities for the Mars community to provide input into the landing site selection process.

  10. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program -- now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history. The missions will develop technology and acquire data necessary for eventual human exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines the opportunities for the Mars community to provide input into the landing site selection process.

  11. Effect of site-directed mutagenic alterations on ADP-ribosyltransferase activity of the A subunit of Escherichia coli heat-labile enterotoxin.

    PubMed Central

    Lobet, Y; Cluff, C W; Cieplak, W

    1991-01-01

    Previous studies of the S1 subunit of pertussis toxin, an NAD(+)-dependent ADP-ribosyltransferase, suggested that a small amino-terminal region of amino acid sequence similarity to the active fragments of both cholera toxin and Escherichia coli heat-labile enterotoxin represents a region containing critical active-site residues that might be involved in the binding of the substrate NAD+. Other studies of two other bacterial toxins possessing ADP-ribosyltransferase activity, diphtheria toxin and Pseudomonas exotoxin A, have revealed the presence of essential glutamic acid residues vicinal to the active site. To help determine the relevance of these observations to activities of the enterotoxins, the A-subunit gene of the E. coli heat-labile enterotoxin was subjected to site-specific mutagenesis in the region encoding the amino-terminal region of similarity to the S1 subunit of pertussis toxin delineated by residues 6 through 17 and at two glutamic acid residues, 110 and 112, that are conserved in the active domains of all of the heat-labile enterotoxin variants and in cholera toxin. Mutant proteins in which arginine 7 was either deleted or replaced with lysine exhibited undetectable levels of ADP-ribosyltransferase activity. However, limited trypsinolysis of the arginine 7 mutants yielded fragmentation kinetics that were different from that yielded by the wild-type recombinant subunit or the authentic A subunit. In contrast, mutant proteins in which glutamic acid residues at either position 110 or 112 were replaced with aspartic acid responded like the wild-type subunit upon limited trypsinolysis, while exhibiting severely depressed, but detectable, ADP-ribosyltransferase activity. The latter results may indicate that either glutamic acid 110 or glutamic acid 112 of the A subunit of heat-labile enterotoxin is analogous to those active-site glutamic acids identified in several other ADP-ribosylating toxins. Images PMID:1908825

  12. The bifunctional active site of s-adenosylmethionine synthetase. Roles of the active site aspartates.

    PubMed

    Taylor, J C; Markham, G D

    1999-11-12

    S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the

  13. Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria.

    PubMed

    Tang, Hong; Zhang, Peng; Kieft, Thomas L; Ryan, Shannon J; Baker, Shenda M; Wiesmann, William P; Rogelj, Snezna

    2010-07-01

    The antimicrobial activity of chitosan and chitosan derivatives has been well established. However, although several mechanisms have been proposed, the exact mode of action is still unclear. Here we report on the investigation of antibacterial activity and the antibacterial mode of action of a novel water-soluble chitosan derivative, arginine-functionalized chitosan, on the Gram-negative bacteria Pseudomonas fluorescens and Escherichia coli. Two different arginine-functionalized chitosans (6% arginine-substituted and 30% arginine-substituted) each strongly inhibited P. fluorescens and E. coli growth. Time-dependent killing efficacy experiments showed that 5000 mg l(-1) of 6%- and 30%-substituted chitosan-arginine killed 2.7 logs and 4.5 logs of P. fluorescens, and 4.8 logs and 4.6 logs of E. coli in 4h, respectively. At low concentrations, the 6%-substituted chitosan-arginine was more effective in inhibiting cell growth even though the 30%-substituted chitosan-arginine appeared to be more effective in permeabilizing the cell membranes of both P. fluorescens and E. coli. Studies using fluorescent probes, 1-N-phenyl-naphthylamine (NPN), nile red (NR) and propidium iodide (PI), and field emission scanning electron microscopy (FESEM) suggest that chitosan-arginine's antibacterial activity is, at least in part, due to its interaction with the cell membrane, in which it increases membrane permeability. PMID:20060936

  14. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  15. Arginine Metabolism in Developing Soybean Cotyledons

    PubMed Central

    Micallef, Barry J.; Shelp, Barry J.

    1989-01-01

    Tracerkinetic experiments were performed using l-[guanidino-14C]arginine, l-[U-14C]arginine, l-[ureido-14C]citrulline, and l-[1-14C]ornithine to investigate arginine utilization in developing cotyledons of Glycine max (L.) Merrill. Excised cotyledons were injected with carrier-free 14C compounds and incubated in sealed vials containing a CO2 trap. The free and protein amino acids were analyzed using high performance liquid chromatography and arginine-specific enzyme-linked assays. After 4 hours, 75% and 90% of the 14C metabolized from [guanidino-14C]arginine and [U-14C]arginine, respectively, was in protein arginine. The net protein arginine accumulation rate, calculated from the depletion of nitrogenous solutes in the cotyledon during incubation, was 17 nanomoles per cotyledon per hour. The data indicated that arginine was also catabolized by the arginase-urease reactions at a rate of 5.5 nanomoles per cotyledon per hour. Between 2 and 4 hours 14CO2 was also evolved from carbons other than C-6 of arginine at a rate of 11.0 nanomoles per cotyledon per hour. It is suggested that this extra 14CO2 was evolved during the catabolism of ornithine-derived glutamate; 14C-ornithine was a product of the arginase reaction. A model for the estimated fluxes associated with arginine utilization in developing soybean cotyledons is presented. The maximum specific radioactivity ratios between arginine in newly synthesized protein and total free arginine in the 14C-citrulline and 14C-ornithine experiments indicated that only 3% of the free arginine was in the protein precursor pool, and that argininosuccinate and citrulline were present in multiple pools. PMID:16666991

  16. A study on the flexibility of enzyme active sites

    PubMed Central

    2011-01-01

    Background A common assumption about enzyme active sites is that their structures are highly conserved to specifically distinguish between closely similar compounds. However, with the discovery of distinct enzymes with similar reaction chemistries, more and more studies discussing the structural flexibility of the active site have been conducted. Results Most of the existing works on the flexibility of active sites focuses on a set of pre-selected active sites that were already known to be flexible. This study, on the other hand, proposes an analysis framework composed of a new data collecting strategy, a local structure alignment tool and several physicochemical measures derived from the alignments. The method proposed to identify flexible active sites is highly automated and robust so that more extensive studies will be feasible in the future. The experimental results show the proposed method is (a) consistent with previous works based on manually identified flexible active sites and (b) capable of identifying potentially new flexible active sites. Conclusions This proposed analysis framework and the former analyses on flexibility have their own advantages and disadvantage, depending on the cause of the flexibility. In this regard, this study proposes an alternative that complements previous studies and helps to construct a more comprehensive view of the flexibility of enzyme active sites. PMID:21342563

  17. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  18. DOE site performance assessment activities. Radioactive Waste Technical Support Program

    SciTech Connect

    Not Available

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

  19. Savannah River Site prioritization of transition activities

    SciTech Connect

    Finley, R.H.

    1993-11-01

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D&D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities.

  20. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  1. The influence of a novel pentadecapeptide, BPC 157, on N(G)-nitro-L-arginine methylester and L-arginine effects on stomach mucosa integrity and blood pressure.

    PubMed

    Sikirić, P; Seiwerth, S; Grabarević, Z; Rucman, R; Petek, M; Jagić, V; Turković, B; Rotkvić, I; Mise, S; Zoricić, I; Konjevoda, P; Perović, D; Jurina, L; Separović, J; Hanzevacki, M; Artuković, B; Bratulić, M; Tisljar, M; Gjurasin, M; Miklić, P; Stancić-Rokotov, D; Slobodnjak, Z; Jelovac, N; Marović, A

    1997-07-30

    The known effects of a novel stomach pentadecapeptide BPC157 (10 microg or 10 ng/kg), namely its salutary activity against ethanol (96%, i.g.)-induced gastric lesions (simultaneously applied i.p.) and in blood pressure maintenance (given i.v.), were investigated in rats challenged with a combination of N(G)-nitro-L-arginine methylester (L-NAME) (5 mg/kg i.v.), a competitive inhibitor of endothelium nitric oxide (NO)-generation and NO precursor, L-arginine (200 mg/kg i.v.) (D-arginine was ineffective). In the gastric lesions assay, NO agents were given 5 min before ethanol injury and BPC 157 medication. Given alone, BPC157 had an antiulcer effect, as did L-arginine, but L-NAME had no effect. L-NAME completely abolished the effect of L-arginine, whereas it only attenuated the effect of BPC 157. After application of the combination of L-NAME + L-arginine, the BPC157 effect was additionally impaired. In blood pressure studies, compared with L-arginine, pentadecapeptide BPC 157 (without effect on basal normal values) had both a mimicking effect (impaired L-NAME-blood pressure increase, when applied prophylactically and decreased already raised L-NAME values, given at the time of the maximal L-NAME-blood pressure increase (i.e., 10 min after L-NAME)) and preventive activity (L-arginine-induced moderate blood pressure decrease was prevented by BPC 157 pretreatment). When BPC 157 was given 10 min after L-NAME + L-arginine combination, which still led to a blood pressure increase, its previously clear effect (noted in L-NAME treated rats) disappeared. In vitro, in gastric mucosa from rat stomach tissue homogenates, BPC 157, given in the same dose (100 microM) as L-arginine, induced a comparable generation of NO. But, BPC 157 effect could not be inhibited by L-NAME, even when L-NAME was given in a tenfold (100 versus 1000 microM) higher dose than that needed for inhibition of the L-arginine effect. NO synthesis was blunted when the pentadecapeptide BPC 157 and L-arginine

  2. Arginine utilization of citrulline synthesis in arginase II knockout mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The synthesis of citrulline (Cit) from arginine (Arg) in the small intestine depends on the activity of arginase II (ARG2). To test the hypothesis that Arg is the main dietary precursor for Cit synthesis, despite the lack of ARG2, tracer studies were conducted in WT and ARG2 ko conscious mice. WT mi...

  3. IL4I1 Is a Novel Regulator of M2 Macrophage Polarization That Can Inhibit T Cell Activation via L-Tryptophan and Arginine Depletion and IL-10 Production

    PubMed Central

    Yue, Yinpu; Huang, Wei; Liang, Jingjing; Guo, Jing; Ji, Jian; Yao, Yunliang; Zheng, Mingzhu; Cai, Zhijian; Lu, Linrong; Wang, Jianli

    2015-01-01

    Interleukin 4-induced gene-1 (IL4I1) was initially described as an early IL-4-inducible gene in B cells. IL4I1 protein can inhibit T cell proliferation by releasing its enzymatic catabolite, H2O2, and this effect is associated with transient down-regulation of T cell CD3 receptor-zeta (TCRζ) expression. Herein, we show that IL4I1 contributes to the regulation of macrophage programming. We found that expression of IL4I1 increased during bone marrow-derived macrophage (BMDM) differentiation, expression of IL4I1 is much higher in primary macrophages than monocytes, and IL4I1 expression in BMDMs could be induced by Th1 and Th2 cytokines in two different patterns. Gene expression analysis revealed that overexpression of IL4I1 drove the expression of M2 markers (Fizz1, Arg1, YM-1, MR) and inhibited the expression of M1-associated cytokines. Conversely, knockdown of IL4I1 by siRNA resulted in opposite effects, and also attenuated STAT-3 and STAT-6 phosphorylation. Furthermore, IL4I1 produced by macrophages catalyzed L-tryptophan degradation, while levo-1-methyl-tryptophan (L-1-MT), but not dextro-1-methyl-tryptophan, partially rescued IL4I1-dependent inhibition of T cell activation. Other inhibitors, such as diphenylene iodonium (DPI), an anti-IL-10Rα blocking antibody, and a nitric oxide synthase inhibitor, NG-monomethyl-L-arginine, also had this effect. Overall, our findings indicate that IL4I1 promotes an enhanced M2 functional phenotype, which is most likely associated with the phosphorylation of STAT-6 and STAT-3. Moreover, DPI, L-1-MT, NG-monomethyl-L-arginine, and anti-IL-10Rα blocking antibody were all found to be effective IL4I1 inhibitors in vitro. PMID:26599209

  4. Quantitative Phosphoproteomics Reveals the Role of Protein Arginine Phosphorylation in the Bacterial Stress Response*

    PubMed Central

    Schmidt, Andreas; Trentini, Débora Broch; Spiess, Silvia; Fuhrmann, Jakob; Ammerer, Gustav; Mechtler, Karl; Clausen, Tim

    2014-01-01

    Arginine phosphorylation is an emerging protein modification implicated in the general stress response of Gram-positive bacteria. The modification is mediated by the arginine kinase McsB, which phosphorylates and inactivates the heat shock repressor CtsR. In this study, we developed a mass spectrometric approach accounting for the peculiar chemical properties of phosphoarginine. The improved methodology was used to analyze the dynamic changes in the Bacillus subtilis arginine phosphoproteome in response to different stress situations. Quantitative analysis showed that a B. subtilis mutant lacking the YwlE arginine phosphatase accumulated a strikingly large number of arginine phosphorylations (217 sites in 134 proteins), however only a minor fraction of these sites was increasingly modified during heat shock or oxidative stress. The main targets of McsB-mediated arginine phosphorylation comprise central factors of the stress response system including the CtsR and HrcA heat shock repressors, as well as major components of the protein quality control system such as the ClpCP protease and the GroEL chaperonine. These findings highlight the impact of arginine phosphorylation in orchestrating the bacterial stress response. PMID:24263382

  5. The crystal structure of the complex of PII and acetylglutamate kinase reveals how PII controls the storage of nitrogen as arginine

    PubMed Central

    Llácer, José L.; Contreras, Asunción; Forchhammer, Karl; Marco-Marín, Clara; Gil-Ortiz, Fernando; Maldonado, Rafael; Fita, Ignacio; Rubio, Vicente

    2007-01-01

    Photosynthetic organisms can store nitrogen by synthesizing arginine, and, therefore, feedback inhibition of arginine synthesis must be relieved in these organisms when nitrogen is abundant. This relief is accomplished by the binding of the PII signal transduction protein to acetylglutamate kinase (NAGK), the controlling enzyme of arginine synthesis. Here, we describe the crystal structure of the complex between NAGK and PII of Synechococcus elongatus, at 2.75-Å resolution. We prove the physiological relevance of the observed interactions by site-directed mutagenesis and functional studies. The complex consists of two polar PII trimers sandwiching one ring-like hexameric NAGK (a trimer of dimers) with the threefold axes of these molecules aligned. The binding of PII favors a narrow ring conformation of the NAGK hexamer that is associated with arginine sites having low affinity for this inhibitor. Each PII subunit contacts one NAGK subunit only. The contacts map in the inner circumference of the NAGK ring and involve two surfaces of the PII subunit. One surface is on the PII body and interacts with the C-domain of the NAGK subunit, helping widen the arginine site found on the other side of this domain. The other surface is at the distal region of a protruding large loop (T-loop) that presents a novel compact shape. This loop is inserted in the interdomain crevice of the NAGK subunit, contacting mainly the N-domain, and playing key roles in anchoring PII on NAGK, in activating NAGK, and in complex formation regulation by MgATP, ADP, 2-oxoglutarate, and by phosphorylation of serine-49. PMID:17959776

  6. The crystal structure of the complex of PII and acetylglutamate kinase reveals how PII controls the storage of nitrogen as arginine.

    PubMed

    Llácer, José L; Contreras, Asunción; Forchhammer, Karl; Marco-Marín, Clara; Gil-Ortiz, Fernando; Maldonado, Rafael; Fita, Ignacio; Rubio, Vicente

    2007-11-01

    Photosynthetic organisms can store nitrogen by synthesizing arginine, and, therefore, feedback inhibition of arginine synthesis must be relieved in these organisms when nitrogen is abundant. This relief is accomplished by the binding of the PII signal transduction protein to acetylglutamate kinase (NAGK), the controlling enzyme of arginine synthesis. Here, we describe the crystal structure of the complex between NAGK and PII of Synechococcus elongatus, at 2.75-A resolution. We prove the physiological relevance of the observed interactions by site-directed mutagenesis and functional studies. The complex consists of two polar PII trimers sandwiching one ring-like hexameric NAGK (a trimer of dimers) with the threefold axes of these molecules aligned. The binding of PII favors a narrow ring conformation of the NAGK hexamer that is associated with arginine sites having low affinity for this inhibitor. Each PII subunit contacts one NAGK subunit only. The contacts map in the inner circumference of the NAGK ring and involve two surfaces of the PII subunit. One surface is on the PII body and interacts with the C-domain of the NAGK subunit, helping widen the arginine site found on the other side of this domain. The other surface is at the distal region of a protruding large loop (T-loop) that presents a novel compact shape. This loop is inserted in the interdomain crevice of the NAGK subunit, contacting mainly the N-domain, and playing key roles in anchoring PII on NAGK, in activating NAGK, and in complex formation regulation by MgATP, ADP, 2-oxoglutarate, and by phosphorylation of serine-49. PMID:17959776

  7. Induction of arginase II by intestinal epithelium promotes the uptake of L-arginine from the lumen of C. parvum infected porcine ileum

    PubMed Central

    Gookin, Jody L.; Stauffer, Stephen H.; Coccaro, Maria R.

    2013-01-01

    Objectives To determine the specific transport system activities and expression of transporter genes responsible for uptake of L-arginine from the lumen of normal and C. parvum infected neonatal porcine ileum and the influence of L-arginine catabolic pathways on L-arginine uptake. Methods Intact sheets of ileal mucosa from control and C. parvum infected neonatal piglets were mounted in Ussing chambers and the uptake of 14C-L-arginine was determined under initial rate conditions and in the presence of transport system-selective inhibitors. Epithelial expression of L-arginine transporter genes was quantified by real time RT-PCR. L-arginine catabolic enzyme expression was examined by immunoblotting epithelial lysates for arginase I and II. The role of intracellular catabolism in promoting uptake of L-arginine was determined by pharmacological inhibition of NOS and arginase activities. Results C. parvum infected ileum transported L-arginine at rates equivalent to uninfected epithelium despite profound villous atrophy. This was attributed to enhanced uptake of L-arginine by individual epithelial cells in the infection. There were no differences in L-arginine transport system activities (y+ and B0,+) or level of transporter gene expression (CAT-1, CAT-2A, and ATB0,+) between uninfected and C. parvum infected epithelial cells. However, infected epithelia had induced expression of the L-arginine hydrolytic enzyme arginase II and lower concentrations of L-arginine. Further, transport of L-arginine by the infected epithelium was significantly inhibited by pharmacological blockade of arginase. Conclusions Intracellular catabolism by arginase II, the induction of which has not been previously described for intestinal epithelium, facilitates uptake of L-arginine by infected epithelium using transport systems that do not differ from that of uninfected cells. Induction of arginase II may limit NO synthesis by competing with NOS for utilization of L-arginine or promote use of L-arginine

  8. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue

    PubMed Central

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males’ subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  9. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue.

    PubMed

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males' subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  10. L-arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    L-arginine is considered to be one of the most versatile amino acids due to the fact that it serves as a precursor for many important molecules in cellular physiology. When supplemented in the diet, L-arginine can increase the number of implantation sites in mice and rats, suggesting an effect at th...

  11. Sequestration and metabolism of host cell arginine by the intraerythrocytic malaria parasite Plasmodium falciparum.

    PubMed

    Cobbold, Simon A; Llinás, Manuel; Kirk, Kiaran

    2016-06-01

    Human erythrocytes have an active nitric oxide synthase, which converts arginine into citrulline and nitric oxide (NO). NO serves several important functions, including the maintenance of normal erythrocyte deformability, thereby ensuring efficient passage of the red blood cell through narrow microcapillaries. Here, we show that following invasion by the malaria parasite Plasmodium falciparum the arginine pool in the host erythrocyte compartment is sequestered and metabolized by the parasite. Arginine from the extracellular medium enters the infected cell via endogenous host cell transporters and is taken up by the intracellular parasite by a high-affinity cationic amino acid transporter at the parasite surface. Within the parasite arginine is metabolized into citrulline and ornithine. The uptake and metabolism of arginine by the parasite deprive the erythrocyte of the substrate required for NO production and may contribute to the decreased deformability of infected erythrocytes. PMID:26633083

  12. ARGININE DEIMINASE PLAYS MULTIPLE REGULATORY ROLES IN THE BIOLOGY OF GIARDIA LAMBLIA

    PubMed Central

    Touz, Maria Carolina; Ropolo, Andrea Silvana; Rivero, Maria Romina; Vranych, Cecilia Veronica; Conrad, John Thomas; Svard, Staffan Gunnar; Nash, Theodore Elliot

    2008-01-01

    SUMMARY The protozoan parasite Giardia lamblia utilizes arginine deiminase (gADI) to produce energy from free L-arginine under anaerobic conditions. In this work, we demonstrate that in addition to its known role as a metabolic enzyme, it also functions as a pepidtyl-arginine deiminase converting protein-bound arginine into citrulline. gADI specifically binds to and citrullinates the arginine in the conserved CRGKA tail of variant-specific surface proteins (VSPs) affecting both antigenic switching and antibody mediated cell death. During encystation gADI translocates from the cytoplasm to the nucleus and appear to play a regulatory role in the expression of encystation specific genes. gADI is also sumoylated, which may modulate its activity. Our findings reveal a dual role played by gADI and define novel regulatory pathways used by Giardia for survival. PMID:18697833

  13. Active Sites Environmental Monitoring Program FY 1996 annual report

    SciTech Connect

    Morrissey, C.M.; Marshall, D.S.; Cunningham, G.R.

    1997-11-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1995 through September 1996. The Radioactive Solid Waste Operations Group (RSWOG) of the Waste Management and Remedial Action Division (WMRAD) and the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) established ASEMP in 1989. The purpose of the program is to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 North as required by Chapters 2 and 3 of US Department of Energy Order 5820.2A.

  14. Active sites environmental monitoring Program - Program Plan: Revision 2

    SciTech Connect

    Morrissey, C.M.; Hicks, D.S.; Ashwood, T.L.; Cunningham, G.R.

    1994-05-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of active low-level-waste (LLW) and transuranic (TRU) waste facilities at Oak Ridge National Laboratory (ORNL). Several changes have recently occurred in regard to the sites that are currently used for waste storage and disposal. These changes require a second set of revisions to the ASEMP program plan. This document incorporates those revisions. This program plan presents the organization and procedures for monitoring the active sites. The program plan also provides internal reporting levels to guide the evaluation of monitoring results.

  15. Mechanistic and Bioinformatic Investigation of a Conserved Active Site Helix in α-Isopropylmalate Synthase from Mycobacterium tuberculosis, a Member of the DRE-TIM Metallolyase Superfamily

    PubMed Central

    2015-01-01

    The characterization of functionally diverse enzyme superfamilies provides the opportunity to identify evolutionarily conserved catalytic strategies, as well as amino acid substitutions responsible for the evolution of new functions or specificities. Isopropylmalate synthase (IPMS) belongs to the DRE-TIM metallolyase superfamily. Members of this superfamily share common active site elements, including a conserved active site helix and an HXH divalent metal binding motif, associated with stabilization of a common enolate anion intermediate. These common elements are overlaid by variations in active site architecture resulting in the evolution of a diverse set of reactions that include condensation, lyase/aldolase, and carboxyl transfer activities. Here, using IPMS, an integrated biochemical and bioinformatics approach has been utilized to investigate the catalytic role of residues on an active site helix that is conserved across the superfamily. The construction of a sequence similarity network for the DRE-TIM metallolyase superfamily allows for the biochemical results obtained with IPMS variants to be compared across superfamily members and within other condensation-catalyzing enzymes related to IPMS. A comparison of our results with previous biochemical data indicates an active site arginine residue (R80 in IPMS) is strictly required for activity across the superfamily, suggesting that it plays a key role in catalysis, most likely through enolate stabilization. In contrast, differential results obtained from substitution of the C-terminal residue of the helix (Q84 in IPMS) suggest that this residue plays a role in reaction specificity within the superfamily. PMID:24720347

  16. Site-directed mutagenesis of Lysine{sup 382}, the activator-binding site, of ADP-Glucose pyrophosphorylase from Anabaena PCC 6120

    SciTech Connect

    Sheng, Jun; Charng, Yee-yung; Preiss, J.

    1996-03-05

    Previous studies have shown that a highly conserved lysyl residue (Lys{sup 419}) near the C-terminus of Anabaena ADP-glucose pyrophosphorylase is involved in the binding of 3-P-glycerate, the allosteric activator. Phosphopyridoxylation of the K419R mutant enzyme modified another conserved lysyl residue (Lys{sup 382}), suggesting that this residue might be also located within the activator-binding site. Site-directed mutagenesis of Lys{sup 382} of the Anabaena enzyme was performed to determine the role of this residue. Replacing Lys{sup 382} with either arginine, alanine, or glutamine produced mutant enzymes with apparent affinities for 3-P-glycerate 10-160-fold lower than that of the wild-type enzyme. The glutamic acid mutant enzyme was inhibited by 3-P-glycerate. These mutations had lesser impact on the kinetic constants for the substrates and inhibitor, P{sub i}, and on the thermal stability. These results indicate that both the charge and size of the residue at position 382 influence the binding of 3-P-glycerate. Site-directed mutagenesis was also performed to obtain a K382R-K419R double mutant. The apparent affinity for 3-P-glycerate of this double-mutant enzyme was 104-fold lower than that of the wild-type enzyme, and the specificity for activator of this mutant enzyme was altered. The K382R-K419R enzyme could not be phosphopyridoxylated, suggesting that other lysine residues are not involved in the binding of 3-P-glycerate. 32 refs., 2 figs., 3 tabs.

  17. Physiological implications of arginine metabolism in plants.

    PubMed

    Winter, Gudrun; Todd, Christopher D; Trovato, Maurizio; Forlani, Giuseppe; Funck, Dietmar

    2015-01-01

    Nitrogen is a limiting resource for plant growth in most terrestrial habitats since large amounts of nitrogen are needed to synthesize nucleic acids and proteins. Among the 21 proteinogenic amino acids, arginine has the highest nitrogen to carbon ratio, which makes it especially suitable as a storage form of organic nitrogen. Synthesis in chloroplasts via ornithine is apparently the only operational pathway to provide arginine in plants, and the rate of arginine synthesis is tightly regulated by various feedback mechanisms in accordance with the overall nutritional status. While several steps of arginine biosynthesis still remain poorly characterized in plants, much wider attention has been paid to inter- and intracellular arginine transport as well as arginine-derived metabolites. A role of arginine as alternative source besides glutamate for proline biosynthesis is still discussed controversially and may be prevented by differential subcellular localization of enzymes. Apparently, arginine is a precursor for nitric oxide (NO), although the molecular mechanism of NO production from arginine remains unclear in higher plants. In contrast, conversion of arginine to polyamines is well documented, and in several plant species also ornithine can serve as a precursor for polyamines. Both NO and polyamines play crucial roles in regulating developmental processes as well as responses to biotic and abiotic stress. It is thus conceivable that arginine catabolism serves on the one hand to mobilize nitrogen storages, while on the other hand it may be used to fine-tune development and defense mechanisms against stress. This review summarizes the recent advances in our knowledge about arginine metabolism, with a special focus on the model plant Arabidopsis thaliana, and pinpoints still unresolved critical questions. PMID:26284079

  18. Physiological implications of arginine metabolism in plants

    PubMed Central

    Winter, Gudrun; Todd, Christopher D.; Trovato, Maurizio; Forlani, Giuseppe; Funck, Dietmar

    2015-01-01

    Nitrogen is a limiting resource for plant growth in most terrestrial habitats since large amounts of nitrogen are needed to synthesize nucleic acids and proteins. Among the 21 proteinogenic amino acids, arginine has the highest nitrogen to carbon ratio, which makes it especially suitable as a storage form of organic nitrogen. Synthesis in chloroplasts via ornithine is apparently the only operational pathway to provide arginine in plants, and the rate of arginine synthesis is tightly regulated by various feedback mechanisms in accordance with the overall nutritional status. While several steps of arginine biosynthesis still remain poorly characterized in plants, much wider attention has been paid to inter- and intracellular arginine transport as well as arginine-derived metabolites. A role of arginine as alternative source besides glutamate for proline biosynthesis is still discussed controversially and may be prevented by differential subcellular localization of enzymes. Apparently, arginine is a precursor for nitric oxide (NO), although the molecular mechanism of NO production from arginine remains unclear in higher plants. In contrast, conversion of arginine to polyamines is well documented, and in several plant species also ornithine can serve as a precursor for polyamines. Both NO and polyamines play crucial roles in regulating developmental processes as well as responses to biotic and abiotic stress. It is thus conceivable that arginine catabolism serves on the one hand to mobilize nitrogen storages, while on the other hand it may be used to fine-tune development and defense mechanisms against stress. This review summarizes the recent advances in our knowledge about arginine metabolism, with a special focus on the model plant Arabidopsis thaliana, and pinpoints still unresolved critical questions. PMID:26284079

  19. Analyzing the catalytic role of active site residues in the Fe-type nitrile hydratase from Comamonas testosteroni Ni1.

    PubMed

    Martinez, Salette; Wu, Rui; Krzywda, Karoline; Opalka, Veronika; Chan, Hei; Liu, Dali; Holz, Richard C

    2015-07-01

    A strictly conserved active site arginine residue (αR157) and two histidine residues (αH80 and αH81) located near the active site of the Fe-type nitrile hydratase from Comamonas testosteroni Ni1 (CtNHase), were mutated. These mutant enzymes were examined for their ability to bind iron and hydrate acrylonitrile. For the αR157A mutant, the residual activity (k cat = 10 ± 2 s(-1)) accounts for less than 1% of the wild-type activity (k cat = 1100 ± 30 s(-1)) while the K m value is nearly unchanged at 205 ± 10 mM. On the other hand, mutation of the active site pocket αH80 and αH81 residues to alanine resulted in enzymes with k cat values of 220 ± 40 and 77 ± 13 s(-1), respectively, and K m values of 187 ± 11 and 179 ± 18 mM. The double mutant (αH80A/αH81A) was also prepared and provided an enzyme with a k cat value of 132 ± 3 s(-1) and a K m value of 213 ± 61 mM. These data indicate that all three residues are catalytically important, but not essential. X-ray crystal structures of the αH80A/αH81A, αH80W/αH81W, and αR157A mutant CtNHase enzymes were solved to 2.0, 2.8, and 2.5 Å resolutions, respectively. In each mutant enzyme, hydrogen-bonding interactions crucial for the catalytic function of the αCys(104)-SOH ligand are disrupted. Disruption of these hydrogen bonding interactions likely alters the nucleophilicity of the sulfenic acid oxygen and the Lewis acidity of the active site Fe(III) ion. PMID:26077812

  20. Dietary arginine affects energy metabolism through polyamine turnover in juvenile Atlantic salmon (Salmo salar).

    PubMed

    Andersen, Synne M; Holen, Elisabeth; Aksnes, Anders; Rønnestad, Ivar; Zerrahn, Jens-Erik; Espe, Marit

    2013-12-14

    In the present study, quadruplicate groups of juvenile Atlantic salmon (Salmo salar) were fed plant protein-based diets with increasing arginine inclusions (range 28·8-37·4 g/kg DM) to investigate whether arginine supplementation affects growth and lipid accumulation through an elevated polyamine turnover. Dietary lysine was held at a constant concentration, just below the requirement. All other amino acids were balanced and equal in the diets. Arginine supplementation increased protein and fat accretion, without affecting the hepatosomatic or visceralsomatic indices. Dietary arginine correlated with putrescine in the liver (R 0·78, P= 0·01) and with ornithine in the muscle, liver and plasma (P= 0·0002, 0·003 and 0·0002, respectively). The mRNA of ornithine decarboxylase, the enzyme producing putrescine, was up-regulated in the white adipose tissue of fish fed the high-arginine inclusion compared with those fed the low-arginine diet. Concomitantly, spermidine/spermine-(N1)-acetyltransferase, the rate-limiting enzyme for polyamine turnover that consumes acetyl-CoA, showed an increased activity in the liver of fish fed the arginine-supplemented diets. In addition, lower acetyl-CoA concentrations were observed in the liver of fish fed the high-arginine diet, while ATP, which is used in the process of synthesising spermidine and spermine, did not show a similar trend. Gene expression of the rate-limiting enzyme for β-oxidation of long-chain fatty acids, carnitine palmitoyl transferase-1, was up-regulated in the liver of fish fed the high-arginine diet. Taken together, the data support that increased dietary arginine activates polyamine turnover and β-oxidation in the liver of juvenile Atlantic salmon and may act to improve the metabolic status of the fish. PMID:23656796

  1. The active site behaviour of electrochemically synthesised gold nanomaterials.

    PubMed

    Plowman, Blake J; O'Mullane, Anthony P; Bhargava, Suresh K

    2011-01-01

    Even though gold is the noblest of metals, a weak chemisorber and is regarded as being quite inert, it demonstrates significant electrocatalytic activity in its nanostructured form. It is demonstrated here that nanostructured and even evaporated thin films of gold are covered with active sites which are responsible for such activity. The identification of these sites is demonstrated with conventional electrochemical techniques such as cyclic voltammetry as well as a large amplitude Fourier transformed alternating current (FT-ac) method under acidic and alkaline conditions. The latter technique is beneficial in determining if an electrode process is either Faradaic or capacitive in nature. The observed behaviour is analogous to that observed for activated gold electrodes whose surfaces have been severely disrupted by cathodic polarisation in the hydrogen evolution region. It is shown that significant electrochemical oxidation responses occur at discrete potential values well below that for the formation of the compact monolayer oxide of bulk gold and are attributed to the facile oxidation of surface active sites. Several electrocatalytic reactions are explored in which the onset potential is determined by the presence of such sites on the surface. Significantly, the facile oxidation of active sites is used to drive the electroless deposition of metals such as platinum, palladium and silver from their aqueous salts on the surface of gold nanostructures. The resultant surface decoration of gold with secondary metal nanoparticles not only indicates regions on the surface which are rich in active sites but also provides a method to form interesting bimetallic surfaces. PMID:22455038

  2. Kinetic analysis of Pseudomonas aeruginosa arginine deiminase mutants and alternate substrates provides insight into structural determinants of function.

    PubMed

    Lu, Xuefeng; Li, Ling; Wu, Rui; Feng, Xiaohua; Li, Zhimin; Yang, Heyi; Wang, Canhui; Guo, Hua; Galkin, Andrey; Herzberg, Osnat; Mariano, Patrick S; Martin, Brian M; Dunaway-Mariano, Debra

    2006-01-31

    L-Arginine deiminase from Pseudomonas aeruginosa (PaADI) catalyzes the hydrolysis of arginine to citrulline and ammonia. PaADI belongs to the guanidino group-modifying enzyme superfamily (GMSF), which conserves backbone fold and a Cys-, His-, and Asp-based catalytic core. In this paper the contributions made by the PaADI core residues Cys406, His278, and Asp166 and the contribution from the neighboring Asp280 (conserved in most but not all GMSF members) to catalysis of the formation and hydrolysis of the Cys406-alkyluronium intermediate were accessed by kinetic analysis of site-directed mutants. In addition, solution hydrolysis in a chemical model of the S-alkylthiouronium intermediate was examined to reveal the importance of general base catalysis in the enzymatic reaction. Substitutions of the active site gating residue Arg401, the l-arginine C(alpha)NH(3)(+)(COO(-)) binding residues, Arg185, Arg243, and Asn160, or the His278 hydrogen bond partner, Glu224, were found to cause dramatic reductions in the enzyme turnover rate. These results are interpreted to suggest that electrostatic interactions play a dominant role in PaADI catalysis. Structural variations observed in P. aeruginosa GMSF enzymes PaADI, agmatine deiminase (PaAgDI), and N(omega),N(omega)-dimethylarginine dimethylaminohydrolase (PaDDAH) indicate an early divergence of the encoding genes. Arginine analogues that are known substrates for PaAgDI and PaDDAH were tested with PaADI to define clear boundaries of biochemical function in the three hydrolases. The conservation of a catalytic core associated with the common chemical function and the divergence of substrate-binding residues (as well as one key catalytic residue) to expand the substrate range provide insight into the evolution of the catalysts that form the GMSF. PMID:16430212

  3. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.

    PubMed

    Stiti, Naim; Chandrasekar, Balakumaran; Strubl, Laura; Mohammed, Shabaz; Bartels, Dorothea; van der Hoorn, Renier A L

    2016-06-17

    Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes. PMID:26990764

  4. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    SciTech Connect

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-03-20

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme.

  5. Intracellular L-arginine concentration does not determine NO production in endothelial cells: Implications on the 'L-arginine paradox'

    SciTech Connect

    Shin, Soyoung; Mohan, Srinidi; Fung, Ho-Leung

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Our findings provide a possible solution to the 'L-arginine paradox'. Black-Right-Pointing-Pointer Extracellular L-arginine concentration is the major determinant of NO production. Black-Right-Pointing-Pointer Cellular L-arginine action is limited by cellular ARG transport, not the K{sub m} of NOS. Black-Right-Pointing-Pointer We explain how L-arginine supplementation can work to increase endothelial function. -- Abstract: We examined the relative contributory roles of extracellular vs. intracellular L-arginine (ARG) toward cellular activation of endothelial nitric oxide synthase (eNOS) in human endothelial cells. EA.hy926 human endothelial cells were incubated with different concentrations of {sup 15}N{sub 4}-ARG, ARG, or L-arginine ethyl ester (ARG-EE) for 2 h. To modulate ARG transport, siRNA for ARG transporter (CAT-1) vs. sham siRNA were transfected into cells. ARG transport activity was assessed by cellular fluxes of ARG, {sup 15}N{sub 4}-ARG, dimethylarginines, and L-citrulline by an LC-MS/MS assay. eNOS activity was determined by nitrite/nitrate accumulation, either via a fluorometric assay or by{sup 15}N-nitrite or estimated {sup 15}N{sub 3}-citrulline concentrations when {sup 15}N{sub 4}-ARG was used to challenge the cells. We found that ARG-EE incubation increased cellular ARG concentration but no increase in nitrite/nitrate was observed, while ARG incubation increased both cellular ARG concentration and nitrite accumulation. Cellular nitrite/nitrate production did not correlate with cellular total ARG concentration. Reduced {sup 15}N{sub 4}-ARG cellular uptake in CAT-1 siRNA transfected cells vs. control was accompanied by reduced eNOS activity, as determined by {sup 15}N-nitrite, total nitrite and {sup 15}N{sub 3}-citrulline formation. Our data suggest that extracellular ARG, not intracellular ARG, is the major determinant of NO production in endothelial cells. It is likely that once transported inside the cell

  6. A small ribozyme with dual-site kinase activity

    PubMed Central

    Biondi, Elisa; Maxwell, Adam W.R.; Burke, Donald H.

    2012-01-01

    Phosphoryl transfer onto backbone hydroxyls is a recognized catalytic activity of nucleic acids. We find that kinase ribozyme K28 possesses an unusually complex active site that promotes (thio)phosphorylation of two residues widely separated in primary sequence. After allowing the ribozyme to radiolabel itself by phosphoryl transfer from [γ-32P]GTP, DNAzyme-mediated cleavage yielded two radiolabeled cleavage fragments, indicating phosphorylation sites within each of the two cleavage fragments. These sites were mapped by alkaline digestion and primer extension pausing. Enzymatic digestion and mutational analysis identified nucleotides important for activity and established the active structure as being a constrained pseudoknot with unusual connectivity that may juxtapose the two reactive sites. Nuclease sensitivities for nucleotides near the pseudoknot core were altered in the presence of GTPγS, indicating donor-induced folding. The 5′ target site was more strongly favored in full-length ribozyme K28 (128 nt) than in truncated RNAs (58 nt). Electrophoretic mobilities of self-thiophosphorylated products on organomercurial gels are distinct from the 5′ mono-thiophosphorylated product produced by reaction with polynucleotide kinase, potentially indicating simultaneous labeling of both sites within individual RNA strands. Our evidence supports a single, compact structure with local dynamics, rather than global rearrangement, as being responsible for dual-site phosphorylation. PMID:22618879

  7. Arginine metabolism in developing soybean cotyledons

    SciTech Connect

    Micallef, B.J.; Shelp, B.J. )

    1989-09-01

    Tracerkinetic experiments were performed using L-(guanidino-{sup 14}C)arginine, L-(U-{sup 14}C)arginine, L-(ureido-{sup 14}C)citrulline, and L-(1-{sup 14}C)ornithine to investigate arginine utilization in developing cotyledons of Gycine max (L.) Merrill. Excised cotyledons were injected with carrier-free {sup 14}C compounds and incubated in sealed vials containing a CO{sub 2} trap. The free and protein amino acids were analyzed using higher performance liquid chromatography and arginine-specific enzyme-linked assays. After 4 hours, 75% and 90% of the {sup 14}C metabolized from (guanidino-{sup 14}C)arginine and (U-{sup 14}C)arginine, respectively, was in protein arginine. The net protein arginine accumulation rate, calculated from the depletion of nitrogenous solutes in the cotyledon during incubation, was 17 nanomoles per cotyledon per hour. The data indicated that arginine was also catabolized by the arginase-urease reactions at a rate of 5.5 nanomoles per cotyledon per hour. Between 2 and 4 hours {sup 14}CO{sub 2} was also evolved from carbons other than C-6 of arginine at a rate of 11.0 nanomoles per cotyledon per hour. It is suggested that this extra {sup 14}CO{sub 2} was evolved during the catabolism of ornithine-derived glutamate; {sup 14}C-ornithine was a product of the arginase reaction. A model for the estimated fluxes associated with arginine utilization in developing soybean cotyledons is presented.

  8. Unique Features of Human Protein Arginine Methyltransferase 9 (PRMT9) and Its Substrate RNA Splicing Factor SF3B2*

    PubMed Central

    Hadjikyriacou, Andrea; Yang, Yanzhong; Espejo, Alexsandra; Bedford, Mark T.; Clarke, Steven G.

    2015-01-01

    Human protein arginine methyltransferase (PRMT) 9 symmetrically dimethylates arginine residues on splicing factor SF3B2 (SAP145) and has been functionally linked to the regulation of alternative splicing of pre-mRNA. Site-directed mutagenesis studies on this enzyme and its substrate had revealed essential unique residues in the double E loop and the importance of the C-terminal duplicated methyltransferase domain. In contrast to what had been observed with other PRMTs and their physiological substrates, a peptide containing the methylatable Arg-508 of SF3B2 was not recognized by PRMT9 in vitro. Although amino acid substitutions of residues surrounding Arg-508 had no great effect on PRMT9 recognition of SF3B2, moving the arginine residue within this sequence abolished methylation. PRMT9 and PRMT5 are the only known mammalian enzymes capable of forming symmetric dimethylarginine (SDMA) residues as type II PRMTs. We demonstrate here that the specificity of these enzymes for their substrates is distinct and not redundant. The loss of PRMT5 activity in mouse embryo fibroblasts results in almost complete loss of SDMA, suggesting that PRMT5 is the primary SDMA-forming enzyme in these cells. PRMT9, with its duplicated methyltransferase domain and conserved sequence in the double E loop, appears to have a unique structure and specificity among PRMTs for methylating SF3B2 and potentially other polypeptides. PMID:25979344

  9. Dashboard applications to monitor experiment activities at sites

    NASA Astrophysics Data System (ADS)

    Andreeva, Julia; Belforte, Stefano; Boehm, Max; Casajus, Adrian; Flix, Josep; Gaidioz, Benjamin; Grigoras, Costin; Kokoszkiewicz, Lukasz; Lanciotti, Elisa; Rocha, Ricardo; Saiz, Pablo; Santinelli, Roberto; Sidorova, Irina; Sciabà, Andrea; Tsaregorodtsev, Andrei

    2010-04-01

    In the framework of a distributed computing environment, such as WLCG, monitoring has a key role in order to keep under control activities going on in sites located in different countries and involving people based in many different sites. To be able to cope with such a large scale heterogeneous infrastructure, it is necessary to have monitoring tools providing a complete and reliable view of the overall performance of the sites. Moreover, the structure of a monitoring system critically depends on the object to monitor and on the users it is addressed to. In this article we will describe two different monitoring systems both aimed to monitor activities and services provided in the WLCG framework, but designed in order to meet the requirements of different users: Site Status Board has an overall view of the services available in all the sites supporting an experiment, whereas Siteview provides a complete view of all the activities going on at a site, for all the experiments supported by the site.

  10. Architecture and active site of particulate methane monooxygenase

    PubMed Central

    Culpepper, Megen A.; Rosenzweig, Amy C.

    2012-01-01

    Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria, organisms that live on methane gas as their sole carbon source. Understanding pMMO function has important implications for bioremediation applications and for the development of new, environmentally friendly catalysts for the direct conversion of methane to methanol. Crystal structures of pMMOs from three different methanotrophs reveal a trimeric architecture, consisting of three copies each of the pmoB, pmoA, and pmoC subunits. There are three distinct metal centers in each protomer of the trimer, mononuclear and dinuclear copper sites in the periplasmic regions of pmoB and a mononuclear site within the membrane that can be occupied by copper or zinc. Various models for the pMMO active site have been proposed within these structural constraints, including dicopper, tricopper, and diiron centers. Biochemical and spectroscopic data on pMMO and recombinant soluble fragments, denoted spmoB proteins, indicate that the active site involves copper and is located at the site of the dicopper center in the pmoB subunit. Initial spectroscopic evidence for O2 binding at this site has been obtained. Despite these findings, questions remain about the active site identity and nuclearity and will be the focus of future studies. PMID:22725967

  11. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site.

    PubMed

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-04-20

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2domains reveal that the (HhH)2domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  12. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  13. Mutations within the agonist-binding site convert the homomeric alpha1 glycine receptor into a Zn2+-activated chloride channel.

    PubMed

    Grudzinska, Joanna; Schumann, Tanja; Schemm, Rudolf; Betz, Heinrich; Laube, Bodo

    2008-01-01

    The divalent cation Zn2+ has been shown to regulate inhibitory neurotransmission in the mammalian CNS by affecting the activation of the strychnine-sensitive glycine receptor (GlyR). In spinal neurons and cells expressing recombinant GlyRs, low micromolar (<10 microM) concentrations of Zn2+ enhance glycine currents, whereas higher concentrations (>10 microM) have an inhibitory effect. Mutational studies have localized the Zn2+ binding sites mediating allosteric potentiation and inhibition of GlyRs in distinct regions of the N-terminal extracellular domain of the GlyR alpha-subunits. Here, we examined the Zn2+ sensitivity of different mutations within the agonist binding site of the homomeric alpha(1)-subunit GlyR upon heterologous expression in Xenopus oocytes. This revealed that six substitutions within the ligand-binding pocket result in a total loss of Zn2+ inhibition. Furthermore, substitution of the positively charged residues arginine 65 and arginine 131 by alanine (alpha(1)(R65A), alpha(1)(R131A), or of the aromatic residue phenylalanine 207 by histidine (alpha(1)(F207H)), converted the alpha(1) GlyR into a chloride channel that was activated by Zn2+ alone. Dose-response analysis of the alpha(1)(F207H) GlyR disclosed an EC(50) value of 1.2 microM for Zn2+ activation; concomitantly the apparent glycine affinity was 1000-fold reduced. Thus, single point mutations within the agonist-binding site of the alpha(1) subunit convert the inhibitory GlyR from a glycine-gated into a selectively Zn2+-activated chloride channel. This might be exploited for the design of metal-specific biosensors by modeling-assisted mutagenesis. PMID:18690053

  14. Yeast Hmt1 catalyses asymmetric dimethylation of histone H3 arginine 2 in vitro.

    PubMed

    Li, Hong-Tao; Gong, Ting; Zhou, Zhen; Liu, Yu-Ting; Cao, Xiongwen; He, Yongning; Chen, Charlie Degui; Zhou, Jin-Qiu

    2015-05-01

    Protein arginine methyltransferases (PRMTs) are a family of enzymes that can methylate protein arginine residues. PRMTs' substrates include histones and a variety of non-histone proteins. Previous studies have shown that yeast Hmt1 is a type I PRMT and methylates histone H4 arginine 3 and several mRNA-binding proteins. Hmt1 forms dimers or oligomers, but how dimerization or oligomerization affects its activity remains largely unknown. We now report that Hmt1 can methylate histone H3 arginine 2 (H3R2) in vitro. The dimerization but not hexamerization is essential for Hmt1's activity. Interestingly, the methyltransferase activity of Hmt1 on histone H3R2 requires reciprocal contributions from two Hmt1 molecules. Our results suggest an intermolecular trans-complementary mechanism by which Hmt1 dimer methylates its substrates. PMID:25715670

  15. Amazing stability of the arginine-phosphate electrostatic interaction.

    PubMed

    Woods, Amina S; Ferré, Sergi

    2005-01-01

    Electrostatic interactions between a basic epitope containing adjacent arginine residues and an acidic epitope containing a phosphorylated serine are involved in receptor heteromerization. In the present study, we demonstrate that this arginine-phosphate electrostatic interaction possesses a "covalent-like" stability. Hence, these bonds can withstand fragmentation by mass spectrometric collision-induced dissociation at energies similar to those that fragment covalent bonds and they demonstrate an extremely low dissociation constant by plasmon resonance. The present work also highlights the importance of phosphorylation-dephosphorylation events in the modulation of this electrostatic attraction. Phosphorylation of the acidic epitope, a casein kinase one consensus site, makes it available to interact with the basic epitope. On the other hand, phosphorylation of serine and/or threonine residues adjacent to the basic epitope, a protein kinase A consensus site, slows down the attraction between the epitopes. Although analyzed here in the frame of receptor heteromerization, the arginine-phosphate electrostatic interaction most likely represents a general mechanism in protein-protein interactions. PMID:16083292

  16. Tyrosine binding and promiscuity in the arginine repressor from the pathogenic bacterium Corynebacterium pseudotuberculosis.

    PubMed

    Mariutti, Ricardo Barros; Ullah, Anwar; Araujo, Gabriela Campos; Murakami, Mario Tyago; Arni, Raghuvir Krishnaswamy

    2016-07-01

    The arginine repressor (ArgR) regulates arginine biosynthesis in a number of microorganisms and consists of two domains interlinked by a short peptide; the N-terminal domain is involved in DNA binding and the C-terminal domain binds arginine and forms a hexamer made-up of a dimer of trimers. The crystal structure of the C-terminal domain of ArgR from the pathogenic Corynebacterium pseudotuberculosis determined at 1.9 Å resolution contains a tightly bound tyrosine at the arginine-binding site indicating hitherto unobserved promiscuity. Structural analysis of the binding pocket displays clear molecular adaptations to accommodate tyrosine binding suggesting the possible existence of an alternative regulatory process in this pathogenic bacterium. PMID:27233609

  17. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense.

    PubMed

    Caffrey, C R; Hansell, E; Lucas, K D; Brinen, L S; Alvarez Hernandez, A; Cheng, J; Gwaltney, S L; Roush, W R; Stierhof, Y D; Bogyo, M; Steverding, D; McKerrow, J H

    2001-11-01

    Cysteine protease activity of African trypanosome parasites is a target for new chemotherapy using synthetic protease inhibitors. To support this effort and further characterize the enzyme, we expressed and purified rhodesain, the target protease of Trypanosoma brucei rhodesiense (MVAT4 strain), in reagent quantities from Pichia pastoris. Rhodesain was secreted as an active, mature protease. Site-directed mutagenesis of a cryptic glycosylation motif not previously identified allowed production of rhodesain suitable for crystallization. An invariable ER(A/V)FNAA motif in the pro-peptide sequence of rhodesain was identified as being unique to the genus Trypanosoma. Antibodies to rhodesain localized the protease in the lysosome and identified a 40-kDa protein in long slender forms of T. b. rhodesiense and all life-cycle stages of T. b. brucei. With the latter parasite, protease expression was five times greater in short stumpy trypanosomes than in the other stages. Radiolabeled active site-directed inhibitors identified brucipain as the major cysteine protease in T. b. brucei. Peptidomimetic vinyl sulfone and epoxide inhibitors designed to interact with the S2, S1 and S' subsites of the active site cleft revealed differences between rhodesain and the related trypanosome protease cruzain. Using fluorogenic dipeptidyl substrates, rhodesain and cruzain had acid pH optima, but unlike some mammalian cathepsins retained significant activity and stability up to pH 8.0, consistent with a possible extracellular function. S2 subsite mapping of rhodesain and cruzain with fluorogenic peptidyl substrates demonstrates that the presence of alanine rather than glutamate at S2 prevents rhodesain from cleaving substrates in which P2 is arginine. PMID:11704274

  18. Arginines Plasma Concentration and Oxidative Stress in Mild to Moderate COPD

    PubMed Central

    Zinellu, Angelo; Fois, Alessandro Giuseppe; Sotgia, Salvatore; Sotgiu, Elisabetta; Zinellu, Elisabetta; Bifulco, Fabiana; Mangoni, Arduino A; Pirina, Pietro; Carru, Ciriaco

    2016-01-01

    Background Elevated plasma concentrations of the endogenous nitric oxide synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA) have been observed in respiratory conditions such as asthma and cystic fibrosis. Since oxidative stress has been shown to increase the activity of arginine methylating enzymes, hence increased ADMA synthesis, and to reduce ADMA degrading enzymes, hence increased ADMA concentrations, we assessed methylated arginines concentrations in chronic obstructive pulmonary disease (COPD), a disease characterized by increased oxidative stress. Methods Plasma arginine, ADMA and symmetric dimethylarginine (SDMA), oxidative stress markers (thiobarbituric acid reactive substances, TBARS, and plasma proteins SH, PSH) and antioxidants (taurine and paraoxonase 1, PON1, activity) were measured in 43 COPD patients with mild (n = 29) or moderate (n = 14) disease and 43 age- and sex-matched controls. Results TBARS significantly increased with COPD presence and severity (median 2.93 vs 3.18 vs 3.64 μmol/L, respectively in controls, mild and moderate group, p<0.0001 by ANOVA) whereas PSH decreased (6.69±1.15 vs 6.04±0.85 vs 5.33±0.96 μmol/gr prot, p<0.0001 by ANOVA). Increased ADMA/arginine ratio, primarily due to reduced arginine concentrations, was also observed with COPD presence and severity (median 0.0067 vs 0.0075 vs 0.0100, p<0.0001 by ANOVA). In multiple logistic regression analysis, only TBARS (OR 0.44, 95% CI 0.25–0.77; p = 0.0045) and ADMA/Arginine ratio (OR 1.72, 95% CI 2.27–13.05; p = 0.02) were independently associated with COPD severity. Conclusion COPD presence and severity are associated with increased oxidative stress and alterations in arginine metabolism. The reduced arginine concentrations in COPD may offer a new target for therapeutic interventions increasing arginine availability. PMID:27479314

  19. Genetic and biochemical characterization of arginine biosynthesis in Sinorhizobium meliloti 1021.

    PubMed

    Hernández, Victor M; Girard, Lourdes; Hernández-Lucas, Ismael; Vázquez, Alejandra; Ortíz-Ortíz, Catalina; Díaz, Rafael; Dunn, Michael F

    2015-08-01

    L-Ornithine production in the alfalfa microsymbiont Sinorhizobium meliloti occurs as an intermediate step in arginine biosynthesis. Ornithine is required for effective symbiosis but its synthesis in S. meliloti has been little studied. Unlike most bacteria, S. meliloti 1021 is annotated as encoding two enzymes producing ornithine: N-acetylornithine (NAO) deacetylase (ArgE) hydrolyses NAO to acetate and ornithine, and glutamate N-acetyltransferase (ArgJ) transacetylates l-glutamate with the acetyl group from NAO, forming ornithine and N-acetylglutamate (NAG). NAG is the substrate for the second step of arginine biosynthesis catalysed by NAG kinase (ArgB). Inactivation of argB in strain 1021 resulted in arginine auxotrophy. The activity of purified ArgB was significantly inhibited by arginine but not by ornithine. The purified ArgJ was highly active in NAO deacetylation/glutamate transacetylation and was significantly inhibited by ornithine but not by arginine. The purified ArgE protein (with a 6His-Sumo affinity tag) was also active in deacetylating NAO. argE and argJ single mutants, and an argEJ double mutant, are arginine prototrophs. Extracts of the double mutant contained aminoacylase (Ama) activity that deacetylated NAO to form ornithine. The purified products of three candidate ama genes (smc00682 (hipO1), smc02256 (hipO2) and smb21279) all possessed NAO deacetylase activity. hipO1 and hipO2, but not smb21279, expressed in trans functionally complemented an Escherichia coli ΔargE : : Km mutant. We conclude that Ama activity accounts for the arginine prototrophy of the argEJ mutant. Transcriptional assays of argB, argE and argJ, fused to a promoterless gusA gene, showed that their expression was not significantly affected by exogenous arginine or ornithine. PMID:26271664

  20. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate

    SciTech Connect

    Marletta, M.A.; Yoon, P.S.; Iyengar, R.; Leaf, C.D.; Wishnok, J.S.

    1988-11-29

    Previous studies have shown that murine macrophages immunostimulated with interferon ..gamma.. and Escherichia coli lipopolysaccharide synthesize NO/sub 2//sup -/, NO/sub 3//sup -/, and citrulline from L-arginine by oxidation of one of the two chemically equivalent guanido nitrogens. The enzymatic activity for this very unusual reaction was found in the 100,000g supernatant isolated from activated RAW 264.7 cells and was totally absent in unstimulated cells. This activity requires NADPH and L-arginine and is enhanced by Mg/sup 2 +/. When the subcellular fraction containing the enzyme activity was incubated with L-arginine, NADPH, and Mg/sup 2 +/, the formation of nitric oxide was observed. Nitric oxide formation was dependent on the presence of L-arginine and NADPH and was inhibited by the NO/sub 2//sup -//NO/sub 3//sup -/ synthesis inhibitor N/sup G/-monomethyl-L-arginine. Furthermore, when incubated with L-(guanido-/sup 15/N/sub 2/)arginine, the nitric oxide was /sup 15/N-labeled. The results show that nitric oxide is an intermediate in the L-arginine to NO/sub 2//sup -/, NO/sub 3//sup -/, and citrulline pathway. L-Arginine is required for the activation of macrophages to the bactericidal/tumoricidal state and suggests that nitric oxide is serving as an intracellular signal for this activation process in a manner similar to that very recently observed in endothelial cells, where nitric oxide leads to vascular smooth muscle relaxation.

  1. Molecular Imprint of Enzyme Active Site by Camel Nanobodies

    PubMed Central

    Li, Jiang-Wei; Xia, Lijie; Su, Youhong; Liu, Hongchun; Xia, Xueqing; Lu, Qinxia; Yang, Chunjin; Reheman, Kalbinur

    2012-01-01

    Screening of inhibitory Ab1 antibodies is a critical step for producing catalytic antibodies in the anti-idiotypic approach. However, the incompatible surface of the active site of the enzyme and the antigen-binding site of heterotetrameric conventional antibodies become the limiting step. Because camelid-derived nanobodies possess the potential to preferentially bind to the active site of enzymes due to their small size and long CDR3, we have developed a novel approach to produce antibodies with alliinase activities by exploiting the molecular mimicry of camel nanobodies. By screening the camelid-derived variable region of the heavy chain cDNA phage display library with alliinase, we obtained an inhibitory nanobody VHHA4 that recognizes the active site. Further screening with VHHA4 from the same variable domain of the heavy chain of a heavy-chain antibody library led to a higher incidence of anti-idiotypic Ab2 abzymes with alliinase activities. One of the abzymes, VHHC10, showed the highest activity that can be inhibited by Ab1 VHHA4 and alliinase competitive inhibitor penicillamine and significantly suppressed the B16 tumor cell growth in the presence of alliin in vitro. The results highlight the feasibility of producing abzymes via anti-idiotypic nanobody approach. PMID:22374998

  2. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  3. An active-site peptide from pepsin C

    PubMed Central

    Kay, J.; Ryle, A. P.

    1971-01-01

    Porcine pepsin C is inactivated rapidly and irreversibly by diazoacetyl-dl-norleucine methyl ester in the presence of cupric ions at pH values above 4.5. The inactivation is specific in that complete inactivation accompanies the incorporation of 1mol of inhibitor residue/mol of enzyme and evidence has been obtained to suggest that the reaction occurs with an active site residue. The site of reaction is the β-carboxyl group of an aspartic acid residue in the sequence Ile-Val-Asp-Thr. This sequence is identical with the active-site sequence in pepsin and the significance of this in terms of the different activities of the two enzymes is discussed. PMID:4942834

  4. Depletion of arginine in yeast cells decreases the resistance to hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuki; Iwahashi, Hitoshi; Iguchi, Akinori; Shigematsu, Toru

    2015-07-01

    High hydrostatic pressure (HP) inhibits growth and inactivates microorganisms by destabilizing non-covalent molecular interactions. Arginine contributes to stress resistance because it has a guanidine side chain, which assists in the refolding of aggregated proteins. We attempted to analyze the contribution of arginine to high HP stress using a pressure-sensitive mutant strain of Saccharomyces cerevisiae and a metabolomics approach. Our results showed that the content of 136 out of 250 detected metabolites differed in the mutant and parent strains. Decreased metabolites were involved in the tricarboxylic acid cycle and arginine biosynthesis. The expression of genes contributing to arginine biosynthesis was significantly lower in the mutant strain than in the parent strain. When arginine was supplemented to the medium, the mutant strain showed more tolerance to pressure. These results suggest that yeast cells survived due to the contribution of arginine to high pressure resistance. This indicates that depletion of arginine caused by decreased activity of the biosynthesis pathway confers sensitivity to HP.

  5. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined. PMID:27243042

  6. Arginine-related guanidino compounds and nitric oxide synthase in the brain of ornithine transcarbamylase deficient spf mutant mouse: effect of metabolic arginine deficiency.

    PubMed

    Ratnakumari, L; Qureshi, I A; Butterworth, R F; Marescau, B; De Deyn, P P

    1996-09-13

    The sparse-fur (spf) mouse, with an X-linked hepatic ornithine transcarbamylase (OTC, E.C.2.1.3.3) deficiency, exhibits significantly lower levels of arginine in the brain as compared to normal controls. In the present study, the effect of a sustained lower metabolic arginine was studied by measuring the levels of several arginine-related guanidino compounds in brain. The concentrations of gamma-guanidinobutyric acid (gamma-GBA), N-alpha-acetylarginine (N-alpha-AA), argininic acid (Arg-A), guanidinoacetic acid (GAA), and creatine were significantly lower in spf mice as compared to controls. Since arginine is the precursor for nitric oxide, we also measured the activity of nitric oxide synthase which was significantly reduced in cerebellum, striatum, hippocampus and cerebral cortex of spf mice. The changes seen in cerebral guanidino compound and nitric oxide metabolism of spf mice could be due to a sustained deficiency of arginine, caused by a metabolic block in the area cycle. PMID:8899736

  7. Dysregulated expression of arginine metabolic enzymes in human intestinal tissues of necrotizing enterocolitis and response of CaCO2 cells to bacterial components.

    PubMed

    Leung, Kam Tong; Chan, Kathy Yuen Yee; Ma, Terence Ping Yuen; Yu, Jasmine Wai Sum; Tong, Joanna Hung Man; Tam, Yuk Him; Cheung, Hon Ming; To, Ka Fai; Lam, Hugh Simon; Lee, Kim Hung; Li, Karen; Ng, Pak Cheung

    2016-03-01

    The small intestine is the exclusive site of arginine synthesis in neonates. Low levels of circulating arginine have been associated with the occurrence of necrotizing enterocolitis (NEC) but the mechanism of arginine dysregulation has not been fully elucidated. We aimed to investigate (i) expressional changes of arginine synthesizing and catabolic enzymes in human intestinal tissues of NEC, spontaneous intestinal perforation (SIP) and noninflammatory surgical conditions (Surg-CTL) and to investigate the (ii) mechanisms of arginine dysregulation and enterocyte proliferation upon stimulation by bacterial components, arginine depletion, ARG1 overexpression and nitric oxide (NO) supplementation. Our results showed that expressions of arginine synthesizing enzymes ALDH18A1, ASL, ASS1, CPS1, GLS, OAT and PRODH were significantly decreased in NEC compared with Surg-CTL or SIP tissues. Catabolic enzyme ARG1 was increased (>100-fold) in NEC tissues and histologically demonstrated to be expressed by infiltrating neutrophils. No change in arginine metabolic enzymes was observed between SIP and Surg-CTL tissues. In CaCO2 cells, arginine metabolic enzymes were differentially dysregulated by lipopolysaccharide or lipoteichoic acid. Depletion of arginine reduced cell proliferation and this phenomenon could be partially rescued by NO. Overexpression of ARG1 also reduced enterocyte proliferation. We provided the first expressional profile of arginine metabolic enzymes at the tissue level of NEC. Our findings suggested that arginine homeostasis was severely disturbed and could be triggered by inflammatory responses of enterocytes and infiltrating neutrophils as well as bacterial components. Such reactions could reduce arginine and NO, resulting in mucosal damage. The benefit of arginine supplementation for NEC prophylaxis merits further clinical evaluation. PMID:26895666

  8. Rate-limiting domain and loop motions in arginine kinase.

    PubMed

    Davulcu, Omar; Skalicky, Jack J; Chapman, Michael S

    2011-05-17

    Arginine kinase catalyzes the reversible transfer of a phosphoryl group between ATP and arginine. It is the arthropod homologue of creatine kinase, buffering cellular ATP levels. Crystal structures of arginine kinase, in substrate-free and substrate-bound forms, have revealed large conformational changes associated with the catalytic cycle. Recent nuclear magnetic resonance identified movements of the N-terminal domain and a loop comprising residues I182--G209 with conformational exchange rates in the substrate-free enzyme similar to the turnover rate. Here, to understand whether these motions might be rate-limiting, we determined activation barriers for both the intrinsic dynamics and enzyme turnover using measurements over a temperature range of 15-30 °C. (15)N transverse relaxation dispersion yields activation barriers of 46 ± 8 and 34 ± 12 kJ/mol for the N-terminal domain and I182--G209 loop, respectively. An activation barrier of 34 ± 13 kJ/mol was obtained for enzyme turnover from steady-state kinetics. The similarity between the activation barriers is indeed consistent with turnover being limited by backbone conformational dynamics and pinpoints the locations of potentially rate-limiting motions. PMID:21425868

  9. Purification and Characterization of an Arginine Aminopeptidase from Lactobacillus sakei

    PubMed Central

    Sanz, Yolanda; Toldrá, Fidel

    2002-01-01

    An arginine aminopeptidase (EC 3.4.11.6) that exclusively hydrolyzes basic amino acids from the amino (N) termini of peptide substrates has been purified from Lactobacillus sakei. The purification procedure consisted of ammonium sulfate fractionation and three chromatographic steps, which included hydrophobic interaction, gel filtration, and anion-exchange chromatography. This procedure resulted in a recovery rate of 4.2% and a 500-fold increase in specific activity. The aminopeptidase appeared to be a trimeric enzyme with a molecular mass of 180 kDa. The activity was optimal at pH 5.0 and 37°C. The enzyme was inhibited by sulfhydryl group reagents and several divalent cations (Cu2+, Hg2+, and Zn2+) but was activated by reducing agents, metal-chelating agents, and sodium chloride. The enzyme showed a preference for arginine at the N termini of aminoacyl derivatives and peptides. The Km values for Arg-7-amido-4-methylcoumarin (AMC) and Lys-AMC were 15.9 and 26.0 μM, respectively. The nature of the amino acid residue at the C terminus of dipeptides has an effect on hydrolysis rates. The activity was maximal toward dipeptides with Arg, Lys, or Ala as the C-terminal residue. The properties of the purified enzyme, its potential function in the release of arginine, and its further metabolism are discussed because, as a whole, it could constitute a survival mechanism for L. sakei in the meat environment. PMID:11916721

  10. The protein arginine deiminases (PADs): Structure, Function, Inhibition, and Disease

    PubMed Central

    Bicker, Kevin L.

    2012-01-01

    The post translational modification of histones has significant effects on overall chromatin function. One such modification is citrullination, which is catalyzed by the protein arginine deiminases (PADs), a unique family of enzymes that catalyzes the hydrolysis of peptidyl-arginine to form peptidyl-citrulline on histones, fibrinogen, and other biologically relevant proteins. Overexpression and/or increased PAD activity is observed in several diseases, including rheumatoid arthritis, Alzheimer’s disease, multiple sclerosis, lupus, Parkinson’s disease, and cancer. This review discusses the important structural and mechanistic characteristics of the PADs, as well as recent investigations into the role of the PADs in increasing disease severity in RA and colitis and the importance of PAD activity in mediating neutrophil extracellular trap (NET) formation through chromatin decondensation. Lastly, efforts to develop PAD inhibitors with excellent potency, selectivity and in vivo efficacy are discussed, highlighting the most promising inhibitors. PMID:23175390

  11. Arginine decarboxylase as the source of putrescine for tobacco alkaloids

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Galston, A. W.

    1986-01-01

    The putrescine which forms a part of nicotine and other pyrrolidine alkaloids is generally assumed to arise through the action of ornithine decarboxylase (ODC). However, we have previously noted that changes in the activity of arginine decarboxylase (ADC), an alternate source of putrescine, parallel changes in tissue alkaloids, while changes in ODC activity do not. This led us to undertake experiments to permit discrimination between ADC and ODC as enzymatic sources of putrescine destined for alkaloids. Two kinds of evidence presented here support a major role for ADC in the generation of putrescine going into alkaloids: (a) A specific 'suicide inhibitor' of ADC effectively inhibits the biosynthesis of nicotine and nornicotine in tobacco callus, while the analogous inhibitor of ODC is less effective, and (b) the flow of 14C from uniformly labelled arginine into nicotine is much more efficient than that from ornithine.

  12. Rat intestinal trehalase. Studies of the active site.

    PubMed

    Chen, C C; Guo, W J; Isselbacher, K J

    1987-11-01

    Rat intestinal trehalase was solubilized, purified and reconstituted into proteoliposomes. With octyl glucoside as the solubilizing detergent, the purified protein appeared as a single band on SDS/polyacrylamide-gel electrophoresis with an apparent molecular mass of 67 kDa. Kinetic studies indicated that the active site of this enzyme can be functionally divided into two adjacent regions, namely a binding site (with pKa 4.8) and a catalytic site (with pKa 7.2). Other findings suggested that the catalytic site contains a functional thiol group, which is sensitive to inhibition by N-ethylmaleimide, Hg2+ and iodoacetate. Substrate protection and iodoacetate labelling of the thiol group demonstrated that only a protein of 67 kDa was labelled. Furthermore, sucrose and phlorizin protected the thiol group, but Tris-like inhibitors did not. Structure-inhibition analysis of Tris-like inhibitors, the pH effect of Tris inhibition and Tris protection of 1-(3-dimethylaminopropyl)-3-ethylcarbodi-imide inactivation permitted characterization and location of a separate site containing a carboxy group for Tris binding, which may also be the binding region. On the basis of these findings, a possible structure for the active site of trehalase is proposed. PMID:3426558

  13. Active Site and Remote Contributions to Catalysis in Methylthioadenosine Nucleosidases

    PubMed Central

    Thomas, Keisha; Cameron, Scott A.; Almo, Steven C.; Burgos, Emmanuel S.; Gulab, Shivali A.; Schramm, Vern L.

    2015-01-01

    5′-Methylthioadenosine/S-adenosyl-L-homocysteine nucleosidases (MTANs) catalyze the hydrolysis of 5′-methylthioadenosine to adenine and 5-methylthioribose. The amino acid sequences of the MTANs from Vibrio cholerae (VcMTAN) and Escherichia coli (EcMTAN) are 60% identical and 75% similar. Protein structure folds and kinetic properties are similar. However, binding of transition-state analogues is dominated by favorable entropy in VcMTAN and by enthalpy in EcMTAN. Catalytic sites of VcMTAN and EcMTAN in contact with reactants differ by two residues; Ala113 and Val153 in VcMTAN are Pro113 and Ile152, respectively, in EcMTAN. We mutated the VcMTAN catalytic site residues to match those of EcMTAN in anticipation of altering its properties toward EcMTAN. Inhibition of VcMTAN by transition-state analogues required filling both active sites of the homodimer. However, in the Val153Ile mutant or double mutants, transition-state analogue binding at one site caused complete inhibition. Therefore, a single amino acid, Val153, alters the catalytic site cooperativity in VcMTAN. The transition-state analogue affinity and thermodynamics in mutant VcMTAN became even more unlike those of EcMTAN, the opposite of expectations from catalytic site similarity; thus, catalytic site contacts in VcMTAN are unable to recapitulate the properties of EcMTAN. X-ray crystal structures of EcMTAN, VcMTAN, and a multiple-site mutant of VcMTAN most closely resembling EcMTAN in catalytic site contacts show no major protein conformational differences. The overall protein architectures of these closely related proteins are implicated in contributing to the catalytic site differences. PMID:25806409

  14. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  15. Determination of lysine residues affinity labeled in the active site of yeast RNA polymerase II(B) by mutagenesis.

    PubMed Central

    Treich, I; Carles, C; Sentenac, A; Riva, M

    1992-01-01

    In a previous study, yeast RNA polymerase II(B) was affinity labeled with two nucleotide derivatives (III and VIII) (1). In both cases, the labeled site was localized to the C-terminal part of the B150 subunit. The potential target lysyl residues of derivative III were mapped to the conserved domain H, between Asn946 and Met999. In the present work, we have mutagenized to arginine the five lysines present in domain H. Three lysines can be replaced, individually or simultaneously, without affecting cell growth, and each mutated enzyme can still be affinity labeled. Hence one or both of the other two lysyl residues, Lys979 and Lys987, is the target of the affinity reagent. These two lysines were each found to be essential for cell viability. Derivative VIII labeled another domain in addition to domain H. Supported by analogous results obtained for E. coli RNA polymerase using derivative VIII (2), we hypothesized that the second domain labeled by this derivative in the B150 subunit was domain I. Mutagenesis of the unique lysine present in domain I demonstrated that Lys 1102 was the target of derivative VIII. These results indicate that in both prokaryotic and eukaryotic RNA polymerases, domains H and I are in close proximity and participate to the active site. Images PMID:1408783

  16. Structures of Clostridium Botulinum Neurotoxin Serotype A Light Chain Complexed with Small-Molecule Inhibitors Highlight Active-Site Flexibility

    SciTech Connect

    Silvaggi,N.; Boldt, G.; Hixon, M.; Kennedy, J.; Tzipori, S.; Janda, K.; Allen, K.

    2007-01-01

    The potential for the use of Clostridial neurotoxins as bioweapons makes the development of small-molecule inhibitors of these deadly toxins a top priority. Recently, screening of a random hydroxamate library identified a small-molecule inhibitor of C. botulinum Neurotoxin Serotype A Light Chain (BoNT/A-LC), 4-chlorocinnamic hydroxamate, a derivative of which has been shown to have in vivo efficacy in mice and no toxicity. We describe the X-ray crystal structures of BoNT/A-LC in complexes with two potent small-molecule inhibitors. The structures of the enzyme with 4-chlorocinnamic hydroxamate or 2,4-dichlorocinnamic hydroxamate bound are compared to the structure of the enzyme complexed with L-arginine hydroxamate, an inhibitor with modest affinity. Taken together, this suite of structures provides surprising insights into the BoNT/A-LC active site, including unexpected conformational flexibility at the S1' site that changes the electrostatic environment of the binding pocket. Information gained from these structures will inform the design and optimization of more effective small-molecule inhibitors of BoNT/A-LC.

  17. Water in the Active Site of Ketosteroid Isomerase

    PubMed Central

    Hanoian, Philip; Hammes-Schiffer, Sharon

    2011-01-01

    Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two waters in the Y16S mutant, one water in the Y16F and FFF mutants, and intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of 1H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less

  18. Energy transfer at the active sites of heme proteins

    SciTech Connect

    Dlott, D.D.; Hill, J.R.

    1995-12-31

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes.

  19. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  20. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    PubMed

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  1. Arginine behaviour after arginine or citrulline administration in older subjects.

    PubMed

    Moinard, C; Maccario, J; Walrand, S; Lasserre, V; Marc, J; Boirie, Y; Cynober, L

    2016-02-14

    Arginine (ARG) and its precursor citrulline (CIT) are popular dietary supplements, especially for the elderly. However, age-related reductions in lean body mass and alterations in organ functions could change their bioavailability. Pharmacokinetics and tolerance to amino acid (AA) loads are poorly documented in elderly subjects. The objective here was to characterise the plasma kinetics of CIT and ARG in a single-dosing study design. Eight fasting elderly men underwent two separate isomolar oral loading tests (10 g of CIT or 9·94 g of ARG). Blood was withdrawn over an 8-h period to measure plasma AA concentrations. Only CIT, ornithine and ARG plasma concentrations were changed. Volume of distribution was not dependent on AA administered. Conversely, parameters related to ARG kinetics were strongly dependent on AA administered: after ARG load, elimination was higher (ARG>CIT; P=0·041) and admission period+time at peak concentration was lower (ARG

  2. Active sites environmental monitoring program. Annual report FY 1992

    SciTech Connect

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.

    1994-04-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) at ORNL from October 1991 through September 1992. Solid Waste Operations and the Environmental Sciences Division established ASEMP in 1989 to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by Chapter 2 and 3 of US Department of Energy Order 5820.2A. The Interim Waste Management Facility (IWMF) began operation in December 1991. Monitoring results from the tumulus and IWMF disposal pads continue to indicate that no LLW is leaching from the storage vaults. Storm water falling on the IWMF active pad was collected and transported to the Process Waste Treatment Plant while operators awaited approval of the National Pollutant Discharge Elimination System (NPDES) permit. Several of the recent samples collected from the active IWMF pad had pH levels above the NPDES limit of 9.0 because of alkali leached from the concrete. The increase in gross beta activity has been slight; only 1 of the 21 samples collected contained activity above the 5.0 Bq/L action level. Automated sample-collection and flow-measurement equipment has been installed at IWMF and is being tested. The flume designed to electronically measure flow from the IWMF pads and underpads is too large to be of practical value for measuring most flows at this site. Modification of this system will be necessary. A CO{sub 2} bubbler system designed to reduce the pH of water from the pads is being tested at IWMF.

  3. Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants.

    PubMed

    Fait, M Elisa; Garrote, Graciela L; Clapés, Pere; Tanco, Sebastian; Lorenzo, Julia; Morcelle, Susana R

    2015-07-01

    Two novel arginine-based cationic surfactants were synthesized using as biocatalyst papain, an endopeptidase from Carica papaya latex, adsorbed onto polyamide. The classical substrate N (α)-benzoyl-arginine ethyl ester hydrochloride for the determination of cysteine and serine proteases activity was used as the arginine donor, whereas decyl- and dodecylamine were used as nucleophiles for the condensation reaction. Yields higher than 90 and 80 % were achieved for the synthesis of N (α)-benzoyl-arginine decyl amide (Bz-Arg-NHC10) and N (α)-benzoyl-arginine dodecyl amide (Bz-Arg-NHC12), respectively. The purification process was developed in order to make it more sustainable, by using water and ethanol as the main separation solvents in a single cationic exchange chromatographic separation step. Bz-Arg-NHC10 and Bz-Arg-NHC12 proved antimicrobial activity against both Gram-positive and Gram-negative bacteria, revealing their potential use as effective disinfectants as they reduced 99 % the initial bacterial population after only 1 h of contact. The cytotoxic effect towards different cell types of both arginine derivatives was also measured. Bz-Arg-NHCn demonstrated lower haemolytic activity and were less eye-irritating than the commercial cationic surfactant cetrimide. A similar trend could also be observed when cytotoxicity was tested on hepatocytes and fibroblast cell lines: both arginine derivatives were less toxic than cetrimide. All these properties would make the two novel arginine compounds a promising alternative to commercial cationic surfactants, especially for their use as additives in topical formulations. PMID:25894891

  4. Probing the promiscuous active site of myo-inositol dehydrogenase using synthetic substrates, homology modeling, and active site modification.

    PubMed

    Daniellou, Richard; Zheng, Hongyan; Langill, David M; Sanders, David A R; Palmer, David R J

    2007-06-26

    The active site of myo-inositol dehydrogenase (IDH, EC 1.1.1.18) from Bacillus subtilis recognizes a variety of mono- and disaccharides, as well as 1l-4-O-substituted inositol derivatives. It catalyzes the NAD+-dependent oxidation of the axial alcohol of these substrates with comparable kinetic constants. We have found that 4-O-p-toluenesulfonyl-myo-inositol does not act as a substrate for IDH, in contrast to structurally similar compounds such as those bearing substituted benzyl substituents in the same position. X-ray crystallographic analysis of 4-O-p-toluenesulfonyl-myo-inositol and 4-O-(2-naphthyl)methyl-myo-inositol, which is a substrate for IDH, shows a distinct difference in the preferred conformation of the aryl substituent. Conformational analysis of known substrates of IDH suggests that this conformational difference may account for the difference in reactivity of 4-O-p-toluenesulfonyl-myo-inositol in the presence of IDH. A sequence alignment of IDH with the homologous glucose-fructose oxidoreductase allowed the construction of an homology model of inositol dehydrogenase, to which NADH and 4-O-benzyl-scyllo-inosose were docked and the active site energy minimized. The active site model is consistent with all experimental results and suggests that a conserved tyrosine-glycine-tyrosine motif forms the hydrophobic pocket adjoining the site of inositol recognition. Y233F and Y235F retain activity, while Y233R and Y235R do not. A histidine-aspartate pair, H176 and D172, are proposed to act as a dyad in which H176 is the active site acid/base. The enzyme is inactivated by diethyl pyrocarbonate, and the mutants H176A and D172N show a marked loss of activity. Kinetic isotope effect experiments with D172N indicate that chemistry is rate-determining for this mutant. PMID:17539607

  5. Arginine depletion by arginine deiminase does not affect whole protein metabolism or muscle fractional protein synthesis rate in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depl...

  6. Arginine requirement of starting broiler chicks.

    PubMed

    Cuca, M; Jensen, L S

    1990-08-01

    Three experiments were conducted to estimate the arginine requirement of male broiler chicks from 0 to 3 wk of age. The experiments were conducted in battery brooders with wires floors, and the birds received water and feed ad libitum. In the first experiment, chicks were fed a diet based on corn, soybean meal, casein, and corn-gluten meal containing 3,200 kcal ME per kg and either 20 or 23% crude protein. Regression analysis indicated an arginine requirement of 1.22% for maximum growth rate and feed efficiency with the 20% protein diet. For chicks fed the 23% protein diet, neither growth rate nor feed efficiency was significantly different among the diets containing arginine ranging from 1.13 to 1.43%. In the second experiment, a basal diet was used containing 17.5% casein and 22.5% protein with arginine ranging from 1.03 to 1.43%. An arginine requirement of 1.18% for maximum body weight gain was estimated by regression analysis, but no significant response to arginine above the basal level was observed for feed efficiency. Performance of chicks fed the basal diet was somewhat reduced because of a difficulty with adherence of feed to the beaks. In a third experiment, three basal diets containing 21, 22, or 23% protein were formulated from practical ingredients without use of casein. The requirement for maximum growth rate and feed efficiency was estimated to be 1.24 to 1.28% for the three diets. The results of these investigations indicate that the arginine requirement for starting chicks suggested by the National Research Council in 1984 of 1.44% in diets containing 3,200 kcal ME per kg is too high for practical diets. The data presented here support an arginine requirement of 1.25%. PMID:2235851

  7. The regulatory PII protein controls arginine biosynthesis in Arabidopsis.

    PubMed

    Ferrario-Méry, Sylvie; Besin, Evelyne; Pichon, Olivier; Meyer, Christian; Hodges, Michael

    2006-04-01

    In higher plants, PII is a nuclear-encoded plastid protein which is homologous to bacterial PII signalling proteins known to be involved in the regulation of nitrogen metabolism. A reduced ornithine, citrulline and arginine accumulation was observed in two Arabidopsis PII knock-out mutants in response to NH4+ resupply after N starvation. This difference could be explained by the regulation of a key enzyme of the arginine biosynthesis pathway, N-acetyl glutamate kinase (NAGK) by PII. In vitro assays using purified recombinant proteins showed the catalytic activation of Arabidopsis NAGK by PII giving the first evidence of a physiological role of the PII protein in higher plants. Using Arabidopsis transcriptome microarray (CATMA) and RT-PCR analyses, it was found that none of the genes involved in the arginine biosynthetic or catabolic pathways were differentially expressed in a PII knock-out mutant background. In conclusion, the observed changes in metabolite levels can be explained by the reduced activation of NAGK by PII. PMID:16545809

  8. Arginine methyltransferases in normal and malignant hematopoiesis.

    PubMed

    Greenblatt, Sarah M; Liu, Fan; Nimer, Stephen D

    2016-06-01

    Arginine methylation is an abundant covalent modification that regulates diverse cellular processes, including transcription, translation, DNA repair, and RNA processing. The enzymes that catalyze these marks are known as the protein arginine methyltransferases (PRMTs), and they can generate asymmetric dimethyl arginine (type I arginine methyltransferases), symmetric dimethylarginine (type II arginine methyltransferases), or monomethyarginine (type III arginine methyltransferases). The PRMTs are capable of modifying diverse substrates, from histone components to specific nuclear and cytoplasmic proteins. Additionally, the PRMTs can orchestrate chromatin remodeling by blocking the docking of other epigenetic modifying enzymes or by recruiting them to specific gene loci. In the hematopoietic system, PRMTs can regulate cell behavior, including the critical balance between stem cell self-renewal and differentiation, in at least two critical ways, via (i) the covalent modification of transcription factors and (ii) the regulation of histone modifications at promoters critical to cell fate determination. Given these important functions, it is not surprising that these processes are altered in hematopoietic malignancies, such as acute myeloid leukemia, where they promote increased self-renewal and impair hematopoietic stem and progenitor cell differentiation. PMID:27026282

  9. Active-Site-Accessible, Porphyrinic Metal;#8722;Organic Framework Materials

    SciTech Connect

    Farha, Omar K.; Shultz, Abraham M.; Sarjeant, Amy A.; Nguyen, SonBinh T.; Hupp, Joseph T.

    2012-02-06

    On account of their structural similarity to cofactors found in many metallo-enzymes, metalloporphyrins are obvious potential building blocks for catalytically active, metal-organic framework (MOF) materials. While numerous porphyrin-based MOFs have already been described, versions featuring highly accessible active sites and permanent microporosity are remarkably scarce. Indeed, of the more than 70 previously reported porphyrinic MOFs, only one has been shown to be both permanently microporous and contain internally accessible active sites for chemical catalysis. Attempts to generalize the design approach used in this single successful case have failed. Reported here, however, is the synthesis of an extended family of MOFs that directly incorporate a variety of metalloporphyrins (specifically Al{sup 3+}, Zn{sup 2+}, Pd{sup 2+}, Mn{sup 3+}, and Fe{sup 3+} complexes). These robust porphyrinic materials (RPMs) feature large channels and readily accessible active sites. As an illustrative example, one of the manganese-containing RPMs is shown to be catalytically competent for the oxidation of alkenes and alkanes.

  10. Nest predation increases with parental activity: Separating nest site and parental activity effects

    USGS Publications Warehouse

    Martin, T.E.; Scott, J.; Menge, C.

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection.

  11. Nest predation increases with parental activity: separating nest site and parental activity effects.

    PubMed Central

    Martin, T E; Scott, J; Menge, C

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection. PMID:11413645

  12. Identification of Ice Nucleation Active Sites on Silicate Dust Particles

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-04-01

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts [1-3]. Nevertheless, among those structures K-feldspar showed by far the highest ice nucleation activity. In this study, the reasons for its activity and the difference in the activity of the different feldspars were investigated in closer details. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. We give a potential explanation of the increased ice nucleation activity of K-feldspar. The ice nucleating sites are very much dependent on the alkali ion present by altering the water structure and the feldspar surface. The higher activity of K-feldspar can be attributed to the presence of potassium ions on the surface and surface bilayer. The alkali-ions have different hydration shells and thus an influence on the ice nucleation activity of feldspar. Chaotropic behavior of Calcium and Sodium ions are lowering the ice nucleation potential of the other feldspars, while kosmotropic Potassium has a neutral or even positive effect. Furthermore we investigated the influence of milling onto the ice nucleation of quartz particles. The ice nucleation activity can be increased by mechanical milling, by introducing more molecular, nucleation active defects to the particle surface. This effect is larger than expected by plane surface increase. [1] Atkinson et al. The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature 2013, 498, 355-358. [2] Yakobi-Hancock et al.. Feldspar Minerals as Efficient Deposition Ice Nuclei. Atmos. Chem. Phys. 2013, 13, 11175-11185. [3] Zolles et al. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles. J. Phys. Chem. A 2015 accepted.

  13. Artificial phosphorylation sites modulate the activity of a voltage-gated potassium channel

    NASA Astrophysics Data System (ADS)

    Ariyaratne, Amila; Zocchi, Giovanni

    2015-03-01

    The KvAP potassium channel is representative of a family of voltage-gated ion channels where the membrane potential is sensed by a transmembrane helix containing several positively charged arginines. Previous work by Wang and Zocchi [A. Wang and G. Zocchi, PLoS ONE 6, e18598 (2011), 10.1371/journal.pone.0018598] showed how a negatively charged polyelectrolyte attached in proximity to the voltage sensing element can bias the opening probability of the channel. Here we introduce three phosphorylation sites at the same location and show that the response curve of the channel shifts by about 20 mV upon phosphorylation, while other characteristics such as the single-channel conductance are unaffected. In summary, we construct an artificial phosphorylation site which confers allosteric regulation to the channel.

  14. Crystal structure and mechanism of human L-arginine:glycine amidinotransferase: a mitochondrial enzyme involved in creatine biosynthesis.

    PubMed Central

    Humm, A; Fritsche, E; Steinbacher, S; Huber, R

    1997-01-01

    L-arginine:glycine amidinotransferase (AT) catalyses the committed step in creatine biosynthesis by formation of guanidinoacetic acid, the immediate precursor of creatine. We have determined the crystal structure of the recombinant human enzyme by multiple isomorphous replacement at 1.9 A resolution. A telluromethionine derivative was used in sequence assignment. The structure of AT reveals a new fold with 5-fold pseudosymmetry of circularly arranged betabeta alphabeta-modules. These enclose the active site compartment, which is accessible only through a narrow channel. The overall structure resembles a basket with handles that are formed from insertions into the betabeta alphabeta-modules. Binding of L-ornithine, a product inhibitor, reveals a marked induced-fit mechanism, with a loop at the active site entrance changing its conformation accompanied by a shift of an alpha-helix by -4 A. Binding of the arginine educt to the inactive mutant C407A shows a similar mode of binding. A reaction mechanism with a catalytic triad Cys-His-Asp is proposed on the basis of substrate and product bound states. PMID:9218780

  15. Crystal structure and mechanism of human L-arginine:glycine amidinotransferase: a mitochondrial enzyme involved in creatine biosynthesis.

    PubMed

    Humm, A; Fritsche, E; Steinbacher, S; Huber, R

    1997-06-16

    L-arginine:glycine amidinotransferase (AT) catalyses the committed step in creatine biosynthesis by formation of guanidinoacetic acid, the immediate precursor of creatine. We have determined the crystal structure of the recombinant human enzyme by multiple isomorphous replacement at 1.9 A resolution. A telluromethionine derivative was used in sequence assignment. The structure of AT reveals a new fold with 5-fold pseudosymmetry of circularly arranged betabeta alphabeta-modules. These enclose the active site compartment, which is accessible only through a narrow channel. The overall structure resembles a basket with handles that are formed from insertions into the betabeta alphabeta-modules. Binding of L-ornithine, a product inhibitor, reveals a marked induced-fit mechanism, with a loop at the active site entrance changing its conformation accompanied by a shift of an alpha-helix by -4 A. Binding of the arginine educt to the inactive mutant C407A shows a similar mode of binding. A reaction mechanism with a catalytic triad Cys-His-Asp is proposed on the basis of substrate and product bound states. PMID:9218780

  16. Active Sites Environmental Monitoring Program. FY 1993: Annual report

    SciTech Connect

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.; Marsh, J.D.

    1994-08-01

    This report continues a series of annual and semiannual reports that present the results of the Active Sites Environmental Monitoring Program (ASEMP) monitoring activities. The report details monitoring data for fiscal year (FY) 1993 and is divided into three major areas: SWSA 6 [including tumulus pads, Interim Waste Management Facility (IWMF), and other sites], the low-level Liquid-Waste Solidification Project (LWSP), and TRU-waste storage facilities in SWSA 5 N. The detailed monitoring methodology is described in the second revision of the ASEMP program plan. This report also presents a summary of the methodology used to gather data for each major area along with the results obtained during FY 1993.

  17. Identification of cysteine and arginine residues essential for the phosphotransacetylase from Methanosarcina thermophila.

    PubMed Central

    Rasche, M E; Smith, K S; Ferry, J G

    1997-01-01

    Phosphotransacetylase catalyzes the following reaction: CoASH + CH3CO2PO3(2-) <==> CH3COSCoA + HPO4(2-) (where CoA is coenzyme A). Based on biochemical characterization of the enzyme from the obligate anaerobe Clostridium kluyveri, a ternary mechanism was proposed in which an unspecified cysteine abstracts a proton from CoASH forming a nucleophilic thiolate anion which attacks acetyl phosphate (J. Henkin and R. H. Abeles, Biochemistry 15:3472-3479, 1976). Heterologous production in Escherichia coli of the phosphotransacetylase from Methanosarcina thermophila, an obligately anaerobic methanoarchaeon, allowed site-specific replacements to identify essential residues. All four cysteines present in the sequence were individually replaced with alanine, and the kinetic constants of the altered enzymes were determined. The results indicated that only C159 is essential for activity; however, replacement with serine resulted in a fully active enzyme. Activity of the unaltered phosphotransacetylase was sensitive to N-ethylmaleimide. Inhibition kinetics of altered enzymes indicated that this sensitivity resulted from modification of C312, which is at the active site but itself is nonessential for catalysis. Five arginines were individually replaced with glutamine. Kinetic analysis of the altered enzymes identified R310 as essential for activity. Of the four nonessential for activity, R87 and R133 appear to be involved in binding CoA. PMID:9401029

  18. Active sites in char gasification: Final technical report

    SciTech Connect

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  19. Potential sites of CFTR activation by tyrosine kinases.

    PubMed

    Billet, Arnaud; Jia, Yanlin; Jensen, Timothy J; Hou, Yue-Xian; Chang, Xiu-Bao; Riordan, John R; Hanrahan, John W

    2016-05-01

    The CFTR chloride channel is tightly regulated by phosphorylation at multiple serine residues. Recently it has been proposed that its activity is also regulated by tyrosine kinases, however the tyrosine phosphorylation sites remain to be identified. In this study we examined 2 candidate tyrosine residues near the boundary between the first nucleotide binding domain and the R domain, a region which is important for channel function but devoid of PKA consensus sequences. Mutating tyrosines at positions 625 and 627 dramatically reduced responses to Src or Pyk2 without altering the activation by PKA, suggesting they may contribute to CFTR regulation. PMID:26645934

  20. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  1. Fibrinogen Lima: a homozygous dysfibrinogen with an A alpha-arginine-141 to serine substitution associated with extra N-glycosylation at A alpha-asparagine-139. Impaired fibrin gel formation but normal fibrin-facilitated plasminogen activation catalyzed by tissue-type plasminogen activator.

    PubMed Central

    Maekawa, H; Yamazumi, K; Muramatsu, S; Kaneko, M; Hirata, H; Takahashi, N; Arocha-Piñango, C L; Rodriguez, S; Nagy, H; Perez-Requejo, J L

    1992-01-01

    An A alpha-arginine-141 to serine substitution has been identified in a homozygous dysfibrinogen, fibrinogen Lima, associated with impaired fibrin polymerization. The point mutation created an asparagine-X-serine-type glycosylation sequence, and indeed, extra, mainly disialylated biantennary oligosaccharides have been isolated from A alpha asparagine-139 of the patient's fibrinogen. This type of glycosylation sequence is unique for human fibrinogen, because the sequences shown for normal and abnormal fibrinogens are all asparagine-X-threonine types. The terminal sialic acids of the extra oligosaccharides seem to have largely contributed to the impaired fibrin gel formation, as evidenced by its correction to a near normal level by desialylation. Nevertheless, the polymerizing fibrin facilitated tissue-type plasminogen activator-catalyzed plasmin formation in a normal fashion, indicating that the initial two-stranded fibrin protofibrils had been constructed normally. Thus the impaired fibrin gel formation could be attributed to the delay in their subsequent lateral association, most probably because of the repulsive forces generated by the negative electric charge of the extra sialic acids. The substitution of a basic residue arginine to a noncharged residue serine may also have contributed to the impaired function in a similar manner or by steric hindrance in association with bulky extra oligosaccharide chains. Images PMID:1634621

  2. Arginine Relieves the Inflammatory Response and Enhances the Casein Expression in Bovine Mammary Epithelial Cells Induced by Lipopolysaccharide

    PubMed Central

    Wu, Tianyou; Wang, Chao; Ding, Luoyang; Shen, Yizhao; Cui, Huihui; Wang, Mengzhi; Wang, Hongrong

    2016-01-01

    As one of functional active amino acids, L-arginine holds a key position in immunity. However, the mechanism that arginine modulates cow mammary inflammatory response in ruminant is unclear. Therefore, this study was conducted to investigate the effects of L-arginine on inflammatory response and casein expression after challenging the bovine mammary epithelial cells (BMECs) with lipopolysaccharide (LPS). The cells were divided into four groups, stimulated with or without LPS (10 μg/mL) and treated with or without arginine (100 μg/mL) for 12 h. The concentration of proinflammatory cytokines, inducible nitric oxide synthase (iNOS), mammalian target of rapamycin (mTOR), and Toll-like receptor 4 (TLR4) signaling pathways as well as the casein was determined. The results showed that arginine reduced the LPS-induced production like IL-1β, IL-6, TNF-α, and iNOS. Though the expression of NF-κB was attenuated and the mTOR signaling pathway was upregulated, arginine had no effect on TLR4 expression. In addition, our results show that the content of β-casein and the total casein were enhanced after arginine was supplemented in LPS-induced BMECs. In conclusion, arginine could relieve the inflammatory reaction induced by LPS and enhance the concentration of β-casein and the total casein in bovine mammary epithelial cells. PMID:27110069

  3. Targeting Arginine-Dependent Cancers with Arginine-Degrading Enzymes: Opportunities and Challenges

    PubMed Central

    Phillips, Melissa M.; Sheaff, Michael T.

    2013-01-01

    Arginine deprivation is a novel antimetabolite strategy for the treatment of arginine-dependent cancers that exploits differential expression and regulation of key urea cycle enzymes. Several studies have focused on inactivation of argininosuccinate synthetase 1 (ASS1) in a range of malignancies, including melanoma, hepatocellular carcinoma (HCC), mesothelial and urological cancers, sarcomas, and lymphomas. Epigenetic silencing has been identified as a key mechanism for loss of the tumor suppressor role of ASS1 leading to tumoral dependence on exogenous arginine. More recently, dysregulation of argininosuccinate lyase has been documented in a subset of arginine auxotrophic glioblastoma multiforme, HCC and in fumarate hydratase-mutant renal cancers. Clinical trials of several arginine depletors are ongoing, including pegylated arginine deiminase (ADI-PEG20, Polaris Group) and bioengineered forms of human arginase. ADI-PEG20 is furthest along the path of clinical development from combinatorial phase 1 to phase 3 trials and is described in more detail. The challenge will be to identify tumors sensitive to drugs such as ADI-PEG20 and integrate these agents into multimodality drug regimens using imaging and tissue/fluid-based biomarkers as predictors of response. Lastly, resistance pathways to arginine deprivation require further study to optimize arginine-targeted therapies in the oncology clinic. PMID:24453997

  4. A Novel Functional Site in the PB2 Subunit of Influenza A Virus Essential for Acetyl-CoA Interaction, RNA Polymerase Activity, and Viral Replication*

    PubMed Central

    Hatakeyama, Dai; Shoji, Masaki; Yamayoshi, Seiya; Hirota, Takenori; Nagae, Monami; Yanagisawa, Shin; Nakano, Masahiro; Ohmi, Naho; Noda, Takeshi; Kawaoka, Yoshihiro; Kuzuhara, Takashi

    2014-01-01

    The PA, PB1, and PB2 subunits, components of the RNA-dependent RNA polymerase of influenza A virus, are essential for viral transcription and replication. The PB2 subunit binds to the host RNA cap (7-methylguanosine triphosphate (m7GTP)) and supports the endonuclease activity of PA to “snatch” the cap from host pre-mRNAs. However, the structure of PB2 is not fully understood, and the functional sites remain unknown. In this study, we describe a novel Val/Arg/Gly (VRG) site in the PB2 cap-binding domain, which is involved in interaction with acetyl-CoA found in eukaryotic histone acetyltransferases (HATs). In vitro experiments revealed that the recombinant PB2 cap-binding domain that includes the VRG site interacts with acetyl-CoA; moreover, it was found that this interaction could be blocked by CoA and various HAT inhibitors. Interestingly, m7GTP also inhibited this interaction, suggesting that the same active pocket is capable of interacting with acetyl-CoA and m7GTP. To elucidate the importance of the VRG site on PB2 function and viral replication, we constructed a PB2 recombinant protein and recombinant viruses including several patterns of amino acid mutations in the VRG site. Substitutions of the valine and arginine residues or of all 3 residues of the VRG site to alanine significantly reduced the binding ability of PB2 to acetyl-CoA and its RNA polymerase activity. Recombinant viruses containing the same mutations could not be replicated in cultured cells. These results indicate that the PB2 VRG sequence is a functional site that is essential for acetyl-CoA interaction, RNA polymerase activity, and viral replication. PMID:25063805

  5. Alteration of splice site selection in the LMNA gene and inhibition of progerin production via AMPK activation.

    PubMed

    Finley, Jahahreeh

    2014-11-01

    Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by an accelerated aging phenotype and an average life span of 13years. Patients typically exhibit extensive pathophysiological vascular alterations, eventually resulting in death from stroke or myocardial infarction. A silent point mutation at position 1824 (C1824T) of the LMNA gene, generating a truncated form of lamin A (progerin), has been shown to be the cause of most cases of HGPS. Interestingly, this mutation induces the use of an internal 5' cryptic splice site within exon 11 of the LMNA pre-mRNA, leading to the generation of progerin via aberrant alternative splicing. The serine-arginine rich splicing factor 1 (SRSF1 or ASF/SF2) has been shown to function as an oncoprotein and is upregulated in many cancers and other age-related disorders. Indeed, SRSF1 inhibition results in a splicing ratio in the LMNA pre-mRNA favoring lamin A production over that of progerin. It is our hypothesis that activation of AMP-activated protein kinase (AMPK), a master regulator of cellular metabolism, may lead to a reduction in SRSF1 and thus a decrease in the use of the LMNA 5' cryptic splice site in exon 11 through upregulation of p32, a splicing factor-associated protein and putative mitochondrial chaperone that has been shown to inhibit SRSF1 and enhance mitochondrial DNA (mtDNA) replication and oxidative phosphorylation. AMPK activation by currently available compounds such as metformin, resveratrol, and berberine may thus have wide-ranging implications for disorders associated with increased production and accumulation of progerin. PMID:25216752

  6. How active site protonation state influences the reactivity and ligation of the heme in chlorite dismutase

    PubMed Central

    Streit, Bennett R.; Blanc, Béatrice; Lukat-Rodgers, Gudrun S.; Rodgers, Kenton R.; DuBois, Jennifer L.

    2010-01-01

    Chlorite dismutase catalyzes O2 release from chlorite with exquisite efficiency and specificity. The spectroscopic properties, ligand binding affinities, and steady state kinetics of chlorite dismutase from Dechloromonas aromatica were examined over pH 3–11.5 to gain insight into how the protonation state of the heme environment influences dioxygen formation. An acid/base transition was observed by UV/visible and resonance Raman spectroscopy with a pKa of 8.7, 2–3 pH units below analogous transitions observed in typical His-ligated peroxidases. This transition marks the conversion of a five coordinate high spin Fe(III) to a mixed high/low spin ferric-hydroxide, as confirmed by resonance Raman (rR) spectroscopy. The two Fe–OH stretching frequencies are quite low, consistent with a weak Fe–OH bond, despite the nearly neutral imidazole side chain of the proximal histidine ligand. The hydroxide is proposed to interact strongly with a distal H-bond donor, thereby weakening the Fe–OH bond. The rR spectra of Cld-CO as a function of pH reveal two forms of the complex, one in which there is minimal interaction of distal residues with the carbonyl oxygen and another, acidic form in which the oxygen is under the influence of positive charge. Recent crystallographic data reveal arginine 183 as the lone H-bond donating residue in the distal pocket. It is likely that this Arg is the strong, positively charged H-bond donor implicated by vibrational data to interact with exogenous axial heme ligands. The same Arg in its neutral (pKa ~ 6.5) form also appears to act as the active site base in binding reactions of protonated ligands, such as HCN, to ferric Cld. The steady state profile for the rate of chlorite decomposition is characterized by these same pKas. The 5 coordinate high spin acidic Cld is more active than the alkaline hydroxide-bound form. The acid form decomposes chlorite most efficiently when the distal Arg is protonated/cationic (maximum kcat = 2.0 (±0.6)

  7. Enhanced production of arginine and urea by genetically engineered Escherichia coli K-12 strains.

    PubMed Central

    Tuchman, M; Rajagopal, B S; McCann, M T; Malamy, M H

    1997-01-01

    Escherichia coli strains capable of enhanced synthesis of arginine and urea were produced by derepression of the arginine regulon and simultaneous overexpression of the E. coli carAB and argI genes and the Bacillus subtilis rocF gene. Plasmids expressing carAB driven by their natural promoters were unstable. Therefore, E. coli carAB and argI genes with and without the B. subtilis rocF gene were constructed as a single operon under the regulation of the inducible promoter ptrc. Arginine operator sequences (Arg boxes) from argI were also cloned into the same plasmids for titration of the arginine repressor. Upon overexpression of these genes in E. coli strains, very high carbamyl phosphate synthetase, ornithine transcarbamylase, and arginase catalytic activities were achieved. The biosynthetic capacity of these engineered bacteria when overexpressing the arginine biosynthetic enzymes was 6- to 16-fold higher than that of controls but only if exogenous ornithine was present (ornithine was rate limiting). Overexpression of arginase in bacteria with a derepressed arginine biosynthetic pathway resulted in a 13- to 20-fold increase in urea production over that of controls with the parent vector alone; in this situation, the availability of carbamyl phosphate was rate limiting. PMID:8979336

  8. Importance of Host Cell Arginine Uptake in Francisella Phagosomal Escape and Ribosomal Protein Amounts*

    PubMed Central

    Ramond, Elodie; Gesbert, Gael; Guerrera, Ida Chiara; Chhuon, Cerina; Dupuis, Marion; Rigard, Mélanie; Henry, Thomas; Barel, Monique; Charbit, Alain

    2015-01-01

    Upon entry into mammalian host cells, the pathogenic bacterium Francisella must import host cell arginine to multiply actively in the host cytoplasm. We identified and functionally characterized an arginine transporter (hereafter designated ArgP) whose inactivation considerably delayed bacterial phagosomal escape and intracellular multiplication. Intramacrophagic growth of the ΔargP mutant was fully restored upon supplementation of the growth medium with excess arginine, in both F. tularensis subsp. novicida and F. tularensis subsp. holarctica LVS, demonstrating the importance of arginine acquisition in these two subspecies. High-resolution mass spectrometry revealed that arginine limitation reduced the amount of most of the ribosomal proteins in the ΔargP mutant. In response to stresses such as nutritional limitation, repression of ribosomal protein synthesis has been observed in all kingdoms of life. Arginine availability may thus contribute to the sensing of the intracellular stage of the pathogen and to trigger phagosomal egress. All MS data have been deposited in the ProteomeXchange database with identifier PXD001584 (http://proteomecentral.proteomexchange.org/dataset/PXD001584). PMID:25616868

  9. Discovery and mechanistic study of a class of protein arginine methylation inhibitors.

    PubMed

    Feng, You; Li, Mingyong; Wang, Binghe; Zheng, Yujun George

    2010-08-26

    Protein arginine methylation regulates multiple biological processes such as chromatin remodeling and RNA splicing. Malfunction of protein arginine methyltransferases (PRMTs) is correlated with many human diseases. Thus, small molecule inhibitors of protein arginine methylation are of great potential for therapeutic development. Herein, we report a type of compound that blocks PRMT1-mediated arginine methylation at micromolar potency through a unique mechanism. Most of the discovered compounds bear naphthalene and sulfonate groups and are structurally different from typical PRMT substrates, for example, histone H4 and glycine- and arginine-rich sequences. To elucidate the molecular basis of inhibition, we conducted a variety of kinetic and biophysical assays. The combined data reveal that this type of naphthyl-sulfo (NS) molecule directly targets the substrates but not PRMTs for the observed inhibition. We also found that suramin effectively inhibited PRMT1 activity. These findings about novel PRMT inhibitors and their unique inhibition mechanism provide a new way for chemical regulation of protein arginine methylation. PMID:20666457

  10. When Is It Appropriate to Use Arginine in Critical Illness?

    PubMed

    Patel, Jayshil J; Miller, Keith R; Rosenthal, Cameron; Rosenthal, Martin D

    2016-08-01

    In health, arginine is considered a nonessential amino acid but can become an essential amino acid (ie, conditionally essential amino acid) during periods of metabolic or traumatic stress as endogenous arginine supply is inadequate to meet physiologic demands. Arginine depletion in critical illness is associated with impairments in microcirculatory blood flow, impaired wound healing, and T-cell dysfunction. The purpose of this review is to (1) describe arginine metabolism and role in health and critical illness, (2) describe the relationship between arginine and asymmetric dimethylarginine, and (3) review studies of supplemental arginine in critically ill patients. PMID:27252277

  11. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect

    1981-02-27

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  12. The presence of arginine may be a source of false positive results in the Ames test.

    PubMed

    Khandoudi, Nassirah; Porte, Pierre; Chtourou, Sami; Nesslany, Fabrice; Marzin, Daniel; Le Curieux, Frank

    2009-01-01

    An increase in the number of revertant colonies in the Ames test is generally taken as a strong indication of mutagenic activity of a test compound. However, irrelevant positive findings may constitute a major problem in regulatory drug testing. In this study, mixtures containing only amino acids such as glycine, lysine, arginine and isoleucine, routinely used as peptide preservatives in polypeptide pharmaceutical products, were investigated for mutagenesis in the Ames Salmonella typhimurium test. The results demonstrated that in the presence of metabolic activation, all the solutions containing arginine induced an increase in the number of revertant colonies in strains TA98, TA100 and TA1535 compared with the solvent control. More specifically, for strain TA98, all arginine doses tested, i.e. from 0.4 to 8 mg/plate induced a statistically significant increase in the number of revertants. This increase was biologically significant from 1.2 to 8 mg/plate. For strain TA100, the five highest test doses, i.e., from 1.2 to 8 mg/plate, induced statistically and biologically significant increases in the number of revertants. A statistically significant increase in colony number was also observed in strain TA1535, but only at the maximal test dose of 8 mg/plate arginine. These increases were observed with arginine from two different sources, suggesting that the observed effect would not be due to the presence of potential impurities in the type of arginine used. Our findings show that a functional metabolic activation system was required to induce an increase in the number of colonies. The presence of vitamin C inhibited the arginine-induced increase in the number of revertant colonies in S. typhimurium strain TA98, suggesting a potential involvement of oxidative stress. PMID:19619668

  13. Tumour effect on arginine/ornithine metabolic relationship in hypertrophic mouse kidney.

    PubMed

    Manteuffel-Cymborowska, M; Chmurzyńska, W; Peska, M; Grzelakowska-Sztabert, B

    1997-03-01

    The presence of a tumour significantly changes nitrogen metabolism, including that of amino acids and polyamines, in host animals. In this study, we examine whether developing tumours affect the metabolic relationship of arginine and ornithine, precursors of polyamines, in the testosterone-induced hypertrophic mouse kidney model. Androgen-induced changes in the activity of enzymes involved with ornithine biosynthesis (arginase), its consumption (ornithine aminotransferase, OAT and ornithine decarboxylase, ODC) and the hypertrophy of host mouse kidney were not affected by the presence of an ascitic tumour (EAC) and only slightly by a mammary carcinoma (MaCa). The HPLC determined renal level of arginine and ornithine showed a striking homeostasis and was disturbed neither by testosterone nor EAC. The effect of MaCa and testosterone on the levels of both amino acids, although significant, was not very pronounced. Developing tumours, especially ascitic, altered the renal activity of OAT and ODC, but not of arginase, in testosterone-untreated mice. All examined tumours, EAC, L 1210 and MaCa actively metabolized arginine and ornithine. the tumour content of arginine which coincided with the activity of arginase, resulted in a marked increase of the ornithine/arginine ratio in tumours, when compared with kidneys. These results indicate that the androgen-induced anabolic response in mouse kidney is preserved, in spite of tumour requirements for essential metabolites. PMID:9062893

  14. Arginine: Its pKa value revisited

    PubMed Central

    Fitch, Carolyn A; Platzer, Gerald; Okon, Mark; Garcia-Moreno E, Bertrand; McIntosh, Lawrence P

    2015-01-01

    Using complementary approaches of potentiometry and NMR spectroscopy, we have determined that the equilibrium acid dissociation constant (pKa value) of the arginine guanidinium group is 13.8 ± 0.1. This is substantially higher than that of ∼12 often used in structure-based electrostatics calculations and cited in biochemistry textbooks. The revised intrinsic pKa value helps explains why arginine side chains in proteins are always predominantly charged, even at pH values as great as 10. The high pKa value also reinforces the observation that arginine side chains are invariably protonated under physiological conditions of near neutral pH. This occurs even when the guanidinium moiety is buried in a hydrophobic micro-environment, such as that inside a protein or a lipid membrane, thought to be incompatible with the presence of a charged group. PMID:25808204

  15. Arginine: Its pKa value revisited.

    PubMed

    Fitch, Carolyn A; Platzer, Gerald; Okon, Mark; Garcia-Moreno, Bertrand E; McIntosh, Lawrence P

    2015-05-01

    Using complementary approaches of potentiometry and NMR spectroscopy, we have determined that the equilibrium acid dissociation constant (pKa value) of the arginine guanidinium group is 13.8 ± 0.1. This is substantially higher than that of ∼ 12 often used in structure-based electrostatics calculations and cited in biochemistry textbooks. The revised intrinsic pKa value helps explains why arginine side chains in proteins are always predominantly charged, even at pH values as great as 10. The high pKa value also reinforces the observation that arginine side chains are invariably protonated under physiological conditions of near neutral pH. This occurs even when the guanidinium moiety is buried in a hydrophobic micro-environment, such as that inside a protein or a lipid membrane, thought to be incompatible with the presence of a charged group. PMID:25808204

  16. Identification of covalent active site inhibitors of dengue virus protease

    PubMed Central

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  17. Poly-arginine and arginine-rich peptides are neuroprotective in stroke models.

    PubMed

    Meloni, Bruno P; Brookes, Laura M; Clark, Vince W; Cross, Jane L; Edwards, Adam B; Anderton, Ryan S; Hopkins, Richard M; Hoffmann, Katrin; Knuckey, Neville W

    2015-06-01

    Using cortical neuronal cultures and glutamic acid excitotoxicity and oxygen-glucose deprivation (OGD) stroke models, we demonstrated that poly-arginine and arginine-rich cell-penetrating peptides (CPPs), are highly neuroprotective, with efficacy increasing with increasing arginine content, have the capacity to reduce glutamic acid-induced neuronal calcium influx and require heparan sulfate preotoglycan-mediated endocytosis to induce a neuroprotective effect. Furthermore, neuroprotection could be induced with immediate peptide treatment or treatment up to 2 to 4 hours before glutamic acid excitotoxicity or OGD, and with poly-arginine-9 (R9) when administered intravenously after stroke onset in a rat model. In contrast, the JNKI-1 peptide when fused to the (non-arginine) kFGF CPP, which does not rely on endocytosis for uptake, was not neuroprotective in the glutamic acid model; the kFGF peptide was also ineffective. Similarly, positively charged poly-lysine-10 (K10) and R9 fused to the negatively charged poly-glutamic acid-9 (E9) peptide (R9/E9) displayed minimal neuroprotection after excitotoxicity. These results indicate that peptide positive charge and arginine residues are critical for neuroprotection, and have led us to hypothesize that peptide-induced endocytic internalization of ion channels is a potential mechanism of action. The findings also question the mode of action of different neuroprotective peptides fused to arginine-rich CPPs. PMID:25669902

  18. Poly-arginine and arginine-rich peptides are neuroprotective in stroke models

    PubMed Central

    Meloni, Bruno P; Brookes, Laura M; Clark, Vince W; Cross, Jane L; Edwards, Adam B; Anderton, Ryan S; Hopkins, Richard M; Hoffmann, Katrin; Knuckey, Neville W

    2015-01-01

    Using cortical neuronal cultures and glutamic acid excitotoxicity and oxygen-glucose deprivation (OGD) stroke models, we demonstrated that poly-arginine and arginine-rich cell-penetrating peptides (CPPs), are highly neuroprotective, with efficacy increasing with increasing arginine content, have the capacity to reduce glutamic acid-induced neuronal calcium influx and require heparan sulfate preotoglycan-mediated endocytosis to induce a neuroprotective effect. Furthermore, neuroprotection could be induced with immediate peptide treatment or treatment up to 2 to 4 hours before glutamic acid excitotoxicity or OGD, and with poly-arginine-9 (R9) when administered intravenously after stroke onset in a rat model. In contrast, the JNKI-1 peptide when fused to the (non-arginine) kFGF CPP, which does not rely on endocytosis for uptake, was not neuroprotective in the glutamic acid model; the kFGF peptide was also ineffective. Similarly, positively charged poly-lysine-10 (K10) and R9 fused to the negatively charged poly-glutamic acid-9 (E9) peptide (R9/E9) displayed minimal neuroprotection after excitotoxicity. These results indicate that peptide positive charge and arginine residues are critical for neuroprotection, and have led us to hypothesize that peptide-induced endocytic internalization of ion channels is a potential mechanism of action. The findings also question the mode of action of different neuroprotective peptides fused to arginine-rich CPPs. PMID:25669902

  19. Inversion of allosteric effect of arginine on N-acetylglutamate synthase, a molecular marker for evolution of tetrapods

    PubMed Central

    Haskins, Nantaporn; Panglao, Maria; Qu, Qiuhao; Majumdar, Himani; Cabrera-Luque, Juan; Morizono, Hiroki; Tuchman, Mendel; Caldovic, Ljubica

    2008-01-01

    Background The efficient conversion of ammonia, a potent neurotoxin, into non-toxic metabolites was an essential adaptation that allowed animals to move from the aquatic to terrestrial biosphere. The urea cycle converts ammonia into urea in mammals, amphibians, turtles, snails, worms and many aquatic animals and requires N-acetylglutamate (NAG), an essential allosteric activator of carbamylphosphate synthetase I (CPSI) in mammals and amphibians, and carbamylphosphate synthetase III (CPSIII) in fish and invertebrates. NAG-dependent CPSI and CPSIII catalyze the formation of carbamylphosphate in the first and rate limiting step of ureagenesis. NAG is produced enzymatically by N-acetylglutamate synthase (NAGS), which is also found in bacteria and plants as the first enzyme of arginine biosynthesis. Arginine is an allosteric inhibitor of microbial and plant NAGS, and allosteric activator of mammalian NAGS. Results Information from mutagenesis studies of E. coli and P. aeruginosa NAGS was combined with structural information from the related bacterial N-acetylglutamate kinases to identify four residues in mammalian NAGS that interact with arginine. Substitutions of these four residues were engineered in mouse NAGS and into the vertebrate-like N-acetylglutamate synthase-kinase (NAGS-K) of Xanthomonas campestris, which is inhibited by arginine. All mutations resulted in arginine losing the ability to activate mouse NAGS, and inhibit X. campestris NAGS-K. To examine at what point in evolution inversion of arginine effect on NAGS occur, we cloned NAGS from fish and frogs and examined the arginine response of their corresponding proteins. Fish NAGS were partially inhibited by arginine and frog NAGS were activated by arginine. Conclusion Difference in arginine effect on bacterial and mammalian NAGS most likely stems from the difference in the type of conformational change triggered by arginine binding to these proteins. The change from arginine inhibition of NAGS to activation

  20. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer.

    PubMed

    Dinpajooh, Mohammadhasan; Martin, Daniel R; Matyushov, Dmitry V

    2016-01-01

    Enzymes in biology's energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  1. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-06-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work.

  2. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    PubMed Central

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-01-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  3. The copper active site of CBM33 polysaccharide oxygenases.

    PubMed

    Hemsworth, Glyn R; Taylor, Edward J; Kim, Robbert Q; Gregory, Rebecca C; Lewis, Sally J; Turkenburg, Johan P; Parkin, Alison; Davies, Gideon J; Walton, Paul H

    2013-04-24

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme's three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  4. The Copper Active Site of CBM33 Polysaccharide Oxygenases

    PubMed Central

    2013-01-01

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme’s three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  5. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site.

    PubMed

    Bharathi, Sivakama S; Zhang, Yuxun; Mohsen, Al-Walid; Uppala, Radha; Balasubramani, Manimalha; Schreiber, Emanuel; Uechi, Guy; Beck, Megan E; Rardin, Matthew J; Vockley, Jerry; Verdin, Eric; Gibson, Bradford W; Hirschey, Matthew D; Goetzman, Eric S

    2013-11-22

    Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases. PMID:24121500

  6. Sirtuin 3 (SIRT3) Protein Regulates Long-chain Acyl-CoA Dehydrogenase by Deacetylating Conserved Lysines Near the Active Site

    PubMed Central

    Bharathi, Sivakama S.; Zhang, Yuxun; Mohsen, Al-Walid; Uppala, Radha; Balasubramani, Manimalha; Schreiber, Emanuel; Uechi, Guy; Beck, Megan E.; Rardin, Matthew J.; Vockley, Jerry; Verdin, Eric; Gibson, Bradford W.; Hirschey, Matthew D.; Goetzman, Eric S.

    2013-01-01

    Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases. PMID:24121500

  7. FT-Infrared spectroscopic studies of the iron ligand CO stretch mode of iNOS oxygenase domain: effect of arginine and tetrahydrobiopterin.

    PubMed

    Jung, C; Stuehr, D J; Ghosh, D K

    2000-08-22

    The iron ligand CO stretch vibration mode of the inducible nitric oxide synthase oxygenase domain (iNOSox) has been studied from 20 to 298 K. iNOSox in the absence of arginine reveals a temperature-dependent equilibrium of two major conformational substates with CO stretch bands centered at about 1945 and 1954 cm(-)(1). This behavior is not qualitatively changed when tetrahydrobiopterin (H(4)B) is bound. Arginine binding changes significantly the spectrum by formation of a sharp CO stretch mode band at about 1905 cm(-)(1) and indicates the formation of a hydrogen bond to the CO ligand. For temperatures lower than 250 K, the stretch vibration frequency decreases almost linearly with decreasing temperature and indicates that the coupling between the CO ligand and the arginine/protein in the active site via the hydrogen bond is very strong. Flashphotolysis of the CO ligand carried out at 25 K revealed the CO stretch mode of the photodissociated CO ligand trapped in the heme pocket. There is a negative linear relation between the stretch vibration frequencies of the photodissociated and the iron-bound CO indicating that the photodissociated ligand stays near the heme. PMID:10956005

  8. Methylated Nω-Hydroxy-L-arginine Analogues as Mechanistic Probes for the Second Step of the Nitric Oxide Synthase-Catalyzed Reaction†

    PubMed Central

    Labby, Kristin Jansen; Li, Huiying; Roman, Linda J.; Martásek, Pavel; Poulos, Thomas L.; Silverman, Richard B.

    2013-01-01

    Nitric oxide synthase (NOS) catalyzes the conversion of L-arginine to L-citrulline through the intermediate Nω-hydroxy-L-arginine (NHA), producing nitric oxide, an important mammalian signaling molecule. Several disease states are associated with improper regulation of nitric oxide production, making NOS a therapeutic target. The first step of the NOS reaction has been well-characterized and is presumed to proceed through a compound I heme species, analogous to the cytochrome P450 mechanism. The second step, however, is enzymatically unprecedented and is thought to occur via a ferric peroxo heme species. To gain insight into the details of this unique second step, we report here the synthesis of NHA analogues bearing guanidinium-methyl or -ethyl substitutions and their investigation as either inhibitors of or alternate substrates for NOS. Radiolabeling studies reveal that Nω-methoxy-L-arginine, an alternative NOS substrate, produces citrulline, nitric oxide, and methanol. On the basis of these results we propose a mechanism for the second step of NOS catalysis in which a methylated nitric oxide species is released and is further metabolized by NOS. Crystal structures of our NHA analogues bound to nNOS have been solved, revealing the presence of an active site water molecule only in the presence of singly methylated analogues. Bulkier analogues displace this active site water molecule; a different mechanism is proposed in the absence of the water molecule. Our results provide new insight into the steric and stereochemical tolerance of the NOS active site and substrate capabilities of NOS. PMID:23586781

  9. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    SciTech Connect

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  10. Target-classification approach applied to active UXO sites

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Shamatava, Irma; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    This study is designed to illustrate the discrimination performance at two UXO active sites (Oklahoma's Fort Sill and the Massachusetts Military Reservation) of a set of advanced electromagnetic induction (EMI) inversion/discrimination models which include the orthonormalized volume magnetic source (ONVMS), joint diagonalization (JD), and differential evolution (DE) approaches and whose power and flexibility greatly exceed those of the simple dipole model. The Fort Sill site is highly contaminated by a mix of the following types of munitions: 37-mm target practice tracers, 60-mm illumination mortars, 75-mm and 4.5'' projectiles, 3.5'', 2.36'', and LAAW rockets, antitank mine fuzes with and without hex nuts, practice MK2 and M67 grenades, 2.5'' ballistic windshields, M2A1-mines with/without bases, M19-14 time fuzes, and 40-mm practice grenades with/without cartridges. The site at the MMR site contains targets of yet different sizes. In this work we apply our models to EMI data collected using the MetalMapper (MM) and 2 × 2 TEMTADS sensors. The data for each anomaly are inverted to extract estimates of the extrinsic and intrinsic parameters associated with each buried target. (The latter include the total volume magnetic source or NVMS, which relates to size, shape, and material properties; the former includes location, depth, and orientation). The estimated intrinsic parameters are then used for classification performed via library matching and the use of statistical classification algorithms; this process yielded prioritized dig-lists that were submitted to the Institute for Defense Analyses (IDA) for independent scoring. The models' classification performance is illustrated and assessed based on these independent evaluations.

  11. Differential Active Site Loop Conformations Mediate Promiscuous Activities in the Lactonase SsoPox

    PubMed Central

    Elias, Mikael; Chabriere, Eric

    2013-01-01

    Enzymes are proficient catalysts that enable fast rates of Michaelis-complex formation, the chemical step and products release. These different steps may require different conformational states of the active site that have distinct binding properties. Moreover, the conformational flexibility of the active site mediates alternative, promiscuous functions. Here we focused on the lactonase SsoPox from Sulfolobus solfataricus. SsoPox is a native lactonase endowed with promiscuous phosphotriesterase activity. We identified a position in the active site loop (W263) that governs its flexibility, and thereby affects the substrate specificity of the enzyme. We isolated two different sets of substitutions at position 263 that induce two distinct conformational sampling of the active loop and characterized the structural and kinetic effects of these substitutions. These sets of mutations selectively and distinctly mediate the improvement of the promiscuous phosphotriesterase and oxo-lactonase activities of SsoPox by increasing active-site loop flexibility. These observations corroborate the idea that conformational diversity governs enzymatic promiscuity and is a key feature of protein evolvability. PMID:24086491

  12. Spectroscopic Definition of the Ferroxidase Site in M Ferritin: Comparison of Binuclear Substrate vs. Cofactor Active Sites

    PubMed Central

    Schwartz, Jennifer K.; Liu, Xiaofeng S.; Tosha, Takehiko; Theil, Elizabeth C.; Solomon, Edward I.

    2008-01-01

    Maxi ferritins, 24 subunit protein nanocages, are essential in humans, plants, bacteria, and other animals for the concentration and storage of iron as hydrated ferric oxide, while minimizing free radical generation or use by pathogens. Formation of the precursors to these ferric oxides is catalyzed at a non-heme biferrous substrate site, which has some parallels with the cofactor sites in other biferrous enzymes. A combination of circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD (VTVH MCD) has been used to probe Fe(II) binding to the substrate active site in frog M ferritin. These data determined that the active site within each subunit consists of two inequivalent five-coordinate (5C) ferrous centers that are weakly anti-ferromagnetically coupled, consistent with a μ-1,3 carboxylate bridge. The active site ligand set is unusual and likely includes a terminal water bound to each Fe(II) center. The Fe(II) ions bind to the active sites in a concerted manner, and cooperativity among the sites in each subunit is observed, potentially providing a mechanism for the control of ferritin iron loading. Differences in geometric and electronic structure – including a weak ligand field, availability of two water ligands at the biferrous substrate site, and the single carboxylate bridge in ferritin – coincide with the divergent reaction pathways observed between this substrate site and the previously studied cofactor active sites. PMID:18576633

  13. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    SciTech Connect

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  14. Evidence for segmental mobility in the active site of pepsin

    SciTech Connect

    Pohl, J.; Strop, P.; Senn, H.; Foundling, S.; Kostka, V.

    1986-05-01

    The low hydrolytic activity (k/sub cat/ < 0.001 s/sup -1/) of chicken pepsin (CP) towards tri- and tetrapeptides is enhanced at least 100 times by modification of its single sulfhydryl group of Cys-115, with little effect on K/sub m/-values. Modification thus simulates the effect of secondary substrate binding on pepsin catalysis. The rate of Cys-115 modification is substantially decreased in the presence of some competitive inhibitors, suggesting its active site location. Experiments with CP alkylated at Cys-115 with Acrylodan as a fluorescent probe or with N-iodoacetyl-(4-fluoro)-aniline as a /sup 19/F-nmr probe suggest conformation change around Cys-115 to occur on substrate or substrate analog binding. The difference /sup 1/H-nmr spectra (500 MHz) of unmodified free and inhibitor-complexed CP reveal chemical shifts almost exclusively in the aromatic region. The effects of Cu/sup + +/ on /sup 19/F- and /sup 1/H-nmr spectra have been studied. Examination of a computer graphics model of CP based on E. parasitica pepsin-inhibitor complex X-ray coordinates suggests that Cys-115 is located near the S/sub 3//S/sub 5/ binding site. The results are interpreted in favor of segmental mobility of this region important for pepsin substrate binding and catalysis.

  15. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. PMID:26940877

  16. Eel calcitonin binding site distribution and antinociceptive activity in rats

    SciTech Connect

    Guidobono, F.; Netti, C.; Sibilia, V.; Villa, I.; Zamboni, A.; Pecile, A.

    1986-03-01

    The distribution of binding site for (/sup 125/I)-eel-calcitonin (ECT) to rat central nervous system, studied by an autoradiographic technique, showed concentrations of binding in the diencephalon, the brain stem and the spinal cord. Large accumulations of grains were seen in the hypothalamus, the amygdala, in the fasciculus medialis prosencephali, in the fasciculus longitudinalis medialis, in the ventrolateral part of the periventricular gray matter, in the lemniscus medialis and in the raphe nuclei. The density of grains in the reticular formation and in the nucleus tractus spinalis nervi trigemini was more moderate. In the spinal cord, grains were scattered throughout the dorsal horns. Binding of the ligand was displaced equally by cold ECT and by salmon CT(sCT), indicating that both peptides bind to the same receptors. Human CT was much weaker than sCT in displacing (/sup 125/I)-ECT binding. The administration of ECT into the brain ventricles of rats dose-dependently induced a significant and long-lasting enhancement of hot-plate latencies comparable with that obtained with sCT. The antinociceptive activity induced by ECT is compatible with the topographical distribution of binding sites for the peptide and is a further indication that fish CTs are active in the mammalian brain.

  17. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  18. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  19. Active site and laminarin binding in glycoside hydrolase family 55.

    PubMed

    Bianchetti, Christopher M; Takasuka, Taichi E; Deutsch, Sam; Udell, Hannah S; Yik, Eric J; Bergeman, Lai F; Fox, Brian G

    2015-05-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  20. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  1. Watermelon consumption increases plasma arginine concentrations in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watermelon is a good source of citrulline, an amino acid that can be converted to arginine in the human body. Arginine helps in cardiovascular and immune health. No studies have been conducted to evaluate plasma arginine response in humans following consumption of citrulline from natural plant so...

  2. Oral citrulline as arginine precursor may be beneficial in sickle cell disease: early phase two results.

    PubMed Central

    Waugh, W. H.; Daeschner, C. W.; Files, B. A.; McConnell, M. E.; Strandjord, S. E.

    2001-01-01

    L-Arginine may be a conditionally essential amino acid in children and adolescents with sickle cell disease, particularly as required substrate in the arginine-nitric oxide pathway for endogenous nitrovasodilation and vasoprotection. Vasoprotection by arginine is mediated partly by nitric oxide-induced inhibition of endothelial damage and inhibition of adhesion and activation of leukocytes. Activated leukocytes may trigger many of the complications, including vasoocclusive events and intimal hyperplasias. High blood leukocyte counts during steady states in the absence of infection are significant laboratory risk factors for adverse complications. L-Citrulline as precursor amino acid was given orally twice daily in daily doses of approximately 0.1 g/kg in a pilot Phase II clinical trial during steady states in four homozygous sickle cell disease subjects and one sickle cell-hemoglobin C disease patient (ages 10-18). There soon resulted dramatic improvements in symptoms of well-being, raised plasma arginine levels, and reductions in high total leukocyte and high segmented neutrophil counts toward or to within normal limits. Continued L-citrulline supplementation in compliant subjects continued to lessen symptomatology, to maintain plasma arginine concentrations greater than control levels, and to maintain nearly normal total leukocyte and neutrophil counts. Side effects or toxicity from citrulline were not experienced. Oral L-citrulline may portend very useful for palliative therapy in sickle cell disease. Placebo-controlled, long-term trials are now indicated. PMID:11688916

  3. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages

    PubMed Central

    Rath, Meera; Müller, Ingrid; Kropf, Pascale; Closs, Ellen I.; Munder, Markus

    2014-01-01

    Macrophages play a major role in the immune system, both as antimicrobial effector cells and as immunoregulatory cells, which induce, suppress or modulate adaptive immune responses. These key aspects of macrophage biology are fundamentally driven by the phenotype of macrophage arginine metabolism that is prevalent in an evolving or ongoing immune response. M1 macrophages express the enzyme nitric oxide synthase, which metabolizes arginine to nitric oxide (NO) and citrulline. NO can be metabolized to further downstream reactive nitrogen species, while citrulline might be reused for efficient NO synthesis via the citrulline–NO cycle. M2 macrophages are characterized by expression of the enzyme arginase, which hydrolyzes arginine to ornithine and urea. The arginase pathway limits arginine availability for NO synthesis and ornithine itself can further feed into the important downstream pathways of polyamine and proline syntheses, which are important for cellular proliferation and tissue repair. M1 versus M2 polarization leads to opposing outcomes of inflammatory reactions, but depending on the context, M1 and M2 macrophages can be both pro- and anti-inflammatory. Notably, M1/M2 macrophage polarization can be driven by microbial infection or innate danger signals without any influence of adaptive immune cells, secondarily driving the T helper (Th)1/Th2 polarization of the evolving adaptive immune response. Since both arginine metabolic pathways cross-inhibit each other on the level of the respective arginine break-down products and Th1 and Th2 lymphocytes can drive or amplify macrophage M1/M2 dichotomy via cytokine activation, this forms the basis of a self-sustaining M1/M2 polarization of the whole immune response. Understanding the arginine metabolism of M1/M2 macrophage phenotypes is therefore central to find new possibilities to manipulate immune responses in infection, autoimmune diseases, chronic inflammatory conditions, and cancer. PMID:25386178

  4. Opposite Associations of Plasma Homoarginine and Ornithine with Arginine in Healthy Children and Adolescents

    PubMed Central

    JaŸwińska-Kozuba, Aleksandra; Martens-Lobenhoffer, Jens; Kruszelnicka, Olga; Rycaj, Jarosław; Chyrchel, Bernadeta; Surdacki, Andrzej; Bode-Böger, Stefanie M.

    2013-01-01

    Homoarginine, a non-proteinogenic amino acid, is formed when lysine replaces ornithine in reactions catalyzed by hepatic urea cycle enzymes or lysine substitutes for glycine as a substrate of renal arginine:glycine amidinotransferase. Decreased circulating homoarginine and elevated ornithine, a downstream product of arginase, predict adverse cardiovascular outcome. Our aim was to investigate correlates of plasma homoarginine and ornithine and their relations with carotid vascular structure in 40 healthy children and adolescents aged 3–18 years without coexistent diseases or subclinical carotid atherosclerosis. Homoarginine, ornithine, arginine, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) were measured by liquid chromatography-tandem mass spectrometry with stable isotope-labeled internal standards. Intima-media thickness (IMT) and extra-medial thickness (EMT) of common carotid arteries were estimated by B-mode ultrasound. Homoarginine correlated with arginine (r = 0.43, p = 0.005), age (r = 0.42, p = 0.007) and, weakly, with an increased arginine-to-ornithine ratio, a putative measure of lower arginase activity (r = 0.31, p = 0.048). Ornithine correlated inversely with arginine (r = −0.64, p < 0.001). IMT, EMT or their sum were unrelated to any of the biochemical parameters (p > 0.12). Thus, opposite associations of plasma homoarginine and ornithine with arginine may partially result from possible involvement of arginase, an enzyme controlling homoarginine degradation and ornithine synthesis from arginine. Age-dependency of homoarginine levels can reflect developmental changes in homoarginine metabolism. However, neither homoarginine nor ornithine appears to be associated with carotid vascular structure in healthy children and adolescents. PMID:24192823

  5. Diabetic nephropathy is resistant to oral L-arginine or L-citrulline supplementation.

    PubMed

    You, Hanning; Gao, Ting; Cooper, Timothy K; Morris, Sidney M; Awad, Alaa S

    2014-12-01

    Our recent publication showed that pharmacological blockade of arginases confers kidney protection in diabetic nephropathy via a nitric oxide (NO) synthase (NOS)3-dependent mechanism. Arginase competes with endothelial NOS (eNOS) for the common substrate L-arginine. Lack of L-arginine results in reduced NO production and eNOS uncoupling, which lead to endothelial dysfunction. Therefore, we hypothesized that L-arginine or L-citrulline supplementation would ameliorate diabetic nephropathy. DBA mice injected with multiple low doses of vehicle or streptozotocin (50 mg/kg ip for 5 days) were provided drinking water with or without L-arginine (1.5%, 6.05 g·kg(-1)·day(-1)) or L-citrulline (1.66%, 5.73 g·kg(-1)·day(-1)) for 9 wk. Nonsupplemented diabetic mice showed significant increases in albuminuria, blood urea nitrogen, glomerular histopathological changes, kidney macrophage recruitment, kidney TNF-α and fibronectin mRNA expression, kidney arginase activity, kidney arginase-2 protein expression, and urinary oxidative stress along with a significant reduction of nephrin and eNOS protein expression and kidney nitrite + nitrate compared with normal mice after 9 wk of diabetes. Surprisingly, L-arginine or L-citrulline supplementation in diabetic mice did not affect any of these parameters despite greatly increasing kidney and plasma arginine levels. These findings demonstrate that chronic L-arginine or L-citrulline supplementation does not prevent or reduce renal injury in a model of type 1 diabetes. PMID:25320354

  6. ARGININE AND COCCIDIOSIS RESPONSES IN BROILER CHICKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arginine (Arg) is an essential amino acid in broilers that has numerous physiological and immunological functions, in addition to being required for growth. The experiment was a 3 x 2 factorial design of dietary Arg (1.00, 1.25, and 1.50% of diet) and coccidiosis (with and with out a field isolate ...

  7. 21 CFR 582.5145 - Arginine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Arginine. 582.5145 Section 582.5145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  8. 21 CFR 582.5145 - Arginine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Arginine. 582.5145 Section 582.5145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  9. 21 CFR 582.5145 - Arginine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Arginine. 582.5145 Section 582.5145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  10. 21 CFR 582.5145 - Arginine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Arginine. 582.5145 Section 582.5145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  11. Arginine, a key residue for the enhancing ability of an antifreeze protein of the beetle Dendroides canadensis†

    PubMed Central

    Wang, Sen; Amornwittawat, Natapol; Juwita, Vonny; Kao, Yu; Duman, John G.; Pascal, Tod A.; Goddard, William A.; Wen, Xin

    2009-01-01

    Antifreeze proteins (AFPs) can produce a difference between the nonequilibrium freezing point and the melting point is termed thermal hysteresis (TH). The TH activity of an antifreeze protein (AFP) depends on the specific AFP, its concentration as well as the presence of co-solutes including low-molecular-mass solutes and/or proteins. We recently identified series of carboxylates and polyols as efficient enhancers for an AFP from the beetle Dendroides canadensis. In this study, we chemically modified DAFP-1 using the arginine-specific reagent 1,2-cyclohexanedione. We demonstrated that 1,2-cyclohexanedione specifically modifies one arginine residue and the modified DAFP-1 loses its enhancing ability completely or partially in the presence of previously identified enhancers. The stronger the enhancement ability of the enhancer on the native DAFP-1, the stronger the enhancement effect of the enhancer has on the modified DAFP-1. The weaker enhancers (e.g., glycerol) completely lose their enhancement effect on the modified DAFP-1 due to their inability to compete with 1,2-cyclohexanedione for the arginine residue. Regeneration of the arginine residue using hydroxylamine fully restored the enhancing ability of DAFP-1. These studies indicated that an arginine residue is critical for the enhancing ability of DAFP-1 and the guanidinium group of the arginine residue is important for its interaction with the enhancers, where the general mechanism of arginine-ligand interaction is borne. This work may initiate a complete mechanistic study of the enhancement effect in AFPs. PMID:19746966

  12. Detection of inflammatory cell function using 13C magnetic resonance spectroscopy of hyperpolarized [6-13C]-arginine

    PubMed Central

    Najac, Chloé; Chaumeil, Myriam M.; Kohanbash, Gary; Guglielmetti, Caroline; Gordon, Jeremy W.; Okada, Hideho; Ronen, Sabrina M.

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are highly prevalent inflammatory cells that play a key role in tumor development and are considered therapeutic targets. MDSCs promote tumor growth by blocking T-cell-mediated anti-tumoral immune response through depletion of arginine that is essential for T-cell proliferation. To deplete arginine, MDSCs express high levels of arginase, which catalyzes the breakdown of arginine into urea and ornithine. Here, we developed a new hyperpolarized 13C probe, [6-13C]-arginine, to image arginase activity. We show that [6-13C]-arginine can be hyperpolarized, and hyperpolarized [13C]-urea production from [6-13C]-arginine is linearly correlated with arginase concentration in vitro. Furthermore we show that we can detect a statistically significant increase in hyperpolarized [13C]-urea production in MDSCs when compared to control bone marrow cells. This increase was associated with an increase in intracellular arginase concentration detected using a spectrophotometric assay. Hyperpolarized [6-13C]-arginine could therefore serve to image tumoral MDSC function and more broadly M2-like macrophages. PMID:27507680

  13. Structural Analysis and Insights into the Oligomeric State of an Arginine-Dependent Transcriptional Regulator from Bacillus halodurans.

    PubMed

    Park, Young Woo; Kang, Jina; Yeo, Hyun Ku; Lee, Jae Young

    2016-01-01

    The arginine repressor (ArgR) is an arginine-dependent transcription factor that regulates the expression of genes encoding proteins involved in the arginine biosynthesis and catabolic pathways. ArgR is a functional homolog of the arginine-dependent repressor/activator AhrC from Bacillus subtilis, and belongs to the ArgR/AhrC family of transcriptional regulators. In this research, we determined the structure of the ArgR (Bh2777) from Bacillus halodurans at 2.41 Å resolution by X-ray crystallography. The ArgR from B. halodurans appeared to be a trimer in a size exclusion column and in the crystal structure. However, it formed a hexamer in the presence of L-arginine in multi-angle light scattering (MALS) studies, indicating the oligomerization state was dependent on the presence of L-arginine. The trimeric structure showed that the C-terminal domains form the core, which was made by inter-subunit interactions mainly through hydrophobic contacts, while the N-terminal domains containing a winged helix-turn-helix DNA binding motif were arranged around the periphery. The arrangement of trimeric structure in the B. halodurans ArgR was different from those of other ArgR homologs previously reported. We finally showed that the B. halodurans ArgR has an arginine-dependent DNA binding property by an electrophoretic mobility shift assay. PMID:27171430

  14. Structural Analysis and Insights into the Oligomeric State of an Arginine-Dependent Transcriptional Regulator from Bacillus halodurans

    PubMed Central

    Park, Young Woo; Kang, Jina; Yeo, Hyun Ku; Lee, Jae Young

    2016-01-01

    The arginine repressor (ArgR) is an arginine-dependent transcription factor that regulates the expression of genes encoding proteins involved in the arginine biosynthesis and catabolic pathways. ArgR is a functional homolog of the arginine-dependent repressor/activator AhrC from Bacillus subtilis, and belongs to the ArgR/AhrC family of transcriptional regulators. In this research, we determined the structure of the ArgR (Bh2777) from Bacillus halodurans at 2.41 Å resolution by X-ray crystallography. The ArgR from B. halodurans appeared to be a trimer in a size exclusion column and in the crystal structure. However, it formed a hexamer in the presence of L-arginine in multi-angle light scattering (MALS) studies, indicating the oligomerization state was dependent on the presence of L-arginine. The trimeric structure showed that the C-terminal domains form the core, which was made by inter-subunit interactions mainly through hydrophobic contacts, while the N-terminal domains containing a winged helix-turn-helix DNA binding motif were arranged around the periphery. The arrangement of trimeric structure in the B. halodurans ArgR was different from those of other ArgR homologs previously reported. We finally showed that the B. halodurans ArgR has an arginine-dependent DNA binding property by an electrophoretic mobility shift assay. PMID:27171430

  15. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. PMID:25902402

  16. Effects of Site-Directed Mutagenesis of Escherichia coli Heat-Labile Enterotoxin on ADP-Ribosyltransferase Activity and Interaction with ADP-Ribosylation Factors

    PubMed Central

    A. Stevens, Linda; Moss, Joel; Vaughan, Martha; Pizza, Mariagrazia; Rappuoli, Rino

    1999-01-01

    Escherichia coli heat-labile enterotoxin (LT), an oligomeric protein with one A subunit (LTA) and five B subunits, exerts its effects via the ADP-ribosylation of Gsα, a guanine nucleotide-binding (G) protein that activates adenylyl cyclase. LTA also ADP-ribosylates simple guanidino compounds (e.g., arginine) and catalyzes its own auto-ADP-ribosylation. All LTA-catalyzed reactions are enhanced by ADP-ribosylation factors (ARFs), 20-kDa guanine nucleotide-binding proteins. Replacement of arginine-7 (R7K), valine-53 (V53D), serine-63 (S63K), valine 97 (V97K), or tyrosine-104 (Y104K) in LTA resulted in fully assembled but nontoxic proteins. S63K, V53D, and R7K are catalytic-site mutations, whereas V97K and Y104K are amino acid replacements adjacent to and outside of the catalytic site, respectively. The effects of mutagenesis were quantified by measuring ADP-ribosyltransferase activity (i.e., auto-ADP-ribosylation and ADP-ribosylagmatine synthesis) and interaction with ARF (i.e., inhibition of ARF-stimulated cholera toxin ADP-ribosyltransferase activity and effects of ARF on mutant auto-ADP-ribosylation). All mutants were inactive in the ADP-ribosyltransferase assay; however, auto-ADP-ribosylation in the presence of recombinant human ARF6 was detected, albeit much less than that of native LT (Y104K > V53D > V97K > R7K, S63K). Based on the lack of inhibition by free ADP-ribose, the observed auto-ADP-ribosylation activity was enzymatic and not due to the nonenzymatic addition of free ADP-ribose. V53D, S63K, and R7K were more effective than Y104K or V97K in blocking ARF stimulation of cholera toxin ADP-ribosyltransferase. Based on these data, it appears that ARF-binding and catalytic sites are not identical and that a region outside the NAD cleft may participate in the LTA-ARF interaction. PMID:9864224

  17. Effects of site-directed mutagenesis of Escherichia coli heat-labile enterotoxin on ADP-ribosyltransferase activity and interaction with ADP-ribosylation factors.

    PubMed

    Stevens, L A; Moss, J; Vaughan, M; Pizza, M; Rappuoli, R

    1999-01-01

    Escherichia coli heat-labile enterotoxin (LT), an oligomeric protein with one A subunit (LTA) and five B subunits, exerts its effects via the ADP-ribosylation of Gsalpha, a guanine nucleotide-binding (G) protein that activates adenylyl cyclase. LTA also ADP-ribosylates simple guanidino compounds (e.g., arginine) and catalyzes its own auto-ADP-ribosylation. All LTA-catalyzed reactions are enhanced by ADP-ribosylation factors (ARFs), 20-kDa guanine nucleotide-binding proteins. Replacement of arginine-7 (R7K), valine-53 (V53D), serine-63 (S63K), valine 97 (V97K), or tyrosine-104 (Y104K) in LTA resulted in fully assembled but nontoxic proteins. S63K, V53D, and R7K are catalytic-site mutations, whereas V97K and Y104K are amino acid replacements adjacent to and outside of the catalytic site, respectively. The effects of mutagenesis were quantified by measuring ADP-ribosyltransferase activity (i.e., auto-ADP-ribosylation and ADP-ribosylagmatine synthesis) and interaction with ARF (i.e., inhibition of ARF-stimulated cholera toxin ADP-ribosyltransferase activity and effects of ARF on mutant auto-ADP-ribosylation). All mutants were inactive in the ADP-ribosyltransferase assay; however, auto-ADP-ribosylation in the presence of recombinant human ARF6 was detected, albeit much less than that of native LT (Y104K > V53D > V97K > R7K, S63K). Based on the lack of inhibition by free ADP-ribose, the observed auto-ADP-ribosylation activity was enzymatic and not due to the nonenzymatic addition of free ADP-ribose. V53D, S63K, and R7K were more effective than Y104K or V97K in blocking ARF stimulation of cholera toxin ADP-ribosyltransferase. Based on these data, it appears that ARF-binding and catalytic sites are not identical and that a region outside the NAD cleft may participate in the LTA-ARF interaction. PMID:9864224

  18. Exploration of Cyanine Compounds as Selective Inhibitors of Protein Arginine Methyltransferases: Synthesis and Biological Evaluation

    PubMed Central

    2016-01-01

    Protein arginine methyltransferase 1 (PRMT1) is involved in many biological activities, such as gene transcription, signal transduction, and RNA processing. Overexpression of PRMT1 is related to cardiovascular diseases, kidney diseases, and cancers; therefore, selective PRMT1 inhibitors serve as chemical probes to investigate the biological function of PRMT1 and drug candidates for disease treatment. Our previous work found trimethine cyanine compounds that effectively inhibit PRMT1 activity. In our present study, we systematically investigated the structure–activity relationship of cyanine structures. A pentamethine compound, E-84 (compound 50), showed inhibition on PRMT1 at the micromolar level and 6- to 25-fold selectivity over CARM1, PRMT5, and PRMT8. The cellular activity suggests that compound 50 permeated the cellular membrane, inhibited cellular PRMT1 activity, and blocked leukemia cell proliferation. Additionally, our molecular docking study suggested compound 50 might act by occupying the cofactor binding site, which provided a roadmap to guide further optimization of this lead compound. PMID:25559100

  19. Metavanadate at the active site of the phosphatase VHZ.

    PubMed

    Kuznetsov, Vyacheslav I; Alexandrova, Anastassia N; Hengge, Alvan C

    2012-09-01

    Vanadate is a potent modulator of a number of biological processes and has been shown by crystal structures and NMR spectroscopy to interact with numerous enzymes. Although these effects often occur under conditions where oligomeric forms dominate, the crystal structures and NMR data suggest that the inhibitory form is usually monomeric orthovanadate, a particularly good inhibitor of phosphatases because of its ability to form stable trigonal-bipyramidal complexes. We performed a computational analysis of a 1.14 Å structure of the phosphatase VHZ in complex with an unusual metavanadate species and compared it with two classical trigonal-bipyramidal vanadate-phosphatase complexes. The results support extensive delocalized bonding to the apical ligands in the classical structures. In contrast, in the VHZ metavanadate complex, the central, planar VO(3)(-) moiety has only one apical ligand, the nucleophilic Cys95, and a gap in electron density between V and S. A computational analysis showed that the V-S interaction is primarily ionic. A mechanism is proposed to explain the formation of metavanadate in the active site from a dimeric vanadate species that previous crystallographic evidence has shown to be able to bind to the active sites of phosphatases related to VHZ. Together, the results show that the interaction of vanadate with biological systems is not solely reliant upon the prior formation of a particular inhibitory form in solution. The catalytic properties of an enzyme may act upon the oligomeric forms primarily present in solution to generate species such as the metavanadate ion observed in the VHZ structure. PMID:22876963

  20. Dual role of arginine metabolism in establishing pathogenesis.

    PubMed

    Gogoi, Mayuri; Datey, Akshay; Wilson, Keith T; Chakravortty, Dipshikha

    2016-02-01

    Arginine is an integral part of host defense when invading pathogens are encountered. The arginine metabolite nitric oxide (NO) confers antimicrobial properties, whereas the metabolite ornithine is utilized for polyamine synthesis. Polyamines are crucial to tissue repair and anti-inflammatory responses. iNOS/arginase balance can determine Th1/Th2 response. Furthermore, the host arginine pool and its metabolites are utilized as energy sources by various pathogens. Apart from its role as an immune modulator, recent studies have also highlighted the therapeutic effects of arginine. This article sheds light upon the roles of arginine metabolism during pathological conditions and its therapeutic potential. PMID:26610300

  1. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.

    PubMed

    Gutzler, Rico; Stepanow, Sebastian; Grumelli, Doris; Lingenfelder, Magalí; Kern, Klaus

    2015-07-21

    Metal-organic supramolecular chemistry on surfaces has matured to a point where its underlying growth mechanisms are well understood and structures of defined coordination environments of metal atoms can be synthesized in a controlled and reproducible procedure. With surface-confined molecular self-assembly, scientists have a tool box at hand which can be used to prepare structures with desired properties, as for example a defined oxidation number and spin state of the transition metal atoms within the organic matrix. From a structural point of view, these coordination sites in the supramolecular structure resemble the catalytically active sites of metallo-enzymes, both characterized by metal centers coordinated to organic ligands. Several chemical reactions take place at these embedded metal ions in enzymes and the question arises whether these reactions also take place using metal-organic networks as catalysts. Mimicking the active site of metal atoms and organic ligands of enzymes in artificial systems is the key to understanding the selectivity and efficiency of enzymatic reactions. Their catalytic activity depends on various parameters including the charge and spin configuration in the metal ion, but also on the organic environment, which can stabilize intermediate reaction products, inhibits catalytic deactivation, and serves mostly as a transport channel for the reactants and products and therefore ensures the selectivity of the enzyme. Charge and spin on the transition metal in enzymes depend on the one hand on the specific metal element, and on the other hand on its organic coordination environment. These two parameters can carefully be adjusted in surface confined metal-organic networks, which can be synthesized by virtue of combinatorial mixing of building synthons. Different organic ligands with varying functional groups can be combined with several transition metals and spontaneously assemble into ordered networks. The catalytically active metal

  2. Bioactive products of arginine in sepsis: tissue and plasma composition after LPS and iNOS blockade.

    PubMed

    Lortie, M J; Ishizuka, S; Schwartz, D; Blantz, R C

    2000-06-01

    Blockade or gene deletion of inducible nitric oxide synthase (iNOS) fails to fully abrogate all the sequelae leading to the high morbidity of septicemia. An increase in substrate uptake may be necessary for the increased production of nitric oxide (NO), but arginine is also a precursor for other bioactive products. Herein, we demonstrate an increase in alternate arginine products via arginine and ornithine decarboxylase in rats given lipopolysaccharide (LPS). The expression of iNOS mRNA in renal tissue was evident 60 but not 30 min post-LPS, yet a rapid decrease in blood pressure was obtained within 30 min that was completely inhibited by selective iNOS blockade. Plasma levels of arginine and ornithine decreased by at least 30% within 60 min of LPS administration, an effect not inhibited by the iNOS blocker L-N(6)(1-iminoethyl)lysine (L-NIL). Significant increases in plasma nitrates and citrulline occurred only 3-4 h post-LPS, an effect blocked by L-NIL pretreatment. The intracellular composition of organs harvested 6 h post-LPS reflected tissue-specific profiles of arginine and related metabolites. Tissue arginine concentration, normally an order of magnitude higher than in plasma, did not decrease after LPS. Pretreatment with L-NIL had a significant impact on the disposition of tissue arginine that was organ specific. These data demonstrate changes in arginine metabolism before and after de novo iNOS activity. Selective blockade of iNOS did not prevent uptake and can deregulate the production of other bioactive arginine metabolites. PMID:10837347

  3. A Study on the Effect of Surface Lysine to Arginine Mutagenesis on Protein Stability and Structure Using Green Fluorescent Protein

    PubMed Central

    Sokalingam, Sriram; Raghunathan, Govindan; Soundrarajan, Nagasundarapandian; Lee, Sun-Gu

    2012-01-01

    Two positively charged basic amino acids, arginine and lysine, are mostly exposed to protein surface, and play important roles in protein stability by forming electrostatic interactions. In particular, the guanidinium group of arginine allows interactions in three possible directions, which enables arginine to form a larger number of electrostatic interactions compared to lysine. The higher pKa of the basic residue in arginine may also generate more stable ionic interactions than lysine. This paper reports an investigation whether the advantageous properties of arginine over lysine can be utilized to enhance protein stability. A variant of green fluorescent protein (GFP) was created by mutating the maximum possible number of lysine residues on the surface to arginines while retaining the activity. When the stability of the variant was examined under a range of denaturing conditions, the variant was relatively more stable compared to control GFP in the presence of chemical denaturants such as urea, alkaline pH and ionic detergents, but the thermal stability of the protein was not changed. The modeled structure of the variant indicated putative new salt bridges and hydrogen bond interactions that help improve the rigidity of the protein against different chemical denaturants. Structural analyses of the electrostatic interactions also confirmed that the geometric properties of the guanidinium group in arginine had such effects. On the other hand, the altered electrostatic interactions induced by the mutagenesis of surface lysines to arginines adversely affected protein folding, which decreased the productivity of the functional form of the variant. These results suggest that the surface lysine mutagenesis to arginines can be considered one of the parameters in protein stability engineering. PMID:22792305

  4. A biomimetic chitosan derivates: preparation, characterization and transdermal enhancement studies of N-arginine chitosan.

    PubMed

    Lv, Hui-Xia; Zhang, Zhen-Hai; Wang, Xiao-Pan; Cheng, Qing-Qing; Wang, Wei; Huang, Xu-Hui; Zhou, Jian-Ping; Zhang, Qiang; Hou, Lu-Lu; Huo, Wei

    2011-01-01

    A novel arginine-rich chitosan (CS) derivates mimicked cell penetration peptides; N-Arginine chitosan (N-Arg-CS) was prepared by two reaction methods involving activated L-arginine and the amine group on the chitosan. FTIR spectra showed that arginine was chemically coupled with CS. Elemental analysis estimated that the degrees of substitution (DS) of arginine in CS were 6%, 31.3% and 61.5%, respectively. The drug adefovir was chosen as model and its permeation flux across excised mice skin was investigated using a Franz diffusion cell. The results showed that the most effective enhancer was 2% (w/v) concentration of 10 kDa N-Arg-CS with 6% DS. At neutral pH, the cumulative amount of adefovir permeated after 12 hours was 2.63 ± 0.19 mg cm(-2) which was 5.83-fold more than adefovir aqueous solution. Meanwhile N-Arg-CS was 1.83, 2.22, and 2.45 times more effective than Azone, eucalyptus and peppermint, respectively. The obtained results suggest that N-Arg-CS could be a promising transdermal enhancer. PMID:21829153

  5. The Arg7Lys mutant of heat-labile enterotoxin exhibits great flexibility of active site loop 47-56 of the A subunit.

    PubMed

    van den Akker, F; Merritt, E A; Pizza, M; Domenighini, M; Rappuoli, R; Hol, W G

    1995-09-01

    The heat-labile enterotoxin from Escherichia coli (LT) is a member of the cholera toxin family. These and other members of the larger class of AB5 bacterial toxins act through catalyzing the ADP-ribosylation of various intracellular targets including Gs alpha. The A subunit is responsible for this covalent modification, while the B pentamer is involved in receptor recognition. We report here the crystal structure of an inactive single-site mutant of LT in which arginine 7 of the A subunit has been replaced by a lysine residue. The final model contains 103 residues for each of the five B subunits, 175 residues for the A1 subunit, and 41 residues for the A2 subunit. In this Arg7Lys structure the active site cleft within the A subunit is wider by approximately 1 A than is seen in the wild-type LT. Furthermore, a loop near the active site consisting of residues 47-56 is disordered in the Arg7Lys structure, even though the new lysine residue at position 7 assumes a position which virtually coincides with that of Arg7 in the wild-type structure. The displacement of residues 47-56 as seen in the mutant structure is proposed to be necessary for allowing NAD access to the active site of the wild-type LT. On the basis of the differences observed between the wild-type and Arg7Lys structures, we propose a model for a coordinated sequence of conformational changes required for full activation of LT upon reduction of disulfide bridge 187-199 and cleavage of the peptide loop between the two cysteines in the A subunit.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7669757

  6. L-arginine and Vitamin D Adjunctive Therapies in Pulmonary Tuberculosis: A Randomised, Double-Blind, Placebo-Controlled Trial

    PubMed Central

    Ralph, Anna P.; Waramori, Govert; Pontororing, Gysje J.; Kenangalem, Enny; Wiguna, Andri; Tjitra, Emiliana; Sandjaja; Lolong, Dina B.; Yeo, Tsin W.; Chatfield, Mark D.; Soemanto, Retno K.; Bastian, Ivan; Lumb, Richard; Maguire, Graeme P.; Eisman, John; Price, Ric N.; Morris, Peter S.; Kelly, Paul M.; Anstey, Nicholas M.

    2013-01-01

    Background Vitamin D (vitD) and L-arginine have important antimycobacterial effects in humans. Adjunctive therapy with these agents has the potential to improve outcomes in active tuberculosis (TB). Methods In a 4-arm randomised, double-blind, placebo-controlled factorial trial in adults with smear-positive pulmonary tuberculosis (PTB) in Timika, Indonesia, we tested the effect of oral adjunctive vitD 50,000 IU 4-weekly or matching placebo, and L-arginine 6.0 g daily or matching placebo, for 8 weeks, on proportions of participants with negative 4-week sputum culture, and on an 8-week clinical score (weight, FEV1, cough, sputum, haemoptysis). All participants with available endpoints were included in analyses according to the study arm to which they were originally assigned. Adults with new smear-positive PTB were eligible. The trial was registered at ClinicalTrials.gov NCT00677339. Results 200 participants were enrolled, less than the intended sample size: 50 received L-arginine + active vitD, 49 received L-arginine + placebo vit D, 51 received placebo L-arginine + active vitD and 50 received placebo L-arginine + placebo vitD. According to the factorial model, 99 people received arginine, 101 placebo arginine, 101 vitamin D, 99 placebo vitamin D. Results for the primary endpoints were available in 155 (4-week culture) and 167 (clinical score) participants. Sputum culture conversion was achieved by week 4 in 48/76 (63%) participants in the active L-arginine versus 48/79 (61%) in placebo L-arginine arms (risk difference −3%, 95% CI −19 to 13%), and in 44/75 (59%) in the active vitD versus 52/80 (65%) in the placebo vitD arms (risk difference 7%, 95% CI −9 to 22%). The mean clinical outcome score also did not differ between study arms. There were no effects of the interventions on adverse event rates including hypercalcaemia, or other secondary outcomes. Conclusion Neither vitD nor L-arginine supplementation, at the doses administered and with the power attained

  7. Hybrid [FeFe]-hydrogenases with modified active sites show remarkable residual enzymatic activity.

    PubMed

    Siebel, Judith F; Adamska-Venkatesh, Agnieszka; Weber, Katharina; Rumpel, Sigrun; Reijerse, Edward; Lubitz, Wolfgang

    2015-02-24

    [FeFe]-hydrogenases are to date the only enzymes for which it has been demonstrated that the native inorganic binuclear cofactor of the active site Fe2(adt)(CO)3(CN)2 (adt = azadithiolate = [S-CH2-NH-CH2-S](2-)) can be synthesized on the laboratory bench and subsequently inserted into the unmaturated enzyme to yield fully functional holo-enzyme (Berggren, G. et al. (2013) Nature 499, 66-70; Esselborn, J. et al. (2013) Nat. Chem. Biol. 9, 607-610). In the current study, we exploit this procedure to introduce non-native cofactors into the enzyme. Mimics of the binuclear subcluster with a modified bridging dithiolate ligand (thiodithiolate, N-methylazadithiolate, dimethyl-azadithiolate) and three variants containing only one CN(-) ligand were inserted into the active site of the enzyme. We investigated the activity of these variants for hydrogen oxidation as well as proton reduction and their structural accommodation within the active site was analyzed using Fourier transform infrared spectroscopy. Interestingly, the monocyanide variant with the azadithiolate bridge showed ∼50% of the native enzyme activity. This would suggest that the CN(-) ligands are not essential for catalytic activity, but rather serve to anchor the binuclear subsite inside the protein pocket through hydrogen bonding. The inserted artificial cofactors with a propanedithiolate and an N-methylazadithiolate bridge as well as their monocyanide variants also showed residual activity. However, these activities were less than 1% of the native enzyme. Our findings indicate that even small changes in the dithiolate bridge of the binuclear subsite lead to a rather strong decrease of the catalytic activity. We conclude that both the Brønsted base function and the conformational flexibility of the native azadithiolate amine moiety are essential for the high catalytic activity of the native enzyme. PMID:25633077

  8. Site-specific PEGylation of lidamycin and its antitumor activity.

    PubMed

    Li, Liang; Shang, Boyang; Hu, Lei; Shao, Rongguang; Zhen, Yongsu

    2015-05-01

    In this study, N-terminal site-specific mono-PEGylation of the recombinant lidamycin apoprotein (rLDP) of lidamycin (LDM) was prepared using a polyethyleneglycol (PEG) derivative (M w 20 kDa) through a reactive terminal aldehyde group under weak acidic conditions (pH 5.5). The biochemical properties of mPEG-rLDP-AE, an enediyne-integrated conjugate, were analyzed by SDS-PAGE, RP-HPLC, SEC-HPLC and MALDI-TOF. Meanwhile, in vitro and in vivo antitumor activity of mPEG-rLDP-AE was evaluated by MTT assays and in xenograft model. The results indicated that mPEG-rLDP-AE showed significant antitumor activity both in vitro and in vivo. After PEGylation, mPEG-rLDP still retained the binding capability to the enediyne AE and presented the physicochemical characteristics similar to that of native LDP. It is of interest that the PEGylation did not diminish the antitumor efficacy of LDM, implying the possibility that this derivative may function as a payload to deliver novel tumor-targeted drugs. PMID:26579455

  9. Use of External, Biosynthetic, and Organellar Arginine by Neurospora

    PubMed Central

    Subramanian, K. N.; Weiss, Richard L.; Davis, Rowland H.

    1973-01-01

    The fate of very low amounts of 14C-arginine derived from the medium or from biosynthesis was studied in Neurospora cells grown in minimal medium. In both cases, the label enters the cytoplasm, where it is very briefly used with high efficiency for protein synthesis without mixing with the bulk of the large, endogenous pool of 12C-arginine. The soluble 14C-arginine which is not used for protein synthesis is sequestered in a vesicle with the bulk of the endogenous arginine pool. After this time, it is selectively excluded from use in protein synthesis except by exchange with cytoplasmic arginine. The data suggest that in vivo, the non-organellar cytoplasm contains less than 5% of the soluble, cellular arginine. The cellular organization of Neurospora described here also prevents the catabolism of arginine. Our results are discussed in relation to previous work on amino acid pools of other eukaryotic systems. PMID:4717516

  10. Linear short histidine and cysteine modified arginine peptides constitute a potential class of DNA delivery agents.

    PubMed

    Mann, Anita; Shukla, Vasundhara; Khanduri, Richa; Dabral, Spoorti; Singh, Harpal; Ganguli, Munia

    2014-03-01

    The success of gene therapy relies on the development of safe and efficient multifunctional carriers of nucleic acids that can overcome extra- and intracellular barriers, protect the nucleic acid and mediate its release at the desired site allowing gene expression. Peptides bear unique properties that are indispensable for any carrier, e.g., they can mediate DNA condensation, cellular targeting, membrane translocation, endosomal escape and nuclear localization. In an effort to design a multifunctional peptide, we have modified an arginine homopeptide R16 by replacement of seven arginines with histidines and addition of one cysteine at each end respectively to impart endosomal escape property while maintaining the DNA condensation and release balance. Addition of histidines imparts endosomal escape property to arginine homopeptide, but their arrangement with respect to arginines is more critical in controlling DNA condensation, release and transfection efficiency. Intriguingly, R5H7R4 peptide where charge/arginine is distributed in blocks is preferred for strong condensation while more efficient transfection is seen in the variants R9H7 and H4R9H3, which exhibit weak condensation and strong release. Addition of cysteine to each of these peptides further fine-tuned the condensation-release balance without application of any oxidative procedure unlike other similar systems reported in the literature. This resulted in a large increase in the transfection efficiency in all of the histidine modified peptides irrespective of the arginine and histidine positions. This series of multifunctional peptides shows comparable transfection efficiency to commercially available transfection reagent Lipofectamine 2000 at low charge ratios, with simple preparative procedure and exhibits much less toxicity. PMID:24476132

  11. The crystal structure of the Rv0301-Rv0300 VapBC-3 toxin-antitoxin complex from M. tuberculosis reveals a Mg2+ ion in the active site and a putative RNA-binding site

    SciTech Connect

    Min, Andrew B; Miallau, Linda; Sawaya, Michael R; Habel, Jeff; Cascio, Duilio; Eisenberg, David

    2013-01-10

    VapBC pairs account for 45 out of 88 identified toxin-antitoxin (TA) pairs in the Mycobacterium tuberculosis (Mtb) H37Rv genome. A working model suggests that under times of stress, antitoxin molecules are degraded, releasing the toxins to slow the metabolism of the cell, which in the case of VapC toxins is via their RNase activity. Otherwise the TA pairs remain bound to their promoters, autoinhibiting transcription. The crystal structure of Rv0301-Rv0300, an Mtb VapBC TA complex determined at 1.49 Å resolution, suggests a mechanism for these three functions: RNase activity, its inhibition by antitoxin, and its ability to bind promoter DNA. The Rv0301 toxin consists of a core of five parallel beta strands flanked by alpha helices. Three proximal aspartates coordinate a Mg2+ ion forming the putative RNase active site. The Rv0300 antitoxin monomer is extended in structure, consisting of an N-terminal beta strand followed by four helices. The last two helices wrap around the toxin and terminate near the putative RNase active site, but with different conformations. In one conformation, the C-terminal arginine interferes with Mg2+ ion coordination, suggesting a mechanism by which the antitoxin can inhibit toxin activity. At the N-terminus of the antitoxin, two pairs of Ribbon-Helix-Helix (RHH) motifs are related by crystallographic twofold symmetry. The resulting hetero-octameric complex is similar to the FitAB system, but the two RHH motifs are about 30 Å closer together in the Rv0301-Rv0300 complex, suggesting either a different span of the DNA recognition sequence or a conformational change.

  12. The Role of Protein Arginine Methyltransferases in Inflammatory Responses

    PubMed Central

    Kim, Ji Hye; Yoo, Byong Chul; Yang, Woo Seok; Kim, Eunji; Hong, Sungyoul

    2016-01-01

    Protein arginine methyltransferases (PRMTs) mediate the methylation of a number of protein substrates of arginine residues and serve critical functions in many cellular responses, including cancer development, progression, and aggressiveness, T-lymphocyte activation, and hepatic gluconeogenesis. There are nine members of the PRMT family, which are divided into 4 types (types I–IV). Although most PRMTs do not require posttranslational modification (PTM) to be activated, fine-tuning modifications, such as interactions between cofactor proteins, subcellular compartmentalization, and regulation of RNA, via micro-RNAs, seem to be required. Inflammation is an essential defense reaction of the body to eliminate harmful stimuli, including damaged cells, irritants, or pathogens. However, chronic inflammation can eventually cause several types of diseases, including some cancers, atherosclerosis, rheumatoid arthritis, and periodontitis. Therefore, inflammation responses should be well modulated. In this review, we briefly discuss the role of PRMTs in the control of inflammation. More specifically, we review the roles of four PRMTs (CARM1, PRMT1, PRMT5, and PRMT6) in modulating inflammation responses, particularly in terms of modulating the transcriptional factors or cofactors related to inflammation. Based on the regulatory roles known so far, we propose that PRMTs should be considered one of the target molecule groups that modulate inflammatory responses. PMID:27041824

  13. The Role of Protein Arginine Methyltransferases in Inflammatory Responses.

    PubMed

    Kim, Ji Hye; Yoo, Byong Chul; Yang, Woo Seok; Kim, Eunji; Hong, Sungyoul; Cho, Jae Youl

    2016-01-01

    Protein arginine methyltransferases (PRMTs) mediate the methylation of a number of protein substrates of arginine residues and serve critical functions in many cellular responses, including cancer development, progression, and aggressiveness, T-lymphocyte activation, and hepatic gluconeogenesis. There are nine members of the PRMT family, which are divided into 4 types (types I-IV). Although most PRMTs do not require posttranslational modification (PTM) to be activated, fine-tuning modifications, such as interactions between cofactor proteins, subcellular compartmentalization, and regulation of RNA, via micro-RNAs, seem to be required. Inflammation is an essential defense reaction of the body to eliminate harmful stimuli, including damaged cells, irritants, or pathogens. However, chronic inflammation can eventually cause several types of diseases, including some cancers, atherosclerosis, rheumatoid arthritis, and periodontitis. Therefore, inflammation responses should be well modulated. In this review, we briefly discuss the role of PRMTs in the control of inflammation. More specifically, we review the roles of four PRMTs (CARM1, PRMT1, PRMT5, and PRMT6) in modulating inflammation responses, particularly in terms of modulating the transcriptional factors or cofactors related to inflammation. Based on the regulatory roles known so far, we propose that PRMTs should be considered one of the target molecule groups that modulate inflammatory responses. PMID:27041824

  14. Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination.

    PubMed

    Rani, Nidhi; Vijayakumar, Saravanan; P T V, Lakshmi; Arunachalam, Annamalai

    2016-08-01

    Recent crystallographic study revealed the involvement of allosteric site in active site inhibition of penicillin binding protein (PBP2a), where one molecule of Ceftaroline (Cef) binds to the allosteric site of PBP2a and paved way for the other molecule (Cef) to bind at the active site. Though Cef has the potency to inhibit the PBP2a, its adverse side effects are of major concern. Previous studies have reported the antibacterial property of Quercetin derivatives, a group of natural compounds. Hence, the present study aims to evaluate the effect of Quercetin 3-o-rutinoside (Rut) in allosteric site-mediated active site inhibition of PBP2a. The molecular docking studies between allosteric site and ligands (Rut, Que, and Cef) revealed a better binding efficiency (G-score) of Rut (-7.790318) and Cef (-6.194946) with respect to Que (-5.079284). Molecular dynamic (MD) simulation studies showed significant changes at the active site in the presence of ligands (Rut and Cef) at allosteric site. Four different combinations of Rut and Cef were docked and their G-scores ranged between -6.320 and -8.623. MD studies revealed the stability of the key residue (Ser403) with Rut being at both sites, compared to other complexes. Morphological analysis through electron microscopy confirmed that combination of Rut and Cefixime was able to disturb the bacterial cell membrane in a similar fashion to that of Rut and Cefixime alone. The results of this study indicate that the affinity of Rut at both sites were equally good, with further validations Rut could be considered as an alternative for inhibiting MRSA growth. PMID:26360629

  15. Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase.

    PubMed

    Li, Chi-Hui; Tu, Shiao-Chun

    2005-10-01

    Vibrio harveyi luciferase is an alphabeta heterodimer containing a single active site, proposed earlier to be at a cleft in the alpha subunit. In this work, six conserved phenylalanine residues at this proposed active site were subjected to site-directed mutations to investigate their possible functional roles and to delineate the makeup of luciferase active site. After initial screening of Phe --> Ala mutants, alphaF46, alphaF49, alphaF114, and alphaF117 were chosen for additional mutations to Asp, Ser, and Tyr. Comparisons of the general kinetic properties of wild-type and mutated luciferases indicated that the hydrophobic nature of alphaF46, alphaF49, alphaF114, and alphaF117 was important to luciferase V(max) and V(max)/K(m), which were reduced by 3-5 orders of magnitude for the Phe --> Asp mutants. Both alphaF46 and alphaF117 also appeared to be involved in the binding of reduced flavin substrate. Additional studies on the stability and yield of the 4a-hydroperoxyflavin intermediate II and measurements of decanal substrate oxidation by alphaF46D, alphaF49D, alphaF114D, and alphaF117D revealed that their marked reductions in the overall quantum yield (phi( degrees )) were a consequence of diminished yields of luciferase intermediates and, with the exception of alphaF114D, emission quantum yield of the excited emitter due to the replacement of the hydrophobic Phe by the anionic Asp. The locations of these four critical Phe residues in relation to other essential and/or hydrophobic residues are depicted in a refined map of the active site. Functional implications of these residues are discussed. PMID:16185065

  16. Potential protective effect of arginine against 4-nitrophenol-induced ovarian damage in rats.

    PubMed

    Xu, Wei-Feng; Li, Yan-Sen; Dai, Peng-Yuan; Li, Chun-Mei

    2016-01-01

    4-nitrophenol (PNP) is generally regarded as a diesel exhaust particle (DEP). Arginine plays an important role as a new feed additive, possessing highly efficient antioxidant activities. Here we investigated the effects of dietary supplementation with arginine against ovarian damage induced by PNP in rats. A total of thirty-two female rats postnatal day 28 (PND 28) were randomly divided into four groups. Two groups were fed with basal diet or 13 g/kg arginine in diet for 4 weeks, respectively; the other two groups were given PNP (100 mg/kg b.w.) daily by subcutaneous injection for 2 weeks following pretreatment with either basal diet or arginine diet for 2 weeks. The values of body weight gain (BWG), average daily gain (ADG) and percentage weight gain (PWG) upon PNP treatment were significantly reduced than those in other groups. The relative liver weight in the PNP group was significantly decreased compared with the control group. Treatment with PNP significant reduced the number of corpora lutea, although serum 17β-estradiol (E2) and progesterone (P4) concentrations were unchanged. The morphology of the ovaries in PNP-treated rats displayed necrosis, follicular deformation and granulosa cells irregular arrangement. Moreover, exposure to PNP enhanced production of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and decreased the activities of total superoxide dismutase (T-SOD) and catalase (CAT), and the co-administration of arginine can attenuate the oxidative stress caused by PNP. These results suggest that arginine may have a protective effect against ovarian damage induced by PNP owing to its antioxidant capacity effect. PMID:27193729

  17. A proposed definition of the 'activity' of surface sites on lactose carriers for dry powder inhalation.

    PubMed

    Grasmeijer, Floris; Frijlink, Henderik W; de Boer, Anne H

    2014-06-01

    A new definition of the activity of surface sites on lactose carriers for dry powder inhalation is proposed which relates to drug detachment during dispersion. The new definition is expected to improve the understanding of 'carrier surface site activity', which stimulates the unambiguous communication about this subject and may aid in the rational design and interpretation of future formulation studies. In contrast to the currently prevailing view on carrier surface site activity, it follows from the newly proposed definition that carrier surface site activity depends on more variables than just the physicochemical properties of the carrier surface. Because the term 'active sites' is ambiguous, it is recommended to use the term 'highly active sites' instead to denote carrier surface sites with a relatively high activity. PMID:24613490

  18. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. PMID:25727891

  19. Construction of DNA recognition sites active in Haemophilus transformation.

    PubMed Central

    Danner, D B; Smith, H O; Narang, S A

    1982-01-01

    Competent Haemophilus cells recognize and preferentially take up Haemophilus DNA during genetic transformation. This preferential uptake is correlated with the presence on incoming DNA of an 11-base-pair (bp) sequence, 5'-A-A-G-T-G-C-G-G-T-C-A-3'. To prove that this sequence is the recognition site that identifies Haemophilus DNA to the competent cell, we have now constructed a series of plasmids, each of which contains the 11-bp sequence. Using two different assay systems we have tested the ability of fragments from these plasmids to compete with cloned Haemophilus DNA fragments that naturally contain the 11-bp sequence. We find that the addition of the 11-bp sequence to a DNA fragment is necessary and sufficient for preferential uptake of that fragment. However, plasmid DNAs containing this sequence may vary as much as 48-fold in uptake activity, and this variation correlates with the A+T-richness of the DNA flanking the 11-mer. Images PMID:6285382

  20. Characterization of active site residues of nitroalkane oxidase.

    PubMed

    Valley, Michael P; Fenny, Nana S; Ali, Shah R; Fitzpatrick, Paul F

    2010-06-01

    The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitroalkanes to the corresponding aldehydes and ketones plus nitrite. The structure of the enzyme shows that Ser171 forms a hydrogen bond to the flavin N5, suggesting that it plays a role in catalysis. Cys397 and Tyr398 were previously identified by chemical modification as potential active site residues. To more directly probe the roles of these residues, the S171A, S171V, S171T, C397S, and Y398F enzymes have been characterized with nitroethane as substrate. The C397S and Y398 enzymes were less stable than the wild-type enzyme, and the C397S enzyme routinely contained a substoichiometric amount of FAD. Analysis of the steady-state kinetic parameters for the mutant enzymes, including deuterium isotope effects, establishes that all of the mutations result in decreases in the rate constants for removal of the substrate proton by approximately 5-fold and decreases in the rate constant for product release of approximately 2-fold. Only the S171V and S171T mutations alter the rate constant for flavin oxidation. These results establish that these residues are not involved in catalysis, but rather are required for maintaining the protein structure. PMID:20056514

  1. Detection limit for activation measurements in ultralow background sites

    NASA Astrophysics Data System (ADS)

    Trache, Livius; Chesneanu, D.; Margineanu, R.; Pantelica, A.; Ghita, D. G.; Burducea, I.; Straticiuc, M.; Tang, X. D.

    2014-09-01

    We used 12C +13C fusion at the beam energies E = 6, 7 and 8 MeV to determine the sensitivity and the limits of activation method measurements in ultralow background sites. A 13C beam of 0.5 μA from the 3 MV Tandem accelerator of the Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH impinged on thick graphite targets. After about 24 hrs of irradiation targets were measured in two different laboratories: one with a heavy shielded Ge detector in the institute (at the surface) and one located underground in the microBequerel laboratory, in the salt mine of Slanic-Prahova, Romania. The 1369- and 2754 keV peaks from 24Na deactivation were clearly observed in the γ-ray spectra obtained for acquisitions lasting a few hours, or a few days. Determination of the detection limit in evaluating the cross sections for the target irradiated at Ec . m = 3 MeV indicates the fact that it is possible to measure gamma spectrum in underground laboratory down to Ec . m = 2 . 6 MeV. Cleaning the spectra with beta-gamma coincidences and increasing beam intensity 20 times will take as further down. The measurements are motivated by the study of the 12 C +12 C reaction at astrophysical energies.

  2. N6-Methyldeoxyadenosine Marks Active Transcription Start Sites in Chlamydomonas

    PubMed Central

    Chen, Kai; Deng, Xin; Yu, Miao; Han, Dali; Hao, Ziyang; Liu, Jianzhao; Lu, Xingyu; Dore, Louis C; Weng, Xiaocheng; Ji, Quanjiang; Mets, Laurens; He, Chuan

    2015-01-01

    SUMMARY N6-methyldeoxyadenosine (6mA or m6A) is a DNA modification preserved in prokaryotes to eukaryotes. It is widespread in bacteria, and functions in DNA mismatch repair, chromosome segregation, and virulence regulation. In contrast, the distribution and function of 6mA in eukaryotes have been unclear. Here we present a comprehensive analysis of the 6mA landscape in the genome of Chlamydomonas using new sequencing approaches. We identified the 6mA modification in 84% of genes in Chlamydomonas. We found that 6mA mainly locates at ApT dinucleotides around transcription start sites (TSS) with a bimodal distribution, and appears to mark active genes. A periodic pattern of 6mA deposition was also observed at base resolution, which is associated with nucleosome distribution near the TSS, suggesting a possible role in nucleosome positioning. The new genome-wide mapping of 6mA and its unique distribution in the Chlamydomonas genome suggest potential regulatory roles of 6mA in gene expression in eukaryotic organisms. PMID:25936837

  3. Quantification of Arginine and Its Methylated Derivatives in Plasma by High-Performance Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS).

    PubMed

    Vicente, Faye B; Vespa, Gina; Miller, Alan; Haymond, Shannon

    2016-01-01

    Arginine is the substrate for nitric oxide synthases (NOS), thus the production of nitric oxide (NO) is based on arginine availability. Arginine is methylated through the activity of protein arginine methyltransferases (PRMT1 and PRMT2), to form asymmetrical dimethylarginine (ADMA) and symmetrical dimethylarginine (SDMA). These compounds have gained interest in recent years due to their influence on NO production rates and association with cardiovascular and renal diseases. The accurate and precise measurement of arginine and its methylated derivatives is needed for research studies investigating their role(s) in NO bioavailability and development of disease. We describe a high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method for quantifying arginine, ADMA, and SDMA requiring only 50 μL of plasma. The sample preparation involves addition of internal standards (ADMA-d7 for ADMA and SDMA, and (13)C6 -arginine for arginine) prior to protein precipitation with LCMS grade acetonitrile. Samples are centrifuged and supernatant is dried under nitrogen gas at 50 °C. Samples are reconstituted with mobile phase (ammonium acetate-formic acid-water). Arginine, ADMA, and SDMA are separated using an isocratic HPLC method on a 3 μM silica analytical column. MS/MS detection is performed in the multiple-reaction monitoring (MRM) mode and the transitions monitored are m/z 203 to m/z 70 for ADMA and SDMA, m/z 210 to m/z 77 for ADMA-d7, m/z 175 to m/z 70 for arginine, and m/z 181 to m/z 74 for (13)C6-arginine. PMID:26602113

  4. Effects of arginine on multimodal anion exchange chromatography.

    PubMed

    Hirano, Atsushi; Arakawa, Tsutomu; Kameda, Tomoshi

    2015-12-01

    The effects of arginine on binding and elution properties of a multimodal anion exchanger, Capto adhere, were examined using bovine serum albumin (BSA) and a monoclonal antibody against interleukin-8 (mAb-IL8). Negatively charged BSA was bound to the positively charged Capto adhere and was readily eluted from the column with a stepwise or gradient elution using 1M NaCl at pH 7.0. For heat-treated BSA, small oligomers and remaining monomers were also eluted using a NaCl gradient, whereas larger oligomers required arginine for effective elution. The positively charged mAb-IL8 was bound to Capto adhere at pH 7.0. Arginine was also more effective for elution of the bound mAb-IL8 than was NaCl. The results imply that arginine interacts with the positively charged Capto adhere. The mechanism underlying the interactions of arginine with Capto adhere was examined by calculating the binding free energy between an arginine molecule and a Capto adhere ligand in water through molecular dynamics simulations. The overall affinity of arginine for Capto adhere is attributed to the hydrophobic and π-π interactions between an arginine side chain and the aromatic moiety of the ligand as well as hydrogen bonding between arginine and the ligand hydroxyl group, which may account for the characteristics of protein elution using arginine. PMID:26225914

  5. Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress

    PubMed Central

    Cheng, Yanfei; Du, Zhaoli; Zhu, Hui; Guo, Xuena; He, Xiuping

    2016-01-01

    Yeast cells are challenged by various environmental stresses in the process of industrial fermentation. As the currently main organism for bio-ethanol production, Saccharomyces cerevisiae suffers from ethanol stress. Some amino acids have been reported to be related to yeast tolerance to stresses. Here the relationship between arginine and yeast response to ethanol stress was investigated. Marked inhibitions of ethanol on cell growth, expression of genes involved in arginine biosynthesis and intracellular accumulation of arginine were observed. Furthermore, extracellular addition of arginine can abate the ethanol damage largely. To further confirm the protective effects of arginine on yeast cells, yeast strains with different levels of arginine content were constructed by overexpression of ARG4 involved in arginine biosynthesis or CAR1 encoding arginase. Intracellular arginine was increased by 18.9% or 13.1% respectively by overexpression of ARG4 or disruption of CAR1, which enhanced yeast tolerance to ethanol stress. Moreover, a 41.1% decrease of intracellular arginine was observed in CAR1 overexpressing strain, which made yeast cells keenly sensitive to ethanol. Further investigations indicated that arginine protected yeast cells from ethanol damage by maintaining the integrity of cell wall and cytoplasma membrane, stabilizing the morphology and function of organellae due to low ROS generation. PMID:27507154

  6. Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress.

    PubMed

    Cheng, Yanfei; Du, Zhaoli; Zhu, Hui; Guo, Xuena; He, Xiuping

    2016-01-01

    Yeast cells are challenged by various environmental stresses in the process of industrial fermentation. As the currently main organism for bio-ethanol production, Saccharomyces cerevisiae suffers from ethanol stress. Some amino acids have been reported to be related to yeast tolerance to stresses. Here the relationship between arginine and yeast response to ethanol stress was investigated. Marked inhibitions of ethanol on cell growth, expression of genes involved in arginine biosynthesis and intracellular accumulation of arginine were observed. Furthermore, extracellular addition of arginine can abate the ethanol damage largely. To further confirm the protective effects of arginine on yeast cells, yeast strains with different levels of arginine content were constructed by overexpression of ARG4 involved in arginine biosynthesis or CAR1 encoding arginase. Intracellular arginine was increased by 18.9% or 13.1% respectively by overexpression of ARG4 or disruption of CAR1, which enhanced yeast tolerance to ethanol stress. Moreover, a 41.1% decrease of intracellular arginine was observed in CAR1 overexpressing strain, which made yeast cells keenly sensitive to ethanol. Further investigations indicated that arginine protected yeast cells from ethanol damage by maintaining the integrity of cell wall and cytoplasma membrane, stabilizing the morphology and function of organellae due to low ROS generation. PMID:27507154

  7. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine.

    PubMed Central

    Ignarro, L J; Fukuto, J M; Griscavage, J M; Rogers, N E; Byrns, R E

    1993-01-01

    Nitric oxide (NO) in oxygen-containing aqueous solution has a short half-life that is often attributed to a rapid oxidation to both NO2- and NO3-. The chemical fate of NO in aqueous solution is often assumed to be the same as that in air, where NO is oxidized to NO2 followed by dimerization to N2O4. Water then reacts with N2O4 to form both NO2- and NO3-. We report here that NO in aqueous solution containing oxygen is oxidized primarily to NO2- with little or no formation of NO3-. In the presence of oxyhemoglobin or oxymyoglobin, however, NO and NO2- were oxidized completely to NO3-. Methemoglobin was inactive in this regard. The unpurified cytosolic fraction from rat cerebellum, which contains constitutive NO synthase activity, catalyzed the conversion of L-arginine primarily to NO3- (NO2-/NO3- ratio = 0.25). After chromatography on DEAE-Sephacel or affinity chromatography using 2',5'-ADP-Sepharose 4B, active fractions containing NO synthase activity catalyzed the conversion of L-arginine primarily to NO2- (NO2-/NO3- ratio = 5.6) or only to NO2-, respectively. Unpurified cytosol from activated rat alveolar macrophages catalyzed the conversion of L-arginine to NO2- without formation of NO3-. Addition of 30 microM oxyhemoglobin to all enzyme reaction mixtures resulted in the formation primarily of NO3- (NO2-/NO3- ratio = 0.09 to 0.20). Cyanide ion, which displaces NO2- from its binding sites on oxyhemoglobin, inhibited the formation of NO3-, thereby allowing NO2- to accumulate. These observations indicate clearly that the primary decomposition product of NO in aerobic aqueous solution is NO2- and that further oxidation to NO3- requires the presence of additional oxidizing species such as oxyhemoproteins. Images Fig. 5 Fig. 6 PMID:7690141

  8. Adverse effects associated with arginine alpha-ketoglutarate containing supplements.

    PubMed

    Prosser, J M; Majlesi, N; Chan, G M; Olsen, D; Hoffman, R S; Nelson, L S

    2009-05-01

    The athletic performance supplement industry is a multibillion-dollar business and one popular category claims to increase nitric oxide (NO) production. We report three patients presenting to the emergency department with adverse effects. A 33-year-old man presented with palpitations, dizziness, vomiting, and syncope, after the use of NO(2) platinum. His examination and electrocardiogram (ECG) were normal. The dizziness persisted, requiring admission overnight. A 21-year-old man with palpitations and near syncope had used a "nitric oxide" supplement. He was tachycardic to 115 bpm with otherwise normal examination. Laboratory values including methemoglobin, and ECG were unremarkable. He was treated with 1 L of saline with no change in heart rate. He was admitted for observation. A 24-year-old man presented after taking NO-Xplode with palpitations and a headache. His examination, laboratory values, and ECG were normal. He was discharged. The purported active ingredient in these products is arginine alpha-ketoglutarate (AAKG), which is claimed to increase NO production by supplying the precursor L-arginine. The symptoms could be due to vasodilation from increased levels of NO, though other etiologies cannot be excluded. AAKG containing supplements may be associated with adverse effects requiring hospital admission. PMID:19755457

  9. Arginine kinase from Myzostoma cirriferum, a basal member of annelids.

    PubMed

    Yano, Daichi; Mimura, Sayo; Uda, Kouji; Suzuki, Tomohiko

    2016-08-01

    We assembled a phosphagen kinase gene from the Expressed Sequence Tags database of Myzostoma cirriferum, a basal member of annelids. The assembled gene sequence was synthesized using an overlap extension polymerase chain reaction method and was expressed in Escherichia coli. The recombinant enzyme (355 residues) exhibited monomeric behavior on a gel filtration column and showed strong activity only for l-arginine. Thus, the enzyme was identified as arginine kinase (AK). The two-substrate kinetic parameters were obtained and compared with other AKs. Phylogenetic analysis of amino acid sequences of phosphagen kinases indicated that the Myzostoma AK gene lineage differed from that of the polychaete Sabellastarte spectabilis AK, which is a dimer of creatine kinase (CK) origin. It is likely that the Myzostoma AK gene lineage was lost at an early stage of annelid evolution and that Sabellastarte AK evolved secondarily from the CK gene. This work contributes to our understanding of the evolution of phosphagen kinases of annelids with marked diversity. PMID:27095694

  10. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  11. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  12. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  13. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  14. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  15. GABA Production in Lactococcus lactis Is Enhanced by Arginine and Co-addition of Malate.

    PubMed

    Laroute, Valérie; Yasaro, Chonthicha; Narin, Waranya; Mazzoli, Roberto; Pessione, Enrica; Cocaign-Bousquet, Muriel; Loubière, Pascal

    2016-01-01

    Lactococcus lactis NCDO 2118 was previously selected for its ability to decarboxylate glutamate to γ-aminobutyric acid (GABA), an interesting nutritional supplement able to improve mood and relaxation. Amino acid decarboxylation is generally considered as among the biochemical systems allowing lactic acid bacteria to counteracting acidic stress and obtaining metabolic energy. These strategies also include arginine deiminase pathway and malolactic fermentation but little is known about their possible interactions of with GABA production. In the present study, the effects of glutamate, arginine, and malate (i.e., the substrates of these acid-resistance pathways) on L. lactis NCDO 2118 growth and GABA production performances were analyzed. Both malate and arginine supplementation resulted in an efficient reduction of acidity and improvement of bacterial biomass compared to glutamate supplementation. Glutamate decarboxylation was limited to narrow environmental conditions (pH < 5.1) and physiological state (stationary phase). However, some conditions were able to improve GABA production or activate glutamate decarboxylation system even outside of this compass. Arginine clearly stimulated glutamate decarboxylation: the highest GABA production (8.6 mM) was observed in cultures supplemented with both arginine and glutamate. The simultaneous addition of arginine, malate, and glutamate enabled earlier GABA production (i.e., during exponential growth) at relatively high pH (6.5). As far as we know, no previous study has reported GABA production in such conditions. Although further studies are needed to understand the molecular basis of these phenomena, these results represent important keys suitable of application in GABA production processes. PMID:27458444

  16. GABA Production in Lactococcus lactis Is Enhanced by Arginine and Co-addition of Malate

    PubMed Central

    Laroute, Valérie; Yasaro, Chonthicha; Narin, Waranya; Mazzoli, Roberto; Pessione, Enrica; Cocaign-Bousquet, Muriel; Loubière, Pascal

    2016-01-01

    Lactococcus lactis NCDO 2118 was previously selected for its ability to decarboxylate glutamate to γ-aminobutyric acid (GABA), an interesting nutritional supplement able to improve mood and relaxation. Amino acid decarboxylation is generally considered as among the biochemical systems allowing lactic acid bacteria to counteracting acidic stress and obtaining metabolic energy. These strategies also include arginine deiminase pathway and malolactic fermentation but little is known about their possible interactions of with GABA production. In the present study, the effects of glutamate, arginine, and malate (i.e., the substrates of these acid-resistance pathways) on L. lactis NCDO 2118 growth and GABA production performances were analyzed. Both malate and arginine supplementation resulted in an efficient reduction of acidity and improvement of bacterial biomass compared to glutamate supplementation. Glutamate decarboxylation was limited to narrow environmental conditions (pH < 5.1) and physiological state (stationary phase). However, some conditions were able to improve GABA production or activate glutamate decarboxylation system even outside of this compass. Arginine clearly stimulated glutamate decarboxylation: the highest GABA production (8.6 mM) was observed in cultures supplemented with both arginine and glutamate. The simultaneous addition of arginine, malate, and glutamate enabled earlier GABA production (i.e., during exponential growth) at relatively high pH (6.5). As far as we know, no previous study has reported GABA production in such conditions. Although further studies are needed to understand the molecular basis of these phenomena, these results represent important keys suitable of application in GABA production processes. PMID:27458444

  17. [Antioxidant effects of L-arginine in the rat heart in experimental rhabdomyolysis].

    PubMed

    Filimonenko, V P; Nikitchenko, I V; Kaliman, P A

    2009-01-01

    The glycerol administration in a dose of 1 ml of 50% water solution/100 g b. w. was found to cause considerable accumulation of the total heme in the rat blood serum that is accompanied by an increase of TBA-reactive products and protein carbonyl derivates contents and by changes of protein level. Heme entering in the heart tissue is observed in the first hours after glycerol injection. The breaches of heart antioxidant-prooxidant balance are noted in twenty-four hours: TBA-reactive products and protein carbonyl derivates accumulation, heme oxygenase and catalase activation, superoxide dismutase activity lowering and reduction of glutathione content elevation. Pretreatment by L-arginine (0.5 h before glycerol administration) almost did not affect the blood serum changes caused by glycerol injection. However in the rat heart L-arginine administration prevents from TBA-reactive products and protein carbonyl derivates accumulation and the breaches of superoxide dismutase and catalase activities. Besides L-arginine causes the ealier heme oxygenase induction. Possible mechanisms of L-arginine protective action in the rat heart under experimental rhabdomyolysis are discussed. PMID:19877424

  18. Preferential interactions between protein and arginine: effects of arginine on tertiary conformational and colloidal stability of protein solution.

    PubMed

    Wen, Lili; Chen, Yan; Liao, Jie; Zheng, Xianxian; Yin, Zongning

    2015-01-30

    The purpose of this study was to better understand the preferential binding behavior of arginine to protein as well as the impact of arginine on the conformational and colloidal stability of protein solution. Physical stabilities of model proteins, bovine serum albumin (BSA) and ovalbumin (OVA), were investigated by fluorescence-based and dynamic light scattering techniques in the absence and presence of arginine. We investigated the interactions between arginine and tryptophan or tyrosine residues by conducting solubility and fluorescence studies of two amino acid derivatives, N-acetyl-l-tryptophanamide (NATA) and N-acetyl-l-tyrosinamide (NAYA), in arginine solutions. The result showed that arginine preferentially bond to the aromatic amino acids of proteins mainly through hydrogen bonds and Van der Waals' forces, while the binding constant K of arginine with BSA and OVA at 298K was 41.92 and 5.77L/mol, respectively. The fluorescence quenching, the decreased fluorescence lifetime and the red-shifted ANS peak position revealed that arginine perturbed the local environment of tryptophan and tyrosine residues. We also found the attenuated electrostatic repulsion among BSA and OVA molecules after adding arginine. These findings provided strong evidence that arginine possessed negative effects on tertiary conformational and colloidal stability of BSA and OVA during the preferential binding process. PMID:25529432

  19. Arginine Biosynthesis in Thermotoga maritima: Characterization of the Arginine-Sensitive N-Acetyl-l-Glutamate Kinase

    PubMed Central

    Fernández-Murga, M. Leonor; Gil-Ortiz, Fernando; Llácer, José L.; Rubio, Vicente

    2004-01-01

    To help clarify the control of arginine synthesis in Thermotoga maritima, the putative gene (argB) for N-acetyl-l-glutamate kinase (NAGK) from this microorganism was cloned and overexpressed, and the resulting protein was purified and shown to be a highly thermostable and specific NAGK that is potently and selectively inhibited by arginine. Therefore, NAGK is in T. maritima the feedback control point of arginine synthesis, a process that in this organism involves acetyl group recycling and appears not to involve classical acetylglutamate synthase. The inhibition of NAGK by arginine was found to be pH independent and to depend sigmoidally on the concentration of arginine, with a Hill coefficient (N) of ∼4, and the 50% inhibitory arginine concentration (I0.5) was shown to increase with temperature, approaching above 65°C the I0.50 observed at 37°C with the mesophilic NAGK of Pseudomonas aeruginosa (the best-studied arginine-inhibitable NAGK). At 75°C, the inhibition by arginine of T. maritima NAGK was due to a large increase in the Km for acetylglutamate triggered by the inhibitor, but at 37°C arginine also substantially decreased the Vmax of the enzyme. The NAGKs of T. maritima and P. aeruginosa behaved in gel filtration as hexamers, justifying the sigmoidicity and high Hill coefficient of arginine inhibition, and arginine or the substrates failed to disaggregate these enzymes. In contrast, Escherichia coli NAGK is not inhibited by arginine and is dimeric, and thus the hexameric architecture may be an important determinant of arginine sensitivity. Potential thermostability determinants of T. maritima NAGK are also discussed. PMID:15342584

  20. Arginine biosynthesis in Thermotoga maritima: characterization of the arginine-sensitive N-acetyl-L-glutamate kinase.

    PubMed

    Fernández-Murga, M Leonor; Gil-Ortiz, Fernando; Llácer, José L; Rubio, Vicente

    2004-09-01

    To help clarify the control of arginine synthesis in Thermotoga maritima, the putative gene (argB) for N-acetyl-L-glutamate kinase (NAGK) from this microorganism was cloned and overexpressed, and the resulting protein was purified and shown to be a highly thermostable and specific NAGK that is potently and selectively inhibited by arginine. Therefore, NAGK is in T. maritima the feedback control point of arginine synthesis, a process that in this organism involves acetyl group recycling and appears not to involve classical acetylglutamate synthase. The inhibition of NAGK by arginine was found to be pH independent and to depend sigmoidally on the concentration of arginine, with a Hill coefficient (N) of approximately 4, and the 50% inhibitory arginine concentration (I0.5) was shown to increase with temperature, approaching above 65 degrees C the I0.50 observed at 37 degrees C with the mesophilic NAGK of Pseudomonas aeruginosa (the best-studied arginine-inhibitable NAGK). At 75 degrees C, the inhibition by arginine of T. maritima NAGK was due to a large increase in the Km for acetylglutamate triggered by the inhibitor, but at 37 degrees C arginine also substantially decreased the Vmax of the enzyme. The NAGKs of T. maritima and P. aeruginosa behaved in gel filtration as hexamers, justifying the sigmoidicity and high Hill coefficient of arginine inhibition, and arginine or the substrates failed to disaggregate these enzymes. In contrast, Escherichia coli NAGK is not inhibited by arginine and is dimeric, and thus the hexameric architecture may be an important determinant of arginine sensitivity. Potential thermostability determinants of T. maritima NAGK are also discussed. PMID:15342584

  1. Active-site mutagenesis of tetanus neurotoxin implicates TYR-375 and GLU-271 in metalloproteolytic activity.

    PubMed

    Rossetto, O; Caccin, P; Rigoni, M; Tonello, F; Bortoletto, N; Stevens, R C; Montecucco, C

    2001-08-01

    Tetanus neurotoxin (TeNT) blocks neurotransmitter release by cleaving VAMP/synaptobrevin, a membrane associated protein involved in synaptic vesicle fusion. Such activity is exerted by the N-terminal 50kDa domain of TeNT which is a zinc-dependent endopeptidase (TeNT-L-chain). Based on the three-dimensional structure of botulinum neurotoxin serotype A (BoNT/A) and serotype B (BoNT/B), two proteins closely related to TeNT, and on X-ray scattering studies of TeNT, we have designed mutations at two active site residues to probe their involvement in activity. The active site of metalloproteases is composed of a primary sphere of residues co-ordinating the zinc atom, and a secondary sphere of residues that determines proteolytic specificity and activity. Glu-261 and Glu-267 directly co-ordinates the zinc atom in BoNT/A and BoNT/B respectively and the corresponding residue of TeNT was replaced by Asp or by the non conservative residue Ala. Tyr-365 is 4.3A away from zinc in BoNT/A, and the corresponding residue of TeNT was replaced by Phe or by Ala. The purified mutants had CD, fluorescence and UV spectra closely similar to those of the wild-type molecule. The proteolytic activity of TeNT-Asp-271 (E271D) is similar to that of the native molecule, whereas that of TeNT-Phe-375 (Y375F) is lower than the control. Interestingly, the two Ala mutants are completely devoid of enzymatic activity. These results demonstrate that both Glu-271 and Tyr-375 are essential for the proteolytic activity of TeNT. PMID:11306125

  2. GAS HYDRATES AT TWO SITES OF AN ACTIVE CONTINENTAL MARGIN.

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Sediment containing gas hydrates from two distant Deep Sea Drilling Project sites (565 and 568), located about 670 km apart on the landward flank of the Middle America Trench, was studied to determine the geochemical conditions that characterize the occurrence of gas hydrates. Site 565 was located in the Pacific Ocean offshore the Nicoya Peninsula of Costa Rica in 3,111 m of water. The depth of the hole at this site was 328 m, and gas hydrates were recovered from 285 and 319 m. Site 568 was located about 670 km to the northwest offshore Guatemala in 2,031 m of water. At this site the hole penetrated to 418 m, and gas hydrates were encountered at 404 m.

  3. Dynamically Achieved Active Site Precision in Enzyme Catalysis

    PubMed Central

    2015-01-01

    Conspectus The grand challenge in enzymology is to define and understand all of the parameters that contribute to enzymes’ enormous rate accelerations. The property of hydrogen tunneling in enzyme reactions has moved the focus of research away from an exclusive focus on transition state stabilization toward the importance of the motions of the heavy atoms of the protein, a role for reduced barrier width in catalysis, and the sampling of a protein conformational landscape to achieve a family of protein substates that optimize enzyme–substrate interactions and beyond. This Account focuses on a thermophilic alcohol dehydrogenase for which the chemical step of hydride transfer is rate determining across a wide range of experimental conditions. The properties of the chemical coordinate have been probed using kinetic isotope effects, indicating a transition in behavior below 30 °C that distinguishes nonoptimal from optimal C–H activation. Further, the introduction of single site mutants has the impact of either enhancing or eliminating the temperature dependent transition in catalysis. Biophysical probes, which include time dependent hydrogen/deuterium exchange and fluorescent lifetimes and Stokes shifts, have also been pursued. These studies allow the correlation of spatially resolved transitions in protein motions with catalysis. It is now possible to define a long-range network of protein motions in ht-ADH that extends from a dimer interface to the substrate binding domain across to the cofactor binding domain, over a distance of ca. 30 Å. The ongoing challenge to obtaining spatial and temporal resolution of catalysis-linked protein motions is discussed. PMID:25539048

  4. ArcD1 and ArcD2 Arginine/Ornithine Exchangers Encoded in the Arginine Deiminase Pathway Gene Cluster of Lactococcus lactis

    PubMed Central

    Noens, Elke E. E.; Kaczmarek, Michał B.; Żygo, Monika

    2015-01-01

    ABSTRACT The arginine deiminase (ADI) pathway gene cluster in Lactococcus lactis contains two copies of a gene encoding an l-arginine/l-ornithine exchanger, the arcD1 and arcD2 genes. The physiological function of ArcD1 and ArcD2 was studied by deleting the two genes. Deletion of arcD1 resulted in loss of the growth advantage observed in the presence of high l-arginine in different growth media. Uptake of l-arginine and l-ornithine by resting cells was reduced to the low level observed for an ArcD1/ArcD2 double deletion mutant. Deletion of the arcD2 gene did not affect the growth enhancement, and uptake activities were slightly reduced. Nevertheless, recombinant expression of ArcD2 in the ArcD1/ArcD2 double mutant did recover the growth advantage. Kinetic characterization of ArcD1 and ArcD2 showed high affinities for both l-arginine and l-ornithine (Km in the micromolar range). A difference between the two transporters was the significantly lower affinity of ArcD2 for the cationic amino acids l-ornithine, l-lysine, and l-histidine. In contrast, the affinity of ArcD2 was higher for the neutral amino acid l-alanine. Moreover, ArcD2 efficiently translocated l-alanine, while ArcD1 did not. Both transporters revealed affinities in the mM range for agmatine, cadaverine, histamine, and putrescine. These amines bind but are not translocated. It is concluded that ArcD1 is the main l-arginine/l-ornithine exchanger in the ADI pathway and that ArcD2 is not functionally expressed in the media used. ArcD2 is proposed to function together with the arcT gene that encodes a putative transaminase and is found adjacent to the arcD2 gene. IMPORTANCE The arginine deiminase (ADI) pathway gene cluster in Lactococcus lactis contains two copies of a gene encoding an l-arginine/l-ornithine exchanger, the arcD1 and arcD2 genes. The physiological function of ArcD1 and ArcD2 was studied by deleting the two genes. It is concluded that ArcD1 is the main l-arginine/l-ornithine exchanger in the

  5. Altered Arginine Metabolism in Cells Transfected with Human Wild-Type Beta Amyloid Precursor Protein (βAPP).

    PubMed

    Jęśko, Henryk; Wilkaniec, Anna; Cieślik, Magdalena; Hilgier, Wojciech; Gąssowska, Magdalena; Lukiw, Walter J; Adamczyk, Agata

    2016-01-01

    Alterations of enzymes linked to arginine metabolism have been recently implicated in Alzheimer's disease (AD). Despite strong association of arginine changes with nitric oxide (NO) pathway, the impact of amyloid β (Aβ) peptides on arginine degradation and re-synthesis is unknown. In the present study we compared expression levels of arginases (ARG1, ARG2), neuronal, endothelial and inducible NO synthase isoforms (NNOS, ENOS, INOS), enzymes that metabolize arginine or resynthesize it from citrulline and the levels of corresponding amino acids in rat pheochromocytoma (PC12) cells overexpressing human Aβ precursor protein (APPwt cells). Moreover, we investigated the changes in miRNAs responsible for modulation of arginine metabolism in AD brains. Real-time PCR analysis revealed in APPwt cells significant decreases of ARG1 and ARG2 which are responsible for lysing arginine into ornithine and urea; this reduction was followed by significantly lower enzyme activity. NNOS and ENOS mRNAs were elevated in APPwt cells while iNOS was undetectable in both cell lines. The expression of argininosuccinate synthase (ASS) that metabolizes citrulline was down-regulated without changes in argininosuccinate lyase (ASL). Ornithine decarboxylase (ODC), which decarboxylates ornithine to form putrescine was also reduced. Arginine, the substrate for both arginases and NOS, was unchanged in APPwt cells. However, citrulline concentration was significantly higher. Elevated miRNA-9 and miRNA-128a found in AD brain tissues might modulate the expression of ASS and NOS, respectively. Our results indicate that Aβ affects arginine metabolism and this influence might have important role in the pathomechanism of AD. PMID:26971935

  6. Robotics and Automation Activities at the Savannah River Site: A Site Report for SUBWOG 39F

    SciTech Connect

    Teese, G.D.

    1995-09-28

    The Savannah River Site has successfully used robots, teleoperators, and remote video to reduce exposure to ionizing radiation, improve worker safety, and improve the quality of operations. Previous reports have described the use of mobile teleoperators in coping with a high level liquid waste spill, the removal of highly contaminated equipment, and the inspection of nuclear reactor vessels. This report will cover recent applications at the Savannah River, as well as systems which SRS has delivered to other DOE site customers.

  7. MEP50/PRMT5 reduces gene expression by histone arginine methylation and this is reversed by PKCδ/p38δ signaling

    PubMed Central

    Saha, Kamalika; Adhikary, Gautam; Eckert, Richard L.

    2016-01-01

    PKCδ and p38δ are key proteins in a cascade that stimulates keratinocyte differentiation. This cascade activates transcription of involucrin (hINV) and other genes associated with differentiation. Protein arginine methyltransferase 5 (PRMT5) is an arginine methyltransferase that symmetrically dimethylates arginine residues. This protein interacts with a cofactor, MEP50, and symmetrically dimethylates arginine eight of histone 3 (H3R8me2s) and arginine three of histone 4 (H4R3me2s) to silence gene expression. We use the involucrin gene as a tool to understand the relationship between PKCδ/p38δ and PRMT5/MEP50 signaling. MEP50 suppresses hINV mRNA level and promoter activity. This is associated with increased arginine dimethylation of hINV gene-associated H3/H4. We further show that the PKCδ/p38δ keratinocyte differentiation cascade reduces PRMT5 and MEP50 expression, association with the hINV gene promoter, and H3R8me2s and H4R2me2s formation. We propose that PRMT5/MEP50-dependent methylation is an epigenetic mechanism that assists in silencing of hINV expression, and that PKCδ signaling activates gene expression by directly activating transcription and by suppressing PRMT5/MEP50 dependent arginine dimethylation of promoter associated histones. This is an example of crosstalk between PKCδ/p38δ signaling and PRMT5/MEP50 epigenetic silencing. PMID:26763441

  8. Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31

    NASA Astrophysics Data System (ADS)

    Ma, Cuiyan; Gao, Qiang; Liang, Yan; Li, Chen; Liu, Chao; Huang, Jie

    2016-03-01

    Viral entry into the host is the earliest stage of infection in the viral life cycle in which attachment proteins play a key role. VP31 (WSV340/WSSV396), an envelope protein of white spot syndrome virus (WSSV), contains an Arg-Gly-Asp (RGD) peptide domain known as a cellular attachment site. At present, the process of VP31 interacting with shrimp host cells has not been explored. Therefore, the VP31 gene was cloned into pET30a (+), expressed in Escherichia coli strain BL21 and purified with immobilized metal ion affinity chromatography. Four gill cellular proteins of shrimp (Fenneropenaeus chinensis) were pulled down by an affinity column coupled with recombinant VP31 (rVP31), and the amino acid sequences were identified with MALDI-TOF/TOF mass spectrometry. Hemocyanin, beta-actin, arginine kinase (AK), and an unknown protein were suggested as the putative VP31 receptor proteins. SDS-PAGE showed that AK is the predominant binding protein of VP31. An i n vitro binding activity experiment indicated that recombinant AK's (rAK) binding activity with rVP31 is comparable to that with the same amount of WSSV. These results suggested that AK, as a member of the phosphagen kinase family, plays a role in WSSV infection. This is the first evidence showing that AK is a binding protein of VP31. Further studies on this topic will elucidate WSSV infection mechanism in the future.

  9. Improving upon Nature: Active site remodeling produces highly efficient aldolase activity towards hydrophobic electrophilic substrates

    PubMed Central

    Cheriyan, Manoj; Toone, Eric J.; Fierke, Carol A.

    2012-01-01

    Substrate specificity of enzymes is frequently narrow and constrained by multiple interactions, limiting the use of natural enzymes in biocatalytic applications. Aldolases have important synthetic applications, but the usefulness of these enzymes is hampered by their narrow reactivity profile with unnatural substrates. To explore the determinants of substrate selectivity and alter the specificity of E. coli 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase, we employed structure-based mutagenesis coupled with library screening of mutant enzymes localized to the bacterial periplasm. We identified two active site mutations (T161S/S184L) that work additively to enhance the substrate specificity of this aldolase to include catalysis of retro-aldol cleavage of (4S)-2-keto-4-hydroxy-4-(2′-pyridyl)butyrate (S-KHPB). These mutations improve the value of kcat/KMS-KHPB by >450-fold, resulting in a catalytic efficiency that is comparable to that of the wild-type enzyme with the natural substrate while retaining high stereoselectivity. Moreover, the value of kcatS-KHPB for this mutant enzyme, a parameter critical for biocatalytic applications, is 3-fold higher than the maximum value achieved by the natural aldolase with any substrate. This mutant also possesses high catalytic efficiency for the retro-aldol cleavage of the natural substrate, KDPG, and a >50-fold improved activity for cleavage of 2-keto-4-hydroxy-octonoate (KHO), a non-functionalized hydrophobic analog. These data suggest a substrate binding mode that illuminates the origin of facial selectivity in aldol addition reactions catalyzed by KDPG and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases. Furthermore, targeting mutations to the active site provides marked improvement in substrate selectivity, demonstrating that structure-guided active site mutagenesis combined with selection techniques can efficiently identify proteins with characteristics that compare favorably to naturally occurring enzymes. PMID

  10. Protein Arginine Methylation and Citrullination in Epigenetic Regulation.

    PubMed

    Fuhrmann, Jakob; Thompson, Paul R

    2016-03-18

    The post-translational modification of arginine residues represents a key mechanism for the epigenetic control of gene expression. Aberrant levels of histone arginine modifications have been linked to the development of several diseases including cancer. In recent years, great progress has been made in understanding the physiological role of individual arginine modifications and their effects on chromatin function. The present review aims to summarize the structural and functional aspects of histone arginine modifying enzymes and their impact on gene transcription. We will discuss the potential for targeting these proteins with small molecules in a variety of disease states. PMID:26686581

  11. Protein Arginine Methylation and Citrullination in Epigenetic Regulation

    PubMed Central

    2015-01-01

    The post-translational modification of arginine residues represents a key mechanism for the epigenetic control of gene expression. Aberrant levels of histone arginine modifications have been linked to the development of several diseases including cancer. In recent years, great progress has been made in understanding the physiological role of individual arginine modifications and their effects on chromatin function. The present review aims to summarize the structural and functional aspects of histone arginine modifying enzymes and their impact on gene transcription. We will discuss the potential for targeting these proteins with small molecules in a variety of disease states. PMID:26686581

  12. Acute pancreatitis possibly due to arginine use: a case report.

    PubMed

    Saka, Mendane; Tüzün, Ahmet; Ateş, Yüksel; Bağci, Sait; Karaeren, Necmettin; Dağalp, Kemal

    2004-03-01

    Arginine has been used by millions of athletes over the past 20 years to enhance production of human growth hormone. The effects of arginine supplementation include increased fat burning and muscle building, enhanced immunity, and improvement in erectile function in men. Excessive doses of basic amino acids such as ethionine, methionine and lysine are known to damage the rat pancreas. Recent studies have demonstrated that excessive doses of arginine induce necrotizing pancreatitis in rats. In this article, we report a 16-year-old male patient hospitalized in our clinic because of severe pain in upper abdomen, nausea and vomiting who was suspected to have arginine-induced acute pancreatitis. PMID:15264124

  13. Atomically-thin two-dimensional sheets for understanding active sites in catalysis.

    PubMed

    Sun, Yongfu; Gao, Shan; Lei, Fengcai; Xie, Yi

    2015-02-01

    Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called "active sites". However, the atomic level interplay between active sites and catalytic activity is still an open question, owing to the large difference between idealized models and real catalysts. This stimulates us to pursue a suitable material model for studying the active sites-catalytic activity relationship, in which the atomically-thin two-dimensional sheets could serve as an ideal model, owing to their relatively simple type of active site and the ultrahigh fraction of active sites that are comparable to the overall atoms. In this tutorial review, we focus on the recent progress in disclosing the factors that affect the activity of reactive sites, including characterization of atomic coordination number, structural defects and disorder in ultrathin two-dimensional sheets by X-ray absorption fine structure spectroscopy, positron annihilation spectroscopy, electron spin resonance and high resolution transmission electron microscopy. Also, we overview their applications in CO catalytic oxidation, photocatalytic water splitting, electrocatalytic oxygen and hydrogen evolution reactions, and hence highlight the atomic level interplay among coordination number, structural defects/disorder, active sites and catalytic activity in the two-dimensional sheets with atomic thickness. Finally, we also present the major challenges and opportunities regarding the role of active sites in catalysis. We believe that this review provides critical insights for understanding the catalysis and hence helps to develop new catalysts with high catalytic activity. PMID:25382246

  14. The active sites of supported silver particle catalysts in formaldehyde oxidation.

    PubMed

    Chen, Yaxin; Huang, Zhiwei; Zhou, Meijuan; Hu, Pingping; Du, Chengtian; Kong, Lingdong; Chen, Jianmin; Tang, Xingfu

    2016-08-01

    Surface silver atoms with upshifted d-orbitals are identified as the catalytically active sites in formaldehyde oxidation by correlating their activity with the number of surface silver atoms, and the degree of the d-orbital upshift governs the catalytic performance of the active sites. PMID:27406403

  15. Alterations in lung arginine metabolism in lambs with pulmonary hypertension associated with increased pulmonary blood flow

    PubMed Central

    Sharma, Shruti; Kumar, Sanjiv; Sud, Neetu; Wiseman, Dean A.; Tian, Jing; Rehmani, Imran; Datar, Sanjeev; Oishi, Peter; Fratz, Sohrab; Venema, Richard C.; Fineman, Jeffrey R.; Black, Stephen M.

    2010-01-01

    Previous studies demonstrate impaired nitric oxide (NO) signaling in children and animal models with congenital heart defects and increased pulmonary blood flow. However, the molecular mechanisms underlying these alterations remain incompletely understood. The purpose of this study was to determine if early changes in arginine metabolic pathways could play a role in the reduced NO signaling demonstrated in our lamb model of congenital heart disease with increased pulmonary blood flow (Shunt lambs). The activities of the arginine recycling enzymes, argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) were both decreased in lung tissues of Shunt lambs while arginase activity was increased. Associated with these alterations, lung L-arginine levels were decreased. These changes correlated with an increase in NO synthase-derived reactive oxygen species (ROS) generation. This study provides further insights into the molecular mechanisms leading to decreased NO signaling in Shunt lambs and suggests that altered arginine metabolism may play a role in the development of the endothelial dysfunction associated with pulmonary hypertension secondary to increased pulmonary blood flow. PMID:19818875

  16. l-Arginine currents in rat cardiac ventricular myocytes

    PubMed Central

    Peluffo, R Daniel

    2007-01-01

    l-Arginine (l-Arg) is a basic amino acid that plays a central role in the biosynthesis of nitric oxide, creatine, agmantine, polyamines, proline and glutamate. Most tissues, including myocardium, must import l-Arg from the circulation to ensure adequate intracellular levels of this amino acid. This study reports novel l-Arg-activated inward currents in whole-cell voltage-clamped rat ventricular cardiomyocytes. Ion-substitution experiments identified extracellular l-Arg as the charge-carrying cationic species responsible for these currents, which, thus, represent l-Arg import into cardiac myocytes. This result was independently confirmed by an increase in myocyte nitric oxide production upon extracellular application of l-Arg. The inward movement of Arg molecules was found to be passive and independent of Na2+, K2+, Ca2+ and Mg2+. The process displayed saturation and membrane potential (Vm)-dependent kinetics, with a K0.5 for l-Arg that increased from 5 mm at hyperpolarizing Vm to 20 mm at +40 mV. l-Lysine and l-ornithine but not d-Arg produced currents with characteristics similar to that activated by l-Arg indicating that the transport process is stereospecific for cationic l-amino acids. l-Arg current was fully blocked after brief incubation with 0.2 mmN-ethylmaleimide. These features suggest that the activity of the low-affinity, high-capacity CAT-2A member of the y2+ family of transporters is responsible for l-Arg currents in acutely isolated cardiomyocytes. Regardless of the mechanism, we hypothesize that a low-affinity arginine transport process in heart, by ensuring substrate availability for sustained NO production, might play a cardio-protective role during catabolic states known to increase Arg plasma levels severalfold. PMID:17303641

  17. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  18. Induction of Viral, 7-Methyl-Guanosine Cap-Independent Translation and Oncolysis by Mitogen-Activated Protein Kinase-Interacting Kinase-Mediated Effects on the Serine/Arginine-Rich Protein Kinase

    PubMed Central

    Brown, Michael C.; Bryant, Jeffrey D.; Dobrikova, Elena Y.; Shveygert, Mayya; Bradrick, Shelton S.; Chandramohan, Vidyalakshmi; Bigner, Darell D.

    2014-01-01

    ABSTRACT Protein synthesis, the most energy-consuming process in cells, responds to changing physiologic priorities, e.g., upon mitogen- or stress-induced adaptations signaled through the mitogen-activated protein kinases (MAPKs). The prevailing status of protein synthesis machinery is a viral pathogenesis factor, particularly for plus-strand RNA viruses, where immediate translation of incoming viral RNAs shapes host-virus interactions. In this study, we unraveled signaling pathways centered on the ERK1/2 and p38α MAPK-interacting kinases MNK1/2 and their role in controlling 7-methyl-guanosine (m7G) “cap”-independent translation at enterovirus type 1 internal ribosomal entry sites (IRESs). Activation of Raf-MEK-ERK1/2 signals induced viral IRES-mediated translation in a manner dependent on MNK1/2. This effect was not due to MNK's known functions as eukaryotic initiation factor (eIF) 4G binding partner or eIF4E(S209) kinase. Rather, MNK catalytic activity enabled viral IRES-mediated translation/host cell cytotoxicity through negative regulation of the Ser/Arg (SR)-rich protein kinase (SRPK). Our investigations suggest that SRPK activity is a major determinant of type 1 IRES competency, host cell cytotoxicity, and viral proliferation in infected cells. IMPORTANCE We are targeting unfettered enterovirus IRES activity in cancer with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES. A phase I clinical trial of PVSRIPO with intratumoral inoculation in patients with recurrent glioblastoma (GBM) is showing early promise. Viral translation proficiency in infected GBM cells is a core requirement for the antineoplastic efficacy of PVSRIPO. Therefore, it is critically important to understand the mechanisms controlling viral cap-independent translation in infected host cells. PMID:25187541

  19. Heterologous protein production using the twin arginine translocation pathway

    DOEpatents

    Pohlschroder, Mechtild; Kissinger, Jessica C; Rose, R. Wesley; Brueser, Thomas; Dilks, Kieran

    2008-11-04

    Provided are means for evaluating and identifying putative substrates of the twin arginine translocation (Tat) secretory pathway in Streptomyces and other bacterial species. Also provided, therefore, are simple ways to express, secrete and purify correctly folded heterologous proteins on a large scale using host microorganisms, such as, Streptomyces and the Tat pathway therein. Many of the thus-produced proteins are of significant therapeutic value in the pharmaceutical and biochemical industries, particularly when they can be secreted from the host in fully-folded active form. Accordingly, there are further provided the heterologous proteins produced by the Tat secretion pathway using the foregoing methods, and the computer algorithm used to identify the Tat signal sequence and putative substrates.

  20. Structural mechanism of RuBisCO activation by carbamylation of the active site lysine

    PubMed Central

    Stec, Boguslaw

    2012-01-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a crucial enzyme in carbon fixation and the most abundant protein on earth. It has been studied extensively by biochemical and structural methods; however, the most essential activation step has not yet been described. Here, we describe the mechanistic details of Lys carbamylation that leads to RuBisCO activation by atmospheric CO2. We report two crystal structures of nitrosylated RuBisCO from the red algae Galdieria sulphuraria with O2 and CO2 bound at the active site. G. sulphuraria RuBisCO is inhibited by cysteine nitrosylation that results in trapping of these gaseous ligands. The structure with CO2 defines an elusive, preactivation complex that contains a metal cation Mg2+ surrounded by three H2O/OH molecules. Both structures suggest the mechanism for discriminating gaseous ligands by their quadrupole electric moments. We describe conformational changes that allow for intermittent binding of the metal ion required for activation. On the basis of these structures we propose the individual steps of the activation mechanism. Knowledge of all these elements is indispensable for engineering RuBisCO into a more efficient enzyme for crop enhancement or as a remedy to global warming. PMID:23112176

  1. 78 FR 33908 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... identified Wind Energy Area (WEA) on the OCS offshore Rhode Island (RI) and Massachusetts (MA). The revised... from leasing, site characterization, and site assessment in and around the Call Area (76 FR 51391). The... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on...

  2. 77 FR 39508 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... specific project proposals on those leases) in an identified Wind Energy Area (WEA) on the OCS offshore..., site characterization, and site assessment in and around the Call Area (76 FR 51391). The Call Area is... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on...

  3. Active Layer and Moisture Measurements for Intensive Site 0 and 1, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-04-17

    These are measurements of Active Layer Thickness collected along several lines beginning in September, 2011 to the present. The data were collected at several time periods along the Site0 L2 Line, the Site1 AB Line, and an ERT Monitoring Line near Area A in Site1.

  4. Nuclear Site Security in the Event of Terrorist Activity

    SciTech Connect

    Thomson, M.L.; Sims, J.

    2008-07-01

    This paper, presented as a poster, identifies why ballistic protection should now be considered at nuclear sites to counter terrorist threats. A proven and flexible form of multi purpose protection is described in detail with identification of trial results that show its suitability for this role. (authors)

  5. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    SciTech Connect

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  6. Conformational Changes and Substrate Recognition in Pseudomonas aeruginosa d-Arginine Dehydrogenase

    SciTech Connect

    Fu, Guoxing; Yuan, Hongling; Li, Congran; Lu, Chung-Dar; Gadda, Giovanni; Weber, Irene T.

    2010-11-15

    DADH catalyzes the flavin-dependent oxidative deamination of D-amino acids to the corresponding {alpha}-keto acids and ammonia. Here we report the first X-ray crystal structures of DADH at 1.06 {angstrom} resolution and its complexes with iminoarginine (DADH{sub red}/iminoarginine) and iminohistidine (DADH{sub red}/iminohistidine) at 1.30 {angstrom} resolution. The DADH crystal structure comprises an unliganded conformation and a product-bound conformation, which is almost identical to the DADH{sub red}/iminoarginine crystal structure. The active site of DADH was partially occupied with iminoarginine product (30% occupancy) that interacts with Tyr53 in the minor conformation of a surface loop. This flexible loop forms an 'active site lid', similar to those seen in other enzymes, and may play an essential role in substrate recognition. The guanidinium side chain of iminoarginine forms a hydrogen bond interaction with the hydroxyl of Thr50 and an ionic interaction with Glu87. In the structure of DADH in complex with iminohistidine, two alternate conformations were observed for iminohistidine where the imidazole groups formed hydrogen bond interactions with the side chains of His48 and Thr50 and either Glu87 or Gln336. The different interactions and very distinct binding modes observed for iminoarginine and iminohistidine are consistent with the 1000-fold difference in k{sub cat}/K{sub m} values for D-arginine and D-histidine. Comparison of the kinetic data for the activity of DADH on different D-amino acids and the crystal structures in complex with iminoarginine and iminohistidine establishes that this enzyme is characterized by relatively broad substrate specificity, being able to oxidize positively charged and large hydrophobic D-amino acids bound within a flask-like cavity.

  7. Arginine methylation modulates autophagic degradation of PGL granules in C. elegans.

    PubMed

    Li, Sihui; Yang, Peiguo; Tian, E; Zhang, Hong

    2013-11-01

    The selective degradation of intracellular components by autophagy involves sequential interactions of the cargo with a receptor, which also binds the autophagosomal protein Atg8 and a scaffold protein. Here, we demonstrated that mutations in C. elegans epg-11, which encodes an arginine methyltransferase homologous to PRMT1, cause the defective removal of PGL-1 and PGL-3 (cargo)-SEPA-1 (receptor) complexes, known as PGL granules, from somatic cells during embryogenesis. Autophagic degradation of the PGL granule scaffold protein EPG-2 and other protein aggregates was unaffected in epg-11/prmt-1 mutants. Loss of epg-11/prmt-1 activity impairs the association of PGL granules with EPG-2 and LGG-1 puncta. EPG-11/PRMT-1 directly methylates arginines in the RGG domains of PGL-1 and PGL-3. Autophagic removal of PGL proteins is impaired when the methylated arginines are mutated. Our study reveals that posttranslational arginine methylation regulates the association of the cargo-receptor complex with the scaffold protein, providing a mechanism for modulating degradation efficiency in selective autophagy. PMID:24140420

  8. L-arginine inhibits isoproterenol-induced cardiac hypertrophy through nitric oxide and polyamine pathways.

    PubMed

    Lin, Yan; Wang, Li-Na; Xi, Yu-Hui; Li, Hong-Zhu; Xiao, Feng-Gang; Zhao, Ya-Jun; Tian, Ye; Yang, Bao-Feng; Xu, Chang-Qing

    2008-08-01

    Polyamines (putrescine, spermidine and spermine) are essential for cell growth and differentiation. Nitric oxide exhibits antihypertrophic functions and inhibits cardiac remodelling. However, the metabolism of polyamines and the potential interactions with nitric oxide in cardiac hypertrophy remain unclear. We randomly divided Wistar rats into four treatment groups: controls, isoproterenol (ISO), ISO and L-arginine, and L-arginine. Isoproterenol (5 mg/kg/day, subcutaneously) and/or L-arginine (800 mg/kg/day, intraperitoneally) was administered once daily for 7 days. The expression of atrial natriuretic peptide mRNA was determined by reverse transcription-polymerase chain reaction, and fibrogenesis of heart was assessed by Van Gieson staining. Polyamines were measured with high-performance liquid chromatography, and plasma nitric oxide content and lactate dehydrogenase (LDH) activity were determined with a spectrophotometer. The expression levels of ornithine decarboxylase, spermidine/spermine N1-acetyltransferase (SSAT), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) were analysed by Western blot. Heart-to-body weight ratio, left ventricle-to-body weight ratio, atrial natriuretic peptide mRNA expression, collagen fibres and LDH activity were elevated, both ornithine decarboxylase and SSAT proteins were up-regulated, and total polyamines were increased in the group treated with ISO. Additionally, the expression of iNOS was up-regulated, eNOS was down-regulated, and nitric oxide levels were low. Notably, cotreatment with L-arginine reversed most of these changes except for SSAT expression,which was further up-regulated. We propose that increased polyamines and decreased nitric oxide are involved in cardiac hypertrophy induced by ISO and suggest that L-arginine pre-treatment can attenuate cardiac hypertrophy through the regulation of key enzymes of the polyamine and nitric oxide pathways. PMID:18816294

  9. Pharmacological functional MRI assessment of the effect of ibuprofen-arginine in painful conditions.

    PubMed

    Delli Pizzi, S; Mantini, D; Ferretti, A; Caulo, M; Salerio, I; Romani, G L; Del Gratta, C; Tartaro, A

    2010-01-01

    Pharmacological functional magnetic resonance imaging (phMRI) is a valuable tool for the investigation of pharmacological effects of a drug on pain processing. We hypothesized that the ibuprofen-arginine combination, in line with its characteristic analgesic properties, may influence the phMRI response at the central level, as compared to placebo. Ten healthy subjects underwent a double-blind, placebo-controlled, randomized, cross-over phFMRI study with somatosensory painful stimulation of the right median nerve. We measured the blood oxygen level dependent (BOLD) signal variations induced in conditions of pain after oral administration of either ibuprofen-arginine or placebo formulations. Independent component analysis (ICA) was used for the analysis of the fMRI data, without assuming a specific hemodynamic response function (HRF), which may be altered by drug administration. Median nerve electrical painful stimulation mainly activated the primary contralateral and the secondary somatosensory cortices, the insula, the supplementary motor area, and the middle frontal gyrus. Placebo and ibuprofen-arginine administration induced activation bilaterally in the premotor cortex, and an overall reduction in the other pain-related areas, which was more prominent in the left hemisphere. A task-related increase of BOLD signal between drug and placebo was observed bilaterally in the primary somatosensory area and the middle frontal gyrus without any changes in subjective pain scores. Overall, our findings show that ibuprofen-arginine, in line with the characteristic analgesic properties of ibuprofen, influences the BOLD response in specific pain-related brain areas with respect to placebo, with a vasoactive effect possibly due to arginine. PMID:20943065

  10. Blogs and Social Network Sites as Activity Systems: Exploring Adult Informal Learning Process through Activity Theory Framework

    ERIC Educational Resources Information Center

    Heo, Gyeong Mi; Lee, Romee

    2013-01-01

    This paper uses an Activity Theory framework to explore adult user activities and informal learning processes as reflected in their blogs and social network sites (SNS). Using the assumption that a web-based space is an activity system in which learning occurs, typical features of the components were investigated and each activity system then…

  11. [Effect of L-arginine on pro- and antioxidant status of the rat vessels and lungs in experimental rhabdomyolysis].

    PubMed

    Fylymonenko, V P; Nikitchenko, I V; Kaliman, P A

    2009-01-01

    The glycerol administration was found to cause accumulation of the total heme in rat blood serum, vessels and lungs that are accompanied by increase of TBA-reactive products and protein carbonyl derivates contents. A decrease of superoxide dismutase activity and an increase of reduced glutathione in lung were observed. Heme entering the vessels and lungs is accompanied by elevation in heme oxygenase activity. Pretreatment by L-arginine (0.5 h before glycerol administration) didn't affect blood serum and vessels changes caused by glycerol injection. However, in lungs, L-arginine prevents TBA-reactive products and protein carbonyl derivates accumulation, the decrease ofsuperoxide dismutase activity and causes the ealier heme oxygenase induction. Prooxidant effects of heme in tissues studied and possible mechanisms of L-arginine protective action in lung under experimental rhabdomyolysis are discussed. PMID:20095386

  12. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    SciTech Connect

    Miao, Yinglong; Baudry, Jerome Y

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  13. Arginine Depletion by Arginine Deiminase Does Not Affect Whole Protein Metabolism or Muscle Fractional Protein Synthesis Rate in Mice

    PubMed Central

    Marini, Juan C.; Didelija, Inka Cajo

    2015-01-01

    Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20) on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (<1 μmol/L), and increased citrulline concentration more than tenfold. Body weight and body composition, however, were not affected by ADI-PEG 20. Despite the depletion of arginine, whole body protein synthesis and breakdown were maintained in the ADI-PEG 20 treated mice. The fractional protein synthesis rate of muscle was also not affected by arginine depletion. Most tissues (liver, kidney, spleen, heart, lungs, stomach, small and large intestine, pancreas) were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight. PMID:25775142

  14. Arginine supplementation improves insulin resistance in obese adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arginine through a NO mediated mechanism improves insulin resistance in type 2 diabetes. To assess the effect of a short-term (1 week) dietary arginine supplementation on insulin resistance in glucose intolerant obese adolescents, we conducted a randomized, cross-over study in 12 subjects (16 +/- 1 ...

  15. Arginine, citrulline and nitric oxide metabolism in sepsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arginine has vasodilatory effects, via its conversion by nitric oxide (NO) synthase into NO, and immunomodulatory actions that play important roles in sepsis. Protein breakdown affects arginine availability, and the release of asymmetric dimethylarginine, an inhibitor of NO synthase, may therefore a...

  16. Histone Sprocket Arginine Residues Are Important for Gene Expression, DNA Repair, and Cell Viability in Saccharomyces cerevisiae.

    PubMed

    Hodges, Amelia J; Gallegos, Isaura J; Laughery, Marian F; Meas, Rithy; Tran, Linh; Wyrick, John J

    2015-07-01

    A critical feature of the intermolecular contacts that bind DNA to the histone octamer is the series of histone arginine residues that insert into the DNA minor groove at each superhelical location where the minor groove faces the histone octamer. One of these "sprocket" arginine residues, histone H4 R45, significantly affects chromatin structure in vivo and is lethal when mutated to alanine or cysteine in Saccharomyces cerevisiae (budding yeast). However, the roles of the remaining sprocket arginine residues (H3 R63, H3 R83, H2A R43, H2B R36, H2A R78, H3 R49) in chromatin structure and other cellular processes have not been well characterized. We have genetically characterized mutations in each of these histone residues when introduced either singly or in combination to yeast cells. We find that pairs of arginine residues that bind DNA adjacent to the DNA exit/entry sites in the nucleosome are lethal in yeast when mutated in combination and cause a defect in histone occupancy. Furthermore, mutations in individual residues compromise repair of UV-induced DNA lesions and affect gene expression and cryptic transcription. This study reveals simple rules for how the location and structural mode of DNA binding influence the biological function of each histone sprocket arginine residue. PMID:25971662

  17. Transient Focal Membrane Deformation Induced by Arginine-rich Peptides Leads to Their Direct Penetration into Cells

    PubMed Central

    Hirose, Hisaaki; Takeuchi, Toshihide; Osakada, Hiroko; Pujals, Sílvia; Katayama, Sayaka; Nakase, Ikuhiko; Kobayashi, Shouhei; Haraguchi, Tokuko; Futaki, Shiroh

    2012-01-01

    Endocytosis has been implicated in the cellular uptake of arginine-rich, cell-penetrating peptides (CPPs). However, accumulating evidence suggests that certain conditions allow the direct, non-endocytic penetration of arginine-rich peptides through the plasma membrane. We previously showed that Alexa Fluor 488-labeled dodeca-arginine (R12-Alexa488) directly enters cells at specific sites on the plasma membrane and subsequently diffuses throughout cells. In this study, we found that the peptide influx was accompanied by the formation of unique, “particle-like” multivesicular structures on the plasma membrane, together with topical inversion of the plasma membrane. Importantly, the conjugation of dodeca-arginine (R12) to Alexa Fluor 488 or a peptide tag derived from hemagglutinin (HAtag) significantly accelerated particle formation, suggesting that the chemical properties of the attached molecules (cargo molecules) may contribute to translocation of the R12 peptide. Coincubation with R12-HAtag allowed the membrane-impermeable R4-Alexa488 to permeate cells. These results suggest that R12 peptides attached to hydrophobic cargo molecules stimulate dynamic morphological alterations in the plasma membrane, and that these structural changes allow the peptides to permeate the plasma membrane. These findings may provide a novel mode of cell permeabilization by arginine-rich peptides as a means of drug delivery. PMID:22334015

  18. Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts.

    PubMed

    Wang, Lu-Cun; Friend, C M; Fushimi, Rebecca; Madix, Robert J

    2016-07-01

    The activation of molecular O2 as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O2 activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O2 dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O2 dissociation is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O2 dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction. PMID:27376884

  19. Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome c Species in Complexes with Cardiolipin.

    PubMed

    Capdevila, Daiana A; Oviedo Rouco, Santiago; Tomasina, Florencia; Tortora, Verónica; Demicheli, Verónica; Radi, Rafael; Murgida, Daniel H

    2015-12-29

    We report a resonance Raman and UV-vis characterization of the active site structure of oxidatively modified forms of cytochrome c (Cyt-c) free in solution and in complexes with cardiolipin (CL). The studied post-translational modifications of Cyt-c include methionine sulfoxidation and tyrosine nitration, which lead to altered heme axial ligation and increased peroxidase activity with respect to those of the wild-type protein. In spite of the structural and activity differences between the protein variants free in solution, binding to CL liposomes induces in all cases the formation of a spectroscopically identical bis-His axial coordination conformer that more efficiently promotes lipid peroxidation. The spectroscopic results indicate that the bis-His form is in equilibrium with small amounts of high-spin species, thus suggesting a labile distal His ligand as the basis for the CL-induced increase in enzymatic activity observed for all protein variants. For Cyt-c nitrated at Tyr74 and sulfoxidized at Met80, the measured apparent binding affinities for CL are ∼4 times larger than for wild-type Cyt-c. On the basis of these results, we propose that these post-translational modifications may amplify the pro-apoptotic signal of Cyt-c under oxidative stress conditions at CL concentrations lower than for the unmodified protein. PMID:26620444

  20. Topological studies on the twin-arginine translocase component TatC.

    PubMed

    Behrendt, Jana; Standar, Kerstin; Lindenstrauss, Ute; Brüser, Thomas

    2004-05-15

    The twin-arginine translocation (Tat) system can translocate folded proteins across biological membranes. Among the known Tat-system components in Escherichia coli, TatC is the only protein with multiple trans-membrane domains. TatC is important for translocon interactions with Tat substrates. The knowledge of its membrane topology is therefore crucial for the understanding of substrate binding and translocon function. Recently, based on active PhoA reporter fusions to the second predicted cytoplasmic loop of TatC, a topology with four trans-membrane domains has been suggested, calling in silico predictions of six trans-membrane domains into question. Here we report studies with translational fusions of TatC to the topological marker enzymes PhoA and LacZ which provide strong evidence for a six-trans-membrane domain topology. The stop transfer capacity of the fourth trans-membrane domain was found to be strongly influenced by the succeeding cytoplasmic domain. The presence of linker sequences at PhoA-fusion sites of the cytoplasmic domain induced PhoA leakage. In the case of one tested fusion (S185-PhoA), the stop-transfer efficiency was already low due to the negative charge in the center of the fourth trans-membrane domain (E170). The results point to the importance of cytoplasmic loops for the stabilization of stop-transfer sequences and revoke evidence for only four trans-membrane domains of TatC. PMID:15135537

  1. Purification of free arginine from chickpea (Cicer arietinum) seeds.

    PubMed

    Cortés-Giraldo, Isabel; Megías, Cristina; Alaiz, Manuel; Girón-Calle, Julio; Vioque, Javier

    2016-02-01

    Chickpea is a grain legume widely consumed in the Mediterranean region and other parts of the world. Chickpea seeds are rich in proteins but they also contain a substantial amount of free amino acids, especially arginine. Hence chickpea may represent a useful source of free amino acids for nutritional or pharmaceutical purposes. Arginine is receiving great attention in recent years because it is the substrate for the synthesis of nitric oxide, an important signaling molecule involved in numerous physiological and pathological processes in mammals. In this work we describe a simple procedure for the purification of arginine from chickpea seeds, using nanofiltration technology and an ion-exchange resin, Amberlite IR-120. Arginine was finally purified by precipitation or crystallization, yielding preparations with purities of 91% and 100%, respectively. Chickpea may represent an affordable green source of arginine, and a useful alternative to production by fermentation or protein hydrolysis. PMID:26304327

  2. Roles of a conserved arginine residue of DsbB in linking protein disulfide-bond-formation pathway to the respiratory chain of Escherichia coli

    PubMed Central

    Kadokura, Hiroshi; Bader, Martin; Tian, Hongping; Bardwell, James C. A.; Beckwith, Jon

    2000-01-01

    The active-site cysteines of DsbA, the periplasmic disulfide-bond-forming enzyme of Escherichia coli, are kept oxidized by the cytoplasmic membrane protein DsbB. DsbB, in turn, is oxidized by two kinds of quinones (ubiquinone for aerobic and menaquinone for anaerobic growth) in the electron-transport chain. We describe the isolation of dsbB missense mutations that change a highly conserved arginine residue at position 48 to histidine or cysteine. In these mutants, DsbB functions reasonably well aerobically but poorly anaerobically. Consistent with this conditional phenotype, purified R48H exhibits very low activity with menaquinone and an apparent Michaelis constant (Km) for ubiquinone seven times greater than that of the wild-type DsbB, while keeping an apparent Km for DsbA similar to that of wild-type enzyme. From these results, we propose that this highly conserved arginine residue of DsbB plays an important role in the catalysis of disulfide bond formation through its role in the interaction of DsbB with quinones. PMID:11005861

  3. Molecular basis and current strategies of therapeutic arginine depletion for cancer.

    PubMed

    Fultang, Livingstone; Vardon, Ashley; De Santo, Carmela; Mussai, Francis

    2016-08-01

    Renewed interest in the use of therapeutic enzymes combined with an improved knowledge of cancer cell metabolism, has led to the translation of several arginine depletion strategies into early phase clinical trials. Arginine auxotrophic tumors are reliant on extracellular arginine, due to the downregulation of arginosuccinate synthetase or ornithine transcarbamylase-key enzymes for intracellular arginine recycling. Engineered arginine catabolic enzymes such as recombinant human arginase (rh-Arg1-PEG) and arginine deiminase (ADI-PEG) have demonstrated cytotoxicity against arginine auxotrophic tumors. In this review, we discuss the molecular events triggered by extracellular arginine depletion that contribute to tumor cell death. PMID:26913960

  4. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  5. Oxidative stress alters arginine metabolism in rat brain: effect of sub-convulsive hyperbaric oxygen exposure.

    PubMed

    Ito, T; Yufu, K; Mori, A; Packer, L

    1996-08-01

    The effect of hyperbaric oxygenation on arginine metabolism was investigated. Rats were exposed to oxygen at 3 atmospheres absolute for 2 h. Under these conditions, lipid peroxidation and activation of the anti-oxidant system were observed. Levels of thiobarbiturate reactive substances and carbon-centered radicals were increased in the cerebral cortex, while superoxide dismutase activity was also increased in the mitochondrial and cytosolic fraction of cerebrocortical homogenates. This suggested that the increase of both Mn and Cu,Zn-superoxide dismutase activities was probably an early compensatory reaction to oxidative stress. Levels of arginine as well as its metabolite, guanidinoacetic acid, were increased in the cerebral cortex. This increase seemed to be, at least in part, explained by a decrease in the arginase activity in the same region. Moreover, arginase activity in the brain showed heterogeneous distribution. Arginine: glycine amidinotransferase activity was decreased in the pons-medulla oblongata. The observed effects of hyperbaric oxygenation seem to favor nitric oxide generation. PMID:8837048

  6. Early Site Permit Demonstration Program: Recommendations for communication activities and public participation in the Early Site Permit Demonstration Program

    SciTech Connect

    Not Available

    1993-01-27

    On October 24, 1992, President Bush signed into law the National Energy Policy Act of 1992. The bill is a sweeping, comprehensive overhaul of the Nation`s energy laws, the first in more than a decade. Among other provisions, the National Energy Policy Act reforms the licensing process for new nuclear power plants by adopting a new approach developed by the US Nuclear Regulatory Commission (NRC) in 1989, and upheld in court in 1992. The NRC 10 CFR Part 52 rule is a three-step process that guarantees public participation at each step. The steps are: early site permit approval; standard design certifications; and, combined construction/operating licenses for nuclear power reactors. Licensing reform increases an organization`s ability to respond to future baseload electricity generation needs with less financial risk for ratepayers and the organization. Costly delays can be avoided because design, safety and siting issues will be resolved before a company starts to build a plant. Specifically, early site permit approval allows for site suitability and acceptability issues to be addressed prior to an organization`s commitment to build a plant. Responsibility for site-specific activities, including communications and public participation, rests with those organizations selected to try out early site approval. This plan has been prepared to assist those companies (referred to as sponsoring organizations) in planning their communications and public involvement programs. It provides research findings, information and recommendations to be used by organizations as a resource and starting point in developing their own plans.

  7. Ultrafast ligand binding dynamics in the active site of native bacterial nitric oxide reductase.

    PubMed

    Kapetanaki, Sofia M; Field, Sarah J; Hughes, Ross J L; Watmough, Nicholas J; Liebl, Ursula; Vos, Marten H

    2008-01-01

    The active site of nitric oxide reductase from Paracoccus denitrificans contains heme and non-heme iron and is evolutionarily related to heme-copper oxidases. The CO and NO dynamics in the active site were investigated using ultrafast transient absorption spectroscopy. We find that, upon photodissociation from the active site heme, 20% of the CO rebinds in 170 ps, suggesting that not all the CO transiently binds to the non-heme iron. The remaining 80% does not rebind within 4 ns and likely migrates out of the active site without transient binding to the non-heme iron. Rebinding of NO to ferrous heme takes place in approximately 13 ps. Our results reveal that heme-ligand recombination in this enzyme is considerably faster than in heme-copper oxidases and are consistent with a more confined configuration of the active site. PMID:18420024

  8. Identification of residues in the drug translocation pathway of the human multidrug resistance P-glycoprotein by arginine mutagenesis.

    PubMed

    Loo, Tip W; Bartlett, M Claire; Clarke, David M

    2009-09-01

    P-glycoprotein (P-gp, ATP-binding cassette B1) is a drug pump that extracts toxic drug substrates from the plasma membrane and catalyzes their ATP-dependent efflux. To map the residues in the drug translocation pathway, we performed arginine-scanning mutagenesis on all transmembrane (TM) segments (total = 237 residues) of a P-gp processing mutant (G251V) defective in folding (15% maturation efficiency) (glycosylation state used to monitor folding). The rationale was that arginines introduced into the drug-binding sites would mimic drug rescue and enhance maturation of wild-type or processing mutants of P-gp. It was found that 38 of the 89 mutants that matured had enhanced maturation. Enhancer mutations were found in 11 of the 12 TM segments with the largest number found in TMs 6 and 12 (seven in each), TMs that are critical for P-gp-drug substrate interactions. Modeling of the TM segments showed that the enhancer arginines were found on the hydrophilic face, whereas inhibitory arginines were located on a hydrophobic face that may be in contact with the lipid bilayer. It was found that many of the enhancer arginines caused large alterations in P-gp-drug interactions in ATPase assays. For example, mutants A302R (TM5), L339R (TM6), G872R (TM10), F942R (TM11), Q946R (TM11), V982R (TM12), and S993R (TM12) reduced the apparent affinity for verapamil by approximately 10-fold, whereas the F336R (TM6) and M986R (TM12) mutations caused at least a 10-fold increase in apparent affinity for rhodamine B. The results suggest that P-gp contains a large aqueous-filled drug translocation pathway with multiple drug-binding sites that can accommodate the bulky arginine side chains to promote folding of the protein. PMID:19581304

  9. An engineered L-arginine sensor of Chlamydia pneumoniae enables arginine-adjustable transcription control in mammalian cells and mice.

    PubMed

    Hartenbach, Shizuka; Daoud-El Baba, Marie; Weber, Wilfried; Fussenegger, Martin

    2007-01-01

    For optimal compatibility with biopharmaceutical manufacturing and gene therapy, heterologous transgene control systems must be responsive to side-effect-free physiologic inducer molecules. The arginine-inducible interaction of the ArgR repressor and the ArgR-specific ARG box, which synchronize arginine import and synthesis in the intracellular human pathogen Chlamydia pneumoniae, was engineered for arginine-regulated transgene (ART) expression in mammalian cells. A synthetic arginine-responsive transactivator (ARG), consisting of ArgR fused to the Herpes simplex VP16 transactivation domain, reversibly adjusted transgene transcription of chimeric ARG box-containing mammalian minimal promoters (P(ART)) in an arginine-inducible manner. Arginine-controlled transgene expression showed rapid induction kinetics in a variety of mammalian cell lines and was adjustable and reversible at concentrations which were compatible with host cell physiology. ART variants containing different transactivation domains, variable spacing between ARG box and minimal promoter and several tandem ARG boxes showed modified regulation performance tailored for specific expression scenarios and cell types. Mice implanted with microencapsulated cells engineered for ART-inducible expression of the human placental secreted alkaline phosphatase (SEAP) exhibited adjustable serum phosphatase levels after treatment with different arginine doses. Using a physiologic inducer, such as the amino acid l-arginine, to control heterologous transgenes in a seamless manner which is devoid of noticeable metabolic interference will foster novel opportunities for precise expression dosing in future gene therapy scenarios as well as the manufacturing of difficult-to-produce protein pharmaceuticals. PMID:17947334

  10. Plasma arginine and ornithine are the main citrulline precursors in mice infused with arginine-free diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary arginine is the main dietary precursor for citrulline synthesis, but it is not known if other precursors can compensate for when arginine is absent in the diet. To address this question, the contribution of plasma and dietary precursors were determined, utilizing multitracer protocols in con...

  11. Effect of Arginase Inhibition on Pulmonary L-Arginine Metabolism in Murine Pseudomonas Pneumonia

    PubMed Central

    Mehl, Anne; Ghorbani, Peyman; Douda, David; Huang, Hailu; Palaniyar, Nades; Ratjen, Felix; Grasemann, Hartmut

    2014-01-01

    Rationale Infection of the lung with Pseudomonas aeruginosa results in upregulation of nitric oxide synthases (NOS) and arginase expression, and both enzymes compete for L-arginine as substrate. Nitric oxide (NO) production may be regulated by arginase as it controls L-arginine availability for NOS. We here studied the effect of systemic arginase inhibition on pulmonary L-arginine metabolism in Pseudomonas pneumonia in the mouse. Methods Mice (C57BL/6, 8–10 weeks old, female) underwent direct tracheal instillation of Pseudomonas (PAO-1)-coated agar beads and were treated by repeated intra-peritoneal injections of the arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) or PBS until lungs were harvested on day 3 of the infection. L-arginine metabolites were quantified using liquid chromatography-tandem mass spectrometry, NO metabolites nitrate and nitrite by Griess reagent and cytokines by ELISA. Results NO metabolite concentrations (48.5±2.9 vs. 10.9±2.3 µM, p<0.0001), as well as L-ornithine (29.6±1.7 vs 2.3±0.4 µM, p<0.0001), the product of arginase activity, were increased in Pseudomonas infected lungs compared to naïve controls. Concentrations of the NOS inhibitor asymmetric dimethylarginine (ADMA) were also increased (0.44±0.02 vs. 0.16±0.01 µM, p<0.0001). Arginase inhibition in the infected animals resulted in a significant decrease in L-ornithine (14.6±1.6 µM, p<0.0001) but increase in L-arginine concentration (p<0.001), L-arginine/ADMA ratio (p<0.001), L-arginine availability for NOS (p<0.001), and NO metabolite concentrations (67.3±5.7 µM, p<0.05). Arginase inhibitor treatment also resulted in an increase in NO metabolite levels in animals following intratracheal injection of LPS (p = 0.015). Arginase inhibition was not associated with an increase in inflammatory markers (IFN-γ, IL-1β, IL-6, MIP-2, KC or TNF-α) in lung. Concentrations of the L-ornithine-dependent polyamines putrescine, spermidine and spermine were increased in

  12. Twin-arginine-dependent translocation of SufI in the absence of cytosolic helper proteins.

    PubMed

    Holzapfel, Eva; Moser, Michael; Schiltz, Emile; Ueda, Takuya; Betton, Jean-Michel; Müller, Matthias

    2009-06-16

    The twin-arginine translocation (Tat) machinery present in bacterial and thylakoidal membranes is able to transport fully folded proteins. Folding of some Tat precursor proteins requires dedicated chaperones that also sequester the signal sequence during the maturation process. Whether or not signal sequence-binding chaperones are a general prerequisite for all Tat substrate proteins is not known. Here, we have studied the propensity of Tat signal sequences of Escherichia coli to interact with general chaperones and peptidyl-prolyl-cis,trans-isomerases. Site-specific photocross-linking revealed a clear specificity for FK506-binding proteins. Nevertheless transport of the Tat substrate SufI into inverted inner membrane vesicles of E. coli was found to occur in the bona fide absence of any cytosolic chaperone. Our results suggest that in E. coli, cytosolic chaperones are not essential for the twin-arginine-dependent export of cofactor-less substrates. PMID:19432418

  13. Breeding L-arginine-producing strains by a novel mutagenesis method: Atmospheric and room temperature plasma (ARTP).

    PubMed

    Cheng, Gong; Xu, Jianzhong; Xia, Xiuhua; Guo, Yanfeng; Xu, Kai; Su, Cunsheng; Zhang, Weiguo

    2016-07-01

    A plasma jet, driven by an active helium atom supplied with an atmospheric and room temperature plasma (ARTP) biological breeding system, was used as a novel method to breed L-arginine high-yielding strains. A mutant with resistance to L-homoarginine and 8-azaguaine, ARG 3-15 (L-HA(r), 8-AG(r), L-His(-)), was screened after several rounds of screening. The L-arginine production of these mutants was more than that of the original strain, increased by 43.79% for ARG 3-15. Moreover, N-acetyl-L-glutamate synthase activity of these mutants was also increased. After a series of passages, the hereditary properties of these mutants were found to be stable. Interestingly, beet molasses was utilized in a co-feeding fermentation and benefited to increase the productivity by 5.88%. Moreover, the fermentation with 1.0 g/L betaine could produce 9.33% more L-arginine than without betaine. In fed-batch fermentation, C. glutamicum ARG 3-15 began to produce L-arginine at the initial of logarithmic phase, and continuously increased over 24 hr to a final titer of 45.36 ± 0.42 g/L. The L-arginine productivity was 0.571 g/L/hr and the conversion of glucose (α) was 32.4% after 96 hr. These results indicated that C. glutamicum ARG 3-15 is a promising industrial producer. PMID:26460578

  14. Nic1 Inactivation Enables Stable Isotope Labeling with 13C615N4-Arginine in Schizosaccharomyces pombe*

    PubMed Central

    Carpy, Alejandro; Patel, Avinash; Tay, Ye Dee; Hagan, Iain M.; Macek, Boris

    2015-01-01

    Stable Isotope Labeling by Amino Acids (SILAC) is a commonly used method in quantitative proteomics. Because of compatibility with trypsin digestion, arginine and lysine are the most widely used amino acids for SILAC labeling. We observed that Schizosaccharomyces pombe (fission yeast) cannot be labeled with a specific form of arginine, 13C615N4-arginine (Arg-10), which limits the exploitation of SILAC technology in this model organism. We hypothesized that in the fission yeast the guanidinium group of 13C615N4-arginine is catabolized by arginase and urease activity to 15N1-labeled ammonia that is used as a precursor for general amino acid biosynthesis. We show that disruption of Ni2+-dependent urease activity, through deletion of the sole Ni2+ transporter Nic1, blocks this recycling in ammonium-supplemented EMMG medium to enable 13C615N4-arginine labeling for SILAC strategies in S. pombe. Finally, we employed Arg-10 in a triple-SILAC experiment to perform quantitative comparison of G1 + S, M, and G2 cell cycle phases in S. pombe. PMID:25368411

  15. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri.

    PubMed

    Teixeira, Januana S; Seeras, Arisha; Sanchez-Maldonado, Alma Fernanda; Zhang, Chonggang; Su, Marcia Shu-Wei; Gänzle, Michael G

    2014-09-01

    This study aimed to determine whether glutamine deamidation improves acid resistance of Lactobacillus reuteri, and to assess whether arginine, glutamine, and glutamate-mediated acid resistance are redundant or complementary mechanisms of acid resistance. Three putative glutaminase genes, gls1, gls2, and gls3, were identified in L. reuteri 100-23. All three genes were expressed during growth in mMRS and wheat sourdough. L. reuteri consistently over-expressed gls3 and the glutamate decarboxylase gadB. L. reuteri 100-23ΔgadB over-expressed gls3 and the arginine deiminase gene adi. Analysis of the survival of L. reuteri in acidic conditions revealed that arginine conversion is effective at pH of 3.5 while glutamine or glutamate conversion were effective at pH of 2.5. Arginine conversion increased the pHin but not ΔΨ; glutamate decarboxylation had only a minor effect on the pHin but increased the ΔΨ. This study demonstrates that glutamine deamidation increases the acid resistance of L. reuteri independent of glutamate decarboxylase activity. Arginine and glutamine/glutamate conversions confer resistance to lactate at pH of 3.5 and phosphate at pH of 2.5, respectively. Knowledge of L. reuteri's acid resistance improves the understanding of the adaptation of L. reuteri to intestinal ecosystems, and facilitates the selection of probiotic and starter cultures. PMID:24929734

  16. Arginine Deiminase in Staphylococcus epidermidis Functions To Augment Biofilm Maturation through pH Homeostasis

    PubMed Central

    Lindgren, J. K.; Thomas, V. C.; Olson, M. E.; Chaudhari, S. S.; Nuxoll, A. S.; Schaeffer, C. R.; Lindgren, K. E.; Jones, J.; Zimmerman, M. C.; Dunman, P. M.; Bayles, K. W.

    2014-01-01

    Allelic replacement mutants were constructed within arginine deiminase (arcA1 and arcA2) to assess the function of the arginine deiminase (ADI) pathway in organic acid resistance and biofilm formation of Staphylococcus epidermidis 1457. A growth-dependent acidification assay (pH ∼5.0 to ∼5.2) determined that strain 1457 devoid of arginine deiminase activity (1457 ΔADI) was significantly less viable than the wild type following depletion of glucose and in the presence of arginine. However, no difference in viability was noted for individual 1457 ΔarcA1 (native) or ΔarcA2 (arginine catabolic mobile element [ACME]-derived) mutants, suggesting that the native and ACME-derived ADIs are compensatory in S. epidermidis. Furthermore, flow cytometry and electron paramagnetic resonance spectroscopy results suggested that organic acid stress resulted in oxidative stress that could be partially rescued by the iron chelator dipyridyl. Collectively, these results suggest that formation of hydroxyl radicals is partially responsible for cell death via organic acid stress and that ADI-derived ammonia functions to counteract this acid stress. Finally, static biofilm assays determined that viability, ammonia synthesis, and pH were reduced in strain 1457 ΔADI following 120 h of growth in comparison to strain 1457 and the arcA1 and arcA2 single mutants. It is hypothesized that ammonia synthesis via the ADI pathway is important to reduce pH stress in specific microniches that contain high concentrations of organic acids. PMID:24727224

  17. Mechanism and consequences of the shift in cardiac arginine metabolism following ischaemia and reperfusion in rats.

    PubMed

    Schreckenberg, Rolf; Weber, Pia; Cabrera-Fuentes, Hector A; Steinert, Isabel; Preissner, Klaus T; Bencsik, Péter; Sárközy, Márta; Csonka, Csaba; Ferdinandy, Péter; Schulz, Rainer; Schlüter, Klaus-Dieter

    2015-03-01

    Cardiac ischaemia and reperfusion leads to irreversible injury and subsequent tissue remodelling. Initial reperfusion seems to shift arginine metabolism from nitric oxide (NO) to polyamine formation. This may limit functional recovery at reperfusion. The hypothesis was tested whether ischaemia/reperfusion translates such a shift in arginine metabolism in a tumour necrosis factor (TNF)-α-dependent way and renin-angiotensin system (RAS)-dependent way into a sustained effect. Both, the early post-ischaemic recovery and molecular adaptation to ischaemia/reperfusion were analysed in saline perfused rat hearts undergoing global no-flow ischaemia and reperfusion. Local TNF-α activation was blocked by inhibition of TNF-α sheddase ADAM17. To interfere with RAS captopril was administered. Arginase was inhibited by administration of Nor-NOHA. Long-term effects of ischemia/reperfusion on arginine metabolism were analysed in vivo in rats receiving an established ischaemia/reperfusion protocol in the closed chest mode. mRNA expression analysis indicated a shift in the arginine metabolism from NO formation to polyamine metabolism starting within 2 hours (h) of reperfusion and translated into protein expression within 24 h. Inhibition of the TNF-α pathway and captopril attenuated these delayed effects on post-ischaemic recovery. This shift in arginine metabolism was associated with functional impairment of hearts within 24 h. Inhibition of arginase but not that of TNF-α and RAS pathways improved functional recovery immediately. However, no benefit was observed after four months. In conclusion, this study identified TNF-α and RAS to be responsible for depressed cardiac function that occurred a few hours after reperfusion. PMID:25502809

  18. Mechanisms for stimulation of rat anterior pituitary cells by arginine and other amino acids.

    PubMed Central

    Villalobos, C; Núñez, L; García-Sancho, J

    1997-01-01

    1. Arginine and other amino acids are secretagogues for growth hormone and prolactin in the intact animal, but the mechanism of action is unclear. We have studied the effects of amino acids on cytosolic free calcium concentration ([Ca2+]i) in single rat anterior pituitary (AP) cells. Arginine elicited a large increase of [Ca2+]i) in about 40% of all the AP cells, suggesting that amino acids may modulate hormone secretion by acting directly on the pituitary. 2. Cell typing by immunofluorescence of the hormone the cells store showed that the arginine-sensitive cells are distributed uniformly within all the five AP cell types. The arginine-sensitive cells overlapped closely with the subpopulation of cells sensitive to thyrotrophin-releasing hormone. 3. Other cationic as well as several neutral (dipolar) amino acids had the same effect as arginine. The increase of [Ca2+]i was dependent on extracellular Ca2+ and blocked by dihydropyridine, suggesting that it is due to Ca2+ influx through L-type voltage-gated Ca2+ channels. The [Ca2+]i increase was also blocked by removal of extracellular Na+ but not by tetrodotoxin. The substrate specificity for stimulation of AP cells resembled closely that of the amino acid transport system B0+. We propose that electrogenic amino acid influx through this pathway depolarizes the plasma membrane with the subsequent activation of voltage-gated Ca2+ channels and Ca2+ entry. 4. Amino acids also stimulated prolactin secretion in vitro with a similar substrate specificity to that found for the [Ca2+]i increase. Existing data on the stimulation of secretion of other hormones by amino acids suggest that a similar mechanism could apply to other endocrine glands. PMID:9263921

  19. A direct screen for c-di-GMP modulators reveals a Salmonella Typhimurium periplasmic ʟ-arginine-sensing pathway.

    PubMed

    Mills, Erez; Petersen, Erik; Kulasekara, Bridget R; Miller, Samuel I

    2015-06-01

    Cyclic-di-GMP (c-di-GMP) is a bacterial second messenger that transduces internal and external signals and regulates bacterial motility and biofilm formation. Some organisms encode more than 100 c-di-GMP-modulating enzymes, but only for a few has a signal been defined that modulates their activity. We developed and applied a high-throughput, real-time flow cytometry method that uses a fluorescence resonance energy transfer (FRET)-based biosensor of free c-di-GMP to screen for signals that modulate its concentration within Salmonella Typhimurium. We identified multiple compounds, including glucose, N-acetyl-d-glucosamine, salicylic acid, and ʟ-arginine, that modulated the FRET signal and therefore the free c-di-GMP concentration. By screening a library of mutants, we identified proteins required for the c-di-GMP response to each compound. Furthermore, low micromolar concentrations of ʟ-arginine induced a rapid translation-independent increase in c-di-GMP concentrations and c-di-GMP-dependent cellulose synthesis, responses that required the regulatory periplasmic domain of the diguanylate cyclase STM1987. ʟ-Arginine signaling also required the periplasmic putative ʟ-arginine-binding protein ArtI, implying that ʟ-arginine sensing occurred in the periplasm. Among the 20 commonly used amino acids, S. Typhimurium specifically responded to ʟ-arginine with an increase in c-di-GMP, suggesting that ʟ-arginine may serve as a signal during S. Typhimurium infection. Our results demonstrate that a second-messenger biosensor can be used to identify environmental signals and define pathways that alter microbial behavior. PMID:26060330

  20. Granulocytic myeloid-derived suppressor cells inversely correlate with plasma arginine and overall survival in critically ill patients

    PubMed Central

    Gey, A; Tadie, J-M; Caumont-Prim, A; Hauw-Berlemont, C; Cynober, L; Fagon, J-Y; Terme, M; Diehl, J-L; Delclaux, C; Tartour, E

    2015-01-01

    Critically ill patients display a state of immunosuppression that has been attributed in part to decreased plasma arginine concentrations. However, we and other authors have failed to demonstrate a clinical benefit of L-arginine supplementation. We hypothesize that, in these critically ill patients, these low plasma arginine levels may be secondary to the presence of granulocytic myeloid-derived suppressor cells (gMDSC), which express arginase known to convert arginine into nitric oxide (NO) and citrulline. Indeed, in a series of 28 non-surgical critically ill patients, we showed a dramatic increase in gMDSC compared to healthy subjects (P = 0·0002). A significant inverse correlation was observed between arginine levels and gMDSC (P = 0·01). As expected, gMDSC expressed arginase preferentially in these patients. Patients with high gMDSC levels on admission to the medical intensive care unit (MICU) presented an increased risk of death at day 7 after admission (P = 0·02). In contrast, neither plasma arginine levels, monocytic MDSC levels nor neutrophil levels were associated with overall survival at day 7. No relationship was found between body mass index (BMI) or simplified acute physiology score (SAPS) score, sequential organ failure assessment (SOFA) score or gMDSC levels, eliminating a possible bias concerning the direct prognostic role of these cells. As gMDSC exert their immunosuppressive activity via multiple mechanisms [production of prostaglandin E2 (PGE2), interleukin (IL)-10, arginase, etc.], it may be more relevant to target these cells, rather than simply supplementing with L-arginine to improve immunosuppression and its clinical consequences observed in critically ill patients. PMID:25476957