Science.gov

Sample records for active site aspartate

  1. The bifunctional active site of s-adenosylmethionine synthetase. Roles of the active site aspartates.

    PubMed

    Taylor, J C; Markham, G D

    1999-11-12

    S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the

  2. Active-site Arg --> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase.

    PubMed

    Vacca, R A; Giannattasio, S; Graber, R; Sandmeier, E; Marra, E; Christen, P

    1997-08-29

    Arg386 and Arg292 of aspartate aminotransferase bind the alpha and the distal carboxylate group, respectively, of dicarboxylic substrates. Their substitution with lysine residues markedly decreased aminotransferase activity. The kcat values with L-aspartate and 2-oxoglutarate as substrates under steady-state conditions at 25 degrees C were 0.5, 2.0, and 0.03 s-1 for the R292K, R386K, and R292K/R386K mutations, respectively, kcat of the wild-type enzyme being 220 s-1. Longer dicarboxylic substrates did not compensate for the shorter side chain of the lysine residues. Consistent with the different roles of Arg292 and Arg386 in substrate binding, the effects of their substitution on the activity toward long chain monocarboxylic (norleucine/2-oxocaproic acid) and aromatic substrates diverged. Whereas the R292K mutation did not impair the aminotransferase activity toward these substrates, the effect of the R386K substitution was similar to that on the activity toward dicarboxylic substrates. All three mutant enzymes catalyzed as side reactions the beta-decarboxylation of L-aspartate and the racemization of amino acids at faster rates than the wild-type enzyme. The changes in reaction specificity were most pronounced in aspartate aminotransferase R292K, which decarboxylated L-aspartate to L-alanine 15 times faster (kcat = 0.002 s-1) than the wild-type enzyme. The rates of racemization of L-aspartate, L-glutamate, and L-alanine were 3, 5, and 2 times, respectively, faster than with the wild-type enzyme. Thus, Arg --> Lys substitutions in the active site of aspartate aminotransferase decrease aminotransferase activity but increase other pyridoxal 5'-phosphate-dependent catalytic activities. Apparently, the reaction specificity of pyridoxal 5'-phosphate-dependent enzymes is not only achieved by accelerating the specific reaction but also by preventing potential side reactions of the coenzyme substrate adduct. PMID:9268327

  3. A Ty1 Reverse Transcriptase Active-Site Aspartate Mutation Blocks Transposition but Not Polymerization†

    PubMed Central

    Uzun, Ozcan; Gabriel, Abram

    2001-01-01

    Reverse transcriptases (RTs) are found in a wide variety of mobile genetic elements including viruses, retrotransposons, and infectious organellar introns. An invariant triad of aspartates is thought to be required for the catalytic function of RTs. We generated RT mutants in the yeast retrotransposon Ty1, changing each of these active-site aspartates to asparagine or glutamate. All but one of the mutants lacked detectable polymerase activity. The novel exception, D211N, retained near wild-type in vitro polymerase activity within virus-like particles but failed to carry out in vivo transposition. For this mutant, minus-strand synthesis is impaired and formation of the plus-strand strong-stop intermediate is eliminated. Intragenic second-site suppressor mutations of the transposition defect map to the RNase H domain of the enzyme. Our results demonstrate that one of the three active-site aspartates in a retrotransposon RT is not catalytically critical. This implies a basic difference in the polymerase active-site geometry of Ty1 and human immunodeficiency virus RT and shows that subtle mutations in one domain can cause dramatic functional effects on a distant domain of the same enzyme. PMID:11413300

  4. Thiolactomycin inhibits D-aspartate oxidase: a novel approach to probing the active site environment.

    PubMed

    Katane, Masumi; Saitoh, Yasuaki; Hanai, Toshihiko; Sekine, Masae; Furuchi, Takemitsu; Koyama, Nobuhiro; Nakagome, Izumi; Tomoda, Hiroshi; Hirono, Shuichi; Homma, Hiroshi

    2010-10-01

    D-Aspartate oxidase (DDO) and D-amino acid oxidase (DAO) are flavin adenine dinucleotide (FAD)-containing flavoproteins that catalyze the oxidative deamination of D-amino acids. While several functionally and structurally important amino acid residues have been identified in the DAO protein, little is known about the structure-function relationships of DDO. In the search for a potent DDO inhibitor as a novel tool for investigating its structure-function relationships, a large number of biologically active compounds of microbial origin were screened for their ability to inhibit the enzymatic activity of mouse DDO. We discovered several compounds that inhibited the activity of mouse DDO, and one of the compounds identified, thiolactomycin (TLM), was then characterized and evaluated as a novel DDO inhibitor. TLM reversibly inhibited the activity of mouse DDO with a mixed type of inhibition more efficiently than meso-tartrate and malonate, known competitive inhibitors of mammalian DDOs. The selectivity of TLM was investigated using various DDOs and DAOs, and it was found that TLM inhibits not only DDO, but also DAO. Further experiments with apoenzymes of DDO and DAO revealed that TLM is most likely to inhibit the activities of DDO and DAO by competition with both the substrate and the coenzyme, FAD. Structural models of mouse DDO/TLM complexes supported this finding. The binding mode of TLM to DDO was validated further by site-directed mutagenesis of an active site residue, Arg-237. Collectively, our findings show that TLM is a novel, active site-directed DDO inhibitor that will be useful for elucidating the molecular details of the active site environment of DDO. PMID:20603179

  5. Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity.

    PubMed

    Vacca, R A; Christen, P; Malashkevich, V N; Jansonius, J N; Sandmeier, E

    1995-01-15

    In an attempt to change the reaction and substrate specificity of aspartate aminotransferase, several apolar active-site residues were substituted in turn with a histidine residue. Aspartate aminotransferase W140H (of Escherichia coli) racemizes alanine seven times faster (Kcat' = 2.2 x 10(-4) s-1) than the wild-type enzyme, while the aminotransferase activity toward L-alanine was sixfold decreased. X-ray crystallographic analysis showed that the structural changes brought about by the mutation are limited to the immediate environment of H140. In contrast to the tryptophan side chain in the wild-type structure, the imidazole ring of H140 does not form a stacking interaction with the coenzyme pyridine ring. The angle between the two ring planes is about 50 degrees. Pyridoxamine 5'-phosphate dissociates 50 times more rapidly from the W140H mutant than from the wild-type enzyme. A model of the structure of the quinonoid enzyme substrate intermediate indicates that H140 might assist in the reprotonation of C alpha of the amino acid substrate from the re side of the deprotonated coenzyme-substrate adduct in competition with si-side reprotonation by K258. In aspartate aminotransferase I17H (of chicken mitochondria), the substituted residue also lies on the re side of the coenzyme. This mutant enzyme slowly decarboxylates L-aspartate to L-alanine (Kcat' = 8 x 10(-5) s-1). No beta-decarboxylase activity is detectable in the wild-type enzyme. In aspartate aminotransferase V37H (of chicken mitochondria), the mutated residue lies besides the coenzyme in the plane of the pyridine ring; no change in reaction specificity was observed. All three mutations, i.e. W140-->H, I17-->H and V37--H, decreased the aminotransferase activity toward aromatic amino acids by 10-100-fold, while decreasing the activity toward dicarboxylic substrates only moderately to 20%, 20% and 60% of the activity of the wild-type enzymes, respectively. In all three mutant enzymes, the decrease in aspartate

  6. Structural basis for an atypical active site of an L-aspartate/glutamate-specific racemase from Escherichia coli.

    PubMed

    Ahn, Jae-Woo; Chang, Jeong Ho; Kim, Kyung-Jin

    2015-12-21

    We determined the crystal structure of EcL-DER to elucidate protein function and substrate specificity. Unlike other asp/glu racemases, EcL-DER has an unbalanced pair of catalytic residues, Thr83/Cys197, at the active site that is crucial for L- to D-unidirectional racemase activity. EcL-DER exhibited racemase activity for both L-glutamate and L-aspartate, but had threefold higher activity for L-glutamate. Based on the structure of the EcL-DER(C197S) mutant in complex with L-glutamate, we determined the binding mode of the L-glutamate substrate in EcL-DER and provide a structural basis for how the protein utilizes L-glutamate as a main substrate. The unidirectionality, despite an equilibrium constant of unity, can be understood in terms of the Haldane relationship. PMID:26555188

  7. Dataset of cocoa aspartic protease cleavage sites.

    PubMed

    Janek, Katharina; Niewienda, Agathe; Wöstemeyer, Johannes; Voigt, Jürgen

    2016-09-01

    The data provide information in support of the research article, "The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors" (Janek et al., 2016) [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS) and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. PMID:27508221

  8. A replacement of the active-site aspartic acid residue 293 in mouse cathepsin D affects its intracellular stability, processing and transport in HEK-293 cells.

    PubMed Central

    Partanen, Sanna; Storch, Stephan; Löffler, Hans-Gerhard; Hasilik, Andrej; Tyynelä, Jaana; Braulke, Thomas

    2003-01-01

    The substitution of an active-site aspartic acid residue by asparagine in the lysosomal protease cathepsin D (CTSD) results in a loss of enzyme activity and severe cerebrocortical atrophy in a novel form of neuronal ceroid lipofuscinosis in sheep [Tyynelä, Sohar, Sleat, Gin, Donnelly, Baumann, Haltia and Lobel (2000) EMBO J. 19, 2786-2792]. In the present study we have introduced the corresponding mutation by replacing aspartic acid residue 293 with asparagine (D293N) into the mouse CTSD cDNA to analyse its effect on synthesis, transport and stability in transfected HEK-293 cells. The complete inactivation of mutant D293N mouse CTSD was confirmed by a newly developed fluorimetric quantification system. Moreover, in the heterologous overexpression systems used, mutant D293N mouse CTSD was apparently unstable and proteolytically modified during early steps of the secretory pathway, resulting in a loss of mass by about 1 kDa. In the affected sheep, the endogenous mutant enzyme was stable but also showed the shift in its molecular mass. In HEK-293 cells, the transport of the mutant D293N mouse CTSD to the lysosome was delayed and associated with a low secretion rate compared with wild-type CTSD. These data suggest that the mutation may result in a conformational change which affects stability, processing and transport of the enzyme. PMID:12350228

  9. Reductive half-reaction of nitroalkane oxidase: effect of mutation of the active site aspartate to glutamate.

    PubMed

    Valley, Michael P; Fitzpatrick, Paul F

    2003-05-20

    The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitroalkanes to the respective aldehydes or ketones, releasing nitrite. The enzyme has recently been identified as being homologous to the acyl-CoA dehydrogenase family of enzymes [Daubner, S. C., Gadda, G., Valley, M. P., and Fitzpatrick, P. F. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 2702-2707]. The glutamate which acts as an active site base in that family of enzymes aligns with Asp402 of nitroalkane oxidase. To evaluate the identification of Asp402 as an active site base, the effect of mutation of Asp402 to glutamate on the rate of cleavage of the nitroalkane C-H bond has been determined. Deuterium kinetic isotope effects on steady state kinetic parameters and direct measurement of the rate of flavin reduction establish that the mutation increases the DeltaG(++) for C-H bond cleavage by 1.6-1.9 kcal/mol. There is no effect on the rate of reaction of the reduced enzyme with oxygen. These results support the assignment of Asp402 as the active site base in nitroalkane oxidase. PMID:12741843

  10. Antidepressant activity of aspartic acid derivatives.

    PubMed

    Petrov, V I; Sergeev, V S; Onishchenko, N V; Piotrovskii, L B

    2001-04-01

    Antidepressant activity of N-phenyl(benzyl)amino derivatives of aspartic acid was studied on various experimental models of depression. IEM-1770 (30 mg/kg) and IEM-1944 (20 mg/kg) exhibited antidepressant activity after single injection in the forced swimming and tail suspension tests. Antidepressant effect of 14-day administration of these compounds and reference drugs maprotiline (10 mg/kg) and citalopram (10 mg/kg) was confirmed on the model of learned helplessness. PMID:11550022

  11. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    PubMed

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL. PMID:26820485

  12. Eubacterial arylamine N-acetyltransferases - identification and comparison of 18 members of the protein family with conserved active site cysteine, histidine and aspartate residues.

    PubMed

    Payton, M; Mushtaq, A; Yu, T W; Wu, L J; Sinclair, J; Sim, E

    2001-05-01

    Arylamine N-acetyltransferases (NATs) are enzymes involved in the detoxification of a range of arylamine and hydrazine-based xenobiotics. NATs have been implicated in the endogenous metabolism of p-aminobenzoyl glutamate in eukaryotes, although very little is known about the distribution and function of NAT in the prokaryotic kingdom. Using DNA library screening techniques and the analysis of data from whole-genome sequencing projects, we have identified 18 nat-like sequences from the Proteobacteria and Firmicutes. Recently, the three-dimensional structure of NAT derived from the bacterium Salmonella typhimurium (PDB accession code 1E2T) was resolved and revealed an active site catalytic triad composed of Cys(69)-His(107)-Asp(122). These residues have been shown to be conserved in all prokaryotic and eukaryotic NAT homologues together with three highly conserved regions which are found proximal to the active site triad. The characterization of prokaryotic NATs and NAT-like enzymes is reported. It is also predicted that prokaryotic NATs, based on gene cluster composition and distribution amongst genomes, participate in the metabolism of xenobiotics derived from decomposition of organic materials. PMID:11320117

  13. Radiochemical microassay for aspartate aminotransferase activity in the nervous system

    SciTech Connect

    Garrison, D.; Beattie, J.; Namboodiri, M.A.

    1988-07-01

    A radiochemical procedure for measuring aspartate aminotransferase activity in the nervous system is described. The method is based on the exchange of tritium atoms at positions 2 and 3 of L-2,3-(/sup 3/H)aspartate with water when this amino acid is transaminated in the presence of alpha-ketoglutarate to form oxaloacetate. The tritiated water is separated from the radiolabeled aspartate by passing the reaction mixture over a cation exchange column. Confirmation that the radioactivity in the product is associated with water was obtained by separating it by anion exchange HPLC and by evaporation. The product formation is linear with time up to 120 min and with tissue in the 0.05- to 10-micrograms range. The apparent Km for aspartate in the rat brain homogenate is found to be 0.83 mM and that for alpha-ketoglutarate to be 0.12 mM. Methods that further improve the sensitivity of the assay are also discussed.

  14. Structure of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase in a hexagonal crystal form: Insights into the path of carbamoyl phosphate to the active site of the enzyme

    SciTech Connect

    Vitali J.; Soares A.; Singh, A. K.; Colaneri, M. J.

    2012-05-01

    Crystals of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase (ATCase) grew in the presence of the regulatory chain in the hexagonal space group P6{sub 3}22, with one monomer per asymmetric unit. This is the first time that crystals with only one monomer in the asymmetric unit have been obtained; all known structures of the catalytic subunit contain several crystallographically independent monomers. The symmetry-related chains form the staggered dimer of trimers observed in the other known structures of the catalytic subunit. The central channel of the catalytic subunit contains a sulfate ion and a K{sup +} ion as well as a glycerol molecule at its entrance. It is possible that it is involved in channeling carbamoyl phosphate (CP) to the active site of the enzyme. A second sulfate ion near Arg164 is near the second CP position in the wild-type Escherichia coli ATCase structure complexed with CP. It is suggested that this position may also be in the path that CP takes when binding to the active site in a partial diffusion process at 310 K. Additional biochemical studies of carbamoylation and the molecular organization of this enzyme in M. jannaschii will provide further insight into these points.

  15. Structure of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase in a hexagonal crystal form: insights into the path of carbamoyl phosphate to the active site of the enzyme

    PubMed Central

    Vitali, Jacqueline; Singh, Aditya K.; Soares, Alexei S.; Colaneri, Michael J.

    2012-01-01

    Crystals of the catalytic chain of Methanococcus jannaschii aspartate trans­carbamoylase (ATCase) grew in the presence of the regulatory chain in the hexagonal space group P6322, with one monomer per asymmetric unit. This is the first time that crystals with only one monomer in the asymmetric unit have been obtained; all known structures of the catalytic subunit contain several crystallographically independent monomers. The symmetry-related chains form the staggered dimer of trimers observed in the other known structures of the catalytic subunit. The central channel of the catalytic subunit contains a sulfate ion and a K+ ion as well as a glycerol molecule at its entrance. It is possible that it is involved in channeling carbamoyl phosphate (CP) to the active site of the enzyme. A second sulfate ion near Arg164 is near the second CP position in the wild-type Escherichia coli ATCase structure complexed with CP. It is suggested that this position may also be in the path that CP takes when binding to the active site in a partial diffusion process at 310 K. Additional biochemical studies of carbamoylation and the molecular organization of this enzyme in M. janna­schii will provide further insight into these points. PMID:22691781

  16. Aspartate aminotransferase activity in human healthy and inflamed dental pulps.

    PubMed

    Spoto, G; Fioroni, M; Rubini, C; Tripodi, D; Perinetti, G; Piattelli, A

    2001-06-01

    Aspartate aminotransferase (AST) seems to be an important mediator of inflammatory processes. Its role in the progression and detection of inflammatory periodontal disease has been increasingly recognized in recent years. In the present study AST activity was analyzed in normal healthy human dental pulps, in reversible pulpitis, and in irreversible pulpitis. Enzymatic AST activity showed that the control values for the healthy pulps were 4.8 +/- 0.7 units/mg of pulp tissue. In reversible pulpitis specimens the AST activity increased to 7.98 +/- 2.1 units/mg of pulp tissue. In irreversible pulpitis specimens the values decreased to 2.28 +/- 1.7 units/mg of pulp tissue. Differences between the groups (control versus reversible pulpitis and reversible pulpitis versus irreversible pulpitis) were statistically significant (p = 0.0015). These results could point to a role of AST in the early events that lead to development of pulpal inflammation. PMID:11487132

  17. Structural Insights into the Activation and Inhibition of Histo-Aspartic Protease from Plasmodium falciparum

    SciTech Connect

    Bhaumik, Prasenjit; Xiao, Huogen; Hidaka, Koushi; Gustchina, Alla; Kiso, Yoshiaki; Yada, Rickey Y.; Wlodawer, Alexander

    2012-09-17

    Histo-aspartic protease (HAP) from Plasmodium falciparum is a promising target for the development of novel antimalarial drugs. The sequence of HAP is highly similar to those of pepsin-like aspartic proteases, but one of the two catalytic aspartates, Asp32, is replaced with histidine. Crystal structures of the truncated zymogen of HAP and of the complex of the mature enzyme with inhibitor KNI-10395 have been determined at 2.1 and 2.5 {angstrom} resolution, respectively. As in other proplasmepsins, the propeptide of the zymogen interacts with the C-terminal domain of the enzyme, forcing the N- and C-terminal domains apart, thereby separating His32 and Asp215 and preventing formation of the mature active site. In the inhibitor complex, the enzyme forms a tight domain-swapped dimer, not previously seen in any aspartic proteases. The inhibitor is found in an unprecedented conformation resembling the letter U, stabilized by two intramolecular hydrogen bonds. Surprisingly, the location and conformation of the inhibitor are similar to those of the fragment of helix 2 comprising residues 34p-38p in the prosegments of the zymogens of gastric aspartic proteases; a corresponding helix assumes a vastly different orientation in proplasmepsins. Each inhibitor molecule is in contact with two molecules of HAP, interacting with the carboxylate group of the catalytic Asp215 of one HAP protomer through a water molecule, while also making a direct hydrogen bond to Glu278A' of the other protomer. A comparison of the shifts in the positions of the catalytic residues in the inhibitor complex presented here with those published previously gives further hints regarding the enzymatic mechanism of HAP.

  18. N-Methyl-D-Aspartate Receptor Activation May Contribute to Glufosinate Neurotoxicity

    EPA Science Inventory

    N-Methyl-D-aspartate Receptor Activation May Contribute to Glufosinate Neurotoxicity Glufosinate (GLF) at high levels in mammals causes convulsions through a mechanism that is not completely understood. The structural similarity of GLF to glutamate (GLU) implicates the glutamate...

  19. Characterization of Aspartate Kinase from Corynebacterium pekinense and the Critical Site of Arg169

    PubMed Central

    Min, Weihong; Li, Huiying; Li, Hongmei; Liu, Chunlei; Liu, Jingsheng

    2015-01-01

    Aspartate kinase (AK) is the key enzyme in the biosynthesis of aspartate-derived amino acids. Recombinant AK was efficiently purified and systematically characterized through analysis under optimal conditions combined with steady-state kinetics study. Homogeneous AK was predicted as a decamer with a molecular weight of ~48 kDa and a half-life of 4.5 h. The enzymatic activity was enhanced by ethanol and Ni2+. Moreover, steady-state kinetic study confirmed that AK is an allosteric enzyme, and its activity was inhibited by allosteric inhibitors, such as Lys, Met, and Thr. Theoretical results indicated the binding mode of AK and showed that Arg169 is an important residue in substrate binding, catalytic domain, and inhibitor binding. The values of the kinetic parameter Vmax of R169 mutants, namely, R169Y, R169P, R169D, and R169H AK, with l-aspartate as the substrate, were 4.71-, 2.25-, 2.57-, and 2.13-fold higher, respectively, than that of the wild-type AK. Furthermore, experimental and theoretical data showed that Arg169 formed a hydrogen bond with Glu92, which functions as the entrance gate. This study provides a basis to develop new enzymes and elucidate the corresponding amino acid production. PMID:26633359

  20. Histidine to aspartate phosphotransferase activity of nm23 proteins: phosphorylation of aldolase C on Asp-319.

    PubMed Central

    Wagner, P D; Vu, N D

    2000-01-01

    nm23 genes have been implicated in the suppression of tumour metastasis and cell motility; however, the biochemical mechanisms for these suppressions are not known. We have previously described the transfer of phosphate from the catalytic histidine residues of nm23 proteins to an aspartic or a glutamic residue on one or more 43 kDa proteins in detergent extracts of bovine brain membranes. To gain a better understanding of this transferase activity, we partly purified this 43 kDa protein and identified aldolases A and C as the major 43 kDa proteins present in the preparation. Aldolase was purified from brain cytosol; its phosphorylation by rat liver nm23 proteins and by recombinant human nm23-H1 was examined. The site of phosphorylation was identified as Asp-319 on aldolase C. The equivalent residue on aldolase A, a glutamic residue, was not phosphorylated. Aldolase C was rapidly phosphorylated by wild-type nm23-H1 but was not phosphorylated, or was phosphorylated very slowly, by either nm23-H1(P96S) or nm23-H1(S120G), mutants of nm23-H1 that do not suppress cell motility. This is the first identification of a protein that is phosphorylated on an aspartic residue by nm23 proteins. The sequence around Asp-319 of aldolase C has some similarities to those around the histidine residues on ATP-citrate lyase and succinic thiokinase that are phosphorylated by nm23 proteins. PMID:10698688

  1. Molecular cloning and characterization of procirsin, an active aspartic protease precursor from Cirsium vulgare (Asteraceae).

    PubMed

    Lufrano, Daniela; Faro, Rosário; Castanheira, Pedro; Parisi, Gustavo; Veríssimo, Paula; Vairo-Cavalli, Sandra; Simões, Isaura; Faro, Carlos

    2012-09-01

    Typical aspartic proteinases from plants of the Astereaceae family like cardosins and cyprosins are well-known milk-clotting enzymes. Their effectiveness in cheesemaking has encouraged several studies on other Astereaceae plant species for identification of new vegetable rennets. Here we report on the cloning, expression and characterization of a novel aspartic proteinase precursor from the flowers of Cirsium vulgare (Savi) Ten. The isolated cDNA encoded a protein product with 509 amino acids, termed cirsin, with the characteristic primary structure organization of plant typical aspartic proteinases. The pro form of cirsin was expressed in Escherichia coli and shown to be active without autocatalytically cleaving its pro domain. This contrasts with the acid-triggered autoactivation by pro-segment removal described for several recombinant plant typical aspartic proteinases. Recombinant procirsin displayed all typical proteolytic features of aspartic proteinases as optimum acidic pH, inhibition by pepstatin, cleavage between hydrophobic amino acids and strict dependence on two catalytic Asp residues for activity. Procirsin also displayed a high specificity towards κ-casein and milk-clotting activity, suggesting it might be an effective vegetable rennet. The findings herein described provide additional evidences for the existence of different structural arrangements among plant typical aspartic proteinases. PMID:22727116

  2. Characterization of aspartate transcarbamylase activity from gonads of the soft shell clam, Mya arenaria.

    PubMed

    Etchian, Olivier Assoi; Pellerin, Jocelyne

    2003-04-01

    Aspartate transcarbamylase (ATCase, EC 2.1.3.2) has been shown to be a good index of the reproductive cycle in marine molluscs. However, this enzyme has never been studied in the soft shell clam Mya arenaria. The characteristics of gonadal ATCase of the soft shell clam, Mya arenaria were therefore determined since we need powerful tools to assess the degree of effects of endocrine disruptors in this species at risk. Enzyme kinetic values observed at pH 8.3 were significantly lower than those measured at pH 9.4. The optimal conditions for the enzyme assays were reached in the presence of a 10 mM of substrate concentration and at pH 9.2 for 60 min at 37 degrees C. We have found that the enzyme was heat sensitive, markedly activated by DMSO and DMF, but no effect was observed with ethanol, ATP or CTP. However, clam ATCase activity was partly inhibited by the addition of CuSO(4) and PHMB to the medium, an inhibition that could be attributed to the presence of SH sites in cysteine residues localized in the catalytic site of this enzyme. All these results will be very useful in the near future to study the gametogenetic process of Mya arenaria, since little is known about the factors that control the physiological process of reproduction in this bivalve of ecological and economic importance. Studies of variations of the activity of aspartate transcarbamylase will also be useful as a potential biomarker to evaluate the disruption of gametogenesis in clams exposed to endocrine disruptors in situ. PMID:12670788

  3. Regulation of airway contractility by plasminogen activators through N-methyl-D-aspartate receptor-1.

    PubMed

    Nassar, Taher; Yarovoi, Serge; Fanne, Rami Abu; Akkawi, Sa'ed; Jammal, Mahmud; Allen, Timothy Craig; Idell, Steven; Cines, Douglas B; Higazi, Abd Al-Roof

    2010-12-01

    Reactive airway disease is mediated by smooth muscle contraction initiated through several agonist-dependent pathways. Activation of type 1 N-methyl-D-aspartate receptors (NMDA-R1s) by plasminogen activators (PAs) has been linked to control of vascular tone, but their effect on airway smooth muscle contractility has not previously been studied to our knowledge. We observed that NMDA-R1s are expressed by human airway smooth muscle cells and constitutively inhibit the contraction of isolated rat tracheal rings in response to acetylcholine (Ach). Both tissue-type PA (tPA) and urokinase-type PA (uPA) bind to NMDA-R1 and reverse this effect, thereby enhancing Ach-induced tracheal contractility. Tracheal contractility initiated by Ach is reduced in rings isolated from tPA(-/-) and uPA(-/-) mice compared with their wild-type counterparts. The procontractile effect of uPA or tPA was mimicked and augmented by the nitric oxide synthase inhibitor, l-NAME. uPA and tPA further enhanced the contractility of rings denuded of epithelium, an effect that was inhibited by the NMDA-R antagonist, MK-801. Binding of PAs to NMDA-R1 and the subsequent activation of the receptor were inhibited by PA inhibitor type 1, by a PA inhibitor type 1-derived hexapeptide that recognizes the tPA and uPA docking domains, as well as by specific mutations within the docking site of tPA. These studies identify involvement of PAs and NMDA-R1 in airway contractility, and define new loci that could lead to the development of novel interventions for reactive airway disease. PMID:20097831

  4. 7-hydroxycalamenene Effects on Secreted Aspartic Proteases Activity and Biofilm Formation of Candida spp.

    PubMed Central

    Azevedo, Mariana M. B.; Almeida, Catia A.; Chaves, Francisco C. M.; Rodrigues, Igor A.; Bizzo, Humberto R.; Alviano, Celuta S.; Alviano, Daniela S.

    2016-01-01

    Background: The 7-hydroxycalamenenene-rich essential oil (EO) obtained from the leaves of Croton cajucara (red morphotype) have been described as active against bacteria, protozoa, and fungi species. In this work, we aimed to evaluate the effectiveness of 7-hydroxycalamenenene against Candida albicans and nonalbicans species. Materials and Methods: C. cajucara EO was obtained by hydrodistillation and its major compound, 7-hydroxycalamenene, was purified using preparative column chromatography. The anti-candidal activity was investigated by minimum inhibitory concentration (MIC) and secreted aspartic proteases (SAP) and biofilm inhibition assays. Results: 7-hydroxycalamenene (98% purity) displayed anti-candidal activity against all Candida species tested. Higher activity was observed against Candida dubliniensis, Candida parapsilosis and Candida albicans, showing MIC values ranging from 39.06 μg/ml to 78.12 μg/ml. The purified 7-hydroxycalamenene was able to inhibit 58% of C. albicans ATCC 36801 SAP activity at MIC concentration (pH 7.0). However, 7-hydroxycalamenene demonstrated poor inhibitory activity on C. albicans ATCC 10231 biofilm formation even at the highest concentration tested (2500 μg/ml). Conclusion: The bioactive potential of 7-hydroxycalamenene against planktonic Candida spp. further supports its use for the development of antimicrobials with anti-candidal activity. SUMMARY Croton cajucara Benth. essential oil provides high amounts of 7-hydroxycalamenene7-Hydroxycalameneneisolated from C. cajucarais active against Candida spp7-Hydroxycalameneneinhibits C. albicans aspartic protease activity7-Hydroxycalamenene was not active against C. albicans biofilm formation. Figure PMID:27019560

  5. Aspartic acid

    MedlinePlus

    ... also called asparaginic acid. Aspartic acid helps every cell in the body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as ...

  6. Synthesis, structural activity-relationships, and biological evaluation of novel amide-based allosteric binding site antagonists in NR1A/NR2B N-methyl-D-aspartate receptors☆

    PubMed Central

    Mosley, Cara A.; Myers, Scott J.; Murray, Ernest E.; Santangelo, Rose; Tahirovic, Yesim A.; Kurtkaya, Natalie; Mullasseril, Praseeda; Yuan, Hongjie; Lyuboslavsky, Polina; Le, Phuong; Wilson, Lawrence J.; Yepes, Manuel; Dingledine, Ray; Traynelis, Stephen F.; Liotta, Dennis C.

    2010-01-01

    The synthesis and structure–activity relationship analysis of a novel class of amide-based biaryl NR2B-selective NMDA receptor antagonists are presented. Some of the studied compounds are potent, selective, non-competitive, and voltage-independent antagonists of NR2B-containing NMDA receptors. Like the founding member of this class of antagonists (ifenprodil), several interesting compounds of the series bind to the amino terminal domain of the NR2B subunit to inhibit function. Analogue potency is modu-lated by linker length, flexibility, and hydrogen bonding opportunities. However, unlike previously described classes of NR2B-selective NMDA antagonists that exhibit off-target activity at a variety of monoamine receptors, the compounds described herein show much diminished effects against the hERG channel and α1-adrenergic receptors. Selections of the compounds discussed have acceptable half-lives in vivo and are predicted to permeate the blood–brain barrier. These data together suggest that masking charged atoms on the linker region of NR2B-selective antagonists can decrease undesirable side effects while still maintaining on-target potency. PMID:19648014

  7. Dihydroorotase from the Hyperthermophile Aquifiex aeolicus Is Activated by Stoichiometric Association with Aspartate Transcarbamoylase and Forms a One-Pot Reactor for Pyrimidine Biosynthesis

    SciTech Connect

    Zhang, Pengfei; Martin, Philip D.; Purcarea, Cristina; Vaishnav, Asmita; Brunzelle, Joseph S.; Fernando, Roshini; Guy-Evans, Hedeel I.; Evans, David R.; Edwards, Brian F.P.

    2009-08-14

    In prokaryotes, the first three enzymes in pyrimidine biosynthesis, carbamoyl phosphate synthetase (CPS), aspartate transcarbamoylase (ATC), and dihydroorotase (DHO), are commonly expressed separately and either function independently (Escherichia coli) or associate into multifunctional complexes (Aquifex aeolicus). In mammals the enzymes are expressed as a single polypeptide chain (CAD) in the order CPS-DHO-ATC and associate into a hexamer. This study presents the three-dimensional structure of the noncovalent hexamer of DHO and ATC from the hyperthermophile A. aeolicus at 2.3 {angstrom} resolution. It is the first structure of any multienzyme complex in pyrimidine biosynthesis and is a possible model for the core of mammalian CAD. The structure has citrate, a near isosteric analogue of carbamoyl aspartate, bound to the active sites of both enzymes. Three active site loops that are intrinsically disordered in the free, inactive DHO are ordered in the complex. The reorganization also changes the peptide bond between Asp153, a ligand of the single zinc atom in DHO, and Gly154, to the rare cis conformation. In the crystal structure, six DHO and six ATC chains form a hollow dodecamer, in which the 12 active sites face an internal reaction chamber that is approximately 60 {angstrom} in diameter and connected to the cytosol by narrow tunnels. The entrances and the interior of the chamber are both electropositive, which suggests that the architecture of this nanoreactor modifies the kinetics of the bisynthase, not only by steric channeling but also by preferential escape of the product, dihydroorotase, which is less negatively charged than its precursors, carbamoyl phosphate, aspartate, or carbamoyl aspartate.

  8. Dihydroorotase from the Hyperthermophile Aquifiex aeolicus Is Activated by Stoichiometric Association with Aspartate Transcarbamoylase and Forms a One-Pot Reactor for Pyrimidine Biosynthesis†,‡

    PubMed Central

    Zhang, Pengfei; Martin, Philip D.; Purcarea, Cristina; Vaishnav, Asmita; Brunzelle, Joseph S.; Fernando, Roshini; Guy-Evans, Hedeel I.; Evans, David R.; Edwards, Brian F. P.

    2013-01-01

    In prokaryotes, the first three enzymes in pyrimidine biosynthesis, carbamoyl phosphate synthetase (CPS), aspartate transcarbamoylase (ATC), and dihydroorotase (DHO), are commonly expressed separately and either function independently (Escherichia coli) or associate into multifunctional complexes (Aquifex aeolicus). In mammals the enzymes are expressed as a single polypeptide chain (CAD) in the order CPS-DHO-ATC and associate into a hexamer. This study presents the three-dimensional structure of the noncovalent hexamer of DHO and ATC from the hyperthermophile A. aeolicus at 2.3 Å resolution. It is the first structure of any multienzyme complex in pyrimidine biosynthesis and is a possible model for the core of mammalian CAD. The structure has citrate, a near isosteric analogue of carbamoyl aspartate, bound to the active sites of both enzymes. Three active site loops that are intrinsically disordered in the free, inactive DHO are ordered in the complex. The reorganization also changes the peptide bond between Asp153, a ligand of the single zinc atom in DHO, and Gly154, to the rare cis conformation. In the crystal structure, six DHO and six ATC chains form a hollow dodecamer, in which the 12 active sites face an internal reaction chamber that is approximately 60 Å in diameter and connected to the cytosol by narrow tunnels. The entrances and the interior of the chamber are both electropositive, which suggests that the architecture of this nanoreactor modifies the kinetics of the bisynthase, not only by steric channeling but also by preferential escape of the product, dihydroorotase, which is less negatively charged than its precursors, carbamoyl phosphate, aspartate, or carbamoyl aspartate. PMID:19128030

  9. N-methyl-D-aspartate receptor encephalitis mediates loss of intrinsic activity measured by functional MRI.

    PubMed

    Brier, Matthew R; Day, Gregory S; Snyder, Abraham Z; Tanenbaum, Aaron B; Ances, Beau M

    2016-06-01

    Spontaneous brain activity is required for the development and maintenance of normal brain function. Many disease processes disrupt the organization of intrinsic brain activity, but few pervasively reduce the amplitude of resting state blood oxygen level dependent (BOLD) fMRI fluctuations. We report the case of a female with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, longitudinally studied during the course of her illness to determine the contribution of NMDAR signaling to spontaneous brain activity. Resting state BOLD fMRI was measured at the height of her illness and 18 weeks following discharge from hospital. Conventional resting state networks were defined using established methods. Correlation and covariance matrices were calculated by extracting the BOLD time series from regions of interest and calculating either the correlation or covariance quantity. The intrinsic activity was compared between visits, and to expected activity from 45 similarly aged healthy individuals. Near the height of the illness, the patient exhibited profound loss of consciousness, high-amplitude slowing of the electroencephalogram, and a severe reduction in the amplitude of spontaneous BOLD fMRI fluctuations. The patient's neurological status and measures of intrinsic activity improved following treatment. We conclude that NMDAR-mediated signaling plays a critical role in the mechanisms that give rise to organized spontaneous brain activity. Loss of intrinsic activity is associated with profound disruptions of consciousness and cognition. PMID:27025853

  10. Constitutive Activation of the N-Methyl-d-aspartate Receptor via Cleft-spanning Disulfide Bonds*

    PubMed Central

    Blanke, Marie L.; VanDongen, Antonius M. J.

    2008-01-01

    Although the N-methyl-d-aspartate (NMDA) receptor plays a critical role in the central nervous system, many questions remain regarding the relationship between its structure and functional properties. In particular, the involvement of ligand-binding domain closure in determining agonist efficacy, which has been reported in other glutamate receptor subtypes, remains unresolved. To address this question, we designed dual cysteine point mutations spanning the NR1 and NR2 ligand-binding clefts, aiming to stabilize these domains in closed cleft conformations. Two mutants, E522C/I691C in NR1 (EI) and K487C/N687C in NR2 (KN) were found to exhibit significant glycine- and glutamate-independent activation, respectively, and co-expression of the two subunits produced a constitutively active channel. However, both individual mutants could be activated above constitutive levels in a concentration-dependent manner, indicating that cleft closure does not completely prevent agonist association. Interestingly, whereas the NR2 KN disulfide was found to potentiate channel gating and M3 accessibility, NR1 EI exhibited the opposite phenotype, suggesting that the EI disulfide may trap the NR1 ligand-binding domain in a lower efficacy conformation. Furthermore, both mutants affected agonist sensitivity at the opposing subunit, suggesting that closed cleft stabilization may contribute to coupling between the subunits. These results support a correlation between cleft stability and receptor activation, providing compelling evidence for the Venus flytrap mechanism of glutamate receptor domain closure. PMID:18450751

  11. Aspartate aminotransferase activity in the pulp of teeth treated for 6 months with fixed orthodontic appliances

    PubMed Central

    Latkauskiene, Dalia; Racinskaite, Vilma; Skucaite, Neringa; Machiulskiene, Vita

    2015-01-01

    Objective To measure aspartate aminotransferase (AST) activity in the pulp of teeth treated with fixed appliances for 6 months, and compare it with AST activity measured in untreated teeth. Methods The study sample consisted of 16 healthy subjects (mean age 25.7 ± 4.3 years) who required the extraction of maxillary premolars for orthodontic reasons. Of these, 6 individuals had a total of 11 sound teeth extracted without any orthodontic treatment (the control group), and 10 individuals had a total of 20 sound teeth extracted after 6 months of orthodontic alignment (the experimental group). Dental pulp samples were extracted from all control and experimental teeth, and the AST activity exhibited by these samples was determined spectrophotometrically at 20℃. Results Mean AST values were 25.29 × 10-5 U/mg (standard deviation [SD] 9.95) in the control group and 27.54 × 10-5 U/mg (SD 31.81) in the experimental group. The difference between these means was not statistically significantly (p = 0.778), and the distribution of the AST values was also similar in both groups. Conclusions No statistically significant increase in AST activity in the pulp of mechanically loaded teeth was detected after 6 months of orthodontic alignment, as compared to that of teeth extracted from individuals who had not undergone orthodontic treatment. This suggests that time-related regenerative processes occur in the dental pulp. PMID:26445721

  12. N-methyl-D-aspartate receptors strongly regulate postsynaptic activity levels during optic nerve regeneration.

    PubMed

    Kolls, Brad J; Meyer, Ronald L

    2013-10-01

    During development, neuronal activity is used as a cue to guide synaptic rearrangements to refine connections. Many studies, especially in the visual system, have shown that the N-methyl-D-aspartate receptor (NMDAr) plays a key role in mediating activity-dependent refinement through long-term potentiation (LTP)-like processes. Adult goldfish can regenerate their optic nerve and utilize neuronal activity to generate precise topography in their projection onto tectum. Although the NMDAr has been implicated in this process, its precise role in regeneration has not been extensively studied. In examining NMDAr function during regeneration, we found salient differences compared with development. By using field excitatory postsynaptic potential (fEPSP) recordings, the contribution of the NMDAr at the primary optic synapse was measured. In contrast to development, no increase in NMDAr function was detectable during synaptic refinement. Unlike development, LTP could not be reliably elicited during regeneration. Unexpectedly, we found that NMDAr exerted a major effect on regulating ongoing tectal (postsynaptic) activity levels during regeneration. Blocking NMDAr strongly suppressed spontaneous activity during regeneration but had no significant effect in the normal projection. This difference could be attributed to an occlusion effect of strong optic drive in the normal projection, which dominated ongoing tectal activity. During regeneration, this optic drive is largely absent. Optic nerve stimulation further indicated that the NMDAr had little effect on the ability of optic fibers to evoke early postsynaptic impulse activity but was important for late network activity. These results indicate that, during regeneration, the NMDAr may play a critical role in the homeostatic regulation of ongoing activity and network excitability. PMID:23873725

  13. The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective.

    PubMed Central

    Schell, Michael J

    2004-01-01

    The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics. PMID:15306409

  14. Aspartate aminotransferase activity in experimentally induced asymptomatic vitamin B6 deficiency in chicks.

    PubMed

    Massé, P G; Vuilleumier, J P; Weiser, H

    1991-01-01

    Forty-five male Lohmann chicks were grown up to 6 weeks of age. The experimental diet containing a high protein level (30%) was aimed at increasing the metabolic need for PN. Microbiological analysis on the basal ration revealed a marginal content of 4.7 mumol PN/kg. The vitamin B6 status was assessed at the end of the experiment according to the basal activity of aspartate aminotransferase (AspAT) in plasma and in erythrocytes, and the in vitro stimulated activity with pyridoxal 5'-phosphate (PLP). None of the deficient chicks had any clinical signs attributable to malfunction of the nervous system, and they grew as well as those receiving the control diet. Vitamin B6 deficiency was biochemically confirmed by a significant depression of AspAT activity in plasma (p less than 0.001) and in erythrocytes (p less than 0.01). The addition of PLP in vitro enhanced the catalytic activity of the plasma enzyme, but had negligible effect on the erythrocyte enzyme. The degree of stimulation in vitro of the apoenzyme of AspAT not only depends on the endogenous vitamin B6 content, but also on the basal activity of the enzyme. A 15-day repletion period with a daily oral dose (50 mumol PN) did not result in a complete restoration of the enzyme activity, indicating that the availability of apoenzyme had been curtailed. This experiment demonstrated that chicks fed a high protein corn-soyamin diet with a limited amount of PN but containing Saccharomyces yeast showed no nervous signs or perosis, but significant metabolic disturbances.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2058999

  15. Allosteric Regulation of Catalytic Activity: Escherichia coli Aspartate Transcarbamoylase versus Yeast Chorismate Mutase

    PubMed Central

    Helmstaedt, Kerstin; Krappmann, Sven; Braus, Gerhard H.

    2001-01-01

    Allosteric regulation of key metabolic enzymes is a fascinating field to study the structure-function relationship of induced conformational changes of proteins. In this review we compare the principles of allosteric transitions of the complex classical model aspartate transcarbamoylase (ATCase) from Escherichia coli, consisting of 12 polypeptides, and the less complicated chorismate mutase derived from baker's yeast, which functions as a homodimer. Chorismate mutase presumably represents the minimal oligomerization state of a cooperative enzyme which still can be either activated or inhibited by different heterotropic effectors. Detailed knowledge of the number of possible quaternary states and a description of molecular triggers for conformational changes of model enzymes such as ATCase and chorismate mutase shed more and more light on allostery as an important regulatory mechanism of any living cell. The comparison of wild-type and engineered mutant enzymes reveals that current textbook models for regulation do not cover the entire picture needed to describe the function of these enzymes in detail. PMID:11528003

  16. Active site specificity of plasmepsin II.

    PubMed Central

    Westling, J.; Cipullo, P.; Hung, S. H.; Saft, H.; Dame, J. B.; Dunn, B. M.

    1999-01-01

    Members of the aspartic proteinase family of enzymes have very similar three-dimensional structures and catalytic mechanisms. Each, however, has unique substrate specificity. These distinctions arise from variations in amino acid residues that line the active site subsites and interact with the side chains of the amino acids of the peptides that bind to the active site. To understand the unique binding preferences of plasmepsin II, an enzyme of the aspartic proteinase class from the malaria parasite, Plasmodium falciparum, chromogenic octapeptides having systematic substitutions at various positions in the sequence were analyzed. This enabled the design of new, improved substrates for this enzyme (Lys-Pro-Ile-Leu-Phe*Nph-Ala/Glu-Leu-Lys, where * indicates the cleavage point). Additionally, the crystal structure of plasmepsin II was analyzed to explain the binding characteristics. Specific amino acids (Met13, Ser77, and Ile287) that were suspected of contributing to active site binding and specificity were chosen for site-directed mutagenesis experiments. The Met13Glu and Ile287Glu single mutants and the Met13Glu/Ile287Glu double mutant gain the ability to cleave substrates containing Lys residues. PMID:10548045

  17. Solubilization, partial purification, and reconstitution of glutamate- and N-methyl-D-aspartate-activated cation channels from brain synaptic membranes

    SciTech Connect

    Ly, A.M.; Michaelis, E.K. )

    1991-04-30

    L-Glutamate-activated cation channel proteins from rat brain synaptic membranes were solubilized, partially purified, and reconstituted into liposomes. Optimal conditions for solubilization and reconstitution included treatment of the membranes with nonionic detergents in the presence of neutral phospholipids plus glycerol. Quench-flow procedures were developed to characterize the rapid kinetics of ion flux induced by receptor agonists. ({sup 14}C)Methylamine, a cation that permeates through the open channel of both vertebrate and invertebrate glutamate receptors, was used to measure the activity of glutamate receptor-ion channel complexes in reconstituted liposomes. L-Glutamate caused an increase in the rate of ({sup 14}C)methylamine influx into liposomes reconstituted with either solubilized membrane proteins or partially purified glutamate-binding proteins. Of the major glutamate receptor agonists, only N-methyl-D-aspartate activated cation fluxes in liposomes reconstituted with glutamate-binding proteins. In liposomes reconstituted with glutamate-binding proteins, N-methyl-D-aspartate- or glutamate-induced influx of NA{sup +} led to a transient increase in the influx of the lipid-permeable anion probe S{sup 14}CN{sup {minus}}. These results indicate the functional reconstitution of N-methyl-D-aspartate-sensitive glutamate receptors and the role of the {approximately}69-kDa protein in the function of these ion channels.

  18. Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals

    PubMed Central

    Errico, F; Nisticò, R; Di Giorgio, A; Squillace, M; Vitucci, D; Galbusera, A; Piccinin, S; Mango, D; Fazio, L; Middei, S; Trizio, S; Mercuri, N B; Teule, M A; Centonze, D; Gozzi, A; Blasi, G; Bertolino, A; Usiello, A

    2014-01-01

    D-aspartate (D-Asp) is an atypical amino acid, which is especially abundant in the developing mammalian brain, and can bind to and activate N-methyl-D-Aspartate receptors (NMDARs). In line with its pharmacological features, we find that mice chronically treated with D-Asp show enhanced NMDAR-mediated miniature excitatory postsynaptic currents and basal cerebral blood volume in fronto-hippocampal areas. In addition, we show that both chronic administration of D-Asp and deletion of the gene coding for the catabolic enzyme D-aspartate oxidase (DDO) trigger plastic modifications of neuronal cytoarchitecture in the prefrontal cortex and CA1 subfield of the hippocampus and promote a cytochalasin D-sensitive form of synaptic plasticity in adult mouse brains. To translate these findings in humans and consistent with the experiments using Ddo gene targeting in animals, we performed a hierarchical stepwise translational genetic approach. Specifically, we investigated the association of variation in the gene coding for DDO with complex human prefrontal phenotypes. We demonstrate that genetic variation predicting reduced expression of DDO in postmortem human prefrontal cortex is mapped on greater prefrontal gray matter and activity during working memory as measured with MRI. In conclusion our results identify novel NMDAR-dependent effects of D-Asp on plasticity and physiology in rodents, which also map to prefrontal phenotypes in humans. PMID:25072322

  19. Activation of N-methyl-d-aspartate receptor downregulates inflammasome activity and liver inflammation via a β-arrestin-2 pathway.

    PubMed

    Farooq, Ahmad; Hoque, Rafaz; Ouyang, Xinshou; Farooq, Ahsan; Ghani, Ayaz; Ahsan, Kaimul; Guerra, Mateus; Mehal, Wajahat Zafar

    2014-10-01

    Activation of the cytosolic inflammasome machinery is responsible for acute and chronic liver inflammation, but little is known about its regulation. The N-methyl-d-aspartate (NMDA) receptor families are heterotetrameric ligand-gated ion channels that are activated by a range of metabolites, including aspartate, glutamate, and polyunsaturated fatty acids. In the brain NMDA receptors are present on neuronal and nonneuronal cells and regulate a diverse range of functions. We tested the role of the NMDA receptor and aspartate in inflammasome regulation in vitro and in models of acute hepatitis and pancreatitis. We demonstrate that the NMDA receptor is present on Kupffer cells, and their activation on primary mouse and human cells limits inflammasome activation by downregulating NOD-like receptor family, pyrin domain containing 3 and procaspase-1. The NMDA receptor pathway is active in vivo, limits injury in acute hepatitis, and can be therapeutically further activated by aspartate providing protection in acute inflammatory liver injury. Downregulation of inflammasome activation by NMDA occurs via a β-arrestin-2 NF-kβ and JNK pathway and not via Ca(2+) mobilization. We have identified the NMDA receptor as a regulator of inflammasome activity in vitro and in vivo. This has identified a new area of immune regulation associated by metabolites that may be relevant in a diverse range of conditions, including nonalcoholic steatohepatitis and total parenteral nutrition-induced immune suppression. PMID:25104498

  20. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth.

    PubMed

    Yang, Hui; Zhou, Lisha; Shi, Qian; Zhao, Yuzheng; Lin, Huaipeng; Zhang, Mengli; Zhao, Shimin; Yang, Yi; Ling, Zhi-Qiang; Guan, Kun-Liang; Xiong, Yue; Ye, Dan

    2015-04-15

    The malate-aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate-aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD(+) redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate-aspartate NADH shuttle activity and oxidative protection. PMID:25755250

  1. Immobilization of Escherichia coli Cells Containing Aspartase Activity with Polyurethane and Its Application for l-Aspartic Acid Production

    PubMed Central

    Fusee, Murray C.; Swann, Wayne E.; Calton, Gary J.

    1981-01-01

    Whole cells of Escherichia coli containing aspartase activity were immobilized by mixing a cell suspension with a liquid isocyanate-capped polyurethane prepolymer (Hypol). The immobilized cell preparation was used to convert ammonium fumarate to l-aspartic acid. Properties of the immobilized E. coli cells containing aspartase were investigated with a batch reactor. A 1.67-fold increase in the l-aspartic acid production rate was observed at 37°C as compared to 25°C operating temperature. The pH optimum was broad, ranging from 8.5 to 9.2. Increasing the concentration of ammonium fumarate to 1.5 M from 1.0 M negatively affected the reaction rate. l-Aspartic acid was produced at an average rate of 2.18 × 10−4 mol/min per g (wet weight) of immobilized E. coli cells with a 37°C substrate solution consisting of 1.0 M ammonium fumarate with 1 mM Mg2+ (pH 9.0). PMID:16345865

  2. SIRT3-dependent GOT2 acetylation status affects the malate–aspartate NADH shuttle activity and pancreatic tumor growth

    PubMed Central

    Yang, Hui; Zhou, Lisha; Shi, Qian; Zhao, Yuzheng; Lin, Huaipeng; Zhang, Mengli; Zhao, Shimin; Yang, Yi; Ling, Zhi-Qiang; Guan, Kun-Liang; Xiong, Yue; Ye, Dan

    2015-01-01

    The malate–aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate–aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD+ redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate–aspartate NADH shuttle activity and oxidative protection. PMID:25755250

  3. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle. PMID:198130

  4. Human T lymphocytes express N-methyl-D-aspartate receptors functionally active in controlling T cell activation

    SciTech Connect

    Miglio, Gianluca; Varsaldi, Federica; Lombardi, Grazia . E-mail: lombardi@pharm.unipmn.it

    2005-12-30

    The aim of this study was to investigate the expression and the functional role of N-methyl-D-aspartate (NMDA) receptors in human T cells. RT-PCR analysis showed that human resting peripheral blood lymphocytes (PBL) and Jurkat T cells express genes encoding for both NR1 and NR2B subunits: phytohemagglutinin (PHA)-activated PBL also expresses both these genes and the NR2A and NR2D genes. Cytofluorimetric analysis showed that NR1 expression increases as a consequence of PHA (10 {mu}g/ml) treatment. D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5), and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine [(+)-MK 801], competitive and non-competitive NMDA receptor antagonists, respectively, inhibited PHA-induced T cell proliferation, whereas they did not affect IL-2 (10 U/ml)-induced proliferation of PHA blasts. These effects were due to the prevention of T cell activation (inhibition of cell aggregate formation and CD25 expression), but not to cell cycle arrest or death. These results demonstrate that human T lymphocytes express NMDA receptors, which are functionally active in controlling cell activation.

  5. Immobilization by Polyurethane of Pseudomonas dacunhae Cells Containing l-Aspartate β-Decarboxylase Activity and Application to l-Alanine Production

    PubMed Central

    Fusee, Murray C.; Weber, Jennifer E.

    1984-01-01

    Whole cells of Pseudomonas dacunhae containing l-aspartate β-decarboxylase activity were immobilized by mixing a cell suspension with a liquid isocyanate-capped polyurethane prepolymer (Hypol; W. R. Grace & Co., Lexington, Mass.). The immobilized cell preparation was used to convert l-aspartic acid to l-alanine. Properties of the immobilized P. dacunhae cells containing aspartate β-decarboxylase activity were investigated with batch reactors. Retention of enzyme activity was observed to be as much as 100% when cell lysis was allowed to occur before immobilization. The pH and temperature optima were determined to be 5.5 and 45°C, respectively. Immobilized P. dacunhael-aspartate β-decarboxylase activity was stabilized by the addition of 0.1 mM pyridoxal-5-phosphate and 0.1 mM α-ketoglutaric acid to a 1.7 M ammonium aspartate (pH 5.5) substrate solution. Under conditions of semicontinuous use in a batch reactor, a 2.5% loss in immobilized l-aspartate β-decarboxylase activity was observed over a 31-day period. PMID:16346636

  6. Topology of AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, determined by site-directed fluorescence labeling.

    PubMed

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C; Abe, Keietsu

    2007-10-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of L-aspartate (Asp) with release of L-alanine (Ala) and CO(2). The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an L-aspartate-beta-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity. PMID:17660287

  7. D-Aspartate Modulates Nociceptive-Specific Neuron Activity and Pain Threshold in Inflammatory and Neuropathic Pain Condition in Mice

    PubMed Central

    Boccella, Serena; Vacca, Valentina; Errico, Francesco; Marinelli, Sara; Squillace, Marta; Di Maio, Anna; Vitucci, Daniela; Palazzo, Enza; De Novellis, Vito; Maione, Sabatino; Pavone, Flaminia; Usiello, Alessandro

    2015-01-01

    D-Aspartate (D-Asp) is a free D-amino acid found in the mammalian brain with a temporal-dependent concentration based on the postnatal expression of its metabolizing enzyme D-aspartate oxidase (DDO). D-Asp acts as an agonist on NMDA receptors (NMDARs). Accordingly, high levels of D-Asp in knockout mice for Ddo gene (Ddo−/−) or in mice treated with D-Asp increase NMDAR-dependent processes. We have here evaluated in Ddo−/− mice the effect of high levels of free D-Asp on the long-term plastic changes along the nociceptive pathway occurring in chronic and acute pain condition. We found that Ddo−/− mice show an increased evoked activity of the nociceptive specific (NS) neurons of the dorsal horn of the spinal cord (L4–L6) and a significant decrease of mechanical and thermal thresholds, as compared to control mice. Moreover, Ddo gene deletion exacerbated the nocifensive responses in the formalin test and slightly reduced pain thresholds in neuropathic mice up to 7 days after chronic constriction injury. These findings suggest that the NMDAR agonist, D-Asp, may play a role in the regulation of NS neuron electrophysiological activity and behavioral responses in physiological and pathological pain conditions. PMID:25629055

  8. Importance of aspartate-70 in organophosphate inhibition, oxime re-activation and aging of human butyrylcholinesterase.

    PubMed Central

    Masson, P; Froment, M T; Bartels, C F; Lockridge, O

    1997-01-01

    Asp-70 is the defining amino acid in the peripheral anionic site of human butyrylcholinesterase (BuChE), whereas acetylcholinesterase has several additional amino acids, the most important one being Trp-277 (Trp-279 in Torpedo AChE). We studied mutants D70G, D70K and A277W to evaluate the role of Asp-70 and Trp-277 in reactions with organophosphates. We found that Asp-70 was important for binding positively charged echothiophate, but not neutral paraoxon and iso-OMPA. Asp-70 was also important for binding of positively charged pralidoxime (2-PAM) and for activation of re-activation by excess 2-PAM. Excess 2-PAM had an effect similar to substrate activation, suggesting the binding of 2 mol of 2-PAM to wild-type but not to the D70G mutant. A surprising result was that Asp-70 was important for irreversible aging, the D70G mutant having a 3- and 8-fold lower rate of aging for paraoxon-inhibited and di-isopropyl fluorophosphate-inhibited BuChE. Mutants of Asp-70 had the same rate constants for phosphorylation and re-activation by 2-PAM as wild-type. The A277W mutant behaved like wild-type in all assays. Our results predict that people with the atypical (D70G) variant of BuChE will be more sensitive to the toxic effects of echothiophate, but will be equally sensitive to paraoxon and di-isopropyl fluorophosphate. People with the D70G mutation will be resistant to re-activation of their inhibited BuChE by 2-PAM, but this will be offset by the lower rate of irreversible aging of inhibited BuChE, allowing some regeneration by spontaneous hydrolysis. PMID:9224629

  9. Structural Analysis of the Ligand-Binding Domain of the Aspartate Receptor Tar from Escherichia coli.

    PubMed

    Mise, Takeshi

    2016-07-01

    The Escherichia coli cell-surface aspartate receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni(2+). These signals are transmitted from the extracellular region of Tar to the cytoplasmic region via the transmembrane domain. The mechanism by which extracellular signals are transmitted into the cell through conformational changes in Tar is predicted to involve a piston displacement of one of the α4 helices of the homodimer. To understand the molecular mechanisms underlying the induction of Tar activity by an attractant, the three-dimensional structures of the E. coli Tar periplasmic domain with and without bound aspartate, Asp-Tar and apo-Tar, respectively, were determined. Of the two ligand-binding sites, only one site was occupied, and it clearly showed the electron density of an aspartate. The slight changes in conformation and the electrostatic surface potential around the aspartate-binding site were observed. In addition, the presence of an aspartate stabilized residues Phe-150' and Arg-73. A pistonlike displacement of helix α4b' was also induced by aspartate binding as predicted by the piston model. Taken together, these small changes might be related to the induction of Tar activity and might disturb binding of the second aspartate to the second binding site in E. coli. PMID:27292793

  10. Structural and functional characterization of aspartate racemase from the acidothermophilic archaeon Picrophilus torridus.

    PubMed

    Aihara, Takayuki; Ito, Toshiya; Yamanaka, Yasuaki; Noguchi, Keiichi; Odaka, Masafumi; Sekine, Masae; Homma, Hiroshi; Yohda, Masafumi

    2016-07-01

    Functional and structural characterizations of pyridoxal 5'-phosphate-independent aspartate racemase of the acidothermophilic archaeon Picrophilus torridus were performed. Picrophilus aspartate racemase exhibited high substrate specificity to aspartic acid. The optimal reaction temperature was 60 °C, which is almost the same as the optimal growth temperature. Reflecting the low pH in the cytosol, the optimal reaction pH of Picrophilus aspartate racemase was approximately 5.5. However, the activity at the putative cytosolic pH of 4.6 was approximately 6 times lower than that at the optimal pH of 5.5. The crystal structure of Picrophilus aspartate racemase was almost the same as that of other pyridoxal 5'-phosphate -independent aspartate racemases. In two molecules of the dimer, one molecule contained a tartaric acid molecule in the catalytic site; the structure of the other molecule was relatively flexible. Finally, we examined the intracellular existence of D-amino acids. Unexpectedly, the proportion of D-aspartate to total aspartate was not very high. In contrast, both D-proline and D-alanine were observed. Because Picrophilus aspartate racemase is highly specific to aspartate, other amino acid racemases might exist in Picrophilus torridus. PMID:27094682

  11. Small Molecule Receptor Protein Tyrosine Phosphatase γ (RPTPγ) Ligands That Inhibit Phosphatase Activity via Perturbation of the Tryptophan-Proline-Aspartate (WPD) Loop

    SciTech Connect

    Sheriff, Steven; Beno, Brett R; Zhai, Weixu; Kostich, Walter A; McDonnell, Patricia A; Kish, Kevin; Goldfarb, Valentina; Gao, Mian; Kiefer, Susan E; Yanchunas, Joseph; Huang, Yanling; Shi, Shuhao; Zhu, Shirong; Dzierba, Carolyn; Bronson, Joanne; Macor, John E; Appiah, Kingsley K; Westphal, Ryan S; O’Connell, Jonathan; Gerritz, Samuel W

    2012-11-09

    Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of tyrosine residues, a process that involves a conserved tryptophan-proline-aspartate (WPD) loop in catalysis. In previously determined structures of PTPs, the WPD-loop has been observed in either an 'open' conformation or a 'closed' conformation. In the current work, X-ray structures of the catalytic domain of receptor-like protein tyrosine phosphatase γ (RPTPγ) revealed a ligand-induced 'superopen' conformation not previously reported for PTPs. In the superopen conformation, the ligand acts as an apparent competitive inhibitor and binds in a small hydrophobic pocket adjacent to, but distinct from, the active site. In the open and closed WPD-loop conformations of RPTPγ, the side chain of Trp1026 partially occupies this pocket. In the superopen conformation, Trp1026 is displaced allowing a 3,4-dichlorobenzyl substituent to occupy this site. The bound ligand prevents closure of the WPD-loop over the active site and disrupts the catalytic cycle of the enzyme.

  12. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1.

    PubMed

    Lehrbach, Nicolas J; Ruvkun, Gary

    2016-01-01

    Proteasomes are essential for protein homeostasis in eukaryotes. To preserve cellular function, transcription of proteasome subunit genes is induced in response to proteasome dysfunction caused by pathogen attacks or proteasome inhibitor drugs. In Caenorhabditis elegans, this response requires SKN-1, a transcription factor related to mammalian Nrf1/2. Here, we use comprehensive genetic analyses to identify the pathway required for C. elegans to detect proteasome dysfunction and activate SKN-1. Genes required for SKN-1 activation encode regulators of ER traffic, a peptide N-glycanase, and DDI-1, a conserved aspartic protease. DDI-1 expression is induced by proteasome dysfunction, and we show that DDI-1 is required to cleave and activate an ER-associated isoform of SKN-1. Mammalian Nrf1 is also ER-associated and subject to proteolytic cleavage, suggesting a conserved mechanism of proteasome surveillance. Targeting mammalian DDI1 protease could mitigate effects of proteasome dysfunction in aging and protein aggregation disorders, or increase effectiveness of proteasome inhibitor cancer chemotherapies. PMID:27528192

  13. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1

    PubMed Central

    Lehrbach, Nicolas J; Ruvkun, Gary

    2016-01-01

    Proteasomes are essential for protein homeostasis in eukaryotes. To preserve cellular function, transcription of proteasome subunit genes is induced in response to proteasome dysfunction caused by pathogen attacks or proteasome inhibitor drugs. In Caenorhabditis elegans, this response requires SKN-1, a transcription factor related to mammalian Nrf1/2. Here, we use comprehensive genetic analyses to identify the pathway required for C. elegans to detect proteasome dysfunction and activate SKN-1. Genes required for SKN-1 activation encode regulators of ER traffic, a peptide N-glycanase, and DDI-1, a conserved aspartic protease. DDI-1 expression is induced by proteasome dysfunction, and we show that DDI-1 is required to cleave and activate an ER-associated isoform of SKN-1. Mammalian Nrf1 is also ER-associated and subject to proteolytic cleavage, suggesting a conserved mechanism of proteasome surveillance. Targeting mammalian DDI1 protease could mitigate effects of proteasome dysfunction in aging and protein aggregation disorders, or increase effectiveness of proteasome inhibitor cancer chemotherapies. DOI: http://dx.doi.org/10.7554/eLife.17721.001 PMID:27528192

  14. H-Ras Modulates N-Methyl-d-aspartate Receptor Function via Inhibition of Src Tyrosine Kinase Activity*

    PubMed Central

    Thornton, Claire; Yaka, Rami; Dinh, Son; Ron, Dorit

    2005-01-01

    Tyrosine phosphorylation of the NR2A and NR2B subunits of the N-methyl-d-aspartate (NMDA) receptor by Src protein-tyrosine kinases modulates receptor channel activity and is necessary for the induction of long term potentiation (LTP). Deletion of H-Ras increases both NR2 tyrosine phosphorylation and NMDA receptor-mediated hippocampal LTP. Here we investigated whether H-Ras regulates phosphorylation and function of the NMDA receptor via Src family protein-tyrosine kinases. We identified Src as a novel H-Ras binding partner. H-Ras bound to Src but not Fyn both in vitro and in brain via the Src kinase domain. Cotransfection of H-Ras and Src inhibited Src activity and decreased NR2A tyrosine phosphorylation. Treatment of rat brain slices with Tat-H-Ras depleted NR2A from the synaptic membrane, decreased endogenous Src activity and NR2A phosphorylation, and decreased the magnitude of hip-pocampal LTP. No change was observed for NR2B. We suggest that H-Ras negatively regulates Src phosphorylation of NR2A and retention of NR2A into the synaptic membrane leading to inhibition of NMDA receptor function. This mechanism is specific for Src and NR2A and has implications for studies in which regulation of NMDA receptor-mediated LTP is important, such as synaptic plasticity, learning, and memory and addiction. PMID:12695509

  15. Assessment of lactate dehydrogenase, alkaline phosphatase and aspartate aminotransferase activities in cow's milk as an indicator of subclinical mastitis.

    PubMed

    Babaei, H; Mansouri-Najand, L; Molaei, M M; Kheradmand, A; Sharifan, M

    2007-05-01

    This study examined the activities of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in the milk of lactating Holstein cows in association with subclinical mastitis (SCM). A total of 94 milk samples were collected from 58 lactating dairy cows representing stages of lactation from the second to the tenth week after calving. Those which were classified as positive by California mastitis test (CMT) were deemed to have subclinical mastitis. All the milk samples were skimmed by centrifugation at 10 000g at 0 degrees C and were used for enzyme activities estimations. The mean activities of LDH and ALP were higher in the milk from udders with SCM than in the milk from healthy udders (p < 0.05). There were no significant differences in AST values. The maximum agreement rates between the CMT results and LDH and ALP values were seen at thresholds of > 180 IU/L and > 40 IU/L respectively (kappa values 0.65 and 0.79, respectively). However, the sensitivity of the tests for identifying SCM at these thresholds was higher for ALP (96.4%) than for LDH (68.5%). In this study, LDH and ALP tests were standardized for cow's milk and results showed that only the ALP test was reliable in the early diagnosis of subclinical mastitis. PMID:17268916

  16. Serum γ-Glutamyltransferase, Alanine Aminotransferase and Aspartate Aminotransferase Activity in Healthy Blood Donor of Different Ethnic Groups in Gorgan

    PubMed Central

    Mehrpouya, Masoumeh; Pourhashem, Zeinab

    2016-01-01

    Introduction Measure of liver enzymes may help to increase safety of blood donation for both blood donor and recipient. Determination of liver enzymes may prepare valuable clinical information. Aim To assess serum γ-Glutamyltransferase (GGT), Alanine Aminotransferase (ALT), and Aspartate Aminotransferase (AST) activities in healthy blood donors in different ethnic groups in Gorgan. Materials and Methods This study was performed in 450 healthy male blood donors, in three ethnic groups (Fars, Sistanee and Turkman) who attended Gorgan blood transfusion center. Liver enzymes (GGT, ALT and AST) were determined. Results Serum AST and ALT in three ethnic groups were significant except for serum GGT levels. There was significant correlation between family histories of liver disease and systolic blood pressure and AST in Fars, and GGT in Sistanee ethnic groups. Conclusion Several factors, such as age, family history of diabetes mellitus, family history of liver disease and smoking habit had no effect on some liver enzymes in different ethnic groups in this area. Variation of AST, ALT, and GGT enzyme activities in healthy subjects was associated with some subjects in our study groups. According to our study, it suggests that screening of AST and GGT enzymes in subjects with family history of liver disease is necessary in different ethnic groups.

  17. Light activates the reaction of bacteriorhodopsin aspartic acid-115 with dicyclohexylcarbodiimide

    SciTech Connect

    Renthal, R.; Cothran, M.; Espinoza, B.; Wall, K.A.; Bernard, M.

    1985-07-30

    Conditions for a light-induced reaction between the carboxyl-modifying reagent N,N'-dicyclohexylcarbodiimide (DCCD) and bacteriorhodopsin in Triton X-100 micelles were previously reported. The authors have now located the DCCD site in the bacteriorhodopsin amino acid sequence. ( UC)DCCD-bacteriorhodopsin was cleaved with CNBr. The resulting peptides were purified by gel filtration and reverse-phase high-performance liquid chromatography (HPLC). One major UC peptide (50%) and two minor fractions were obtained. Amino acid analysis and sequence analysis showed that the major fraction contained residues 69-118. This region includes six carboxyl side chains. The major UC peptide was also subjected to pepsin hydrolysis. HPLC analysis of the product gave only a single major radioactive subfragment. Amino acid analysis of the peptic peptide showed that it contained residues 110-118. The only carboxyl side chain in this region is Asp-115. Thus, the authors conclude that Asp-115 is the major DCCD site. The light sensitivity of this reaction suggests that Asp-115 becomes more exposed or that its environment becomes more acidic during proton pumping. The DCCD reaction blue-shifts the retinal chromophore. Such a result would be expected if Asp-115 is the negative point charge predicted to be near the cyclohexene ring of retinal.

  18. The initial step in the archaeal aspartate biosynthetic pathway catalyzed by a monofunctional aspartokinase

    PubMed Central

    Faehnle, Christopher R.; Liu, Xuying; Pavlovsky, Alexander; Viola, Ronald E.

    2006-01-01

    The activation of the β-carboxyl group of aspartate catalyzed by aspartokinase is the commitment step to amino-acid biosynthesis in the aspartate pathway. The first structure of a microbial aspartokinase, that from Methanococcus jannaschii, has been determined in the presence of the amino-acid substrate l-­aspartic acid and the nucleotide product MgADP. The enzyme assembles into a dimer of dimers, with the interfaces mediated by both the N- and C-terminal domains. The active-site functional groups responsible for substrate binding and specificity have been identified and roles have been proposed for putative catalytic functional groups. PMID:17012784

  19. Nuclear Compartmentalization of Serine Racemase Regulates D-Serine Production: IMPLICATIONS FOR N-METHYL-D-ASPARTATE (NMDA) RECEPTOR ACTIVATION.

    PubMed

    Kolodney, Goren; Dumin, Elena; Safory, Hazem; Rosenberg, Dina; Mori, Hisashi; Radzishevsky, Inna; Radzishevisky, Inna; Wolosker, Herman

    2015-12-25

    D-Serine is a physiological co-agonist that activates N-methyl D-aspartate receptors (NMDARs) and is essential for neurotransmission, synaptic plasticity, and behavior. D-Serine may also trigger NMDAR-mediated neurotoxicity, and its dysregulation may play a role in neurodegeneration. D-Serine is synthesized by the enzyme serine racemase (SR), which directly converts L-serine to D-serine. However, many aspects concerning the regulation of D-serine production under physiological and pathological conditions remain to be elucidated. Here, we investigate possible mechanisms regulating the synthesis of D-serine by SR in paradigms relevant to neurotoxicity. We report that SR undergoes nucleocytoplasmic shuttling and that this process is dysregulated by several insults leading to neuronal death, typically by apoptotic stimuli. Cell death induction promotes nuclear accumulation of SR, in parallel with the nuclear translocation of GAPDH and Siah proteins at an early stage of the cell death process. Mutations in putative SR nuclear export signals (NESs) elicit SR nuclear accumulation and its depletion from the cytosol. Following apoptotic insult, SR associates with nuclear GAPDH along with other nuclear components, and this is accompanied by complete inactivation of the enzyme. As a result, extracellular D-serine concentration is reduced, even though extracellular glutamate concentration increases severalfold. Our observations imply that nuclear translocation of SR provides a fail-safe mechanism to prevent or limit secondary NMDAR-mediated toxicity in nearby synapses. PMID:26553873

  20. N-Methyl-D-aspartate Receptor Excessive Activation Inhibited Fetal Rat Lung Development In Vivo and In Vitro

    PubMed Central

    Liao, Zhengchang; Zhou, Xiaocheng; Luo, Ziqiang; Huo, Huiyi; Wang, Mingjie; Yu, Xiaohe; Cao, Chuanding; Ding, Ying; Xiong, Zeng

    2016-01-01

    Background. Intrauterine hypoxia is a common cause of fetal growth and lung development restriction. Although N-methyl-D-aspartate receptors (NMDARs) are distributed in the postnatal lung and play a role in lung injury, little is known about NMDAR's expression and role in fetal lung development. Methods. Real-time PCR and western blotting analysis were performed to detect NMDARs between embryonic days (E) 15.5 and E21.5 in fetal rat lungs. NMDAR antagonist MK-801's influence on intrauterine hypoxia-induced retardation of fetal lung development was tested in vivo, and NMDA's direct effect on fetal lung development was observed using fetal lung organ culture in vitro. Results. All seven NMDARs are expressed in fetal rat lungs. Intrauterine hypoxia upregulated NMDARs expression in fetal lungs and decreased fetal body weight, lung weight, lung-weight-to-body-weight ratio, and radial alveolar count, whereas MK-801 alleviated this damage in vivo. In vitro experiments showed that NMDA decreased saccular circumference and area per unit and downregulated thyroid transcription factor-1 and surfactant protein-C mRNA expression. Conclusions. The excessive activation of NMDARs contributed to hypoxia-induced fetal lung development retardation and appropriate blockade of NMDAR might be a novel therapeutic strategy for minimizing the negative outcomes of prenatal hypoxia on lung development. PMID:27478831

  1. A negatively charged transmembrane aspartate residue controls activation of the relaxin-3 receptor RXFP3.

    PubMed

    Liu, Yu; Zhang, Lei; Shao, Xiao-Xia; Hu, Meng-Jun; Liu, Ya-Li; Xu, Zeng-Guang; Guo, Zhan-Yun

    2016-08-15

    Relaxin-3 is an insulin/relaxin superfamily neuropeptide involved in the regulation of food intake and stress response via activation of its cognate receptor RXFP3, an A-class G protein-coupled receptor (GPCR). In recent studies, a highly conserved ExxxD motif essential for binding of relaxin-3 has been identified at extracellular end of the second transmembrane domain (TMD2) of RXFP3. For most of the A-class GPCRs, a highly conserved negatively charged Asp residue (Asp(2.50) using Ballesteros-Weinstein numbering and Asp128 in human RXFP3) is present at the middle of TMD2. To elucidate function of the conserved transmembrane Asp128, in the present work we replaced it with other residues and the resultant RXFP3 mutants all retained quite high ligand-binding potency, but their activation and agonist-induced internalization were abolished or drastically decreased. Thus, the negatively charged transmembrane Asp128 controlled transduction of agonist-binding information from the extracellular region to the intracellular region through maintaining RXFP3 in a metastable state for efficient conformational change induced by binding of an agonist. PMID:27353281

  2. Distinct intrathecal interleukin-17/interleukin-6 activation in anti-N-methyl-d-aspartate receptor encephalitis.

    PubMed

    Byun, Jung-Ick; Lee, Soon-Tae; Moon, Jangsup; Jung, Keun-Hwa; Sunwoo, Jun-Sang; Lim, Jung-Ah; Kim, Tae-Joon; Shin, Yong-Won; Lee, Keon-Joo; Jun, Jin-Sun; Lee, Han Sang; Lee, Woo-Jin; Kim, Young-Sook; Kim, Soyun; Jeon, Daejong; Park, Kyung-Il; Jung, Ki-Young; Kim, Manho; Chu, Kon; Lee, Sang Kun

    2016-08-15

    The aim of this study was to compare serum and cerebrospinal fluid (CSF) cytokine/chemokine levels between anti-NMDAR and anti-LGI1 encephalitis patients. Samples from fourteen anti-NMDAR encephalitis patients, ten anti-LGI1 encephalitis patients, and ten controls were analyzed for the following cytokines/chemokines: IL-1b, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, IL-17A, IL-23, GM-CSF, IFN-gamma, TNF-alpha, and CXCL13. Compared with controls, CSF IL-17A, IL-6 and CXCL13 were elevated in anti-NMDAR encephalitis patients (post-hoc p-values 0.002, 0.011, and 0.011, respectively) but not in anti-LGI1 encephalitis patients. In the serum, only IL-2 was increased in anti-NMDAR encephalitis. Intrathecal IL-17/IL-6 activation is a characteristic of anti-NMDAR encephalitis. PMID:27397087

  3. Aspartate protects Lactobacillus casei against acid stress.

    PubMed

    Wu, Chongde; Zhang, Juan; Du, Guocheng; Chen, Jian

    2013-05-01

    The aim of this study was to investigate the effect of aspartate on the acid tolerance of L. casei. Acid stress induced the accumulation of intracellular aspartate in L. casei, and the acid-resistant mutant exhibited 32.5 % higher amount of aspartate than that of the parental strain at pH 4.3. Exogenous aspartate improved the growth performance and acid tolerance of Lactobacillus casei during acid stress. When cultivated in the presence of 50 mM aspartate, the biomass of cells increased 65.8 % compared with the control (without aspartate addition). In addition, cells grown at pH 4.3 with aspartate addition were challenged at pH 3.3 for 3 h, and the survival rate increased 42.26-fold. Analysis of the physiological data showed that the aspartate-supplemented cells exhibited higher intracellular pH (pHi), intracellular NH4 (+) content, H(+)-ATPase activity, and intracellular ATP pool. In addition, higher contents of intermediates involved in glycolysis and tricarboxylic acid cycle were observed in cells in the presence of aspartate. The increased contents of many amino acids including aspartate, arginine, leucine, isoleucine, and valine in aspartate-added cells may contribute to the regulation of pHi. Transcriptional analysis showed that the expression of argG and argH increased during acid stress, and the addition of aspartate induced 1.46- and 3.06-fold higher expressions of argG and argH, respectively, compared with the control. Results presented in this manuscript suggested that aspartate may protect L. casei against acid stress, and it may be used as a potential protectant during the production of probiotics. PMID:23292549

  4. N-Methyl-d-Aspartate Receptor and Neuronal Nitric Oxide Synthase Activation Mediate Bilirubin-Induced Neurotoxicity

    PubMed Central

    Brito, Maria A; Vaz, Ana R; Silva, Sandra L; Falcão, Ana S; Fernandes, Adelaide; Silva, Rui FM; Brites, Dora

    2010-01-01

    Hyperbilirubinemia may lead to neurotoxicity and neuronal death. Although the mechanisms of nerve cell damage by unconjugated bilirubin (UCB) appear to involve a disruption of the redox status and excitotoxicity, the contribution of nitric oxide (NO·) and of N-methyl-d-aspartate (NMDA) glutamate receptors is unclear. We investigated the role of NO· and NMDA glutamate receptors in the pathways of nerve cell demise by UCB. Neurons were incubated with 100 μmol/L UCB, in the presence of 100 μmol/L human serum albumin for 4 h at 37ºC, alone or in combination with N-ω-nitro-l-arginine methyl ester (l-NAME) (an inhibitor of neuronal nitric oxide synthase [nNOS]), hemoglobin (an NO· scavenger) or (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) (an NMDA-receptor antagonist). Exposure to UCB led to increased expression of nNOS and production of both NO· and cyclic guanosine 3′,5′-monophosphate (cGMP), along with protein oxidation and depletion of glutathione. These events concurred for cell dysfunction and death and were counteracted by l-NAME. Moreover, the UCB-induced loss of neuronal viability was abolished by hemoglobin, whereas the activation of nNOS and production of both NO· and cGMP were counteracted by MK-801, resulting in significant protection from cell dysfunction and death. These results reinforce the involvement of oxidative stress by showing that nerve cell damage by UCB is mediated by NO· and therefore is counteracted by NO· inhibitors or scavengers. Our findings strongly suggest that the activation of nNOS and neurotoxicity occur through the engagement of NMDA receptors. These data reveal a role for overstimulation of glutamate receptors in mediating oxidative damage by UCB. PMID:20593111

  5. An active-site peptide from pepsin C

    PubMed Central

    Kay, J.; Ryle, A. P.

    1971-01-01

    Porcine pepsin C is inactivated rapidly and irreversibly by diazoacetyl-dl-norleucine methyl ester in the presence of cupric ions at pH values above 4.5. The inactivation is specific in that complete inactivation accompanies the incorporation of 1mol of inhibitor residue/mol of enzyme and evidence has been obtained to suggest that the reaction occurs with an active site residue. The site of reaction is the β-carboxyl group of an aspartic acid residue in the sequence Ile-Val-Asp-Thr. This sequence is identical with the active-site sequence in pepsin and the significance of this in terms of the different activities of the two enzymes is discussed. PMID:4942834

  6. A novel phosphorylation site of N-methyl-D-aspartate receptor GluN2B at S1284 is regulated by Cdk5 in neuronal ischemia.

    PubMed

    Lu, Wen; Ai, Heng; Peng, Lin; Wang, Jie-jie; Zhang, Bin; Liu, Xiao; Luo, Jian-hong

    2015-09-01

    N-methyl-D-aspartate receptors (NMDARs) are a key player in synaptic and several neurological diseases, such as stroke. Phosphorylation of NMDAR subunits at their cytoplasmic carboxyl termini has been considered to be an important mechanism to regulate the receptor function. Cyclin-dependent kinase 5 (Cdk5) has been demonstrated to be responsible for regulating phosphorylation and function of NMDARs. Besides, it is also suggested that Cdk5 is involved in ischemic insult. In the present study, we showed that GluN2B subunit serine 1284 at its cytoplasmic carboxyl termini was regulated by Cdk5 in neuronal ischemia. Interestingly, both oxygen glucose deprivation (OGD) in cultured hippocampal neurons and transient global ischemia in mice induce dramatic changes in the phosphorylated level of GluN2B at S1284. However, no significant changes in the phosphorylation of this site are found neither in chemical LTP stimulation in cultured hippocampal neurons nor fear conditioning in adult mice. Taken together, our study identified NMDAR GluN2B S1284 as a novel phosphorylation site regulated by Cdk5 with implication in neuronal ischemia. PMID:26093036

  7. Alpha1-Adrenoceptor Antagonists Improve Memory by Activating N-methyl-D-Aspartate-Induced Ion Currents in the Rat Hippocampus

    PubMed Central

    Ko, Il Gyu; Kim, Sung Eun; Shin, Mal Soon; Kang, Yeon Ho; Cho, Jung Wan; Shin, Key Moon; Kim, Chang Ju; Lim, Baek Vin

    2015-01-01

    Purpose: Alpha1 (α1)-adrenoceptor antagonists are widely used to treat lower urinary tract symptoms. These drugs not only act on peripheral tissues, but also cross the blood-brain barrier and affect the central nervous system. Therefore, α1-adrenoceptor antagonists may enhance brain functions. In the present study, we investigated the effects of tamsulosin, an α1-adrenoceptor antagonist, on short-term memory, as well as spatial learning and memory, in rats. Methods: The step-down avoidance test was used to evaluate short-term memory, and an eight-arm radial maze test was used to evaluate spatial learning and memory. TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling) staining was performed in order to evaluate the effect of tamsulosin on apoptosis in the hippocampal dentate gyrus. Patch clamp recordings were used to evaluate the effect of tamsulosin on ionotropic glutamate receptors, such as N-methyl-D-aspartate (NMDA), amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and kainate receptors, in hippocampal CA1 neurons. Results: Tamsulosin treatment improved short-term memory, as well as spatial learning and memory, without altering apoptosis. The amplitudes of NMDA-induced ion currents were dose-dependently increased by tamsulosin. However, the amplitudes of AMPA- and kainate-induced ion currents were not affected by tamsulosin. Conclusions: Tamsulosin enhanced memory function by activating NMDA receptor-mediated ion currents in the hippocampus without initiating apoptosis. The present study suggests the possibility of using tamsulosin to enhance memory under normal conditions, in addition to its use in treating overactive bladder. PMID:26739177

  8. Deciphering the Role of Aspartate and Prephenate Aminotransferase Activities in Plastid Nitrogen Metabolism1[C][W][OPEN

    PubMed Central

    de la Torre, Fernando; El-Azaz, Jorge; Ávila, Concepción; Cánovas, Francisco M.

    2014-01-01

    Chloroplasts and plastids of nonphotosynthetic plant cells contain two aspartate (Asp) aminotransferases: a eukaryotic type (Asp5) and a prokaryotic-type bifunctional enzyme displaying Asp and prephenate aminotransferase activities (PAT). We have identified the entire Asp aminotransferase gene family in Nicotiana benthamiana and isolated and cloned the genes encoding the isoenzymes with plastidic localization: NbAsp5 and NbPAT. Using a virus-induced gene silencing approach, we obtained N. benthamiana plants silenced for NbAsp5 and/or NbPAT. Phenotypic and metabolic analyses were conducted in silenced plants to investigate the specific roles of these enzymes in the biosynthesis of essential amino acids within the plastid. The NbAsp5 silenced plants had no changes in phenotype, exhibiting similar levels of free Asp and glutamate as control plants, but contained diminished levels of asparagine and much higher levels of lysine. In contrast, the suppression of NbPAT led to a severe reduction in growth and strong chlorosis symptoms. NbPAT silenced plants exhibited extremely reduced levels of asparagine and were greatly affected in their phenylalanine metabolism and lignin deposition. Furthermore, NbPAT suppression triggered a transcriptional reprogramming in plastid nitrogen metabolism. Taken together, our results indicate that NbPAT has an overlapping role with NbAsp5 in the biosynthesis of Asp and a key role in the production of phenylalanine for the biosynthesis of phenylpropanoids. The analysis of NbAsp5/NbPAT cosilenced plants highlights the central role of both plastidic aminotransferases in nitrogen metabolism; however, only NbPAT is essential for plant growth and development. PMID:24296073

  9. Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase.

    PubMed Central

    Ford, G C; Eichele, G; Jansonius, J N

    1980-01-01

    X-ray diffraction studies to 2.8-A resolution have yielded the three-dimensional structure of mitochondrial aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1), an isologous alpha 2 dimer (Mr = 2 x 45,000). The subunits are rich in secondary structure and contain two domains, one of which anchors the coenzyme, pyridoxal 5'-phosphate. Each active site lies between the subunits and is composed of residues from both of them. PMID:6930651

  10. Crystal structure and molecular mechanism of an aspartate/glutamate racemase from Escherichia coli O157.

    PubMed

    Liu, Xiuhua; Gao, Fei; Ma, Yinliang; Liu, Shuang; Cui, Yaqi; Yuan, Zenglin; Kang, Xianjiang

    2016-04-01

    EcL-DER, the aspartate/glutamate racemase from the pathogen Escherichia coli O157, exhibits racemase activity for l-aspartate and l-glutamate. This study reports the crystal structures of apo-EcL-DER, the EcL-DER-l-aspartate and the EcL-DER-d-aspartate complexes. The EcL-DER structure contains two domains, forming pseudo-mirror symmetry in the active site. A unique catalytic pair consisting of Thr(83) and Cys(197) exists in the active site. The characteristic conformations of l-Asp and d-Asp in the active site provide a straight structural evidence for the racemization mechanism of EcL-DER. In addition, the diversity of catalytic pairs implies that PLP-independent amino acid racemases adopt various catalytic mechanisms and are classified into different subgroups. PMID:27001440

  11. Blockade by sigma site ligands of N-methyl-D-aspartate-evoked responses in rat and mouse cultured hippocampal pyramidal neurones.

    PubMed Central

    Fletcher, E. J.; Church, J.; Abdel-Hamid, K.; MacDonald, J. F.

    1995-01-01

    1. The effects of a range of structurally-dissimilar compounds which possess affinity for sigma binding sites were examined on the responses of cultured hippocampal pyramidal neurones to the excitatory amino acid analogues N-methyl-D-aspartate (NMDA), kainate and (RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). 2. In mouse hippocampal neurones under whole-cell voltage-clamp, the compounds tested reversibly attenuated NMDA-, but not kainate- or AMPA-, evoked currents with a rank order potency (IC50 values in microM): ifenprodil (0.8) > (+)-N-allylnormetazocine (1.1) > dextromethorphan (1.8) = haloperidol (1.9) > (+)-pentazocine (7.2) > 1S,2R-(-)-cis-N-methyl-N-[2-(3, 4-dichlorophenyl) ethyl]-2-(1-pyrrolidinyl)cyclohexylamine (17) = rimcazole (18) > 1,3-di(2-tolyl)guanidine (37) > opipramol (96) > caramiphen (110) = carbetapentane (112) > > (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine (485). 3. The attenuation of NMDA-evoked responses was not mediated through interactions with the agonist, glycine (except haloperidol) or polyamine (except ifenprodil) binding sites on the NMDA receptor-channel complex but, in the light of the voltage- and, in some cases, use-dependent nature of their antagonism, an interaction with the ion channel appears to be a likely mechanism of action for many of the compounds. 4. Micromolar concentrations of selected sigma site ligands also reduced NMDA-evoked rises in intracellular free calcium concentration in Fura-2-loaded cultured hippocampal neurones of the rat with the same rank order potency as observed in the electrophysiological studies. 5. The data indicate that, at micromolar concentrations, the sigma site ligands tested act as NMDA receptor antagonists, an action which does not appear to be mediated by high-affinity sigma binding site(s). The functional effects of micromolar concentrations of sigma site ligands cannot, therefore, be attributed exclusively to interactions with high-affinity sigma binding sites

  12. Aspartic Acid 397 in Subunit B of the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae Forms Part of a Sodium-binding Site, Is Involved in Cation Selectivity, and Affects Cation-binding Site Cooperativity

    PubMed Central

    Shea, Michael E.; Juárez, Oscar; Cho, Jonathan; Barquera, Blanca

    2013-01-01

    The Na+-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC). PMID:24030824

  13. Active-site mobility revealed by the crystal structure of arylmalonate decarboxylase from Bordetella bronchiseptica.

    PubMed

    Kuettner, E Bartholomeus; Keim, Antje; Kircher, Markus; Rosmus, Susann; Sträter, Norbert

    2008-03-21

    Arylmalonate decarboxylase (AMDase) from Bordetella bronchiseptica catalyzes the enantioselective decarboxylation of arylmethylmalonates without the need for an organic cofactor or metal ion. The decarboxylation reaction is of interest for the synthesis of fine chemicals. As basis for an analysis of the catalytic mechanism of AMDase and for a rational enzyme design, we determined the X-ray structure of the enzyme up to 1.9 A resolution. Like the distantly related aspartate or glutamate racemases, AMDase has an aspartate transcarbamoylase fold consisting of two alpha/beta domains related by a pseudo dyad. However, the domain orientation of AMDase differs by about 30 degrees from that of the glutamate racemases, and also significant differences in active-site structures are observed. In the crystals, four independent subunits showing different conformations of active-site loops are present. This finding is likely to reflect the active-site mobility necessary for catalytic activity. PMID:18258259

  14. Lack of correlation between mRNA expression and enzymatic activity of the aspartate aminotransferase isoenzymes in various tissues of the rat.

    PubMed

    Abruzzese, F; Greco, M; Perlino, E; Doonan, S; Marra, E

    1995-06-12

    Little is known about control of expression of basal levels of the aspartate aminotransferases which are ubiquitous 'house keeping' enzymes in vertebrates. We have measured both mRNA and activity levels for both isoenzymes in various rat tissues as a function of age. Patterns of mRNA expression for the two isoenzymes were similar in a particular tissue about differed widely between tissues. Surprisingly, there was no simple correlation between mRNA levels and specific activities of the enzyme products. We conclude that translation for mRNA for these two isoenzymes is subject to tissue-specific, and in some cases age-related, regulation. PMID:7789537

  15. Modulation of protein tyrosine phosphatase activity alters the subunit assembly in native N-methyl-D-aspartate receptor complex.

    PubMed

    Ferrani-Kile, Karima; Leslie, Steven W

    2005-07-01

    The N-methyl-D-aspartate (NMDA) receptor is crucial for development and neuroplasticity as well as excitotoxicity. The biochemical basis of the disassembly and reassembly of NMDA receptor has never been reported. Using coimmunoprecipitation, Western blotting, and mass spectrometry, we show that inhibition of tyrosine phosphatases triggers disassembly of NR1, NR2A, and NR2B in cortical NMDA receptor complexes. Furthermore, the disassembly of the NMDA receptor subunits is immediate, dose-dependent, and reversible and seems to occur through mechanisms linked to Src kinases. Together, these results define a novel role for tyrosine phosphatases in the complex mechanism of NMDA receptor regulation. PMID:15837820

  16. A Novel Aspartic Protease with HIV-1 Reverse Transcriptase Inhibitory Activity from Fresh Fruiting Bodies of the Wild Mushroom Xylaria hypoxylon

    PubMed Central

    Hu, Qing-Xiu; Zhang, Guo-Qing; Zhang, Rui-Ying; Hu, Dan-Dan; Wang, He-Xiang; Ng, Tzi Bun

    2012-01-01

    A novel aspartic protease with HIV-1 RT inhibitory activity was isolated and characterized from fruiting bodies of the wild mushroom Xylaria hypoxylon. The purification protocol comprised distilled water homogenization and extraction step, three ion exchange chromatographic steps (on DEAE-cellulose, Q-Sepharose, and CM-cellulose in succession), and final purification was by FPLC on Superdex 75. The protease was adsorbed on all the three ion exchangers. It was a monomeric protein with a molecular mass of 43 kDa as estimated by SDS-PAGE and FPLC. Its N-terminal amino acid sequence was HYTELLSQVV, which exhibited no sequence homology to other proteases reported. The activity of the protease was adversely affected by Pepstatin A, indicating that it is an aspartic protease. The protease activity was maximal or nearly so in the pH range 6–8 and in the temperature range 35–60°C. The purified enzyme exhibited HIV-1 RT inhibitory activity with an IC50 value of 8.3 μM, but was devoid of antifungal, ribonuclease, and hemagglutinating activities. PMID:22675256

  17. Molecular cloning and enzymological characterization of pyridoxal 5'-phosphate independent aspartate racemase from hyperthermophilic archaeon Thermococcus litoralis DSM 5473.

    PubMed

    Washio, Tsubasa; Kato, Shiro; Oikawa, Tadao

    2016-09-01

    We succeeded in expressing the aspartate racemase homolog gene from Thermococcus litoralis DSM 5473 in Escherichia coli Rosetta (DE3) and found that the gene encodes aspartate racemase. The aspartate racemase gene consisted of 687 bp and encoded 228 amino acid residues. The purified enzyme showed aspartate racemase activity with a specific activity of 1590 U/mg. The enzyme was a homodimer with a molecular mass of 56 kDa and did not require pyridoxal 5'-phosphate as a coenzyme. The enzyme showed aspartate racemase activity even at 95 °C, and the activation energy of the enzyme was calculated to be 51.8 kJ/mol. The enzyme was highly thermostable, and approximately 50 % of its initial activity remained even after incubation at 90 °C for 11 h. The enzyme showed a maximum activity at a pH of 7.5 and was stable between pH 6.0 and 7.0. The enzyme acted on L-cysteic acid and L-cysteine sulfinic acid in addition to D- and L-aspartic acids, and was strongly inhibited by iodoacetic acid. The site-directed mutagenesis of the enzyme showed that the essential cysteine residues were conserved as Cys83 and Cys194. D-Forms of aspartic acid, serine, alanine, and valine were contained in T. litoralis DSM 5473 cells. PMID:27438592

  18. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  19. Topology of AspT, the Aspartate:Alanine Antiporter of Tetragenococcus halophilus, Determined by Site-Directed Fluorescence Labeling▿ †

    PubMed Central

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C.; Abe, Keietsu

    2007-01-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of l-aspartate (Asp) with release of l-alanine (Ala) and CO2. The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an l-aspartate-β-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity. PMID:17660287

  20. Role of N-methyl-D-aspartate receptors in the neuroprotective activation of extracellular signal-regulated kinase 1/2 by cisplatin.

    PubMed

    Gozdz, Agata; Habas, Agata; Jaworski, Jacek; Zielinska, Magdalena; Albrecht, Jan; Chlystun, Marcin; Jalili, Ahmad; Hetman, Michal

    2003-10-31

    Neurons are exposed to damaging stimuli that can trigger cell death and subsequently cause serious neurological disorders. Therefore, it is important to define defense mechanisms that can be activated in response to damage to reduce neuronal loss. Here we report that cisplatin (CPDD), a neurotoxic anticancer drug that damages DNA, triggered apoptosis and activated the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in cultured rat cortical neurons. Inhibition of ERK1/2 activation using either pharmacological inhibitors or a dominant-negative mutant of the ERK1/2 activator, mitogen-activated protein kinase kinase 1, increased the toxicity of CPDD. Interestingly, N-methyl-d-aspartate (NMDA) receptor (NMDAR) antagonists reduced the ERK1/2 activation and exacerbated apoptosis in CPDD-treated neurons. Pre-treatment with CPDD increased ERK1/2 activation triggered by exogenous NMDA, suggesting that CPDD augmented NMDAR responsiveness. CPDD-enhanced response of NMDAR and CPDD-mediated ERK1/2 activation were both decreased by inhibition of poly(ADP-ribose) polymerase (PARP). Interestingly, PARP activation did not produce ATP depletion, suggesting involvement of a non-energetic mechanism in NMDAR regulation by PARP. Finally, CPDD toxicity was reduced by brain-derived neurotrophic factor, and this protection required ERK1/2. In summary, our data identify a novel compensatory circuit in central nervous system neurons that couples the DNA injury, through PARP and NMDAR, to the defensive ERK1/2 activation. PMID:12930843

  1. Identification of a small molecule [beta]-secretase inhibitor that binds without catalytic aspartate engagement

    SciTech Connect

    Steele, Thomas G.; Hills, Ivory D.; Nomland, Ashley A.; de León, Pablo; Allison, Timothy; McGaughey, Georgia; Colussi, Dennis; Tugusheva, Katherine; Haugabook, Sharie J.; Espeseth, Amy S.; Zuck, Paul; Graham, Samuel L.; Stachel, Shawn J.

    2010-09-02

    A small molecule inhibitor of beta-secretase with a unique binding mode has been developed. Crystallographic determination of the enzyme-inhibitor complex shows the catalytic aspartate residues in the active site are not engaged in inhibitor binding. This unprecedented binding mode in the field of aspartyl protease inhibition is described.

  2. Isolation and characterization of recombinant Drosophila Copia aspartic proteinase.

    PubMed

    Athauda, Senarath B P; Yoshioka, Katsuji; Shiba, Tadayoshi; Takahashi, Kenji

    2006-11-01

    The wild type Copia Gag precursor protein of Drosophila melanogaster expressed in Escherichia coli was shown to be processed autocatalytically to generate two daughter proteins with molecular masses of 33 and 23 kDa on SDS/PAGE. The active-site motif of aspartic proteinases, Asp-Ser-Gly, was present in the 23 kDa protein corresponding to the C-terminal half of the precursor protein. The coding region of this daughter protein (152 residues) in the copia gag gene was expressed in E. coli to produce the recombinant enzyme protein as inclusion bodies, which was then purified and refolded to create the active enzyme. Using the peptide substrate His-Gly-Ile-Ala-Phe-Met-Val-Lys-Glu-Val-Asn (cleavage site: Phe-Met) designed on the basis of the sequence of the cleavage-site region of the precursor protein, the enzymatic properties of the proteinase were investigated. The optimum pH and temperature of the proteinase toward the synthetic peptide were 4.0 and 70 degrees C respectively. The proteolytic activity was increased with increasing NaCl concentration in the reaction mixture, the optimum concentration being 2 M. Pepstatin A strongly inhibited the enzyme, with a Ki value of 15 nM at pH 4.0. On the other hand, the active-site residue mutant, in which the putative catalytic aspartic acid residue was mutated to an alanine residue, had no activity. These results show that the Copia proteinase belongs to the family of aspartic proteinases including HIV proteinase. The B-chain of oxidized bovine insulin was hydrolysed at the Leu15-Tyr16 bond fairly selectively. Thus the recombinant Copia proteinase partially resembles HIV proteinase, but is significantly different from it in certain aspects. PMID:16813567

  3. Aspartic acid functions as carbonyl trapper to inhibit the formation of advanced glycation end products by chemical chaperone activity.

    PubMed

    Prasanna, Govindarajan; Saraswathi, N T

    2016-05-01

    Advanced glycation end products (AGEs) were implicated in pathology of numerous diseases. In this study, we present the bioactivity of aspartic acid (Asp) to inhibit the AGEs. Hemoglobin and bovine serum albumin (BSA) were glycated with glucose, fructose, and ribose in the presence and absence of Asp (100-200 μM). HbA1c inhibition was investigated using human blood and characterized by micro-column ion exchange chromatography. The effect of methyl glyoxal (MG) on hemoglobin and BSA was evaluated by fluorescence spectroscopy and gel electrophoresis. The effect of MG on red blood cells morphology was characterized by scanning electron micrographs. Molecular docking was performed on BSA with Asp. Asp is capable of inhibiting the formation of fluorescent AGEs by reacting with the reducing sugars. The presence of Asp as supplement in whole blood reduced the HbA1c% from 8.8 to 6.1. The presence of MG showed an increase in fluorescence and the presence of Asp inhibited the glycation thereby the fluorescence was quenched. MG also affected the electrophoretic mobility of hemoglobin and BSA by forming high molecular weight aggregates. Normal RBCs showed typical biconcave shape. MG modified RBCs showed twisted and elongated shape whereas the presence of ASP tends to protect RBC from twisting. Asp interacted with arginine residues of bovine serum albumin particularly ARG 194, ARG 198, and ARG 217 thereby stabilized the protein complex. We conclude that Asp has dual functions as a chemical chaperone to stabilize protein and as a dicarbonyl trapper, and thereby it can prevent the complications caused by glycation. PMID:26325019

  4. Probing the promiscuous active site of myo-inositol dehydrogenase using synthetic substrates, homology modeling, and active site modification.

    PubMed

    Daniellou, Richard; Zheng, Hongyan; Langill, David M; Sanders, David A R; Palmer, David R J

    2007-06-26

    The active site of myo-inositol dehydrogenase (IDH, EC 1.1.1.18) from Bacillus subtilis recognizes a variety of mono- and disaccharides, as well as 1l-4-O-substituted inositol derivatives. It catalyzes the NAD+-dependent oxidation of the axial alcohol of these substrates with comparable kinetic constants. We have found that 4-O-p-toluenesulfonyl-myo-inositol does not act as a substrate for IDH, in contrast to structurally similar compounds such as those bearing substituted benzyl substituents in the same position. X-ray crystallographic analysis of 4-O-p-toluenesulfonyl-myo-inositol and 4-O-(2-naphthyl)methyl-myo-inositol, which is a substrate for IDH, shows a distinct difference in the preferred conformation of the aryl substituent. Conformational analysis of known substrates of IDH suggests that this conformational difference may account for the difference in reactivity of 4-O-p-toluenesulfonyl-myo-inositol in the presence of IDH. A sequence alignment of IDH with the homologous glucose-fructose oxidoreductase allowed the construction of an homology model of inositol dehydrogenase, to which NADH and 4-O-benzyl-scyllo-inosose were docked and the active site energy minimized. The active site model is consistent with all experimental results and suggests that a conserved tyrosine-glycine-tyrosine motif forms the hydrophobic pocket adjoining the site of inositol recognition. Y233F and Y235F retain activity, while Y233R and Y235R do not. A histidine-aspartate pair, H176 and D172, are proposed to act as a dyad in which H176 is the active site acid/base. The enzyme is inactivated by diethyl pyrocarbonate, and the mutants H176A and D172N show a marked loss of activity. Kinetic isotope effect experiments with D172N indicate that chemistry is rate-determining for this mutant. PMID:17539607

  5. Effects of acute and repeated administration of N-methyl-D-aspartate (NMDA) into the ventral tegmental area: locomotor activating effects of NMDA and cocaine.

    PubMed

    Schenk, S; Partridge, B

    1997-09-26

    Repeated, intermittent administration of psychostimulants produces an enhancement of the subsequent behavioral effects of these drugs. This behavioral sensitization has been implicated in maintenance of and relapse to drug-taking. As a result, there has been great interest in elucidating the mechanisms underlying both the development and expression of sensitization. An accumulation of data from studies of stimulant-induced locomotor activity has implicated excitatory amino acids in the development of behavioral sensitization. In the present study, N-methyl-D-aspartate (NMDA) (0.6, 1.25 or 2.5 microg) infused bilaterally into the ventral tegmental area (VTA) produced dose-dependent locomotor activation. The locomotor activating effect of NMDA was increased following repeated NMDA administration (two exposures to intra-VTA NMDA), suggesting sensitization. However, repeated intra-VTA NMDA failed to sensitize rats to the locomotor activating effects of systemically administered cocaine (5.0, 10.0 or 20.0 mg/kg). These findings are consistent with the notion that repeated activation of NMDA receptors is sufficient for the development of behavioral sensitization to NMDA. Other neuroadaptations produced by repeated psychostimulant administration are required in order for the development of sensitization to the behavioral effects of those drugs. PMID:9374190

  6. Expression of the survival of motor neuron (SMN) gene in primary neurons and increase in SMN levels by activation of the N-methyl-D-aspartate glutamate receptor.

    PubMed

    Andreassi, Catia; Patrizi, Anna Letizia; Monani, Umrao R; Burghes, A H M; Brahe, Christina; Eboli, Maria Luisa

    2002-03-01

    Spinal muscular atrophy (SMA) is a common motor neuron degenerative disease caused by mutations of the survival of motor neuron (SMN) gene. The SMN protein is expressed ubiquitously as part of a 300-kilodalton multi-protein complex, incorporating several proteins critically required in pre-mRNA splicing. Although SMN mutations render SMN defective in this role, the specific alpha-motor neuron degenerative phenotype seen in the disease remains unexplained. During the differentiation process of spinal motor neurons and cerebellar granule cells, the acquisition of mature electrophysiological and molecular properties is linked to the activation of the glutamate receptors of N-methyl-D-aspartate (NMDA) subtype. We have used primary cultures of rat cerebellar granules to study SMN expression during neuronal differentiation in vitro and in response to the activation of the NMDA receptor. We report that the expression of gems, the nuclear structures where SMN concentrates, is developmentally regulated. The highest expression is associated with the cell clustering phase and expression of NMDA receptors. Stimulation of the NMDA receptor induces an increase in gem number and in SMN transcription, through activation of its promoter. These results demonstrate that SMN levels are dependent on synaptic activity, implying that SMN may have important neuron-specific functions downstream of synaptic activation. PMID:12030329

  7. Crystal structure of truncated aspartate transcarbamoylase from Plasmodium falciparum.

    PubMed

    Lunev, Sergey; Bosch, Soraya S; Batista, Fernando de Assis; Wrenger, Carsten; Groves, Matthew R

    2016-07-01

    The de novo pyrimidine-biosynthesis pathway of Plasmodium falciparum is a promising target for antimalarial drug discovery. The parasite requires a supply of purines and pyrimidines for growth and proliferation and is unable to take up pyrimidines from the host. Direct (or indirect) inhibition of de novo pyrimidine biosynthesis via dihydroorotate dehydrogenase (PfDHODH), the fourth enzyme of the pathway, has already been shown to be lethal to the parasite. In the second step of the plasmodial pyrimidine-synthesis pathway, aspartate and carbamoyl phosphate are condensed to N-carbamoyl-L-aspartate and inorganic phosphate by aspartate transcarbamoylase (PfATC). In this paper, the 2.5 Å resolution crystal structure of PfATC is reported. The space group of the PfATC crystals was determined to be monoclinic P21, with unit-cell parameters a = 87.0, b = 103.8, c = 87.1 Å, α = 90.0, β = 117.7, γ = 90.0°. The presented PfATC model shares a high degree of homology with the catalytic domain of Escherichia coli ATC. There is as yet no evidence of the existence of a regulatory domain in PfATC. Similarly to E. coli ATC, PfATC was modelled as a homotrimer in which each of the three active sites is formed at the oligomeric interface. Each active site comprises residues from two adjacent subunits in the trimer with a high degree of evolutional conservation. Here, the activity loss owing to mutagenesis of the key active-site residues is also described. PMID:27380369

  8. The mitochondrial aspartate/glutamate carrier isoform 1 gene expression is regulated by CREB in neuronal cells

    PubMed Central

    Menga, Alessio; Iacobazzi, Vito; Infantino, Vittoria; Avantaggiati, Maria Laura; Palmieri, Ferdinando

    2015-01-01

    The aspartate/glutamate carrier isoform 1 is an essential mitochondrial transporter that exchanges intramitochondrial aspartate and cytosolic glutamate across the inner mitochondrial membrane. It is expressed in brain, heart and muscle and is involved in important biological processes, including myelination. However, the signals that regulate the expression of this transporter are still largely unknown. In this study we first identify a CREB binding site within the aspartate/glutamate carrier gene promoter that acts as a strong enhancer element in neuronal SH-SY5Y cells. This element is regulated by active, phosphorylated CREB protein and by signal pathways that modify the activity of CREB itself and, most noticeably, by intracellular Ca2+ levels. Specifically, aspartate/glutamate carrier gene expression is induced via CREB by forskolin while it is inhibited by the PKA inhibitor, H89. Furthermore, the CREB-induced activation of gene expression is increased by thapsigargin, which enhances cytosolic Ca2+, while it is inhibited by BAPTA-AM that reduces cytosolic Ca2+ or by STO-609, which inhibits CaMK-IV phosphorylation. We further show that CREB-dependent regulation of aspartate/glutamate carrier gene expression occurs in neuronal cells in response to pathological (inflammation) and physiological (differentiation) conditions. Since this carrier is necessary for neuronal functions and is involved in myelinogenesis, our results highlight that targeting of CREB activity and Ca2+ might be therapeutically exploited to increase aspartate/glutamate carrier gene expression in neurodegenerative diseases. PMID:25597433

  9. Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis)

    PubMed Central

    Guha, Anirban; Gera, Sandeep; Sharma, Anshu

    2012-01-01

    Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu), iron (Fe), zinc (Zn), cobalt (Co) and manganese (Mn) and enzyme activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in riverine buffalo milk can be used as an indicator of subclinical mastitis (SCM) with the aim of developing suitable diagnostic kit for SCM. Trace elements and enzyme activity in milk were estimated with Atomic absorption Spectrophotometer, GBC 932 plus and biochemical methods, respectively. Somatic cell count (SCC) was done microscopically. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. A statistically significant (p<0.01) increase in SCC, Fe, Zn, Co and LDH occurred in SCM milk containing gram positive bacterial agents only. ALP was found to be elevated in milk infected by both gram positive and negative bacteria. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and SCC≥2×105 cells/ml of milk as the benchmark. Only ALP and Zn, the former being superior, were found to be suitable for diagnosis of SCM irrespective of etiological agents. LDH, Co and Fe can be introduced in the screening programs where Gram positive bacteria are omnipresent. It is recommended that both ALP and Zn be measured together in milk to diagnose buffalo SCM, irrespective of etiology. PMID:25049573

  10. Examining the anti-candidal activity of 10 selected Indian herbs and investigating the effect of Lawsonia inermis extract on germ tube formation, protease, phospholipase, and aspartate dehydrogenase enzyme activity in Candida albicans

    PubMed Central

    Ravichandran, Sripathy; Muthuraman, Sundararaman

    2016-01-01

    Objective: The objective of the study is to identify potential anti-candidal agents from natural resources and elucidate the effect of Lawsonia inermis extract on major virulent factors of Candida albicans. Materials and Methods: Plants, the most abundant and readily available resource of diverse bioactives, were chosen for the anti-candidal screening study. Ten different plants that were proven to have antimicrobial activity but not explored much for anti-candidal activity were chosen for this study. Ethyl acetate extract of these plant leaves were tested for the anti-candidal activity. Extracts with good anti-candidal activity were further screened for its effect in C. albicans germ tube formation and enzyme (protease, phospholipase, and aspartate dehydrogenase) activity. Results: Among 10 plants screened, L. inermis extract showed complete inhibition of C. albicans. On further evaluation, this extract completely inhibited C. albicans germ tube formation in serum until the end of incubation period (3 h). This extract also exhibited dose-dependent inhibitory activity against two major virulent enzymes of C. albicans, proteases (27–33%) and phospholipases (44.5%). In addition to it, this extract completely inhibited both the isoforms of constitutive candidal enzyme aspartate dehydrogenase, thereby affecting amino acid biosynthesis. Conclusion: Thus, this study confirms the anti-candidal potential of L. inermis and hence can be considered further for development of anti-candidal drug. PMID:26997722

  11. Identification of enzyme activity that conjugates indole-3-acetic acid to aspartate in immature seeds of pea (Pisum sativum).

    PubMed

    Ostrowski, Maciej; Jakubowska, Anna

    2008-01-01

    This study describes the first identification of plant enzyme activity catalyzing the conjugation of indole-3-acetic acid to amino acids. Enzymatic synthesis of indole-3-acetylaspartate (IAA-Asp) by a crude enzyme preparation from immature seeds of pea (Pisum sativum) was observed. The reaction yielded a product with the same Rf as IAA-Asp standard after thin layer chromatography. The identity of IAA-Asp was verified by HPLC analysis. IAA-Asp formation was dependent on ATP and Mg2+, and was linear during a 60 min period. The enzyme preparation obtained after poly(ethylene glycol) 6000 fractionation showed optimum activity at pH 8.0, and the temperature optimum for IAA-Asp synthesis was 30 degrees C. PMID:17920159

  12. Submicromolar Phosphinic Inhibitors of E. coli Aspartate Transcarbamoylase

    PubMed Central

    Coudray, Laëtitia; Kantrowitz, Evan R.; Montchamp, Jean-Luc

    2009-01-01

    The design, syntheses, and enzymatic activity of two submicromolar competitive inhibitors of aspartate transcarbamoylase (ATCase) are described. The phosphinate inhibitors are analogs of N-phosphonacetyl-L-aspartate (PALA) but have a reduced charge at the phosphorus moiety. The mechanistic implications are discussed in terms of a possible cyclic transition-state during enzymatic catalysis. PMID:19097895

  13. Cell-free production of integral membrane aspartic acid proteases reveals zinc-dependent methyltransferase activity of the Pseudomonas aeruginosa prepilin peptidase PilD

    PubMed Central

    Aly, Khaled A; Beebe, Emily T; Chan, Chi H; Goren, Michael A; Sepúlveda, Carolina; Makino, Shin-ichi; Fox, Brian G; Forest, Katrina T

    2013-01-01

    Integral membrane aspartic acid proteases are receiving growing recognition for their fundamental roles in cellular physiology of eukaryotes and prokaryotes, and may be medically important pharmaceutical targets. The Gram-negative Pseudomonas aeruginosa PilD and the archaeal Methanococcus voltae FlaK were synthesized in the presence of unilamellar liposomes in a cell-free translation system. Cosynthesis of PilD with its full-length substrate, PilA, or of FlaK with its full-length substrate, FlaB2, led to complete cleavage of the substrate signal peptides. Scaled-up synthesis of PilD, followed by solubilization in dodecyl-β-d-maltoside and chromatography, led to a pure enzyme that retained both of its known biochemical activities: cleavage of the PilA signal peptide and S-adenosyl methionine-dependent methylation of the mature pilin. X-ray fluorescence scans show for the first time that PilD is a zinc-binding protein. Zinc is required for the N-terminal methylation of the mature pilin, but not for signal peptide cleavage. Taken together, our work identifies the P. aeruginosa prepilin peptidase PilD as a zinc-dependent N-methyltransferase and provides a new platform for large-scale synthesis of PilD and other integral membrane proteases important for basic microbial physiology and virulence. PMID:23255525

  14. Identification of a Tumor Specific, Active-Site Mutation in Casein Kinase 1α by Chemical Proteomics

    PubMed Central

    Okerberg, Eric S.; Hainley, Anna; Brown, Heidi; Aban, Arwin; Alemayehu, Senait; Shih, Ann; Wu, Jane; Patricelli, Matthew P.; Kozarich, John W.; Nomanbhoy, Tyzoon; Rosenblum, Jonathan S.

    2016-01-01

    We describe the identification of a novel, tumor-specific missense mutation in the active site of casein kinase 1α (CSNK1A1) using activity-based proteomics. Matched normal and tumor colon samples were analyzed using an ATP acyl phosphate probe in a kinase-targeted LC-MS2 platform. An anomaly in the active-site peptide from CSNK1A1 was observed in a tumor sample that was consistent with an altered catalytic aspartic acid. Expression and analysis of the suspected mutant verified the presence of asparagine in the probe-labeled, active-site peptide for CSNK1A1. Genomic sequencing of the colon tumor samples confirmed the presence of a missense mutation in the catalytic aspartic acid of CSNK1A1 (GAC→AAC). To our knowledge, the D163N mutation in CSNK1A1 is a newly defined mutation to the conserved, catalytic aspartic acid of a protein kinase and the first missense mutation identified using activity-based proteomics. The tumorigenic potential of this mutation remains to be determined. PMID:27031502

  15. The anticonvulsant and behavioural profile of L-687,414, a partial agonist acting at the glycine modulatory site on the N-methyl-D-aspartate (NMDA) receptor complex.

    PubMed

    Tricklebank, M D; Bristow, L J; Hutson, P H; Leeson, P D; Rowley, M; Saywell, K; Singh, L; Tattersall, F D; Thorn, L; Williams, B J

    1994-11-01

    1. The anticonvulsant and behavioural effects of the glycine/NMDA receptor partial agonist, L-687,414 (R(+)-cis-beta-methyl-3-amino-1-hydroxypyrrolid-2-one) have been investigated in rodents. 2. L-687,414 dose-dependently antagonized seizures induced by N-methyl-D,L- aspartic acid (NMDLA, ED50 = 19.7 mg kg-1), pentylenetetrazol (PTZ, ED50 = 13.0 mg kg-1) and electroshock (ED50 = 26.1 mg kg-1) when given intravenously 15 min before test, in male Swiss Webster mice but was most potent against audiogenic seizures induced by a 120 dB bell in DBA/2 mice (ED50 = 5.1 mg kg-1, i.p., 30 min before test). 3. L-687,414 also induced impairments of performance in a rotarod test in both Swiss Webster and DBA/2 mice and the ratio [rotarod MED:anticonvulsant ED50] varied between 0.9 and 5, depending on the convulsant used. 4. Similar behaviours to those seen after administration of the non-competitive NMDA receptor antagonist, MK-801 (head weaving, body rolling, hyperlocomotion) were seen in the mouse after giving L-687,414, although the peak effect occurred at a dose (100 mg kg-1) which was 5-20 times the anticonvulsant ED50S, depending on the convulsant used. Unlike MK-801, however, doses of L-687,414 that were behaviourally stimulant did not increase dopamine turnover in the nucleus accumbens. 5. Consistent with the interaction of L-687,414 with the glycine/NMDA receptor, the anticonvulsant, ataxic and motor stimulant effects of the compound were significantly attenuated by the glycine/NMDA receptor agonist, D-serine (10-100 micrograms per mouse, i.c.v.). 6. The results show that L-687,414 is a potent, orally active anticonvulsant with a more benign pharmacological profile than antagonists acting at the ion channel of the NMDA receptor complex. The compound is a useful tool with which to probe the functional role of the glycine co-agonist site in vivo. PMID:7858861

  16. Structure-function relationships in the Na,K-ATPase. cap alpha. subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme

    SciTech Connect

    Price, E.M.; Lingrel, J.B.

    1988-11-01

    Na,K-ATPases from various species differ greatly in their sensitivity to cardiac glycosides such as ouabain. The sheep and human enzymes are a thousand times more sensitive than the corresponding ones from rat and mouse. To define the region of the ..cap alpha..1 subunit responsible for this differential sensitivity, chimeric cDNAs of sheep and rat were constructed and expressed in ouabain-sensitive HeLa cells. The construct containing the amino-terminal half of the rat ..cap alpha..1 subunit coding region and carboxyl-terminal half of the sheep conferred the ouabain-resistant phenotype to HeLa cells while the reverse construct did not. This indicates that the determinants involved in ouabain sensitivity are located in the amino-terminal half of the Na,K-ATPase ..cap alpha.. subunit. By use of site-directed mutagenesis, the amino acid sequence of the first extracellular domain (H1-H2) of the sheep ..cap alpha..1 subunit was changed to that of the rat. When expressed in HeLa cells, this mutated sheep ..cap alpha..1 construct, like the rat/sheep chimera, was able to confer ouabain resistance to these cells. Furthermore, similar results were observed when HeLa cells were transfected with a sheep ..cap alpha..1 cDNA containing only two amino acid substitutions. The resistant cells, whether transfected with the rat ..cap alpha..1 cDNA, the rat/sheep chimera, or the mutant sheep ..cap alpha..1 cDNAs, exhibited identical biochemical characteristics including ouabain-inhibitable cell growth, /sup 86/Rb/sup +/ uptake, and Na,K-ATPase activity. These results demonstrate that the presence of arginine and aspartic acid on the amino end and carboxyl end, respectively, of the H1-H2 extracellular domain of the Na,K-ATPase ..cap alpha.. subunit together is responsible for the ouabain-resistant character of the rat enzyme and the corresponding residues in the sheep ..cap alpha..1 subunit (glutamine and asparagine) are somehow involved in ouabain binding.

  17. Hybridization of glutamate aspartate transaminase. Investigation of subunit interaction.

    PubMed

    Boettcher, B; Martinez-Carrion, M

    1975-10-01

    Glutamate aspartate transaminase (EC 2.6.1.1) is a dimeric enzyme with identical subunits with each active site containing pyridoxal 5'-phosphate linked via an internal Shiff's base to a lysine residue. It is not known if these sites interact during catalysis but negative cooperativity has been reported for binding of the coenzyme (Arrio-Dupont, M. (1972), Eur. J. Biochem. 30, 307). Also nonequivalence of its subunits in binding 8-anilinonaphthalene-1-sulfonate (Harris, H.E., and Bayley, P. M. (1975), Biochem. J. 145, 125), in modification of only a single tyrosine with full loss of activity (Christen, P., and Riordan, J.F. (1970), Biochemistry 9, 3025), and following modification with 5,5'-dithiobis(2-nitrobenzoic acid) (Cournil, I., and Arrio-Dupont, M. (1973), Biochemie 55, 103) has been reported. However, steady-state and transient kinetic methods as well as direct titration of the active site chromophore with substrates and substrate analogs have not revealed any cooperative phenomena (Braunstein, A. E. (1973), Enzymes, 3rd Ed. 9, 379). It was therefore decided that a more direct approach should be used to clarify the quistion of subunit interaction during the covalent phase of catalysis. To this end a hybrid method was devised in which a hybrid transaminase was prepared which contained one subunit with a functional active site while the other subunit has the internal Shiff's base reduced with NaBH4. The specific activities and amount of "actively bound" pyridoxal 5'-phosphate are both in a 2:1 ratio for the native and hybrid forms. Comparison of the steady-state kinetic properties of the hybrid and native enzyme forms shows that both forms gave parallel double reciprocal plots which is characteristic of the Ping-Pong Bi-Bi mechanism of transamination. The Km values for the substrates L-aspartic acid and alpha-ketoglutaric acid are nearly identical while the Vmax value for the hybrid is one-half the value of the native transaminase. It therefore appears that

  18. CRITICAL ROLE OF LARGE CONDUCTANCE VOLTAGE- AND CALCIUM-ACTIVATED POTASSIUM CHANNELS IN LEPTIN-INDUCED NEUROPROTECTION OF N-METHYL-D-ASPARTATE-EXPOSED CORTICAL NEURONS

    PubMed Central

    Mancini, Maria; Soldovieri, Maria Virginia; Gessner, Guido; Wissuwa, Bianka; Barrese, Vincenzo; Boscia, Francesca; Secondo, Agnese; Miceli, Francesco; Franco, Cristina; Ambrosino, Paolo; Canzoniero, Lorella MariaTeresa; Bauer, Michael; Hoshi, Toshinori; Heinemann, Stefan H; Taglialatela, Maurizio

    2014-01-01

    In the present study, the neuroprotective effects of the adipokine leptin, and the molecular mechanism involved, have been studied in rat and mice cortical neurons exposed to N-methyl-D-Aspartate (NMDA) in vitro. In rat cortical neurons, leptin elicited neuroprotective effects against NMDA-induced cell death which were concentration-dependent (10–100 ng/ml) and largest when the adipokine was preincubated for 2 hours before the neurotoxic stimulus. In both rat and mouse cortical neurons, leptin-induced neuroprotection was fully antagonized by Paxilline (Pax, 0.01–1 μM) and Iberiotoxin (Ibtx, 1–100 nM), two blockers of Ca2+- and voltage-activated K+ channels (Slo1 BK channels), with EC50s (38±10 nM and 5±2 nM for Pax and Ibtx, respectively) close to those reported for Pax- and Ibtx-induced BK channel blockade; the BK channel opener NS1619 (1–30 μM) induced a concentration-dependent protection against NMDA-induced excitotoxicity. Moreover, cortical neurons from mice lacking one or both alleles coding for Slo1 BK channel pore-forming subunits were insensitive to leptin-induced neuroprotection. Finally, leptin exposure dose-dependently (10–100 ng/ml) increased intracellular Ca2+ levels in rat cortical neurons. In conclusion, our results suggest that Slo1 BK channel activation following increases in intracellular Ca2+ levels is a critical step for leptin-induced neuroprotection in NMDA-exposed cortical neurons in vitro, thus highlighting leptin-based intervention via BK channel activation as a potential strategy to counteract neurodegenerative diseases. PMID:24973659

  19. Presynaptic N-Methyl-d-aspartate (NMDA) Receptor Activity Is Increased Through Protein Kinase C in Paclitaxel-induced Neuropathic Pain.

    PubMed

    Xie, Jing-Dun; Chen, Shao-Rui; Chen, Hong; Zeng, Wei-An; Pan, Hui-Lin

    2016-09-01

    Painful peripheral neuropathy is a severe adverse effect of chemotherapeutic drugs such as paclitaxel (Taxol). The glutamate N-methyl-d-aspartate receptors (NMDARs) are critically involved in the synaptic plasticity associated with neuropathic pain. However, paclitaxel treatment does not alter the postsynaptic NMDAR activity of spinal dorsal horn neurons. In this study, we determined whether paclitaxel affects presynaptic NMDAR activity by recording excitatory postsynaptic currents (EPSCs) of dorsal horn neurons in spinal cord slices. In paclitaxel-treated rats, the baseline frequency of miniature EPSCs (mEPSCs) was significantly increased; the NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5) completely normalized this frequency. Also, AP5 significantly reduced the amplitude of monosynaptic EPSCs evoked by dorsal root stimulation and reversed the reduction in the paired-pulse ratio of evoked EPSCs in paclitaxel-treated rats. Blocking GluN2A-containing, but not GluN2B-containing, NMDARs largely decreased the frequency of mEPSCs and the amplitude of evoked EPSCs of dorsal horn neurons in paclitaxel-treated rats. Furthermore, inhibition of protein kinase C fully reversed the increased frequency of mEPSCs and the amplitude of evoked EPSCs in paclitaxel-treated rats. Paclitaxel treatment significantly increased the protein level of GluN2A and phosphorylated GluN1 in the dorsal root ganglion. In addition, intrathecal injection of AP5 or systemic administration of memantine profoundly attenuated pain hypersensitivity induced by paclitaxel. Our findings indicate that paclitaxel treatment induces tonic activation of presynaptic NMDARs in the spinal cord through protein kinase C to potentiate nociceptive input from primary afferent nerves. Targeting presynaptic NMDARs at the spinal cord level may be an effective strategy for treating chemotherapy-induced neuropathic pain. PMID:27458019

  20. The inverse link between genetic risk for schizophrenia and migraine through NMDA (N-methyl-D-aspartate) receptor activation via D-serine.

    PubMed

    Van der Auwera, Sandra; Teumer, Alexander; Hertel, Johannes; Homuth, Georg; Völker, Uwe; Lucht, Michael J; Degenhardt, Franziska; Schulze, Thomas; Rietschel, Marcella; Nöthen, Markus M; John, Ulrich; Nauck, Matthias; Grabe, Hans Jörgen

    2016-09-01

    Schizophrenia has a considerable genetic background. Epidemiological studies suggest an inverse clinical association between schizophrenia and migraine. However, it is unclear to what extent this inverse comorbidity can be explained by genetic mechanisms or by schizophrenia-related behavioral factors. For both disorders hypotheses of glutamate N-methyl-D-aspartate (NMDA) receptor dysfunction have been developed in the past. We hypothesized that both conditions share common genetic factors with inverse effects, primary in the glutamatergic system and genes involved in NMDA activation. Data from the population based Study of Health in Pomerania (N=3973) were used. Based on the results from the recent genome-wide association study for schizophrenia, we calculated polygenic scores (PRS) for subsets of SNPs with different p-value cutoffs and for biological sub-entities. These scores were tested for an association of distinct biological pathways with migraine. The PRS for schizophrenia was inversely associated with migraine in our sample. This association was exclusively based on the genome-wide hits and on single nucleotide polymorphisms near or within genes encoding proteins involved in glutamatergic neurotransmission. This association could be attributed to a single intronic variant rs4523957 in SRR encoding serine-racemase. Additional expression quantitative trait loci analyses of functional variants in SRR and gene-by-gene interaction analyses further supported the validity of this finding. SRR represents the rate limiting enzyme for the synthesis of D-serine, an important co-agonist of the NMDA receptor. According to our results, a decreased versus increased activation of NMDA receptors may play a role in the etiology of schizophrenia, as well as in migraine. PMID:27394076

  1. Pathologically activated neuroprotection via uncompetitive blockade of N-methyl-D-aspartate receptors with fast off-rate by novel multifunctional dimer bis(propyl)-cognitin.

    PubMed

    Luo, Jialie; Li, Wenming; Zhao, Yuming; Fu, Hongjun; Ma, Dik-Lung; Tang, Jing; Li, Chaoying; Peoples, Robert W; Li, Fushun; Wang, Qinwen; Huang, Pingbo; Xia, Jun; Pang, Yuanping; Han, Yifan

    2010-06-25

    Uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists with fast off-rate (UFO) may represent promising drug candidates for various neurodegenerative disorders. In this study, we report that bis(propyl)-cognitin, a novel dimeric acetylcholinesterase inhibitor and gamma-aminobutyric acid subtype A receptor antagonist, is such an antagonist of NMDA receptors. In cultured rat hippocampal neurons, we demonstrated that bis(propyl)-cognitin voltage-dependently, selectively, and moderately inhibited NMDA-activated currents. The inhibitory effects of bis(propyl)-cognitin increased with the rise in NMDA and glycine concentrations. Kinetics analysis showed that the inhibition was of fast onset and offset with an off-rate time constant of 1.9 s. Molecular docking simulations showed moderate hydrophobic interaction between bis(propyl)-cognitin and the MK-801 binding region in the ion channel pore of the NMDA receptor. Bis(propyl)-cognitin was further found to compete with [(3)H]MK-801 with a K(i) value of 0.27 mum, and the mutation of NR1(N616R) significantly reduced its inhibitory potency. Under glutamate-mediated pathological conditions, bis(propyl)-cognitin, in contrast to bis(heptyl)-cognitin, prevented excitotoxicity with increasing effectiveness against escalating levels of glutamate and much more effectively protected against middle cerebral artery occlusion-induced brain damage than did memantine. More interestingly, under NMDA receptor-mediated physiological conditions, bis(propyl)-cognitin enhanced long-term potentiation in hippocampal slices, whereas MK-801 reduced and memantine did not alter this process. These results suggest that bis(propyl)-cognitin is a UFO antagonist of NMDA receptors with moderate affinity, which may provide a pathologically activated therapy for various neurodegenerative disorders associated with NMDA receptor dysregulation. PMID:20404346

  2. Pathologically Activated Neuroprotection via Uncompetitive Blockade of N-Methyl-d-aspartate Receptors with Fast Off-rate by Novel Multifunctional Dimer Bis(propyl)-cognitin*

    PubMed Central

    Luo, Jialie; Li, Wenming; Zhao, Yuming; Fu, Hongjun; Ma, Dik-Lung; Tang, Jing; Li, Chaoying; Peoples, Robert W.; Li, Fushun; Wang, Qinwen; Huang, Pingbo; Xia, Jun; Pang, Yuanping; Han, Yifan

    2010-01-01

    Uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists with fast off-rate (UFO) may represent promising drug candidates for various neurodegenerative disorders. In this study, we report that bis(propyl)-cognitin, a novel dimeric acetylcholinesterase inhibitor and γ-aminobutyric acid subtype A receptor antagonist, is such an antagonist of NMDA receptors. In cultured rat hippocampal neurons, we demonstrated that bis(propyl)-cognitin voltage-dependently, selectively, and moderately inhibited NMDA-activated currents. The inhibitory effects of bis(propyl)-cognitin increased with the rise in NMDA and glycine concentrations. Kinetics analysis showed that the inhibition was of fast onset and offset with an off-rate time constant of 1.9 s. Molecular docking simulations showed moderate hydrophobic interaction between bis(propyl)-cognitin and the MK-801 binding region in the ion channel pore of the NMDA receptor. Bis(propyl)-cognitin was further found to compete with [3H]MK-801 with a Ki value of 0.27 μm, and the mutation of NR1(N616R) significantly reduced its inhibitory potency. Under glutamate-mediated pathological conditions, bis(propyl)-cognitin, in contrast to bis(heptyl)-cognitin, prevented excitotoxicity with increasing effectiveness against escalating levels of glutamate and much more effectively protected against middle cerebral artery occlusion-induced brain damage than did memantine. More interestingly, under NMDA receptor-mediated physiological conditions, bis(propyl)-cognitin enhanced long-term potentiation in hippocampal slices, whereas MK-801 reduced and memantine did not alter this process. These results suggest that bis(propyl)-cognitin is a UFO antagonist of NMDA receptors with moderate affinity, which may provide a pathologically activated therapy for various neurodegenerative disorders associated with NMDA receptor dysregulation. PMID:20404346

  3. The upregulation of NR2A-containing N-methyl-D-aspartate receptor function by tyrosine phosphorylation of postsynaptic density 95 via facilitating Src/proline-rich tyrosine kinase 2 activation.

    PubMed

    Zhao, Chao; Du, Cai-Ping; Peng, Yan; Xu, Zhen; Sun, Chang-Cheng; Liu, Yong; Hou, Xiao-Yu

    2015-04-01

    The activation of postsynaptic N-methyl-D-aspartate (NMDA) receptors is required for long-term potentiation (LTP) of synaptic transmission. Postsynaptic density 95 (PSD-95) serves as a scaffold protein that tethers NMDA receptor subunits, kinases, and signal molecules. Our previous study proves that PSD-95 is a substrate of Src/Fyn and identifies Y523 on PSD-95 as a principal phosphorylation site. In this paper, we try to define an involvement and molecular consequences of PSD-95 phosphorylation by Src in NMDA receptor regulation. We found that either NMDA or chemical LTP induction leads to rapid phosphorylation of PSD-95 by Src in cultured cortical neurons. The phosphorylation of Y523 on PSD-95 potentiates NR2A-containing NMDA receptor current amplitude, implying an important role of Src-mediated PSD-95 phosphorylation in NMDA receptor activation. Comparing to wild-type PSD-95, overexpression of nonphosphorylatable mutant PSD-95Y523F attenuated the NMDA-stimulated NR2A tyrosine phosphorylation that enhances electrophysiological responses of NMDA receptor channels, while did not affect the membrane localization of NR2A subunits. PSD-95Y523D, a phosphomimetic mutant of PSD-95, induced NR2A tyrosine phosphorylation even if there was no NMDA treatment. In addition, the deficiency of Y523 phosphorylation on PSD-95 impaired the facilitatory effect of PSD-95 on the activation of Src and proline-rich tyrosine kinase 2 (Pyk2) and decreased the binding of Pyk2 with PSD-95. These results indicate that PSD-95 phosphorylation by Src facilitates the integration of Pyk2 to PSD-95 signal complex, the activation of Pyk2/Src, as well as the subsequent tyrosine phosphorylation of NR2A, which ultimately results in the upregulation of NMDA receptor function and synaptic transmission. PMID:24981431

  4. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1990-10-01

    DOE Order 5820.2A requires that low-level waste (LLW) disposal sites active on or after September 1988 and all transuranic (TRU) waste storage sites be monitored periodically to assure that radioactive contamination does not escape from the waste sites and pose a threat to the public or to the environment. This plan describes such a monitoring program for the active LLW disposal sites in SWSA 6 and the TRU waste storage sites in SWSA 5 North. 14 refs., 8 figs.

  5. The Crystal Structure of the Pseudomonas dacunhae Aspartate-[beta]-Decarboxylase Dodecamer Reveals an Unknown Oligomeric Assembly for a Pyridoxal-5′-Phosphate-Dependent Enzyme

    SciTech Connect

    Lima, Santiago; Sundararaju, Bakthavatsalam; Huang, Christina; Khristoforov, Roman; Momany, Cory; Phillips, Robert S.

    2010-09-01

    The Pseudomonas dacunhae L-aspartate-{beta}-decarboxylase (ABDC, aspartate 4-decarboxylase, aspartate 4-carboxylyase, E.C. 4.1.1.12) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the {beta}-decarboxylation of L-aspartate to produce L-alanine and CO{sub 2}. This catalytically versatile enzyme is known to form functional dodecamers at its optimal pH and is thought to work in conjunction with an L-Asp/L-Ala antiporter to establish a proton gradient across the membrane that can be used for ATP biosynthesis. We have solved the atomic structure of ABDC to 2.35 {angstrom} resolution using single-wavelength anomalous dispersion phasing. The structure reveals that ABDC oligomerizes as a homododecamer in an unknown mode among PLP-dependent enzymes and has highest structural homology with members of the PLP-dependent aspartate aminotransferase subfamily. The structure shows that the ABDC active site is very similar to that of aspartate aminotransferase. However, an additional arginine side chain (Arg37) was observed flanking the re-side of the PLP ring in the ABDC active site. The mutagenesis results show that although Arg37 is not required for activity, it appears to be involved in the ABDC catalytic cycle.

  6. Frequency dependent activation of a slow N-methyl-D-aspartate-dependent excitatory postsynaptic potential in turtle cerebellum by mossy fibre afferents.

    PubMed

    Larson-Prior, L J; Morrison, P D; Bushey, R M; Slater, N T

    1995-08-01

    The synaptic responses of turtle cerebellar Purkinje cells to stimulation of localized mossy fibre systems have been studied by use of intrasomatic and intradendritic recordings in a brainstem-cerebellum preparation in vitro. Activation of mossy fibre inputs from the spinocerebellar pathway evoked fast, disynaptic postsynaptic potentials which were graded in amplitude with stimulus intensity and elicited at latencies consistent with those reported for peripheral nerve stimulation. Repetitive activation (50-100 Hz, 2-10 stimuli) of both spinocerebellar and trigeminocerebellar pathways evoked a slow, long-lasting excitatory postsynaptic potential regardless of whether single stimuli resulted in excitatory, inhibitory, or no postsynaptic responses. This slow potential was capable of triggering dendritic pacemaker discharges in recorded Purkinje cells in addition to volleys of simple spikes when activated at or near resting membrane potential. The fast excitatory synaptic potentials evoked by spinocerebellar stimulation were blocked by the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione, consistent with the hypothesis that they are mediated by activation of ionotropic glutamate receptors of the alpha-amino-3-hydroxy-5-methylisox-azole-4-proprionic acid subtype at the mossy fibre-granule cell synapse and the subsequent parallel fibre-Purkinje cell synapse. The slow excitatory synaptic potential evoked by repetitive stimulation of either the spinocerebellar tract or trigeminal nerve was blocked by DL-2-amino-5-phosphonvalerate, indicating that this potential is primarily dependent upon N-methyl-D-aspartate receptors at the mossy fibre-granule cell synapse for its expression. This slow potential was reversibly potentiated by L-2-amino-4-phosphonobutyrate and bicuculline; the metabotropic glutamate antagonist (+)-alpha-methyl-4-carboxyphenylglycine did not block this potentiation. The ability of mossy fibre inputs to drive long, slow excitatory events in

  7. Enzymatic milk clotting activity in artichoke (Cynara scolymus) leaves and alpine thistle (Carduus defloratus) flowers. Immobilization of alpine thistle aspartic protease.

    PubMed

    Esposito, Marilena; Di Pierro, Prospero; Dejonghe, Winnie; Mariniello, Loredana; Porta, Raffaele

    2016-08-01

    Two different milk clotting enzymes, belonging to the aspartic protease family, were extracted from both artichoke leaves and alpine thistle flowers, and the latter was covalently immobilized by using a polyacrylic support containing polar epoxy groups. Our findings showed that the alpine thistle aspartic protease was successfully immobilized at pH 7.0 on Immobeads IB-150P beads and that, under these experimental conditions, an immobilization yield of about 68% and a recovery of about 54% were obtained. Since the enzyme showed an optimal pH of 5.0, a value very similar to the one generally used for milk clotting during cheese making, and exhibited a satisfactory stability over time, the use of such immobilized vegetable rennet for the production of novel dairy products is suggested. PMID:26988483

  8. Educational Activity Sites for High School Students

    ERIC Educational Resources Information Center

    Troutner, Joanne

    2005-01-01

    Finding quality Internet resources for high school students is a continuing challenge. Several high-quality web sites are presented for educators and students. These sites offer activities to learn how an art conservator looks at paintings, create a newspaper, research and develop an end product, build geometry and physics skills, explore science…

  9. Chemotactic responses of Escherichia coli to small jumps of photoreleased L-aspartate.

    PubMed

    Jasuja, R; Keyoung, J; Reid, G P; Trentham, D R; Khan, S

    1999-03-01

    Computer-assisted motion analysis coupled to flash photolysis of caged chemoeffectors provides a means for time-resolved analysis of bacterial chemotaxis. Escherichia coli taxis toward the amino acid attractant L-aspartate is mediated by the Tar receptor. The physiology of this response, as well as Tar structure and biochemistry, has been studied extensively. The beta-2, 6-dinitrobenzyl ester of L-aspartic acid and the 1-(2-nitrophenyl)ethyl ether of 8-hydroxypyrene-1,3,6-tris-sulfonic acid were synthesized. These compounds liberated L-aspartate and the fluorophore 8-hydroxypyrene 1,3,6-tris-sulfonic acid (pyranine) upon irradiation with near-UV light. Photorelease of the fluorophore was used to define the amplitude and temporal stability of the aspartate jumps employed in chemotaxis experiments. The dependence of chemotactic adaptation times on aspartate concentration, determined in mixing experiments, was best fit by two Tar aspartate-binding sites. Signal processing (excitation) times, amplitudes, and adaptive recovery of responses elicited by aspartate jumps producing less than 20% change in receptor occupancy were characterized in photorelease assays. Aspartate concentration jumps in the nanomolar range elicited measurable responses. The response threshold and sensitivity of swimming bacteria matched those of bacteria tethered to glass by a single flagellum. Stimuli of similar magnitude, delivered either by rapid mixing or photorelease, evoked responses of similar strength, as assessed by recovery time measurements. These times remained proportional to change in receptor occupancy close to threshold, irrespective of prior occupancy. Motor excitation responses decayed exponentially with time. Rates of excitation responses near threshold ranged from 2 to 7 s-1. These values are consistent with control of excitation signaling by decay of phosphorylated pools of the response regulator protein, CheY. Excitation response rates increased slightly with stimulus size

  10. Fractalkine (CX3CL1) enhances hippocampal N-methyl-d-aspartate receptor (NMDAR) function via d-serine and adenosine receptor type A2 (A2AR) activity

    PubMed Central

    2013-01-01

    Background N-Methyl-d-aspartate receptors (NMDARs) play fundamental roles in basic brain functions such as excitatory neurotransmission and learning and memory processes. Their function is largely regulated by factors released by glial cells, including the coagonist d-serine. We investigated whether the activation of microglial CX3CR1 induces the release of factors that modulate NMDAR functions. Methods We recorded the NMDAR component of the field excitatory postsynaptic potentials (NMDA-fEPSPs) elicited in the CA1 stratum radiatum of mouse hippocampal slices by Shaffer collateral stimulation and evaluated d-serine content in the extracellular medium of glial primary cultures by mass spectrometry analysis. Results We demonstrated that CX3CL1 increases NMDA-fEPSPs by a mechanism involving the activity of the adenosine receptor type A2 (A2AR) and the release of the NMDAR coagonist d-serine. Specifically (1) the selective A2AR blocker 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261) and the genetic ablation of A2AR prevent CX3CL1 action while the A2AR agonist 5-(6-amino-2-(phenethylthio)-9H-purin-9-yl)-N-ethyl-3,4-dihydroxytetrahydrofuran-2-carboxamide (VT7) mimics CX3CL1 effect, and (2) the selective blocking of the NMDAR glycine (and d-serine) site by 5,7-dicholorokynurenic acid (DCKA), the enzymatic degradation of d-serine by d-amino acid oxidase (DAAO) and the saturation of the coagonist site by d-serine, all block the CX3CL1 effect. In addition, mass spectrometry analysis demonstrates that stimulation of microglia and astrocytes with CX3CL1 or VT7 increases d-serine release in the extracellular medium. Conclusions CX3CL1 transiently potentiates NMDAR function though mechanisms involving A2AR activity and the release of d-serine. PMID:23981568

  11. Investigation of the Roles of Allosteric Domain Arginine, Aspartate, and Glutamate Residues of Rhizobium etli Pyruvate Carboxylase in Relation to Its Activation by Acetyl CoA.

    PubMed

    Sirithanakorn, Chaiyos; Jitrapakdee, Sarawut; Attwood, Paul V

    2016-08-01

    The mechanism of allosteric activation of pyruvate carboxylase by acetyl CoA is not fully understood. Here we have examined the roles of residues near the acetyl CoA binding site in the allosteric activation of Rhizobium etli pyruvate carboxylase using site-directed mutagenesis. Arg429 was found to be especially important for acetyl CoA binding as substitution with serine resulted in a 100-fold increase in the Ka of acetyl CoA activation and a large decrease in the cooperativity of this activation. Asp420 and Arg424, which do not make direct contact with bound acetyl CoA, were nonetheless found to affect acetyl CoA binding when mutated, probably through changed interactions with another acetyl CoA binding residue, Arg427. Thermodynamic activation parameters for the pyruvate carboxylation reaction were determined from modified Arrhenius plots and showed that acetyl CoA acts to decrease the activation free energy of the reaction by both increasing the activation entropy and decreasing the activation enthalpy. Most importantly, mutations of Asp420, Arg424, and Arg429 enhanced the activity of the enzyme in the absence of acetyl CoA. A main focus of this work was the detailed investigation of how this increase in activity occurred in the R424S mutant. This mutation decreased the activation enthalpy of the pyruvate carboxylation reaction by an amount consistent with removal of a single hydrogen bond. It is postulated that Arg424 forms a hydrogen bonding interaction with another residue that stabilizes the asymmetrical conformation of the R. etli pyruvate carboxylase tetramer, constraining its interconversion to the symmetrical conformer that is required for catalysis. PMID:27379711

  12. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase.

    PubMed

    Wales, M E; Madison, L L; Glaser, S S; Wild, J R

    1999-12-17

    The native Escherichia coli aspartate transcarbamoylase (ATCase, E.C. 2.1.3.2) provides a classic allosteric model for the feedback inhibition of a biosynthetic pathway by its end products. Both E. coli and Erwinia herbicola possess ATCase holoenzymes which are dodecameric (2(c3):3(r2)) with 311 amino acid residues per catalytic monomer and 153 and 154 amino acid residues per regulatory (r) monomer, respectively. While the quaternary structures of the two enzymes are identical, the primary amino acid sequences have diverged by 14 % in the catalytic polypeptide and 20 % in the regulatory polypeptide. The amino acids proposed to be directly involved in the active site and nucleotide binding site are strictly conserved between the two enzymes; nonetheless, the two enzymes differ in their catalytic and regulatory characteristics. The E. coli enzyme has sigmoidal substrate binding with activation by ATP, and inhibition by CTP, while the E. herbicola enzyme has apparent first order kinetics at low substrate concentrations in the absence of allosteric ligands, no ATP activation and only slight CTP inhibition. In an apparently important and highly conserved characteristic, CTP and UTP impose strong synergistic inhibition on both enzymes. The co-operative binding of aspartate in the E. coli enzyme is correlated with a T-to-R conformational transition which appears to be greatly reduced in the E. herbicola enzyme, although the addition of inhibitory heterotropic ligands (CTP or CTP+UTP) re-establishes co-operative saturation kinetics. Hybrid holoenzymes assembled in vivo with catalytic subunits from E. herbicola and regulatory subunits from E. coli mimick the allosteric response of the native E. coli holoenzyme and exhibit ATP activation. The reverse hybrid, regulatory subunits from E. herbicola and catalytic subunits from E. coli, exhibited no response to ATP. The conserved structure and diverged functional characteristics of the E. herbicola enzyme provides an opportunity

  13. Evaluation of the Lactate-to-N-Acetyl-aspartate Ratio Defined With Magnetic Resonance Spectroscopic Imaging Before Radiation Therapy as a New Predictive Marker of the Site of Relapse in Patients With Glioblastoma Multiforme

    SciTech Connect

    Deviers, Alexandra; Ken, Soléakhéna; Filleron, Thomas; Rowland, Benjamin; Laruelo, Andrea; Catalaa, Isabelle; Lubrano, Vincent; Celsis, Pierre; and others

    2014-10-01

    Purpose: Because lactate accumulation is considered a surrogate for hypoxia and tumor radiation resistance, we studied the spatial distribution of the lactate-to-N-acetyl-aspartate ratio (LNR) before radiation therapy (RT) with 3D proton magnetic resonance spectroscopic imaging (3D-{sup 1}H-MRSI) and assessed its impact on local tumor control in glioblastoma (GBM). Methods and Materials: Fourteen patients with newly diagnosed GBM included in a phase 2 chemoradiation therapy trial constituted our database. Magnetic resonance imaging (MRI) and MRSI data before RT were evaluated and correlated to MRI data at relapse. The optimal threshold for tumor-associated LNR was determined with receiver-operating-characteristic (ROC) curve analysis of the pre-RT LNR values and MRI characteristics of the tumor. This threshold was used to segment pre-RT normalized LNR maps. Two spatial analyses were performed: (1) a pre-RT volumetric comparison of abnormal LNR areas with regions of MRI-defined lesions and a choline (Cho)-to- N-acetyl-aspartate (NAA) ratio ≥2 (CNR2); and (2) a voxel-by-voxel spatial analysis of 4,186,185 voxels with the intention of evaluating whether pre-RT abnormal LNR areas were predictive of the site of local recurrence. Results: A LNR of ≥0.4 (LNR-0.4) discriminated between tumor-associated and normal LNR values with 88.8% sensitivity and 97.6% specificity. LNR-0.4 voxels were spatially different from those of MRI-defined lesions, representing 44% of contrast enhancement, 64% of central necrosis, and 26% of fluid-attenuated inversion recovery (FLAIR) abnormality volumes before RT. They extended beyond the overlap with CNR2 for most patients (median: 20 cm{sup 3}; range: 6-49 cm{sup 3}). LNR-0.4 voxels were significantly predictive of local recurrence, regarded as contrast enhancement at relapse: 71% of voxels with a LNR-0.4 before RT were contrast enhanced at relapse versus 10% of voxels with a normal LNR (P<.01). Conclusions: Pre-RT LNR-0.4 in GBM

  14. Crystal Structures of the Histo-Aspartic Protease (HAP) from Plasmodium falciparum

    SciTech Connect

    Bhaumik, Prasenjit; Xiao, Huogen; Parr, Charity L.; Kiso, Yoshiaki; Gustchina, Alla; Yada, Rickey Y.; Wlodawer, Alexander

    2009-08-07

    The structures of recombinant histo-aspartic protease (HAP) from malaria-causing parasite Plasmodium falciparum as apoenzyme and in complex with two inhibitors, pepstatin A and KNI-10006, were solved at 2.5-, 3.3-, and 3.05-{angstrom} resolutions, respectively. In the apoenzyme crystals, HAP forms a tight dimer not seen previously in any aspartic protease. The interactions between the monomers affect the conformation of two flexible loops, the functionally important 'flap' (residues 70-83) and its structural equivalent in the C-terminal domain (residues 238-245), as well as the orientation of helix 225-235. The flap is found in an open conformation in the apoenzyme. Unexpectedly, the active site of the apoenzyme contains a zinc ion tightly bound to His32 and Asp215 from one monomer and to Glu278A from the other monomer, with the coordination of Zn resembling that seen in metalloproteases. The flap is closed in the structure of the pepstatin A complex, whereas it is open in the complex with KNI-10006. Although the binding mode of pepstatin A is significantly different from that in other pepsin-like aspartic proteases, its location in the active site makes unlikely the previously proposed hypothesis that HAP is a serine protease. The binding mode of KNI-10006 is unusual compared with the binding of other inhibitors from the KNI series to aspartic proteases. The novel features of the HAP active site could facilitate design of specific inhibitors used in the development of antimalarial drugs.

  15. Intersubunit communication in the dihydroorotase-aspartate transcarbamoylase complex of Aquifex aeolicus.

    PubMed

    Evans, Hedeel Guy; Fernando, Roshini; Vaishnav, Asmita; Kotichukkala, Mahalakshmi; Heyl, Deborah; Hachem, Fatme; Brunzelle, Joseph S; Edwards, Brian F P; Evans, David R

    2014-01-01

    Aspartate transcarbamoylase and dihydroorotase, enzymes that catalyze the second and third step in de novo pyrimidine biosynthesis, are associated in dodecameric complexes in Aquifex aeolicus and many other organisms. The architecture of the dodecamer is ideally suited to channel the intermediate, carbamoyl aspartate from its site of synthesis on the ATC subunit to the active site of DHO, which catalyzes the next step in the pathway, because both reactions occur within a large, internal solvent-filled cavity. Channeling usually requires that the reactions of the enzymes are coordinated so that the rate of synthesis of the intermediate matches its rate of utilization. The linkage between the ATC and DHO subunits was demonstrated by showing that the binding of the bisubstrate analog, N-phosphonacetyl-L-aspartate to the ATC subunit inhibits the activity of the distal DHO subunit. Structural studies identified a DHO loop, loop A, interdigitating between the ATC domains that would be expected to interfere with domain closure essential for ATC catalysis. Mutation of the DHO residues in loop A that penetrate deeply between the two ATC domains inhibits the ATC activity by interfering with the normal reciprocal linkage between the two enzymes. Moreover, a synthetic peptide that mimics that part of the DHO loop that binds between the two ATC domains was found to be an allosteric or noncompletive ATC inhibitor (K(i) = 22 μM). A model is proposed suggesting that loop A is an important component of the functional linkage between the enzymes. PMID:24353170

  16. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  17. In situ properties of Helicobacter pylori aspartate carbamoyltransferase.

    PubMed

    Burns, B P; Mendz, G L; Hazell, S L

    1997-11-01

    The kinetic and regulatory properties of aspartate carbamoyltransferase (ACTase) of the human pathogen Helicobacter pylori were studied in situ in cell-free extracts. The presence of enzyme activity was established by identifying the end product as carbamoylaspartate using nuclear magnetic resonance spectroscopy. Activity was measured in all strains studied, including recent clinical isolates. Substrate saturation curves determined employing radioactive tracer analysis or a microtiter colorimetric assay were hyperbolic for both carbamoyl phosphate and aspartate, and there was no evidence for substrate inhibition at higher concentrations of either substrate. The apparent Km were 0.6 and 11.6 mm for carbamoyl phosphate and aspartate, respectively. Optimal pH and temperature were determined as 8.0 and 45 degrees C. Activity was observed with the l- but not the d-isomer of aspartate. Succinate and maleate inhibited enzyme activity competitively with respect to aspartate. The carbamoyl phosphate analogues acetyl phosphate and phosphonoacetic acid inhibited activity in a competitive manner with respect to carbamoyl phosphate. With limiting carbamoyl phosphate purine and pyrimidine nucleotides, tripolyphosphate, pyrophosphate, and orthophosphate inhibited competitively at millimolar concentrations. Ribose and ribose 5-phosphate at 10 mm concentration showed 20 and 35% inhibition of enzyme activity, respectively. N-Phosphonoacetyl-l-aspartate (PALA) was the most potent inhibitor studied, with 50% inhibition of enzyme activity observed at 0.1 microM concentration. Inhibition by PALA was competitive with carbamoyl phosphate (Ki = 0.245 microM) and noncompetitive with aspartate. The kinetic and regulatory data on the activity of the H. pylori enzyme suggest it is a Class A ACTase, but with some interesting characteristics distinct from this class. PMID:9344472

  18. Structural Insights into a Novel Class of Aspartate Aminotransferase from Corynebacterium glutamicum.

    PubMed

    Son, Hyeoncheol Francis; Kim, Kyung-Jin

    2016-01-01

    Aspartate aminotransferase from Corynebacterium glutamicum (CgAspAT) is a PLP-dependent enzyme that catalyzes the production of L-aspartate and α-ketoglutarate from L-glutamate and oxaloacetate in L-lysine biosynthesis. In order to understand the molecular mechanism of CgAspAT and compare it with those of other aspartate aminotransferases (AspATs) from the aminotransferase class I, we determined the crystal structure of CgAspAT. CgAspAT functions as a dimer, and the CgAspAT monomer consists of two domains, the core domain and the auxiliary domain. The PLP cofactor is found to be bound to CgAspAT and stabilized through unique residues. In our current structure, a citrate molecule is bound at the active site of one molecule and mimics binding of the glutamate substrate. The residues involved in binding of the PLP cofactor and the glutamate substrate were confirmed by site-directed mutagenesis. Interestingly, compared with other AspATs from aminotransferase subgroup Ia and Ib, CgAspAT exhibited unique binding sites for both cofactor and substrate; moreover, it was found to have unusual structural features in the auxiliary domain. Based on these structural differences, we propose that CgAspAT does not belong to either subgroup Ia or Ib, and can be categorized into a subgroup Ic. The phylogenetic tree and RMSD analysis also indicates that CgAspAT is located in an independent AspAT subgroup. PMID:27355211

  19. Structural Insights into a Novel Class of Aspartate Aminotransferase from Corynebacterium glutamicum

    PubMed Central

    Son, Hyeoncheol Francis; Kim, Kyung-Jin

    2016-01-01

    Aspartate aminotransferase from Corynebacterium glutamicum (CgAspAT) is a PLP-dependent enzyme that catalyzes the production of L-aspartate and α-ketoglutarate from L-glutamate and oxaloacetate in L-lysine biosynthesis. In order to understand the molecular mechanism of CgAspAT and compare it with those of other aspartate aminotransferases (AspATs) from the aminotransferase class I, we determined the crystal structure of CgAspAT. CgAspAT functions as a dimer, and the CgAspAT monomer consists of two domains, the core domain and the auxiliary domain. The PLP cofactor is found to be bound to CgAspAT and stabilized through unique residues. In our current structure, a citrate molecule is bound at the active site of one molecule and mimics binding of the glutamate substrate. The residues involved in binding of the PLP cofactor and the glutamate substrate were confirmed by site-directed mutagenesis. Interestingly, compared with other AspATs from aminotransferase subgroup Ia and Ib, CgAspAT exhibited unique binding sites for both cofactor and substrate; moreover, it was found to have unusual structural features in the auxiliary domain. Based on these structural differences, we propose that CgAspAT does not belong to either subgroup Ia or Ib, and can be categorized into a subgroup Ic. The phylogenetic tree and RMSD analysis also indicates that CgAspAT is located in an independent AspAT subgroup. PMID:27355211

  20. The Pathway of Product Release from the R State of Aspartate Transcarbamoylase

    PubMed Central

    Mendes, Kimberly R.; Kantrowitz, Evan R.

    2010-01-01

    The pathway of product release from the R state of aspartate transcarbamoylase has been determined here by solving the crystal structure of Escherichia coli aspartate transcarbamoylase (ATCase) locked in the R-quaternary structure by specific introduction of disulfide bonds. ATCase displays ordered substrate binding and product release, remaining in the R state until substrates are exhausted. The structure reported here represents ATCase in the R state bound to the final product molecule, phosphate. This structure has been difficult to obtain previously because the enzyme relaxes back to the T state after the substrates are exhausted. Hence cocrystallizing the wild-type enzyme with phosphate results in a T-state structure. In this structure of the enzyme trapped in the R state with specific disulfide bonds, we observe two phosphate molecules per active site. The position of the first phosphate corresponds to the position of the phosphate of carbamoyl phosphate and the position of the phosphonate of N-phosphonacetyl-L-aspartate. However, the second, more weakly bound phosphate, is bound in a positively charged pocket more accessible to the surface than the other phosphate. The second phosphate appears to be on the path that phosphate would have to take to exit the active site. Our results suggest that phosphate dissociation and carbamoyl phosphate binding can occur simultaneously and the dissociation of phosphate may actually promote the binding of carbamoyl phosphate for more efficient catalysis. PMID:20620149

  1. The Pathway of Product Release from the R State of Aspartate Transcarbamoylase

    SciTech Connect

    Mendes, K.; Kantrowitz, E

    2010-01-01

    The pathway of product release from the R state of aspartate transcarbamoylase (ATCase; EC 2.1.3.2, aspartate carbamoyltransferase) has been determined here by solving the crystal structure of Escherichia coli ATCase locked in the R quaternary structure by specific introduction of disulfide bonds. ATCase displays ordered substrate binding and product release, remaining in the R state until substrates are exhausted. The structure reported here represents ATCase in the R state bound to the final product molecule, phosphate. This structure has been difficult to obtain previously because the enzyme relaxes back to the T state after the substrates are exhausted. Hence, cocrystallizing the wild-type enzyme with phosphate results in a T-state structure. In this structure of the enzyme trapped in the R state with specific disulfide bonds, we observe two phosphate molecules per active site. The position of the first phosphate corresponds to the position of the phosphate of carbamoyl phosphate (CP) and the position of the phosphonate of N-phosphonacetyl-L-aspartate. However, the second, more weakly bound phosphate is bound in a positively charged pocket that is more accessible to the surface than the other phosphate. The second phosphate appears to be on the path that phosphate would have to take to exit the active site. Our results suggest that phosphate dissociation and CP binding can occur simultaneously and that the dissociation of phosphate may actually promote the binding of CP for more efficient catalysis.

  2. Occurrence of Free d-Amino Acids and Aspartate Racemases in Hyperthermophilic Archaea

    PubMed Central

    Matsumoto, Megumi; Homma, Hiroshi; Long, Zhiqun; Imai, Kazuhiro; Iida, Toshii; Maruyama, Tadashi; Aikawa, Yuko; Endo, Isao; Yohda, Masafumi

    1999-01-01

    The occurrence of free d-amino acids and aspartate racemases in several hyperthermophilic archaea was investigated. Aspartic acid in all the hyperthermophilic archaea was highly racemized. The ratio of d-aspartic acid to total aspartic acid was in the range of 43.0 to 49.1%. The crude extracts of the hyperthermophiles exhibited aspartate racemase activity at 70°C, and aspartate racemase homologous genes in them were identified by PCR. d-Enantiomers of other amino acids (alanine, leucine, phenylalanine, and lysine) in Thermococcus strains were also detected. Some of them might be by-products of aspartate racemase. It is proven that d-amino acids are produced in some hyperthermophilic archaea, although their function is unknown. PMID:10515953

  3. Crystallographic Snapshots of the Complete Catalytic Cycle of the Unregulated Aspartate Transcarbamoylase from Bacillus subtilis

    SciTech Connect

    K Harris; G Cockrell; D Puleo; E Kantrowitz

    2011-12-31

    Here, we report high-resolution X-ray structures of Bacillus subtilis aspartate transcarbamoylase (ATCase), an enzyme that catalyzes one of the first reactions in pyrimidine nucleotide biosynthesis. Structures of the enzyme have been determined in the absence of ligands, in the presence of the substrate carbamoyl phosphate, and in the presence of the bisubstrate/transition state analog N-phosphonacetyl-L-aspartate. Combining the structural data with in silico docking and electrostatic calculations, we have been able to visualize each step in the catalytic cycle of ATCase, from the ordered binding of the substrates, to the formation and decomposition of the tetrahedral intermediate, to the ordered release of the products from the active site. Analysis of the conformational changes associated with these steps provides a rationale for the lack of cooperativity in trimeric ATCases that do not possess regulatory subunits.

  4. Crystallographic snapshots of the complete catalytic cycle of the unregulated aspartate transcarbamoylase from Bacillus subtilis.

    PubMed

    Harris, Katharine M; Cockrell, Gregory M; Puleo, David E; Kantrowitz, Evan R

    2011-08-01

    Here, we report high-resolution X-ray structures of Bacillus subtilis aspartate transcarbamoylase (ATCase), an enzyme that catalyzes one of the first reactions in pyrimidine nucleotide biosynthesis. Structures of the enzyme have been determined in the absence of ligands, in the presence of the substrate carbamoyl phosphate, and in the presence of the bisubstrate/transition state analog N-phosphonacetyl-L-aspartate. Combining the structural data with in silico docking and electrostatic calculations, we have been able to visualize each step in the catalytic cycle of ATCase, from the ordered binding of the substrates, to the formation and decomposition of the tetrahedral intermediate, to the ordered release of the products from the active site. Analysis of the conformational changes associated with these steps provides a rationale for the lack of cooperativity in trimeric ATCases that do not possess regulatory subunits. PMID:21663747

  5. Structural basis of UDP-galactose binding by alpha-1,3-galactosyltransferase (alpha3GT): role of negative charge on aspartic acid 316 in structure and activity.

    PubMed

    Tumbale, Percy; Jamaluddin, Haryati; Thiyagarajan, Nethaji; Brew, Keith; Acharya, K Ravi

    2008-08-19

    alpha-1,3-Galactosyltransferase (alpha3GT) catalyzes the transfer of galactose from UDP-galactose to form an alpha 1-3 link with beta-linked galactosides; it is part of a family of homologous retaining glycosyltransferases that includes the histo-blood group A and B glycosyltransferases, Forssman glycolipid synthase, iGb3 synthase, and some uncharacterized prokaryotic glycosyltransferases. In mammals, the presence or absence of active forms of these enzymes results in antigenic differences between individuals and species that modulate the interplay between the immune system and pathogens. The catalytic mechanism of alpha3GT is controversial, but the structure of an enzyme complex with the donor substrate could illuminate both this and the basis of donor substrate specificity. We report here the structure of the complex of a low-activity mutant alpha3GT with UDP-galactose (UDP-gal) exhibiting a bent configuration stabilized by interactions of the galactose with multiple residues in the enzyme including those in a highly conserved region (His315 to Ser318). Analysis of the properties of mutants containing substitutions for these residues shows that catalytic activity is strongly affected by His315 and Asp316. The negative charge of Asp316 is crucial for catalytic activity, and structural studies of two mutants show that its interaction with Arg202 is needed for an active site structure that facilitates the binding of UDP-gal in a catalytically competent conformation. PMID:18651752

  6. Binding of C5-dicarboxylic substrate to aspartate aminotransferase: implications for the conformational change at the transaldimination step.

    PubMed

    Islam, Mohammad Mainul; Goto, Masaru; Miyahara, Ikuko; Ikushiro, Hiroko; Hirotsu, Ken; Hayashi, Hideyuki

    2005-06-14

    The mechanism for the reaction of aspartate aminotransferase with the C4 substrate, l-aspartate, has been well established. The binding of the C4 substrate induces conformational change in the enzyme from the open to the closed form, and the entire reaction proceeds in the closed form of the enzyme. On the contrary, little is known about the reaction with the C5 substrate, l-glutamate. In this study, we analyzed the pH-dependent binding of 2-methyl-l-glutamate to the enzyme and showed that the interaction between the amino group of 2-methyl-l-glutamate and the pyridoxal 5'-phosphate aldimine is weak compared to that between 2-methyl-l-aspartate and the aldimine. The structures of the Michaelis complexes of the enzyme with l-aspartate and l-glutamate were modeled on the basis of the maleate and glutarate complex structures of the enzyme. The result showed that l-glutamate binds to the open form of the enzyme in an extended conformation, and its alpha-amino group points in the opposite direction of the aldimine, while that of l-aspartate is close to the aldimine. These models explain the observations for 2-methyl-l-glutamate and 2-methyl-l-aspartate. The crystal structures of the complexes of aspartate aminotransferase with phosphopyridoxyl derivatives of l-glutamate, d-glutamate, and 2-methyl-l-glutamate were solved as the models for the external aldimine and ketimine complexes of l-glutamate. All the structures were in the closed form, and the two carboxylate groups and the arginine residues binding them are superimposable on the external aldimine complex with 2-methyl-l-aspartate. Taking these facts altogether, it was strongly suggested that the binding of l-glutamate to aspartate aminotransferase to form the Michaelis complex does not induce a conformational change in the enzyme, and that the conformational change to the closed form occurs during the transaldimination step. The hydrophobic residues of the entrance of the active site, including Tyr70, are

  7. Rheb Protein Binds CAD (Carbamoyl-phosphate Synthetase 2, Aspartate Transcarbamoylase, and Dihydroorotase) Protein in a GTP- and Effector Domain-dependent Manner and Influences Its Cellular Localization and Carbamoyl-phosphate Synthetase (CPSase) Activity*

    PubMed Central

    Sato, Tatsuhiro; Akasu, Hitomi; Shimono, Wataru; Matsu, Chisa; Fujiwara, Yuki; Shibagaki, Yoshio; Heard, Jeffrey J.; Tamanoi, Fuyuhiko; Hattori, Seisuke

    2015-01-01

    Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis. PMID:25422319

  8. Insulin Aspart (rDNA Origin) Injection

    MedlinePlus

    ... unless it is used in an external insulin pump. In patients with type 2 diabetes, insulin aspart ... also can be used with an external insulin pump. Before using insulin aspart in a pump system, ...

  9. Modulating the pH-activity profile of cellulase by substitution: replacing the general base catalyst aspartate with cysteinesulfinate in cellulase A from Cellulomonas fimi.

    PubMed

    Cockburn, Darrell W; Vandenende, Chris; Clarke, Anthony J

    2010-03-01

    Cellulase A (CenA) from Cellulomonas fimi is an inverting glycoside hydrolase and a member of family 6 of the CAZy database classification system. We replaced its putative catalytic base aspartyl residues, Aps392 and Asp216, with cysteinesulfinate using a combination of site-directed mutagenesis and chemical modification to investigate the applicability of this approach for the modulation of enzymatic properties. The substituted cysteinyl residues were oxidized to cysteinesulfinic acid with hydrogen peroxide, and the resulting protein products were demonstrated to retain their native structure. Oxidation of the Asp392Cys mutant enzyme restored 52% of wild-type activity when assessed at pH 7.5, whereas Asp216Cys CenA remained inactive. This suggests that Asp216 is not the catalytic base and provides further support for Asp392 performing this role. Similar substitution of the catalytic acid residue Asp252 or the catalytic nucleophile of the retaining enzyme Cel5A from Thermobifida fusca failed to produce active enzymes. This indicates a potential utility of this approach for uniquely identifying catalytic base residues. The replacement of Asp392 with cysteinesulfinate induced an acidic shift in the pH profile of the enzyme such that this enzyme derivative was more active than wild-type CenA below pH 5.5. These data demonstrate the potential of combining site-directed mutagenesis with chemical modification as a viable approach for the modulation of cellulases, and potentially other glycoside hydrolases, at low pH. PMID:20136145

  10. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  11. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  12. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  13. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  14. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  15. Active site of the replication protein of the rolling circle plasmid pC194.

    PubMed Central

    Noirot-Gros, M F; Bidnenko, V; Ehrlich, S D

    1994-01-01

    Mutation analysis of the rolling circle (RC) replication initiator protein RepA of plasmid pC194 was targeted to tyrosine and acidic amino acids (glutamate and aspartate) which are well conserved among numerous related plasmids. The effect of mutations was examined by an in vivo activity test. Mutations of one tyrosine and two glutamate residues were found to greatly impair or abolish activity, without affecting affinity for the origin, as deduced from in vitro gel mobility assays. We conclude that all three amino acids have a catalytic role. Tyrosine residues were found previously in active sites of different RC plasmid Rep proteins and topoisomerases, but not in association with acidic residues, which are a hallmark of the active sites of DNA hydrolyzing enzymes, such as the exo- and endonucleases. We propose that the active site of RepA contains two different catalytic centers, corresponding to a tyrosine and a glutamate. The former may be involved in the formation of the covalent DNA-protein intermediate at the initiation step of RC replication, and the latter may catalyze the release of the protein from the intermediate at the termination step. Images PMID:7925284

  16. Corrosion Research And Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  17. Corrosion Research and Web Site Activities

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2002-01-01

    This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.

  18. Molecular cloning, recombinant expression and partial characterization of the aspartate transcarbamoylase from Toxoplasma gondii.

    PubMed

    Mejias-Torres, Ida A; Zimmermann, Barbara H

    2002-02-01

    A cDNA coding for a monofunctional aspartate transcarbamoylase (ATCase) was isolated from a Toxoplasma gondii tachyzoite cDNA library using a complementation method. The calculated molecular mass of the deduced amino acid sequence was 46.8 kDa, with a predicted pI of 7.1. Size exclusion chromatography/laser-light scattering showed a single, monodisperse peak with molecular mass of 144 kDa. Amino acid sequence alignments revealed that active site residues of the Escherichia coli ATCase catalytic chain were conserved in the T. gondii sequence, and the latter shared 26-33% overall sequence identity with other ATCases. A recombinant enzyme was overexpressed in E. coli, and was purified with a yield of approximately 0.8 mg l(-1) culture. The temperature dependence of the recombinant enzyme was similar to that of native ATCase in T. gondii extracts. The K(m)'s for aspartate and carbamoyl phosphate were 7.82 mM, and 67.6 microM, respectively. The V(max) was 23900 micromol h(-1) mg(-1). Pyrimidine nucleotides had no significant effect on the enzyme's activity. N-phosphonoacetyl-L-aspartate (PALA) inhibited the enzyme with K(i)=0.38 microM. The T. gondii ATCases contained two additional sequences of approximately 24 residues each, which are not found in other ATCases. One of these sequences was susceptible to proteolysis by elastase. PMID:11814571

  19. Release of biologically active kinin peptides, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin from human kininogens by two major secreted aspartic proteases of Candida parapsilosis.

    PubMed

    Bras, Grazyna; Bochenska, Oliwia; Rapala-Kozik, Maria; Guevara-Lora, Ibeth; Faussner, Alexander; Kamysz, Wojciech; Kozik, Andrzej

    2013-10-01

    In terms of infection incidence, the yeast Candida parapsilosis is the second after Candida albicans as causative agent of candidiases in humans. The major virulence factors of C. parapsilosis are secreted aspartic proteases (SAPPs) which help the pathogen to disseminate, acquire nutrients and dysregulate the mechanisms of innate immunity of the host. In the current work we characterized the action of two major extracellular proteases of C. parapsilosis, SAPP1 and SAPP2, on human kininogens, proteinaceous precursors of vasoactive and proinflammatory bradykinin-related peptides, collectively called the kinins. The kininogens, preferably the form with lower molecular mass, were effectively cleaved by SAPPs, with the release of two uncommon kinins, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin. While optimal at acidic pH (4-5), the kinin release yield was only 2-3-fold lower at neutral pH. These peptides were able to interact with cellular kinin receptors of B2 subtype and to stimulate the human endothelial cells HMEC-1 to increased secretion of proinflammatory interleukins (ILs), IL-1β and IL-6. The analysis of the stability of SAPP-generated kinins in plasma suggested that they are biologically equivalent to bradykinin, the best agonist of B2 receptor subtype and can be quickly converted to des-Arg(9)-bradykinin, the agonist of inflammation-inducible B1 receptors. PMID:23954712

  20. An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis.

    PubMed

    Birsoy, Kıvanç; Wang, Tim; Chen, Walter W; Freinkman, Elizaveta; Abu-Remaileh, Monther; Sabatini, David M

    2015-07-30

    The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibition. GOT1 normally consumes aspartate to transfer electrons into mitochondria, but, upon ETC inhibition, it reverses to generate aspartate in the cytosol, which partially compensates for the loss of mitochondrial aspartate synthesis. Pyruvate stimulates aspartate synthesis in a GOT1-dependent fashion, which is required for pyruvate to rescue proliferation of cells with ETC dysfunction. Aspartate supplementation or overexpression of an aspartate transporter allows cells without ETC activity to proliferate. Thus, enabling aspartate synthesis is an essential role of the ETC in cell proliferation. PMID:26232224

  1. Identification of active-site residues in protease 3C of hepatitis A virus by site-directed mutagenesis.

    PubMed Central

    Gosert, R; Dollenmaier, G; Weitz, M

    1997-01-01

    Picornavirus 3C proteases (3Cpro) are cysteine proteases related by amino acid sequence to trypsin-like serine proteases. Comparisons of 3Cpro of hepatitis A virus (HAV) to those of other picornaviruses have resulted in prediction of active-site residues: histidine at position 44 (H44), aspartic acid (D98), and cysteine (C172). To test whether these residues are key members of a putative catalytic triad, oligonucleotide-directed mutagenesis was targeted to 3Cpro in the context of natural polypeptide precursor P3. Autocatalytic processing of the polyprotein containing wild-type or variant 3Cpro was tested by in vivo expression of vaccinia virus-HAV chimeras in an animal cell-T7 hybrid system and by in vitro translation of corresponding RNAs. Comparison with proteins present in HAV-infected cells showed that both expression systems mimicked authentic polyprotein processing. Individual substitutions of H44 by tyrosine and of C172 by glycine or serine resulted in complete loss of the virus-specific proteolytic cascade. In contrast, a P3 polyprotein in which D98 was substituted by asparagine underwent only slightly delayed processing, while an additional substitution of valine (V47) by glycine within putative protein 3A caused a more pronounced loss of processing. Therefore, apparently H44 and C172 are active-site constituents whereas D98 is not. The results, furthermore, suggest that substitution of amino acid residues distant from polyprotein cleavage sites may reduce proteolytic activity, presumably by altering substrate conformation. PMID:9060667

  2. Activity and protein kinase C regulate synaptic accumulation of N-methyl-D-aspartate (NMDA) receptors independently of GluN1 splice variant.

    PubMed

    Ferreira, Joana S; Rooyakkers, Amanda; She, Kevin; Ribeiro, Luis; Carvalho, Ana Luísa; Craig, Ann Marie

    2011-08-12

    NMDA receptors are calcium-permeable ionotropic receptors that detect coincident glutamate binding and membrane depolarization and are essential for many forms of synaptic plasticity in the mammalian brain. The obligatory GluN1 subunit of NMDA receptors is alternatively spliced at multiple sites, generating forms that vary in N-terminal N1 and C-terminal C1, C2, and C2' cassettes. Based on expression of GluN1 constructs in heterologous cells and in wild type neurons, the prevalent view is that the C-terminal cassettes regulate synaptic accumulation and its modulation by homeostatic activity blockade and by protein kinase C (PKC). Here, we tested the role of GluN1 splicing in regulated synaptic accumulation of NMDA receptors by lentiviral expression of individual GluN1 splice variants in hippocampal neurons cultured from GluN1 (-/-) mice. High efficiency transduction of GluN1 at levels similar to endogenous was achieved. Under control conditions, the C2' cassette mediated enhanced synaptic accumulation relative to the alternate C2 cassette, whereas the presence or absence of N1 or C1 had no effect. Surprisingly all GluN1 splice variants showed >2-fold increased synaptic accumulation with chronic blockade of NMDA receptor activity. Furthermore, in this neuronal rescue system, all GluN1 splice variants were equally rapidly dispersed upon activation of PKC. These results indicate that the major mechanisms mediating homeostatic synaptic accumulation and PKC dispersal of NMDA receptors occur independently of GluN1 splice isoform. PMID:21676872

  3. [Aspartate aminotransferase--key enzyme in the human systemic metabolism].

    PubMed

    Otto-Ślusarczyk, Dagmara; Graboń, Wojciech; Mielczarek-Puta, Magdalena

    2016-01-01

    Aspartate aminotransferase is an organ-nonspecific enzyme located in many tissues of the human body where it catalyzes reversible reaction of transamination. There are two aspartate aminotransferase isoforms--cytoplasmic (AST1) and mitochondrial (AST2), that usually occur together and interact with each other metabolically. Both isoforms are homodimers containing highly conservative regions responsible for catalytic properties of enzyme. The common feature of all aspartate aminotransfeses is Lys - 259 residue covalent binding with prosthetic group - pyridoxal phosphate. The differences in the primary structure of AST isoforms determine their physico-chemical, kinetic and immunological properties. Because of the low concentration of L-aspartate (L-Asp) in the blood, AST is the only enzyme, which supply of this amino acid as a substrate for many metabolic processes, such as urea cycle or purine and pyrimidine nucleotides in the liver, synthesis of L-arginine in the kidney and purine nucleotide cycle in the brain and the skeletal muscle. AST is also involved in D-aspartate production that regulates the metabolic activity at the auto-, para- and endocrine level. Aspartate aminotransferase is a part of the malate-aspartate shuttle in the myocardium, is involved in gluconeogenesis in the liver and kidney, glyceroneogenesis in the adipose tissue, and synthesis of neurotransmitters and neuro-glial pathway in the brain. Recently, the significant role of AST in glutaminolysis - normal metabolic pathway in tumor cells, was demonstrated. The article is devoted the role of AST, known primarily as a diagnostic liver enzyme, in metabolism of various human tissues and organs. PMID:27117097

  4. The glutamate aspartate transporter (GLAST) mediates L-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes.

    PubMed

    Lane, Darius J R; Lawen, Alfons

    2013-03-01

    Vitamin C (ascorbate) plays important neuroprotective and neuromodulatory roles in the mammalian brain. Astrocytes are crucially involved in brain ascorbate homeostasis and may assist in regenerating extracellular ascorbate from its oxidised forms. Ascorbate accumulated by astrocytes can be released rapidly by a process that is stimulated by the excitatory amino acid, L-glutamate. This process is thought to be neuroprotective against excitotoxicity. Although of potential clinical interest, the mechanism of this stimulated ascorbate-release remains unknown. Here, we report that primary cultures of mouse and rat astrocytes release ascorbate following initial uptake of dehydroascorbate and accumulation of intracellular ascorbate. Ascorbate-release was not due to cellular lysis, as assessed by cellular release of the cytosolic enzyme lactate dehydrogenase, and was stimulated by L-glutamate and L-aspartate, but not the non-excitatory amino acid L-glutamine. This stimulation was due to glutamate-induced cellular swelling, as it was both attenuated by hypertonic and emulated by hypotonic media. Glutamate-stimulated ascorbate-release was also sensitive to inhibitors of volume-sensitive anion channels, suggesting that the latter may provide the conduit for ascorbate efflux. Glutamate-stimulated ascorbate-release was not recapitulated by selective agonists of either ionotropic or group I metabotropic glutamate receptors, but was completely blocked by either of two compounds, TFB-TBOA and UCPH-101, which non-selectively and selectively inhibit the glial Na(+)-dependent excitatory amino acid transporter, GLAST, respectively. These results suggest that an impairment of astrocytic ascorbate-release may exacerbate neuronal dysfunction in neurodegenerative disorders and acute brain injury in which excitotoxicity and/or GLAST deregulation have been implicated. PMID:22886112

  5. Active site of ribulosebisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.; Stringer, C.D.; Milanez, S.; Lee, E.H.

    1985-01-01

    Previous affinity labeling studies and comparative sequence analyses have identified two different lysines at the active site of ribulosebisphosphate carboxylase/oxygenase and have suggested their essentiality to function. The essential lysines occupy positions 166 and 329 in the Rhodospirillum rubrum enzyme and positions 175 and 334 in the spinach enzyme. Based on the pH-dependencies of inactivations of the two enzymes by trinitrobenzene sulfonate, Lys-166 (R. rubrum enzyme) exhibits a pK/sub a/ of 7.9 and Lys-334 (spinach enzyme) exhibits a pK/sub a/ of 9.0. These low pK/sub a/ values as well as the enhanced nucleophilicities of the lysyl residues argue that both are important to catalysis rather than to substrate binding. Lys-166 may correspond to the essential base that initiates catalysis and that displays a pK/sub a/ of 7.5 in the pH-curve for V/sub max//K/sub m/. Cross-linking experiments with 4,4'-diisothiocyano-2,2'-disulfonate stilbene demonstrate that the two active-site lysines are within 12 A. 50 refs., 7 figs., 1 tab.

  6. Kinetic and Spectroscopic Studies of Bicupin Oxalate Oxidase and Putative Active Site Mutants

    PubMed Central

    Moomaw, Ellen W.; Hoffer, Eric; Moussatche, Patricia; Salerno, John C.; Grant, Morgan; Immelman, Bridget; Uberto, Richard; Ozarowski, Andrew; Angerhofer, Alexander

    2013-01-01

    Ceriporiopsis subvermispora oxalate oxidase (CsOxOx) is the first bicupin enzyme identified that catalyzes manganese-dependent oxidation of oxalate. In previous work, we have shown that the dominant contribution to catalysis comes from the monoprotonated form of oxalate binding to a form of the enzyme in which an active site carboxylic acid residue must be unprotonated. CsOxOx shares greatest sequence homology with bicupin microbial oxalate decarboxylases (OxDC) and the 241-244DASN region of the N-terminal Mn binding domain of CsOxOx is analogous to the lid region of OxDC that has been shown to determine reaction specificity. We have prepared a series of CsOxOx mutants to probe this region and to identify the carboxylate residue implicated in catalysis. The pH profile of the D241A CsOxOx mutant suggests that the protonation state of aspartic acid 241 is mechanistically significant and that catalysis takes place at the N-terminal Mn binding site. The observation that the D241S CsOxOx mutation eliminates Mn binding to both the N- and C- terminal Mn binding sites suggests that both sites must be intact for Mn incorporation into either site. The introduction of a proton donor into the N-terminal Mn binding site (CsOxOx A242E mutant) does not affect reaction specificity. Mutation of conserved arginine residues further support that catalysis takes place at the N-terminal Mn binding site and that both sites must be intact for Mn incorporation into either site. PMID:23469254

  7. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  8. Rescue of Na+ Affinity in Aspartate 928 Mutants of Na+,K+-ATPase by Secondary Mutation of Glutamate 314*

    PubMed Central

    Holm, Rikke; Einholm, Anja P.; Andersen, Jens P.; Vilsen, Bente

    2015-01-01

    The Na+,K+-ATPase binds Na+ at three transport sites denoted I, II, and III, of which site III is Na+-specific and suggested to be the first occupied in the cooperative binding process activating phosphorylation from ATP. Here we demonstrate that the asparagine substitution of the aspartate associated with site III found in patients with rapid-onset dystonia parkinsonism or alternating hemiplegia of childhood causes a dramatic reduction of Na+ affinity in the α1-, α2-, and α3-isoforms of Na+,K+-ATPase, whereas other substitutions of this aspartate are much less disruptive. This is likely due to interference by the amide function of the asparagine side chain with Na+-coordinating residues in site III. Remarkably, the Na+ affinity of site III aspartate to asparagine and alanine mutants is rescued by second-site mutation of a glutamate in the extracellular part of the fourth transmembrane helix, distant to site III. This gain-of-function mutation works without recovery of the lost cooperativity and selectivity of Na+ binding and does not affect the E1-E2 conformational equilibrium or the maximum phosphorylation rate. Hence, the rescue of Na+ affinity is likely intrinsic to the Na+ binding pocket, and the underlying mechanism could be a tightening of Na+ binding at Na+ site II, possibly via movement of transmembrane helix four. The second-site mutation also improves Na+,K+ pump function in intact cells. Rescue of Na+ affinity and Na+ and K+ transport by second-site mutation is unique in the history of Na+,K+-ATPase and points to new possibilities for treatment of neurological patients carrying Na+,K+-ATPase mutations. PMID:25713066

  9. Site-directed mutagenesis of dicarboxylic acids near the active site of Bacillus cereus 5/B/6 beta-lactamase II.

    PubMed Central

    Lim, H M; Iyer, R K; Pène, J J

    1991-01-01

    An amino acid residue functioning as a general base has been proposed to assist in the hydrolysis of beta-lactam antibiotics by the zinc-containing Bacillus cereus beta-lactamase II [Bicknell & Waley (1985) Biochemistry 24, 6876-6887]. Oligonucleotide-directed mutagenesis of cloned Bacillus cereus 5/B/6 beta-lactamase II was used in an 'in vivo' study to investigate the role of carboxy-group-containing amino acids near the active site of the enzyme. Substitution of asparagine for the wild-type aspartic acid residue at position 81 resulted in fully functional enzyme. An aspartic acid residue at position 90 is essential for beta-lactamase II to confer any detectable ampicillin and cephalosporin C resistance to Escherichia coli. Conversion of Asp90 into Asn90 or Glu90 lead to the synthesis of inactive enzyme, suggesting that the spatial position of the beta-carboxy group of Asp90 is critical for enzyme function. Images Fig. 2. Fig. 3. PMID:1904717

  10. Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex.

    PubMed

    Fugmann, S D; Villey, I J; Ptaszek, L M; Schatz, D G

    2000-01-01

    During V(D)J recombination, the RAG1 and RAG2 proteins cooperate to catalyze a series of DNA bond breakage and strand transfer reactions. The structure, location, and number of active sites involved in RAG-mediated catalysis have as yet not been determined. Using protein secondary structure prediction algorithms, we have identified a region of RAG1 with possible structural similarities to the active site regions of transposases and retroviral integrases. Based on this information, we have identified two aspartic acid residues in RAG1 (D600 and D708) that function specifically in catalysis. The results support a model in which RAG1 contains a single, divalent metal ion binding active site structurally related to the active sites of transposases/integrases and responsible for all catalytic functions of the RAG protein complex. PMID:10678172

  11. A Cooperative Escherichia coli Aspartate Transcarbamoylase without Regulatory Subunits

    SciTech Connect

    Mendes, K.; Kantrowitz, E

    2010-01-01

    Here we report the isolation, kinetic characterization, and X-ray structure determination of a cooperative Escherichia coli aspartate transcarbamoylase (ATCase) without regulatory subunits. The native ATCase holoenzyme consists of six catalytic chains organized as two trimers bridged noncovalently by six regulatory chains organized as three dimers, c{sub 6}r{sub 6}. Dissociation of the native holoenzyme produces catalytically active trimers, c{sub 3}, and nucleotide-binding regulatory dimers, r{sub 2}. By introducing specific disulfide bonds linking the catalytic chains from the upper trimer site specifically to their corresponding chains in the lower trimer prior to dissociation, a new catalytic unit, c{sub 6}, was isolated consisting of two catalytic trimers linked by disulfide bonds. Not only does the c{sub 6} species display enhanced enzymatic activity compared to the wild-type enzyme, but the disulfide bonds also impart homotropic cooperativity, never observed in the wild-type c3. The c{sub 6} ATCase was crystallized in the presence of phosphate and its X-ray structure determined to 2.10 {angstrom} resolution. The structure of c{sub 6} ATCase liganded with phosphate exists in a nearly identical conformation as other R-state structures with similar values calculated for the vertical separation and planar angles. The disulfide bonds linking upper and lower catalytic trimers predispose the active site into a more active conformation by locking the 240s loop into the position characteristic of the high-affinity R state. Furthermore, the elimination of the structural constraints imposed by the regulatory subunits within the holoenzyme provides increased flexibility to the c{sub 6} enzyme, enhancing its activity over the wild-type holoenzyme (c{sub 6}r{sub 6}) and c{sub 3}. The covalent linkage between upper and lower catalytic trimers restores homotropic cooperativity so that a binding event at one or so active sites stimulates binding at the other sites. Reduction

  12. Effects of test spills of chemically dispersed and nondispersed oil on the activity of aspartate aminotransferase and glucose-6-phosphate dehydrogenase in two intertidal bivalves, Mya arenaria and Mytilus edulis

    SciTech Connect

    Gilfillan, E.S.; Foster, J.; Gerber, R.; Hanson, S.A.; Page, D.S.; Vallas, D.

    1982-10-01

    In 1981, two test oil spills were made in Maine. One spill was 975 L (250 gal) of Murban crude oil; the other was 975 L of Murban crude oil premixed with 97 L (25 gal) of Corexit 9527. The uptake of the oil and its effects on enzymatic activity in two species of common intertidal bivalve mollusks, Mya arenaria and Mytilus edulis, were studied. Data were obtained on uptake and depuration of the oil for each species; data were also obtained on the activity of glucose-6-phosphate dehydrogenase and aspartate aminotransferase for each species. Data were collected both before and after each of the spills. Much less oil was taken up by the populations of animals exposed to chemically dispersed oil than by those exposed to nondispersed oil. Rates of depuration were the same for each species; they were also the same regardless of oil exposure. Significant long-term effects on enzyme activity were detected only in those animals exposed to nondispersed oil.

  13. Substrate Specificity of the Aspartate:Alanine Antiporter (AspT) of Tetragenococcus halophilus in Reconstituted Liposomes*

    PubMed Central

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-01-01

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of l-aspartate1− with l-alanine0. Although physiological functions of AspT were well studied, l-aspartate1−:l-alanine0 antiport mechanisms are still unsolved. Here we report that the binding sites of l-aspartate and l-alanine are independently present in AspT by means of the kinetic studies. We purified His6-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (Km = 0.35 ± 0.03 mm for l-aspartate, Km = 0.098 ± 0 mm for d-aspartate, Km = 26 ± 2 mm for l-alanine, Km = 3.3 ± 0.2 mm for d-alanine). Competitive inhibition by various amino acids of l-aspartate or l-alanine in self-exchange reactions revealed that l-cysteine selectively inhibited l-aspartate self-exchange but only weakly inhibited l-alanine self-exchange. Additionally, l-serine selectively inhibited l-alanine self-exchange but barely inhibited l-aspartate self-exchange. The aspartate analogs l-cysteine sulfinic acid, l-cysteic acid, and d-cysteic acid competitively and strongly inhibited l-aspartate self-exchange compared with l-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of l-aspartate and l-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  14. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.

    PubMed

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-08-19

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  15. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction.

    PubMed Central

    Cavarelli, J; Eriani, G; Rees, B; Ruff, M; Boeglin, M; Mitschler, A; Martin, F; Gangloff, J; Thierry, J C; Moras, D

    1994-01-01

    The crystal structures of the various complexes formed by yeast aspartyl-tRNA synthetase (AspRS) and its substrates provide snapshots of the active site corresponding to different steps of the aminoacylation reaction. Native crystals of the binary complex tRNA-AspRS were soaked in solutions containing the two other substrates, ATP (or its analog AMPPcP) and aspartic acid. When all substrates are present in the crystal, this leads to the formation of the aspartyl-adenylate and/or the aspartyl-tRNA. A class II-specific pathway for the aminoacylation reaction is proposed which explains the known functional differences between the two classes while preserving a common framework. Extended signature sequences characteristic of class II aaRS (motifs 2 and 3) constitute the basic functional unit. The ATP molecule adopts a bent conformation, stabilized by the invariant Arg531 of motif 3 and a magnesium ion coordinated to the pyrophosphate group and to two class-invariant acidic residues. The aspartic acid substrate is positioned by a class II invariant acidic residue, Asp342, interacting with the amino group and by amino acids conserved in the aspartyl synthetase family. The amino acids in contact with the substrates have been probed by site-directed mutagenesis for their functional implication. Images PMID:8313877

  16. Phosphorylation of Tyrosine 1070 at the GluN2B Subunit Is Regulated by Synaptic Activity and Critical for Surface Expression of N-Methyl-D-aspartate (NMDA) Receptors.

    PubMed

    Lu, Wen; Fang, Weiqing; Li, Jian; Zhang, Bin; Yang, Qian; Yan, Xunyi; Peng, Lin; Ai, Heng; Wang, Jie-jie; Liu, Xiao; Luo, Jianhong; Yang, Wei

    2015-09-18

    The number and subunit composition of synaptic N-methyl-d-aspartate receptors (NMDARs) play critical roles in synaptic plasticity, learning, and memory and are implicated in neurological disorders. Tyrosine phosphorylation provides a powerful means of regulating NMDAR function, but the underling mechanism remains elusive. In this study we identified a tyrosine site on the GluN2B subunit, Tyr-1070, which was phosphorylated by a proto-oncogene tyrosine-protein (Fyn) kinase and critical for the surface expression of GluN2B-containing NMDARs. The phosphorylation of GluN2B at Tyr-1070 was required for binding of Fyn kinase to GluN2B, which up-regulated the phosphorylation of GluN2B at Tyr-1472. Moreover, our results revealed that the phosphorylation change of GluN2B at Tyr-1070 accompanied the Tyr-1472 phosphorylation and Fyn associated with GluN2B in synaptic plasticity induced by both chemical and contextual fear learning. Taken together, our findings provide a new mechanism for regulating the surface expression of NMDARs with implications for synaptic plasticity. PMID:26229100

  17. Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria.

    PubMed

    Palmieri, L; Pardo, B; Lasorsa, F M; del Arco, A; Kobayashi, K; Iijima, M; Runswick, M J; Walker, J E; Saheki, T; Satrústegui, J; Palmieri, F

    2001-09-17

    The mitochondrial aspartate/glutamate carrier catalyzes an important step in both the urea cycle and the aspartate/malate NADH shuttle. Citrin and aralar1 are homologous proteins belonging to the mitochondrial carrier family with EF-hand Ca(2+)-binding motifs in their N-terminal domains. Both proteins and their C-terminal domains were overexpressed in Escherichia coli, reconstituted into liposomes and shown to catalyze the electrogenic exchange of aspartate for glutamate and a H(+). Overexpression of the carriers in transfected human cells increased the activity of the malate/aspartate NADH shuttle. These results demonstrate that citrin and aralar1 are isoforms of the hitherto unidentified aspartate/glutamate carrier and explain why mutations in citrin cause type II citrullinemia in humans. The activity of citrin and aralar1 as aspartate/glutamate exchangers was stimulated by Ca(2+) on the external side of the inner mitochondrial membrane, where the Ca(2+)-binding domains of these proteins are localized. These results show that the aspartate/glutamate carrier is regulated by Ca(2+) through a mechanism independent of Ca(2+) entry into mitochondria, and suggest a novel mechanism of Ca(2+) regulation of the aspartate/malate shuttle. PMID:11566871

  18. Intramolecular signal transmission in enterobacterial aspartate transcarbamylases II. Engineering co-operativity and allosteric regulation in the aspartate transcarbamylase of Erwinia herbicola.

    PubMed

    Cunin, R; Rani, C S; Van Vliet, F; Wild, J R; Wales, M

    1999-12-17

    The aspartate transcarbamylase (ATCase) from Erwinia herbicola differs from the other investigated enterobacterial ATCases by its absence of homotropic co-operativity toward the substrate aspartate and its lack of response to ATP which is an allosteric effector (activator) of this family of enzymes. Nevertheless, the E. herbicola ATCase has the same quaternary structure, two trimers of catalytic chains with three dimers of regulatory chains ((c3)2(r2)3), as other enterobacterial ATCases and shows extensive primary structure conservation. In (c3)2(r2)3 ATCases, the association of the catalytic subunits c3 with the regulatory subunits r2 is responsible for the establishment of positive co-operativity between catalytic sites for the binding of aspartate and it dictates the pattern of allosteric response toward nucleotide effectors. Alignment of the primary sequence of the regulatory polypeptides from the E. herbicola and from the paradigmatic Escherichia coli ATCases reveals major blocks of divergence, corresponding to discrete structural elements in the E. coli enzyme. Chimeric ATCases were constructed by exchanging these blocks of divergent sequence between these two ATCases. It was found that the amino acid composition of the outermost beta-strand of a five-stranded beta-sheet in the effector-binding domain of the regulatory polypeptide is responsible for the lack of co-operativity and response to ATP of the E. herbicola ATCase. A novel structural element involved in allosteric signal recognition and transmission in this family of ATCases was thus identified. PMID:10600394

  19. The crystal structure of the secreted aspartic protease 1 from Candida parapsilosis in complex with pepstatin A

    SciTech Connect

    Dostál, Jiří; Brynda, Jiří; Hrušková-Heidingsfeldová, Olga; Sieglová, Irena; Pichová, Iva; Řezáčová, Pavlína

    2010-09-01

    Opportunistic pathogens of the genus Candida cause infections representing a major threat to long-term survival of immunocompromised patients. Virulence of the Candida pathogens is enhanced by production of extracellular proteolytic enzymes and secreted aspartic proteases (Saps) are therefore studied as potential virulence factors and possible targets for therapeutic drug design. Candida parapsilosis is less invasive than C. albicans, however, it is one of the leading causative agents of yeast infections. We report three-dimensional crystal structure of Sapp1p from C. parapsilosis in complex with pepstatin A, the classical inhibitor of aspartic proteases. The structure of Sapp1p was determined from protein isolated from its natural source and represents the first structure of Sap from C. parapsilosis. Overall fold and topology of Sapp1p is very similar to the archetypic fold of monomeric aspartic protease family and known structures of Sap isoenzymes from C. albicans and Sapt1p from C. tropicalis. Structural comparison revealed noticeable differences in the structure of loops surrounding the active site. This resulted in differential character, shape, and size of the substrate binding site explaining divergent substrate specificities and inhibitor affinities. Determination of structures of Sap isoenzymes from various species might contribute to the development of new Sap-specific inhibitors.

  20. Protection against ionising radiation and synergism with thiols by zinc aspartate.

    PubMed

    Floersheim, G L; Floersheim, P

    1986-06-01

    Pre-treatment with zinc aspartate protected mice against the lethal effects of radiation and raised the LD50 from 8 Gy to 12.2 Gy. Zinc chloride and zinc sulphate were clearly less active. The radioprotective effect of zinc aspartate was equivalent to cysteamine and slightly inferior to S,2-aminoethylisothiourea (AET). Zinc aspartate displayed a similar therapeutic index to the thiols but could be applied at an earlier time before irradiation. Synergistic effects occurred with the combined administration of zinc aspartate and thiols. By giving zinc aspartate with cysteamine, the LD50 was increased to 13.25 Gy and, by combining it in the optimal protocol with AET, to 17.3 Gy. The radioprotection by zinc and its synergism with thiols is explained by the stabilisation of thiols through the formation of zinc complexes. PMID:3518853

  1. Nitrification of Aspartate by Aspergillus flavus

    PubMed Central

    Hatcher, H. J.; Schmidt, E. L.

    1971-01-01

    Heterotrophic conversion of l-aspartic acid to nitrification products by Aspergillus flavus was studied in a replacement incubation system. Numerous amino acids supported nitrification; aspartate and glutamate were about equivalent as the best sources of nitrate. Addition of sodium bicarbonate to the incubation system substantially enhanced nitrate formation for all nitrifiable amino acids except aspartic acid, but the basis for the bicarbonate effect is obscure. The yield of nitrate from l-aspartate was not approached by forms of aspartic acid resulting from substitution on the beta carbon, the amino nitrogen, or the gamma carboxyl group or by aspartate presented as the d-configuration. There was no relationship between nitrate formation and the occurrence of such possible intermediates as nitrite, bound hydroxylamine, ammonia, aspergillic acid, and beta-nitropropionic acid. Uniformly labeled 14C-l-aspartate that was nitrified in replacement incubation led to no accumulation of label in possible nitrification products in the culture filtrate. Label was found in components of the mycelium after acid hydrolysis, with heaviest accumulation in what appeared to be glucosamine and an unidentified compound, possibly acetylglucosamine. Detectable label was redistributed into serine, glycine, and threonine. Images PMID:5549699

  2. Flap Dynamics in Aspartic Proteases: A Computational Perspective.

    PubMed

    Mahanti, Mukul; Bhakat, Soumendranath; Nilsson, Ulf J; Söderhjelm, Pär

    2016-08-01

    Recent advances in biochemistry and drug design have placed proteases as one of the critical target groups for developing novel small-molecule inhibitors. Among all proteases, aspartic proteases have gained significant attention due to their role in HIV/AIDS, malaria, Alzheimer's disease, etc. The binding cleft is covered by one or two β-hairpins (flaps) which need to be opened before a ligand can bind. After binding, the flaps close to retain the ligand in the active site. Development of computational tools has improved our understanding of flap dynamics and its role in ligand recognition. In the past decade, several computational approaches, for example molecular dynamics (MD) simulations, coarse-grained simulations, replica-exchange molecular dynamics (REMD) and metadynamics, have been used to understand flap dynamics and conformational motions associated with flap movements. This review is intended to summarize the computational progress towards understanding the flap dynamics of proteases and to be a reference for future studies in this field. PMID:26872937

  3. Synthesis, structure activity relationship, radiolabeling and preclinical evaluation of high affinity ligands for the ion channel of the N-methyl-d-aspartate receptor as potential imaging probes for positron emission tomography.

    PubMed

    Klein, Pieter J; Christiaans, Johannes A M; Metaxas, Athanasios; Schuit, Robert C; Lammertsma, Adriaan A; van Berckel, Bart N M; Windhorst, Albert D

    2015-03-01

    The N-methyl-d-aspartate receptor (NMDAr) is involved in many neurological and psychiatric disorders including Alzheimer's disease and schizophrenia. Currently, it is not possible to assess NMDAr availability in vivo. The purpose of this study was to develop a positron emission tomography (PET) ligand for the NMDAr ion channel. A series of di- and tri-N-substituted diarylguanidines was synthesized. In addition, in vitro binding affinity for the NMDAr ion channel in rat forebrain membrane fractions was assessed. Compounds 10, 11 and 32 were radiolabeled with either carbon-11 or fluorine-18. Ligands [(11)C]10 and [(18)F]32 were evaluated ex vivo in B6C3 mice. Biodistribution studies showed higher uptake of [(11)C]10 and [(18)F]32 in forebrain regions compared with cerebellum. In addition, for [(11)C]10 54% and for [(18)F]32 70% of activity in the brain at 60min was due to intact tracer. Pre-treatment with MK-801 (0.6mg·kg(-1), ip) slightly decreased uptake in NMDAr-specific regions for [(18)F]32, but not for [(11)C]10. As such [(18)F]32 has the best characteristics as a PET tracer for the ion channel of the NMDAr. PMID:25648682

  4. Cauliflower mosaic virus produces an aspartic proteinase to cleave its polyproteins.

    PubMed

    Torruella, M; Gordon, K; Hohn, T

    1989-10-01

    Cauliflower mosaic virus (CaMV), a plant pararetrovirus, produces polyproteins from its adjacent genes for the coat protein (ORF IV) and for enzymatic functions (ORF V). The N-terminal domain of the latter gene includes a sequence showing homology to the active site of other retroviral and acid proteases. We have now shown that this domain does indeed produce a functional aspartic protease that can process both the polyproteins. Mutations in the putative active site abolished virus infectivity. In transient expression studies in protoplasts, the N-terminal domain of ORF V was able to free active CAT enzyme from a precursor containing an N-terminal fusion of a portion of ORF IV. The junction between the two domains of this artificial polyprotein comprised sequences from the ORF IV product that had previously been shown to include a proteolytic processing site. The protease mutants were not able to free active CAT enzyme from this precursor. Direct analysis of cleavage at the same site in the ORF IV product using proteins expressed in Escherichia coli revealed the expected products. In vitro translation of a synthetic transcript covering ORF V was used to study the autocatalytic cleavage of the ORF product. Pulse-chase experiments showed that the 80 kd initial translation product was processed to yield a N-terminal doublet of polypeptides of 22 and 20 kd apparent mol. wt, which cover the protease domain. The mutants in the active site were not processed. PMID:2684630

  5. Aspartate inhibits Staphylococcus aureus biofilm formation.

    PubMed

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp. PMID:25687923

  6. Dissecting the active site of a photoreceptor protein

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter; Hara, Miwa; Ren, Jie; Moghadam, Farzaneh; Xie, Aihua; Kumauchi, Masato

    While enzymes are quite large molecules, functionally important chemical events are often limited to a small region of the protein: the active site. The physical and chemical properties of residues at such active sites are often strongly altered compared to the same groups dissolved in water. Understanding such effects is important for unraveling the mechanisms underlying protein function and for protein engineering, but has proven challenging. Here we report on our ongoing efforts on using photoactive yellow protein (PYP), a bacterial photoreceptor, as a model system for such effects. We will report on the following questions: How many residues affect active site properties? Are these residues in direct physical contact with the active site? Can functionally important residues be recognized in the crystal structure of a protein? What structural resolution is needed to understand active sites? What spectroscopic techniques are most informative? Which weak interactions dominate active site properties?

  7. Modulating the Intrinsic Disorder in the Cytoplasmic Domain Alters the Biological Activity of the N-Methyl-d-aspartate-sensitive Glutamate Receptor*

    PubMed Central

    Choi, Ucheor B.; Kazi, Rashek; Stenzoski, Natalie; Wollmuth, Lonnie P.; Uversky, Vladimir N.; Bowen, Mark E.

    2013-01-01

    The NMDA-sensitive glutamate receptor is a ligand-gated ion channel that mediates excitatory synaptic transmission in the nervous system. Extracellular zinc allosterically regulates the NMDA receptor by binding to the extracellular N-terminal domain, which inhibits channel gating. Phosphorylation of the intrinsically disordered intracellular C-terminal domain alleviates inhibition by extracellular zinc. The mechanism for this functional effect is largely unknown. Proline is a hallmark of intrinsic disorder, so we used proline mutagenesis to modulate disorder in the cytoplasmic domain. Proline depletion selectively uncoupled zinc inhibition with little effect on receptor biogenesis, surface trafficking, or ligand-activated gating. Proline depletion also reduced the affinity for a PDZ domain involved in synaptic trafficking and affected small molecule binding. To understand the origin of these phenomena, we used single molecule fluorescence and ensemble biophysical methods to characterize the structural effects of proline mutagenesis. Proline depletion did not eliminate intrinsic disorder, but the underlying conformational dynamics were changed. Thus, we altered the form of intrinsic disorder, which appears sufficient to affect the biological activity. These findings suggest that conformational dynamics within the intrinsically disordered cytoplasmic domain are important for the allosteric regulation of NMDA receptor gating. PMID:23782697

  8. Insulin Aspart (rDNA Origin) Injection

    MedlinePlus

    ... a solution (liquid) and a suspension (liquid with particles that will settle on standing) to inject subcutaneously ( ... it is colored, cloudy, thickened, or contains solid particles. If you are using insulin aspart suspension, the ...

  9. Mutational analysis of the active site of indoleglycerol phosphate synthase from Escherichia coli.

    PubMed Central

    Darimont, B.; Stehlin, C.; Szadkowski, H.; Kirschner, K.

    1998-01-01

    Indoleglycerol phosphate synthase catalyzes the ring closure of 1-(2-carboxyphenylamino)-1-deoxyribulose 5'-phosphate to indoleglycerol phosphate, the fifth step in the pathway of tryptophan biosynthesis from chorismate. Because chemical synthesis of indole derivatives from arylamino ketones requires drastic solvent conditions, it is interesting by what mechanism the enzyme catalyzes the same condensation reaction. Seven invariant polar residues in the active site of the enzyme from Escherichia coli have been mutated directly or randomly, to identify the catalytically essential ones. A strain of E. coli suitable for selecting and classifying active mutants by functional complementation was constructed by precise deletion of the trpC gene from the genome. Judged by growth rates of transformants on selective media, mutants with either S58 or S60 replaced by alanine were indistinguishable from the wild-type, but R186 replaced by alanine was still partially active. Saturation random mutagenesis of individual codons showed that E53 was partially replaceable by aspartate and cysteine, whereas K114, E163, and N184 could not be replaced by any other residue. Partially active mutant proteins were purified and their steady-state kinetic and inhibitor binding constants determined. Their relative catalytic efficiencies paralleled their relative complementation efficiencies. These results are compatible with the location of the essential residues in the active site of the enzyme and support a chemically plausible catalytic mechanism. It involves two enzyme-bound intermediates and general acid-base catalysis by K114 and E163 with the support of E53 and N184. PMID:9605328

  10. Ghrelin receptor activity amplifies hippocampal N-methyl-d-aspartate receptor-mediated postsynaptic currents and increases phosphorylation of the GluN1 subunit at Ser896 and Ser897.

    PubMed

    Muniz, Brandon G; Isokawa, Masako

    2015-12-01

    Although ghrelin and its cognate receptor growth hormone secretagogue receptor (GHSR1a) are highly localized in the hypothalamic nuclei for the regulation of metabolic states and feeding, GHSR1a is also highly localized in the hippocampus, suggesting its involvement in extra-hypothalamic functions. Indeed, exogenous application of ghrelin has been reported to improve hippocampal learning and memory. However, the underlying mechanism of ghrelin regulation of hippocampal functions is poorly understood. Here, we report ghrelin-promoted phosphorylation of GluN1 and amplified N-methyl-d-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents in the CA1 pyramidal cells of the hippocampus in slice preparations. The ghrelin-induced responses were sensitive to a GHSR1a antagonist and inverse agonist, and were absent in GHSR1a homozygous knock-out mice. These results indicated that activation of GHSR1a was critical in the ghrelin-induced enhancement of the NMDAR function. Interestingly, heterozygous mouse hippocampi were also insensitive to ghrelin treatment, suggesting that a slight reduction in the availability of GHSR1a may be sufficient to negate the effect of ghrelin on GluN1 phosphorylation and NMDAR channel activities. In addition, NMDAR-mediated spike currents, which are of dendritic origin, were blocked by the GHSR1a antagonist, suggesting the presence of GHSR1a on the pyramidal cell dendrites in physical proximity to NMDAR. Together with our findings on the localization of GHSR1a in the CA1 region of the hippocampus, which was shown by fluorescent ghrelin binding, immunoreactivity, and enhanced green fluorescent protein reporter gene expression, we conclude that the activation of GHSR1a favours rapid modulation of the NMDAR-mediated glutamatergic synaptic transmission by phosphorylating GluN1 in the hippocampus. PMID:26490687

  11. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program --now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history The missions will develop technology and acquire data necessary for eventual human Exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines be opportunities for the Mars community to provide input into the landing site selection process.

  12. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program -- now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history. The missions will develop technology and acquire data necessary for eventual human exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines the opportunities for the Mars community to provide input into the landing site selection process.

  13. Elaboration of a fragment library hit produces potent and selective aspartate semialdehyde dehydrogenase inhibitors.

    PubMed

    Thangavelu, Bharani; Bhansali, Pravin; Viola, Ronald E

    2015-10-15

    Aspartate-β-semialdehyde dehydrogenase (ASADH) lies at the first branch point in the aspartate metabolic pathway which leads to the biosynthesis of several essential amino acids and some important metabolites. This pathway is crucial for many metabolic processes in plants and microbes like bacteria and fungi, but is absent in mammals. Therefore, the key microbial enzymes involved in this pathway are attractive potential targets for development of new antibiotics with novel modes of action. The ASADH enzyme family shares the same substrate binding and active site catalytic groups; however, the enzymes from representative bacterial and fungal species show different inhibition patterns when previously screened against low molecular weight inhibitors identified from fragment library screening. In the present study several approaches, including fragment based drug discovery (FBDD), inhibitor docking, kinetic, and structure-activity relationship (SAR) studies have been used to guide ASADH inhibitor development. Elaboration of a core structure identified by FBDD has led to the synthesis of low micromolar inhibitors of the target enzyme, with high selectivity introduced between the Gram-negative and Gram-positive orthologs of ASADH. This new set of structures open a novel direction for the development of inhibitors against this validated drug-target enzyme. PMID:26404410

  14. Lithium stimulates glutamate "release" and inositol 1,4,5-trisphosphate accumulation via activation of the N-methyl-D-aspartate receptor in monkey and mouse cerebral cortex slices.

    PubMed Central

    Dixon, J F; Los, G V; Hokin, L E

    1994-01-01

    Beginning at therapeutic concentrations (1-1.5 mM), the anti-manic-depressive drug lithium stimulated the release of glutamate, a major excitatory neurotransmitter in the brain, in monkey cerebral cortex slices in a time- and concentration-dependent manner, and this was associated with increased inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] accumulation. (+/-)-3-(2-Carboxypiperazin-4-yl)propyl-1-phosphoric acid (CPP), dizocilpine (MK-801), ketamine, and Mg(2+)-antagonists to the N-methyl-D-aspartate (NMDA) receptor/channel complex selectively inhibited lithium-stimulated Ins(1,4,5)P3 accumulation. Antagonists to cholinergic-muscarinic, alpha 1-adrenergic, 5-hydroxytryptamine2 (serotoninergic), and H1 histaminergic receptors had no effect. Antagonists to non-NMDA glutamate receptors had no effect on lithium-stimulated Ins(1,4,5)P3 accumulation. Possible reasons for this are discussed. Similar results were obtained in mouse cerebral cortex slices. Carbetapentane, which inhibits glutamate release, inhibited lithium-induced Ins(1,4,5)P3 accumulation in this model. It is concluded that the primary effect of lithium in the cerebral cortex slice model is stimulation of glutamate release, which, presumably via activation of the NMDA receptor, leads to Ca2+ entry. Ins(1,4,5)P3 accumulation increases due to the presumed increased influx of intracellular Ca2+, which activates phospholipase C. These effects may have relevance to the therapeutic action of lithium in the treatment of manic depression as well as its toxic effects, especially at lithium blood levels above 1.5 mM. Images PMID:8078888

  15. Guanine nucleotide dissociation inhibitor activity of the triple GoLoco motif protein G18: alanine-to-aspartate mutation restores function to an inactive second GoLoco motif.

    PubMed

    Kimple, Randall J; Willard, Francis S; Hains, Melinda D; Jones, Miller B; Nweke, Gift K; Siderovski, David P

    2004-03-15

    GoLoco ('Galpha(i/o)-Loco' interaction) motif proteins have recently been identified as novel GDIs (guanine nucleotide dissociation inhibitors) for heterotrimeric G-protein alpha subunits. G18 is a member of the mammalian GoLoco-motif gene family and was uncovered by analyses of human and mouse genomes for anonymous open-reading frames. The encoded G18 polypeptide is predicted to contain three 19-amino-acid GoLoco motifs, which have been shown in other proteins to bind Galpha subunits and inhibit spontaneous nucleotide release. However, the G18 protein has thus far not been characterized biochemically. Here, we have cloned and expressed the G18 protein and assessed its ability to act as a GDI. G18 is capable of simultaneously binding more than one Galpha(i1) subunit. In binding assays with the non-hydrolysable GTP analogue guanosine 5'-[gamma-thio]triphosphate, G18 exhibits GDI activity, slowing the exchange of GDP for GTP by Galpha(i1). Only the first and third GoLoco motifs within G18 are capable of interacting with Galpha subunits, and these bind with low micromolar affinity only to Galpha(i1) in the GDP-bound form, and not to Galpha(o), Galpha(q), Galpha(s) or Galpha12. Mutation of Ala-121 to aspartate in the inactive second GoLoco motif of G18, to restore the signature acidic-glutamine-arginine tripeptide that forms critical contacts with Galpha and its bound nucleotide [Kimple, Kimple, Betts, Sondek and Siderovski (2002) Nature (London) 416, 878-881], results in gain-of-function with respect to Galpha binding and GDI activity. PMID:14656218

  16. Rapid kinetic studies and structural determination of a cysteine proteinase mutant imply that residue 158 in caricain has a major effect upon the ability of the active site histidine to protonate a dipyridyl probe.

    PubMed

    Katerelos, N A; Goodenough, P W

    1996-11-26

    Cysteine proteinases are endopeptidases whose catalytic activity depends upon the nucleophilicity of the active site cysteine thiol group. An ion pair forms with an active site histidine. The presence in some cysteine proteinases of an aspartic acid close to the ion pair has been used as evidence of a "catalytic triad" as found in the serine proteinases. In these enzymes, the correct alignment of serine, histidine, and aspartate residues controls catalysis. However, the absence of the homologous aspartate residue in the mammalian cysteine proteinases cathepsins B and H argues against this pivotal role for aspartic acid. Instead, an Asn, physically close to the histidine in cysteine proteinases, has been proposed as a member of the catalytic triad. Protein engineering is being used to investigate these questions. In this study, the Asp158Glu mutant of the plant cysteine proteinase caricain was analyzed by stopped-flow rapid kinetics. The probe that was used was 2,2'-dipyridyl disulfide (2 PDS), and the profile of k versus pH gave results more closely allied to a small molecule active site model than the normal profile with cysteine proteinases. Multiple pKa's identified in the profile are as follows: pK1 = 3.4 (Cys 25), pK2 = 3.6, pK3 = 7.0, and pK4 = 8.6 (His 158). The structure of the enzyme with the bound inhibitor E64 was solved (R factor of 19.3%). Although the distance between the imadazolium and the surrounding charged amino acids is only slightly changed in the mutant, the reduced steady state activity and narrower pH range can be related to changes in the hydrogen-bonding capacity of the imadazolium. PMID:8942638

  17. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  18. A study on the flexibility of enzyme active sites

    PubMed Central

    2011-01-01

    Background A common assumption about enzyme active sites is that their structures are highly conserved to specifically distinguish between closely similar compounds. However, with the discovery of distinct enzymes with similar reaction chemistries, more and more studies discussing the structural flexibility of the active site have been conducted. Results Most of the existing works on the flexibility of active sites focuses on a set of pre-selected active sites that were already known to be flexible. This study, on the other hand, proposes an analysis framework composed of a new data collecting strategy, a local structure alignment tool and several physicochemical measures derived from the alignments. The method proposed to identify flexible active sites is highly automated and robust so that more extensive studies will be feasible in the future. The experimental results show the proposed method is (a) consistent with previous works based on manually identified flexible active sites and (b) capable of identifying potentially new flexible active sites. Conclusions This proposed analysis framework and the former analyses on flexibility have their own advantages and disadvantage, depending on the cause of the flexibility. In this regard, this study proposes an alternative that complements previous studies and helps to construct a more comprehensive view of the flexibility of enzyme active sites. PMID:21342563

  19. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  20. DOE site performance assessment activities. Radioactive Waste Technical Support Program

    SciTech Connect

    Not Available

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

  1. Savannah River Site prioritization of transition activities

    SciTech Connect

    Finley, R.H.

    1993-11-01

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D&D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities.

  2. Secreted Aspartic Proteinase Family of Candida tropicalis

    PubMed Central

    Zaugg, Christophe; Borg-von Zepelin, Margarete; Reichard, Utz; Sanglard, Dominique; Monod, Michel

    2001-01-01

    Medically important yeasts of the genus Candida secrete aspartic proteinases (Saps), which are of particular interest as virulence factors. Like Candida albicans, Candida tropicalis secretes in vitro one dominant Sap (Sapt1p) in a medium containing bovine serum albumin (BSA) as the sole source of nitrogen. Using the gene SAPT1 as a probe and under low-stringency hybridization conditions, three new closely related gene sequences, SAPT2 to SAPT4, encoding secreted proteinases were cloned from a C. tropicalis λEMBL3 genomic library. All bands identified by Southern blotting of EcoRI-digested C. tropicalis genomic DNA with SAPT1 could be assigned to a specific SAP gene. Therefore, the SAPT gene family of C. tropicalis is likely to contain only four members. Interestingly, the SAPT2 and SAPT3 gene products, Sapt2p and Sapt3p, which have not yet been detected in C. tropicalis cultures in vitro, were produced as active recombinant enzymes with the methylotrophic yeast Pichia pastoris as an expression system. As expected, reverse transcriptase PCR experiments revealed a strong SAPT1 signal with RNA extracted from cells grown in BSA medium. However, a weak signal was obtained with all other SAPT genes under several conditions tested, showing that these SAPT genes could be expressed at a basic level. Together, these experiments suggest that the gene products Sapt2p, Sapt3p, and Sapt4p could be produced under conditions yet to be described in vitro or during infection. PMID:11119531

  3. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  4. A Deficiency in Aspartate Biosynthesis in Lactococcus lactis subsp. lactis C2 Causes Slow Milk Coagulation†

    PubMed Central

    Wang, Hua; Yu, Weizhu; Coolbear, Tim; O’Sullivan, Dan; McKay, Larry L.

    1998-01-01

    A mutant of fast milk-coagulating (Fmc+) Lactococcus lactis subsp. lactis C2, designated L. lactis KB4, was identified. Although possessing the known components essential for utilizing casein as a nitrogen source, which include functional proteinase (PrtP) activity and oligopeptide, di- and tripeptide, and amino acid transport systems, KB4 exhibited a slow milk coagulation (Fmc−) phenotype. When the amino acid requirements of L. lactis C2 were compared with those of KB4 by use of a chemically defined medium, it was found that KB4 was unable to grow in the absence of aspartic acid. This aspartic acid requirement could also be met by aspartate-containing peptides. The addition of aspartic acid to milk restored the Fmc+ phenotype of KB4. KB4 was found to be defective in pyruvate carboxylase and thus was deficient in the ability to form oxaloacetate and hence aspartic acid from pyruvate and carbon dioxide. The results suggest that when lactococci are propagated in milk, aspartate derived from casein is unable to meet fully the nutritional demands of the lactococci, and they become dependent upon aspartate biosynthesis. PMID:9572935

  5. The anticonvulsant and behavioural profile of L-687,414, a partial agonist acting at the glycine modulatory site on the N-methyl-D-aspartate (NMDA) receptor complex.

    PubMed Central

    Tricklebank, M D; Bristow, L J; Hutson, P H; Leeson, P D; Rowley, M; Saywell, K; Singh, L; Tattersall, F D; Thorn, L; Williams, B J

    1994-01-01

    1. The anticonvulsant and behavioural effects of the glycine/NMDA receptor partial agonist, L-687,414 (R(+)-cis-beta-methyl-3-amino-1-hydroxypyrrolid-2-one) have been investigated in rodents. 2. L-687,414 dose-dependently antagonized seizures induced by N-methyl-D,L- aspartic acid (NMDLA, ED50 = 19.7 mg kg-1), pentylenetetrazol (PTZ, ED50 = 13.0 mg kg-1) and electroshock (ED50 = 26.1 mg kg-1) when given intravenously 15 min before test, in male Swiss Webster mice but was most potent against audiogenic seizures induced by a 120 dB bell in DBA/2 mice (ED50 = 5.1 mg kg-1, i.p., 30 min before test). 3. L-687,414 also induced impairments of performance in a rotarod test in both Swiss Webster and DBA/2 mice and the ratio [rotarod MED:anticonvulsant ED50] varied between 0.9 and 5, depending on the convulsant used. 4. Similar behaviours to those seen after administration of the non-competitive NMDA receptor antagonist, MK-801 (head weaving, body rolling, hyperlocomotion) were seen in the mouse after giving L-687,414, although the peak effect occurred at a dose (100 mg kg-1) which was 5-20 times the anticonvulsant ED50S, depending on the convulsant used. Unlike MK-801, however, doses of L-687,414 that were behaviourally stimulant did not increase dopamine turnover in the nucleus accumbens. 5. Consistent with the interaction of L-687,414 with the glycine/NMDA receptor, the anticonvulsant, ataxic and motor stimulant effects of the compound were significantly attenuated by the glycine/NMDA receptor agonist, D-serine (10-100 micrograms per mouse, i.c.v.).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7858861

  6. Serum Insulin Aspart Concentrations Following High-Dose Insulin Aspart Administered Directly into the Duodenum of Healthy Subjects: An Open-Labeled, Single-Blinded, and Uncontrolled Exploratory Trial

    PubMed Central

    Ihlo, Charlotte A.; Aksglæde, Karin Bak; Laursen, Torben; Lauritzen, Torsten; Christiansen, Jens Sandahl

    2009-01-01

    Objective The goal of this study was to determine the bioavailability of high-dose insulin aspart administered directly into the duodenum of healthy subjects. Methods In a pilot study, four subjects each received four escalating doses of a 1-ml solution of insulin aspart (100, 300, 600, and 1000 IU, respectively) directly into the duodenum. In the following main study, eight subjects each received two identical doses of insulin aspart of 1000 IU, in 4- and 8-ml solutions, respectively, directly into the duodenum. Subjects in the main study also received an intravenous and a subcutaneous injection of 4 to 6 IU of insulin aspart. Results A considerable number of samples and, in some cases, consecutive samples revealed significantly increased concentrations of serum insulin aspart. Despite the significant serum insulin aspart concentrations, no significant changes of plasma glucose were measured. Moreover, no significant suppression of endogenous insulin secretion was detected, as assessed by the levels of serum human insulin. Conclusions Administration of high-dose insulin aspart directly into the duodenum of healthy subjects resulted in significantly increased serum insulin aspart concentrations in a high number of consecutive samples using a specific enzyme-linked immunosorbent assay. However, no significant changes in the levels of plasma glucose or serum human insulin were observed. Thus, the study did not provide any evidence of biological activity of the original insulin aspart molecule after high-dose administration directly into the duodenum. PMID:20144435

  7. Intersubunit communication in the dihydroorotase-aspartate transcarbamoylase complex of Aquifex aeolicus: Intersubunit Communication in a Pyrimidine Biosynthetic Complex

    SciTech Connect

    Evans, Hedeel Guy; Fernando, Roshini; Vaishnav, Asmita; Kotichukkala, Mahalakshmi; Heyl, Deborah; Martin, Philip D.; Hachem, Fatme; Brunzelle, Joseph S.; Edwards, Brian F. P.; Evans, David R.

    2013-12-19

    Aspartate transcarbamoylase and dihydroorotase, enzymes that catalyze the second and third step in de novo pyrimidine biosynthesis, are associated in dodecameric complexes in Aquifex aeolicus and many other organisms. The architecture of the dodecamer is ideally suited to channel the intermediate, carbamoyl aspartate from its site of synthesis on the ATC subunit to the active site of DHO, which catalyzes the next step in the pathway, because both reactions occur within a large, internal solvent-filled cavity. Channeling usually requires that the reactions of the enzymes are coordinated so that the rate of synthesis of the intermediate matches its rate of utilization. The linkage between the ATC and DHO subunits was demonstrated by showing that the binding of the bisubstrate analog, N-phosphonacetyl-L-aspartate to the ATC subunit inhibits the activity of the distal DHO subunit. Structural studies identified a DHO loop, loop A, interdigitating between the ATC domains that would be expected to interfere with domain closure essential for ATC catalysis. Mutation of the DHO residues in loop A that penetrate deeply between the two ATC domains inhibits the ATC activity by interfering with the normal reciprocal linkage between the two enzymes. Moreover, a synthetic peptide that mimics that part of the DHO loop that binds between the two ATC domains was found to be an allosteric or noncompletive ATC inhibitor (Ki = 22 μM). A model is proposed suggesting that loop A is an important component of the functional linkage between the enzymes.

  8. Blockade by ifenprodil of high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones: comparison with N-methyl-D-aspartate receptor antagonist actions.

    PubMed Central

    Church, J; Fletcher, E J; Baxter, K; MacDonald, J F

    1994-01-01

    1. The block by ifenprodil of voltage-activated Ca2+ channels was investigated in intracellular free calcium concentration ([Ca2+]i) evoked by 50 mM K+ (high-[K+]o) in Fura-2-loaded rat hippocampal pyramidal neurones in culture and on currents carried by Ba2+ ions (IBa) through Ca2+ channels in mouse cultured hippocampal neurones under whole-cell voltage-clamp. The effects of ifenprodil on voltage-activated Ca2+ channels were compared with its antagonist actions on N-methyl-D-aspartate- (NMDA) evoked responses in the same neuronal preparations. 2. Rises in [Ca2+]i evoked by transient exposure to high-[K+]o in our preparation of rat cultured hippocampal pyramidal neurones are mediated predominantly by Ca2+ flux through nifedipine-sensitive Ca2+ channels, with smaller contributions from nifedipine-resistant, omega-conotoxin GVIA-sensitive Ca2+ channels and Ca2+ channels sensitive to crude funnel-web spider venom (Church et al., 1994). Ifenprodil (0.1-200 microM) reversibly attenuated high-[K+]o-evoked rises in [Ca2+]i with an IC50 value of 17 +/- 3 microM, compared with an IC50 value of 0.7 +/- 0.1 microM for the reduction of rises in [Ca2+]i evoked by 20 microM NMDA. Tested in the presence of nifedipine 10 microM, ifenprodil (1-50 microM) produced a concentration-dependent reduction of the dihydropyridine-resistant high-[K+]o-evoked rise in [Ca2+]i with an IC50 value of 13 +/- 4 microM. The results suggest that ifenprodil blocks Ca2+ flux through multiple subtypes of high voltage-activated Ca2+ channels. 3. Application of the polyamine, spermine (0.25-5 mM), produced a concentration-dependent reduction of rises in [Ca2+]i evoked by high-[K+]o.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7834201

  9. Active Sites Environmental Monitoring Program FY 1996 annual report

    SciTech Connect

    Morrissey, C.M.; Marshall, D.S.; Cunningham, G.R.

    1997-11-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1995 through September 1996. The Radioactive Solid Waste Operations Group (RSWOG) of the Waste Management and Remedial Action Division (WMRAD) and the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) established ASEMP in 1989. The purpose of the program is to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 North as required by Chapters 2 and 3 of US Department of Energy Order 5820.2A.

  10. Active sites environmental monitoring Program - Program Plan: Revision 2

    SciTech Connect

    Morrissey, C.M.; Hicks, D.S.; Ashwood, T.L.; Cunningham, G.R.

    1994-05-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of active low-level-waste (LLW) and transuranic (TRU) waste facilities at Oak Ridge National Laboratory (ORNL). Several changes have recently occurred in regard to the sites that are currently used for waste storage and disposal. These changes require a second set of revisions to the ASEMP program plan. This document incorporates those revisions. This program plan presents the organization and procedures for monitoring the active sites. The program plan also provides internal reporting levels to guide the evaluation of monitoring results.

  11. Contribution of active-site glutamine to rate enhancement in ubiquitin carboxy terminal hydrolases

    PubMed Central

    Boudreaux, David; Chaney, Joseph; Maiti, Tushar K.; Das, Chittaranjan

    2012-01-01

    Ubiquitin carboxy terminal hydrolases (UCHs) are cysteine proteases featuring a classical cysteine-histidine-aspartate catalytic triad, also a highly conserved glutamine thought to be a part of the oxyanion hole. However, the contribution of this side chain to the catalysis by UCH enzymes is not known. Herein, we demonstrate that the glutamine side chain contributes to rate enhancement in UCHL1, UCHL3 and UCHL5. Mutation of the glutamine to alanine in these enzymes impairs the catalytic efficiency mainly due to a 16 to 30-fold reduction in kcat, which is consistent with a loss of approximately 2 kcal/mol in transition-state stabilization. However, the contribution to transition-state stabilization observed here is rather modest for the side chain’s role in oxyanion stabilization. Interestingly, we discovered that the carbonyl oxygen of this side chain is engaged in a C—H•••O hydrogen-bonding contact with the CεH group of the catalytic histidine. Upon further analysis, we found that this interaction is a common active-site structural feature in most cysteine proteases, including papain, belonging to families with the QCH(N/D) type of active-site configuration. It is possible that removal of the glutamine side chain might have abolished the C—H•••O interaction, which typically accounts for 2 kcal/mol of stabilization, leading to the effect on catalysis observed here. Additional studies performed on UCHL3 by mutating the glutamine to glutamate (strong C—H•••O acceptor but oxyanion destabilizer) and to lysine (strong oxyanion stabilizer but lacking C—H•••O hydrogen-bonding property) suggest that the C—H•••O hydrogen bond could contribute to catalysis. PMID:22284438

  12. Age-Related Changes in D-Aspartate Oxidase Promoter Methylation Control Extracellular D-Aspartate Levels and Prevent Precocious Cell Death during Brain Aging.

    PubMed

    Punzo, Daniela; Errico, Francesco; Cristino, Luigia; Sacchi, Silvia; Keller, Simona; Belardo, Carmela; Luongo, Livio; Nuzzo, Tommaso; Imperatore, Roberta; Florio, Ermanno; De Novellis, Vito; Affinito, Ornella; Migliarini, Sara; Maddaloni, Giacomo; Sisalli, Maria Josè; Pasqualetti, Massimo; Pollegioni, Loredano; Maione, Sabatino; Chiariotti, Lorenzo; Usiello, Alessandro

    2016-03-01

    The endogenous NMDA receptor (NMDAR) agonist D-aspartate occurs transiently in the mammalian brain because it is abundant during embryonic and perinatal phases before drastically decreasing during adulthood. It is well established that postnatal reduction of cerebral D-aspartate levels is due to the concomitant onset of D-aspartate oxidase (DDO) activity, a flavoenzyme that selectively degrades bicarboxylic D-amino acids. In the present work, we show that d-aspartate content in the mouse brain drastically decreases after birth, whereas Ddo mRNA levels concomitantly increase. Interestingly, postnatal Ddo gene expression is paralleled by progressive demethylation within its putative promoter region. Consistent with an epigenetic control on Ddo expression, treatment with the DNA-demethylating agent, azacitidine, causes increased mRNA levels in embryonic cortical neurons. To indirectly evaluate the effect of a putative persistent Ddo gene hypermethylation in the brain, we used Ddo knock-out mice (Ddo(-/-)), which show constitutively suppressed Ddo expression. In these mice, we found for the first time substantially increased extracellular content of d-aspartate in the brain. In line with detrimental effects produced by NMDAR overstimulation, persistent elevation of D-aspartate levels in Ddo(-/-) brains is associated with appearance of dystrophic microglia, precocious caspase-3 activation, and cell death in cortical pyramidal neurons and dopaminergic neurons of the substantia nigra pars compacta. This evidence, along with the early accumulation of lipufuscin granules in Ddo(-/-) brains, highlights an unexpected importance of Ddo demethylation in preventing neurodegenerative processes produced by nonphysiological extracellular levels of free D-aspartate. PMID:26961959

  13. The active site behaviour of electrochemically synthesised gold nanomaterials.

    PubMed

    Plowman, Blake J; O'Mullane, Anthony P; Bhargava, Suresh K

    2011-01-01

    Even though gold is the noblest of metals, a weak chemisorber and is regarded as being quite inert, it demonstrates significant electrocatalytic activity in its nanostructured form. It is demonstrated here that nanostructured and even evaporated thin films of gold are covered with active sites which are responsible for such activity. The identification of these sites is demonstrated with conventional electrochemical techniques such as cyclic voltammetry as well as a large amplitude Fourier transformed alternating current (FT-ac) method under acidic and alkaline conditions. The latter technique is beneficial in determining if an electrode process is either Faradaic or capacitive in nature. The observed behaviour is analogous to that observed for activated gold electrodes whose surfaces have been severely disrupted by cathodic polarisation in the hydrogen evolution region. It is shown that significant electrochemical oxidation responses occur at discrete potential values well below that for the formation of the compact monolayer oxide of bulk gold and are attributed to the facile oxidation of surface active sites. Several electrocatalytic reactions are explored in which the onset potential is determined by the presence of such sites on the surface. Significantly, the facile oxidation of active sites is used to drive the electroless deposition of metals such as platinum, palladium and silver from their aqueous salts on the surface of gold nanostructures. The resultant surface decoration of gold with secondary metal nanoparticles not only indicates regions on the surface which are rich in active sites but also provides a method to form interesting bimetallic surfaces. PMID:22455038

  14. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.

    PubMed

    Stiti, Naim; Chandrasekar, Balakumaran; Strubl, Laura; Mohammed, Shabaz; Bartels, Dorothea; van der Hoorn, Renier A L

    2016-06-17

    Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes. PMID:26990764

  15. The active site histidines of creatine kinase. A critical role of His 61 situated on a flexible loop.

    PubMed Central

    Forstner, M.; Müller, A.; Stolz, M.; Wallimann, T.

    1997-01-01

    A histidine residue with a pKa of 7 has been inferred to act as a general acid-base catalyst for the reaction of creatine kinase (CK), catalyzing the reversible phosphorylation of creatine by ATP. The chicken sarcomeric muscle mitochondrial isoenzyme Mib-CK contains several histidine residues that are conserved throughout the family of creatine kinases. By X-ray crystal structure analysis, three of them (His 61, His 92, and His 186) were recently shown to be located close to the active site of the enzyme. These residues were exchanged against alanine or aspartate by in vitro mutagenesis, and the six mutant proteins were expressed in E. coli and purified. Structural integrity of the mutant proteins was checked by small-angle X-ray scattering. Kinetic analysis showed the mutant His 61 Asp to be completely inactive in the direction of ATP consumption while exhibiting a residual activity of 1.7% of the wild-type (wt) activity in the reverse direction. The respective His to Ala mutant of residue 61 showed approximately 1% wt activity in the forward and 10% wt activity in the reverse reaction. All other mutants showed near wt activities. Changes in the kinetic parameters K(m) or Vmax, as well as a significant loss of synergism in substrate binding, could be observed with all active mutants. These effects were most pronounced for the binding of creatine and phosphocreatine, whereas ATP or ADP binding were less severely affected. Based on our results, we assume that His 92 and His 186 are involved in the binding of creatine and ATP in the active site, whereas His 61 is of importance for the catalytic reaction but does not serve as an acid-base catalyst in the transphosphorylation of creatine and ATP. In addition, our data support the idea that the flexible loop bearing His 61 is able to move towards the active site and to participate in catalysis. PMID:9041634

  16. Novel human D-amino acid oxidase inhibitors stabilize an active-site lid-open conformation

    PubMed Central

    Terry-Lorenzo, Ryan T.; Chun, Lawrence E.; Brown, Scott P.; Heffernan, Michele L. R.; Fang, Q. Kevin; Orsini, Michael A.; Pollegioni, Loredano; Hardy, Larry W.; Spear, Kerry L.; Large, Thomas H.

    2014-01-01

    The NMDAR (N-methyl-D-aspartate receptor) is a central regulator of synaptic plasticity and learning and memory. hDAAO (human D-amino acid oxidase) indirectly reduces NMDAR activity by degrading the NMDAR co-agonist D-serine. Since NMDAR hypofunction is thought to be a foundational defect in schizophrenia, hDAAO inhibitors have potential as treatments for schizophrenia and other nervous system disorders. Here, we sought to identify novel chemicals that inhibit hDAAO activity. We used computational tools to design a focused, purchasable library of compounds. After screening this library for hDAAO inhibition, we identified the structurally novel compound, ‘compound 2’ [3-(7-hydroxy-2-oxo-4-phenyl-2H-chromen-6-yl)propanoic acid], which displayed low nM hDAAO inhibitory potency (Ki=7 nM). Although the library was expected to enrich for compounds that were competitive for both D-serine and FAD, compound 2 actually was FAD uncompetitive, much like canonical hDAAO inhibitors such as benzoic acid. Compound 2 and an analog were independently co-crystalized with hDAAO. These compounds stabilized a novel conformation of hDAAO in which the active-site lid was in an open position. These results confirm previous hypotheses regarding active-site lid flexibility of mammalian D-amino acid oxidases and could assist in the design of the next generation of hDAAO inhibitors. PMID:25001371

  17. Structure of unligated aspartate carbamoyltransferase of Escherichia coli at 2.6-A resolution.

    PubMed Central

    Ke, H M; Honzatko, R B; Lipscomb, W N

    1984-01-01

    The three-dimensional structure of the allosteric enzyme aspartate carbamoyltransferase (EC 2.1.3.2) has been refined to a crystallographic R-factor of 0.24 at 2.6-A resolution in the space group P321, where a and b are 122.1 A and c is 142.2 A. This structure is isomorphous to the form of the enzyme complexed to the allosteric inhibitor cytidine triphosphate. All sources of sequence information have been evaluated against the electron density. The corrected amino acid sequences of the catalytic and regulatory proteins have been incorporated in the model, and three regions in the active site are described: (i) near arginine-105, histidine-134, and arginine-167, (ii) near lysine-232 and arginine-229, and (iii) near lysine-83 and lysine-84. PMID:6377306

  18. Aspartate Aminotransferase in Alfalfa Root Nodules 1

    PubMed Central

    Farnham, Mark W.; Griffith, Stephen M.; Miller, Susan S.; Vance, Carroll P.

    1990-01-01

    Aspartate aminotransferase (AAT) plays an important role in nitrogen metabolism in all plants and is particularly important in the assimilation of fixed N derived from the legume-Rhizoblum symbiosis. Two isozymes of AAT (AAT-1 and AAT-2) occur in alfalfa (Medicago sativa L.). Antibodies against alfalfa nodule AAT-2 do not recognize AAT-1, and these antibodies were used to study AAT-2 expression in different tissues and genotypes of alfalfa and also in other legume and nonlegume species. Rocket immunoelectrophoresis indicated that nodules of 38-day-old alfalfa plants contained about eight times more AAT-2 than did nodules of 7-day-old plants, confirming the nodule-enhanced nature of this isozyme. AAT-2 was estimated to make up 16, 15, 5, and 8 milligrams per gram of total soluble protein in mature nodules, roots, stems, and leaves, respectively, of effective N2-fixing alfalfa. The concentration of AAT-2 in nodules of ineffective non-N2-fixing alafalfa genotypes was about 70% less than that of effective nodules. Western blots of soluble protein from nodules of nine legume species indicated that a 40-kilodalton polypeptide that reacts strongly with AAT-2 antibodies is conserved in legumes. Nodule AAT-2 immunoprecipitation data suggested that amide- and ureide-type legumes may differ in expression and regulation of the enzyme. In addition, Western blotting and immunoprecipitations of AAT activity demonstrated that antibodies against alfalfa AAT-2 are highly cross-reactive with AAT enzyme protein in leaves of soybean (Glycine max L.), wheat (Triticum aestivum L.), and maize (Zea mays L.) and in roots of maize, but not with AAT in soybean and wheat roots. Results from this study indicate that AAT-2 is structurally conserved and localized in similar tissues among diverse species. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:16667896

  19. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    SciTech Connect

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-03-20

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme.

  20. Aspartic Peptidases of Human Pathogenic Trypanosomatids: Perspectives and Trends for Chemotherapy

    PubMed Central

    Santos, L.O.; Garcia-Gomes, A.S.; Catanho, M.; Sodré, C.L.; Santos, A.L.S.; Branquinha, M.H.; d’Avila-Levy, C.M.

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas’ disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  1. D-aspartate dysregulation in Ddo(-/-) mice modulates phencyclidine-induced gene expression changes of postsynaptic density molecules in cortex and striatum.

    PubMed

    de Bartolomeis, Andrea; Errico, Francesco; Aceto, Giuseppe; Tomasetti, Carmine; Usiello, Alessandro; Iasevoli, Felice

    2015-10-01

    N-methyl-D-aspartate receptor (NMDAR) hypofunction has been considered a key alteration in schizophrenia pathophysiology. Thus, several strategies aimed at enhancing glutamatergic transmission, included the introduction in therapy of D-amino acids, such as D-serine and D-cycloserine augmentation, have been proposed to counteract difficult-to-treat symptoms or treatment-resistant forms of schizophrenia. Another D-amino acid, D-aspartate, has recently gained increasing interest for its role in NMDAR activation and has been found reduced in post-mortem cortex of schizophrenia patients. NMDAR is the core of the postsynaptic density (PSD), a postsynaptic site involved in glutamate signaling and responsive to antipsychotic treatment. In this study, we investigated striatal and cortical gene expression of key PSD transcripts (i.e. Homer1a, Homer1b/c, and PSD-95) in mice with persistently elevated brain D-aspartate-levels, i.e. the D-aspartate-oxidase knockout mice (Ddo(-/-)). These animal models were analyzed both in naive condition and after phencyclidine (PCP) treatment. Naive Ddo(-/-) mice showed decreased Homer1a expression in the prefrontal cortex, increased Homer1b/c expression in the striatum, and decreased PSD-95 expression in the striatum and in the cortex. Acute PCP treatment restored, and even potentiated, Homer1a expression in the prefrontal cortex of mutant mice, while it had limited effects on the other genes. These results suggest that persistently elevated D-aspartate, by enhancing NMDA transmission, may cause complex adaptive mechanisms affecting Homer1a, which in turn may explain the recently demonstrated protective effects of this D-amino acid against PCP-induced behavioral alterations, such as ataxic behavior. PMID:25979765

  2. A small ribozyme with dual-site kinase activity

    PubMed Central

    Biondi, Elisa; Maxwell, Adam W.R.; Burke, Donald H.

    2012-01-01

    Phosphoryl transfer onto backbone hydroxyls is a recognized catalytic activity of nucleic acids. We find that kinase ribozyme K28 possesses an unusually complex active site that promotes (thio)phosphorylation of two residues widely separated in primary sequence. After allowing the ribozyme to radiolabel itself by phosphoryl transfer from [γ-32P]GTP, DNAzyme-mediated cleavage yielded two radiolabeled cleavage fragments, indicating phosphorylation sites within each of the two cleavage fragments. These sites were mapped by alkaline digestion and primer extension pausing. Enzymatic digestion and mutational analysis identified nucleotides important for activity and established the active structure as being a constrained pseudoknot with unusual connectivity that may juxtapose the two reactive sites. Nuclease sensitivities for nucleotides near the pseudoknot core were altered in the presence of GTPγS, indicating donor-induced folding. The 5′ target site was more strongly favored in full-length ribozyme K28 (128 nt) than in truncated RNAs (58 nt). Electrophoretic mobilities of self-thiophosphorylated products on organomercurial gels are distinct from the 5′ mono-thiophosphorylated product produced by reaction with polynucleotide kinase, potentially indicating simultaneous labeling of both sites within individual RNA strands. Our evidence supports a single, compact structure with local dynamics, rather than global rearrangement, as being responsible for dual-site phosphorylation. PMID:22618879

  3. A cautionary tale of structure-guided inhibitor development against an essential enzyme in the aspartate-biosynthetic pathway.

    PubMed

    Pavlovsky, Alexander G; Thangavelu, Bharani; Bhansali, Pravin; Viola, Ronald E

    2014-12-01

    The aspartate pathway is essential for the production of the amino acids required for protein synthesis and of the metabolites needed in bacterial development. This pathway also leads to the production of several classes of quorum-sensing molecules that can trigger virulence in certain microorganisms. The second enzyme in this pathway, aspartate β-semialdehyde dehydrogenase (ASADH), is absolutely required for bacterial survival and has been targeted for the design of selective inhibitors. Fragment-library screening has identified a new set of inhibitors that, while they do not resemble the substrates for this reaction, have been shown to bind at the active site of ASADH. Structure-guided development of these lead compounds has produced moderate inhibitors of the target enzyme, with some selectivity observed between the Gram-negative and Gram-positive orthologs of ASADH. However, many of these inhibitor analogs and derivatives have not yet achieved the expected enhanced affinity. Structural characterization of these enzyme-inhibitor complexes has provided detailed explanations for the barriers that interfere with optimal binding. Despite binding in the same active-site region, significant changes are observed in the orientation of these bound inhibitors that are caused by relatively modest structural alterations. Taken together, these studies present a cautionary tale for issues that can arise in the systematic approach to the modification of lead compounds that are being used to develop potent inhibitors. PMID:25478842

  4. Dashboard applications to monitor experiment activities at sites

    NASA Astrophysics Data System (ADS)

    Andreeva, Julia; Belforte, Stefano; Boehm, Max; Casajus, Adrian; Flix, Josep; Gaidioz, Benjamin; Grigoras, Costin; Kokoszkiewicz, Lukasz; Lanciotti, Elisa; Rocha, Ricardo; Saiz, Pablo; Santinelli, Roberto; Sidorova, Irina; Sciabà, Andrea; Tsaregorodtsev, Andrei

    2010-04-01

    In the framework of a distributed computing environment, such as WLCG, monitoring has a key role in order to keep under control activities going on in sites located in different countries and involving people based in many different sites. To be able to cope with such a large scale heterogeneous infrastructure, it is necessary to have monitoring tools providing a complete and reliable view of the overall performance of the sites. Moreover, the structure of a monitoring system critically depends on the object to monitor and on the users it is addressed to. In this article we will describe two different monitoring systems both aimed to monitor activities and services provided in the WLCG framework, but designed in order to meet the requirements of different users: Site Status Board has an overall view of the services available in all the sites supporting an experiment, whereas Siteview provides a complete view of all the activities going on at a site, for all the experiments supported by the site.

  5. Architecture and active site of particulate methane monooxygenase

    PubMed Central

    Culpepper, Megen A.; Rosenzweig, Amy C.

    2012-01-01

    Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria, organisms that live on methane gas as their sole carbon source. Understanding pMMO function has important implications for bioremediation applications and for the development of new, environmentally friendly catalysts for the direct conversion of methane to methanol. Crystal structures of pMMOs from three different methanotrophs reveal a trimeric architecture, consisting of three copies each of the pmoB, pmoA, and pmoC subunits. There are three distinct metal centers in each protomer of the trimer, mononuclear and dinuclear copper sites in the periplasmic regions of pmoB and a mononuclear site within the membrane that can be occupied by copper or zinc. Various models for the pMMO active site have been proposed within these structural constraints, including dicopper, tricopper, and diiron centers. Biochemical and spectroscopic data on pMMO and recombinant soluble fragments, denoted spmoB proteins, indicate that the active site involves copper and is located at the site of the dicopper center in the pmoB subunit. Initial spectroscopic evidence for O2 binding at this site has been obtained. Despite these findings, questions remain about the active site identity and nuclearity and will be the focus of future studies. PMID:22725967

  6. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site.

    PubMed

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-04-20

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2domains reveal that the (HhH)2domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  7. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  8. Structural Model of the R State of Escherichia coli Aspartate Transcarbamoylase with Substrates Bound

    PubMed Central

    Wang, Jie; Eldo, Joby; Kantrowitz, Evan R.

    2009-01-01

    The allosteric enzyme aspartate transcarbamoylase (ATCase) exists in two conformational states. The enzyme, in the absence of substrates is primarily in the low-activity T state, is converted to the high-activity R state upon substrate binding, and remains in the R state until substrates are exhausted. These conformational changes have made it difficult to obtain structural data on R-state active-site complexes. Here we report the R-state structure of ATCase with the substrate Asp and the substrate analogue phosphonactamide (PAM) bound. This R-state structure represents the stage in the catalytic mechanism immediately before the formation of the covalent bond between the nitrogen of the amino group of Asp and the carbonyl carbon of carbamoyl phosphate. The binding mode of the PAM is similar to the binding mode of the phosphonate moiety of N-(phosphonoacetyl)-L-aspartate (PALA), the carboxylates of Asp interact with the same residues that interact with the carboxylates of PALA, although the position and orientations are shifted. The amino group of Asp is 2.9 Å away from the carbonyl oxygen of PAM, positioned correctly for the nucleophilic attack. Arg105 and Leu267 in the catalytic chain interact with PAM and Asp and help to position the substrates correctly for catalysis. This structure fills a key gap in the structural determination of each of the steps in the catalytic cycle. By combining these data with previously determined structures we can now visualize the allosteric transition through detailed atomic motions that underlie the molecular mechanism. PMID:17603076

  9. Structural Model of the R State of Escherichia coli Aspartate Transcarbamoylase with Substrates Bound

    SciTech Connect

    Wang,J.; Eldo, J.; Kantrowitz, E.

    2007-01-01

    The allosteric enzyme aspartate transcarbamoylase (ATCase) exists in two conformational states. The enzyme, in the absence of substrates is primarily in the low-activity T state, is converted to the high-activity R state upon substrate binding, and remains in the R state until substrates are exhausted. These conformational changes have made it difficult to obtain structural data on R-state active-site complexes. Here we report the R-state structure of ATCase with the substrate Asp and the substrate analog phosphonoactamide (PAM) bound. This R-state structure represents the stage in the catalytic mechanism immediately before the formation of the covalent bond between the nitrogen of the amino group of Asp and the carbonyl carbon of carbamoyl phosphate. The binding mode of the PAM is similar to the binding mode of the phosphonate moiety of N-(phosphonoacetyl)-l-aspartate (PALA), the carboxylates of Asp interact with the same residues that interact with the carboxylates of PALA, although the position and orientations are shifted. The amino group of Asp is 2.9 {angstrom} away from the carbonyl oxygen of PAM, positioned correctly for the nucleophilic attack. Arg105 and Leu267 in the catalytic chain interact with PAM and Asp and help to position the substrates correctly for catalysis. This structure fills a key gap in the structural determination of each of the steps in the catalytic cycle. By combining these data with previously determined structures we can now visualize the allosteric transition through detailed atomic motions that underlie the molecular mechanism.

  10. Intra-cornu ammonis 1 administration of the human immunodeficiency virus-1 transcription factor Tat exacerbates the ethanol withdrawal syndrome in rodents and activates N-methyl-d-aspartate glutamate receptors to produce persisting spatial learning deficits

    PubMed Central

    Self, Rachel L.; Smith, Katherine J.; Butler, Tracy R.; Pauly, James R.; Prendergast, Mark A.

    2009-01-01

    Human immunodeficiency virus-1 (HIV-1) infection may produce neurological deficits, such as cognitive decline, that may be worsened by concurrent ethanol (EtOH) abuse. Among the many biochemical cascades likely mediating HIV-1 associated neuronal injury is enhancement of N-methyl-d-aspartate (NMDA) receptor function and progression to excitotoxicity, an effect that may be directly or indirectly related to accumulation in brain of the HIV-1 transcription factor Tat. The present studies were designed to examine the hypothesis that binge-like EtOH pre-exposure would enhance effects of Tat on NMDA receptor function. These studies employed a modified in vivo binge EtOH exposure regimen designed to produce peak blood EtOH levels (B.E.L.) of <200 mg/dl in adult male rats and were designed to examine effects of intra-hippocampal injection of Tat (0.5 µl/500 pM/2 min) on EtOH withdrawal-related behavior, spatial learning, and histological measures. Unilateral cannulae were implanted into the cornu ammonus 1 (CA1) pyramidal cell layer of animals prior to beginning a 4-day binge EtOH regimen. EtOH was administered via intragastric intubation (~3.0–5.0g/kg) with dose determined by behavioral ratings of intoxication daily for four days (at 0800, 1600, and 2400 hrs). EtOH withdrawal behaviors were monitored 12 hr after the last administration of EtOH. Morris water maze learning was assessed during the following 4 days, at which times brains were harvested for autoradiographic measurement of NMDA receptor density and neuroinflammation. Maximal B.E.L.s of 187.69 mg/dl were observed 60 min after EtOH administration on Day 2 of the regimen. In contrast, peak B.E.L.s of approximately 100 mg/dl were observed 60 min after EtOH administration on Day 4 of the regimen, suggesting development of metabolic tolerance. Significant behavioral abnormalities were observed in EtOH withdrawn animals, including tremor and seizures. Intra-CA1 region injection of Tat significantly potentiated Et

  11. Molecular Imprint of Enzyme Active Site by Camel Nanobodies

    PubMed Central

    Li, Jiang-Wei; Xia, Lijie; Su, Youhong; Liu, Hongchun; Xia, Xueqing; Lu, Qinxia; Yang, Chunjin; Reheman, Kalbinur

    2012-01-01

    Screening of inhibitory Ab1 antibodies is a critical step for producing catalytic antibodies in the anti-idiotypic approach. However, the incompatible surface of the active site of the enzyme and the antigen-binding site of heterotetrameric conventional antibodies become the limiting step. Because camelid-derived nanobodies possess the potential to preferentially bind to the active site of enzymes due to their small size and long CDR3, we have developed a novel approach to produce antibodies with alliinase activities by exploiting the molecular mimicry of camel nanobodies. By screening the camelid-derived variable region of the heavy chain cDNA phage display library with alliinase, we obtained an inhibitory nanobody VHHA4 that recognizes the active site. Further screening with VHHA4 from the same variable domain of the heavy chain of a heavy-chain antibody library led to a higher incidence of anti-idiotypic Ab2 abzymes with alliinase activities. One of the abzymes, VHHC10, showed the highest activity that can be inhibited by Ab1 VHHA4 and alliinase competitive inhibitor penicillamine and significantly suppressed the B16 tumor cell growth in the presence of alliin in vitro. The results highlight the feasibility of producing abzymes via anti-idiotypic nanobody approach. PMID:22374998

  12. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  13. A New Branch in the Family: Structure of Aspartate-[beta]-semialdehyde Dehydrogenase from Methanococcus jannaschii

    SciTech Connect

    Faehnle, Christopher R.; Ohren, Jeffrey F.; Viola, Ronald E.

    2010-07-13

    The structure of aspartate-{beta}-semialdehyde dehydrogenase (ASADH) from Methanococcus jannaschii has been determined to 2.3 {angstrom} resolution using multiwavelength anomalous diffraction (MAD) phasing of a selenomethionine-substituted derivative to define a new branch in the family of ASADHs. This new structure has a similar overall fold and domain organization despite less than 10% conserved sequence identity with the bacterial enzymes. However, the entire repertoire of functionally important active site amino acid residues is conserved, suggesting an identical catalytic mechanism but with lower catalytic efficiency. A new coenzyme-binding conformation and dual NAD/NADP coenzyme specificity further distinguish this archaeal branch from the bacterial ASADHs. Several structural differences are proposed to account for the dramatically enhanced thermostability of this archaeal enzyme. Finally, the intersubunit communication channel connecting the active sites in the bacterial enzyme dimer has been disrupted in the archaeal ASADHs by amino acid changes that likely prevent the alternating sites reactivity previously proposed for the bacterial ASADHs.

  14. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined. PMID:27243042

  15. Probing the Peripheral Site of Human Butyrylcholinesterase

    PubMed Central

    2012-01-01

    Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) catalyze the hydrolysis of the neurotransmitter acetylcholine and, thereby, function as coregulators of cholinergic neurotransmission. For both enzymes, hydrolysis takes place near the bottom of a 20 Å deep active site gorge. A number of amino acid residues within the gorge have been identified as important in facilitating efficient catalysis and inhibitor binding. Of particular interest is the catalytic triad, consisting of serine, histidine, and glutamate residues, that mediates hydrolysis. Another site influencing the catalytic process is located above the catalytic triad toward the periphery of the active site gorge. This peripheral site (P-site) contains a number of aromatic amino acid residues as well as an aspartate residue that is able to interact with cationic substrates and guide them down the gorge to the catalytic triad. In human AChE, certain aryl residues in the vicinity of the anionic aspartate residue (D74), such as W286, have been implicated in ligand binding and have therefore been considered part of the P-site of the enzyme. The present study was undertaken to explore the P-site of human BuChE and determine whether, like AChE, aromatic side chains near the peripheral aspartate (D70) of this enzyme contribute to ligand binding. Results obtained, utilizing inhibitor competition studies and BuChE mutant species, indicate the participation of aryl residues (F329 and Y332) in the E-helix component of the BuChE active site gorge, along with the anionic aspartate residue (D70), in binding ligands to the P-site of the enzyme. PMID:22901043

  16. Adaptation of the behaviour of an aspartic proteinase inhibitor by relocation of a lysine residue by one helical turn.

    PubMed

    Winterburn, Tim J; Wyatt, David M; Phylip, Lowri H; Berry, Colin; Bur, Daniel; Kay, John

    2006-08-01

    In addition to self-inhibition of aspartic proteinase zymogens by their intrinsic proparts, the activity of certain members of this enzyme family can be modulated through active-site occupation by extrinsic polypeptides such as the small IA3 protein from Saccharomyces cerevisiae. The unprecedented mechanism by which IA3 helicates to inhibit its sole target aspartic proteinase locates an i, i+4 pair of charged residues (Lys18+Asp22) on an otherwise-hydrophobic face of the amphipathic helix. The nature of these residues is not crucial for effective inhibition, but re-location of the lysine residue by one turn (+4 residues) in the helical IA3 positions its side chain in the mutant IA3-proteinase complex in an orientation essentially identical to that of the key lysine residue in zymogen proparts. The binding of the extrinsic mutant IA3 shows pH dependence reminiscent of that required for the release of intrinsic zymogen proparts so that activation can occur. PMID:16895485

  17. Rat intestinal trehalase. Studies of the active site.

    PubMed

    Chen, C C; Guo, W J; Isselbacher, K J

    1987-11-01

    Rat intestinal trehalase was solubilized, purified and reconstituted into proteoliposomes. With octyl glucoside as the solubilizing detergent, the purified protein appeared as a single band on SDS/polyacrylamide-gel electrophoresis with an apparent molecular mass of 67 kDa. Kinetic studies indicated that the active site of this enzyme can be functionally divided into two adjacent regions, namely a binding site (with pKa 4.8) and a catalytic site (with pKa 7.2). Other findings suggested that the catalytic site contains a functional thiol group, which is sensitive to inhibition by N-ethylmaleimide, Hg2+ and iodoacetate. Substrate protection and iodoacetate labelling of the thiol group demonstrated that only a protein of 67 kDa was labelled. Furthermore, sucrose and phlorizin protected the thiol group, but Tris-like inhibitors did not. Structure-inhibition analysis of Tris-like inhibitors, the pH effect of Tris inhibition and Tris protection of 1-(3-dimethylaminopropyl)-3-ethylcarbodi-imide inactivation permitted characterization and location of a separate site containing a carboxy group for Tris binding, which may also be the binding region. On the basis of these findings, a possible structure for the active site of trehalase is proposed. PMID:3426558

  18. Active Site and Remote Contributions to Catalysis in Methylthioadenosine Nucleosidases

    PubMed Central

    Thomas, Keisha; Cameron, Scott A.; Almo, Steven C.; Burgos, Emmanuel S.; Gulab, Shivali A.; Schramm, Vern L.

    2015-01-01

    5′-Methylthioadenosine/S-adenosyl-L-homocysteine nucleosidases (MTANs) catalyze the hydrolysis of 5′-methylthioadenosine to adenine and 5-methylthioribose. The amino acid sequences of the MTANs from Vibrio cholerae (VcMTAN) and Escherichia coli (EcMTAN) are 60% identical and 75% similar. Protein structure folds and kinetic properties are similar. However, binding of transition-state analogues is dominated by favorable entropy in VcMTAN and by enthalpy in EcMTAN. Catalytic sites of VcMTAN and EcMTAN in contact with reactants differ by two residues; Ala113 and Val153 in VcMTAN are Pro113 and Ile152, respectively, in EcMTAN. We mutated the VcMTAN catalytic site residues to match those of EcMTAN in anticipation of altering its properties toward EcMTAN. Inhibition of VcMTAN by transition-state analogues required filling both active sites of the homodimer. However, in the Val153Ile mutant or double mutants, transition-state analogue binding at one site caused complete inhibition. Therefore, a single amino acid, Val153, alters the catalytic site cooperativity in VcMTAN. The transition-state analogue affinity and thermodynamics in mutant VcMTAN became even more unlike those of EcMTAN, the opposite of expectations from catalytic site similarity; thus, catalytic site contacts in VcMTAN are unable to recapitulate the properties of EcMTAN. X-ray crystal structures of EcMTAN, VcMTAN, and a multiple-site mutant of VcMTAN most closely resembling EcMTAN in catalytic site contacts show no major protein conformational differences. The overall protein architectures of these closely related proteins are implicated in contributing to the catalytic site differences. PMID:25806409

  19. Kinetic studies of the uptake of aspartate aminotransferase and malate dehydrogenase into mitochondria in vitro.

    PubMed Central

    Marra, E; Passarella, S; Casamassima, E; Perlino, E; Doonan, S; Quagliariello, E

    1985-01-01

    Kinetic measurements of the uptake of native mitochondrial aspartate aminotransferase and malate dehydrogenase into mitochondria in vitro were carried out. The uptake of both the enzymes is essentially complete in 1 min and shows saturation characteristics. The rate of uptake of aspartate aminotransferase into mitochondria is decreased by malate dehydrogenase, and vice versa. The inhibition is exerted by isoenzyme remaining outside the mitochondria rather than by isoenzyme that has been imported. The thiol compound beta-mercaptoethanol decreases the rate of uptake of the tested enzymes; inhibition is a result of interaction of beta-mercaptoethanol with the mitochondria and not with the enzymes themselves. The rate of uptake of aspartate aminotransferase is inhibited non-competitively by malate dehydrogenase, but competitively by beta-mercaptoethanol. The rate of uptake of malate dehydrogenase is inhibited non-competitively by aspartate aminotransferase and by beta-mercaptoethanol. beta-Mercaptoethanol prevents the inhibition of the rate of uptake of malate dehydrogenase by aspartate aminotransferase. These results are interpreted in terms of a model system in which the two isoenzymes have separate but interacting binding sites within a receptor in the mitochondrial membrane system. PMID:4015628

  20. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  1. Induced synthesis of P450 aromatase and 17β-estradiol by D-aspartate in frog brain.

    PubMed

    Burrone, Lavinia; Santillo, Alessandra; Pinelli, Claudia; Baccari, Gabriella Chieffi; Di Fiore, Maria Maddalena

    2012-10-15

    D-Aspartic acid is an endogenous amino acid occurring in the endocrine glands as well as in the nervous system of various animal phyla. Our previous studies have provided evidence that D-aspartate plays a role in the induction of estradiol synthesis in gonads. Recently, we have also demonstrated that D-aspartic acid induces P450 aromatase mRNA expression in the frog (Pelophylax esculentus) testis. P450 aromatase is the key enzyme in the estrogen synthetic pathway and irreversibly converts testosterone into 17β-estradiol. In this study, we firstly investigated the immunolocalisation of P450 aromatase in the brain of P. esculentus, which has never previously been described in amphibians. Therefore, to test the hypothesis that d-aspartate mediates a local synthesis of P450 aromatase in the frog brain, we administered D-aspartate in vivo to male frogs and then assessed brain aromatase expression, sex hormone levels and sex hormone receptor expression. We found that D-aspartate enhances brain aromatase expression (mRNA and protein) through the CREB pathway. Then, P450 aromatase induces 17β-estradiol production from testosterone, with a consequent increase of its receptor. Therefore, the regulation of d-aspartate-mediated P450 aromatase expression could be an important step in the control of neuroendocrine regulation of the reproductive axis. Accordingly, we found that the sites of P450 aromatase immunoreactivity in the frog brain correspond to the areas known to be involved in neurosteroid synthesis. PMID:22771744

  2. Water in the Active Site of Ketosteroid Isomerase

    PubMed Central

    Hanoian, Philip; Hammes-Schiffer, Sharon

    2011-01-01

    Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two waters in the Y16S mutant, one water in the Y16F and FFF mutants, and intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of 1H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less

  3. Energy transfer at the active sites of heme proteins

    SciTech Connect

    Dlott, D.D.; Hill, J.R.

    1995-12-31

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes.

  4. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  5. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    PubMed

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  6. New aspartic proteinase of Ulysses retrotransposon from Drosophila virilis.

    PubMed

    Volkov, D A; Dergousova, N I; Rumsh, L D

    2004-06-01

    This work is focused on the investigation of a proteinase of Ulysses mobile genetic element from Drosophila virilis. The primary structure of this proteinase is suggested based on comparative analysis of amino acid sequences of aspartic proteinases from retroviruses and retrotransposons. The corresponding cDNA fragment has been cloned and expressed in E. coli. The protein accumulated in inclusion bodies. The recombinant protein (12 kD) was subjected to refolding and purified by affinity chromatography on pepstatin-agarose. Proteolytic activity of the protein was determined using oligopeptide substrates melittin and insulin B-chain. It was found that the maximum of the proteolytic activity is displayed at pH 5.5 as for the majority of aspartic proteinases. We observed that hydrolysis of B-chain of insulin was totally inhibited by pepstatin A in the micromolar concentration range. The molecular weight of the monomer of the Ulysses proteinase was determined by MALDI-TOF mass-spectrometry. PMID:15236611

  7. Active sites environmental monitoring program. Annual report FY 1992

    SciTech Connect

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.

    1994-04-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) at ORNL from October 1991 through September 1992. Solid Waste Operations and the Environmental Sciences Division established ASEMP in 1989 to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by Chapter 2 and 3 of US Department of Energy Order 5820.2A. The Interim Waste Management Facility (IWMF) began operation in December 1991. Monitoring results from the tumulus and IWMF disposal pads continue to indicate that no LLW is leaching from the storage vaults. Storm water falling on the IWMF active pad was collected and transported to the Process Waste Treatment Plant while operators awaited approval of the National Pollutant Discharge Elimination System (NPDES) permit. Several of the recent samples collected from the active IWMF pad had pH levels above the NPDES limit of 9.0 because of alkali leached from the concrete. The increase in gross beta activity has been slight; only 1 of the 21 samples collected contained activity above the 5.0 Bq/L action level. Automated sample-collection and flow-measurement equipment has been installed at IWMF and is being tested. The flume designed to electronically measure flow from the IWMF pads and underpads is too large to be of practical value for measuring most flows at this site. Modification of this system will be necessary. A CO{sub 2} bubbler system designed to reduce the pH of water from the pads is being tested at IWMF.

  8. Expression and site-directed mutagenesis of the phosphatidylcholine-preferring phospholipase C of Bacillus cereus: probing the role of the active site Glu146.

    PubMed

    Martin, S F; Spaller, M R; Hergenrother, P J

    1996-10-01

    A series of site-specific mutants of the phosphatidylcholine-preferring phospholipase C from Bacillus cereus (PLCBc) was prepared in which the glutamic acid residue at position 146 was replaced with glutamine, aspartic acid, histidine, and leucine to elucidate what role Glu146 might play in catalysis. An expression system for the native enzyme in Escherichia coli was first developed to provide PLCBc that was fused via an intervening factor Xa protease recognition sequence at its N-terminus to maltose binding protein (MBP). This MBP-PLCBc fusion protein was isolated at levels of 50-70 mg/L of culture; selective trypsin digestion of the MBP-PLCBc fusion protein followed by chromatographic purification yielded recombinant PLCBc at levels of ca. 10 mg/L. Polymerase chain reaction (PCR) mutagenesis on the PLCBc gene (plc) was then used to replace the Glu146 codon with those for glutamine (E146Q), aspartic acid (E146D), histidine (E146H), and leucine (E146L). The catalytic efficiency of the E146Q mutant was 1.6% that of native PLCBc, while the other mutants each possessed activities of 0.2-0.3% of the wild type. The kcat/Km vs pH profiles for both E146Q and native PLCBc have ascending acidic limbs, suggesting that Glu146 does not serve as the general base in the hydrolysis reaction. As measured by circular dichroism, all of the mutant proteins contained less helical structure and underwent denaturation at lower temperatures than the wild type in the order: wild type > E146Q > E146D approximately E146H approximately E146L. Atomic absorption analyses indicated that the mutant proteins also exhibited lower Zn2+ content than the wild type. Thus, the Glu146 residue in PLCBc stabilizes the secondary and tertiary structure of the enzyme and serves as a critical ligand for Zn2, but it does not appear to have any specific catalytic role. PMID:8841144

  9. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    PubMed

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds. PMID:26254042

  10. Selective permeability of rat liver mitochondria to purified aspartate aminotransferases in vitro.

    PubMed Central

    Marra, E; Doonan, S; Saccone, C; Quagliariello, E

    1977-01-01

    1. A method was devised to allow determination of intramitochondrial aspartate amino-transferase activity in suspensions of intact mitochondria. 2. Addition of purified rat liver mitochondrial aspartate aminotransferase to suspensions of rat liver mitochondria caused an apparent increase in the intramitochondrial enzyme activity. No increase was observed when the mitochondria were preincubated with the purified cytoplasmic isoenzyme. 3. These results suggest that mitochondrial aspartate aminotransferase, but not the cytoplasmic isoenzyme, is able to pass from solution into the matrix of intact rat liver mitochondria in vitro. 4. This system may provide a model for studies of the little-understood processes by which cytoplasmically synthesized components are incorporated into mitochondria in vivo. PMID:883959

  11. Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae

    PubMed Central

    Daniel, Bastian; Wallner, Silvia; Steiner, Barbara; Oberdorfer, Gustav; Kumar, Prashant; van der Graaff, Eric; Roitsch, Thomas; Sensen, Christoph W.; Gruber, Karl; Macheroux, Peter

    2016-01-01

    Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively. The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been structurally and biochemically characterized thus far. The most salient and distinguishing features of the active site found in AtBBE-like 28 are a mono-covalent linkage of a histidine to the 8α-position of the flavin-isoalloxazine ring and the lack of a second covalent linkage to the 6-position, owing to the replacement of a cysteine with a histidine. In addition, the structure reveals the interaction of a glutamic acid (Glu426) with an aspartic acid (Asp369) at the active site, which appear to share a proton. This arrangement leads to the delocalization of a negative charge at the active site that may be exploited for catalysis. The structure also indicates a shift of the position of the isoalloxazine ring in comparison to other members of the BBE-like family. The dioxygen surrogate chloride was found near the C(4a) position of the isoalloxazine ring in the oxygen pocket, pointing to a rapid reoxidation of reduced enzyme by dioxygen. A T-DNA insertional mutant line for AtBBE-like 28 results in a phenotype, that is characterized by reduced biomass and lower salt stress tolerance. Multiple sequence analysis showed that the active site composition found in AtBBE-like 28 is only present in the Brassicaceae, suggesting that it plays a specific role in the metabolism of this plant family. PMID:27276217

  12. From Alcohol Dehydrogenase to a “One-way” Carbonyl Reductase by Active-site Redesign

    PubMed Central

    Klimacek, Mario; Nidetzky, Bernd

    2010-01-01

    Directional preference in catalysis is often used to distinguish alcohol dehydrogenases from carbonyl reductases. However, the mechanistic basis underpinning this discrimination is weak. In mannitol 2-dehydrogenase from Pseudomonas fluorescens, stabilization of (partial) negative charge on the substrate oxyanion by the side chains of Asn-191 and Asn-300 is a key feature of catalysis in the direction of alcohol oxidation. We have disrupted this ability through individual and combined substitutions of the two asparagines by aspartic acid. Kinetic data and their thermodynamic analysis show that the internal equilibrium of enzyme-NADH-fructose and enzyme-NAD+-mannitol (Kint) was altered dramatically (104- to 105-fold) from being balanced in the wild-type enzyme (Kint ≈ 3) to favoring enzyme-NAD+-mannitol in the single site mutants, N191D and N300D. The change in Kint reflects a selective slowing down of the mannitol oxidation rate, resulting because Asn → Asp replacement (i) disfavors partial abstraction of alcohol proton by Lys-295 in a step preceding catalytic hydride transfer, and (ii) causes stabilization of a nonproductive enzyme-NAD+-mannitol complex. N191D and N300D appear to lose fructose binding affinity due to deprotonation of the respective Asp above apparent pK values of 5.3 ± 0.1 and 6.3 ± 0.2, respectively. The mutant incorporating both Asn→Asp substitutions behaved as a slow “fructose reductase” at pH 5.2, lacking measurable activity for mannitol oxidation in the pH range 6.8–10. A mechanism is suggested in which polarization of the substrate carbonyl by a doubly protonated diad of Asp and Lys-295 facilitates NADH-dependent reduction of fructose by N191D and N300D under optimum pH conditions. Creation of an effectively “one-way” reductase by active-site redesign of a parent dehydrogenase has not been previously reported and holds promise in the development of carbonyl reductases for application in organic synthesis. PMID:20639204

  13. Key features determining the specificity of aspartic proteinase inhibition by the helix-forming IA3 polypeptide.

    PubMed

    Winterburn, Tim J; Wyatt, David M; Phylip, Lowri H; Bur, Daniel; Harrison, Rebecca J; Berry, Colin; Kay, John

    2007-03-01

    The 68-residue IA(3) polypeptide from Saccharomyces cerevisiae is essentially unstructured. It inhibits its target aspartic proteinase through an unprecedented mechanism whereby residues 2-32 of the polypeptide adopt an amphipathic alpha-helical conformation upon contact with the active site of the enzyme. This potent inhibitor (K(i) < 0.1 nm) appears to be specific for a single target proteinase, saccharopepsin. Mutagenesis of IA(3) from S. cerevisiae and its ortholog from Saccharomyces castellii was coupled with quantitation of the interaction for each mutant polypeptide with saccharopepsin and closely related aspartic proteinases from Pichia pastoris and Aspergillus fumigatus. This identified the charged K18/D22 residues on the otherwise hydrophobic face of the amphipathic helix as key selectivity-determining residues within the inhibitor and implicated certain residues within saccharopepsin as being potentially crucial. Mutation of these amino acids established Ala-213 as the dominant specificity-governing feature in the proteinase. The side chain of Ala-213 in conjunction with valine 26 of the inhibitor marshals Tyr-189 of the enzyme precisely into a position in which its side-chain hydroxyl is interconnected via a series of water-mediated contacts to the key K18/D22 residues of the inhibitor. This extensive hydrogen bond network also connects K18/D22 directly to the catalytic Asp-32 and Tyr-75 residues of the enzyme, thus deadlocking the inhibitor in position. In most other aspartic proteinases, the amino acid at position 213 is a larger hydrophobic residue that prohibits this precise juxtaposition of residues and eliminates these enzymes as targets of IA(3). The exquisite specificity exhibited by this inhibitor in its interaction with its cognate folding partner proteinase can thus be readily explained. PMID:17145748

  14. Active-Site-Accessible, Porphyrinic Metal;#8722;Organic Framework Materials

    SciTech Connect

    Farha, Omar K.; Shultz, Abraham M.; Sarjeant, Amy A.; Nguyen, SonBinh T.; Hupp, Joseph T.

    2012-02-06

    On account of their structural similarity to cofactors found in many metallo-enzymes, metalloporphyrins are obvious potential building blocks for catalytically active, metal-organic framework (MOF) materials. While numerous porphyrin-based MOFs have already been described, versions featuring highly accessible active sites and permanent microporosity are remarkably scarce. Indeed, of the more than 70 previously reported porphyrinic MOFs, only one has been shown to be both permanently microporous and contain internally accessible active sites for chemical catalysis. Attempts to generalize the design approach used in this single successful case have failed. Reported here, however, is the synthesis of an extended family of MOFs that directly incorporate a variety of metalloporphyrins (specifically Al{sup 3+}, Zn{sup 2+}, Pd{sup 2+}, Mn{sup 3+}, and Fe{sup 3+} complexes). These robust porphyrinic materials (RPMs) feature large channels and readily accessible active sites. As an illustrative example, one of the manganese-containing RPMs is shown to be catalytically competent for the oxidation of alkenes and alkanes.

  15. Crystal Structure of Cockroach Allergen Bla g 2, an Unusual Zinc Binding Aspartic Protease with a Novel Mode of Self-inhibition

    SciTech Connect

    Gustchina, Alla; Li, Mi; Wunschmann, Sabina; Chapman, Martin D.; Pomes, Anna; Wlodawer, Alexander

    2010-07-19

    The crystal structure of Bla g 2 was solved in order to investigate the structural basis for the allergenic properties of this unusual protein. This is the first structure of an aspartic protease in which conserved glycine residues, in two canonical DTG triads, are substituted by different amino acid residues. Another unprecedented feature revealed by the structure is the single phenylalanine residue insertion on the tip of the flap, with the side-chain occupying the S1 binding pocket. This and other important amino acid substitutions in the active site region of Bla g 2 modify the interactions in the vicinity of the catalytic aspartate residues, increasing the distance between them to {approx}4 {angstrom} and establishing unique direct contacts between the flap and the catalytic residues. We attribute the absence of substantial catalytic activity in Bla g 2 to these unusual features of the active site. Five disulfide bridges and a Zn-binding site confer stability to the protein, which may contribute to sensitization at lower levels of exposure than other allergens.

  16. Nest predation increases with parental activity: Separating nest site and parental activity effects

    USGS Publications Warehouse

    Martin, T.E.; Scott, J.; Menge, C.

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection.

  17. Nest predation increases with parental activity: separating nest site and parental activity effects.

    PubMed Central

    Martin, T E; Scott, J; Menge, C

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection. PMID:11413645

  18. Expression of apple 1-aminocyclopropane-1-carboxylate synthase in Escherichia coli: kinetic characterization of wild-type and active-site mutant forms.

    PubMed Central

    White, M F; Vasquez, J; Yang, S F; Kirsch, J F

    1994-01-01

    The pyridoxal phosphate-dependent enzyme 1-aminocyclopropane-1-carboxylate synthase (ACC synthase; S-adenosyl-L-methionine methylthioadenosine-lyase, EC 4.4.1.14) catalyzes the conversion of S-adenosylmethionine (AdoMet) to ACC and 5'-methylthioadenosine, the committed step in ethylene biosynthesis in plants. Apple ACC synthase was overexpressed in Escherichia coli (3 mg/liter) and purified to near homogeneity. A continuous assay was developed by coupling the ACC synthase reaction to the deamination of 5'-methylthioadenosine by adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) from Aspergillus oryzae. The enzyme is dimeric, with kcat = 9s-1 per monomer and Km = 12 microM for AdoMet. The pyridoxal phosphate-binding site of ACC synthase appears to be highly homologous to that of aspartate aminotransferase, suggesting similar roles for corresponding residues. Site-directed mutagenesis of Lys-273, Arg-407, and Tyr-233 (corresponding to residues 258, 386, and 225 in aspartate aminotransferase) and kinetic analyses of the mutants confirms their importance in the ACC synthase mechanism. The Lys-273 to Ala mutant has no detectable activity, supporting the identification of this residue as the base catalyzing C alpha proton abstraction. Mutation of Arg-407 to Lys results in a precipitous drop in kcat/Km and an increase in Km for AdoMet of at least 20-fold, in accordance with its proposed role as principal ligand for the substrate alpha-carboxylate group. Replacement of Tyr-233 with Phe causes a 24-fold increase in the Km for AdoMet and no change in kcat, suggesting that this residue plays a role in orienting the pyridoxal phosphate cofactor in the active site. Images Fig. 4 PMID:7809054

  19. Computational prediction of structure, substrate binding mode, mechanism, and rate for a malaria protease with a novel type of active site.

    PubMed

    Bjelic, Sinisa; Aqvist, Johan

    2004-11-23

    The histo-aspartic protease (HAP) from the malaria parasite P. falciparum is one of several new promising targets for drug intervention. The enzyme possesses a novel type of active site, but its 3D structure and mechanism of action are still unknown. Here we use a combination of homology modeling, automated docking searches, and molecular dynamics/reaction free energy profile simulations to predict the enzyme structure, conformation of bound substrate, catalytic mechanism, and rate of the peptide cleavage reaction. We find that the computational tools are sufficiently reliable both for identifying substrate binding modes and for distinguishing between different possible reaction mechanisms. It is found that the favored pathway only involves direct participation by the catalytic aspartate, with the neighboring histidine providing critical stabilization (by a factor of approximately 10000) along the reaction. The calculated catalytic rate constant of about 0.1 s(-1) for a hexapeptide substrate derived from the alpha chain of human hemoglobin is in excellent agreement with experimental kinetic data for a similar peptide fragment. PMID:15544322

  20. Identification of Ice Nucleation Active Sites on Silicate Dust Particles

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-04-01

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts [1-3]. Nevertheless, among those structures K-feldspar showed by far the highest ice nucleation activity. In this study, the reasons for its activity and the difference in the activity of the different feldspars were investigated in closer details. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. We give a potential explanation of the increased ice nucleation activity of K-feldspar. The ice nucleating sites are very much dependent on the alkali ion present by altering the water structure and the feldspar surface. The higher activity of K-feldspar can be attributed to the presence of potassium ions on the surface and surface bilayer. The alkali-ions have different hydration shells and thus an influence on the ice nucleation activity of feldspar. Chaotropic behavior of Calcium and Sodium ions are lowering the ice nucleation potential of the other feldspars, while kosmotropic Potassium has a neutral or even positive effect. Furthermore we investigated the influence of milling onto the ice nucleation of quartz particles. The ice nucleation activity can be increased by mechanical milling, by introducing more molecular, nucleation active defects to the particle surface. This effect is larger than expected by plane surface increase. [1] Atkinson et al. The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature 2013, 498, 355-358. [2] Yakobi-Hancock et al.. Feldspar Minerals as Efficient Deposition Ice Nuclei. Atmos. Chem. Phys. 2013, 13, 11175-11185. [3] Zolles et al. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles. J. Phys. Chem. A 2015 accepted.

  1. Active Sites Environmental Monitoring Program. FY 1993: Annual report

    SciTech Connect

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.; Marsh, J.D.

    1994-08-01

    This report continues a series of annual and semiannual reports that present the results of the Active Sites Environmental Monitoring Program (ASEMP) monitoring activities. The report details monitoring data for fiscal year (FY) 1993 and is divided into three major areas: SWSA 6 [including tumulus pads, Interim Waste Management Facility (IWMF), and other sites], the low-level Liquid-Waste Solidification Project (LWSP), and TRU-waste storage facilities in SWSA 5 N. The detailed monitoring methodology is described in the second revision of the ASEMP program plan. This report also presents a summary of the methodology used to gather data for each major area along with the results obtained during FY 1993.

  2. Active sites in char gasification: Final technical report

    SciTech Connect

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  3. Potential sites of CFTR activation by tyrosine kinases.

    PubMed

    Billet, Arnaud; Jia, Yanlin; Jensen, Timothy J; Hou, Yue-Xian; Chang, Xiu-Bao; Riordan, John R; Hanrahan, John W

    2016-05-01

    The CFTR chloride channel is tightly regulated by phosphorylation at multiple serine residues. Recently it has been proposed that its activity is also regulated by tyrosine kinases, however the tyrosine phosphorylation sites remain to be identified. In this study we examined 2 candidate tyrosine residues near the boundary between the first nucleotide binding domain and the R domain, a region which is important for channel function but devoid of PKA consensus sequences. Mutating tyrosines at positions 625 and 627 dramatically reduced responses to Src or Pyk2 without altering the activation by PKA, suggesting they may contribute to CFTR regulation. PMID:26645934

  4. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  5. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase.

    PubMed

    Debler, Erik W; Jain, Kanishk; Warmack, Rebeccah A; Feng, You; Clarke, Steven G; Blobel, Günter; Stavropoulos, Pete

    2016-02-23

    Trypanosoma brucei PRMT7 (TbPRMT7) is a protein arginine methyltransferase (PRMT) that strictly monomethylates various substrates, thus classifying it as a type III PRMT. However, the molecular basis of its unique product specificity has remained elusive. Here, we present the structure of TbPRMT7 in complex with its cofactor product S-adenosyl-l-homocysteine (AdoHcy) at 2.8 Å resolution and identify a glutamate residue critical for its monomethylation behavior. TbPRMT7 comprises the conserved methyltransferase and β-barrel domains, an N-terminal extension, and a dimerization arm. The active site at the interface of the N-terminal extension, methyltransferase, and β-barrel domains is stabilized by the dimerization arm of the neighboring protomer, providing a structural basis for dimerization as a prerequisite for catalytic activity. Mutagenesis of active-site residues highlights the importance of Glu181, the second of the two invariant glutamate residues of the double E loop that coordinate the target arginine in substrate peptides/proteins and that increase its nucleophilicity. Strikingly, mutation of Glu181 to aspartate converts TbPRMT7 into a type I PRMT, producing asymmetric dimethylarginine (ADMA). Isothermal titration calorimetry (ITC) using a histone H4 peptide showed that the Glu181Asp mutant has markedly increased affinity for monomethylated peptide with respect to the WT, suggesting that the enlarged active site can favorably accommodate monomethylated peptide and provide sufficient space for ADMA formation. In conclusion, these findings yield valuable insights into the product specificity and the catalytic mechanism of protein arginine methyltransferases and have important implications for the rational (re)design of PRMTs. PMID:26858449

  6. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase

    PubMed Central

    Debler, Erik W.; Jain, Kanishk; Warmack, Rebeccah A.; Feng, You; Clarke, Steven G.; Blobel, Günter; Stavropoulos, Pete

    2016-01-01

    Trypanosoma brucei PRMT7 (TbPRMT7) is a protein arginine methyltransferase (PRMT) that strictly monomethylates various substrates, thus classifying it as a type III PRMT. However, the molecular basis of its unique product specificity has remained elusive. Here, we present the structure of TbPRMT7 in complex with its cofactor product S-adenosyl-l-homocysteine (AdoHcy) at 2.8 Å resolution and identify a glutamate residue critical for its monomethylation behavior. TbPRMT7 comprises the conserved methyltransferase and β-barrel domains, an N-terminal extension, and a dimerization arm. The active site at the interface of the N-terminal extension, methyltransferase, and β-barrel domains is stabilized by the dimerization arm of the neighboring protomer, providing a structural basis for dimerization as a prerequisite for catalytic activity. Mutagenesis of active-site residues highlights the importance of Glu181, the second of the two invariant glutamate residues of the double E loop that coordinate the target arginine in substrate peptides/proteins and that increase its nucleophilicity. Strikingly, mutation of Glu181 to aspartate converts TbPRMT7 into a type I PRMT, producing asymmetric dimethylarginine (ADMA). Isothermal titration calorimetry (ITC) using a histone H4 peptide showed that the Glu181Asp mutant has markedly increased affinity for monomethylated peptide with respect to the WT, suggesting that the enlarged active site can favorably accommodate monomethylated peptide and provide sufficient space for ADMA formation. In conclusion, these findings yield valuable insights into the product specificity and the catalytic mechanism of protein arginine methyltransferases and have important implications for the rational (re)design of PRMTs. PMID:26858449

  7. Phylobiochemical Characterization of Class-Ib Aspartate/Prephenate Aminotransferases Reveals Evolution of the Plant Arogenate Phenylalanine Pathway[W

    PubMed Central

    Dornfeld, Camilla; Weisberg, Alexandra J.; K C, Ritesh; Dudareva, Natalia; Jelesko, John G.; Maeda, Hiroshi A.

    2014-01-01

    The aromatic amino acid Phe is required for protein synthesis and serves as the precursor of abundant phenylpropanoid plant natural products. While Phe is synthesized from prephenate exclusively via a phenylpyruvate intermediate in model microbes, the alternative pathway via arogenate is predominant in plant Phe biosynthesis. However, the molecular and biochemical evolution of the plant arogenate pathway is currently unknown. Here, we conducted phylogenetically informed biochemical characterization of prephenate aminotransferases (PPA-ATs) that belong to class-Ib aspartate aminotransferases (AspAT Ibs) and catalyze the first committed step of the arogenate pathway in plants. Plant PPA-ATs and succeeding arogenate dehydratases (ADTs) were found to be most closely related to homologs from Chlorobi/Bacteroidetes bacteria. The Chlorobium tepidum PPA-AT and ADT homologs indeed efficiently converted prephenate and arogenate into arogenate and Phe, respectively. A subset of AspAT Ib enzymes exhibiting PPA-AT activity was further identified from both Plantae and prokaryotes and, together with site-directed mutagenesis, showed that Thr-84 and Lys-169 play key roles in specific recognition of dicarboxylic keto (prephenate) and amino (aspartate) acid substrates. The results suggest that, along with ADT, a gene encoding prephenate-specific PPA-AT was transferred from a Chlorobi/Bacteroidetes ancestor to a eukaryotic ancestor of Plantae, allowing efficient Phe and phenylpropanoid production via arogenate in plants today. PMID:25070637

  8. Identification of a new site in the S1 ligand binding region of the NMDA receptor NR2A subunit involved in receptor activation by glutamate.

    PubMed

    Lummis, Sarah C R; Fletcher, Elizabeth J; Green, Tim

    2002-03-01

    Activation of N-methyl-d-aspartate (NMDA) receptors requires the binding of both glutamate and glycine to independent sites on the receptor. These ligands bind to NR2 and NR1 subunits respectively. Ligand binding residues are located in two non-contiguous domains, S1 and S2, which have been implicated in glutamate binding in other ionotropic glutamate receptor subunits. To further define the amino acids through which glutamate activates the receptor, we generated single-site mutations to the NR2A subunit, and expressed them with wild type NR1 in HEK 293 cells. Using calcium imaging and whole cell patch clamp we determined glutamate and glycine potencies. Of the eight residues mutated we identified five (E413, K484, A508, G685 and G688), whose mutation leads to a large reduction (from 4- to 1000-fold) in glutamate potency, consistent with a role for these residues in receptor activation by glutamate. The potency of glycine was largely unchanged by these mutations. Thus our results extend the knowledge base of residues involved in NMDA receptor function and identifies a new site in S1, in the region of A508, that has a role in receptor activation by glutamate. PMID:11955515

  9. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group.

    PubMed

    Bungard, Christopher J; Williams, Peter D; Ballard, Jeanine E; Bennett, David J; Beaulieu, Christian; Bahnck-Teets, Carolyn; Carroll, Steve S; Chang, Ronald K; Dubost, David C; Fay, John F; Diamond, Tracy L; Greshock, Thomas J; Hao, Li; Holloway, M Katharine; Felock, Peter J; Gesell, Jennifer J; Su, Hua-Poo; Manikowski, Jesse J; McKay, Daniel J; Miller, Mike; Min, Xu; Molinaro, Carmela; Moradei, Oscar M; Nantermet, Philippe G; Nadeau, Christian; Sanchez, Rosa I; Satyanarayana, Tummanapalli; Shipe, William D; Singh, Sanjay K; Truong, Vouy Linh; Vijayasaradhi, Sivalenka; Wiscount, Catherine M; Vacca, Joseph P; Crane, Sheldon N; McCauley, John A

    2016-07-14

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile. PMID:27437081

  10. Metal Ion Involvement in the Allosteric Mechanism of Escherichia coli Aspartate Transcarbamoylase

    PubMed Central

    Cockrell, Gregory M.; Kantrowitz, Evan R.

    2012-01-01

    E. coli aspartate transcarbamoylase (ATCase) allosterically regulates pyrimidine nucleotide biosynthesis. The enzyme is inhibited by CTP and can be further inhibited by UTP, although UTP alone has little or no influence on activity; however, the mechanism for the synergistic inhibition is still unknown. In order to determine how UTP is able to synergistically inhibit ATCase in the presence of CTP, we determined a series of X-ray structures of ATCase•nucleotide complexes. Analysis of the X-ray structures revealed that (1) CTP and dCTP bind in a very similar fashion, (2) UTP, in the presence of dCTP or CTP, binds at a site that does not overlap the CTP/dCTP site, (3) the triphosphates of the two nucleotides are parallel to each other with a metal ion, in this case Mg2+, coordinated between the β and γ phosphates of the two nucleotides. Kinetic experiments showed that the presence of a metal ion such as Mg2+ is required for synergistic inhibition. Together these results explain how the binding of UTP can enhance the binding of CTP and why UTP binds more tightly in the presence of CTP. A mechanism for the synergistic inhibition of ATCase is proposed in which the presence of UTP stabilizes the T state even more than CTP alone. These results also call into question many of the past kinetic and binding experiments of ATCase with nucleotides as the presence of metal contamination was not considered important. PMID:22906065

  11. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect

    1981-02-27

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  12. Effect of site-directed mutagenic alterations on ADP-ribosyltransferase activity of the A subunit of Escherichia coli heat-labile enterotoxin.

    PubMed Central

    Lobet, Y; Cluff, C W; Cieplak, W

    1991-01-01

    Previous studies of the S1 subunit of pertussis toxin, an NAD(+)-dependent ADP-ribosyltransferase, suggested that a small amino-terminal region of amino acid sequence similarity to the active fragments of both cholera toxin and Escherichia coli heat-labile enterotoxin represents a region containing critical active-site residues that might be involved in the binding of the substrate NAD+. Other studies of two other bacterial toxins possessing ADP-ribosyltransferase activity, diphtheria toxin and Pseudomonas exotoxin A, have revealed the presence of essential glutamic acid residues vicinal to the active site. To help determine the relevance of these observations to activities of the enterotoxins, the A-subunit gene of the E. coli heat-labile enterotoxin was subjected to site-specific mutagenesis in the region encoding the amino-terminal region of similarity to the S1 subunit of pertussis toxin delineated by residues 6 through 17 and at two glutamic acid residues, 110 and 112, that are conserved in the active domains of all of the heat-labile enterotoxin variants and in cholera toxin. Mutant proteins in which arginine 7 was either deleted or replaced with lysine exhibited undetectable levels of ADP-ribosyltransferase activity. However, limited trypsinolysis of the arginine 7 mutants yielded fragmentation kinetics that were different from that yielded by the wild-type recombinant subunit or the authentic A subunit. In contrast, mutant proteins in which glutamic acid residues at either position 110 or 112 were replaced with aspartic acid responded like the wild-type subunit upon limited trypsinolysis, while exhibiting severely depressed, but detectable, ADP-ribosyltransferase activity. The latter results may indicate that either glutamic acid 110 or glutamic acid 112 of the A subunit of heat-labile enterotoxin is analogous to those active-site glutamic acids identified in several other ADP-ribosylating toxins. Images PMID:1908825

  13. Identification of covalent active site inhibitors of dengue virus protease

    PubMed Central

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  14. An Aspartic Protease of the Scabies Mite Sarcoptes scabiei Is Involved in the Digestion of Host Skin and Blood Macromolecules

    PubMed Central

    Mahmood, Wajahat; Viberg, Linda T.; Fischer, Katja; Walton, Shelley F.; Holt, Deborah C.

    2013-01-01

    Background Scabies is a disease of worldwide significance, causing considerable morbidity in both humans and other animals. The scabies mite Sarcoptes scabiei burrows into the skin of its host, obtaining nutrition from host skin and blood. Aspartic proteases mediate a range of diverse and essential physiological functions such as tissue invasion and migration, digestion, moulting and reproduction in a number of parasitic organisms. We investigated whether aspartic proteases may play role in scabies mite digestive processes. Methodology/Principle Findings We demonstrated the presence of aspartic protease activity in whole scabies mite extract. We then identified a scabies mite aspartic protease gene sequence and produced recombinant active enzyme. The recombinant scabies mite aspartic protease was capable of digesting human haemoglobin, serum albumin, fibrinogen and fibronectin, but not collagen III or laminin. This is consistent with the location of the scabies mites in the upper epidermis of human skin. Conclusions/Significance The development of novel therapeutics for scabies is of increasing importance given the evidence of emerging resistance to current treatments. We have shown that a scabies mite aspartic protease plays a role in the digestion of host skin and serum molecules, raising the possibility that interference with the function of the enzyme may impact on mite survival. PMID:24244770

  15. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer.

    PubMed

    Dinpajooh, Mohammadhasan; Martin, Daniel R; Matyushov, Dmitry V

    2016-01-01

    Enzymes in biology's energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  16. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-06-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work.

  17. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    PubMed Central

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-01-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  18. A Cooperative Escherichia coli Aspartate Transcarbamoylase without Regulatory Subunits†‡

    PubMed Central

    Mendes, Kimberly R.; Kantrowitz, Evan R.

    2010-01-01

    Here we report the isolation, kinetic characterization, and X-ray structure determination of a cooperative E. coli aspartate transcarbamoylase (ATCase) without regulatory subunits. The native ATCase holoenzyme consists of six catalytic chains organized as two trimers bridged non-covalently by six regulatory chains organized as three dimers, c6r6. Dissociation of the native holoenzyme produces catalytically active trimers, c3, and nucleotide-binding regulatory dimers, r2. By introducing specific disulfide bonds linking the catalytic chains from the upper trimer site specifically to their corresponding chains in the lower trimer prior to dissociation, a new catalytic unit, c6, was isolated consisting of two catalytic trimers linked by disulfide bonds. Not only does the c6 species display enhanced enzymatic activity compared to the wild-type enzyme, but the disulfide bonds also impart homotropic cooperativity, never observed in the wild-type c3. The c6 ATCase was crystallized in the presence of phosphate and its X-ray structure determined to 2.10 Å resolution. The structure of c6 ATCase liganded with phosphate exists in a nearly identical conformation as other R-state structures with similar values calculated for the vertical separation and planar angles. The disulfide bonds linking upper and lower catalytic trimers predispose the active site into a more active conformation by locking the 240’s loop into the position characteristic of the high-affinity R state. Furthermore, the elimination of the structural constraints imposed by the regulatory subunits within the holoenzyme provides increased flexibility to the c6 enzyme enhancing its activity over the wild-type holoenzyme (c6r6) and c3. The covalent linkage between upper and lower catalytic trimers restores homotropic cooperativity so that a binding event at one or so active sites stimulates binding at the other sites. Reduction of the disulfide bonds in the c6 ATCase results in c3 catalytic subunits that display

  19. The copper active site of CBM33 polysaccharide oxygenases.

    PubMed

    Hemsworth, Glyn R; Taylor, Edward J; Kim, Robbert Q; Gregory, Rebecca C; Lewis, Sally J; Turkenburg, Johan P; Parkin, Alison; Davies, Gideon J; Walton, Paul H

    2013-04-24

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme's three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  20. The Copper Active Site of CBM33 Polysaccharide Oxygenases

    PubMed Central

    2013-01-01

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme’s three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  1. Medial temporal N-acetyl aspartate in pediatric major depression

    PubMed Central

    MacMaster, Frank P.; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S. Preeya; Buhagiar, Christian; Rosenberg, David R.

    2008-01-01

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD-case control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  2. Medial temporal N-acetyl-aspartate in pediatric major depression.

    PubMed

    MacMaster, Frank P; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S Preeya; Buhagiar, Christian; Rosenberg, David R

    2008-10-30

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD case-control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in the left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  3. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    SciTech Connect

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  4. Target-classification approach applied to active UXO sites

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Shamatava, Irma; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    This study is designed to illustrate the discrimination performance at two UXO active sites (Oklahoma's Fort Sill and the Massachusetts Military Reservation) of a set of advanced electromagnetic induction (EMI) inversion/discrimination models which include the orthonormalized volume magnetic source (ONVMS), joint diagonalization (JD), and differential evolution (DE) approaches and whose power and flexibility greatly exceed those of the simple dipole model. The Fort Sill site is highly contaminated by a mix of the following types of munitions: 37-mm target practice tracers, 60-mm illumination mortars, 75-mm and 4.5'' projectiles, 3.5'', 2.36'', and LAAW rockets, antitank mine fuzes with and without hex nuts, practice MK2 and M67 grenades, 2.5'' ballistic windshields, M2A1-mines with/without bases, M19-14 time fuzes, and 40-mm practice grenades with/without cartridges. The site at the MMR site contains targets of yet different sizes. In this work we apply our models to EMI data collected using the MetalMapper (MM) and 2 × 2 TEMTADS sensors. The data for each anomaly are inverted to extract estimates of the extrinsic and intrinsic parameters associated with each buried target. (The latter include the total volume magnetic source or NVMS, which relates to size, shape, and material properties; the former includes location, depth, and orientation). The estimated intrinsic parameters are then used for classification performed via library matching and the use of statistical classification algorithms; this process yielded prioritized dig-lists that were submitted to the Institute for Defense Analyses (IDA) for independent scoring. The models' classification performance is illustrated and assessed based on these independent evaluations.

  5. Differential Active Site Loop Conformations Mediate Promiscuous Activities in the Lactonase SsoPox

    PubMed Central

    Elias, Mikael; Chabriere, Eric

    2013-01-01

    Enzymes are proficient catalysts that enable fast rates of Michaelis-complex formation, the chemical step and products release. These different steps may require different conformational states of the active site that have distinct binding properties. Moreover, the conformational flexibility of the active site mediates alternative, promiscuous functions. Here we focused on the lactonase SsoPox from Sulfolobus solfataricus. SsoPox is a native lactonase endowed with promiscuous phosphotriesterase activity. We identified a position in the active site loop (W263) that governs its flexibility, and thereby affects the substrate specificity of the enzyme. We isolated two different sets of substitutions at position 263 that induce two distinct conformational sampling of the active loop and characterized the structural and kinetic effects of these substitutions. These sets of mutations selectively and distinctly mediate the improvement of the promiscuous phosphotriesterase and oxo-lactonase activities of SsoPox by increasing active-site loop flexibility. These observations corroborate the idea that conformational diversity governs enzymatic promiscuity and is a key feature of protein evolvability. PMID:24086491

  6. Slice orientation and muscarinic acetylcholine receptor activation determine the involvement of N-methyl D-aspartate receptor subunit GluN2B in hippocampal area CA1 long-term depression

    PubMed Central

    2011-01-01

    Background The contribution of different GluN2 subunits of the N-methyl D-aspartate (NMDA) receptor to the induction of bidirectional hippocampal synaptic plasticity is a controversial topic. As both supporting and refuting evidence for the hypothesis of subunit specialization in opposing directions of plasticity has accumulated since it was first proposed a few years ago, we hypothesize that differences in experimental conditions may have in part contributed to some of the inconsistent results from these studies. Here we investigate the controversial hypothesis that long-term depression (LTD) is preferentially induced by GluN2B-containing NMDA receptors in area CA1 of hippocampal slices. Results We find that brain slices from 2-3 week old rats prepared in the sagittal orientation have GluN2B-independent LTD whereas slices prepared in the coronal orientation have GluN2B-dependent LTD. There was no difference between the orientations in the fraction of the NMDAR EPSC sensitive to a GluN2B-selective antagonist, leading us to believe that the intracellular signaling properties of the NMDARs were different in the two preparations. Coronal slices had greater association of LTD-related intracellular signaling protein RasGRF1 with GluN2B relative to sagittal slices. Antagonism of muscarinic acetylcholine receptors (mAChRs) in the sagittal slices returned LTD to a GluN2B-dependent form and increased the association of GluN2B with RasGRF1. Conclusions These results suggest a novel form of NMDAR modulation by mAChRs and clarify some disagreement in the literature. PMID:22082088

  7. Spectroscopic Definition of the Ferroxidase Site in M Ferritin: Comparison of Binuclear Substrate vs. Cofactor Active Sites

    PubMed Central

    Schwartz, Jennifer K.; Liu, Xiaofeng S.; Tosha, Takehiko; Theil, Elizabeth C.; Solomon, Edward I.

    2008-01-01

    Maxi ferritins, 24 subunit protein nanocages, are essential in humans, plants, bacteria, and other animals for the concentration and storage of iron as hydrated ferric oxide, while minimizing free radical generation or use by pathogens. Formation of the precursors to these ferric oxides is catalyzed at a non-heme biferrous substrate site, which has some parallels with the cofactor sites in other biferrous enzymes. A combination of circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD (VTVH MCD) has been used to probe Fe(II) binding to the substrate active site in frog M ferritin. These data determined that the active site within each subunit consists of two inequivalent five-coordinate (5C) ferrous centers that are weakly anti-ferromagnetically coupled, consistent with a μ-1,3 carboxylate bridge. The active site ligand set is unusual and likely includes a terminal water bound to each Fe(II) center. The Fe(II) ions bind to the active sites in a concerted manner, and cooperativity among the sites in each subunit is observed, potentially providing a mechanism for the control of ferritin iron loading. Differences in geometric and electronic structure – including a weak ligand field, availability of two water ligands at the biferrous substrate site, and the single carboxylate bridge in ferritin – coincide with the divergent reaction pathways observed between this substrate site and the previously studied cofactor active sites. PMID:18576633

  8. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    SciTech Connect

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  9. Evidence for segmental mobility in the active site of pepsin

    SciTech Connect

    Pohl, J.; Strop, P.; Senn, H.; Foundling, S.; Kostka, V.

    1986-05-01

    The low hydrolytic activity (k/sub cat/ < 0.001 s/sup -1/) of chicken pepsin (CP) towards tri- and tetrapeptides is enhanced at least 100 times by modification of its single sulfhydryl group of Cys-115, with little effect on K/sub m/-values. Modification thus simulates the effect of secondary substrate binding on pepsin catalysis. The rate of Cys-115 modification is substantially decreased in the presence of some competitive inhibitors, suggesting its active site location. Experiments with CP alkylated at Cys-115 with Acrylodan as a fluorescent probe or with N-iodoacetyl-(4-fluoro)-aniline as a /sup 19/F-nmr probe suggest conformation change around Cys-115 to occur on substrate or substrate analog binding. The difference /sup 1/H-nmr spectra (500 MHz) of unmodified free and inhibitor-complexed CP reveal chemical shifts almost exclusively in the aromatic region. The effects of Cu/sup + +/ on /sup 19/F- and /sup 1/H-nmr spectra have been studied. Examination of a computer graphics model of CP based on E. parasitica pepsin-inhibitor complex X-ray coordinates suggests that Cys-115 is located near the S/sub 3//S/sub 5/ binding site. The results are interpreted in favor of segmental mobility of this region important for pepsin substrate binding and catalysis.

  10. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. PMID:26940877

  11. Eel calcitonin binding site distribution and antinociceptive activity in rats

    SciTech Connect

    Guidobono, F.; Netti, C.; Sibilia, V.; Villa, I.; Zamboni, A.; Pecile, A.

    1986-03-01

    The distribution of binding site for (/sup 125/I)-eel-calcitonin (ECT) to rat central nervous system, studied by an autoradiographic technique, showed concentrations of binding in the diencephalon, the brain stem and the spinal cord. Large accumulations of grains were seen in the hypothalamus, the amygdala, in the fasciculus medialis prosencephali, in the fasciculus longitudinalis medialis, in the ventrolateral part of the periventricular gray matter, in the lemniscus medialis and in the raphe nuclei. The density of grains in the reticular formation and in the nucleus tractus spinalis nervi trigemini was more moderate. In the spinal cord, grains were scattered throughout the dorsal horns. Binding of the ligand was displaced equally by cold ECT and by salmon CT(sCT), indicating that both peptides bind to the same receptors. Human CT was much weaker than sCT in displacing (/sup 125/I)-ECT binding. The administration of ECT into the brain ventricles of rats dose-dependently induced a significant and long-lasting enhancement of hot-plate latencies comparable with that obtained with sCT. The antinociceptive activity induced by ECT is compatible with the topographical distribution of binding sites for the peptide and is a further indication that fish CTs are active in the mammalian brain.

  12. Experimental Active-Site Mapping by Fragments: Hot Spots Remote from the Catalytic Center of Endothiapepsin.

    PubMed

    Radeva, Nedyalka; Krimmer, Stefan G; Stieler, Martin; Fu, Kan; Wang, Xiaojie; Ehrmann, Frederik R; Metz, Alexander; Huschmann, Franziska U; Weiss, Manfred S; Mueller, Uwe; Schiebel, Johannes; Heine, Andreas; Klebe, Gerhard

    2016-08-25

    Successful optimization of a given lead scaffold requires thorough binding-site mapping of the target protein particular in regions remote from the catalytic center where high conservation across protein families is given. We screened a 361-entry fragment library for binding to the aspartic protease endothiapepsin by crystallography. This enzyme is frequently used as a surrogate for the design of renin and β-secretase inhibitors. A hit rate of 20% was achieved, providing 71 crystal structures. Here, we discuss 45 binding poses of fragments accommodated in pockets remote from the catalytic dyad. Three major hot spots are discovered in remote binding areas: Asp81, Asp119, and Phe291. Compared to the dyad binders, bulkier fragments occupy these regions. Many of the discovered fragments suggest an optimization concept on how to grow them into larger ligands occupying adjacent binding pockets that will possibly endow them with the desired selectivity for one given member of a protein family. PMID:27463859

  13. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  14. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  15. Active site and laminarin binding in glycoside hydrolase family 55.

    PubMed

    Bianchetti, Christopher M; Takasuka, Taichi E; Deutsch, Sam; Udell, Hannah S; Yik, Eric J; Bergeman, Lai F; Fox, Brian G

    2015-05-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  16. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  17. Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?

    PubMed

    Onstott, T C; Magnabosco, C; Aubrey, A D; Burton, A S; Dworkin, J P; Elsila, J E; Grunsfeld, S; Cao, B H; Hein, J E; Glavin, D P; Kieft, T L; Silver, B J; Phelps, T J; van Heerden, E; Opperman, D J; Bada, J L

    2014-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of ~89 years for 1 km depth and 27 °C and 1-2 years for 3 km depth and 54 °C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 °C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples. PMID:24289240

  18. Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?

    SciTech Connect

    Onstott, T. C.; Aubrey, A.D.; Kieft, T L; Silver, B J; Phelps, Tommy Joe; Van Heerden, E.; Opperman, D. J.; Bada, J L.

    2014-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of ~89 years for 1 km depth and 27 C and 1 2 years for 3 km depth and 54 C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.

  19. Does Aspartic Acid Racemization Constrain the Depth Limit of the Subsurface Biosphere?

    NASA Technical Reports Server (NTRS)

    Onstott, T C.; Magnabosco, C.; Aubrey, A. D.; Burton, A. S.; Dworkin, J. P.; Elsila, J. E.; Grunsfeld, S.; Cao, B. H.; Hein, J. E.; Glavin, D. P.; Kieft, T. L.; Silver, B. J.; Phelps, T. J.; Heerden, E. Van; Opperman, D. J.; Bada, J. L.

    2013-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of approximately 89 years for 1 km depth and 27 C and 1-2 years for 3 km depth and 54 C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.

  20. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. PMID:25902402

  1. Threonine Overproduction in Transgenic Tobacco Plants Expressing a Mutant Desensitized Aspartate Kinase of Escherichia coli1

    PubMed Central

    Shaul, Orit; Galili, Gad

    1992-01-01

    In higher plants, the synthesis of the essential amino acid threonine is regulated primarily by the sensitivity of the first enzyme in its biosynthetic pathway, aspartate kinase, to feedback inhibition by threonine and lysine. We aimed to study the potential of increasing threonine accumulation in plants by means of genetic engineering. This was addressed by the expression of a mutant, desensitized aspartate kinase derived from Escherichia coli either in the cytoplasm or in the chloroplasts of transgenic tobacco (Nicotiana Tabacum cv Samsun NN) plants. Both types of transgenic plants exhibited a significant overproduction of free threonine. However, threonine accumulation was higher in plants expressing the bacterial enzyme in the chloroplast, indicating that compartmentalization of aspartate kinase within this organelle was important, although not essential. Threonine overproduction in leaves was positively correlated with the level of the desensitized enzyme. Transgenic plants expressing the highest leaf aspartate kinase activity also exhibited a slight increase in the levels of free lysine and isoleucine, both of which share a common biosynthetic pathway with threonine, but showed no significant change in the level of other free amino acids. The present study proposes a new molecular biological approach to increase the limiting content of threonine in higher plants. PMID:16653099

  2. Role of aspartate 400, arginine 262, and arginine 401 in the catalytic mechanism of human coproporphyrinogen oxidase

    PubMed Central

    Stephenson, Jason R.; Stacey, Julie A.; Morgenthaler, Justin B.; Friesen, Jon A.; Lash, Timothy D.; Jones, Marjorie A.

    2007-01-01

    Coproporphyrinogen oxidase (CPO) is the sixth enzyme in the heme biosynthetic pathway, catalyzing two sequential oxidative decarboxylations of propionate moieties on coproporphyrinogen-III forming protoporphyrinogen-IX through a monovinyl intermediate, harderoporphyrinogen. Site-directed mutagenesis studies were carried out on three invariant amino acids, aspartate 400, arginine 262, and arginine 401, to determine residue contribution to substrate binding and/or catalysis by human recombinant CPO. Kinetic analyses were performed on mutant enzymes incubated with three substrates, coproporphyrinogen-III, harderoporphyrinogen, or mesoporphyrinogen-VI, in order to determine catalytic ability to perform the first and/or second oxidative decarboxylation. When Asp400 was mutated to alanine no divinyl product was detected, but the production of a small amount of monovinyl product suggested the Km value for coproporphyrinogen-III did not change significantly compared to the wild-type enzyme. Upon mutation of Arg262 to alanine, CPO was again a poor catalyst for the production of a divinyl product, with a catalytic efficiency <0.01% compared to wild-type, including a 15-fold higher Km for coproporphyrinogen-III. The efficiency of divinyl product formation for mutant enzyme Arg401Ala was ∼3% compared to wild-type CPO, with a threefold increase in the Km value for coproporphyrinogen-III. These data suggest Asp400, Arg262, and Arg401 are active site amino acids critical for substrate binding and/or catalysis. Possible roles for arginine 262 and 401 include coordination of carboxylate groups of coproporphyrinogen-III, while aspartate 400 may initiate deprotonation of substrate, resulting in an oxidative decarboxylation. PMID:17242372

  3. Metavanadate at the active site of the phosphatase VHZ.

    PubMed

    Kuznetsov, Vyacheslav I; Alexandrova, Anastassia N; Hengge, Alvan C

    2012-09-01

    Vanadate is a potent modulator of a number of biological processes and has been shown by crystal structures and NMR spectroscopy to interact with numerous enzymes. Although these effects often occur under conditions where oligomeric forms dominate, the crystal structures and NMR data suggest that the inhibitory form is usually monomeric orthovanadate, a particularly good inhibitor of phosphatases because of its ability to form stable trigonal-bipyramidal complexes. We performed a computational analysis of a 1.14 Å structure of the phosphatase VHZ in complex with an unusual metavanadate species and compared it with two classical trigonal-bipyramidal vanadate-phosphatase complexes. The results support extensive delocalized bonding to the apical ligands in the classical structures. In contrast, in the VHZ metavanadate complex, the central, planar VO(3)(-) moiety has only one apical ligand, the nucleophilic Cys95, and a gap in electron density between V and S. A computational analysis showed that the V-S interaction is primarily ionic. A mechanism is proposed to explain the formation of metavanadate in the active site from a dimeric vanadate species that previous crystallographic evidence has shown to be able to bind to the active sites of phosphatases related to VHZ. Together, the results show that the interaction of vanadate with biological systems is not solely reliant upon the prior formation of a particular inhibitory form in solution. The catalytic properties of an enzyme may act upon the oligomeric forms primarily present in solution to generate species such as the metavanadate ion observed in the VHZ structure. PMID:22876963

  4. Synthesis and proteinase inhibitory properties of diphenyl phosphonate analogues of aspartic and glutamic acids.

    PubMed

    Hamilton, R; Walker, B; Walker, B J

    1998-07-01

    The synthesis of diphenyl phosphonate analogues of aspartic and glutamic acid, and their inhibitory activity against S. aureus V8 protease and granzyme B, is described. The study has revealed difficulties with protecting group compatibility in the synthesis of these analogues. Two analogues, Acetyl. AspP (OPh)2 and Acetyl.GluP (OPh)2 were found to function as irreversible inactivators of V8 proteinase, yet exhibit no activity against granzyme B. PMID:9873408

  5. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.

    PubMed

    Gutzler, Rico; Stepanow, Sebastian; Grumelli, Doris; Lingenfelder, Magalí; Kern, Klaus

    2015-07-21

    Metal-organic supramolecular chemistry on surfaces has matured to a point where its underlying growth mechanisms are well understood and structures of defined coordination environments of metal atoms can be synthesized in a controlled and reproducible procedure. With surface-confined molecular self-assembly, scientists have a tool box at hand which can be used to prepare structures with desired properties, as for example a defined oxidation number and spin state of the transition metal atoms within the organic matrix. From a structural point of view, these coordination sites in the supramolecular structure resemble the catalytically active sites of metallo-enzymes, both characterized by metal centers coordinated to organic ligands. Several chemical reactions take place at these embedded metal ions in enzymes and the question arises whether these reactions also take place using metal-organic networks as catalysts. Mimicking the active site of metal atoms and organic ligands of enzymes in artificial systems is the key to understanding the selectivity and efficiency of enzymatic reactions. Their catalytic activity depends on various parameters including the charge and spin configuration in the metal ion, but also on the organic environment, which can stabilize intermediate reaction products, inhibits catalytic deactivation, and serves mostly as a transport channel for the reactants and products and therefore ensures the selectivity of the enzyme. Charge and spin on the transition metal in enzymes depend on the one hand on the specific metal element, and on the other hand on its organic coordination environment. These two parameters can carefully be adjusted in surface confined metal-organic networks, which can be synthesized by virtue of combinatorial mixing of building synthons. Different organic ligands with varying functional groups can be combined with several transition metals and spontaneously assemble into ordered networks. The catalytically active metal

  6. Hybrid [FeFe]-hydrogenases with modified active sites show remarkable residual enzymatic activity.

    PubMed

    Siebel, Judith F; Adamska-Venkatesh, Agnieszka; Weber, Katharina; Rumpel, Sigrun; Reijerse, Edward; Lubitz, Wolfgang

    2015-02-24

    [FeFe]-hydrogenases are to date the only enzymes for which it has been demonstrated that the native inorganic binuclear cofactor of the active site Fe2(adt)(CO)3(CN)2 (adt = azadithiolate = [S-CH2-NH-CH2-S](2-)) can be synthesized on the laboratory bench and subsequently inserted into the unmaturated enzyme to yield fully functional holo-enzyme (Berggren, G. et al. (2013) Nature 499, 66-70; Esselborn, J. et al. (2013) Nat. Chem. Biol. 9, 607-610). In the current study, we exploit this procedure to introduce non-native cofactors into the enzyme. Mimics of the binuclear subcluster with a modified bridging dithiolate ligand (thiodithiolate, N-methylazadithiolate, dimethyl-azadithiolate) and three variants containing only one CN(-) ligand were inserted into the active site of the enzyme. We investigated the activity of these variants for hydrogen oxidation as well as proton reduction and their structural accommodation within the active site was analyzed using Fourier transform infrared spectroscopy. Interestingly, the monocyanide variant with the azadithiolate bridge showed ∼50% of the native enzyme activity. This would suggest that the CN(-) ligands are not essential for catalytic activity, but rather serve to anchor the binuclear subsite inside the protein pocket through hydrogen bonding. The inserted artificial cofactors with a propanedithiolate and an N-methylazadithiolate bridge as well as their monocyanide variants also showed residual activity. However, these activities were less than 1% of the native enzyme. Our findings indicate that even small changes in the dithiolate bridge of the binuclear subsite lead to a rather strong decrease of the catalytic activity. We conclude that both the Brønsted base function and the conformational flexibility of the native azadithiolate amine moiety are essential for the high catalytic activity of the native enzyme. PMID:25633077

  7. Ionization characteristics and chemical influences of aspartic acid residue 158 of papain and caricain determined by structure-related kinetic and computational techniques: multiple electrostatic modulators of active-centre chemistry.

    PubMed

    Noble, M A; Gul, S; Verma, C S; Brocklehurst, K

    2000-11-01

    The pK(a) of (Asp(158))-CO(2)H of papain (EC 3.4.22.2) was determined as 2.8 by using 4-chloro-7-nitrobenzofurazan (Nbf-Cl) as a reactivity probe targeted on the thiolate anion component of the Cys(25)/His(159) nucleophilic-acid/base motif of the catalytic site. The possibility of using Nbf-Cl for this purpose was established by modelling the papain-Nbf-Cl Meisenheimer intermediate by using QUANTA/CHARMM and performing molecular orbital calculations with MOPAC interfaced with Cerius 2. A pH-dependent stopped-flow kinetic study of the reaction of papain with Nbf-Cl established that the striking rate maximum at pH 3 results from reaction in a minor ionization state comprising (Cys(25))-S(-)/(His(159))-Im(+)H (in which Im represents imidazole) produced by protonic dissociation of (Cys(25))-SH/(His(159))-Im(+)H with pK(a) 3.3 and (Asp(158))-CO(2)H. Although the analogous intermediate in the reaction of caricain (EC 3.4.22.30) with Nbf-Cl has similar geometry, the pH-k profile (k being the second-order rate constant) lacks a rate maximum under acidic conditions. This precludes the experimental determination of the pK(a) value of (Asp(158))-CO(2)H of caricain, which was calculated to be 2.0 by solving the linearized Poisson-Boltzmann equation with the program UHBD ('University of Houston Brownian dynamics'). A value lower than 2.8 had been predicted by consideration of the hydrogen-bonded networks involving Asp(158) and its microenvironments in both enzymes. The difference between these pK(a) values (values not previously detected in reactions of either enzyme) accounts for the lack of the rate maximum in the caricain reaction and for the differences in the electronic absorption spectra of the two S-Nbf-enzymes under acidic conditions. The concept of control of cysteine proteinase activity by multiple electrostatic modulators, including (Asp(158))-CO(2)(-), which modifies traditional mechanistic views, is discussed. PMID:11042128

  8. Ionization characteristics and chemical influences of aspartic acid residue 158 of papain and caricain determined by structure-related kinetic and computational techniques: multiple electrostatic modulators of active-centre chemistry.

    PubMed Central

    Noble, M A; Gul, S; Verma, C S; Brocklehurst, K

    2000-01-01

    The pK(a) of (Asp(158))-CO(2)H of papain (EC 3.4.22.2) was determined as 2.8 by using 4-chloro-7-nitrobenzofurazan (Nbf-Cl) as a reactivity probe targeted on the thiolate anion component of the Cys(25)/His(159) nucleophilic-acid/base motif of the catalytic site. The possibility of using Nbf-Cl for this purpose was established by modelling the papain-Nbf-Cl Meisenheimer intermediate by using QUANTA/CHARMM and performing molecular orbital calculations with MOPAC interfaced with Cerius 2. A pH-dependent stopped-flow kinetic study of the reaction of papain with Nbf-Cl established that the striking rate maximum at pH 3 results from reaction in a minor ionization state comprising (Cys(25))-S(-)/(His(159))-Im(+)H (in which Im represents imidazole) produced by protonic dissociation of (Cys(25))-SH/(His(159))-Im(+)H with pK(a) 3.3 and (Asp(158))-CO(2)H. Although the analogous intermediate in the reaction of caricain (EC 3.4.22.30) with Nbf-Cl has similar geometry, the pH-k profile (k being the second-order rate constant) lacks a rate maximum under acidic conditions. This precludes the experimental determination of the pK(a) value of (Asp(158))-CO(2)H of caricain, which was calculated to be 2.0 by solving the linearized Poisson-Boltzmann equation with the program UHBD ('University of Houston Brownian dynamics'). A value lower than 2.8 had been predicted by consideration of the hydrogen-bonded networks involving Asp(158) and its microenvironments in both enzymes. The difference between these pK(a) values (values not previously detected in reactions of either enzyme) accounts for the lack of the rate maximum in the caricain reaction and for the differences in the electronic absorption spectra of the two S-Nbf-enzymes under acidic conditions. The concept of control of cysteine proteinase activity by multiple electrostatic modulators, including (Asp(158))-CO(2)(-), which modifies traditional mechanistic views, is discussed. PMID:11042128

  9. Site-specific PEGylation of lidamycin and its antitumor activity.

    PubMed

    Li, Liang; Shang, Boyang; Hu, Lei; Shao, Rongguang; Zhen, Yongsu

    2015-05-01

    In this study, N-terminal site-specific mono-PEGylation of the recombinant lidamycin apoprotein (rLDP) of lidamycin (LDM) was prepared using a polyethyleneglycol (PEG) derivative (M w 20 kDa) through a reactive terminal aldehyde group under weak acidic conditions (pH 5.5). The biochemical properties of mPEG-rLDP-AE, an enediyne-integrated conjugate, were analyzed by SDS-PAGE, RP-HPLC, SEC-HPLC and MALDI-TOF. Meanwhile, in vitro and in vivo antitumor activity of mPEG-rLDP-AE was evaluated by MTT assays and in xenograft model. The results indicated that mPEG-rLDP-AE showed significant antitumor activity both in vitro and in vivo. After PEGylation, mPEG-rLDP still retained the binding capability to the enediyne AE and presented the physicochemical characteristics similar to that of native LDP. It is of interest that the PEGylation did not diminish the antitumor efficacy of LDM, implying the possibility that this derivative may function as a payload to deliver novel tumor-targeted drugs. PMID:26579455

  10. Recombinant expression, purification and crystallographic studies of the mature form of human mitochondrial aspartate aminotransferase.

    PubMed

    Jiang, Xiuping; Wang, Jia; Chang, Haiyang; Zhou, Yong

    2016-02-01

    Mitochondrial aspartate aminotransferase (mAspAT) was recognized as a moonlighting enzyme because it has not only aminotransferase activity but also a high-affinity long-chain fatty acids (LCFA) binding site. This enzyme plays a key role in amino acid metabolism, biosynthesis of kynurenic acid and transport of the LCFA. Therefore, it is important to study the structure-function relationships of human mAspAT protein. In this work, the mature form of human mAspAT was expressed to a high level in Escherichia coli periplasmic space using pET-22b vector, purified by a combination of immobilized metal-affinity chromatography and cation exchange chromatography. Optimal activity of the enzyme occurred at a temperature of 47.5ºC and a pH of 8.5. Crystals of human mAspAT were grown using the hanging-drop vapour diffusion method at 277K with 0.1 M HEPES pH 6.8 and 25%(v/v) Jeffamine(®) ED-2001 pH 6.8. The crystals diffracted to 2.99 Å and belonged to the space group P1 with the unit-cell parameters a =56.7, b = 76.1, c = 94.2 Å, α =78.0, β =85.6, γ = 78.4º. Elucidation of mAspAT structure can provide a molecular basis towards understanding catalysis mechanism and substrate binding site of enzyme. PMID:26902786

  11. Arcaine uncovers dual interactions of polyamines with the N-methyl-D-aspartate receptor

    SciTech Connect

    Reynolds, I.J. )

    1990-12-01

    This study investigated the interaction between the polyamines spermine and spermidine and the N-methyl-D-aspartate (NMDA) receptor by using (+)-(3H)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-im ine maleate ((3H)MK801) binding to well washed rat brain membranes. The actions of arcaine, agmatine, diethylenetriamine and 1,8-octanediamine as polyamine antagonists were compared to use as tools in this study. Arcaine was found to be the antagonist of choice due to its greater potency. Several divalent cations, including Ba++, Ca++ and Sr++, but not Zn++, decreased the apparent potency of arcaine. These cations enhance (3H)MK801 binding in a similar fashion to spermidine and spermine suggesting that they may share a common site and mechanism of action. Moreover, arcaine competitively reduced the enhancement of (3H)MK801 binding produced by Sr++ did not alter the inhibition produced by higher concentrations of this cation, a phenomenon that also occurs with spermidine. The distinct arcaine sensitivity of the two separate phases of the concentration-response curves of both spermidine and Sr++ suggests two separate mechanisms underlying the action of spermidine-like drugs on the NMDA receptor. Further investigation of the increase in (3H)MK801 binding produced by spermidine revealed that spermidine increased the equilibrium affinity of this ligand by 2-fold without significantly altering the density of binding sites. In contrast, polyamine induced increases in the dissociation of (3H)MK801 required higher polyamine concentrations than necessary to increase ligand binding and were relatively insensitive to arcaine. These findings suggest that polyamines do not activate or promote the activation of the NMDA receptor, but instead enhance (3H)MK801 binding by allosterically increasing ligand affinity.

  12. Crystallization and preliminary X-ray diffraction analysis of the periplasmic domain of the Escherichia coli aspartate receptor Tar and its complex with aspartate

    SciTech Connect

    Mise, Takeshi; Matsunami, Hideyuki; Samatey, Fadel A.; Maruyama, Ichiro N.

    2014-08-27

    The periplasmic domain of the E. coli aspartate receptor Tar was cloned, expressed, purified and crystallized with and without bound ligand. The crystals obtained diffracted to resolutions of 1.58 and 1.95 Å, respectively. The cell-surface receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni{sup 2+}. To understand the molecular mechanisms underlying the induction of Tar activity by its ligands, the Escherichia coli Tar periplasmic domain with and without bound aspartate (Asp-Tar and apo-Tar, respectively) were each crystallized in two different forms. Using ammonium sulfate as a precipitant, crystals of apo-Tar1 and Asp-Tar1 were grown and diffracted to resolutions of 2.10 and 2.40 Å, respectively. Alternatively, using sodium chloride as a precipitant, crystals of apo-Tar2 and Asp-Tar2 were grown and diffracted to resolutions of 1.95 and 1.58 Å, respectively. Crystals of apo-Tar1 and Asp-Tar1 adopted space group P4{sub 1}2{sub 1}2, while those of apo-Tar2 and Asp-Tar2 adopted space groups P2{sub 1}2{sub 1}2{sub 1} and C2, respectively.

  13. Crystallographic studies of aspartate racemase from Lactobacillus sakei NBRC 15893.

    PubMed

    Fujii, Tomomi; Yamauchi, Takae; Ishiyama, Makoto; Gogami, Yoshitaka; Oikawa, Tadao; Hata, Yasuo

    2015-08-01

    Aspartate racemase catalyzes the interconversion between L-aspartate and D-aspartate and belongs to the PLP-independent racemases. The enzyme from the lactic acid bacterium Lactobacillus sakei NBRC 15893, isolated from kimoto, is considered to be involved in D-aspartate synthesis during the brewing process of Japanese sake at low temperatures. The enzyme was crystallized at 293 K by the sitting-drop vapour-diffusion method using 25%(v/v) PEG MME 550, 5%(v/v) 2-propanol. The crystal belonged to space group P3121, with unit-cell parameters a = b = 104.68, c = 97.29 Å, and diffracted to 2.6 Å resolution. Structure determination is under way. PMID:26249691

  14. Conservative tryptophan mutants of the protein tyrosine phosphatase YopH exhibit impaired WPD-loop function and crystallize with divanadate esters in their active sites.

    PubMed

    Moise, Gwendolyn; Gallup, Nathan M; Alexandrova, Anastassia N; Hengge, Alvan C; Johnson, Sean J

    2015-10-27

    Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution. PMID:26445170

  15. Conservative Tryptophan Mutants of the Protein Tyrosine Phosphatase YopH Exhibit Impaired WPD-Loop Function and Crystallize with Divanadate Esters in Their Active Sites

    PubMed Central

    Moise, Gwendolyn; Gallup, Nathan M.; Alexandrova, Anastassia N.; Hengge, Alvan C.; Johnson, Sean J.

    2016-01-01

    Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution. PMID:26445170

  16. Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination.

    PubMed

    Rani, Nidhi; Vijayakumar, Saravanan; P T V, Lakshmi; Arunachalam, Annamalai

    2016-08-01

    Recent crystallographic study revealed the involvement of allosteric site in active site inhibition of penicillin binding protein (PBP2a), where one molecule of Ceftaroline (Cef) binds to the allosteric site of PBP2a and paved way for the other molecule (Cef) to bind at the active site. Though Cef has the potency to inhibit the PBP2a, its adverse side effects are of major concern. Previous studies have reported the antibacterial property of Quercetin derivatives, a group of natural compounds. Hence, the present study aims to evaluate the effect of Quercetin 3-o-rutinoside (Rut) in allosteric site-mediated active site inhibition of PBP2a. The molecular docking studies between allosteric site and ligands (Rut, Que, and Cef) revealed a better binding efficiency (G-score) of Rut (-7.790318) and Cef (-6.194946) with respect to Que (-5.079284). Molecular dynamic (MD) simulation studies showed significant changes at the active site in the presence of ligands (Rut and Cef) at allosteric site. Four different combinations of Rut and Cef were docked and their G-scores ranged between -6.320 and -8.623. MD studies revealed the stability of the key residue (Ser403) with Rut being at both sites, compared to other complexes. Morphological analysis through electron microscopy confirmed that combination of Rut and Cefixime was able to disturb the bacterial cell membrane in a similar fashion to that of Rut and Cefixime alone. The results of this study indicate that the affinity of Rut at both sites were equally good, with further validations Rut could be considered as an alternative for inhibiting MRSA growth. PMID:26360629

  17. Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase.

    PubMed

    Li, Chi-Hui; Tu, Shiao-Chun

    2005-10-01

    Vibrio harveyi luciferase is an alphabeta heterodimer containing a single active site, proposed earlier to be at a cleft in the alpha subunit. In this work, six conserved phenylalanine residues at this proposed active site were subjected to site-directed mutations to investigate their possible functional roles and to delineate the makeup of luciferase active site. After initial screening of Phe --> Ala mutants, alphaF46, alphaF49, alphaF114, and alphaF117 were chosen for additional mutations to Asp, Ser, and Tyr. Comparisons of the general kinetic properties of wild-type and mutated luciferases indicated that the hydrophobic nature of alphaF46, alphaF49, alphaF114, and alphaF117 was important to luciferase V(max) and V(max)/K(m), which were reduced by 3-5 orders of magnitude for the Phe --> Asp mutants. Both alphaF46 and alphaF117 also appeared to be involved in the binding of reduced flavin substrate. Additional studies on the stability and yield of the 4a-hydroperoxyflavin intermediate II and measurements of decanal substrate oxidation by alphaF46D, alphaF49D, alphaF114D, and alphaF117D revealed that their marked reductions in the overall quantum yield (phi( degrees )) were a consequence of diminished yields of luciferase intermediates and, with the exception of alphaF114D, emission quantum yield of the excited emitter due to the replacement of the hydrophobic Phe by the anionic Asp. The locations of these four critical Phe residues in relation to other essential and/or hydrophobic residues are depicted in a refined map of the active site. Functional implications of these residues are discussed. PMID:16185065

  18. Non-enzymic beta-decarboxylation of aspartic acid.

    NASA Technical Reports Server (NTRS)

    Doctor, V. M.; Oro, J.

    1972-01-01

    Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.

  19. Investigation of the Role of the Histidine-Aspartate Pair in the Human Exonuclease III-like Abasic Endonuclease, Ape1

    SciTech Connect

    Lowry, David F. ); Hoyt, David W. ); Khazi, Fayaz A.; Bagu, John R. ); Lindsey, Andrea G.; Wilson, David M.

    2003-05-30

    Hydrogen bonded histidine-aspartate (His-Asp) pairs are critical constituents in several key enzymatic reactions. To date, the role that these pairs play in catalysis is best understood in serine and trypsin-like proteases, where structural and biochemical NMR studies have revealed important pKa values and hydrogen-bonding patterns within the catalytic pocket. However, the role of the His-Asp pair in metal-assisted catalysis is less clear. Here, we apply liquid state NMR to investigate the role of a critical histidine of apurinic endonuclease 1 (Ape1), a human DNA repair enzyme that cleaves adjacent to abasic sites in DNA using one or more divalent cations and an active site His-Asp pair. The studies within suggest that the Ape1 His- Asp pair functions as neither a general base catalyst nor a metal ligand. Rather, the pair likely stabilizes the pentavalent transition state necessary for phospho-transfer.

  20. A proposed definition of the 'activity' of surface sites on lactose carriers for dry powder inhalation.

    PubMed

    Grasmeijer, Floris; Frijlink, Henderik W; de Boer, Anne H

    2014-06-01

    A new definition of the activity of surface sites on lactose carriers for dry powder inhalation is proposed which relates to drug detachment during dispersion. The new definition is expected to improve the understanding of 'carrier surface site activity', which stimulates the unambiguous communication about this subject and may aid in the rational design and interpretation of future formulation studies. In contrast to the currently prevailing view on carrier surface site activity, it follows from the newly proposed definition that carrier surface site activity depends on more variables than just the physicochemical properties of the carrier surface. Because the term 'active sites' is ambiguous, it is recommended to use the term 'highly active sites' instead to denote carrier surface sites with a relatively high activity. PMID:24613490

  1. The crystal structure of the Rv0301-Rv0300 VapBC-3 toxin-antitoxin complex from M. tuberculosis reveals a Mg2+ ion in the active site and a putative RNA-binding site

    SciTech Connect

    Min, Andrew B; Miallau, Linda; Sawaya, Michael R; Habel, Jeff; Cascio, Duilio; Eisenberg, David

    2013-01-10

    VapBC pairs account for 45 out of 88 identified toxin-antitoxin (TA) pairs in the Mycobacterium tuberculosis (Mtb) H37Rv genome. A working model suggests that under times of stress, antitoxin molecules are degraded, releasing the toxins to slow the metabolism of the cell, which in the case of VapC toxins is via their RNase activity. Otherwise the TA pairs remain bound to their promoters, autoinhibiting transcription. The crystal structure of Rv0301-Rv0300, an Mtb VapBC TA complex determined at 1.49 Å resolution, suggests a mechanism for these three functions: RNase activity, its inhibition by antitoxin, and its ability to bind promoter DNA. The Rv0301 toxin consists of a core of five parallel beta strands flanked by alpha helices. Three proximal aspartates coordinate a Mg2+ ion forming the putative RNase active site. The Rv0300 antitoxin monomer is extended in structure, consisting of an N-terminal beta strand followed by four helices. The last two helices wrap around the toxin and terminate near the putative RNase active site, but with different conformations. In one conformation, the C-terminal arginine interferes with Mg2+ ion coordination, suggesting a mechanism by which the antitoxin can inhibit toxin activity. At the N-terminus of the antitoxin, two pairs of Ribbon-Helix-Helix (RHH) motifs are related by crystallographic twofold symmetry. The resulting hetero-octameric complex is similar to the FitAB system, but the two RHH motifs are about 30 Å closer together in the Rv0301-Rv0300 complex, suggesting either a different span of the DNA recognition sequence or a conformational change.

  2. Developmental changes in aspartate-family amino acid biosynthesis in pea chloroplasts

    SciTech Connect

    Mills, W.R.; Cato, L.W.; Stephens, B.W.; Reeves, M. )

    1990-05-01

    Isolated chloroplasts are known to synthesize the asp-derived amino acids (ile, hse, lys and thr) from ({sup 14}C)asp (Mills et al, 1980, Plant Physiol. 65, 1166). Now, we have studied the influence of tissue age on essential amino acid biosynthesis in pea (Pisum sativum) plastids. Chloroplasts from the younger (third and fourth) leaves of 12 day old plants, were 2-3 times more active in synthesizing lys and thr from ({sup 14}C)asp than those from older (first or second) leaves. We also examined two key pathway enzymes (aspartate kinase and homoserine dehydrogenase); with each enzyme,a activity in younger leaves was about 2 times that in plastids from older tissue. Both lys- and thr-sensitive forms of aspartate kinase are known in plants; in agreement with earlier work, we found that lys-sensitive activity was about 4 times higher in the younger tissues, while the thr-sensitive activity changed little during development (Davies and Miflin, 1977, Plant Sci. Lett. 9, 323). Recently the role of aspartate kinase and homoserine dehydrogenase in controlling asp-family amino acid synthesis has been questioned (Giovanelli et al, 1989, Plant Physiol. 90, 1584); we hope that measurements of amino acid levels in chloroplasts as well as further enzyme studies will help us to better understand the regulation of asp-family amino acid synthesis.

  3. 15N NMR spectroscopy of hydrogen-bonding interactions in the active site of serine proteases: evidence for a moving histidine mechanism.

    PubMed

    Bachovchin, W W

    1986-11-18

    Nitrogen-15 NMR spectroscopy has been used to study the hydrogen-bonding interactions involving the histidyl residue in the catalytic triad of alpha-lytic protease in the resting enzyme and in the transition-state or tetrahedral intermediate analogue complexes formed with phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate. The 15N shifts indicate that a strong hydrogen bond links the active site histidine and serine residues in the resting enzyme in solution. This result is at odds with interpretations of the X-ray diffraction data of alpha-lytic protease and of other serine proteases, which indicate that the serine and histidine residues are too far apart and not properly aligned for the formation of a hydrogen bond. In addition, the nitrogen-15 shifts demonstrate that protonation of the histidine imidazole ring at low pH in the transition-state or tetrahedral intermediate analogue complexes formed with phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate triggers the disruption of the aspartate-histidine hydrogen bond. These results suggest a catalytic mechanism involving directed movement of the imidazole ring of the active site histidyl residue. PMID:3542033

  4. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. PMID:25727891

  5. Construction of DNA recognition sites active in Haemophilus transformation.

    PubMed Central

    Danner, D B; Smith, H O; Narang, S A

    1982-01-01

    Competent Haemophilus cells recognize and preferentially take up Haemophilus DNA during genetic transformation. This preferential uptake is correlated with the presence on incoming DNA of an 11-base-pair (bp) sequence, 5'-A-A-G-T-G-C-G-G-T-C-A-3'. To prove that this sequence is the recognition site that identifies Haemophilus DNA to the competent cell, we have now constructed a series of plasmids, each of which contains the 11-bp sequence. Using two different assay systems we have tested the ability of fragments from these plasmids to compete with cloned Haemophilus DNA fragments that naturally contain the 11-bp sequence. We find that the addition of the 11-bp sequence to a DNA fragment is necessary and sufficient for preferential uptake of that fragment. However, plasmid DNAs containing this sequence may vary as much as 48-fold in uptake activity, and this variation correlates with the A+T-richness of the DNA flanking the 11-mer. Images PMID:6285382

  6. Characterization of active site residues of nitroalkane oxidase.

    PubMed

    Valley, Michael P; Fenny, Nana S; Ali, Shah R; Fitzpatrick, Paul F

    2010-06-01

    The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitroalkanes to the corresponding aldehydes and ketones plus nitrite. The structure of the enzyme shows that Ser171 forms a hydrogen bond to the flavin N5, suggesting that it plays a role in catalysis. Cys397 and Tyr398 were previously identified by chemical modification as potential active site residues. To more directly probe the roles of these residues, the S171A, S171V, S171T, C397S, and Y398F enzymes have been characterized with nitroethane as substrate. The C397S and Y398 enzymes were less stable than the wild-type enzyme, and the C397S enzyme routinely contained a substoichiometric amount of FAD. Analysis of the steady-state kinetic parameters for the mutant enzymes, including deuterium isotope effects, establishes that all of the mutations result in decreases in the rate constants for removal of the substrate proton by approximately 5-fold and decreases in the rate constant for product release of approximately 2-fold. Only the S171V and S171T mutations alter the rate constant for flavin oxidation. These results establish that these residues are not involved in catalysis, but rather are required for maintaining the protein structure. PMID:20056514

  7. Detection limit for activation measurements in ultralow background sites

    NASA Astrophysics Data System (ADS)

    Trache, Livius; Chesneanu, D.; Margineanu, R.; Pantelica, A.; Ghita, D. G.; Burducea, I.; Straticiuc, M.; Tang, X. D.

    2014-09-01

    We used 12C +13C fusion at the beam energies E = 6, 7 and 8 MeV to determine the sensitivity and the limits of activation method measurements in ultralow background sites. A 13C beam of 0.5 μA from the 3 MV Tandem accelerator of the Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH impinged on thick graphite targets. After about 24 hrs of irradiation targets were measured in two different laboratories: one with a heavy shielded Ge detector in the institute (at the surface) and one located underground in the microBequerel laboratory, in the salt mine of Slanic-Prahova, Romania. The 1369- and 2754 keV peaks from 24Na deactivation were clearly observed in the γ-ray spectra obtained for acquisitions lasting a few hours, or a few days. Determination of the detection limit in evaluating the cross sections for the target irradiated at Ec . m = 3 MeV indicates the fact that it is possible to measure gamma spectrum in underground laboratory down to Ec . m = 2 . 6 MeV. Cleaning the spectra with beta-gamma coincidences and increasing beam intensity 20 times will take as further down. The measurements are motivated by the study of the 12 C +12 C reaction at astrophysical energies.

  8. N6-Methyldeoxyadenosine Marks Active Transcription Start Sites in Chlamydomonas

    PubMed Central

    Chen, Kai; Deng, Xin; Yu, Miao; Han, Dali; Hao, Ziyang; Liu, Jianzhao; Lu, Xingyu; Dore, Louis C; Weng, Xiaocheng; Ji, Quanjiang; Mets, Laurens; He, Chuan

    2015-01-01

    SUMMARY N6-methyldeoxyadenosine (6mA or m6A) is a DNA modification preserved in prokaryotes to eukaryotes. It is widespread in bacteria, and functions in DNA mismatch repair, chromosome segregation, and virulence regulation. In contrast, the distribution and function of 6mA in eukaryotes have been unclear. Here we present a comprehensive analysis of the 6mA landscape in the genome of Chlamydomonas using new sequencing approaches. We identified the 6mA modification in 84% of genes in Chlamydomonas. We found that 6mA mainly locates at ApT dinucleotides around transcription start sites (TSS) with a bimodal distribution, and appears to mark active genes. A periodic pattern of 6mA deposition was also observed at base resolution, which is associated with nucleosome distribution near the TSS, suggesting a possible role in nucleosome positioning. The new genome-wide mapping of 6mA and its unique distribution in the Chlamydomonas genome suggest potential regulatory roles of 6mA in gene expression in eukaryotic organisms. PMID:25936837

  9. Membrane cholesterol modulates {beta}-amyloid-dependent tau cleavage by inducing changes in the membrane content and localization of N-methyl-D-aspartic acid receptors.

    PubMed

    Nicholson, Alexandra M; Methner, D Nicole Riherd; Ferreira, Adriana

    2011-01-14

    We have previously shown that β-amyloid (Aβ) treatment resulted in an age-dependent calpain activation leading to Tau cleavage into a neurotoxic 17-kDa fragment in a cellular model of Alzheimer disease. This detrimental cellular response was mediated by a developmentally regulated increase in membrane cholesterol levels. In this study, we assessed the molecular mechanisms by which cholesterol modulated Aβ-induced Tau cleavage in cultured hippocampal neurons. Our results indicated that these mechanisms did not involve the regulation of the binding of Aβ aggregates to the plasma membrane. On the other hand, experiments using N-methyl-d-aspartic acid receptor inhibitors suggested that these receptors played an essential role in cholesterol-mediated Aβ-dependent calpain activity and 17-kDa Tau production. Biochemical and immunocytochemical analyses demonstrated that decreasing membrane cholesterol levels in mature neurons resulted in a significant reduction of the NR1 subunit at the membrane as well as an increase in the number of large NR1, NR2A, and NR2B subunit clusters. Moreover, the majority of these larger N-methyl-d-aspartic acid receptor subunit immunoreactive spots was not juxtaposed to presynaptic sites in cholesterol-reduced neurons. These data suggested that changes at the synaptic level underlie the mechanism by which membrane cholesterol modulates developmental changes in the susceptibility of hippocampal neurons to Aβ-induced toxicity. PMID:21047784

  10. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  11. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  12. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  13. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  14. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  15. The use of nucleotide analogs to evaluate the mechanism of the heterotropic response of Escherichia coli aspartate transcarbamoylase.

    PubMed Central

    Sakash, J. B.; Tsen, A.; Kantrowitz, E. R.

    2000-01-01

    As an alternative method to study the heterotropic mechanism of Escherichia coli aspartate transcarbamoylase, a series of nucleotide analogs were used. These nucleotide analogs have the advantage over site-specific mutagenesis experiments in that interactions between the backbone of the protein and the nucleotide could be evaluated in terms of their importance for function. The ATP analogs purine 5'-triphosphate (PTP), 6-chloropurine 5'-triphosphate (Cl-PTP), 6-mercaptopurine 5'-triphosphate (SH-PTP), 6-methylpurine 5'-triphosphate (Me-PTP), and 1-methyladenosine 5'-triphosphate (Me-ATP) were partially synthesized from their corresponding nucleosides. Kinetic analysis was performed on the wild-type enzyme in the presence of these ATP analogs along with GTP, ITP, and XTP. PTP, Cl-PTP, and SH-PTP each activate the enzyme at subsaturating concentrations of L-aspartate and saturating concentrations of carbamoyl phosphate, but not to the same extent as does ATP. These experiments suggest that the interaction between N6-amino group of ATP and the backbone of the regulatory chain is important for orienting the nucleotide and inducing the displacements of the regulatory chain backbone necessary for initiation of the regulatory response. Me-PTP and Me-ATP also activate the enzyme, but in a more complex fashion, which suggests differential binding at the two sites within each regulatory dimer. The purine nucleotides GTP, ITP, and XTP each inhibit the enzyme but to a lesser extent than CTP. The influence of deoxy and dideoxynucleotides on the activity of the enzyme was also investigated. These experiments suggest that the 2' and 3' ribose hydroxyl groups are not of significant importance for binding and orientation of the nucleotide in the regulatory binding site. 2'-dCTP inhibits the enzyme to the same extent as CTP, indicating that the interactions of the enzyme to the O2-carbonyl of CTP are critical for CTP binding, inhibition, and the ability of the enzyme to discriminate

  16. N-terminal extension of the yeast IA3 aspartic proteinase inhibitor relaxes the strict intrinsic selectivity.

    PubMed

    Winterburn, Tim J; Phylip, Lowri H; Bur, Daniel; Wyatt, David M; Berry, Colin; Kay, John

    2007-07-01

    Yeast IA(3) aspartic proteinase inhibitor operates through an unprecedented mechanism and exhibits a remarkable specificity for one target enzyme, saccharopepsin. Even aspartic proteinases that are very closely similar to saccharopepsin (e.g. the vacuolar enzyme from Pichia pastoris) are not susceptible to significant inhibition. The Pichia proteinase was selected as the target for initial attempts to engineer IA(3) to re-design the specificity. The IA(3) polypeptides from Saccharomyces cerevisiae and Saccharomyces castellii differ considerably in sequence. Alterations made by deletion or exchange of the residues in the C-terminal segment of these polypeptides had only minor effects. By contrast, extension of each of these wild-type and chimaeric polypeptides at its N-terminus by an MK(H)(7)MQ sequence generated inhibitors that displayed subnanomolar potency towards the Pichia enzyme. This gain-in-function was completely reversed upon removal of the extension sequence by exopeptidase trimming. Capture of the potentially positively charged aromatic histidine residues of the extension by remote, negatively charged side-chains, which were identified in the Pichia enzyme by modelling, may increase the local IA(3) concentration and create an anchor that enables the N-terminal segment residues to be harboured in closer proximity to the enzyme active site, thus promoting their interaction. In saccharopepsin, some of the counterpart residues are different and, consistent with this, the N-terminal extension of each IA(3) polypeptide was without major effect on the potency of interaction with saccharopepsin. In this way, it is possible to convert IA(3) polypeptides that display little affinity for the Pichia enzyme into potent inhibitors of this proteinase and thus broaden the target selectivity of this remarkable small protein. PMID:17608726

  17. The (unusual) aspartic acid in the metal coordination sphere of the prokaryotic zinc finger domain.

    PubMed

    D'Abrosca, Gianluca; Russo, Luigi; Palmieri, Maddalena; Baglivo, Ilaria; Netti, Fortuna; de Paola, Ivan; Zaccaro, Laura; Farina, Biancamaria; Iacovino, Rosa; Pedone, Paolo Vincenzo; Isernia, Carla; Fattorusso, Roberto; Malgieri, Gaetano

    2016-08-01

    The possibility of choices of protein ligands and coordination geometries leads to diverse Zn(II) binding sites in zinc-proteins, allowing a range of important biological roles. The prokaryotic Cys2His2 zinc finger domain (originally found in the Ros protein from Agrobacterium tumefaciens) tetrahedrally coordinates zinc through two cysteine and two histidine residues and it does not adopt a correct fold in the absence of the metal ion. Ros is the first structurally characterized member of a family of bacterial proteins that presents several amino acid changes in the positions occupied in Ros by the zinc coordinating residues. In particular, the second position is very often occupied by an aspartic acid although the coordination of structural zinc by an aspartate in eukaryotic zinc fingers is very unusual. Here, by appropriately mutating the protein Ros, we characterize the aspartate role within the coordination sphere of this family of proteins demonstrating how the presence of this residue only slightly perturbs the functional structure of the prokaryotic zinc finger domain while it greatly influences its thermodynamic properties. PMID:27238756

  18. IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Iα and IIα through Conserved Catalytic Aspartate Residues

    PubMed Central

    Ando, Hideaki; Hirose, Matsumi; Gainche, Laura; Kawaai, Katsuhiro; Bonneau, Benjamin; Ijuin, Takeshi; Itoh, Toshiki; Takenawa, Tadaomi; Mikoshiba, Katsuhiko

    2015-01-01

    Phosphatidylinositol phosphate kinases (PIPKs) are lipid kinases that generate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a critical lipid signaling molecule that regulates diverse cellular functions, including the activities of membrane channels and transporters. IRBIT (IP3R-binding protein released with inositol 1,4,5-trisphosphate) is a multifunctional protein that regulates diverse target proteins. Here, we report that IRBIT forms signaling complexes with members of the PIPK family. IRBIT bound to all PIPK isoforms in heterologous expression systems and specifically interacted with PIPK type Iα (PIPKIα) and type IIα (PIPKIIα) in mouse cerebellum. Site-directed mutagenesis revealed that two conserved catalytic aspartate residues of PIPKIα and PIPKIIα are involved in the interaction with IRBIT. Furthermore, phosphatidylinositol 4-phosphate, Mg2+, and/or ATP interfered with the interaction, suggesting that IRBIT interacts with catalytic cores of PIPKs. Mutations of phosphorylation sites in the serine-rich region of IRBIT affected the selectivity of its interaction with PIPKIα and PIPKIIα. The structural flexibility of the serine-rich region, located in the intrinsically disordered protein region, is assumed to underlie the mechanism of this interaction. Furthermore, in vitro binding experiments and immunocytochemistry suggest that IRBIT and PIPKIα interact with the Na+/HCO3− cotransporter NBCe1-B. These results suggest that IRBIT forms signaling complexes with PIPKIα and NBCe1-B, whose activity is regulated by PI(4,5)P2. PMID:26509711

  19. Active-site mutagenesis of tetanus neurotoxin implicates TYR-375 and GLU-271 in metalloproteolytic activity.

    PubMed

    Rossetto, O; Caccin, P; Rigoni, M; Tonello, F; Bortoletto, N; Stevens, R C; Montecucco, C

    2001-08-01

    Tetanus neurotoxin (TeNT) blocks neurotransmitter release by cleaving VAMP/synaptobrevin, a membrane associated protein involved in synaptic vesicle fusion. Such activity is exerted by the N-terminal 50kDa domain of TeNT which is a zinc-dependent endopeptidase (TeNT-L-chain). Based on the three-dimensional structure of botulinum neurotoxin serotype A (BoNT/A) and serotype B (BoNT/B), two proteins closely related to TeNT, and on X-ray scattering studies of TeNT, we have designed mutations at two active site residues to probe their involvement in activity. The active site of metalloproteases is composed of a primary sphere of residues co-ordinating the zinc atom, and a secondary sphere of residues that determines proteolytic specificity and activity. Glu-261 and Glu-267 directly co-ordinates the zinc atom in BoNT/A and BoNT/B respectively and the corresponding residue of TeNT was replaced by Asp or by the non conservative residue Ala. Tyr-365 is 4.3A away from zinc in BoNT/A, and the corresponding residue of TeNT was replaced by Phe or by Ala. The purified mutants had CD, fluorescence and UV spectra closely similar to those of the wild-type molecule. The proteolytic activity of TeNT-Asp-271 (E271D) is similar to that of the native molecule, whereas that of TeNT-Phe-375 (Y375F) is lower than the control. Interestingly, the two Ala mutants are completely devoid of enzymatic activity. These results demonstrate that both Glu-271 and Tyr-375 are essential for the proteolytic activity of TeNT. PMID:11306125

  20. GAS HYDRATES AT TWO SITES OF AN ACTIVE CONTINENTAL MARGIN.

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Sediment containing gas hydrates from two distant Deep Sea Drilling Project sites (565 and 568), located about 670 km apart on the landward flank of the Middle America Trench, was studied to determine the geochemical conditions that characterize the occurrence of gas hydrates. Site 565 was located in the Pacific Ocean offshore the Nicoya Peninsula of Costa Rica in 3,111 m of water. The depth of the hole at this site was 328 m, and gas hydrates were recovered from 285 and 319 m. Site 568 was located about 670 km to the northwest offshore Guatemala in 2,031 m of water. At this site the hole penetrated to 418 m, and gas hydrates were encountered at 404 m.

  1. Dynamically Achieved Active Site Precision in Enzyme Catalysis

    PubMed Central

    2015-01-01

    Conspectus The grand challenge in enzymology is to define and understand all of the parameters that contribute to enzymes’ enormous rate accelerations. The property of hydrogen tunneling in enzyme reactions has moved the focus of research away from an exclusive focus on transition state stabilization toward the importance of the motions of the heavy atoms of the protein, a role for reduced barrier width in catalysis, and the sampling of a protein conformational landscape to achieve a family of protein substates that optimize enzyme–substrate interactions and beyond. This Account focuses on a thermophilic alcohol dehydrogenase for which the chemical step of hydride transfer is rate determining across a wide range of experimental conditions. The properties of the chemical coordinate have been probed using kinetic isotope effects, indicating a transition in behavior below 30 °C that distinguishes nonoptimal from optimal C–H activation. Further, the introduction of single site mutants has the impact of either enhancing or eliminating the temperature dependent transition in catalysis. Biophysical probes, which include time dependent hydrogen/deuterium exchange and fluorescent lifetimes and Stokes shifts, have also been pursued. These studies allow the correlation of spatially resolved transitions in protein motions with catalysis. It is now possible to define a long-range network of protein motions in ht-ADH that extends from a dimer interface to the substrate binding domain across to the cofactor binding domain, over a distance of ca. 30 Å. The ongoing challenge to obtaining spatial and temporal resolution of catalysis-linked protein motions is discussed. PMID:25539048

  2. Toxicity of the pyrimidine biosynthetic pathway intermediate carbamyl aspartate in Salmonella typhimurium.

    PubMed Central

    Turnbough, C L; Bochner, B R

    1985-01-01

    Growth of Salmonella typhimurium pyrC or pyrD auxotrophs was severely inhibited in media that caused derepressed pyr gene expression. No such inhibition was observed with derepressed pyrA and pyrB auxotrophs. Growth inhibition was not due to the depletion of essential pyrimidine biosynthetic pathway intermediates or substrates. This result and the pattern of inhibition indicated that the accumulation of the pyrimidine biosynthetic pathway intermediate carbamyl aspartate was toxic. This intermediate is synthesized by the sequential action of the first two enzymes of the pathway encoded by pyrA and pyrB and is a substrate for the pyrC gene product. It should accumulate to high levels in pyrC or pyrD mutants when expression of the pyrA and pyrB genes is elevated. The introduction of either a pyrA or pyrB mutation into a pyrC strain eliminated the observed growth inhibition. Additionally, a direct correlation was shown between the severity of growth inhibition of a pyrC auxotroph and the levels of the enzymes that synthesize carbamyl aspartate. The mechanism of carbamyl aspartate toxicity was not identified, but many potential sites of growth inhibition were excluded. Carbamyl aspartate toxicity was shown to be useful as a phenotypic trait for classifying pyrimidine auxotrophs and may also be useful for positive selection of pyrA or pyrB mutants. Finally, we discuss ways of overcoming growth inhibition of pyrC and pyrD mutants under derepressing conditions. PMID:3894327

  3. Potent radiolabeled human renin inhibitor, (/sup 3/H)SR42128: enzymatic, kinetic, and binding studies to renin and other aspartic proteases

    SciTech Connect

    Cumin, F.; Nisato, D.; Gagnol, J.P.; Corvol, P.

    1987-12-01

    The in vitro binding of (/sup 3/H)SR42128 (Iva-Phe-Nle-Sta-Ala-Sta-Arg), a potent inhibitor of human renin activity, to purified human renin and a number of other aspartic proteases was examined. SR42128 was found to be a competitive inhibitor of human renin, with a K/sub i/ of 0.35 nM at pH 5.7 and 2.0 nM at pH 7.4; it was thus more effective at pH 5.7 than at pH 7.4. Scatchard analysis of the interaction binding of (/sup 3/H)SR42128 to human renin indicated that binding was reversible and saturable at both pH 5.7 and pH 7.4. There was a single class of binding sites, and the K/sub D/ was 0.9 nM at pH 5.7 and 1 nM at pH 7.4. The association rate was 10 times more rapid at pH 5.7 than at pH 7.4, but there was no difference between the rates of dissociation of the enzyme-inhibitor complex at the two pHs. The effect of pH on the binding of (/sup 3/H)SR42128 to human renin, cathepsin D, pepsin, and gastricsin was also examined over the pH range 3-8. All the aspartic proteases had a high affinity for the inhibitor at low pH. However, at pH 7.4, (/sup 3/H)SR42128 was bound only to human renin and to none of the other aspartic proteases. Competitive binding studies with (/sup 3/H)SR42128 and a number of other inhibitors on human renin or cathepsin D were used to examine the relationships between structure and activity in these systems. The study as a whole indicates that pH plays a major role in the binding of (/sup 3/H)SR42128 to aspartic proteases and that the nature of the inhibitor residue reacting with the renin S/sub 2/ subsites is of critical importance for the specificity of the renin-inhibitor interaction.

  4. RC1339/APRc from Rickettsia conorii is a novel aspartic protease with properties of retropepsin-like enzymes.

    PubMed

    Cruz, Rui; Huesgen, Pitter; Riley, Sean P; Wlodawer, Alexander; Faro, Carlos; Overall, Christopher M; Martinez, Juan J; Simões, Isaura

    2014-08-01

    Members of the species Rickettsia are obligate intracellular, gram-negative, arthropod-borne pathogens of humans and other mammals. The life-threatening character of diseases caused by many Rickettsia species and the lack of reliable protective vaccine against rickettsioses strengthens the importance of identifying new protein factors for the potential development of innovative therapeutic tools. Herein, we report the identification and characterization of a novel membrane-embedded retropepsin-like homologue, highly conserved in 55 Rickettsia genomes. Using R. conorii gene homologue RC1339 as our working model, we demonstrate that, despite the low overall sequence similarity to retropepsins, the gene product of rc1339 APRc (for Aspartic Protease from Rickettsia conorii) is an active enzyme with features highly reminiscent of this family of aspartic proteases, such as autolytic activity impaired by mutation of the catalytic aspartate, accumulation in the dimeric form, optimal activity at pH 6, and inhibition by specific HIV-1 protease inhibitors. Moreover, specificity preferences determined by a high-throughput profiling approach confirmed common preferences between this novel rickettsial enzyme and other aspartic proteases, both retropepsins and pepsin-like. This is the first report on a retropepsin-like protease in gram-negative intracellular bacteria such as Rickettsia, contributing to the analysis of the evolutionary relationships between the two types of aspartic proteases. Additionally, we have also shown that APRc is transcribed and translated in R. conorii and R. rickettsii and is integrated into the outer membrane of both species. Finally, we demonstrated that APRc is sufficient to catalyze the in vitro processing of two conserved high molecular weight autotransporter adhesin/invasion proteins, Sca5/OmpB and Sca0/OmpA, thereby suggesting the participation of this enzyme in a relevant proteolytic pathway in rickettsial life-cycle. As a novel bona fide member

  5. RC1339/APRc from Rickettsia conorii Is a Novel Aspartic Protease with Properties of Retropepsin-Like Enzymes

    PubMed Central

    Cruz, Rui; Huesgen, Pitter; Riley, Sean P.; Wlodawer, Alexander; Faro, Carlos; Overall, Christopher M.; Martinez, Juan J.; Simões, Isaura

    2014-01-01

    Members of the species Rickettsia are obligate intracellular, gram-negative, arthropod-borne pathogens of humans and other mammals. The life-threatening character of diseases caused by many Rickettsia species and the lack of reliable protective vaccine against rickettsioses strengthens the importance of identifying new protein factors for the potential development of innovative therapeutic tools. Herein, we report the identification and characterization of a novel membrane-embedded retropepsin-like homologue, highly conserved in 55 Rickettsia genomes. Using R. conorii gene homologue RC1339 as our working model, we demonstrate that, despite the low overall sequence similarity to retropepsins, the gene product of rc1339 APRc (for Aspartic Protease from Rickettsia conorii) is an active enzyme with features highly reminiscent of this family of aspartic proteases, such as autolytic activity impaired by mutation of the catalytic aspartate, accumulation in the dimeric form, optimal activity at pH 6, and inhibition by specific HIV-1 protease inhibitors. Moreover, specificity preferences determined by a high-throughput profiling approach confirmed common preferences between this novel rickettsial enzyme and other aspartic proteases, both retropepsins and pepsin-like. This is the first report on a retropepsin-like protease in gram-negative intracellular bacteria such as Rickettsia, contributing to the analysis of the evolutionary relationships between the two types of aspartic proteases. Additionally, we have also shown that APRc is transcribed and translated in R. conorii and R. rickettsii and is integrated into the outer membrane of both species. Finally, we demonstrated that APRc is sufficient to catalyze the in vitro processing of two conserved high molecular weight autotransporter adhesin/invasion proteins, Sca5/OmpB and Sca0/OmpA, thereby suggesting the participation of this enzyme in a relevant proteolytic pathway in rickettsial life-cycle. As a novel bona fide member

  6. Robotics and Automation Activities at the Savannah River Site: A Site Report for SUBWOG 39F

    SciTech Connect

    Teese, G.D.

    1995-09-28

    The Savannah River Site has successfully used robots, teleoperators, and remote video to reduce exposure to ionizing radiation, improve worker safety, and improve the quality of operations. Previous reports have described the use of mobile teleoperators in coping with a high level liquid waste spill, the removal of highly contaminated equipment, and the inspection of nuclear reactor vessels. This report will cover recent applications at the Savannah River, as well as systems which SRS has delivered to other DOE site customers.

  7. Improving upon Nature: Active site remodeling produces highly efficient aldolase activity towards hydrophobic electrophilic substrates

    PubMed Central

    Cheriyan, Manoj; Toone, Eric J.; Fierke, Carol A.

    2012-01-01

    Substrate specificity of enzymes is frequently narrow and constrained by multiple interactions, limiting the use of natural enzymes in biocatalytic applications. Aldolases have important synthetic applications, but the usefulness of these enzymes is hampered by their narrow reactivity profile with unnatural substrates. To explore the determinants of substrate selectivity and alter the specificity of E. coli 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase, we employed structure-based mutagenesis coupled with library screening of mutant enzymes localized to the bacterial periplasm. We identified two active site mutations (T161S/S184L) that work additively to enhance the substrate specificity of this aldolase to include catalysis of retro-aldol cleavage of (4S)-2-keto-4-hydroxy-4-(2′-pyridyl)butyrate (S-KHPB). These mutations improve the value of kcat/KMS-KHPB by >450-fold, resulting in a catalytic efficiency that is comparable to that of the wild-type enzyme with the natural substrate while retaining high stereoselectivity. Moreover, the value of kcatS-KHPB for this mutant enzyme, a parameter critical for biocatalytic applications, is 3-fold higher than the maximum value achieved by the natural aldolase with any substrate. This mutant also possesses high catalytic efficiency for the retro-aldol cleavage of the natural substrate, KDPG, and a >50-fold improved activity for cleavage of 2-keto-4-hydroxy-octonoate (KHO), a non-functionalized hydrophobic analog. These data suggest a substrate binding mode that illuminates the origin of facial selectivity in aldol addition reactions catalyzed by KDPG and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases. Furthermore, targeting mutations to the active site provides marked improvement in substrate selectivity, demonstrating that structure-guided active site mutagenesis combined with selection techniques can efficiently identify proteins with characteristics that compare favorably to naturally occurring enzymes. PMID

  8. Coupling Substrate and Ion Binding to Extracellular Gate of a Sodium-Dependent Aspartate Transporter

    SciTech Connect

    Boudker,O.; Ryan, R.; Yernool, D.; Shimamoto, K.; Gouaux, E.

    2007-01-01

    Secondary transporters are integral membrane proteins that catalyze the movement of substrate molecules across the lipid bilayer by coupling substrate transport to one or more ion gradients, thereby providing a mechanism for the concentrative uptake of substrates. Here we describe crystallographic and thermodynamic studies of Glt{sub Ph}, a sodium (Na{sup +})-coupled aspartate transporter, defining sites for aspartate, two sodium ions and D,L-threo-{beta}-benzyloxyaspartate, an inhibitor. We further show that helical hairpin 2 is the extracellular gate that controls access of substrate and ions to the internal binding sites. At least two sodium ions bind in close proximity to the substrate and these sodium-binding sites, together with the sodium-binding sites in another sodium-coupled transporter, LeuT, define an unwound {alpha}-helix as the central element of the ion-binding motif, a motif well suited to the binding of sodium and to participation in conformational changes that accompany ion binding and unbinding during the transport cycle.

  9. Atomically-thin two-dimensional sheets for understanding active sites in catalysis.

    PubMed

    Sun, Yongfu; Gao, Shan; Lei, Fengcai; Xie, Yi

    2015-02-01

    Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called "active sites". However, the atomic level interplay between active sites and catalytic activity is still an open question, owing to the large difference between idealized models and real catalysts. This stimulates us to pursue a suitable material model for studying the active sites-catalytic activity relationship, in which the atomically-thin two-dimensional sheets could serve as an ideal model, owing to their relatively simple type of active site and the ultrahigh fraction of active sites that are comparable to the overall atoms. In this tutorial review, we focus on the recent progress in disclosing the factors that affect the activity of reactive sites, including characterization of atomic coordination number, structural defects and disorder in ultrathin two-dimensional sheets by X-ray absorption fine structure spectroscopy, positron annihilation spectroscopy, electron spin resonance and high resolution transmission electron microscopy. Also, we overview their applications in CO catalytic oxidation, photocatalytic water splitting, electrocatalytic oxygen and hydrogen evolution reactions, and hence highlight the atomic level interplay among coordination number, structural defects/disorder, active sites and catalytic activity in the two-dimensional sheets with atomic thickness. Finally, we also present the major challenges and opportunities regarding the role of active sites in catalysis. We believe that this review provides critical insights for understanding the catalysis and hence helps to develop new catalysts with high catalytic activity. PMID:25382246

  10. The active sites of supported silver particle catalysts in formaldehyde oxidation.

    PubMed

    Chen, Yaxin; Huang, Zhiwei; Zhou, Meijuan; Hu, Pingping; Du, Chengtian; Kong, Lingdong; Chen, Jianmin; Tang, Xingfu

    2016-08-01

    Surface silver atoms with upshifted d-orbitals are identified as the catalytically active sites in formaldehyde oxidation by correlating their activity with the number of surface silver atoms, and the degree of the d-orbital upshift governs the catalytic performance of the active sites. PMID:27406403

  11. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  12. Modulation of the electrostatic charge at the active site of foot-and-mouth-disease-virus leader proteinase, an unusual papain-like enzyme.

    PubMed Central

    Schlick, Petra; Kronovetr, Jakub; Hampoelz, Bernhard; Skern, Tim

    2002-01-01

    The leader proteinase (L(pro)) of foot-and-mouth-disease virus is an unusual papain-like cysteine proteinase. Synthesized without an N-terminal pro precursor region, it frees itself from the growing polypeptide chain by cleavage at its own C-terminus. It also possesses a unique electrostatic environment around the active site, essentially due to Asp(163), which orients the catalytic histidine residue, and Asp(164); the equivalent residues in papain are Asn(175) and Ser(176). The importance of these residues for L(pro) activity was examined by site-directed mutagenesis. Replacement of Asp(163) with asparagine reduced activity by five-fold towards a hexapeptide substrate and slightly delayed self-processing when expressed in rabbit reticulocyte lysates. However, no effect on the cleavage of the only known cellular substrate of L(pro), eukaryotic initiation factor 4GI (eIF4GI), was observed. In contrast, replacement of Asp(164) by either alanine, asparagine or lysine abrogated activity towards the hexapeptide. Furthermore, in all cases, the onset of both self-processing and eIF4GI cleavage were significantly delayed; the reaction rates were also diminished compared with those of the wild-type enzyme. The alanine-substituted enzyme was least affected, followed by those substituted with asparagine and lysine. The double mutant protein in which both aspartate residues were replaced by asparagine was most severely affected; it failed to complete either self-processing or eIF4GI cleavage within 3 h, compared with the 8 min required by the wild-type enzyme. Hence, we propose that the electrostatic charge of Asp(164), and to a lesser extent that of Asp(163), is extremely important for L(pro) to attain full activity upon synthesis. PMID:11964149

  13. Muscarinic receptor stimulation of D-aspartate uptake into human SH-SY5Y neuroblastoma cells is attenuated by hypoosmolarity.

    PubMed

    Foster, Daniel J; Heacock, Anne M; Fisher, Stephen K

    2010-04-01

    In addition to its function as an excitatory neurotransmitter, glutamate plays a major role as an osmolyte within the central nervous system (CNS). Accordingly, mechanisms that regulate glutamate release and uptake are of physiological importance not only during conditions in which cell volume remains constant but also when cells are subjected to hypoosmotic stress. In the present study, the ability of muscarinic cholinergic receptors (mAChRs) to regulate the uptake of glutamate (monitored as D-aspartate) into human SH-SY5Y neuroblastoma cells under isotonic or hypotonic conditions has been examined. In isotonic media, agonist activation of mAChRs resulted in a significant increase (250-300% of control) in the uptake of D-aspartate and, concurrently, a cellular redistribution of the excitatory amino acid transporter 3 (EAAT3) to the plasma membrane. mAChR-mediated increases in d-aspartate uptake were potently blocked by the EAAT3 inhibitor l-beta-threo-benzyl-aspartate. In hypotonic media, the ability of mAChR activation to facilitate D-aspartate uptake was significantly attenuated (40-50%), and the cellular distribution of EAAT3 was disrupted. Reduction of mAChR-stimulated D-aspartate uptake under hypoosmotic conditions could be fully reversed upon re-exposure of the cells to isotonic media. Under both isotonic and hypotonic conditions, mAChR-mediated increases in D-aspartate uptake depended on cytoskeletal integrity, protein kinase C and phosphatidylinositol 3-kinase activities, and the availability of intracellular Ca2+. In contrast, dependence on extracellular Ca2+ was observed only under isotonic conditions. The results suggest that, although the uptake of D-aspartate into SH-SY5Y cells is enhanced after mAChR activation, this process is markedly attenuated by hypoosmolarity. PMID:20080957

  14. A systematic and mechanistic evaluation of aspartic acid as filler for directly compressed tablets containing trimethoprim and trimethoprim aspartate.

    PubMed

    ElShaer, Amr; Hanson, Peter; Mohammed, Afzal R

    2013-04-01

    The generally accepted paradigm of 'inert' and 'mono functional' excipient in dosage form has been recently challenged with the development of individual excipients capable of exhibiting multiple functions (e.g. binder-disintegrants, surfactant which affect P-gp function). The proposed study has been designed within the realm of multifunctionality and is the first and novel investigation towards evaluation of aspartic acid as a filler and disintegration enhancing agent for the delivery of biopharmaceutical class IV model drug trimethoprim. The study investigated powder characteristics using angle of repose, laser diffractometry and scanning electron microscopy (SEM). The prepared tablets were characterised using Heckel analysis, disintegration time and tensile strength measurements. Although Heckel analysis revealed that both TMP and TMP aspartate salt have high elasticity, the salt form produced a stronger compact which was attributed to the formation of agglomerates. Aspartic acid was found to have high plasticity, but its incorporation into the formulations was found to have a negative impact on the compaction properties of TMP and its salt. Surface morphology investigations showed that mechanical interlocking plays a vital role in binding TMP crystals together during compaction, while the small particle size of TMP aspartate agglomerates was found to have significant impact on the tensile strength of the tablets. The study concluded that aspartic acid can be employed as filler and disintegrant and that compactability within tablets was independent of the surface charge of the excipients. PMID:23207325

  15. Peptide-based, irreversible inhibitors of gamma-secretase activity.

    PubMed

    Piper, Siân C; Amtul, Zareen; Galiñanes-Garcia, Laura; Howard, Victor G; Ziani-Cherif, Chewki; McLendon, Chris; Rochette, Marjorie J; Fauq, Abdul; Golde, Todd E; Murphy, M Paul

    2003-06-01

    The characterization of the enzymes responsible for amyloid beta-peptide (Abeta) production is considered to be a primary goal towards the development of future therapeutics for the treatment of Alzheimer's disease. Inhibitors of gamma-secretase activity were critical in demonstrating that the presenilins (PSs) likely comprised at least part of the active site of the gamma-secretase enzyme complex, with two highly conserved membrane aspartates presumably acting as catalytic residues. However, whether or not these aspartates are actually the catalytic residues of the enzyme complex or are merely essential for normal PS function and/or maturation is still unknown. In this paper, we report the development of reactive inhibitors of gamma-secretase activity that are functionally irreversible. Since such inhibitors have been shown to bind catalytic residues in other aspartyl proteases (e.g., HIV protease), they might be used to determine if the transmembrane aspartates of PSs are involved directly in substrate cleavage. PMID:12763025

  16. Switching head group selectivity in mammalian sphingolipid biosynthesis by active-site engineering of sphingomyelin synthases.

    PubMed

    Kol, Matthijs; Panatala, Radhakrishnan; Nordmann, Mirjana; Swart, Leoni; van Suijlekom, Leonie; Cabukusta, Birol; Hilderink, Angelika; Grabietz, Tanja; Mina, John G M; Somerharju, Pentti; Korneev, Sergei; Tafesse, Fikadu G; Holthuis, Joost C M

    2016-07-01

    SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS) 1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, sphingomyelin synthase-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmatic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with glutamic acid permitting SMS-catalyzed CPE production and aspartic acid confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes. PMID:27165857

  17. Structural mechanism of RuBisCO activation by carbamylation of the active site lysine

    PubMed Central

    Stec, Boguslaw

    2012-01-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a crucial enzyme in carbon fixation and the most abundant protein on earth. It has been studied extensively by biochemical and structural methods; however, the most essential activation step has not yet been described. Here, we describe the mechanistic details of Lys carbamylation that leads to RuBisCO activation by atmospheric CO2. We report two crystal structures of nitrosylated RuBisCO from the red algae Galdieria sulphuraria with O2 and CO2 bound at the active site. G. sulphuraria RuBisCO is inhibited by cysteine nitrosylation that results in trapping of these gaseous ligands. The structure with CO2 defines an elusive, preactivation complex that contains a metal cation Mg2+ surrounded by three H2O/OH molecules. Both structures suggest the mechanism for discriminating gaseous ligands by their quadrupole electric moments. We describe conformational changes that allow for intermittent binding of the metal ion required for activation. On the basis of these structures we propose the individual steps of the activation mechanism. Knowledge of all these elements is indispensable for engineering RuBisCO into a more efficient enzyme for crop enhancement or as a remedy to global warming. PMID:23112176

  18. Synthesis and In Vitro Evaluation of Aspartate Transcarbamoylase Inhibitors

    PubMed Central

    Coudray, Laëtitia; Pennebaker, Anne F.; Montchamp, Jean-Luc

    2009-01-01

    The design, synthesis, and evaluation of a series of novel inhibitors of aspartate transcarbamoylase (ATCase) are reported. Several submicromolar phosphorus-containing inhibitors are described, but all-carboxylate compounds are inactive. Compounds were synthesized to probe the postulated cyclic transition-state of the enzyme-catalyzed reaction. In addition, the associated role of the protonation state at the phosphorus acid moiety was evaluated using phosphinic and carboxylic acids. Although none of the synthesized inhibitors is more potent than N-phosphonacetyl-L-aspartate (PALA), the compounds provide useful mechanistic information, as well as the basis for the design of future inhibitors and/or prodrugs. PMID:19828320

  19. Occurrence of the malate-aspartate shuttle in various tumor types.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1976-04-01

    The activity of the malate-aspartate shuttle for the reoxidation of cytoplasmic reduced nicotinamide adenine dinucleotide (NADH) by mitochondria was assessed in six lines of rodent ascites tumor cells (two strains of Ehrlich ascites carcinoma, Krebs II carcinoma, Novikoff hepatoma, AS-30D hepatoma, and L1210 mouse leukemia). All the tumor cells examined showed mitochondrial reoxidation of cytoplasmic NADH, as evidenced by the accumulation of pyruvate when the cells were incubated aerobically with L-lactate. Reoxidation of cytoplasmic NADH thus generated was completely inhibited by the transaminase inhibitor aminooxyacetate. The involvement of the respiratory chain in the reoxidation of cytoplasmic NADH was demonstrated by the action of cyanide, rotenone, and antimycin A, which strongly inhibited the formation of pyruvate from added L-lactate. Compounds that inhibit the carrier-mediated entry of malate into mitochondria, such as butylmalonate, benzenetricarboxylate, and iodobenzylmalonate, also inhibited the accumulation of pyruvate from added L-lactate by the tumor cells. The maximal rate of the malate-aspartate shuttle was established by addtion of arsenite to inhibit the mitochondrial oxidation of the pyruvate formed from added lactate. The capacity of the various tumor lines for the reoxidation of cytoplasmic NADH via the malate-aspartate shuttle approaches 20% of the total respiratory rate of the cells and thus appears to be sufficient to account for the mitochondrial reoxidation of that fraction of glycolytic NADH not reoxidized by pyruvate and lactate dehydrognenase in the cytoplasm. PMID:177206

  20. Specificity of Aspartate Aminotransferases from Leguminous Plants for 4-Substituted Glutamic Acids 1

    PubMed Central

    Winter, Harry C.; Dekker, Eugene E.

    1989-01-01

    Aspartate aminotransferase (glutamate-oxalacetate transaminase) was partially purified from extracts of germinating seeds of peanut (Arachis hypogaea), honey locust (Gleditsia triacanthos), soybean (Glycine max), and Sophora japonica. The ability of these enzyme preparations, as well as aspartate aminotransferase purified from pig heart cytosol, to use 4-substituted glutamic acids as amino group donors and their corresponding 2-oxo acids as amino group acceptors in the aminotransferase reaction was measured. All 4-substituted glutamic acid analogs tested were poorer substrates than was glutamate or 2-oxoglutarate. 2-Oxo-4-methyleneglutarate was least effective (lowest relative Vm/Km) as a substrate for the enzyme from peanuts and honey locust, which are the two species studied that accumulate 4-methyleneglutamic acid and 4-methyleneglutamine. Of the different aminotransferases tested, the enzyme from honey locust was the least active with 2-oxo-4-hydroxy-4-methylglutarate, the corresponding amino acid of which also accumulates in that species. These results suggest that transamination of 2-oxo-4-substituted glutaric acids is not involved in the biosynthesis of the corresponding 4-substituted glutamic acids in these species. Rather, accumulation of certain 4-substituted glutamic acids in these instances may be, in part, the result of the inefficacy of their transamination by aspartate aminotransferase. PMID:16666674

  1. 78 FR 33908 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... identified Wind Energy Area (WEA) on the OCS offshore Rhode Island (RI) and Massachusetts (MA). The revised... from leasing, site characterization, and site assessment in and around the Call Area (76 FR 51391). The... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on...

  2. 77 FR 39508 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... specific project proposals on those leases) in an identified Wind Energy Area (WEA) on the OCS offshore..., site characterization, and site assessment in and around the Call Area (76 FR 51391). The Call Area is... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on...

  3. Active Layer and Moisture Measurements for Intensive Site 0 and 1, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-04-17

    These are measurements of Active Layer Thickness collected along several lines beginning in September, 2011 to the present. The data were collected at several time periods along the Site0 L2 Line, the Site1 AB Line, and an ERT Monitoring Line near Area A in Site1.

  4. Nuclear Site Security in the Event of Terrorist Activity

    SciTech Connect

    Thomson, M.L.; Sims, J.

    2008-07-01

    This paper, presented as a poster, identifies why ballistic protection should now be considered at nuclear sites to counter terrorist threats. A proven and flexible form of multi purpose protection is described in detail with identification of trial results that show its suitability for this role. (authors)

  5. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    SciTech Connect

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  6. Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY.

    PubMed Central

    Bourret, R B; Hess, J F; Simon, M I

    1990-01-01

    The CheY protein is phosphorylated by CheA and dephosphorylated by CheZ as part of the chemotactic signal transduction pathway in Escherichia coli. Phosphorylation of CheY has been proposed to occur on an aspartate residue. Each of the eight aspartate residues of CheY was replaced by using site-directed mutagenesis. Substitutions at Asp-12, Asp-13, or Asp-57 resulted in loss of chemotaxis. Most of the mutant CheY proteins were still phosphorylated by CheA but exhibited modified biochemical properties, including reduced ability to accept phosphate from CheA, altered phosphate group stability, and/or resistance to CheZ-mediated dephosphorylation. The properties of CheY proteins bearing a substitution at position 57 were most aberrant, consistent with the hypothesis that Asp-57 is the normal site of acyl phosphate formation. Evidence for an alternate site of phosphorylation in the Asp-57 mutants is presented. Phosphorylated CheY is believed to cause tumbling behavior. However, a dominant mutant CheY protein that was not phosphorylated in vitro caused tumbling in vivo in the absence of CheA. This phenotype suggests that the role of phosphorylation in the wild-type CheY protein is to stabilize a transient conformational change that can generate tumbling behavior. Images PMID:2404281

  7. The Crystal Structure of a Cardiovirus RNA-Dependent RNA Polymerase Reveals an Unusual Conformation of the Polymerase Active Site

    PubMed Central

    Vives-Adrian, Laia; Lujan, Celia; Oliva, Baldo; van der Linden, Lonneke; Selisko, Barbara; Coutard, Bruno; Canard, Bruno; van Kuppeveld, Frank J. M.

    2014-01-01

    target for the development of antiviral therapies. Solving the X-ray structure of the first cardiovirus RdRp, EMCV 3Dpol, we captured an altered conformation of a conserved motif in the polymerase active site (motif A) containing the aspartic acid residue involved in rNTP selection and binding. This altered conformation of motif A, which interferes with the correct positioning of the rNTP substrate in the active site, is stabilized by a number of residues strictly conserved among picornaviruses. The rearrangements observed suggest that this motif A segment is a dynamic element that can be modulated by external effectors, either activating or inhibiting enzyme activity, and this type of modulation appears to be general to all picornaviruses. PMID:24600002

  8. Blogs and Social Network Sites as Activity Systems: Exploring Adult Informal Learning Process through Activity Theory Framework

    ERIC Educational Resources Information Center

    Heo, Gyeong Mi; Lee, Romee

    2013-01-01

    This paper uses an Activity Theory framework to explore adult user activities and informal learning processes as reflected in their blogs and social network sites (SNS). Using the assumption that a web-based space is an activity system in which learning occurs, typical features of the components were investigated and each activity system then…

  9. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    SciTech Connect

    Miao, Yinglong; Baudry, Jerome Y

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  10. Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts.

    PubMed

    Wang, Lu-Cun; Friend, C M; Fushimi, Rebecca; Madix, Robert J

    2016-07-01

    The activation of molecular O2 as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O2 activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O2 dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O2 dissociation is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O2 dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction. PMID:27376884

  11. Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome c Species in Complexes with Cardiolipin.

    PubMed

    Capdevila, Daiana A; Oviedo Rouco, Santiago; Tomasina, Florencia; Tortora, Verónica; Demicheli, Verónica; Radi, Rafael; Murgida, Daniel H

    2015-12-29

    We report a resonance Raman and UV-vis characterization of the active site structure of oxidatively modified forms of cytochrome c (Cyt-c) free in solution and in complexes with cardiolipin (CL). The studied post-translational modifications of Cyt-c include methionine sulfoxidation and tyrosine nitration, which lead to altered heme axial ligation and increased peroxidase activity with respect to those of the wild-type protein. In spite of the structural and activity differences between the protein variants free in solution, binding to CL liposomes induces in all cases the formation of a spectroscopically identical bis-His axial coordination conformer that more efficiently promotes lipid peroxidation. The spectroscopic results indicate that the bis-His form is in equilibrium with small amounts of high-spin species, thus suggesting a labile distal His ligand as the basis for the CL-induced increase in enzymatic activity observed for all protein variants. For Cyt-c nitrated at Tyr74 and sulfoxidized at Met80, the measured apparent binding affinities for CL are ∼4 times larger than for wild-type Cyt-c. On the basis of these results, we propose that these post-translational modifications may amplify the pro-apoptotic signal of Cyt-c under oxidative stress conditions at CL concentrations lower than for the unmodified protein. PMID:26620444

  12. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  13. Energy-coupled transport across the outer membrane of Escherichia coli: ExbB binds ExbD and TonB in vitro, and leucine 132 in the periplasmic region and aspartate 25 in the transmembrane region are important for ExbD activity.

    PubMed Central

    Braun, V; Gaisser, S; Herrmann, C; Kampfenkel, K; Killmann, H; Traub, I

    1996-01-01

    Ferric siderophores, vitamin B12, and group B colicins are taken up through the outer membranes of Escherichia coli cells by an energy-coupled process. Energy from the cytoplasmic membrane is transferred to the outer membrane with the aid of the Ton system, consisting of the proteins TonB, ExbB, and ExbD. In this paper we describe two point mutations which inactivate ExbD. One mutation close to the N-terminal end of ExbD is located in the cytoplasmic membrane, and the other mutation close to the C-terminal end is located in the periplasm. E. coli CHO3, carrying a chromosomal exbD mutation in which leucine at position 132 was replaced by glutamine, was devoid of all Ton-related activities. A plasmid-encoded ExbD derivative, in which aspartate at position 25, the only changed amino acid in the predicted membrane-spanning region of ExbD, was replaced by asparagine, failed to restore the Ton activities of strain CHO3 and negatively complemented ExbD+ strains, indicating an interaction of this mutated ExbD with wild-type ExbD or with another component. This component was shown to be ExbB. ExbB that was labeled with 6 histidine residues at its C-terminal end and that bound to a nickel-nitrilotriacetic acid agarose column retained ExbD and TonB specifically; both were eluted with the ExbB labeled with 6 histidine residues, demonstrating interaction of ExbB with ExbD and TonB. These data further support the concept that TonB, ExbB, and ExbD form a complex in which the energized conformation of TonB opens the channels in the outer membrane receptor proteins. PMID:8631671

  14. N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors mediate seizures and CA1 hippocampal damage induced by dendrotoxin-K in rats.

    PubMed

    Bagetta, G; Iannone, M; Palma, E; Nisticò, G; Dolly, J O

    1996-04-01

    The epileptogenic and neurodegenerative effects of dendrotoxin K, from Dendroaspis polylepis, a specific blocker of a non-inactivating, voltage-sensitive K+ channel, were studied after focal injection into one dorsal hippocampus in rats. Administration of 35 pmol dendrotoxin K elicited motor seizures and bilateral electrocortical discharges after a latent period (5.3 +/- 2.1 min), in all of the treated animals (n = 6). At 24 h, histological examination of brain (n = 5) coronal sections (10 microns; n = 6 per brain) detected bilateral damage to the hippocampal formation which extended 300 microns rostral and caudal to the injection tract. Quantitation of the damage revealed significant bilateral neuronal cell loss in the CA1 and CA4 pyramidal cell layer relative to the corresponding brain regions of rats (n = 3) injected with bovine serum albumin (105 pmol), which per se was ineffective in all respects. Dendrotoxin K (35 pmol) also caused a significant loss of CA3 pyramidal neurons and dentate gyrus granule cells ipsilateral to the site of toxin injection. In one out of six rats, a lower dose (3.5 pmol) of dendrotoxin K produced convulsive behaviour and electrocortical seizures but after a longer latency and these were accompanied by significant neuronal loss in the CA1, CA3 and CA4 pyramidal cell layer ipsilateral to the injected side. The lowest dose (0.35 pmol; n = 6 rats) of dendrotoxin K used failed to induce seizures and did not cause hippocampal damage (n = 6 rats). Systemic (i.p.) treatment with dizocilpine maleate (3 mg/kg) or LY 274614 (5 mg/kg i.p.), two N-methyl-D-aspartate receptor antagonists (given 15 min beforehand), prevented dendrotoxin K (35 pmol)-induced motor seizures and electrocortical epileptogenic discharges in 100% of the animals (n = 6 per group) treated. Similarly, these antagonists minimized the damage typically produced in the rat hippocampus, with no significant neuronal loss being observed. By contrast, NBQX (30 mg/kg, i.p. given 15

  15. Regulation of N-methyl-D-aspartate receptor expression and N-methyl-D-aspartate-induced cellular response during chronic hypoxia in differentiated rat PC12 cells.

    PubMed

    Kobayashi, S; Millhorn, D E

    2000-01-01

    The purpose of the present study was to examine the effect of chronic hypoxia on N-methyl-D-aspartate-mediated cellular responses in differentiated PC12 cells. PC12 cells were differentiated by treatment with nerve growth factor. Patch-clamp analysis in differentiated PC12 cells showed that extracellularly applied N-methyl-D-aspartate induced an inward current that was abolished by the presence of the N-methyl-D-aspartate receptor antagonist MK-801. Results from Ca(2+) imaging experiments showed that N-methyl-D-aspartate induced an elevation in intracellular free Ca(2+) which was also abolished by MK-801. We also examined the effect of hypoxia on the N-methyl-D-aspartate-induced current in nerve growth factor-treated cells. We found that the N-methyl-D-aspartate-induced inward current and the N-methyl-D-aspartate-induced elevation in intracellular free Ca(2+) were markedly attenuated by chronic hypoxia. We next examined the possibility that the reduced N-methyl-D-aspartate responsiveness was due to down-regulation of N-methyl-D-aspartate receptor levels. Northern blot and immunoblot analyses showed that both messenger RNA and protein levels for N-methyl-D-aspartate receptor subunit 1 were markedly decreased during hypoxia. However, the messenger RNA for N-methyl-D-aspartate receptor subunit 2C was increased, whereas the protein level for subunit 2C did not change. Our results indicate that differentiated PC12 cells express functional N-methyl-D-aspartate receptors and that chronic exposure to hypoxia attenuates the N-methyl-D-aspartate-induced Ca(2+) accumulation in these cells via down-regulation of N-methyl-D-aspartate receptor subunit 1. This mechanism may play an important role in protecting PC12 cells against hypoxic stress. PMID:11113364

  16. Early Site Permit Demonstration Program: Recommendations for communication activities and public participation in the Early Site Permit Demonstration Program

    SciTech Connect

    Not Available

    1993-01-27

    On October 24, 1992, President Bush signed into law the National Energy Policy Act of 1992. The bill is a sweeping, comprehensive overhaul of the Nation`s energy laws, the first in more than a decade. Among other provisions, the National Energy Policy Act reforms the licensing process for new nuclear power plants by adopting a new approach developed by the US Nuclear Regulatory Commission (NRC) in 1989, and upheld in court in 1992. The NRC 10 CFR Part 52 rule is a three-step process that guarantees public participation at each step. The steps are: early site permit approval; standard design certifications; and, combined construction/operating licenses for nuclear power reactors. Licensing reform increases an organization`s ability to respond to future baseload electricity generation needs with less financial risk for ratepayers and the organization. Costly delays can be avoided because design, safety and siting issues will be resolved before a company starts to build a plant. Specifically, early site permit approval allows for site suitability and acceptability issues to be addressed prior to an organization`s commitment to build a plant. Responsibility for site-specific activities, including communications and public participation, rests with those organizations selected to try out early site approval. This plan has been prepared to assist those companies (referred to as sponsoring organizations) in planning their communications and public involvement programs. It provides research findings, information and recommendations to be used by organizations as a resource and starting point in developing their own plans.

  17. Ultrafast ligand binding dynamics in the active site of native bacterial nitric oxide reductase.

    PubMed

    Kapetanaki, Sofia M; Field, Sarah J; Hughes, Ross J L; Watmough, Nicholas J; Liebl, Ursula; Vos, Marten H

    2008-01-01

    The active site of nitric oxide reductase from Paracoccus denitrificans contains heme and non-heme iron and is evolutionarily related to heme-copper oxidases. The CO and NO dynamics in the active site were investigated using ultrafast transient absorption spectroscopy. We find that, upon photodissociation from the active site heme, 20% of the CO rebinds in 170 ps, suggesting that not all the CO transiently binds to the non-heme iron. The remaining 80% does not rebind within 4 ns and likely migrates out of the active site without transient binding to the non-heme iron. Rebinding of NO to ferrous heme takes place in approximately 13 ps. Our results reveal that heme-ligand recombination in this enzyme is considerably faster than in heme-copper oxidases and are consistent with a more confined configuration of the active site. PMID:18420024

  18. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination

    PubMed Central

    Rowley, Paul A.; Kachroo, Aashiq H.; Ma, Chien-Hui; Maciaszek, Anna D.; Guga, Piotr; Jayaram, Makkuni

    2015-01-01

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5′ to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  19. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  20. A novel mechanism for resistance to the antimetabolite N-phosphonoacetyl-L-aspartate by Helicobacter pylori.

    PubMed

    Burns, B P; Mendz, G L; Hazell, S L

    1998-11-01

    The mechanism of resistance to N-phosphonoacetyl-L-aspartate (PALA), a potent inhibitor of aspartate carbamoyltransferase (which catalyzes the first committed step of de novo pyrimidine biosynthesis), in Helicobacter pylori was investigated. At a 1 mM concentration, PALA had no effects on the growth and viability of H. pylori. The inhibitor was taken up by H. pylori cells and the transport was saturable, with a Km of 14.8 mM and a Vmax of 19.1 nmol min-1 microliters of cell water-1. By 31P nuclear magnetic resonance (NMR) spectroscopy, both PALA and phosphonoacetate were shown to have been metabolized in all isolates of H. pylori studied. A main metabolic end product was identified as inorganic phosphate, suggesting the presence of an enzyme activity which cleaved the carbon-phosphorus (C-P) bonds. The kinetics of phosphonate group cleavage was saturable, and there was no evidence for substrate inhibition at higher concentrations of either compound. C-P bond cleavage activity was temperature dependent, and the activity was lost in the presence of the metal chelator EDTA. Other cleavages of PALA were observed by 1H NMR spectroscopy, with succinate and malate released as main products. These metabolic products were also formed when N-acetyl-L-aspartate was incubated with H. pylori lysates, suggesting the action of an aspartase. Studies of the cellular location of these enzymes revealed that the C-P bond cleavage activity was localized in the soluble fraction and that the aspartase activity appeared in the membrane-associated fraction. The results suggested that the two H. pylori enzymes transformed the inhibitor into noncytotoxic products, thus providing the bacterium with a mechanism of resistance to PALA toxicity which appears to be unique. PMID:9791105

  1. The Cellvibrio japonicus Mannanase CjMan26C Displays a Unique exo-Mode of Action That Is Conferred by Subtle Changes to the Distal Region of the Active Site*S⃞

    PubMed Central

    Cartmell, Alan; Topakas, Evangelos; Ducros, Valérie M-A.; Suits, Michael D. L.; Davies, Gideon J.; Gilbert, Harry J.

    2008-01-01

    The microbial degradation of the plant cell wall is a pivotal biological process that is of increasing industrial significance. One of the major plant structural polysaccharides is mannan, a β-1,4-linked d-mannose polymer, which is hydrolyzed by endo- and exo-acting mannanases. The mechanisms by which the exo-acting enzymes target the chain ends of mannan and how galactose decorations influence activity are poorly understood. Here we report the crystal structure and biochemical properties of CjMan26C, a Cellvibrio japonicus GH26 mannanase. The exo-acting enzyme releases the disaccharide mannobiose from the nonreducing end of mannan and mannooligosaccharides, harnessing four mannose-binding subsites extending from -2 to +2. The structure of CjMan26C is very similar to that of the endo-acting C. japonicus mannanase CjMan26A. The exo-activity displayed by CjMan26C, however, reflects a subtle change in surface topography in which a four-residue extension of surface loop creates a steric block at the distal glycone -2 subsite. endo-Activity can be introduced into enzyme variants through truncation of an aspartate side chain, a component of a surface loop, or by removing both the aspartate and its flanking residues. The structure of catalytically competent CjMan26C, in complex with a decorated manno-oligosaccharide, reveals a predominantly unhydrolyzed substrate in an approximate 1S5 conformation. The complex structure helps to explain how the substrate “side chain” decorations greatly reduce the activity of the enzyme; the galactose side chain at the -1 subsite makes polar interactions with the aglycone mannose, possibly leading to suboptimal binding and impaired leaving group departure. This report reveals how subtle differences in the loops surrounding the active site of a glycoside hydrolase can lead to a change in the mode of action of the enzyme. PMID:18799462

  2. The 'cleavage' activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring '2A-like' sequences.

    PubMed

    Donnelly, M L; Hughes, L E; Luke, G; Mendoza, H; ten Dam, E; Gani, D; Ryan, M D

    2001-05-01

    The 2A/2B cleavage of aphtho- and cardiovirus 2A polyproteins is mediated by their 2A proteins 'cleaving' at their own C termini. We have analysed this activity using artificial reporter polyprotein systems comprising green fluorescent protein (GFP) linked via foot-and-mouth disease virus (FMDV) 2A to beta-glucuronidase (GUS) -- forming a single, long, open reading frame. Analysis of the distribution of radiolabel showed a high proportion of the in vitro translation products (approximately 90%) were in the form of the 'cleavage' products GUS and [GFP2A]. Alternative models have been proposed to account for the 'cleavage' activity: proteolysis by a host-cell proteinase, autoproteolysis or a translational effect. To investigate the mechanism of this cleavage event constructs encoding site-directed mutant and naturally occurring '2A-like' sequences were used to program in vitro translation systems and the gel profiles analysed. Analysis of site-directed mutant 2A sequences showed that 'cleavage' occurred in constructs in which all the candidate nucleophilic residues were substituted -- with the exception of aspartate-12. This residue is not, however, conserved amongst all functional '2A-like' sequences. '2A-like' sequences were identified within insect virus polyproteins, the NS34 protein of type C rotaviruses, repeated sequences in Trypanosoma spp. and a eubacterial alpha-glucosiduronasesequence(Thermatoga maritima aguA). All of the 2A-like sequences analysed were active (to various extents), other than the eubacterial alpha-glucosiduronase 2A-like sequence. This method of control of protein biogenesis may well not, therefore, be confined to members of the PICORNAVIRIDAE: Taken together, these data provide additional evidence that neither FMDV 2A nor '2A-like' sequences are autoproteolytic elements. PMID:11297677

  3. Aspartic acid racemization dating of Holocene brachiopods and bivalves from the southern Brazilian shelf, South Atlantic

    NASA Astrophysics Data System (ADS)

    Barbour Wood, Susan L.; Krause, Richard A.; Kowalewski, Michał; Wehmiller, John; Simões, Marcello G.

    2006-09-01

    The extent of racemization of aspartic acid (Asp) has been used to estimate the ages of 9 shells of the epifaunal calcitic brachiopod Bouchardia rosea and 9 shells of the infaunal aragonitic bivalve Semele casali. Both taxa were collected concurrently from the same sites at depths of 10 m and 30 m off the coast of Brazil. Asp D/L values show an excellent correlation with radiocarbon age at both sites and for both taxa ( r2Site 9 B. rosea = 0.97, r2Site 1 B. rosea = 0.997, r2Site 9 S. casali = 0.9998, r2Site 1 S. casali = 0.93). The Asp ratios plotted against reservoir-corrected AMS radiocarbon ages over the time span of multiple millennia can thus be used to develop reliable and precise geochronologies not only for aragonitic mollusks (widely used for dating previously), but also for calcitic brachiopods. At each collection site, Bouchardia specimens display consistently higher D/L values than specimens of Semele. Thermal differences between sites are also notable and in agreement with theoretical expectations, as extents of racemization for both taxa are greater at the warmer, shallower site than at the cooler, deeper one. In late Holocene marine settings, concurrent time series of aragonitic and calcitic shells can be assembled using Asp racemization dating, and parallel multi-centennial to multi-millennial records can be developed simultaneously for multiple biomineral systems.

  4. Aspartate Aminotransferase in Alfalfa Root Nodules : III. Genotypic and Tissue Expression of Aspartate Aminotransferase in Alfalfa and Other Species.

    PubMed

    Farnham, M W; Griffith, S M; Miller, S S; Vance, C P

    1990-12-01

    Aspartate aminotransferase (AAT) plays an important role in nitrogen metabolism in all plants and is particularly important in the assimilation of fixed N derived from the legume-Rhizoblum symbiosis. Two isozymes of AAT (AAT-1 and AAT-2) occur in alfalfa (Medicago sativa L.). Antibodies against alfalfa nodule AAT-2 do not recognize AAT-1, and these antibodies were used to study AAT-2 expression in different tissues and genotypes of alfalfa and also in other legume and nonlegume species. Rocket immunoelectrophoresis indicated that nodules of 38-day-old alfalfa plants contained about eight times more AAT-2 than did nodules of 7-day-old plants, confirming the nodule-enhanced nature of this isozyme. AAT-2 was estimated to make up 16, 15, 5, and 8 milligrams per gram of total soluble protein in mature nodules, roots, stems, and leaves, respectively, of effective N(2)-fixing alfalfa. The concentration of AAT-2 in nodules of ineffective non-N(2)-fixing alafalfa genotypes was about 70% less than that of effective nodules. Western blots of soluble protein from nodules of nine legume species indicated that a 40-kilodalton polypeptide that reacts strongly with AAT-2 antibodies is conserved in legumes. Nodule AAT-2 immunoprecipitation data suggested that amide- and ureide-type legumes may differ in expression and regulation of the enzyme. In addition, Western blotting and immunoprecipitations of AAT activity demonstrated that antibodies against alfalfa AAT-2 are highly cross-reactive with AAT enzyme protein in leaves of soybean (Glycine max L.), wheat (Triticum aestivum L.), and maize (Zea mays L.) and in roots of maize, but not with AAT in soybean and wheat roots. Results from this study indicate that AAT-2 is structurally conserved and localized in similar tissues among diverse species. PMID:16667896

  5. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts.

    PubMed

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and (57)Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  6. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    NASA Astrophysics Data System (ADS)

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-10-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity.

  7. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  8. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP.

    PubMed

    Miner, Kyle D; Kurtz, Donald M

    2016-02-16

    HD-GYPs make up a subclass of the metal-dependent HD phosphohydrolase superfamily and catalyze conversion of cyclic di(3',5')-guanosine monophosphate (c-di-GMP) to 5'-phosphoguanylyl-(3'→5')-guanosine (pGpG) and GMP. Until now, the only reported crystal structure of an HD-GYP that also exhibits c-di-GMP phosphodiesterase activity contains a His/carboxylate ligated triiron active site. However, other structural and phylogenetic correlations indicate that some HD-GYPs contain dimetal active sites. Here we provide evidence that an HD-GYP c-di-GMP phosphodiesterase, TM0186, from Thermotoga maritima can accommodate both di- and trimetal active sites. We show that an as-isolated iron-containing TM0186 has an oxo/carboxylato-bridged diferric site, and that the reduced (diferrous) form is necessary and sufficient to catalyze conversion of c-di-GMP to pGpG, but that conversion of pGpG to GMP requires more than two metals per active site. Similar c-di-GMP phosphodiesterase activities were obtained with divalent iron or manganese. On the basis of activity correlations with several putative metal ligand residue variants and molecular dynamics simulations, we propose that TM0186 can accommodate both di- and trimetal active sites. Our results also suggest that a Glu residue conserved in a subset of HD-GYPs is required for formation of the trimetal site and can also serve as a labile ligand to the dimetal site. Given the anaerobic growth requirement of T. maritima, we suggest that this HD-GYP can function in vivo with either divalent iron or manganese occupying di- and trimetal sites. PMID:26786892

  9. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    SciTech Connect

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  10. Assessment of activation products in the Savannah River Site environment

    SciTech Connect

    Carlton, W.H.; Denham, M.

    1996-07-01

    This document assesses the impact of radioactive activation products released from SRS facilities since the first reactor became operational late in 1953. The isotopes reported here are those whose release resulted in the highest dose to people living near SRS: {sup 32}P, {sup 51}Cr, {sup 60}C, and {sup 65}Zn. Release pathways, emission control features, and annual releases to the aqueous and atmospheric environments are discussed. No single incident has resulted in a major acute release of activation products to the environment. The releases were the result of normal operations of the reactors and separations facilities. Releases declined over the years as better controls were established and production was reduced. The overall radiological impact of SRS activation product atmospheric releases from 1954 through 1994 on the offsite maximally exposed individual can be characterized by a total dose of 0.76 mrem. During the same period, such an individual received a total dose of 14,400 mrem from non-SRS sources of ionizing radiation present in the environment. SRS activation product aqueous releases between 1954 and 1994 resulted in a total dose of 54 mrem to the offsite maximally exposed individual. The impact of SRS activation product releases on offsite populations also has been evaluated.

  11. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand.

    PubMed

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2014-12-12

    The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins' active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes. PMID:25449264

  12. Active site proton delivery and the lyase activity of human CYP17A1

    SciTech Connect

    Khatri, Yogan; Gregory, Michael C.; Grinkova, Yelena V.; Denisov, Ilia G.; Sligar, Stephen G.

    2014-01-03

    equivalents and protons are funneled into non-productive pathways. This is similar to previous work with other P450 catalyzed hydroxylation. However, catalysis of carbon–carbon bond scission by the T306A mutant was largely unimpeded by disruption of the CYP17A1 acid-alcohol pair. The unique response of CYP17A1 lyase activity to mutation of Thr306 is consistent with a reactive intermediate formed independently of proton delivery in the active site, and supports involvement of a nucleophilic peroxo-anion rather than the traditional Compound I in catalysis.

  13. Characterization of an Active Thermal Erosion Site, Caribou Creek, Alaska

    NASA Astrophysics Data System (ADS)

    Busey, R.; Bolton, W. R.; Cherry, J. E.; Hinzman, L. D.

    2013-12-01

    The goal of this project is to estimate volume loss of soil over time from this site, provide parameterizations on erodibility of ice rich permafrost and serve as a baseline for future landscape evolution simulations. Located in the zone of discontinuous permafrost, the interior region of Alaska (USA) is home to a large quantity of warm, unstable permafrost that is both high in ice content and has soil temperatures near the freezing point. Much of this permafrost maintains a frozen state despite the general warming air temperature trend in the region due to the presence of a thick insulating organic mat and a dense root network in the upper sub-surface of the soil column. At a rapidly evolving thermo-erosion site, located within the Caribou-Poker Creeks Research Watershed (part of the Bonanza Creek LTER) near Chatanika, Alaska (N65.140, W147.570), the protective organic layer and associated plants were disturbed by an adjacent traditional use trail and the shifting of a groundwater spring. These triggers have led to rapid geomorphological change on the landscape as the soil thaws and sediment is transported into the creek at the valley bottom. Since 2006 (approximately the time of initiation), the thermal erosion has grown to 170 meters length, 3 meters max depth, and 15 meters maximum width. This research combines several data sets: DGPS survey, imagery from an extremely low altitude pole-based remote sensing (3 to 5 meters above ground level), and imagery from an Unmanned Aerial System (UAS) at about 60m altitude.

  14. Marine Biology Field Trip Sites. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  15. Reduction of urease activity by interaction with the flap covering the active site.

    PubMed

    Macomber, Lee; Minkara, Mona S; Hausinger, Robert P; Merz, Kenneth M

    2015-02-23

    With the increasing appreciation for the human microbiome coupled with the global rise of antibiotic resistant organisms, it is imperative that new methods be developed to specifically target pathogens. To that end, a novel computational approach was devised to identify compounds that reduce the activity of urease, a medically important enzyme of Helicobacter pylori, Proteus mirabilis, and many other microorganisms. Urease contains a flexible loop that covers its active site; Glide was used to identify small molecules predicted to lock this loop in an open conformation. These compounds were screened against the model urease from Klebsiella aerogenes, and the natural products epigallocatechin and quercetin were shown to inhibit at low and high micromolar concentrations, respectively. These molecules exhibit a strong time-dependent inactivation of urease that was not due to their oxygen sensitivity. Rather, these compounds appear to inactivate urease by reacting with a specific Cys residue located on the flexible loop. Substitution of this cysteine by alanine in the C319A variant increased the urease resistance to both epigallocatechin and quercetin, as predicted by the computational studies. Protein dynamics are integral to the function of many enzymes; thus, identification of compounds that lock an enzyme into a single conformation presents a useful approach to define potential inhibitors. PMID:25594724

  16. Reduction of Urease Activity by Interaction with the Flap Covering the Active Site

    PubMed Central

    Macomber, Lee; Minkara, Mona S.; Hausinger, Robert P.; Merz, Kenneth M.

    2015-01-01

    With the increasing appreciation for the human microbiome coupled with the global rise of antibiotic resistant organisms, it is imperative that new methods be developed to specifically target pathogens. To that end, a novel computational approach was devised to identify compounds that reduce the activity of urease, a medically important enzyme of Helicobacter pylori, Proteus mirabilis, and many other microorganisms. Urease contains a flexible loop that covers its active site; Glide was used to identify small molecules predicted to lock this loop in an open conformation. These compounds were screened against the model urease from Klebsiella aerogenes and the natural products epigallocatechin and quercetin were shown to inhibit at low and high micromolar concentrations, respectively. These molecules exhibit a strong time-dependent inactivation of urease that was not due to their oxygen sensitivity. Rather, these compounds appear to inactivate urease by reacting with a specific Cys residue located on the flexible loop. Substitution of this cysteine by alanine in the C319A variant increased the urease resistance to both epigallocatechin and quercetin, as predicted by the computational studies. Protein dynamics are integral to the function of many enzymes; thus, identification of compounds that lock an enzyme into a single conformation presents a useful approach to define potential inhibitors. PMID:25594724

  17. Encroachment of Human Activity on Sea Turtle Nesting Sites

    NASA Astrophysics Data System (ADS)

    Ziskin, D.; Aubrecht, C.; Elvidge, C.; Tuttle, B.; Baugh, K.; Ghosh, T.

    2008-12-01

    The encroachment of anthropogenic lighting on sea turtle nesting sites poses a serious threat to the survival of these animals [Nicholas, 2001]. This danger is quantified by combining two established data sets. The first is the Nighttime Lights data produced by the NOAA National Geophysical Data Center [Elvidge et al., 1997]. The second is the Marine Turtle Database produced by the World Conservation Monitoring Centre (WCMC). The technique used to quantify the threat of encroachment is an adaptation of the method described in Aubrecht et al. [2008], which analyzes the stress on coral reef systems by proximity to nighttime lights near the shore. Nighttime lights near beaches have both a direct impact on turtle reproductive success since they disorient hatchlings when they mistake land-based lights for the sky-lit surf [Lorne and Salmon, 2007] and the lights are also a proxy for other anthropogenic threats. The identification of turtle nesting sites with high rates of encroachment will hopefully steer conservation efforts to mitigate their effects [Witherington, 1999]. Aubrecht, C, CD Elvidge, T Longcore, C Rich, J Safran, A Strong, M Eakin, KE Baugh, BT Tuttle, AT Howard, EH Erwin, 2008, A global inventory of coral reef stressors based on satellite observed nighttime lights, Geocarto International, London, England: Taylor and Francis. In press. Elvidge, CD, KE Baugh, EA Kihn, HW Kroehl, ER Davis, 1997, Mapping City Lights with Nighttime Data from the DMSP Operational Linescan System, Photogrammatic Engineering and Remote Sensing, 63:6, pp. 727-734. Lorne, JK, M Salmon, 2007, Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean, Endangered Species Research, Vol. 3: 23-30. Nicholas, M, 2001, Light Pollution and Marine Turtle Hatchlings: The Straw that Breaks the Camel's Back?, George Wright Forum, 18:4, p77-82. Witherington, BE, 1999, Reducing Threats To Nesting Habitat, Research and Management Techniques for

  18. Small Molecule Active Site Directed Tools for Studying Human Caspases.

    PubMed

    Poreba, Marcin; Szalek, Aleksandra; Kasperkiewicz, Paulina; Rut, Wioletta; Salvesen, Guy S; Drag, Marcin

    2015-11-25

    Caspases are proteases of clan CD and were described for the first time more than two decades ago. They play critical roles in the control of regulated cell death pathways including apoptosis and inflammation. Due to their involvement in the development of various diseases like cancer, neurodegenerative diseases, or autoimmune disorders, caspases have been intensively investigated as potential drug targets, both in academic and industrial laboratories. This review presents a thorough, deep, and systematic assessment of all technologies developed over the years for the investigation of caspase activity and specificity using substrates and inhibitors, as well as activity based probes, which in recent years have attracted considerable interest due to their usefulness in the investigation of biological functions of this family of enzymes. PMID:26551511

  19. Activation of brown adipose tissue mitochondrial GDP binding sites

    SciTech Connect

    Swick, A.G.

    1987-01-01

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of (/sup 3/H)-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time.

  20. Quantification of the novel N-methyl-d-aspartate receptor ligand [11C]GMOM in man.

    PubMed

    van der Doef, Thalia F; Golla, Sandeep Sv; Klein, Pieter J; Oropeza-Seguias, Gisela M; Schuit, Robert C; Metaxas, Athanasios; Jobse, Ellen; Schwarte, Lothar A; Windhorst, Albert D; Lammertsma, Adriaan A; van Berckel, Bart Nm; Boellaard, Ronald

    2016-06-01

    [(11)C]GMOM (carbon-11 labeled N-(2-chloro-5-thiomethylphenyl)-N'-(3-[(11)C]methoxy-phenyl)-N'-methylguanidine) is a PET ligand that binds to the N-methyl-d-aspartate receptor with high specificity and affinity. The purpose of this first in human study was to evaluate kinetics of [(11)C]GMOM in the healthy human brain and to identify the optimal pharmacokinetic model for quantifying these kinetics, both before and after a pharmacological dose of S-ketamine. Dynamic 90 min [(11)C]GMOM PET scans were obtained from 10 subjects. In six of the 10 subjects, a second PET scan was performed following an S-ketamine challenge. Metabolite corrected plasma input functions were obtained for all scans. Regional time activity curves were fitted to various single- and two-tissue compartment models. Best fits were obtained using a two-tissue irreversible model with blood volume parameter. The highest net influx rate (Ki) of [(11)C]GMOM was observed in regions with high N-methyl-d-aspartate receptor density, such as hippocampus and thalamus. A significant reduction in the Ki was observed for the entire brain after administration of ketamine, suggesting specific binding to the N-methyl-d-aspartate receptors. This initial study suggests that the [(11)C]GMOM could be used for quantification of N-methyl-d-aspartate receptors. PMID:26661185

  1. Quantification of the novel N-methyl-d-aspartate receptor ligand [11C]GMOM in man

    PubMed Central

    van der Doef, Thalia F; Klein, Pieter J; Oropeza-Seguias, Gisela M; Schuit, Robert C; Metaxas, Athanasios; Jobse, Ellen; Schwarte, Lothar A; Windhorst, Albert D; Lammertsma, Adriaan A; van Berckel, Bart NM; Boellaard, Ronald

    2015-01-01

    [11C]GMOM (carbon-11 labeled N-(2-chloro-5-thiomethylphenyl)-N′-(3-[11C]methoxy-phenyl)-N′-methylguanidine) is a PET ligand that binds to the N-methyl-d-aspartate receptor with high specificity and affinity. The purpose of this first in human study was to evaluate kinetics of [11C]GMOM in the healthy human brain and to identify the optimal pharmacokinetic model for quantifying these kinetics, both before and after a pharmacological dose of S-ketamine. Dynamic 90 min [11C]GMOM PET scans were obtained from 10 subjects. In six of the 10 subjects, a second PET scan was performed following an S-ketamine challenge. Metabolite corrected plasma input functions were obtained for all scans. Regional time activity curves were fitted to various single- and two-tissue compartment models. Best fits were obtained using a two-tissue irreversible model with blood volume parameter. The highest net influx rate (Ki) of [11C]GMOM was observed in regions with high N-methyl-d-aspartate receptor density, such as hippocampus and thalamus. A significant reduction in the Ki was observed for the entire brain after administration of ketamine, suggesting specific binding to the N-methyl-d-aspartate receptors. This initial study suggests that the [11C]GMOM could be used for quantification of N-methyl-d-aspartate receptors. PMID:26661185

  2. Aspartate Aminotransferase (AST/GOT) and Alanine Aminotransferase (ALT/GPT) Detection Techniques

    PubMed Central

    Huang, Xing-Jiu; Choi, Yang-Kyu; Im, Hyung-Soon; Yarimaga, Oktay; Yoon, Euisik; Kim, Hak-Sung

    2006-01-01

    The levels of aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) in serum can help people diagnose body tissues especially the heart and the liver are injured or not. This article provides a comprehensive review of research activities that concentrate on AST/GOT and ALT/GPT detection techniques due to their clinical importance. The detection techniques include colorimetric, spectrophotometric, chemiluminescence, chromatography, fluorescence and UV absorbance, radiochemical, and electrochemical techniques. We devote the most attention on experimental principle. In some methods a few representative devices and important conclusions are presented.

  3. D-Aspartate Induces Proliferative Pathways in Spermatogonial GC-1 Cells.

    PubMed

    Santillo, Alessandra; Falvo, Sara; Chieffi, Paolo; Di Fiore, Maria Maddalena; Senese, Rosalba; Chieffi Baccari, Gabriella

    2016-02-01

    D-aspartate (D-Asp) is an endogenous amino acid present in vertebrate tissues, with particularly high levels in the testis. In vivo studies indicate that D-Asp indirectly stimulates spermatogenesis through the hypothalamic-pituitary-gonadal axis. Moreover, in vitro studies have demonstrated that D-Asp up-regulates testosterone production in Leydig cells by enhancing expression of the steroidogenic acute regulatory protein. In this study, a cell line derived from immortalized type-B mouse spermatogonia retaining markers of mitotic germ cells (GC-1) was employed to explore more direct involvement of D-Asp in spermatogenesis. Activity and protein expression of markers of cell proliferation were determined at intervals during incubation in D-Asp-containing medium. D-Asp induced phosphorylation of ERK and Akt proteins, stimulated expression of PCNA and Aurora B, and enhanced mRNA synthesis and protein expression of P450 aromatase and protein expression of Estrogen Receptor β (ERβ). These results are the first demonstration of a direct effect of D-Asp on spermatogonial mitotic activity. Considering that spermatogonia express the NR1 subunit of the N-Methyl-D-Aspartic Acid receptor (NMDAR), we suggest that their response to D-Asp depends on NMDAR-mediated activation of the ERK and Akt pathways and is further enhanced by activation of the P450 aromatase/ERβ pathway. PMID:26189884

  4. Protective effect of donepezil in primary-cultured rat cortical neurons exposed to N-methyl-d-aspartate (NMDA) toxicity.

    PubMed

    Akasofu, Shigeru; Kimura, Manami; Kosasa, Takashi; Ogura, Hiroo; Sawada, Kohei

    2006-01-20

    Donepezil has a neuroprotective effect against oxygen-glucose deprivation injury and glutamate toxicity in cultured cortical neurons. In this study, we further characterized the neuroprotective properties of donepezil in rat cortical cell cultures using glutamate receptor-specific agonists (N-methyl-d-aspartate (NMDA), alpha-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA) and kainate). Pretreatment with donepezil (1 microM) for 12 h significantly decreased the lactate dehydrogenase (LDH) release in response to NMDA (100 microM) by 43.8%, and reduced the LDH release in response to kainate (100 microM) and AMPA (100 microM) by 11.9% and 7.5% (without statistical significance), respectively. Donepezil appeared to inhibit LDH release in a concentration-dependent manner at 0.1-10 microM. Cortical neurons exposed to NMDA retained a normal morphological appearance in the presence of 10 microM donepezil. In binding assay for glutamate receptors, donepezil at 100 microM only slightly inhibited binding to the glycine and polyamine sites on NMDA receptor complex. On the other hand, 12 h pretreatment with donepezil at 10 and 100 microM significantly decreased the NMDA-induced increase of intracellular calcium concentration ([Ca2+]i). In conclusion, our results show that donepezil has protective activity against NMDA toxicity in cortical neurons, and this neuroprotection seems to be partially mediated by inhibition of the increase of [Ca2+]i. PMID:16406045

  5. School Pharmacist/School Environmental Hygienic Activities at School Site.

    PubMed

    Muramatsu, Akiyoshi

    2016-01-01

    The "School Health and Safety Act" was enforced in April 2009 in Japan, and "school environmental health standards" were established by the Minister of Education, Culture, Sports, Science and Technology. In Article 24 of the Enforcement Regulations, the duties of the school pharmacist have been clarified; school pharmacists have charged with promoting health activities in schools and carrying out complete and regular checks based on the "school environmental health standards" in order to protect the health of students and staff. In supported of this, the school pharmacist group of Japan Pharmaceutical Association has created and distributed digital video discs (DVDs) on "check methods of school environmental health standards" as support material. We use the DVD to ensure the basic issues that school pharmacists deal with, such as objectives, criteria, and methods for each item to be checked, advice, and post-measures. We conduct various workshops and classes, and set up Q&A committees so that inquiries from members are answered with the help of such activities. In addition, school pharmacists try to improve the knowledge of the school staff on environmental hygiene during their in-service training. They also conduct "drug abuse prevention classes" at school and seek to improve knowledge and recognition of drugs, including "dangerous drugs". PMID:27252053

  6. 40 CFR 721.10348 - Aspartic acid, N,N′-(iminodi-alkanediyl)bis, tetraalkane esters (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aspartic acid, N,Nâ²-(iminodi... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10348 Aspartic acid, N,N′-(iminodi... reporting. (1) The chemical substances identified generically as aspartic acid,...

  7. 40 CFR 721.10348 - Aspartic acid, N,N′-(iminodi-alkanediyl)bis, tetraalkane esters (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aspartic acid, N,Nâ²-(iminodi... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10348 Aspartic acid, N,N′-(iminodi... reporting. (1) The chemical substances identified generically as aspartic acid,...

  8. 40 CFR 721.10348 - Aspartic acid, N,N′-(iminodi-alkanediyl)bis, tetraalkane esters (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aspartic acid, N,Nâ²-(iminodi... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10348 Aspartic acid, N,N′-(iminodi... reporting. (1) The chemical substances identified generically as aspartic acid,...

  9. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors*

    PubMed Central

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M.; Kenny, Paul J.; Lindstrom, Jon

    2015-01-01

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets. PMID:25869137

  10. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

    PubMed

    Matsubu, John C; Yang, Vanessa N; Christopher, Phillip

    2015-03-01

    CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability. PMID:25671686

  11. The balance of flexibility and rigidity in the active site residues of hen egg white lysozyme

    NASA Astrophysics Data System (ADS)

    Qi, Jian-Xun; Jiang, Fan

    2011-05-01

    The crystallographic temperature factors (B factor) of individual atoms contain important information about the thermal motion of the atoms in a macromolecule. Previously the theory of flexibility of active site has been established based on the observation that the enzyme activity is sensitive to low concentration denaturing agents. It has been found that the loss of enzyme activity occurs well before the disruption of the three-dimensional structural scaffold of the enzyme. To test the theory of conformational flexibility of enzyme active site, crystal structures were perturbed by soaking in low concentration guanidine hydrochloride solutions. It was found that many lysozyme crystals tested could still diffract until the concentration of guanidine hydrochloride reached 3 M. It was also found that the B factors averaged over individually collected data sets were more accurate. Thus it suggested that accurate measurement of crystal temperature factors could be achieved for medium-high or even medium resolution crystals by averaging over multiple data sets. Furthermore, we found that the correctly predicted active sites included not only the more flexible residues, but also some more rigid residues. Both the flexible and the rigid residues in the active site played an important role in forming the active site residue network, covering the majority of the substrate binding residues. Therefore, this experimental prediction method may be useful for characterizing the binding site and the function of a protein, such as drug targeting.

  12. The calculation of surface orbital energies for specific types of active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.; Cole, F.

    1992-11-01

    An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  13. The calculation of surface orbital energies for specific types of active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.; Cole, F.

    1992-01-01

    An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  14. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  15. Distribution and evolution of the serine/aspartate racemase family in invertebrates.

    PubMed

    Uda, Kouji; Abe, Keita; Dehara, Yoko; Mizobata, Kiriko; Sogawa, Natsumi; Akagi, Yuki; Saigan, Mai; Radkov, Atanas D; Moe, Luke A

    2016-02-01

    Free D-amino acids have been found in various invertebrate phyla, while amino acid racemase genes have been identified in few species. The purpose of this study is to elucidate the distribution, function, and evolution of amino acid racemases in invertebrate animals. We searched the GenBank databases, and found 11 homologous serine racemase genes from eight species in eight different invertebrate phyla. The cloned genes were identified based on their maximum activity as Acropora millepora (Cnidaria) serine racemase (SerR) and aspartate racemase (AspR), Caenorhabditis elegans (Nematoda) SerR, Capitella teleta (Annelida) SerR, Crassostrea gigas (Mollusca) SerR and AspR, Dugesia japonica (Platyhelminthes) SerR, Milnesium tardigradum (Tardigrada) SerR, Penaeus monodon (Arthropoda) SerR and AspR and Strongylocentrotus purpuratus (Echinodermata) AspR. We found that Acropora, Aplysia, Capitella, Crassostrea and Penaeus had two amino acid racemase paralogous genes and these paralogous genes have evolved independently by gene duplication at their recent ancestral species. The transcriptome analyses using available SRA data and enzyme kinetic data suggested that these paralogous genes are expressed in different tissues and have different functions in vivo. Phylogenetic analyses clearly indicated that animal SerR and AspR are not separated by their particular racemase functions and form a serine/aspartate racemase family cluster. Our results revealed that SerR and AspR are more widely distributed among invertebrates than previously known. Moreover, we propose that the triple serine loop motif at amino acid positions 150-152 may be responsible for the large aspartate racemase activity and the AspR evolution from SerR. PMID:26352274

  16. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    SciTech Connect

    Not Available

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  17. Chemical modification studies on arginine kinase: essential cysteine and arginine residues at the active site.

    PubMed

    Zhu, Wen-Jing; Li, Miao; Wang, Xiao-Yun

    2007-12-01

    Chemical modification was used to elucidate the essential amino acids in the catalytic activity of arginine kinase (AK) from Migratoria manilensis. Among six cysteine (Cys) residues only one Cys residue was determined to be essential in the active site by Tsou's method. Furthermore, the AK modified by DTNB can be fully reactivated by dithiothreitol (DTT) in a monophasic kinetic course. At the same time, this reactivation can be slowed down in the presence of ATP, suggesting that the essential Cys is located near the ATP binding site. The ionizing groups at the AK active site were studied and the standard dissociation enthalpy (DeltaH degrees ) was 12.38kcal/mol, showing that the dissociation group may be the guanidino of arginine (Arg). Using the specific chemical modifier phenylglyoxal (PG) demonstrated that only one Arg, located near the ATP binding site, is essential for the activity of AK. PMID:17765964

  18. 78 FR 8190 - Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ...BOEM is reopening the comment period announced in the Notice of Intent to Prepare an Environmental Assessment (EA) for Commercial Wind Leasing and Site Assessment Activities on the OCS Offshore North...

  19. Single exposure to cocaine impairs aspartate uptake in the pre-frontal cortex via dopamine D1-receptor dependent mechanisms.

    PubMed

    Sathler, Matheus Figueiredo; Stutz, Bernardo; Martins, Robertta Silva; Dos Santos Pereira, Maurício; Pecinalli, Ney Roner; Santos, Luis E; Taveira-da-Silva, Rosilane; Lowe, Jennifer; de Freitas, Isis Grigorio; de Melo Reis, Ricardo Augusto; Manhães, Alex C; Kubrusly, Regina C C

    2016-08-01

    Dopamine and glutamate play critical roles in the reinforcing effects of cocaine. We demonstrated that a single intraperitoneal administration of cocaine induces a significant decrease in [(3)H]-d-aspartate uptake in the pre-frontal cortex (PFC). This decrease is associated with elevated dopamine levels, and requires dopamine D1-receptor signaling (D1R) and adenylyl cyclase activation. The effect was observed within 10min of cocaine administration and lasted for up to 30min. This rapid response is related to D1R-mediated cAMP-mediated activation of PKA and phosphorylation of the excitatory amino acid transporters EAAT1, EAAT2 and EAAT3. We also demonstrated that cocaine exposure increases extracellular d-aspartate, l-glutamate and d-serine in the PFC. Our data suggest that cocaine activates dopamine D1 receptor signaling and PKA pathway to regulate EAATs function and extracellular EAA level in the PFC. PMID:27208619

  20. Design and production of peptides mimicking the active site of serine esterases with covalent binding to the organophosphorous poison soman. Annual report, 1 July 1984-30 June 1985

    SciTech Connect

    Seltzman, H.H.

    1985-12-09

    The objective of this research program is to design, synthesize, and test peptides and peptide mimics that will scavange soman in vivo and thereby provide protection against this CW agent. The test compounds were designed to mimic the active site of serine esterases (AChE), which are the natural targets of soman, enabling them to react with soman and thus protect endogenous AChE. Cyclodextrins derivatized with peptide functional groups and their equivalents such as imidazole, histamine, ethylene diamine, diethylene triamine, catechol, and ethane dithiol were synthesized for testing. The synthesis of precursors to cyclohexapeptides containing histidine, serine, and aspartic acid, which are amino acids that have been implicated in the active site of numerous esterases, were pursued. Testing of the ability of alpha-, beta, and gamma-cyclodextrins to protect AChE frominactivation by soman was carried out in vitro. From this group of compounds, beta-cyclodextrin was observed to preserve the activity of AChE in a dose response manner achieving a 72.1% preservation of activity when present in 200,000 fold excess versus soman after only ten minutes incubation time (beta-cyclodextrin + soman). Neither alpha, nor gamma-cyclodextrin showed any protective effect at the same doses. The test results suggest that beta cyclodextrin is uniquely suited to scavange soman. Improved scavanging might be achieved with the modified cyclodextrins prepared above for testing.

  1. Anisotropic Covalency Contributions to Superexchange Pathways in Type One Copper Active Sites

    PubMed Central

    2015-01-01

    Type one (T1) Cu sites deliver electrons to catalytic Cu active sites: the mononuclear type two (T2) Cu site in nitrite reductases (NiRs) and the trinuclear Cu cluster in the multicopper oxidases (MCOs). The T1 Cu and the remote catalytic sites are connected via a Cys-His intramolecular electron-transfer (ET) bridge, which contains two potential ET pathways: P1 through the protein backbone and P2 through the H-bond between the Cys and the His. The high covalency of the T1 Cu–S(Cys) bond is shown here to activate the T1 Cu site for hole superexchange via occupied valence orbitals of the bridge. This covalency-activated electronic coupling (HDA) facilitates long-range ET through both pathways. These pathways can be selectively activated depending on the geometric and electronic structure of the T1 Cu site and thus the anisotropic covalency of the T1 Cu–S(Cys) bond. In NiRs, blue (π-type) T1 sites utilize P1 and green (σ-type) T1 sites utilize P2, with P2 being more efficient. Comparing the MCOs to NiRs, the second-sphere environment changes the conformation of the Cys-His pathway, which selectively activates HDA for superexchange by blue π sites for efficient turnover in catalysis. These studies show that a given protein bridge, here Cys-His, provides different superexchange pathways and electronic couplings depending on the anisotropic covalencies of the donor and acceptor metal sites. PMID:25310460

  2. E2 superfamily of ubiquitin-conjugating enzymes: constitutively active or activated through phosphorylation in the catalytic cleft

    PubMed Central

    Valimberti, Ilaria; Tiberti, Matteo; Lambrughi, Matteo; Sarcevic, Boris; Papaleo, Elena

    2015-01-01

    Protein phosphorylation is a modification that offers a dynamic and reversible mechanism to regulate the majority of cellular processes. Numerous diseases are associated with aberrant regulation of phosphorylation-induced switches. Phosphorylation is emerging as a mechanism to modulate ubiquitination by regulating key enzymes in this pathway. The molecular mechanisms underpinning how phosphorylation regulates ubiquitinating enzymes, however, are elusive. Here, we show the high conservation of a functional site in E2 ubiquitin-conjugating enzymes. In catalytically active E2s, this site contains aspartate or a phosphorylatable serine and we refer to it as the conserved E2 serine/aspartate (CES/D) site. Molecular simulations of substrate-bound and -unbound forms of wild type, mutant and phosphorylated E2s, provide atomistic insight into the role of the CES/D residue for optimal E2 activity. Both the size and charge of the side group at the site play a central role in aligning the substrate lysine toward E2 catalytic cysteine to control ubiquitination efficiency. The CES/D site contributes to the fingerprint of the E2 superfamily. We propose that E2 enzymes can be divided into constitutively active or regulated families. E2s characterized by an aspartate at the CES/D site signify constitutively active E2s, whereas those containing a serine can be regulated by phosphorylation. PMID:26463729

  3. The Three Mycobacterium tuberculosis Antigen 85 Isoforms Have Unique Substrates and Activities Determined by Non-active Site Regions*

    PubMed Central

    Backus, Keriann M.; Dolan, Michael A.; Barry, Conor S.; Joe, Maju; McPhie, Peter; Boshoff, Helena I. M.; Lowary, Todd L.; Davis, Benjamin G.; Barry, Clifton E.

    2014-01-01

    The three isoforms of antigen 85 (A, B, and C) are the most abundant secreted mycobacterial proteins and catalyze transesterification reactions that synthesize mycolated arabinogalactan, trehalose monomycolate (TMM), and trehalose dimycolate (TDM), important constituents of the outermost layer of the cellular envelope of Mycobacterium tuberculosis. These three enzymes are nearly identical at the active site and have therefore been postulated to exist to evade host immunity. Distal to the active site is a second putative carbohydrate-binding site of lower homology. Mutagenesis of the three isoforms at this second site affected both substrate selectivity and overall catalytic activity in vitro. Using synthetic and natural substrates, we show that these three enzymes exhibit unique selectivity; antigen 85A more efficiently mycolates TMM to form TDM, whereas C (and to a lesser extent B) has a higher rate of activity using free trehalose to form TMM. This difference in substrate selectivity extends to the hexasaccharide fragment of cell wall arabinan. Mutation of secondary site residues from the most active isoform (C) into those present in A or B partially interconverts this substrate selectivity. These experiments in combination with molecular dynamics simulations reveal that differences in the N-terminal helix α9, the adjacent Pro216–Phe228 loop, and helix α5 are the likely cause of changes in activity and substrate selectivity. These differences explain the existence of three isoforms and will allow for future work in developing inhibitors. PMID:25028517

  4. Conformational coupling, bridge helix dynamics and active site dehydration in catalysis by RNA polymerase

    PubMed Central

    Seibold, Steve A.; Singh, Badri Nath; Zhang, Chunfen; Kireeva, Maria; Domecq, Céline; Bouchard, Annie; Nazione, Anthony M.; Feig, Michael; Cukier, Robert I.; Coulombe, Benoit; Kashlev, Mikhail; Hampsey, Michael; Burton, Zachary F.

    2010-01-01

    Molecular dynamics simulation of Thermus thermophilus (Tt) RNA polymerase (RNAP) in a catalytic conformation demonstrates that the active site dNMP-NTP base pair must be substantially dehydrated to support full active site closing and optimum conditions for phosphodiester bond synthesis. In silico mutant β R428A RNAP, which was designed based on substitutions at the homologous position (Rpb2 R512) of Saccharomyces cerevisiae (Sc) RNAP II, was used as a reference structure to compare to Tt RNAP in simulations. Long range conformational coupling linking a dynamic segment of the bridge α-helix, the extended fork loop, the active site, and the trigger loop-trigger helix is apparent and adversely affected in β R428A RNAP. Furthermore, bridge helix bending is detected in the catalytic structure, indicating that bridge helix dynamics may regulate phosphodiester bond synthesis as well as translocation. An active site “latch” assembly that includes a key trigger helix residue Tt β’ H1242 and highly conserved active site residues β E445 and R557 appears to help regulate active site hydration/dehydration. The potential relevance of these observations in understanding RNAP and DNAP induced fit and fidelity is discussed. PMID:20478425

  5. 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site.

    PubMed

    Martin, David P; Blachly, Patrick G; Marts, Amy R; Woodruff, Tessa M; de Oliveira, César A F; McCammon, J Andrew; Tierney, David L; Cohen, Seth M

    2014-04-01

    The binding of three closely related chelators: 5-hydroxy-2-methyl-4H-pyran-4-thione (allothiomaltol, ATM), 3-hydroxy-2-methyl-4H-pyran-4-thione (thiomaltol, TM), and 3-hydroxy-4H-pyran-4-thione (thiopyromeconic acid, TPMA) to the active site of human carbonic anhydrase II (hCAII) has been investigated. Two of these ligands display a monodentate mode of coordination to the active site Zn(2+) ion in hCAII that is not recapitulated in model complexes of the enzyme active site. This unprecedented binding mode in the hCAII-thiomaltol complex has been characterized by both X-ray crystallography and X-ray spectroscopy. In addition, the steric restrictions of the active site force the ligands into a 'flattened' mode of coordination compared with inorganic model complexes. This change in geometry has been shown by density functional computations to significantly decrease the strength of the metal-ligand binding. Collectively, these data demonstrate that the mode of binding by small metal-binding groups can be significantly influenced by the protein active site. Diminishing the strength of the metal-ligand bond results in unconventional modes of metal coordination not found in typical coordination compounds or even carefully engineered active site models, and understanding these effects is critical to the rational design of inhibitors that target clinically relevant metalloproteins. PMID:24635441

  6. Active sites for NO reduction over Fe-ZSM-5 catalysts.

    PubMed

    Schwidder, M; Santhosh Kumar, M; Brückner, A; Grünert, W

    2005-02-14

    A study of Fe-ZSM-5 catalysts with variable amounts of isolated, oligomeric and heavily aggregated Fe3+ oxo sites (as evidenced by UV-Vis and EPR spectroscopic data) and their catalytic properties in the selective catalytic reduction of NO by isobutane or by NH3 is presented, which allows development of a unified concept of the active Fe sites in these reactions, according to which isolated Fe sites catalyse both SCR reactions while oligomeric sites, though also involved in the selective reduction path, limit the catalyst performance by causing the total oxidation of the reductant. PMID:15685345

  7. Inactivation of the Antifungal and Immunomodulatory Properties of Human Cathelicidin LL-37 by Aspartic Proteases Produced by the Pathogenic Yeast Candida albicans

    PubMed Central

    Bochenska, Oliwia; Zawrotniak, Marcin; Wolak, Natalia; Trebacz, Grzegorz; Gogol, Mariusz; Ostrowska, Dominika; Aoki, Wataru; Ueda, Mitsuyoshi; Kozik, Andrzej

    2015-01-01

    Constant cross talk between Candida albicans yeast cells and their human host determines the outcome of fungal colonization and, eventually, the progress of infectious disease (candidiasis). An effective weapon used by C. albicans to cope with the host defense system is the release of 10 distinct secreted aspartic proteases (SAPs). Here, we validate a hypothesis that neutrophils and epithelial cells use the antimicrobial peptide LL-37 to inactivate C. albicans at sites of candidal infection and that C. albicans uses SAPs to effectively degrade LL-37. LL-37 is cleaved into multiple products by SAP1 to -4, SAP8, and SAP9, and this proteolytic processing is correlated with the gradual decrease in the antifungal activity of LL-37. Moreover, a major intermediate of LL-37 cleavage—the LL-25 peptide—is antifungal but devoid of the immunomodulatory properties of LL-37. In contrast to LL-37, LL-25 did not affect the generation of reactive oxygen species by neutrophils upon treatment with phorbol esters. Stimulating neutrophils with LL-25 (rather than LL-37) significantly decreased calcium flux and interleukin-8 production, resulting in lower chemotactic activity of the peptide against neutrophils, which may decrease the recruitment of neutrophils to infection foci. LL-25 also lost the function of LL-37 as an inhibitor of neutrophil apoptosis, thereby reducing the life span of these defense cells. This study indicates that C. albicans can effectively use aspartic proteases to destroy the antimicrobial and immunomodulatory properties of LL-37, thus enabling the pathogen to survive and propagate. PMID:25847962

  8. Site-directed mutagenesis and high-resolution NMR spectroscopy of the active site of porphobilinogen deaminase

    SciTech Connect

    Scott, A.I.; Roessner, C.A.; Stolowich, N.J.; Karuso, P.; Williams, H.J.; Grant, S.K.; Gonzalez, M.D.; Hoshino, T. )

    1988-10-18

    The active site of porphobilinogen (PBG){sup 1} deaminase from Escherichia coli has been found to contain an unusual dipyrromethane derived from four molecules of 5-aminolevulinic acid (ALA) covalently linked to Cys-242, one of the two cysteine residues conserved in E. coli and human deaminase. By use of a hemA{sup {minus}} strain of E. coli the enzyme was enriched from (5-{sup 13}C)ALA and examined by {sup 1}H-detected multiple quantum coherence spectroscopy, which revealed all of the salient features of a dipyrromethane composed of two PBG units linked heat to tail and terminating in a CH{sub 2}-S bond to a cysteine residue. Site-specific mutagenesis of Cys-99 and Cys-242, respectively, has shown that substitution of Ser for Cys-99 does not affect the enzymatic activity, whereas substitution of Ser for Cys-242 removes essentially all of the catalytic activity as measured by the conversion of the substrate PBG to uro'gen I. The NMR spectrum of the covalent complex of deaminase with the suicide inhibitor 2-bromo-(2,11-{sup 13}C{sub 2})PBG reveals that the aminomethyl terminus of the inhibitor reacts with the enzyme's cofactor at the {alpha}-free pyrrole. NMR spectroscopy of the ES{sub 2} complex confirmed a PBG-derived head-to-tail dipyrromethane attached to the {alpha}-free pyrrole position of the enzyme. A mechanistic rationale for deaminase is presented.

  9. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site

    PubMed Central

    Grossman, Moran; Born, Benjamin; Heyden, Matthias; Tworowski, Dmitry; Fields, Gregg B; Sagi, Irit; Havenith, Martina

    2012-01-01

    Solvent dynamics can play a major role in enzyme activity, but obtaining an accurate, quantitative picture of solvent activity during catalysis is quite challenging. Here, we combine terahertz spectroscopy and X-ray absorption analyses to measure changes in the coupled water-protein motions during peptide hydrolysis by a zinc-dependent human metalloprotease. These changes were tightly correlated with rearrangements at the active site during the formation of productive enzyme-substrate intermediates and were different from those in an enzyme–inhibitor complex. Molecular dynamics simulations showed a steep gradient of fast-to-slow coupled protein-water motions around the protein, active site and substrate. Our results show that water retardation occurs before formation of the functional Michaelis complex. We propose that the observed gradient of coupled protein-water motions may assist enzyme-substrate interactions through water-polarizing mechanisms that are remotely mediated by the catalytic metal ion and the enzyme active site. PMID:21926991

  10. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site

    SciTech Connect

    Grossman, Moran; Born, Benjamin; Heyden, Matthias; Tworowski, Dmitry; Fields, Gregg B.; Sagi, Irit; Havenith, Martina

    2011-09-18

    Solvent dynamics can play a major role in enzyme activity, but obtaining an accurate, quantitative picture of solvent activity during catalysis is quite challenging. Here, we combine terahertz spectroscopy and X-ray absorption analyses to measure changes in the coupled water-protein motions during peptide hydrolysis by a zinc-dependent human metalloprotease. These changes were tightly correlated with rearrangements at the active site during the formation of productive enzyme-substrate intermediates and were different from those in an enzyme–inhibitor complex. Molecular dynamics simulations showed a steep gradient of fast-to-slow coupled protein-water motions around the protein, active site and substrate. Our results show that water retardation occurs before formation of the functional Michaelis complex. We propose that the observed gradient of coupled protein-water motions may assist enzyme-substrate interactions through water-polarizing mechanisms that are remotely mediated by the catalytic metal ion and the enzyme active site.

  11. HIV integration site distributions in resting and activated CD4+ T cells infected in culture

    PubMed Central

    Brady, Troy; Agosto, Luis M.; Malani, Nirav; Berry, Charles C.; O'Doherty, Una; Bushman, Frederic

    2010-01-01

    Objective The goal of this study was to investigate whether the location of HIV integration differs in resting versus activated T cells, a feature that could contribute to the formation of latent viral reservoirs via effects on integration targeting. Design Primary resting or activated CD4+ T cells were infected with purified X4-tropic HIV in the presence and absence of nucleoside triphosphates and genomic locations of integrated provirus determined. Methods We sequenced and analyzed a total of 2661 HIV integration sites using linker-mediated PCR and 454 sequencing. Integration site data sets were then compared to each other and to computationally generated random distributions. Results HIV integration was favored in active transcription units in both cell types, but integration sites from activated cells were found more often in genomic regions that were dense in genes, dense in CpG islands, and enriched in G/C bases. Integration sites from activated cells were also more strongly correlated with histone methylation patterns associated with active genes. Conclusion These data indicate that integration site distributions show modest but significant differences between resting and activated CD4+ T cells, and that integration in resting cells occurs more often in regions that may be suboptimal for proviral gene expression. PMID:19550285

  12. Fragment-based identification of determinants of conformational and spectroscopic change at the ricin active site

    SciTech Connect

    Carra,J.; McHugh, C.; Mulligan, S.; Machiesky, L.; Soares, A.; Millard, C.

    2007-01-01

    We found that amide ligands can bind weakly but specifically to the ricin active site, producing significant shifts in positions of the critical active site residues Arg180 and Tyr80. These results indicate that fragment-based drug discovery methods are capable of identifying minimal bonding determinants of active-site side-chain rearrangements and the mechanistic origins of spectroscopic shifts. Our results suggest that tryptophan fluorescence provides a sensitive probe for the geometric relationship of arginine-tryptophan pairs, which often have significant roles in protein function. Using the unusual characteristics of the RTA system, we measured the still controversial thermodynamic changes of site-specific urea binding to a protein, results that are relevant to understanding the physical mechanisms of protein denaturation.

  13. Assessment of the site of ventricular activation by Fourier analysis of gated blood-pool studies

    SciTech Connect

    Links, J.M.; Raichlen, J.S.; Wagner, H.N. Jr.; Reid, P.R.

    1985-01-01

    The authors studied the use of first-harmonic Fourier analysis of gated blood-pool images to assess the site of ventricular activation in a group of 12 patients undergoing electrophysiologic pacing studies. They acquired gated blood-pool studies during pacing at up to four sites at each of two different rates. A total of 50 studies were made. At a pacing rate of 100 beats/min, when the pacing electrode was the right-ventricular outflow tract, 7/8; at the anterolateral left-ventricular wall, 4/4. When the Fourier activation site was at the right-ventricular apex, 9/9 times the pacing electrode was there; at the right-ventricular outflow tract, 7/10; in the left ventricle, 4/4. Fourier analysis of gated blood-pool studies can help identify the site of ventricular activation but is not sufficiently accurate to fully replace endocardial mapping.

  14. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    SciTech Connect

    Crichlow, G.; Lubetsky, J; Leng, L; Bucala, R; Lolis, E

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic data indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.

  15. Active Site Inhibitors Protect Protein Kinase C from Dephosphorylation and Stabilize Its Mature Form*

    PubMed Central

    Gould, Christine M.; Antal, Corina E.; Reyes, Gloria; Kunkel, Maya T.; Adams, Ryan A.; Ziyar, Ahdad; Riveros, Tania; Newton, Alexandra C.

    2011-01-01

    Conformational changes acutely control protein kinase C (PKC). We have previously shown that the autoinhibitory pseudosubstrate must be removed from the active site in order for 1) PKC to be phosphorylated by its upstream kinase phosphoinositide-dependent kinase 1 (PDK-1), 2) the mature enzyme to bind and phosphorylate substrates, and 3) the mature enzyme to be dephosphorylated by phosphatases. Here we show an additional level of conformational control; binding of active site inhibitors locks PKC in a conformation in which the priming phosphorylation sites are resistant to dephosphorylation. Using homogeneously pure PKC, we show that the active site inhibitor Gö 6983 prevents the dephosphorylation by pure protein phosphatase 1 (PP1) or the hydrophobic motif phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP). Consistent with results using pure proteins, treatment of cells with the competitive inhibitors Gö 6983 or bisindolylmaleimide I, but not the uncompetitive inhibitor bisindolylmaleimide IV, prevents the dephosphorylation and down-regulation of PKC induced by phorbol esters. Pulse-chase analyses reveal that active site inhibitors do not affect the net rate of priming phosphorylations of PKC; rather, they inhibit the dephosphorylation triggered by phorbol esters. These data provide a molecular explanation for the recent studies showing that active site inhibitors stabilize the phosphorylation state of protein kinases B/Akt and C. PMID:21715334

  16. Structural Insights into the Tetrameric State of Aspartate-β-semialdehyde Dehydrogenases from Fungal Species.

    PubMed

    Li, Qinqin; Mu, Zhixia; Zhao, Rong; Dahal, Gopal; Viola, Ronald E; Liu, Tao; Jin, Qi; Cui, Sheng

    2016-01-01

    Aspartate-β-semialdehyde dehydrogenase (ASADH) catalyzes the second reaction in the aspartate pathway, a pathway required for the biosynthesis of one fifth of the essential amino acids in plants and microorganisms. Microarray analysis of a fungal pathogen T. rubrum responsible for most human dermatophytoses identified the upregulation of ASADH (trASADH) expression when the fungus is exposed to human skin, underscoring its potential as a drug target. Here we report the crystal structure of trASADH, revealing a tetrameric ASADH with a GAPDH-like fold. The tetramerization of trASADH was confirmed by sedimentation and SAXS experiments. Native PAGE demonstrated that this ASADH tetramerization is apparently universal in fungal species, unlike the functional dimer that is observed in all bacterial ASADHs. The helical subdomain in dimeric bacteria ASADH is replaced by the cover loop in archaeal/fungal ASADHs, presenting the determinant for this altered oligomerization. Mutations that disrupt the tetramerization of trASADH also abolish the catalytic activity, suggesting that the tetrameric state is required to produce the active fungal enzyme form. Our findings provide a basis to categorize ASADHs into dimeric and tetrameric enzymes, adopting a different orientation for NADP binding and offer a structural framework for designing drugs that can specifically target the fungal pathogens. PMID:26869335

  17. Structural Insights into the Tetrameric State of Aspartate-β-semialdehyde Dehydrogenases from Fungal Species

    PubMed Central

    Li, Qinqin; Mu, Zhixia; Zhao, Rong; Dahal, Gopal; Viola, Ronald E.; Liu, Tao; Jin, Qi; Cui, Sheng

    2016-01-01

    Aspartate-β-semialdehyde dehydrogenase (ASADH) catalyzes the second reaction in the aspartate pathway, a pathway required for the biosynthesis of one fifth of the essential amino acids in plants and microorganisms. Microarray analysis of a fungal pathogen T. rubrum responsible for most human dermatophytoses identified the upregulation of ASADH (trASADH) expression when the fungus is exposed to human skin, underscoring its potential as a drug target. Here we report the crystal structure of trASADH, revealing a tetrameric ASADH with a GAPDH-like fold. The tetramerization of trASADH was confirmed by sedimentation and SAXS experiments. Native PAGE demonstrated that this ASADH tetramerization is apparently universal in fungal species, unlike the functional dimer that is observed in all bacterial ASADHs. The helical subdomain in dimeric bacteria ASADH is replaced by the cover loop in archaeal/fungal ASADHs, presenting the determinant for this altered oligomerization. Mutations that disrupt the tetramerization of trASADH also abolish the catalytic activity, suggesting that the tetrameric state is required to produce the active fungal enzyme form. Our findings provide a basis to categorize ASADHs into dimeric and tetrameric enzymes, adopting a different orientation for NADP binding and offer a structural framework for designing drugs that can specifically target the fungal pathogens. PMID:26869335

  18. The Aspartate-Less Receiver (ALR) Domains: Distribution, Structure and Function

    PubMed Central

    Weiner, Joshua J.; Han, Lanlan; Peterson, Francis C.; Volkman, Brian F.; Silvaggi, Nicholas R.; Ulijasz, Andrew T.

    2015-01-01

    Two-component signaling systems are ubiquitous in bacteria, Archaea and plants and play important roles in sensing and responding to environmental stimuli. To propagate a signaling response the typical system employs a sensory histidine kinase that phosphorylates a Receiver (REC) domain on a conserved aspartate (Asp) residue. Although it is known that some REC domains are missing this Asp residue, it remains unclear as to how many of these divergent REC domains exist, what their functional roles are and how they are regulated in the absence of the conserved Asp. Here we have compiled all deposited REC domains missing their phosphorylatable Asp residue, renamed here as the Aspartate-Less Receiver (ALR) domains. Our data show that ALRs are surprisingly common and are enriched for when attached to more rare effector outputs. Analysis of our informatics and the available ALR atomic structures, combined with structural, biochemical and genetic data of the ALR archetype RitR from Streptococcus pneumoniae presented here suggest that ALRs have reorganized their active pockets to instead take on a constitutive regulatory role or accommodate input signals other than Asp phosphorylation, while largely retaining the canonical post-phosphorylation mechanisms and dimeric interface. This work defines ALRs as an atypical REC subclass and provides insights into shared mechanisms of activation between ALR and REC domains. PMID:25875291

  19. Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia

    PubMed Central

    Di Fiore, Maria Maddalena; Santillo, Alessandra; Falvo, Sara; Longobardi, Salvatore; Chieffi Baccari, Gabriella

    2016-01-01

    A bulk of evidence suggests that d-aspartate (d-Asp) regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR) in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK) pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA) and aurora kinase B (AURKB). Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor β (ESR2) interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation. PMID:27428949

  20. Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia.

    PubMed

    Di Fiore, Maria Maddalena; Santillo, Alessandra; Falvo, Sara; Longobardi, Salvatore; Chieffi Baccari, Gabriella

    2016-01-01

    A bulk of evidence suggests that d-aspartate (d-Asp) regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR) in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK) pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA) and aurora kinase B (AURKB). Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor β (ESR2) interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation. PMID:27428949

  1. R76 in transmembrane domain 3 of the aspartate:alanine transporter AspT is involved in substrate transport.

    PubMed

    Suzuki, Satomi; Nanatani, Kei; Abe, Keietsu

    2016-01-01

    The L-aspartate:L-alanine antiporter of Tetragenococcus halophilus (AspT) possesses an arginine residue (R76) within the GxxxG motif in the central part of transmembrane domain 3 (TM3)-a residue that has been estimated to transport function. In this study, we carried out amino acid substitutions of R76 and used proteoliposome reconstitution for analyzing the transport function of each substitution. Both l-aspartate and l-alanine transport assays showed that R76K has higher activity than the AspT-WT (R76), whereas R76D and R76E have lower activity than the AspT-WT. These results suggest that R76 is involved in AspT substrate transport. PMID:26849958

  2. Active-site motions and polarity enhance catalytic turnover of hydrated subtilisin dissolved in organic solvents.

    PubMed

    Hudson, Elton P; Eppler, Ross K; Beaudoin, Julianne M; Dordick, Jonathan S; Reimer, Jeffrey A; Clark, Douglas S

    2009-04-01

    The enzyme subtilisin Carlsberg was surfactant-solubilized into two organic solvents, isooctane and tetrahydrofuran, and hydrated through stepwise changes in the thermodynamic water activity, a(w). The apparent turnover number k(cat)(app) in these systems ranged from 0.2 to 80 s(-1) and increased 11-fold in isooctane and up to 50-fold in tetrahydrofuran with increasing a(w). (19)F NMR relaxation experiments employing an active-site inhibitor were used to assess the dependence of active-site motions on a(w). The rates of NMR-derived fast (k > 10(7) s(-1)) and slow (k < 10(4) s(-1)) active-site motions increased in both solvents upon hydration, but only the slow motions correlated with k(cat). The (19)F chemical shift was a sensitive probe of the local electronic environment and provided an empirical measure of the active-site dielectric constant epsilon(as), which increased with hydration to epsilon(as) approximately 13 in each solvent. In both solvents, the transition state free energy data and epsilon(as) followed Kirkwood's model for the continuum solvation of a dipole, indicating that water also enhanced catalysis by altering the active-site's electronic environment and increasing its polarity to better stabilize the transition state. These results reveal that favorable dynamic and electrostatic effects both contribute to accelerated catalysis by solubilized subtilisin Carlsberg upon hydration in organic solvents. PMID:19317505

  3. Enhanced Enzyme Kinetic Stability by Increasing Rigidity within the Active Site*

    PubMed Central

    Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan

    2014-01-01

    Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser105 residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T5015, the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability. PMID:24448805

  4. Effects of resource activities upon repository siting and waste containment with reference to bedded salt

    SciTech Connect

    Ashby, J.; Rowe, J.

    1980-02-01

    The primary consideration for the suitability of a nuclear waste repository site is the overall ability of the repository to safely contain radioactive waste. This report is a discussion of the past, present, and future effects of resource activities on waste containment. Past and present resource activities which provide release pathways (i.e., leaky boreholes, adjacent mines) will receive initial evaluation during the early stages of any repository site study. However, other resource activities which may have subtle effects on containment (e.g., long-term pumping causing increased groundwater gradients, invasion of saline water causing lower retardation) and all potential future resource activities must also be considered during the site evaluation process. Resource activities will affect both the siting and the designing of repositories. Ideally, sites should be located in areas of low resource activity and low potential for future activity, and repository design should seek to eliminate or minimize the adverse effects of any resource activity. Buffer zones should be created to provide areas in which resource activities that might adversely affect containment can be restricted or curtailed. This could mean removing large areas of land from resource development. The impact of these frozen assets should be assessed in terms of their economic value and of their effect upon resource reserves. This step could require a major effort in data acquisition and analysis followed by extensive numerical modeling of regional fluid flow and mass transport. Numerical models should be used to assess the effects of resource activity upon containment and should include the cumulative effects of different resource activities. Analysis by other methods is probably not possible except for relatively simple cases.

  5. A caspase active site probe reveals high fractional inhibition needed to block DNA fragmentation.

    PubMed

    Méthot, Nathalie; Vaillancourt, John P; Huang, JingQi; Colucci, John; Han, Yongxin; Ménard, Stéphane; Zamboni, Robert; Toulmond, Sylvie; Nicholson, Donald W; Roy, Sophie

    2004-07-01

    Apoptotic markers consist of either caspase substrate cleavage products or phenotypic changes that manifest themselves as a consequence of caspase-mediated substrate cleavage. We have shown recently that pharmacological inhibitors of caspase activity prevent the appearance of two such apoptotic manifestations, alphaII-spectrin cleavage and DNA fragmentation, but that blockade of the latter required a significantly higher concentration of inhibitor. We investigated this phenomenon through the use of a novel radiolabeled caspase inhibitor, [(125)I]M808, which acts as a caspase active site probe. [(125)I]M808 bound to active caspases irreversibly and with high sensitivity in apoptotic cell extracts, in tissue extracts from several commonly used animal models of cellular injury, and in living cells. Moreover, [(125)I]M808 detected active caspases in septic mice when injected intravenously. Using this caspase probe, an active site occupancy assay was developed and used to measure the fractional inhibition required to block apoptosis-induced DNA fragmentation. In thymocytes, occupancy of up to 40% of caspase active sites had no effect on DNA fragmentation, whereas inhibition of half of the DNA cleaving activity required between 65 and 75% of active site occupancy. These results suggest that a high and persistent fractional inhibition will be required for successful caspase inhibition-based therapies. PMID:15067000

  6. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.

    PubMed

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  7. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  8. Computational approaches to the determination of active site structures and reaction mechanisms in heterogeneous catalysts.

    PubMed

    Catlow, C R A; French, S A; Sokol, A A; Thomas, J M

    2005-04-15

    We apply quantum chemical methods to the study of active site structures and reaction mechanisms in mesoporous silica and metal oxide catalysts. Our approach is based on the use of both molecular cluster and embedded cluster (QM/MM) techniques, where the active site and molecular complex are described using density functional theory (DFT) and the embedding matrix simulated by shell model potentials. We consider three case studies: alkene epoxidation over the microporous TS-1 catalyst; methanol synthesis on ZnO and Cu/ZnO and C-H bond activation over Li-doped MgO. PMID:15901543

  9. Denaturation studies of active-site labeled papain using electron paramagnetic resonance and fluorescence spectroscopy.

    PubMed Central

    Ping, Z A; Butterfiel, D A

    1991-01-01

    A spin-labeled p-chloromercuribenzoate (SL-PMB) and a fluorescence probe, 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan), both of which bind to the single SH group located in the active site of papain, were used to investigate the interaction of papain (EC 3.4.22.2) with two protein denaturants. It was found that the active site of papain was highly stable in urea solution, but underwent a large conformational change in guanidine hydrochloride solution. Electron paramagnetic resonance and fluorescence results were in agreement and both paralleled enzymatic activity of papain with respect to both the variation in pH and denaturation. These results strongly suggest that SL-PMB and Acrylodan labels can be used to characterize the physical state of the active site of the enzyme. PMID:1657229

  10. Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites.

    PubMed

    Ozeri-Galai, Efrat; Lebofsky, Ronald; Rahat, Ayelet; Bester, Assaf C; Bensimon, Aaron; Kerem, Batsheva

    2011-07-01

    Perturbed DNA replication in early stages of cancer development induces chromosomal instability preferentially at fragile sites. However, the molecular basis for this instability is unknown. Here, we show that even under normal growth conditions, replication fork progression along the fragile site, FRA16C, is slow and forks frequently stall at AT-rich sequences, leading to activation of additional origins to enable replication completion. Under mild replication stress, the frequency of stalling at AT-rich sequences is further increased. Strikingly, unlike in the entire genome, in the FRA16C region additional origins are not activated, suggesting that all potential origins are already activated under normal conditions. Thus, the basis for FRA16C fragility is replication fork stalling at AT-rich sequences and inability to activate additional origins under replication stress. Our results provide a mechanism explaining the replication stress sensitivity of fragile sites and thus, the basis for genomic instability during early stages of cancer development. PMID:21726815

  11. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    SciTech Connect

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  12. Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR).

    PubMed

    Menon, Binuraj R K; Hardman, Samantha J O; Scrutton, Nigel S; Heyes, Derren J

    2016-08-01

    Protochlorophyllide oxidoreductase (POR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide), an essential, regulatory step in chlorophyll biosynthesis. The unique requirement of the enzyme for light has provided the opportunity to investigate how light energy can be harnessed to power biological catalysis and enzyme dynamics. Excited state interactions between the Pchlide molecule and the protein are known to drive the subsequent reaction chemistry. However, the structural features of POR and active site residues that are important for photochemistry and catalysis are currently unknown, because there is no crystal structure for POR. Here, we have used static and time-resolved spectroscopic measurements of a number of active site variants to study the role of a number of residues, which are located in the proposed NADPH/Pchlide binding site based on previous homology models, in the reaction mechanism of POR. Our findings, which are interpreted in the context of a new improved structural model, have identified several residues that are predicted to interact with the coenzyme or substrate. Several of the POR variants have a profound effect on the photochemistry, suggesting that multiple residues are important in stabilizing the excited state required for catalysis. Our work offers insight into how the POR active site geometry is finely tuned by multiple active site residues to support enzyme-mediated photochemistry and reduction of Pchlide, both of which are crucial to the existence of life on Earth. PMID:27285815

  13. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor

    PubMed Central

    Spatzal, Thomas; Perez, Kathryn A; Howard, James B; Rees, Douglas C

    2015-01-01

    Dinitrogen reduction in the biological nitrogen cycle is catalyzed by nitrogenase, a two-component metalloenzyme. Understanding of the transformation of the inert resting state of the active site FeMo-cofactor into an activated state capable of reducing dinitrogen remains elusive. Here we report the catalysis dependent, site-selective incorporation of selenium into the FeMo-cofactor from selenocyanate as a newly identified substrate and inhibitor. The 1.60 Å resolution structure reveals selenium occupying the S2B site of FeMo-cofactor in the Azotobacter vinelandii MoFe-protein, a position that was recently identified as the CO-binding site. The Se2B-labeled enzyme retains substrate reduction activity and marks the starting point for a crystallographic pulse-chase experiment of the active site during turnover. Through a series of crystal structures obtained at resolutions of 1.32–1.66 Å, including the CO-inhibited form of Av1-Se2B, the exchangeability of all three belt-sulfur sites is demonstrated, providing direct insights into unforeseen rearrangements of the metal center during catalysis. DOI: http://dx.doi.org/10.7554/eLife.11620.001 PMID:26673079

  14. Insight into the mechanism of phosphoenolpyruvate mutase catalysis derived from site-directed mutagenesis studies of active site residues.

    PubMed

    Jia, Y; Lu, Z; Huang, K; Herzberg, O; Dunaway-Mariano, D

    1999-10-26

    PEP mutase catalyzes the conversion of phosphoenolpyruvate (PEP) to phosphonopyruvate in biosynthetic pathways leading to phosphonate secondary metabolites. A recent X-ray structure [Huang, K., Li, Z., Jia, Y., Dunaway-Mariano, D., and Herzberg, O. (1999) Structure (in press)] of the Mytilus edulis enzyme complexed with the Mg(II) cofactor and oxalate inhibitor reveals an alpha/beta-barrel backbone-fold housing an active site in which Mg(II) is bound by the two carboxylate groups of the oxalate ligand and the side chain of D85 and, via bridging water molecules, by the side chains of D58, D85, D87, and E114. The oxalate ligand, in turn, interacts with the side chains of R159, W44, and S46 and the backbone amide NHs of G47 and L48. Modeling studies identified two feasible PEP binding modes: model A in which PEP replaces oxalate with its carboxylate group interacting with R159 and its phosphoryl group positioned close to D58 and Mg(II) shifting slightly from its original position in the crystal structure, and model B in which PEP replaces oxalate with its phosphoryl group interacting with R159 and Mg(II) retaining its original position. Site-directed mutagenesis studies of the key mutase active site residues (R159, D58, D85, D87, and E114) were carried out in order to evaluate the catalytic roles predicted by the two models. The observed retention of low catalytic activity in the mutants R159A, D85A, D87A, and E114A, coupled with the absence of detectable catalytic activity in D58A, was interpreted as evidence for model A in which D58 functions in nucleophilic catalysis (phosphoryl transfer), R159 functions in PEP carboxylate group binding, and the carboxylates of D85, D87 and E114 function in Mg(II) binding. These results also provide evidence against model B in which R159 serves to mediate the phosphoryl transfer. A catalytic motif, which could serve both the phosphoryl transfer and the C-C cleavage enzymes of the PEP mutase superfamily, is proposed. PMID:10571990

  15. Localization of the binding site of tissue-type plasminogen activator to fibrin.

    PubMed Central

    Ichinose, A; Takio, K; Fujikawa, K

    1986-01-01

    Functionally active A and B chains were separated from a two-chain form of recombinant tissue-type plasminogen activator after mild reduction and alkylation. The A chain was found to be responsible for the binding to lysine-Sepharose or fibrin and the B chain contained the catalytic activity of tissue-type plasminogen activator. An extensive reduction of two-chain tissue-type plasminogen activator, however, destroyed both the binding and catalytic activities. A thermolytic fragment, Fr. 1, of tissue-type plasminogen activator that contained a growth factor and two kringle segments retained its lysine binding activity. Additional thermolytic cleavages in the kringle-2 segment of Fr. 1 caused a total loss of the binding activity. These results indicated that the binding site of tissue-type plasminogen activator to fibrin was located in the kringle-2 segment. Images PMID:3088041

  16. Purification and characterization of aspartate N-acetyltransferase: A critical enzyme in brain metabolism.

    PubMed

    Wang, Qinzhe; Zhao, Mojun; Parungao, Gwenn G; Viola, Ronald E

    2016-03-01

    Canavan disease (CD) is a neurological disorder caused by an interruption in the metabolism of N-acetylaspartate (NAA). Numerous mutations have been found in the enzyme that hydrolyzes NAA, and the catalytic activity of aspartoacylase is significantly impaired in CD patients. Recent studies have also supported an important role in CD for the enzyme that catalyzes the synthesis of NAA in the brain. However, previous attempts to study this enzyme had not succeeded in obtaining a soluble, stable and active form of this membrane-associated protein. We have now utilized fusion constructs with solubilizing protein partners to obtain an active and soluble form of aspartate N-acetyltransferase. Characterization of the properties of this enzyme has set the stage for the development of selective inhibitors that can lower the elevated levels of NAA that are observed in CD patients and potentially serve as a new treatment therapy. PMID:26550943

  17. Targeting N-methyl-D-aspartate receptors for treatment of neuropathic pain

    PubMed Central

    Zhou, Hong-Yi; Chen, Shao-Rui; Pan, Hui-Lin

    2011-01-01

    Neuropathic pain remains a major clinical problem and a therapeutic challenge because existing analgesics are often ineffective and can cause serious side effects. Increased N-methyl-D-aspartate receptor (NMDAR) activity contributes to central sensitization in certain types of neuropathic pain. NMDAR antagonists can reduce hyperalgesia and allodynia in animal models of neuropathic pain induced by nerve injury and diabetic neuropathy. Clinically used NMDAR antagonists, such as ketamine and dextromethorphan, are generally effective in patients with neuropathic pain, such as complex regional pain syndrome and painful diabetic neuropathy. However, patients with postherpetic neuralgia respond poorly to NMDAR antagonists. Recent studies on identifying NMDAR-interacting proteins and molecular mechanisms of increased NMDAR activity in neuropathic pain could facilitate the development of new drugs to attenuate abnormal NMDAR activity with minimal impairment of the physiological function of NMDARs. Combining NMDAR antagonists with other analgesics could also lead to better management of neuropathic pain without causing serious side effects. PMID:21686074

  18. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    SciTech Connect

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  19. In silico analysis of Pycnoporus cinnabarinus laccase active site with toxic industrial dyes.

    PubMed

    Prasad, Nirmal K; Vindal, Vaibhav; Narayana, Siva Lakshmi; Ramakrishna, V; Kunal, Swaraj Priyaranjan; Srinivas, M

    2012-05-01

    Laccases belong to multicopper oxidases, a widespread class of enzymes implicated in many oxidative functions in various industrial oxidative processes like production of fine chemicals to bioremediation of contaminated soil and water. In order to understand the mechanisms of substrate binding and interaction between substrates and Pycnoporus cinnabarinus laccase, a homology model was generated. The resulted model was further validated and used for docking studies with toxic industrial dyes- acid blue 74, reactive black 5 and reactive blue 19. Interactions of chemical mediators with the laccase was also examined. The docking analysis showed that the active site always cannot accommodate the dye molecules, due to constricted nature of the active site pocket and steric hindrance of the residues whereas mediators are relatively small and can easily be accommodated into the active site pocket, which, thereafter leads to the productive binding. The binding properties of these compounds along with identification of critical active site residues can be used for further site-directed mutagenesis experiments in order to identify their role in activity and substrate specificity, ultimately leading to improved mutants for degradation of these toxic compounds. PMID:21877154

  20. Sites of Regulated Phosphorylation that Control K-Cl Cotransporter Activity

    PubMed Central

    Rinehart, Jesse; Maksimova, Yelena D.; Tanis, Jessica E.; Stone, Kathryn L.; Hodson, Caleb A.; Zhang, Junhui; Risinger, Mary; Pan, Weijun; Wu, Dianqing; Colangelo, Christopher M.; Forbush, Biff; Joiner, Clinton H.; Gulcicek, Erol E.; Gallagher, Patrick G.; Lifton, Richard P.

    2010-01-01

    Summary Modulation of intracellular chloride concentration ([Cl−]i) plays a fundamental role in cell volume regulation and neuronal response to GABA. Cl− exit via K-Cl cotransporters (KCCs) is a major determinant of [Cl−]I; however, mechanisms governing KCC activities are poorly understood. We identified two sites in KCC3 that are rapidly dephosphorylated in hypotonic conditions in cultured cells and human red blood cells in parallel with increased transport activity. Alanine substitutions at these sites result in constitutively active cotransport. These sites are highly phosphorylated in plasma membrane KCC3 in isotonic conditions, suggesting that dephosphorylation increases KCC3's intrinsic transport activity. Reduction of WNK1 expression via RNA interference reduces phosphorylation at these sites. Homologous sites are phosphorylated in all human KCCs. KCC2 is partially phosphorylated in neonatal mouse brain and dephosphorylated in parallel with KCC2 activation. These findings provide insight into regulation of [Cl−]i and have implications for control of cell volume and neuronal function. PMID:19665974

  1. Active sites of ligand-protected Au25 nanoparticle catalysts for CO2 electroreduction to CO

    NASA Astrophysics Data System (ADS)

    Alfonso, Dominic R.; Kauffman, Douglas; Matranga, Christopher

    2016-05-01

    Recent experimental studies have reported the electrochemical reduction of carbon dioxide (CO2) into CO at atomically precise negatively charged Au25- nanoclusters. The studies showed CO2 conversion at remarkably low overpotentials, but the exact mechanisms and nature of the active sites remain unclear. We used first-principles density functional theory and continuum solvation models to examine the role of the cluster during electrochemical CO2 reduction and analyze the free energies of proposed intermediate species. Contrary to previous assumptions, our results show that the fully ligand protected cluster is not an active CO2 reduction catalyst because formation of the crucial carboxyl intermediate required very high electrochemical potentials. Instead, our calculations suggest that the reduction process likely occurs on a dethiolated gold site, and adsorbed carboxyl intermediate formation was significantly stabilized at dethiolated gold sites. These findings point to the crucial role of exposed metal sites during electrochemical CO2 reduction at gold nanocluster catalysts.

  2. Active sites of ligand-protected Au25 nanoparticle catalysts for CO2 electroreduction to CO.

    PubMed

    Alfonso, Dominic R; Kauffman, Douglas; Matranga, Christopher

    2016-05-14

    Recent experimental studies have reported the electrochemical reduction of carbon dioxide (CO2) into CO at atomically precise negatively charged Au25 (-) nanoclusters. The studies showed CO2 conversion at remarkably low overpotentials, but the exact mechanisms and nature of the active sites remain unclear. We used first-principles density functional theory and continuum solvation models to examine the role of the cluster during electrochemical CO2 reduction and analyze the free energies of proposed intermediate species. Contrary to previous assumptions, our results show that the fully ligand protected cluster is not an active CO2 reduction catalyst because formation of the crucial carboxyl intermediate required very high electrochemical potentials. Instead, our calculations suggest that the reduction process likely occurs on a dethiolated gold site, and adsorbed carboxyl intermediate formation was significantly stabilized at dethiolated gold sites. These findings point to the crucial role of exposed metal sites during electrochemical CO2 reduction at gold nanocluster catalysts. PMID:27179498

  3. Expansion of the aspartate beta-semialdehyde dehydrogenase family: the first structure of a fungal ortholog.

    PubMed

    Arachea, Buenafe T; Liu, Xuying; Pavlovsky, Alexander G; Viola, Ronald E

    2010-02-01

    The enzyme aspartate semialdehyde dehydrogenase (ASADH) catalyzes a critical transformation that produces the first branch-point intermediate in an essential microbial amino-acid biosynthetic pathway. The first structure of an ASADH isolated from a fungal species (Candida albicans) has been determined as a complex with its pyridine nucleotide cofactor. This enzyme is a functional dimer, with a similar overall fold and domain organization to the structurally characterized bacterial ASADHs. However, there are differences in the secondary-structural elements and in cofactor binding that are likely to cause the lower catalytic efficiency of this fungal enzyme. Alterations in the dimer interface, through deletion of a helical subdomain and replacement of amino acids that participate in a hydrogen-bonding network, interrupt the intersubunit-communication channels required to support an alternating-site catalytic mechanism. The detailed functional information derived from this new structure will allow an assessment of ASADH as a possible target for antifungal drug development. PMID:20124701

  4. Expansion of the aspartate [beta]-semialdehyde dehydrogenase family: the first structure of a fungal ortholog

    SciTech Connect

    Arachea, B.T.; Liu, X.; Pavlovsky, A.G.; Viola, R.E.

    2010-08-13

    The enzyme aspartate semialdehyde dehydrogenase (ASADH) catalyzes a critical transformation that produces the first branch-point intermediate in an essential microbial amino-acid biosynthetic pathway. The first structure of an ASADH isolated from a fungal species (Candida albicans) has been determined as a complex with its pyridine nucleotide cofactor. This enzyme is a functional dimer, with a similar overall fold and domain organization to the structurally characterized bacterial ASADHs. However, there are differences in the secondary-structural elements and in cofactor binding that are likely to cause the lower catalytic efficiency of this fungal enzyme. Alterations in the dimer interface, through deletion of a helical subdomain and replacement of amino acids that participate in a hydrogen-bonding network, interrupt the intersubunit-communication channels required to support an alternating-site catalytic mechanism. The detailed functional information derived from this new structure will allow an assessment of ASADH as a possible target for antifungal drug development.

  5. Pediatric anti-N methyl D aspartate receptor encephalitis.

    PubMed

    Suri, Vinit; Sharma, Sushma; Gupta, Rohan; Sogani, S K; Mediratta, Sunit; Jadhao, Nilesh

    2013-05-01

    Anti-N Methyl D Aspartate Receptor encephalitis (anti-NMDARE) is a recently defined disease, which is probably more under-recognized than rare. We report a case of anti-NMDARE in a 13-years-old girl, who presented with intractable seizures. To the best of our knowledge, this is the second case of pediatric anti-NMDARE being reported from India. The need for a greater awareness of this disease and the subtle differences in clinical presentation between pediatric and adult patients are highlighted. PMID:24082929

  6. Bi-site activation occurs with the native and nucleotide-depleted mitochondrial F1-ATPase.

    PubMed Central

    Milgrom, Y M; Murataliev, M B; Boyer, P D

    1998-01-01

    Experiments are reported on the uni-site catalysis and the transition from uni-site to multi-site catalysis with bovine heart mitochondrial F1-ATPase. The very slow uni-site ATP hydrolysis is shown to occur without tightly bound nucleotides present and with or without Pi in the buffer. Measurements of the transition to higher rates and the amount of bound ATP committed to hydrolysis as the ATP concentration is increased at different fixed enzyme concentrations give evidence that the filling of a second site can initiate near maximal turnover rates. They provide rate constant information, and show that an apparent Km for a second site of about 2 microM and Vmax of 10 s-1, as suggested by others, is not operative. Careful initial velocity measurements also eliminate other suggested Km values and are consistent with bi-site activation to near maximal hydrolysis rates, with a Km of about 130 microM and Vmax of about 700 s-1. However, the results do not eliminate the possibility of additional 'hidden' Km values with similar Vmax:Km ratios. Recent data on competition between TNP-ATP and ATP revealed a third catalytic site for ATP in the millimolar concentration range. This result, and those reported in the present paper, allow the conclusion that the mitochondrial F1-ATPase can attain near maximal activity in bi-site catalysis. Our data also add to the evidence that a recent claim, that the mitochondrial F1-ATPase does not show catalytic site cooperativity, is invalid. PMID:9480927

  7. Expression and purification of a functional recombinant aspartate aminotransferase (AST) from Escherichia coli.

    PubMed

    Zou, Lihui; Zhao, Haijian; Wang, Daguang; Wang, Meng; Zhang, Chuanbao; Xiao, Fei

    2014-07-01

    Aspartate aminotransferase (AST; E.C. 2.6.1.1), a vitamin B6-dependent enzyme, preferentially promotes the mutual transformation of aspartate and α-ketoglutarate to oxaloacetate and glutamate. It plays a key role in amino acid metabolism and has been widely recommended as a biomarker of liver and heart damage. Our study aimed to evaluate the extensive preparation of AST and its application in quality control in clinical laboratories. We describe a scheme to express and purify the 6His-AST fusion protein. An optimized sequence coding AST was synthesized and transformed into Escherichia coli BL21 (DE3) strain for protein expression. Ideally, the fusion protein has a volumetric productivity achieving 900 mg/l cultures. After affinity chromatography, the enzyme activity of purified AST reached 150,000 U/L. Commutability assessment between the engineered AST and standard AST from Roche suggested that the engineered AST was the better candidate for the reference material. Moreover, the AST showed high stability during long-term storage at -20ºC. In conclusion, the highly soluble 6His-tagged AST can become a convenient tool for supplying a much better and cheaper standard or reference material for the clinical laboratory. PMID:24722375

  8. Counting Active Sites on Titanium Oxide-Silica Catalysts for Hydrogen Peroxide Activation through In Situ Poisoning with Phenylphosphonic Acid

    SciTech Connect

    Eaton, Todd R.; Boston, Andrew M.; Thompson, Anthony B.; Gray, Kimberly A.; Notestein, Justin M.

    2015-06-04

    Quantifying specific active sites in supported catalysts improves our understanding and assists in rational design. Supported oxides can undergo significant structural changes as surface densities increase from site-isolated cations to monolayers and crystallites, which changes the number of kinetically relevant sites. Herein, TiOx domains are titrated on TiOx–SiO2 selectively with phenylphosphonic acid (PPA). An ex situ method quantifies all fluid-accessible TiOx, whereas an in situ titration during cis-cyclooctene epoxidation provides previously unavailable values for the number of tetrahedral Ti sites on which H2O2 activation occurs. We use this method to determine the active site densities of 22 different catalysts with different synthesis methods, loadings, and characteristic spectra and find a single intrinsic turnover frequency for cis-cyclooctene epoxidation of (40±7) h-1. This simple method gives molecular-level insight into catalyst structure that is otherwise hidden when bulk techniques are used.

  9. Modified Active Site Coordination in a Clinical Mutant of Sulfite Oxidase

    SciTech Connect

    Doonan, C.J.; Wilson, H.L.; Rajagopalan, K.V.; Garrett, R.M.; Bennett, B.; Prince, R.C.; George, G.N.

    2009-06-02

    The molybdenum site of the Arginine 160 {yields} Glutamine clinical mutant of the physiologically vital enzyme sulfite oxidase has been investigated by a combination of X-ray absorption spectroscopy and density functional theory calculations. We conclude that the mutant enzyme has a six-coordinate pseudo-octahedral active site with coordination of Glutamine O{sup {epsilon}} to molybdenum. This contrasts with the wild-type enzyme which is five-coordinate with approximately square-based pyramidal geometry. This difference in the structure of the molybdenum site explains many of the properties of the mutant enzyme which have previously been reported.

  10. Mutations Closer to the Active Site Improve the Promiscuous Aldolase Activity of 4-Oxalocrotonate Tautomerase More Effectively than Distant Mutations.

    PubMed

    Rahimi, Mehran; van der Meer, Jan-Ytzen; Geertsema, Edzard M; Poddar, Harshwardhan; Baas, Bert-Jan; Poelarends, Gerrit J

    2016-07-01

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which catalyzes enol-keto tautomerization as part of a degradative pathway for aromatic hydrocarbons, promiscuously catalyzes various carbon-carbon bond-forming reactions. These include the aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde. Here, we demonstrate that 4-OT can be engineered into a more efficient aldolase for this condensation reaction, with a >5000-fold improvement in catalytic efficiency (kcat /Km ) and a >10(7) -fold change in reaction specificity, by exploring small libraries in which only "hotspots" are varied. The hotspots were identified by systematic mutagenesis (covering each residue), followed by a screen for single mutations that give a strong improvement in the desired aldolase activity. All beneficial mutations were near the active site of 4-OT, thus underpinning the notion that new catalytic activities of a promiscuous enzyme are more effectively enhanced by mutations close to the active site. PMID:27238293

  11. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase.

    PubMed Central

    Petrosino, J F; Palzkill, T

    1996-01-01

    Beta-Lactamase is a bacterial protein that provides resistance against beta-lactam antibiotics. TEM-1 beta-lactamase is the most prevalent plasmid-mediated beta-lactamase in gram-negative bacteria. Normally, this enzyme has high levels of hydrolytic activity for penicillins, but mutant beta-lactamases have evolved with activity toward a variety of beta-lactam antibiotics. It has been shown that active site substitutions are responsible for changes in the substrate specificity. Since mutant beta-lactamases pose a serious threat to antimicrobial therapy, the mechanisms by which mutations can alter the substrate specificity of TEM-1 beta-lactamase are of interest. Previously, screens of random libraries encompassing 31 of 55 active site amino acid positions enabled the identification of the residues responsible for maintaining the substrate specificity of TEM-1 beta-lactamase. In addition to substitutions found in clinical isolates, many other specificity-altering mutations were also identified. Interestingly, many nonspecific substitutions in the N-terminal half of the active site omega loop were found to increase ceftazidime hydrolytic activity and decrease ampicillin hydrolytic activity. To complete the active sight study, eight additional random libraries were constructed and screened for specificity-altering mutations. All additional substitutions found to alter the substrate specificity were located in the C-terminal half of the active site loop. These mutants, much like the N-terminal omega loop mutants, appear to be less stable than the wild-type enzyme. Further analysis of a 165-YYG-167 triple mutant, selected for high levels of ceftazidime hydrolytic activity, provides an example of the correlation which exists between enzyme instability and increased ceftazidime hydrolytic activity in the ceftazidime-selected omega loop mutants. PMID:8606154

  12. Crystal structure of Clostridium acetobutylicum Aspartate kinase (CaAK): An important allosteric enzyme for amino acids production.

    PubMed

    Manjasetty, Babu A; Chance, Mark R; Burley, Stephen K; Panjikar, Santosh; Almo, Steven C

    2014-09-01

    Aspartate kinase (AK) is an enzyme which is tightly regulated through feedback control and responsible for the synthesis of 4-phospho-L-aspartate from L-aspartate. This intermediate step is at an important branch point where one path leads to the synthesis of lysine and the other to threonine, methionine and isoleucine. Concerted feedback inhibition of AK is mediated by threonine and lysine and varies between the species. The crystal structure of biotechnologically important Clostridium acetobutylicum aspartate kinase (CaAK; E.C. 2.7.2.4; Mw=48,030Da; 437aa; SwissProt: Q97MC0) has been determined to 3Å resolution. CaAK acquires a protein fold similar to the other known structures of AKs despite the low sequence identity (<30%). It is composed of two domains: an N-terminal catalytic domain (kinase) domain and a C-terminal regulatory domain further comprised of two small domains belonging to the ACT domain family. Pairwise comparison of 12 molecules in the asymmetric unit helped to identify the bending regions which are in the vicinity of ATP binding site involved in domain movements between the catalytic and regulatory domains. All 12 CaAK molecules adopt fully open T-state conformation leading to the formation of three tetramers unique among other similar AK structures. On the basis of comparative structural analysis, we discuss tetramer formation based on the large conformational changes in the catalytic domain associated with the lysine binding at the regulatory domains. The structure described herein is homologous to a target in wide-spread pathogenic (toxin producing) bacteria such as Clostridium tetani (64% sequence identity) suggesting the potential of the structure solved here to be applied for modeling drug interactions. CaAK structure may serve as a guide to better understand and engineer lysine biosynthesis for the biotechnology industry. PMID:25170437

  13. Active-site motions and polarity enhance catalytic turnover of hydrated subtilisin dissolved in organic solvents

    PubMed Central

    Hudson, Elton P; Eppler, Ross K; Beaudoin, Julianne M; Dordick, Jonathan S; Reimer, Jeffrey A; Clark, Douglas S

    2009-01-01

    The enzyme subtilisin Carlsberg was surfactant-solubilized into two organic solvents, isooctane and tetrahydrofuran, and hydrated through stepwise changes in the thermodynamic water activity, aw. The apparent turnover number kcatapp in these systems ranged from 0.2 to 80 s−1 and increased 11-fold in isooctane and up to 50-fold in tetrahydrofuran with increasing aw. 19F-NMR relaxation experiments employing an active-site inhibitor were used to assess the dependence of active-site motions on aw. The rates of NMR-derived fast (k > 107 s−1) and slow (k < 104 s−1) active-site motions increased in both solvents upon hydration, but only the slow motions correlated with kcat. The 19F chemical shift was a sensitive probe of the local electronic environment and provided an empirical measure of the active-site dielectric constant εas, which increased with hydration to εas ≈ 13 in each solvent. In both solvents the transition state free energy data and εas followed Kirkwood’s model for the continuum solvation of a dipole, indicating that water also enhanced catalysis by altering the active-site’s electronic environment and increasing its polarity to better stabilize the transition state. These results reveal that favorable dynamic and electrostatic effects both contribute to accelerated catalysis by solubilized subtilisin Carlsberg upon hydration in organic solvents. PMID:19317505

  14. Acylpeptide hydrolase: inhibitors and some active site residues of the human enzyme.

    PubMed

    Scaloni, A; Jones, W M; Barra, D; Pospischil, M; Sassa, S; Popowicz, A; Manning, L R; Schneewind, O; Manning, J M

    1992-02-25

    Acylpeptide hydrolase may be involved in N-terminal deacetylation of nascent polypeptide chains and of bioactive peptides. The activity of this enzyme from human erythrocytes is sensitive to anions such as chloride, nitrate, and fluoride. Furthermore, blocked amino acids act as competitive inhibitors of the enzyme. Acetyl leucine chloromethyl ketone has been employed to identify one active site residue as His-707. Diisopropylfluorophosphate has been used to identify a second active site residue as Ser-587. Chemical modification studies with a water-soluble carbodiimide implicate a carboxyl group in catalytic activity. These results and the sequence around these active site residues, especially near Ser-587, suggest that acylpeptide hydrolase contains a catalytic triad. The presence of a cysteine residue in the vicinity of the active site is suggested by the inactivation of the enzyme by sulfhydryl-modifying agents and also by a low amount of modification by the peptide chloromethyl ketone inhibitor. Ebelactone A, an inhibitor of the formyl aminopeptidase, the bacterial counterpart of eukaryotic acylpeptide hydrolase, was found to be an effective inhibitor of this enzyme. These findings suggest that acylpeptidase hydrolase is a member of a family of enzymes with extremely diverse functions. PMID:1740429

  15. Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis.

    PubMed

    Xu, Wei; Shao, Rong; Wang, Zupeng; Yan, Xiuhua

    2015-03-01

    Neutral phytase is used as a feed additive for degradation of anti-nutritional phytate in aquatic feed industry. Site-directed mutagenesis of Bacillus amyloliquefaciens DSM 1061 phytase was performed with an aim to increase its activity. Mutation residues were chosen based on multiple sequence alignments and structure analysis of neutral phytsaes from different microorganisms. The mutation sites on surface (D148E, S197E and N156E) and around the active site (D52E) of phytase were selected. Analysis of the phytase variants showed that the specific activities of mutants D148E and S197E remarkably increased by about 35 and 13% over a temperature range of 40-75 °C at pH 7.0, respectively. The k cat of mutants D148E and S197E were 1.50 and 1.25 times than that of the wild-type phytase, respectively. Both D148E and S197E showed much higher thermostability than that of the wild-type phytase. However, mutants N156E and D52E led to significant loss of specific activity of the enzyme. Structural analysis revealed that these mutations may affect conformation of the active site of phytase. The present mutant phytases D148E and S197E with increased activities and thermostabilities have application potential as additives in aquaculture feed. PMID:25613522

  16. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    SciTech Connect

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  17. Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site

    PubMed Central

    Wang, Lu; Fried, Stephen D.; Boxer, Steven G.; Markland, Thomas E.

    2014-01-01

    Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds. PMID:25503367

  18. Evidence from molecular dynamics simulations of conformational preorganization in the ribonuclease H active site

    PubMed Central

    Stafford, Kate A.; Palmer III, Arthur G.

    2014-01-01

    Ribonuclease H1 (RNase H) enzymes are well-conserved endonucleases that are present in all domains of life and are particularly important in the life cycle of retroviruses as domains within reverse transcriptase. Despite extensive study, especially of the E. coli homolog, the interaction of the highly negatively charged active site with catalytically required magnesium ions remains poorly understood. In this work, we describe molecular dynamics simulations of the E. coli homolog in complex with magnesium ions, as well as simulations of other homologs in their apo states. Collectively, these results suggest that the active site is highly rigid in the apo state of all homologs studied and is conformationally preorganized to favor the binding of a magnesium ion. Notably, representatives of bacterial, eukaryotic, and retroviral RNases H all exhibit similar active-site rigidity, suggesting that this dynamic feature is only subtly modulated by amino acid sequence and is primarily imposed by the distinctive RNase H protein fold. PMID:25075292

  19. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115.

    PubMed

    Nakamichi, Yusuke; Oiki, Sayoko; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2016-08-01

    Bacterial unsaturated glucuronyl hydrolase (UGL) degrades unsaturated disaccharides generated from mammalian extracellular matrices, glycosaminoglycans, by polysaccharide lyases. Two Asp residues, Asp-115 and Asp-175 of Streptococcus agalactiae UGL (SagUGL), are completely conserved in other bacterial UGLs, one of which (Asp-175 of SagUGL) acts as a general acid and base catalyst. The other Asp (Asp-115 of SagUGL) also affects the enzyme activity, although its role in the enzyme reaction has not been well understood. Here, we show substitution of Asp-115 in SagUGL with Asn caused a conformational change in the active site. Tertiary structures of SagUGL mutants D115N and D115N/K370S with negligible enzyme activity were determined at 2.00 and 1.79 Å resolution, respectively, by X-ray crystallography. The side chain of Asn-115 is drastically shifted in both mutants owing to the interaction with several residues, including Asp-175, by formation of hydrogen bonds. This interaction between Asn-115 and Asp-175 probably prevents the mutants from triggering the enzyme reaction using Asp-175 as an acid catalyst. PMID:27402448

  20. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    PubMed Central

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-01-01

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr998 in the kinase domain. The LC–ESI–MS/MS spectra provided support that up to three sites (Thr890, Ser893 and Thr894) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr890, Ser893, Thr894 and Thr899, differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  1. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity.

    PubMed

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-12-15

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser(696) and Ser(698) in the JM (juxtamembrane) region and probably Ser(886) and/or Ser(893) in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser(717) in the JM, and at Ser(733), Thr(752), Ser(783), Ser(864), Ser(911), Ser(958) and Thr(998) in the kinase domain. The LC-ESI-MS/MS spectra provided support that up to three sites (Thr(890), Ser(893) and Thr(894)) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr(890), Ser(893), Thr(894) and Thr(899), differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  2. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  3. Preliminary examination of the impacts of repository site characterization activities and facility construction and operation activities on Hanford air quality

    SciTech Connect

    Glantz, C.S.; Ramsdell, J.V.

    1986-04-01

    Air quality impacts that would result from site characterization activities and from the construction and operation of a high-level nuclear wste repository at Hanford are estimated using two simple atmospheric dispersion models, HANCHI and CHISHORT. Model results indicate that pollutant concentrations would not exceed ambient air quality standards at any point outside the Hanford fenceline or at any publicly accessible location within the Hanford Site. The increase in pollutant concentrations in nearby communities due to site activities would be minimal. HANCHI and CHISHORT are documented in the appendices of this document. Further study of the repository's impact on air quality will be conducted when more detailed project plans and work schedules are available.

  4. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site.

    PubMed

    Gerlits, Oksana; Wymore, Troy; Das, Amit; Shen, Chen-Hsiang; Parks, Jerry M; Smith, Jeremy C; Weiss, Kevin L; Keen, David A; Blakeley, Matthew P; Louis, John M; Langan, Paul; Weber, Irene T; Kovalevsky, Andrey

    2016-04-11

    Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level. PMID:26958828

  5. Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site.

    PubMed

    Lee, M Hope; Clingenpeel, Scott C; Leiser, Owen P; Wymore, Ryan A; Sorenson, Kent S; Watwood, Mary E

    2008-05-01

    A variety of naturally occurring bacteria produce enzymes that cometabolically degrade trichloroethene (TCE), including organisms with aerobic oxygenases. Groundwater contaminated with TCE was collected from the aerobic region of the Test Area North site of the Idaho National Laboratory. Samples were evaluated with enzyme activity probes, and resulted in measurable detection of toluene oxygenase activity (6-79% of the total microbial cells). Wells from both inside and outside contaminated plume showed activity. Toluene oxygenase-specific PCR primers determined that toluene-degrading genes were present in all groundwater samples evaluated. In addition, bacterial isolates were obtained and possessed toluene oxygenase enzymes, demonstrated activity, and were dominated by the phylotype Pseudomonas. This study demonstrated, through the use of enzymatic probes and oxygenase gene identification, that indigenous microorganisms at a contaminated site were cometabolically active. Documentation such as this can be used to substantiate observations of natural attenuation of TCE-contaminated groundwater plumes. PMID:17904715

  6. Combined Use of Residual Dipolar Couplings and Solution X-ray Scattering To Rapidly Probe Rigid-Body Conformational Transitions in a Non-phosphorylatable Active-Site Mutant of the 128 kDa Enzyme I Dimer

    SciTech Connect

    Takayama, Yuki; Schwieters, Charles D.; Grishaev, Alexander; Ghirlando, Rodolfo; Clore, G. Marius

    2012-10-23

    The first component of the bacterial phosphotransferase system, enzyme I (EI), is a multidomain 128 kDa dimer that undergoes large rigid-body conformational transitions during the course of its catalytic cycle. Here we investigate the solution structure of a non-phosphorylatable active-site mutant in which the active-site histidine is substituted by glutamine. We show that perturbations in the relative orientations and positions of the domains and subdomains can be rapidly and reliably determined by conjoined rigid-body/torsion angle/Cartesian simulated annealing calculations driven by orientational restraints from residual dipolar couplings and shape and translation information afforded by small- and wide-angle X-ray scattering. Although histidine and glutamine are isosteric, the conformational space available to a Gln side chain is larger than that for the imidazole ring of His. An additional hydrogen bond between the side chain of Gln189 located on the EIN{sup {alpha}/{beta}} subdomain and an aspartate (Asp129) on the EIN{sup {alpha}} subdomain results in a small ({approx}9{sup o}) reorientation of the EIN{sup {alpha}} and EIN{sup {alpha}/{beta}} subdomains that is in turn propagated to a larger reorientation ({approx}26{sup o}) of the EIN domain relative to the EIC dimerization domain, illustrating the positional sensitivity of the EIN domain and its constituent subdomains to small structural perturbations.

  7. DNA damage processing by human 8-oxoguanine-DNA glycosylase mutants with the occluded active site.

    PubMed

    Lukina, Maria V; Popov, Alexander V; Koval, Vladimir V; Vorobjev, Yuri N; Fedorova, Olga S; Zharkov, Dmitry O

    2013-10-01

    8-Oxoguanine-DNA glycosylase (OGG1) removes premutagenic lesion 8-oxoguanine (8-oxo-G) from DNA and then nicks the nascent abasic (apurinic/apyrimidinic) site by β-elimination. Although the structure of OGG1 bound to damaged DNA is known, the dynamic aspects of 8-oxo-G recognition are not well understood. To comprehend the mechanisms of substrate recognition and processing, we have constructed OGG1 mutants with the active site occluded by replacement of Cys-253, which forms a wall of the base-binding pocket, with bulky leucine or isoleucine. The conformational dynamics of OGG1 mutants were characterized by single-turnover kinetics and stopped-flow kinetics with fluorescent detection. Additionally, the conformational mobility of wild type and the mutant OGG1 substrate complex was assessed using molecular dynamics simulations. Although pocket occlusion distorted the active site and greatly decreased the catalytic activity of OGG1, it did not fully prevent processing of 8-oxo-G and apurinic/apyrimidinic sites. Both mutants were notably stimulated in the presence of free 8-bromoguanine, indicating that this base can bind to the distorted OGG1 and facilitate β-elimination. The results agree with the concept of enzyme plasticity, suggesting that the active site of OGG1 is flexible enough to compensate partially for distortions caused by mutation. PMID:23955443

  8. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    SciTech Connect

    Fitzner, R.E.; Weiss, S.G.; Stegen, J.A.

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  9. A Tale of Two Isomerases: Compact versus Extended Active Sites in Ketosteroid Isomerase and Phosphoglucose Isomerase

    SciTech Connect

    Somarowthu, Srinivas; Brodkin, Heather R.; D’Aquino, J. Alejandro; Ringe, Dagmar; Ondrechen, Mary Jo; Beuning, Penny J.

    2012-07-11

    Understanding the catalytic efficiency and specificity of enzymes is a fundamental question of major practical and conceptual importance in biochemistry. Although progress in biochemical and structural studies has enriched our knowledge of enzymes, the role in enzyme catalysis of residues that are not nearest neighbors of the reacting substrate molecule is largely unexplored experimentally. Here computational active site predictors, THEMATICS and POOL, were employed to identify functionally important residues that are not in direct contact with the reacting substrate molecule. These predictions then guided experiments to explore the active sites of two isomerases, Pseudomonas putida ketosteroid isomerase (KSI) and human phosphoglucose isomerase (PGI), as prototypes for very different types of predicted active sites. Both KSI and PGI are members of EC 5.3 and catalyze similar reactions, but they represent significantly different degrees of remote residue participation, as predicted by THEMATICS and POOL. For KSI, a compact active site of mostly first-shell residues is predicted, but for PGI, an extended active site in which residues in the first, second, and third layers around the reacting substrate are predicted. Predicted residues that have not been previously tested experimentally were investigated by site-directed mutagenesis and kinetic analysis. In human PGI, single-point mutations of the predicted second- and third-shell residues K362, H100, E495, D511, H396, and Q388 show significant decreases in catalytic activity relative to that of the wild type. The results of these experiments demonstrate that, as predicted, remote residues are very important in PGI catalysis but make only small contributions to catalysis in KSI.

  10. The active site of low-temperature methane hydroxylation in iron-containing zeolites.

    PubMed

    Snyder, Benjamin E R; Vanelderen, Pieter; Bols, Max L; Hallaert, Simon D; Böttger, Lars H; Ungur, Liviu; Pierloot, Kristine; Schoonheydt, Robert A; Sels, Bert F; Solomon, Edward I

    2016-08-18

    An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(ii), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species-α-Fe(ii) and α-O-are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive 'spectator' iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(ii) to be a mononuclear, high-spin, square planar Fe(ii) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(iv)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function-producing what is known in the context of metalloenzymes as an 'entatic' state-might be a useful way to tune the activity of heterogeneous catalysts. PMID:27535535

  11. A novel aspartic acid protease gene from pineapple fruit (Ananas comosus): cloning, characterization and relation to postharvest chilling stress resistance.

    PubMed

    Raimbault, Astrid-Kim; Zuily-Fodil, Yasmine; Soler, Alain; Cruz de Carvalho, Maria H

    2013-11-15

    A full-length cDNA encoding a putative aspartic acid protease (AcAP1) was isolated for the first time from the flesh of pineapple (Ananas comosus) fruit. The deduced sequence of AcAP1 showed all the common features of a typical plant aspartic protease phytepsin precursor. Analysis of AcAP1 gene expression under postharvest chilling treatment in two pineapple varieties differing in their resistance to blackheart development revealed opposite trends. The resistant variety showed an up-regulation of AcAP1 precursor gene expression whereas the susceptible showed a down-regulation in response to postharvest chilling treatment. The same trend was observed regarding specific AP enzyme activity in both varieties. Taken together our results support the involvement of AcAP1 in postharvest chilling stress resistance in pineapple fruits. PMID:23838125

  12. Is aspartate 52 essential for catalysis by chicken egg white lysozyme? The role of natural substrate-assisted hydrolysis

    SciTech Connect

    Matsumura, Ichiro; Kirsch, J.F.

    1996-02-13

    The chicken and goose egg white lysozymes (ChEWL and GoEWL) are homologues, but differ in substrate specificity. ChEWL catalyzes the hydrolysis of the glycosidic bonds of bacterial peptidoglycans and chitin-derived substrates, while GoEWL is specific for bacterial peptidoglycans. The active-site aspartate 52 residue of ChEWL, which is postulated to stabilize the oxocarbenium ion intermediate, has no counterpart in GoEWL. The substrate specificity of the D52A ChEWL mutant was compared with those of wild-type ChEWL and GoEWL. D52A ChEWL retains approximately 4% of the wild-type catalytic activity in reactions with three different bacterial cell suspensions. Asp52 therefore is not essential to the catalytic mechanism, accounting for only a 2 kcal/mol decrease in AG. The function of Asp52 in D52A ChEWL- and GoEWL-catalyzed cleavage of (carboxymethyl)chitin may be partially fulfilled by an appropriately positioned carboxyl group on the substrate (substrate-assisted catalysis). D52A ChEWL and GoEWL, unlike wild-type ChEWL, exhibit biphasic kinetics in the clearing of Micrococcus luteus cell suspensions, suggesting preferences for subsets of the linkages in the M. luteus peptidoglycan. These subsets do not exist in the peptidoglycans of Escherichia coli or Sarcina lutea, since neither D52A ChEWL nor GoEWL exhibits initial bursts in reactions with suspensions of these bacteria. We propose that substrate-assisted catalysis occurs in reactions of D52A ChEWL and GoEWL with M. luteus peptidoglycans, with the glycine carboxyl group of uncross-linked peptides attached to N-acetylmuramic acid partially substituting the function of the missing Asp52. 52 refs., 6 figs., 1 tab.

  13. Dynamics of the Active Sites of Dimeric Seryl tRNA Synthetase from Methanopyrus kandleri.

    PubMed

    Dutta, Saheb; Nandi, Nilashis

    2015-08-27

    Aminoacyl tRNA synthetases (aaRSs) carry out the first step of protein biosynthesis. Several aaRSs are multimeric, and coordination between the dynamics of active sites present in each monomer is a prerequisite for the fast and accurate aminoacylation. However, important lacunae of understanding exist concerning the conformational dynamics of multimeric aaRSs. Questions remained unanswered pertaining to the dynamics of the active site. Little is known concerning the conformational dynamics of the active sites in response to the substrate binding, reorganization of the catalytic residues around reactants, time-dependent changes at the reaction center, which are essential for facilitating the nucleophilic attack, and interactions at the interface of neighboring monomers. In the present work, we carried out all-atom molecular dynamics simulation of dimeric (mk)SerRS from Methanopyrus kandleri bound with tRNA using an explicit solvent system. Two dimeric states of seryl tRNA synthetase (open, substrate bound, and adenylate bound) and two monomeric states (open and substrate bound) are simulated with bound tRNA. The aim is to understand the conformational dynamics of (mk)SerRS during its reaction cycle. While the present results provide a clear dynam