Science.gov

Sample records for active site aspartate

  1. The bifunctional active site of s-adenosylmethionine synthetase. Roles of the active site aspartates.

    PubMed

    Taylor, J C; Markham, G D

    1999-11-12

    S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the

  2. N-methyl-D-aspartate recognition site ligands modulate activity at the coupled glycine recognition site.

    PubMed

    Hood, W F; Compton, R P; Monahan, J B

    1990-03-01

    In synaptic plasma membranes from rat forebrain, the potencies of glycine recognition site agonists and antagonists for modulating [3H]1-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) binding and for displacing strychnine-insensitive [3H]glycine binding are altered in the presence of N-methyl-D-aspartate (NMDA) recognition site ligands. The NMDA competitive antagonist, cis-4-phosphonomethyl-2-piperidine carboxylate (CGS 19755), reduces [3H]glycine binding, and the reduction can be fully reversed by the NMDA recognition site agonist, L-glutamate. Scatchard analysis of [3H]glycine binding shows that in the presence of CGS 19755 there is no change in Bmax (8.81 vs. 8.79 pmol/mg of protein), but rather a decrease in the affinity of glycine (KD of 0.202 microM vs. 0.129 microM). Similar decreases in affinity are observed for the glycine site agonists, D-serine and 1-aminocyclopropane-1-carboxylate, in the presence of CGS 19755. In contrast, the affinity of glycine antagonists, 1-hydroxy-3-amino-2-pyrrolidone and 1-aminocyclobutane-1-carboxylate, at this [3H]glycine recognition site increases in the presence of CGS 19755. The functional consequence of this change in affinity was addressed using the modulation of [3H]TCP binding. In the presence of L-glutamate, the potency of glycine agonists for the stimulation of [3H]TCP binding increases, whereas the potency of glycine antagonists decreases. These data are consistent with NMDA recognition site ligands, through their interactions at the NMDA recognition site, modulating activity at the associated glycine recognition site.

  3. An arginine-aspartate network in the active site of bacterial TruB is critical for catalyzing pseudouridine formation

    PubMed Central

    Friedt, Jenna; Leavens, Fern M. V.; Mercier, Evan; Wieden, Hans-Joachim; Kothe, Ute

    2014-01-01

    Pseudouridine synthases introduce the most common RNA modification and likely use the same catalytic mechanism. Besides a catalytic aspartate residue, the contributions of other residues for catalysis of pseudouridine formation are poorly understood. Here, we have tested the role of a conserved basic residue in the active site for catalysis using the bacterial pseudouridine synthase TruB targeting U55 in tRNAs. Substitution of arginine 181 with lysine results in a 2500-fold reduction of TruB’s catalytic rate without affecting tRNA binding. Furthermore, we analyzed the function of a second-shell aspartate residue (D90) that is conserved in all TruB enzymes and interacts with C56 of tRNA. Site-directed mutagenesis, biochemical and kinetic studies reveal that this residue is not critical for substrate binding but influences catalysis significantly as replacement of D90 with glutamate or asparagine reduces the catalytic rate 30- and 50-fold, respectively. In agreement with molecular dynamics simulations of TruB wild type and TruB D90N, we propose an electrostatic network composed of the catalytic aspartate (D48), R181 and D90 that is important for catalysis by fine-tuning the D48-R181 interaction. Conserved, negatively charged residues similar to D90 are found in a number of pseudouridine synthases, suggesting that this might be a general mechanism. PMID:24371284

  4. An arginine-aspartate network in the active site of bacterial TruB is critical for catalyzing pseudouridine formation.

    PubMed

    Friedt, Jenna; Leavens, Fern M V; Mercier, Evan; Wieden, Hans-Joachim; Kothe, Ute

    2014-04-01

    Pseudouridine synthases introduce the most common RNA modification and likely use the same catalytic mechanism. Besides a catalytic aspartate residue, the contributions of other residues for catalysis of pseudouridine formation are poorly understood. Here, we have tested the role of a conserved basic residue in the active site for catalysis using the bacterial pseudouridine synthase TruB targeting U55 in tRNAs. Substitution of arginine 181 with lysine results in a 2500-fold reduction of TruB's catalytic rate without affecting tRNA binding. Furthermore, we analyzed the function of a second-shell aspartate residue (D90) that is conserved in all TruB enzymes and interacts with C56 of tRNA. Site-directed mutagenesis, biochemical and kinetic studies reveal that this residue is not critical for substrate binding but influences catalysis significantly as replacement of D90 with glutamate or asparagine reduces the catalytic rate 30- and 50-fold, respectively. In agreement with molecular dynamics simulations of TruB wild type and TruB D90N, we propose an electrostatic network composed of the catalytic aspartate (D48), R181 and D90 that is important for catalysis by fine-tuning the D48-R181 interaction. Conserved, negatively charged residues similar to D90 are found in a number of pseudouridine synthases, suggesting that this might be a general mechanism.

  5. Regeneration of active enzyme by formation of hybrids from inactive derivatives: implications for active sites shared between polypeptide chains of aspartate transcarbamoylase.

    PubMed Central

    Robey, E A; Schachman, H K

    1985-01-01

    Crystallographic studies of Escherichia coli aspartate transcarbamoylase (aspartate carbamoyltransferase, EC 2.1.3.2) in conjunction with chemical modification experiments have led to the suggestion that the active sites of the enzyme are at the interfaces between adjacent polypeptide chains of the catalytic trimers and involve joint participation of amino acid residues from the adjoining chains. However, the precise locations of the active sites and of the residues involved in catalysis are not known. To test the hypothesis that the active sites are shared between chains, we constructed hybrid trimers in which two chains were modified at one presumed active site residue and the third chain was altered at a different active site residue. One parental trimer was a reduced pyridoxal phosphate derivative in which lysine-84 was modified and the other was a mutant protein in which tyrosine-165 was converted to serine by site-directed mutagenesis. Incubating mixtures of these two virtually inactive derivatives under conditions promoting interchain exchange led to a large increase in enzyme activity corresponding approximately to the formation of one active site per trimer. The purified hybrid trimers, containing either two pyridoxylated and one mutant chain or vice versa, had 23% and 28%, respectively, the activity of native wild-type catalytic trimers, compared to 5% and 3% for the parental trimers. The most likely explanation for this large increase in activity is the formation of one "native" active site in each of the hybrid trimers. The results constitute strong evidence for shared active sites in aspartate transcarbamoylase. Images PMID:3881763

  6. A solution NMR study showing that active site ligands and nucleotides directly perturb the allosteric equilibrium in aspartate transcarbamoylase.

    PubMed

    Velyvis, Algirdas; Yang, Ying R; Schachman, Howard K; Kay, Lewis E

    2007-05-22

    The 306-kDa aspartate transcarbamoylase is a well studied regulatory enzyme, and it has emerged as a paradigm for understanding allostery and cooperative binding processes. Although there is a consensus that the cooperative binding of active site ligands follows the Monod-Wyman-Changeux (MWC) model of allostery, there is some debate about the binding of effectors such as ATP and CTP and how they influence the allosteric equilibrium between R and T states of the enzyme. In this article, the binding of substrates, substrate analogues, and nucleotides is studied, along with their effect on the R-T equilibrium by using highly deuterated, (1)H,(13)C-methyl-labeled protein in concert with methyl-transverse relaxation optimized spectroscopy (TROSY) NMR. Although only the T state of the enzyme can be observed in spectra of wild-type unliganded aspartate transcarbamoylase, binding of active-site substrates shift the equilibrium so that correlations from the R state become visible, allowing the equilibrium constant (L') between ligand-saturated R and T forms of the enzyme to be measured quantitatively. The equilibrium constant between unliganded R and T forms (L) also is obtained, despite the fact that the R state is "invisible" in spectra, by means of an indirect process that makes use of relations that emerge from the fact that ligand binding and the R-T equilibrium are linked. Titrations with MgATP unequivocally establish that its binding directly perturbs the R-T equilibrium, consistent with the Monod-Wyman-Changeux model. This study emphasizes the utility of modern solution NMR spectroscopy in understanding protein function, even for systems with aggregate molecular masses in the hundreds of kilodaltons.

  7. Dataset of cocoa aspartic protease cleavage sites.

    PubMed

    Janek, Katharina; Niewienda, Agathe; Wöstemeyer, Johannes; Voigt, Jürgen

    2016-09-01

    The data provide information in support of the research article, "The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors" (Janek et al., 2016) [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS) and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. PMID:27508221

  8. Active-site mutations of diphtheria toxin: effects of replacing glutamic acid-148 with aspartic acid, glutamine, or serine.

    PubMed

    Wilson, B A; Reich, K A; Weinstein, B R; Collier, R J

    1990-09-18

    Glutamic acid-148, an active-site residue of diphtheria toxin identified by photoaffinity labeling with NAD, was replaced with aspartic acid, glutamine, or serine by directed mutagenesis of the F2 fragment of the toxin gene. Wild-type and mutant F2 proteins were synthesized in Escherichia coli, and the corresponding enzymic fragment A moieties (DTA) were derived, purified, and characterized. The Glu----Asp (E148D), Glu----Gln (E148Q), and Glu----Ser (E148S) mutations caused reductions in NAD:EF-2 ADP-ribosyltransferase activity of ca. 100-, 250-, and 300-fold, respectively, while causing only minimal changes in substrate affinity. The effects of the mutations on NAD-glycohydrolase activity were considerably different; only a 10-fold reduction in activity was observed for E148S, and the E148D and E148Q mutants actually exhibited a small but reproducible increase in NAD-glycohydrolytic activity. Photolabeling by nicotinamide-radiolabeled NAD was diminished ca. 8-fold in the E148D mutant and was undetectable in the other mutants. The results confirm that Glu-148 plays a crucial role in the ADP-ribosylation of EF-2 and imply an important function for the side-chain carboxyl group in catalysis. The carboxyl group is also important for photochemical labeling by NAD but not for NAD-glycohydrolase activity. The pH dependence of the catalytic parameters for the ADP-ribosyltransferase reaction revealed a group in DTA-wt that titrates with an apparent pKa of 6.2-6.3 and is in the protonated state in the rate-determining step.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Roles of histidines 154 and 189 and aspartate 139 in the active site of serine acetyltransferase from Haemophilus influenzae.

    PubMed

    Guan, Rong; Roderick, Steven L; Huang, Bin; Cook, Paul F

    2008-06-17

    A crystal structure of serine acetyltransferase (SAT) with cysteine bound in the serine subsite of the active site shows that both H154 and H189 are within hydrogen-bonding distance to the cysteine thiol [Olsen, L. R., Huang, B., Vetting, M. W., and Roderick, S. L. (2004) Biochemistry 43, 6013 -6019]. In addition, H154 is in an apparent dyad linkage with D139. The structure suggests that H154 is the most likely catalytic general base and that H189 and D139 may also play important roles during the catalytic reaction. Site-directed mutagenesis was performed to mutate each of these three residues to Asn, one at a time. The V1/Et value of all of the single mutant enzymes decreased, with the largest decrease (approximately 1240-fold) exhibited by the H154N mutant enzyme. Mutation of both histidines, H154N/H189N, gave a V1/Et approximately 23700-fold lower than that of the wild-type enzyme. An increase in K Ser was observed for the H189N, D139N, and H154N/H189N mutant enzymes, while the H154N mutant enzyme gave an 8-fold decrease in K Ser. For all three single mutant enzymes, V1/Et and V1/K Ser Et decrease at low pH and give a pKa of about 7, while the V1/Et of the double mutant enzyme was pH independent. The solvent deuterium kinetic isotope effects on V 1 and V1/K Ser decreased compared to wild type for the H154N mutant enzyme and increased for the H189N mutant enzyme but was about the same as that of wild type for D139N and H154N/H189N. Data suggest that H154, H189, and D139 play different catalytic roles for SAT. H154 likely serves as a general base, accepting a proton from the beta-hydroxyl of serine as the tetrahedral intermediate is formed upon nucleophilic attack on the thioester carbonyl of acetyl-CoA. However, activity is not completely lost upon elimination of H154, and thus, H189 may be able to serve as a backup general base at a lower efficiency compared to H154; it also aids in binding and orienting the serine substrate. Aspartate 139, in dyad linkage with

  10. An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes

    PubMed Central

    Richardson, Graham; Ding, Haizhen; Rocheleau, Tom; Mayhew, George; Reddy, Erin; Han, Qian; Christensen, Bruce M.; Li, Jianyong

    2010-01-01

    A major pathway of beta-alanine synthesis in insects is through the alpha-decarboxylation of aspartate, but the enzyme involved in the decarboxylation of aspartate has not been clearly defined in mosquitoes and characterized in any insect species. In this study, we expressed two putative mosquito glutamate decarboxylase-like enzymes of mosquitoes and critically analyzed their substrate specificity and biochemical properties. Our results provide clear biochemical evidence establishing that one of them is an aspartate decarboxylase and the other is a glutamate decarboxylase. The mosquito aspartate decarboxylase functions exclusively on the production of beta-alanine with no activity with glutamate. Likewise the mosquito glutamate decarboxylase is highly specific to glutamate with essentially no activity with aspartate. Although insect aspartate decarboxylase shares high sequence identity with glutamate decarboxylase, we are able to closely predict aspartate decarboxylase from glutamate decarboxylase based on the difference of their active site residues. PMID:19842059

  11. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    PubMed

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL. PMID:26820485

  12. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    PubMed

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.

  13. Structure of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase in a hexagonal crystal form: Insights into the path of carbamoyl phosphate to the active site of the enzyme

    SciTech Connect

    Vitali J.; Soares A.; Singh, A. K.; Colaneri, M. J.

    2012-05-01

    Crystals of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase (ATCase) grew in the presence of the regulatory chain in the hexagonal space group P6{sub 3}22, with one monomer per asymmetric unit. This is the first time that crystals with only one monomer in the asymmetric unit have been obtained; all known structures of the catalytic subunit contain several crystallographically independent monomers. The symmetry-related chains form the staggered dimer of trimers observed in the other known structures of the catalytic subunit. The central channel of the catalytic subunit contains a sulfate ion and a K{sup +} ion as well as a glycerol molecule at its entrance. It is possible that it is involved in channeling carbamoyl phosphate (CP) to the active site of the enzyme. A second sulfate ion near Arg164 is near the second CP position in the wild-type Escherichia coli ATCase structure complexed with CP. It is suggested that this position may also be in the path that CP takes when binding to the active site in a partial diffusion process at 310 K. Additional biochemical studies of carbamoylation and the molecular organization of this enzyme in M. jannaschii will provide further insight into these points.

  14. Radiochemical microassay for aspartate aminotransferase activity in the nervous system

    SciTech Connect

    Garrison, D.; Beattie, J.; Namboodiri, M.A.

    1988-07-01

    A radiochemical procedure for measuring aspartate aminotransferase activity in the nervous system is described. The method is based on the exchange of tritium atoms at positions 2 and 3 of L-2,3-(/sup 3/H)aspartate with water when this amino acid is transaminated in the presence of alpha-ketoglutarate to form oxaloacetate. The tritiated water is separated from the radiolabeled aspartate by passing the reaction mixture over a cation exchange column. Confirmation that the radioactivity in the product is associated with water was obtained by separating it by anion exchange HPLC and by evaporation. The product formation is linear with time up to 120 min and with tissue in the 0.05- to 10-micrograms range. The apparent Km for aspartate in the rat brain homogenate is found to be 0.83 mM and that for alpha-ketoglutarate to be 0.12 mM. Methods that further improve the sensitivity of the assay are also discussed.

  15. Aspartate carbamoyltransferase from rat liver

    PubMed Central

    Bresnick, E.; Mossé, Helena

    1966-01-01

    1. Aspartate-carbamoyltransferase activity was concentrated from rat-liver preparations. Only l-aspartate, β-benzyl-l-aspartate and β-erythro-hydroxy-dl-aspartate were carbamoylated enzymically. The Km for l-aspartate and carbamoyl phosphate have been determined by three methods: colorimetric procedure, radioactive assay with [14C]aspartate and an assay with [14C]carbamoyl phosphate. 2. The Km for aspartate has been determined as a function of the pH; the pK of the functional group at the active site of the enzyme, pKe, was at pH9·0. Enzymic activity was diminished in the presence of N-ethylmaleimide, p-hydroxymercuribenzoate and the heavy metals Ag+, Hg2+, or Zn2+. The inhibitions could be prevented by mercaptoethanol. These findings suggested the association of a thiol group with the enzymic activity. 3. Enzymic activity was also decreased by sodium lauryl sulphate, urea and dioxan. Competitive inhibition (with l-aspartate) was manifested by maleate, succinate, oxaloacetate, β-erythro-hydroxy-dl-aspartate and β-benzyl-l-aspartate. The Ki for most of these inhibitions has been determined. 4. The properties of the liver enzyme are compared with those of Escherichia coli aspartate carbamoyltransferase and the implications of the findings are discussed. PMID:5339547

  16. Structural Insights into the Activation and Inhibition of Histo-Aspartic Protease from Plasmodium falciparum

    SciTech Connect

    Bhaumik, Prasenjit; Xiao, Huogen; Hidaka, Koushi; Gustchina, Alla; Kiso, Yoshiaki; Yada, Rickey Y.; Wlodawer, Alexander

    2012-09-17

    Histo-aspartic protease (HAP) from Plasmodium falciparum is a promising target for the development of novel antimalarial drugs. The sequence of HAP is highly similar to those of pepsin-like aspartic proteases, but one of the two catalytic aspartates, Asp32, is replaced with histidine. Crystal structures of the truncated zymogen of HAP and of the complex of the mature enzyme with inhibitor KNI-10395 have been determined at 2.1 and 2.5 {angstrom} resolution, respectively. As in other proplasmepsins, the propeptide of the zymogen interacts with the C-terminal domain of the enzyme, forcing the N- and C-terminal domains apart, thereby separating His32 and Asp215 and preventing formation of the mature active site. In the inhibitor complex, the enzyme forms a tight domain-swapped dimer, not previously seen in any aspartic proteases. The inhibitor is found in an unprecedented conformation resembling the letter U, stabilized by two intramolecular hydrogen bonds. Surprisingly, the location and conformation of the inhibitor are similar to those of the fragment of helix 2 comprising residues 34p-38p in the prosegments of the zymogens of gastric aspartic proteases; a corresponding helix assumes a vastly different orientation in proplasmepsins. Each inhibitor molecule is in contact with two molecules of HAP, interacting with the carboxylate group of the catalytic Asp215 of one HAP protomer through a water molecule, while also making a direct hydrogen bond to Glu278A' of the other protomer. A comparison of the shifts in the positions of the catalytic residues in the inhibitor complex presented here with those published previously gives further hints regarding the enzymatic mechanism of HAP.

  17. N-Methyl-D-Aspartate Receptor Activation May Contribute to Glufosinate Neurotoxicity

    EPA Science Inventory

    N-Methyl-D-aspartate Receptor Activation May Contribute to Glufosinate Neurotoxicity Glufosinate (GLF) at high levels in mammals causes convulsions through a mechanism that is not completely understood. The structural similarity of GLF to glutamate (GLU) implicates the glutamate...

  18. Kinetic analysis of a general model of activation of aspartic proteinase zymogens.

    PubMed

    Varón, R; García-Moreno, M; Valera-Ruipérez, D; García-Molina, F; García-Cánovas, F; Ladrón-de Guevara, R G; Masiá-Pérez, J; Havsteen, B H

    2006-10-01

    Starting from a simple general reaction mechanism of activation of aspartic proteinase zymogens involving an uni- and a bimolecular simultaneous route, the time course equation of the concentration of the zymogen and of the activated enzyme have been derived. From these equations, an analysis quantifying the relative contribution to the global process of the two routes has been carried out for the first time. This analysis suggests a way to predict the time course of the relative contribution as well as the effect of the initial zymogen and activating enzyme concentrations, on the relative weight. An experimental design and kinetic data analysis is suggested to estimate the kinetic parameters involved in the reaction mechanism proposed. Finally, we apply some of our results to experimental data obtained by other authors in experimental studies of the activation of some aspartic proteinase zymogens.

  19. Novel nootropic drug sunifiram enhances hippocampal synaptic efficacy via glycine-binding site of N-methyl-D-aspartate receptor.

    PubMed

    Moriguchi, Shigeki; Tanaka, Tomoya; Narahashi, Toshio; Fukunaga, Kohji

    2013-10-01

    Sunifiram is a novel pyrrolidone nootropic drug structurally related to piracetam, which was developed for neurodegenerative disorder like Alzheimer's disease. Sunifiram is known to enhance cognitive function in some behavioral experiments such as Morris water maze task. To address question whether sunifiram affects N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic function in the hippocampal CA1 region, we assessed the effects of sunifiram on NMDAR-dependent long-term potentiation (LTP) by electrophysiology and on phosphorylation of synaptic proteins by immunoblotting analysis. In mouse hippocampal slices, sunifiram at 10-100 nM significantly enhanced LTP in a bell-shaped dose-response relationship which peaked at 10 nM. The enhancement of LTP by sunifiram treatment was inhibited by 7-chloro-kynurenic acid (7-ClKN), an antagonist for glycine-binding site of NMDAR, but not by ifenprodil, an inhibitor for polyamine site of NMDAR. The enhancement of LTP by sunifilam was associated with an increase in phosphorylation of α-amino-3-hydroxy-5-methylisozazole-4-propionate receptor (AMPAR) through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and an increase in phosphorylation of NMDAR through activation of protein kinase Cα (PKCα). Sunifiram treatments at 1-1000 nM increased the slope of field excitatory postsynaptic potentials (fEPSPs) in a dose-dependent manner. The enhancement was associated with an increase in phosphorylation of AMPAR receptor through activation of CaMKII. Interestingly, under the basal condition, sunifiram treatments increased PKCα (Ser-657) and Src family (Tyr-416) activities with the same bell-shaped dose-response curve as that of LTP peaking at 10 nM. The increase in phosphorylation of PKCα (Ser-657) and Src (Tyr-416) induced by sunifiram was inhibited by 7-ClKN treatment. The LTP enhancement by sunifiram was significantly inhibited by PP2, a Src family inhibitor. Finally, when pretreated with a high

  20. 7-hydroxycalamenene Effects on Secreted Aspartic Proteases Activity and Biofilm Formation of Candida spp.

    PubMed Central

    Azevedo, Mariana M. B.; Almeida, Catia A.; Chaves, Francisco C. M.; Rodrigues, Igor A.; Bizzo, Humberto R.; Alviano, Celuta S.; Alviano, Daniela S.

    2016-01-01

    Background: The 7-hydroxycalamenenene-rich essential oil (EO) obtained from the leaves of Croton cajucara (red morphotype) have been described as active against bacteria, protozoa, and fungi species. In this work, we aimed to evaluate the effectiveness of 7-hydroxycalamenenene against Candida albicans and nonalbicans species. Materials and Methods: C. cajucara EO was obtained by hydrodistillation and its major compound, 7-hydroxycalamenene, was purified using preparative column chromatography. The anti-candidal activity was investigated by minimum inhibitory concentration (MIC) and secreted aspartic proteases (SAP) and biofilm inhibition assays. Results: 7-hydroxycalamenene (98% purity) displayed anti-candidal activity against all Candida species tested. Higher activity was observed against Candida dubliniensis, Candida parapsilosis and Candida albicans, showing MIC values ranging from 39.06 μg/ml to 78.12 μg/ml. The purified 7-hydroxycalamenene was able to inhibit 58% of C. albicans ATCC 36801 SAP activity at MIC concentration (pH 7.0). However, 7-hydroxycalamenene demonstrated poor inhibitory activity on C. albicans ATCC 10231 biofilm formation even at the highest concentration tested (2500 μg/ml). Conclusion: The bioactive potential of 7-hydroxycalamenene against planktonic Candida spp. further supports its use for the development of antimicrobials with anti-candidal activity. SUMMARY Croton cajucara Benth. essential oil provides high amounts of 7-hydroxycalamenene7-Hydroxycalameneneisolated from C. cajucarais active against Candida spp7-Hydroxycalameneneinhibits C. albicans aspartic protease activity7-Hydroxycalamenene was not active against C. albicans biofilm formation. Figure PMID:27019560

  1. Trichodiene synthase. Probing the role of the highly conserved aspartate-rich region by site-directed mutagenesis.

    PubMed

    Cane, D E; Xue, Q; Fitzsimons, B C

    1996-09-24

    Trichodiene synthase catalyzes the cyclization of farnesyl diphosphate to the sesquiterpene hydrocarbon trichodiene. The enzyme normally requires a divalent cation, Mg2+, which can be substituted by Mn2+. Trichodiene synthase from Fusarium sporotrichioides has a highly conserved aspartate rich region, aa 100-104 (DDSKD). Three mutants were constructed by site-directed mutagenesis in which each aspartate residue was individually replaced by glutamate. The mutants were each overexpressed and purified to homogeneity. The importance of Asp100 and Asp101 for catalysis was established by the observation of an increase in Km as well as a reduction in kcat in the corresponding Glu mutants. Replacement of the Asp104 residue with Glu had little effect on either Km or kcat. All three mutants produced anomalous sesquiterpene products in addition to trichodiene when incubated with farnesyl diphosphate. Interestingly, when Mg2+ was replaced by Mn2+ in the incubation buffer, the kcat/Km of both wild type trichodiene synthase and the D104E dropped significantly, while those of the other two mutants were not much affected. The proportion of anomalous products increased significantly when the D100E and D101E mutants were incubated in the presence of Mn2+. These observations all lend weight to the proposal that the aspartate residues mediate substrate binding by chelation of the divalent metal ion. Asp100 and Asp101 appear to play a relatively more important role than Asp104. PMID:8823172

  2. Autocrine activation of neuronal NMDA receptors by aspartate mediates dopamine- and cAMP-induced CREB-dependent gene transcription.

    PubMed

    Almeida, Luis E F; Murray, Peter D; Zielke, H Ronald; Roby, Clinton D; Kingsbury, Tami J; Krueger, Bruce K

    2009-10-01

    cAMP can stimulate the transcription of many activity-dependent genes via activation of the transcription factor, cAMP response element-binding protein (CREB). However, in mouse cortical neuron cultures, prior to synaptogenesis, neither cAMP nor dopamine, which acts via cAMP, stimulated CREB-dependent gene transcription when NR2B-containing NMDA receptors (NMDARs) were blocked. Stimulation of transcription by cAMP was potentiated by inhibitors of excitatory amino acid uptake, suggesting a role for extracellular glutamate or aspartate in cAMP-induced transcription. Aspartate was identified as the extracellular messenger: enzymatic scavenging of l-aspartate, but not glutamate, blocked stimulation of CREB-dependent gene transcription by cAMP; moreover, cAMP induced aspartate but not glutamate release. Together, these results suggest that cAMP acts via an autocrine or paracrine pathway to release aspartate, which activates NR2B-containing NMDARs, leading to Ca(2+) entry and activation of transcription. This cAMP/aspartate/NMDAR signaling pathway may mediate the effects of transmitters such as dopamine on axon growth and synaptogenesis in developing neurons or on synaptic plasticity in mature neural networks.

  3. Changes in D-aspartic acid and D-glutamic acid levels in the tissues and physiological fluids of mice with various D-aspartate oxidase activities.

    PubMed

    Han, Hai; Miyoshi, Yurika; Koga, Reiko; Mita, Masashi; Konno, Ryuichi; Hamase, Kenji

    2015-12-10

    D-Aspartic acid (D-Asp) and D-glutamic acid (D-Glu) are currently paid attention as modulators of neuronal transmission and hormonal secretion. These two D-amino acids are metabolized only by D-aspartate oxidase (DDO) in mammals. Therefore, in order to design and develop new drugs controlling the D-Asp and D-Glu amounts via regulation of the DDO activities, changes in these acidic D-amino acid amounts in various tissues are expected to be clarified in model animals having various DDO activities. In the present study, the amounts of Asp and Glu enantiomers in 6 brain tissues, 11 peripheral tissues and 2 physiological fluids of DDO(+/+), DDO(+/-) and DDO(-/-) mice were determined using a sensitive and selective two-dimensional HPLC system. As a result, the amounts of D-Asp were drastically increased with the decrease in the DDO activity in all the tested tissues and physiological fluids. On the other hand, the amounts of D-Glu were almost the same among the 3 strains of mice. The present results are useful for designing new drug candidates, such as DDO inhibitors, and further studies are expected.

  4. Identification of a site critical for kinase regulation on the central processing unit (CPU) helix of the aspartate receptor.

    PubMed

    Trammell, M A; Falke, J J

    1999-01-01

    Ligand binding to the homodimeric aspartate receptor of Escherichia coli and Salmonella typhimurium generates a transmembrane signal that regulates the activity of a cytoplasmic histidine kinase, thereby controlling cellular chemotaxis. This receptor also senses intracellular pH and ambient temperature and is covalently modified by an adaptation system. A specific helix in the cytoplasmic domain of the receptor, helix alpha6, has been previously implicated in the processing of these multiple input signals. While the solvent-exposed face of helix alpha6 possesses adaptive methylation sites known to play a role in kinase regulation, the functional significance of its buried face is less clear. This buried region lies at the subunit interface where helix alpha6 packs against its symmetric partner, helix alpha6'. To test the role of the helix alpha6-helix alpha6' interface in kinase regulation, the present study introduces a series of 13 side-chain substitutions at the Gly 278 position on the buried face of helix alpha6. The substitutions are observed to dramatically alter receptor function in vivo and in vitro, yielding effects ranging from kinase superactivation (11 examples) to complete kinase inhibition (one example). Moreover, four hydrophobic, branched side chains (Val, Ile, Phe, and Trp) lock the kinase in the superactivated state regardless of whether the receptor is occupied by ligand. The observation that most side-chain substitutions at position 278 yield kinase superactivation, combined with evidence that such facile superactivation is rare at other receptor positions, identifies the buried Gly 278 residue as a regulatory hotspot where helix packing is tightly coupled to kinase regulation. Together, helix alpha6 and its packing interactions function as a simple central processing unit (CPU) that senses multiple input signals, integrates these signals, and transmits the output to the signaling subdomain where the histidine kinase is bound. Analogous CPU

  5. Catalytic activity of non-cross-linked microcrystals of aspartate aminotransferase in poly(ethylene glycol).

    PubMed Central

    Kirsten, H; Christen, P

    1983-01-01

    The molar activity of crystalline mitochondrial aspartate aminotransferase is decreased to 10% of that of the enzyme in solution. The activity was measured in suspensions of non-cross-linked microcrystals (average dimensions 22 microns X 5 microns X 0.8 microns) in 30% (w/v) poly(ethylene glycol). Kinetic tests ruled out the possibility that diffusion of the substrate in the crystals is rate-limiting. The observed decrease in catalytic efficiency can be attributed exclusively to crystal-packing effects. A direct inhibition by poly(ethylene glycol) is excluded because poly(ethylene glycol), with average Mr 6000, cannot penetrate the liquid channels of the crystals, owing to its large Stokes radius. The crystals examined were triclinic and of the same habit as those used for high-resolution X-ray-crystallographic analysis [Ford, Eichele & Jansonius (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 2559-2563]. The catalytic competence of crystalline aspartate aminotransferase confirms the relevance of the spatial model of this protein for the elucidation of its mechanism of action. Images Fig. 1. PMID:6870840

  6. Aspartic acid

    MedlinePlus

    ... Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as soybeans, garbanzo beans, and lentils Peanuts, almonds, walnuts, and flaxseeds Animal ...

  7. Ca2+ Activation kinetics of the two aspartate-glutamate mitochondrial carriers, aralar and citrin: role in the heart malate-aspartate NADH shuttle.

    PubMed

    Contreras, Laura; Gomez-Puertas, Paulino; Iijima, Mikio; Kobayashi, Keiko; Saheki, Takeyori; Satrústegui, Jorgina

    2007-03-01

    Ca(2+) regulation of the Ca(2+) binding mitochondrial carriers for aspartate/glutamate (AGCs) is provided by their N-terminal extensions, which face the intermembrane space. The two mammalian AGCs, aralar and citrin, are members of the malate-aspartate NADH shuttle. We report that their N-terminal extensions contain up to four pairs of EF-hand motifs plus a single vestigial EF-hand, and have no known homolog. Aralar and citrin contain one fully canonical EF-hand pair and aralar two additional half-pairs, in which a single EF-hand is predicted to bind Ca(2+). Shuttle activity in brain or skeletal muscle mitochondria, which contain aralar as the major AGC, is activated by Ca(2+) with S(0.5) values of 280-350 nm; higher than those obtained in liver mitochondria (100-150 nm) that contain citrin as the major AGC. We have used aralar- and citrin-deficient mice to study the role of the two isoforms in heart, which expresses both AGCs. The S(0.5) for Ca(2+) activation of the shuttle in heart mitochondria is about 300 nm, and it remains essentially unchanged in citrin-deficient mice, although it undergoes a drastic reduction to about 100 nm in aralar-deficient mice. Therefore, aralar and citrin, when expressed as single isoforms in heart, confer differences in Ca(2+) activation of shuttle activity, probably associated with their structural differences. In addition, the results reveal that the two AGCs fully account for shuttle activity in mouse heart mitochondria and that no other glutamate transporter can replace the AGCs in this pathway.

  8. Dihydroorotase from the Hyperthermophile Aquifiex aeolicus Is Activated by Stoichiometric Association with Aspartate Transcarbamoylase and Forms a One-Pot Reactor for Pyrimidine Biosynthesis

    SciTech Connect

    Zhang, Pengfei; Martin, Philip D.; Purcarea, Cristina; Vaishnav, Asmita; Brunzelle, Joseph S.; Fernando, Roshini; Guy-Evans, Hedeel I.; Evans, David R.; Edwards, Brian F.P.

    2009-08-14

    In prokaryotes, the first three enzymes in pyrimidine biosynthesis, carbamoyl phosphate synthetase (CPS), aspartate transcarbamoylase (ATC), and dihydroorotase (DHO), are commonly expressed separately and either function independently (Escherichia coli) or associate into multifunctional complexes (Aquifex aeolicus). In mammals the enzymes are expressed as a single polypeptide chain (CAD) in the order CPS-DHO-ATC and associate into a hexamer. This study presents the three-dimensional structure of the noncovalent hexamer of DHO and ATC from the hyperthermophile A. aeolicus at 2.3 {angstrom} resolution. It is the first structure of any multienzyme complex in pyrimidine biosynthesis and is a possible model for the core of mammalian CAD. The structure has citrate, a near isosteric analogue of carbamoyl aspartate, bound to the active sites of both enzymes. Three active site loops that are intrinsically disordered in the free, inactive DHO are ordered in the complex. The reorganization also changes the peptide bond between Asp153, a ligand of the single zinc atom in DHO, and Gly154, to the rare cis conformation. In the crystal structure, six DHO and six ATC chains form a hollow dodecamer, in which the 12 active sites face an internal reaction chamber that is approximately 60 {angstrom} in diameter and connected to the cytosol by narrow tunnels. The entrances and the interior of the chamber are both electropositive, which suggests that the architecture of this nanoreactor modifies the kinetics of the bisynthase, not only by steric channeling but also by preferential escape of the product, dihydroorotase, which is less negatively charged than its precursors, carbamoyl phosphate, aspartate, or carbamoyl aspartate.

  9. Dihydroorotase from the Hyperthermophile Aquifiex aeolicus Is Activated by Stoichiometric Association with Aspartate Transcarbamoylase and Forms a One-Pot Reactor for Pyrimidine Biosynthesis†,‡

    PubMed Central

    Zhang, Pengfei; Martin, Philip D.; Purcarea, Cristina; Vaishnav, Asmita; Brunzelle, Joseph S.; Fernando, Roshini; Guy-Evans, Hedeel I.; Evans, David R.; Edwards, Brian F. P.

    2013-01-01

    In prokaryotes, the first three enzymes in pyrimidine biosynthesis, carbamoyl phosphate synthetase (CPS), aspartate transcarbamoylase (ATC), and dihydroorotase (DHO), are commonly expressed separately and either function independently (Escherichia coli) or associate into multifunctional complexes (Aquifex aeolicus). In mammals the enzymes are expressed as a single polypeptide chain (CAD) in the order CPS-DHO-ATC and associate into a hexamer. This study presents the three-dimensional structure of the noncovalent hexamer of DHO and ATC from the hyperthermophile A. aeolicus at 2.3 Å resolution. It is the first structure of any multienzyme complex in pyrimidine biosynthesis and is a possible model for the core of mammalian CAD. The structure has citrate, a near isosteric analogue of carbamoyl aspartate, bound to the active sites of both enzymes. Three active site loops that are intrinsically disordered in the free, inactive DHO are ordered in the complex. The reorganization also changes the peptide bond between Asp153, a ligand of the single zinc atom in DHO, and Gly154, to the rare cis conformation. In the crystal structure, six DHO and six ATC chains form a hollow dodecamer, in which the 12 active sites face an internal reaction chamber that is approximately 60 Å in diameter and connected to the cytosol by narrow tunnels. The entrances and the interior of the chamber are both electropositive, which suggests that the architecture of this nanoreactor modifies the kinetics of the bisynthase, not only by steric channeling but also by preferential escape of the product, dihydroorotase, which is less negatively charged than its precursors, carbamoyl phosphate, aspartate, or carbamoyl aspartate. PMID:19128030

  10. Antimicrobial activity of potato aspartic proteases (StAPs) involves membrane permeabilization.

    PubMed

    Mendieta, Julieta R; Pagano, Mariana R; Muñoz, Fernando F; Daleo, Gustavo R; Guevara, María G

    2006-07-01

    Solanum tuberosum aspartic proteases (StAPs) with antimicrobial activity are induced after abiotic and biotic stress. In this study the ability of StAPs to produce a direct antimicrobial effect was investigated. Viability assays demonstrated that StAPs are able to kill spores of Fusarium solani and Phytophthora infestans in a dose-dependent manner. Localization experiments with FITC-labelled StAPs proved that the proteins interact directly with the surface of spores and hyphae of F. solani and P. infestans. Moreover, incubation of spores and hyphae with StAPs resulted in membrane permeabilization, as shown by the uptake of the fluorescent dye SYTOX Green. It is concluded that the antimicrobial effect of StAPs against F. solani and P. infestans is caused by a direct interaction with the microbial surfaces followed by membrane permeabilization.

  11. Dura-evoked neck muscle activity involves purinergic and N-methyl-D-aspartate receptor mechanisms.

    PubMed

    Yao, Dongyuan; Yoshida, Mitsuhiro; Sessle, Barry J

    2015-12-16

    We have previously demonstrated that noxious stimulation of craniofacial tissues including the frontal dura reflexly evokes significant increases in neck muscle electromyographic (EMG) activity. The primary aim of this study was to determine whether purinergic receptor mechanisms may be involved in these EMG effects, and whether N-methyl-D-aspartate (NMDA) receptor processes modulate the purinergic mechanisms. Application of the P2X1, P2X3 and P2X2/3 receptor agonist α,β-methylene ATP (but not vehicle) to the dural surface evoked a significant (P<0.05) increase in ipsilateral neck EMG activity that could be suppressed by dural or intrathecal application of the selective P2X1, P2X3 and P2X2/3 receptor antagonist 2',3'-O-(2,4,6-trinitrophenyl) ATP (TNP-ATP) but not by vehicle; the intrathecal application of 2-amino-5-phosphonopentanoic acid, an NMDA receptor antagonist, also significantly reduced the neck EMG activity evoked by dural application of α,β-methylene ATP. These data suggest that purinergic receptor mechanisms contribute to the increased neck activity that can be reflexly evoked by noxious stimulation of the frontal dura, and that NMDA as well as purinergic receptor mechanisms in the medulla may modulate these purinergic-related effects. PMID:26559728

  12. N-methyl-D-aspartate receptors strongly regulate postsynaptic activity levels during optic nerve regeneration.

    PubMed

    Kolls, Brad J; Meyer, Ronald L

    2013-10-01

    During development, neuronal activity is used as a cue to guide synaptic rearrangements to refine connections. Many studies, especially in the visual system, have shown that the N-methyl-D-aspartate receptor (NMDAr) plays a key role in mediating activity-dependent refinement through long-term potentiation (LTP)-like processes. Adult goldfish can regenerate their optic nerve and utilize neuronal activity to generate precise topography in their projection onto tectum. Although the NMDAr has been implicated in this process, its precise role in regeneration has not been extensively studied. In examining NMDAr function during regeneration, we found salient differences compared with development. By using field excitatory postsynaptic potential (fEPSP) recordings, the contribution of the NMDAr at the primary optic synapse was measured. In contrast to development, no increase in NMDAr function was detectable during synaptic refinement. Unlike development, LTP could not be reliably elicited during regeneration. Unexpectedly, we found that NMDAr exerted a major effect on regulating ongoing tectal (postsynaptic) activity levels during regeneration. Blocking NMDAr strongly suppressed spontaneous activity during regeneration but had no significant effect in the normal projection. This difference could be attributed to an occlusion effect of strong optic drive in the normal projection, which dominated ongoing tectal activity. During regeneration, this optic drive is largely absent. Optic nerve stimulation further indicated that the NMDAr had little effect on the ability of optic fibers to evoke early postsynaptic impulse activity but was important for late network activity. These results indicate that, during regeneration, the NMDAr may play a critical role in the homeostatic regulation of ongoing activity and network excitability. PMID:23873725

  13. The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective.

    PubMed Central

    Schell, Michael J

    2004-01-01

    The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics. PMID:15306409

  14. Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21ras.

    PubMed

    Yun, H Y; Gonzalez-Zulueta, M; Dawson, V L; Dawson, T M

    1998-05-12

    N-methyl-D-aspartate (NMDA) glutamate receptor-mediated increases in intracellular calcium are thought to play a critical role in synaptic plasticity. The mechanisms by which changes in cytoplasmic calcium transmit the glutamate signal to the nucleus, which is ultimately important for long-lasting neuronal responses, are poorly understood. We show that NMDA receptor stimulation leads to activation of p21(ras) (Ras) through generation of nitric oxide (NO) via neuronal NO synthase. The competitive NO synthase inhibitor, L-nitroarginine methyl ester, prevents Ras activation elicited by NMDA and this effect is competitively reversed by the NO synthase substrate, L-arginine. NMDA receptor stimulation fails to activate Ras in neuronal cultures from mice lacking neuronal NO synthase. NMDA-induced Ras activation occurs through a cGMP-independent pathway as 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), a potent and selective inhibitor of guanylyl cyclase, has no effect on NMDA receptor-induced activation of Ras, and the cell-permeable cGMP analog, 8Br-cGMP, does not activate Ras. Furthermore, NO directly activates immunoprecipitated Ras from neurons. NMDA also elicits tyrosine phosphorylation of extracellular signal-regulated kinases, a downstream effector pathway of Ras, through a NO/non-cGMP dependent mechanism, thus supporting the physiologic relevance of endogenous NO regulation of Ras. These results suggest that Ras is a physiologic target of endogenously produced NO and indicates a signaling pathway for NMDA receptor activation that may be important for long-lasting neuronal responses.

  15. Effect of aspartame on N-methyl-D-aspartate-sensitive L-[3H]glutamate binding sites in rat brain synaptic membranes.

    PubMed

    Pan-Hou, H; Suda, Y; Ohe, Y; Sumi, M; Yoshioka, M

    1990-06-18

    Aspartame (L-aspartyl-L-phenylalanine methyl ester), an artificial low-calorie sweetener, was shown to dose-dependently inhibit L-[3H]glutamate binding to its N-methyl-D-aspartate-specific receptors. L-Aspartic acid, a major endogenous metabolite of aspartame, inhibited the binding more stronger than aspartame, while the other metabolites, L-phenylalanine and methanol, had no effect at the same concentration. Aspartame caused a significant change in the affinities of L-[3H]glutamate binding without altering the Vmax values of the binding, suggesting the inhibition is competitive. These in vitro findings suggested that aspartame may act directly on the N-methyl-D-aspartate-sensitive glutamate recognition sites in the brain synaptic membranes.

  16. Regulation of the mouse Na+-dependent glutamate/aspartate transporter GLAST: putative role of an AP-1 DNA binding site.

    PubMed

    Ramírez-Sotelo, Guadalupe; López-Bayghen, Esther; Hernández-Kelly, L Clara R; Arias-Montaño, J Antonio; Bernabé, Alfonso; Ortega, Arturo

    2007-01-01

    Appropriate removal of L: -glutamate from the synaptic cleft is important for prevention of the excitotoxic effects of this neurotransmitter. The Na+-dependent glutamate/aspartate transporter GLAST is regulated in the short term, by a transporter-dependent decrease in uptake activity while in the long term, a receptor's-dependent decrease in GLAST protein levels leads to a severe reduction in glutamate uptake. The promoter region of the mouse glast gene harbors an Activator Protein-1 site (AP-1). To gain insight into the molecular mechanisms triggered by Glu-receptors activation involved in GLAST regulation, we took advantage of the neonatal mouse cerebellar prisms model. We characterized the glutamate uptake activity; the glutamate-dependent effect on GLAST protein levels and over the interaction of nuclear proteins with a mouse glast promoter AP-1 probe. A time and dose dependent decrease in transporter activity matching with a decrease in GLAST levels was recorded upon glutamate treatment. Moreover, a significant increase in glast AP-1 DNA binding was found. Pharmacological experiments established that both effects are mediated through alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors, favoring the notion of the critical involvement of glutamate in the regulation of its binding partners: receptors and transporters.

  17. Position of the Third Na+ Site in the Aspartate Transporter GltPh and the Human Glutamate Transporter, EAAT1

    PubMed Central

    Bastug, Turgut; Heinzelmann, Germano; Kuyucak, Serdar; Salim, Marietta; Vandenberg, Robert J.; Ryan, Renae M.

    2012-01-01

    Glutamate transport via the human excitatory amino acid transporters is coupled to the co-transport of three Na+ ions, one H+ and the counter-transport of one K+ ion. Transport by an archaeal homologue of the human glutamate transporters, GltPh, whose three dimensional structure is known is also coupled to three Na+ ions but only two Na+ ion binding sites have been observed in the crystal structure of GltPh. In order to fully utilize the GltPh structure in functional studies of the human glutamate transporters, it is essential to understand the transport mechanism of GltPh and accurately determine the number and location of Na+ ions coupled to transport. Several sites have been proposed for the binding of a third Na+ ion from electrostatic calculations and molecular dynamics simulations. In this study, we have performed detailed free energy simulations for GltPh and reveal a new site for the third Na+ ion involving the side chains of Threonine 92, Serine 93, Asparagine 310, Aspartate 312, and the backbone of Tyrosine 89. We have also studied the transport properties of alanine mutants of the coordinating residues Threonine 92 and Serine 93 in GltPh, and the corresponding residues in a human glutamate transporter, EAAT1. The mutant transporters have reduced affinity for Na+ compared to their wild type counterparts. These results confirm that Threonine 92 and Serine 93 are involved in the coordination of the third Na+ ion in GltPh and EAAT1. PMID:22427946

  18. Sensitization of rat facial cutaneous mechanoreceptors by activation of peripheral N-methyl-d-aspartate receptors.

    PubMed

    Gazerani, Parisa; Dong, Xudong; Wang, Mianwei; Kumar, Ujendra; Cairns, Brian E

    2010-03-10

    The effect of subcutaneous injection of glutamate on the mechanical sensitivity of rat facial cutaneous mechanoreceptors was examined. Individual facial mechanoreceptors were recorded in the trigeminal ganglion of anesthetized Sprague-Dawley rats. An electronic von Frey hair was used to measure the mechanical threshold (MT) of the afferent fibers at baseline and following subcutaneous injection of glutamate (0, 0.01, 0.1, 1M; 10microl) or glutamate (0, 0.1M) plus the competitive N-methyl-d-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate (APV; 0.01M). Subcutaneous injections were randomized and the investigator was unaware of their content. Changes in MT were assessed with a repeated measure ANOVA with time, sex and treatment as factors. Immunohistochemistry was used to confirm NMDA receptor expression by cutaneous nerve fibers. A total of 100 (50 per sex) facial mechanoreceptors were recorded from 61 (32 females, 29 males) rats in two separate experiments. Subcutaneous injections of higher concentrations of glutamate (1, 0.1M) induced a significant mechanical sensitization of skin afferent fibers (compared to 0 and 0.01M). Females (EC(50)=16.2mM) were more sensitive to glutamate than males (EC(50)=73.0mM). Facial cutaneous nerve fibers in both sexes expressed NMDA receptors. APV blocked the mechanical sensitization of the afferent fibers treated by glutamate 0.1M in both sexes with a lower effect in females at a 10-20minute post-injection. Subcutaneous injection of glutamate mechanically sensitizes rat facial cutaneous mechanoreceptors through activation of peripheral NMDA receptors. Peripheral NMDA receptor antagonists may be considered for craniofacial pain.

  19. Kinetic analysis of a general model of activation of aspartic proteinase zymogens involving a reversible inhibitor. I. Kinetic analysis.

    PubMed

    Muñoz-López, A; Sotos-Lomas, A; Arribas, E; Masia-Perez, J; Garcia-Molina, F; García-Moreno, M; Varon, R

    2007-04-01

    Starting from a simple general reaction mechanism of activation of aspartic proteinases zymogens involving a uni- and a bimolecular simultaneous activation route and a reversible inhibition step, the time course equation of the zymogen, inhibitor and activated enzyme concentrations have been derived. Likewise, expressions for the time required for any reaction progress and the corresponding mean activation rates as well as the half-life of the global zymogen activation have been derived. An experimental design and kinetic data analysis is suggested to estimate the kinetic parameters involved in the reaction mechanism proposed.

  20. Solubilization, partial purification, and reconstitution of glutamate- and N-methyl-D-aspartate-activated cation channels from brain synaptic membranes

    SciTech Connect

    Ly, A.M.; Michaelis, E.K. )

    1991-04-30

    L-Glutamate-activated cation channel proteins from rat brain synaptic membranes were solubilized, partially purified, and reconstituted into liposomes. Optimal conditions for solubilization and reconstitution included treatment of the membranes with nonionic detergents in the presence of neutral phospholipids plus glycerol. Quench-flow procedures were developed to characterize the rapid kinetics of ion flux induced by receptor agonists. ({sup 14}C)Methylamine, a cation that permeates through the open channel of both vertebrate and invertebrate glutamate receptors, was used to measure the activity of glutamate receptor-ion channel complexes in reconstituted liposomes. L-Glutamate caused an increase in the rate of ({sup 14}C)methylamine influx into liposomes reconstituted with either solubilized membrane proteins or partially purified glutamate-binding proteins. Of the major glutamate receptor agonists, only N-methyl-D-aspartate activated cation fluxes in liposomes reconstituted with glutamate-binding proteins. In liposomes reconstituted with glutamate-binding proteins, N-methyl-D-aspartate- or glutamate-induced influx of NA{sup +} led to a transient increase in the influx of the lipid-permeable anion probe S{sup 14}CN{sup {minus}}. These results indicate the functional reconstitution of N-methyl-D-aspartate-sensitive glutamate receptors and the role of the {approximately}69-kDa protein in the function of these ion channels.

  1. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    PubMed

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity.

  2. Secreted fungal aspartic proteases: A review.

    PubMed

    Mandujano-González, Virginia; Villa-Tanaca, Lourdes; Anducho-Reyes, Miguel Angel; Mercado-Flores, Yuridia

    2016-01-01

    The aspartic proteases, also called aspartyl and aspartate proteases or acid proteases (E.C.3.4.23), belong to the endopeptidase family and are characterized by the conserved sequence Asp-Gly-Thr at the active site. These enzymes are found in a wide variety of microorganisms in which they perform important functions related to nutrition and pathogenesis. In addition, their high activity and stability at acid pH make them attractive for industrial application in the food industry; specifically, they are used as milk-coagulating agents in cheese production or serve to improve the taste of some foods. This review presents an analysis of the characteristics and properties of secreted microbial aspartic proteases and their potential for commercial application. PMID:27137097

  3. Secreted fungal aspartic proteases: A review.

    PubMed

    Mandujano-González, Virginia; Villa-Tanaca, Lourdes; Anducho-Reyes, Miguel Angel; Mercado-Flores, Yuridia

    2016-01-01

    The aspartic proteases, also called aspartyl and aspartate proteases or acid proteases (E.C.3.4.23), belong to the endopeptidase family and are characterized by the conserved sequence Asp-Gly-Thr at the active site. These enzymes are found in a wide variety of microorganisms in which they perform important functions related to nutrition and pathogenesis. In addition, their high activity and stability at acid pH make them attractive for industrial application in the food industry; specifically, they are used as milk-coagulating agents in cheese production or serve to improve the taste of some foods. This review presents an analysis of the characteristics and properties of secreted microbial aspartic proteases and their potential for commercial application.

  4. Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals

    PubMed Central

    Errico, F; Nisticò, R; Di Giorgio, A; Squillace, M; Vitucci, D; Galbusera, A; Piccinin, S; Mango, D; Fazio, L; Middei, S; Trizio, S; Mercuri, N B; Teule, M A; Centonze, D; Gozzi, A; Blasi, G; Bertolino, A; Usiello, A

    2014-01-01

    D-aspartate (D-Asp) is an atypical amino acid, which is especially abundant in the developing mammalian brain, and can bind to and activate N-methyl-D-Aspartate receptors (NMDARs). In line with its pharmacological features, we find that mice chronically treated with D-Asp show enhanced NMDAR-mediated miniature excitatory postsynaptic currents and basal cerebral blood volume in fronto-hippocampal areas. In addition, we show that both chronic administration of D-Asp and deletion of the gene coding for the catabolic enzyme D-aspartate oxidase (DDO) trigger plastic modifications of neuronal cytoarchitecture in the prefrontal cortex and CA1 subfield of the hippocampus and promote a cytochalasin D-sensitive form of synaptic plasticity in adult mouse brains. To translate these findings in humans and consistent with the experiments using Ddo gene targeting in animals, we performed a hierarchical stepwise translational genetic approach. Specifically, we investigated the association of variation in the gene coding for DDO with complex human prefrontal phenotypes. We demonstrate that genetic variation predicting reduced expression of DDO in postmortem human prefrontal cortex is mapped on greater prefrontal gray matter and activity during working memory as measured with MRI. In conclusion our results identify novel NMDAR-dependent effects of D-Asp on plasticity and physiology in rodents, which also map to prefrontal phenotypes in humans. PMID:25072322

  5. Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals.

    PubMed

    Errico, F; Nisticò, R; Di Giorgio, A; Squillace, M; Vitucci, D; Galbusera, A; Piccinin, S; Mango, D; Fazio, L; Middei, S; Trizio, S; Mercuri, N B; Teule, M A; Centonze, D; Gozzi, A; Blasi, G; Bertolino, A; Usiello, A

    2014-01-01

    D-aspartate (D-Asp) is an atypical amino acid, which is especially abundant in the developing mammalian brain, and can bind to and activate N-methyl-D-Aspartate receptors (NMDARs). In line with its pharmacological features, we find that mice chronically treated with D-Asp show enhanced NMDAR-mediated miniature excitatory postsynaptic currents and basal cerebral blood volume in fronto-hippocampal areas. In addition, we show that both chronic administration of D-Asp and deletion of the gene coding for the catabolic enzyme D-aspartate oxidase (DDO) trigger plastic modifications of neuronal cytoarchitecture in the prefrontal cortex and CA1 subfield of the hippocampus and promote a cytochalasin D-sensitive form of synaptic plasticity in adult mouse brains. To translate these findings in humans and consistent with the experiments using Ddo gene targeting in animals, we performed a hierarchical stepwise translational genetic approach. Specifically, we investigated the association of variation in the gene coding for DDO with complex human prefrontal phenotypes. We demonstrate that genetic variation predicting reduced expression of DDO in postmortem human prefrontal cortex is mapped on greater prefrontal gray matter and activity during working memory as measured with MRI. In conclusion our results identify novel NMDAR-dependent effects of D-Asp on plasticity and physiology in rodents, which also map to prefrontal phenotypes in humans.

  6. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  7. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth.

    PubMed

    Yang, Hui; Zhou, Lisha; Shi, Qian; Zhao, Yuzheng; Lin, Huaipeng; Zhang, Mengli; Zhao, Shimin; Yang, Yi; Ling, Zhi-Qiang; Guan, Kun-Liang; Xiong, Yue; Ye, Dan

    2015-04-15

    The malate-aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate-aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD(+) redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate-aspartate NADH shuttle activity and oxidative protection. PMID:25755250

  8. SIRT3-dependent GOT2 acetylation status affects the malate–aspartate NADH shuttle activity and pancreatic tumor growth

    PubMed Central

    Yang, Hui; Zhou, Lisha; Shi, Qian; Zhao, Yuzheng; Lin, Huaipeng; Zhang, Mengli; Zhao, Shimin; Yang, Yi; Ling, Zhi-Qiang; Guan, Kun-Liang; Xiong, Yue; Ye, Dan

    2015-01-01

    The malate–aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate–aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD+ redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate–aspartate NADH shuttle activity and oxidative protection. PMID:25755250

  9. Human T lymphocytes express N-methyl-D-aspartate receptors functionally active in controlling T cell activation

    SciTech Connect

    Miglio, Gianluca; Varsaldi, Federica; Lombardi, Grazia . E-mail: lombardi@pharm.unipmn.it

    2005-12-30

    The aim of this study was to investigate the expression and the functional role of N-methyl-D-aspartate (NMDA) receptors in human T cells. RT-PCR analysis showed that human resting peripheral blood lymphocytes (PBL) and Jurkat T cells express genes encoding for both NR1 and NR2B subunits: phytohemagglutinin (PHA)-activated PBL also expresses both these genes and the NR2A and NR2D genes. Cytofluorimetric analysis showed that NR1 expression increases as a consequence of PHA (10 {mu}g/ml) treatment. D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5), and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine [(+)-MK 801], competitive and non-competitive NMDA receptor antagonists, respectively, inhibited PHA-induced T cell proliferation, whereas they did not affect IL-2 (10 U/ml)-induced proliferation of PHA blasts. These effects were due to the prevention of T cell activation (inhibition of cell aggregate formation and CD25 expression), but not to cell cycle arrest or death. These results demonstrate that human T lymphocytes express NMDA receptors, which are functionally active in controlling cell activation.

  10. Rotenone enhances N-methyl-D-aspartate currents by activating a tyrosine kinase in rat dopamine neurons.

    PubMed

    Wu, Yan-Na; Martella, Giuseppina; Johnson, Steven W

    2007-11-19

    Our previous work showed that the pesticide rotenone increases the amplitude of inward currents evoked by N-methyl-D-aspartate (NMDA) in substantia nigra dopamine neurons. Using patch pipettes to record whole-cell currents in rat brain slices, we report that the rotenone-induced potentiation of NMDA current is blocked by the tyrosine kinase inhibitors genistein and PP1. This action of rotenone is mimicked by H2O2, which is also blocked by genistein. Our results suggest that the rotenone-dependent increase in NMDA current is mediated by release of reactive oxygen species that activates a protein tyrosine kinase.

  11. Topology of AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, determined by site-directed fluorescence labeling.

    PubMed

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C; Abe, Keietsu

    2007-10-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of L-aspartate (Asp) with release of L-alanine (Ala) and CO(2). The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an L-aspartate-beta-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity.

  12. Site-Directed Mutagenesis and Structural Studies Suggest that the Germination Protease, GPR, in Spores of Bacillus Species Is an Atypical Aspartic Acid Protease

    PubMed Central

    Carroll, Thomas M.; Setlow, Peter

    2005-01-01

    Germination protease (GPR) initiates the degradation of small, acid-soluble spore proteins (SASP) during germination of spores of Bacillus and Clostridium species. The GPR amino acid sequence is not homologous to members of the major protease families, and previous work has not identified residues involved in GPR catalysis. The current work has focused on identifying catalytically essential amino acids by mutagenesis of Bacillus megaterium gpr. A residue was selected for alteration if it (i) was conserved among spore-forming bacteria, (ii) was a potential nucleophile, and (iii) had not been ruled out as inessential for catalysis. GPR variants were overexpressed in Escherichia coli, and the active form (P41) was assayed for activity against SASP and the zymogen form (P46) was assayed for the ability to autoprocess to P41. Variants inactive against SASP and unable to autoprocess were analyzed by circular dichroism spectroscopy and multiangle laser light scattering to determine whether the variant's inactivity was due to loss of secondary or quaternary structure, respectively. Variation of D127 and D193, but no other residues, resulted in inactive P46 and P41, while variants of each form were well structured and tetrameric, suggesting that D127 and D193 are essential for activity and autoprocessing. Mapping these two aspartate residues and a highly conserved lysine onto the B. megaterium P46 crystal structure revealed a striking similarity to the catalytic residues and propeptide lysine of aspartic acid proteases. These data indicate that GPR is an atypical aspartic acid protease. PMID:16199582

  13. D-Aspartate Modulates Nociceptive-Specific Neuron Activity and Pain Threshold in Inflammatory and Neuropathic Pain Condition in Mice

    PubMed Central

    Boccella, Serena; Vacca, Valentina; Errico, Francesco; Marinelli, Sara; Squillace, Marta; Di Maio, Anna; Vitucci, Daniela; Palazzo, Enza; De Novellis, Vito; Maione, Sabatino; Pavone, Flaminia; Usiello, Alessandro

    2015-01-01

    D-Aspartate (D-Asp) is a free D-amino acid found in the mammalian brain with a temporal-dependent concentration based on the postnatal expression of its metabolizing enzyme D-aspartate oxidase (DDO). D-Asp acts as an agonist on NMDA receptors (NMDARs). Accordingly, high levels of D-Asp in knockout mice for Ddo gene (Ddo−/−) or in mice treated with D-Asp increase NMDAR-dependent processes. We have here evaluated in Ddo−/− mice the effect of high levels of free D-Asp on the long-term plastic changes along the nociceptive pathway occurring in chronic and acute pain condition. We found that Ddo−/− mice show an increased evoked activity of the nociceptive specific (NS) neurons of the dorsal horn of the spinal cord (L4–L6) and a significant decrease of mechanical and thermal thresholds, as compared to control mice. Moreover, Ddo gene deletion exacerbated the nocifensive responses in the formalin test and slightly reduced pain thresholds in neuropathic mice up to 7 days after chronic constriction injury. These findings suggest that the NMDAR agonist, D-Asp, may play a role in the regulation of NS neuron electrophysiological activity and behavioral responses in physiological and pathological pain conditions. PMID:25629055

  14. Activation of EphA receptors mediates the recruitment of the adaptor protein Slap, contributing to the downregulation of N-methyl-D-aspartate receptors.

    PubMed

    Semerdjieva, Sophia; Abdul-Razak, Hayder H; Salim, Sharifah S; Yáñez-Muñoz, Rafael J; Chen, Philip E; Tarabykin, Victor; Alifragis, Pavlos

    2013-04-01

    Regulation of the activity of N-methyl-d-aspartate receptors (NMDARs) at glutamatergic synapses is essential for certain forms of synaptic plasticity underlying learning and memory and is also associated with neurotoxicity and neurodegenerative diseases. In this report, we investigate the role of Src-like adaptor protein (Slap) in NMDA receptor signaling. We present data showing that in dissociated neuronal cultures, activation of ephrin (Eph) receptors by chimeric preclustered eph-Fc ligands leads to recruitment of Slap and NMDA receptors at the sites of Eph receptor activation. Interestingly, our data suggest that prolonged activation of EphA receptors is as efficient in recruiting Slap and NMDA receptors as prolonged activation of EphB receptors. Using established heterologous systems, we examined whether Slap is an integral part of NMDA receptor signaling. Our results showed that Slap does not alter baseline activity of NMDA receptors and does not affect Src-dependent potentiation of NMDA receptor currents in Xenopus oocytes. We also demonstrate that Slap reduces excitotoxic cell death triggered by activation of NMDARs in HEK293 cells. Finally, we present evidence showing reduced levels of NMDA receptors in the presence of Slap occurring in an activity-dependent manner, suggesting that Slap is part of a mechanism that homeostatically modulates the levels of NMDA receptors.

  15. Small Molecule Receptor Protein Tyrosine Phosphatase γ (RPTPγ) Ligands That Inhibit Phosphatase Activity via Perturbation of the Tryptophan-Proline-Aspartate (WPD) Loop

    SciTech Connect

    Sheriff, Steven; Beno, Brett R; Zhai, Weixu; Kostich, Walter A; McDonnell, Patricia A; Kish, Kevin; Goldfarb, Valentina; Gao, Mian; Kiefer, Susan E; Yanchunas, Joseph; Huang, Yanling; Shi, Shuhao; Zhu, Shirong; Dzierba, Carolyn; Bronson, Joanne; Macor, John E; Appiah, Kingsley K; Westphal, Ryan S; O’Connell, Jonathan; Gerritz, Samuel W

    2012-11-09

    Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of tyrosine residues, a process that involves a conserved tryptophan-proline-aspartate (WPD) loop in catalysis. In previously determined structures of PTPs, the WPD-loop has been observed in either an 'open' conformation or a 'closed' conformation. In the current work, X-ray structures of the catalytic domain of receptor-like protein tyrosine phosphatase γ (RPTPγ) revealed a ligand-induced 'superopen' conformation not previously reported for PTPs. In the superopen conformation, the ligand acts as an apparent competitive inhibitor and binds in a small hydrophobic pocket adjacent to, but distinct from, the active site. In the open and closed WPD-loop conformations of RPTPγ, the side chain of Trp1026 partially occupies this pocket. In the superopen conformation, Trp1026 is displaced allowing a 3,4-dichlorobenzyl substituent to occupy this site. The bound ligand prevents closure of the WPD-loop over the active site and disrupts the catalytic cycle of the enzyme.

  16. Structural Analysis of the Ligand-Binding Domain of the Aspartate Receptor Tar from Escherichia coli.

    PubMed

    Mise, Takeshi

    2016-07-01

    The Escherichia coli cell-surface aspartate receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni(2+). These signals are transmitted from the extracellular region of Tar to the cytoplasmic region via the transmembrane domain. The mechanism by which extracellular signals are transmitted into the cell through conformational changes in Tar is predicted to involve a piston displacement of one of the α4 helices of the homodimer. To understand the molecular mechanisms underlying the induction of Tar activity by an attractant, the three-dimensional structures of the E. coli Tar periplasmic domain with and without bound aspartate, Asp-Tar and apo-Tar, respectively, were determined. Of the two ligand-binding sites, only one site was occupied, and it clearly showed the electron density of an aspartate. The slight changes in conformation and the electrostatic surface potential around the aspartate-binding site were observed. In addition, the presence of an aspartate stabilized residues Phe-150' and Arg-73. A pistonlike displacement of helix α4b' was also induced by aspartate binding as predicted by the piston model. Taken together, these small changes might be related to the induction of Tar activity and might disturb binding of the second aspartate to the second binding site in E. coli. PMID:27292793

  17. Structural and functional characterization of aspartate racemase from the acidothermophilic archaeon Picrophilus torridus.

    PubMed

    Aihara, Takayuki; Ito, Toshiya; Yamanaka, Yasuaki; Noguchi, Keiichi; Odaka, Masafumi; Sekine, Masae; Homma, Hiroshi; Yohda, Masafumi

    2016-07-01

    Functional and structural characterizations of pyridoxal 5'-phosphate-independent aspartate racemase of the acidothermophilic archaeon Picrophilus torridus were performed. Picrophilus aspartate racemase exhibited high substrate specificity to aspartic acid. The optimal reaction temperature was 60 °C, which is almost the same as the optimal growth temperature. Reflecting the low pH in the cytosol, the optimal reaction pH of Picrophilus aspartate racemase was approximately 5.5. However, the activity at the putative cytosolic pH of 4.6 was approximately 6 times lower than that at the optimal pH of 5.5. The crystal structure of Picrophilus aspartate racemase was almost the same as that of other pyridoxal 5'-phosphate -independent aspartate racemases. In two molecules of the dimer, one molecule contained a tartaric acid molecule in the catalytic site; the structure of the other molecule was relatively flexible. Finally, we examined the intracellular existence of D-amino acids. Unexpectedly, the proportion of D-aspartate to total aspartate was not very high. In contrast, both D-proline and D-alanine were observed. Because Picrophilus aspartate racemase is highly specific to aspartate, other amino acid racemases might exist in Picrophilus torridus. PMID:27094682

  18. Effects of Inhibitors of RNA and Protein Synthesis on Aspartate Transcarbamylase Activity in Etiolated Plant Tissue 1

    PubMed Central

    Johnson, Lowell B.; Niblett, Charles L.; Lee, Richard F.

    1976-01-01

    Aspartate transcarbamylase (ATCase) activity declines in etiolated cowpea (Vigna unguiculata L. Walp.) and soybean (Glycine max L. Merr.) hypocotyls between 3 and 11 days after planting. Treating cow-pea hypocotyls with cycloheximide (CH), actinomycin D (AMD), 6-methyl purine (6-MP), or cordycepin increases ATCase activity up to 740, 350, 465, and 305%, respectively, over water-treated controls 48 to 72 hours after treatment. In contrast erythromycin had no effect, and d-threo-chloramphenicol (CHL) reduced ATCase activity nearly 40%. CH, AMD, and CHL, whose effects were further characterized, each markedly reduced total RNA synthesis and protein synthesis. Respiration was stimulated by CH and AMD and reduced by CHL. In soybean, CHL-treated tissues and water-treated controls had comparable ATCase activities 48 hours after treatment, while AMD, 6-MP, and CH treatments reduced activities 29, 37, and 78%, respectively. The results suggest that the level of ATCase activity in etiolated cowpea hypocotyls is regulated by a mechanism or mechanisms that are interfered with by inhibition of RNA and protein synthesis. Possibly the mechanism is absent from etiolated soybean hypocotyls. PMID:16659653

  19. Impairment of N-methyl-D-aspartate receptor-controlled motor activity in LYN-deficient mice.

    PubMed

    Umemori, H; Ogura, H; Tozawa, N; Mikoshiba, K; Nishizumi, H; Yamamoto, T

    2003-01-01

    The N-methyl-D-aspartate (NMDA) receptor, an ionotropic glutamate receptor, is implicated in motor activity that is regulated in the striatum and nucleus accumbens of the brain. A Src family kinase Lyn is highly expressed in striatum, cortex, thalamus, and cerebellum in the brain. Here we show that spontaneous motor activity is suppressed in lyn-/- mice. S.c. injection of methylphenidate, which causes accumulation of dopamine in synapses, reveals that dopaminergic pathway is normal in lyn-/- mice. After blocking the NMDA receptor, motor activity of lyn-/- mice increased to the same level as that of wild type mice. Therefore, the NMDA receptor-mediated signaling is enhanced in lyn-/- mice, indicating that Lyn regulates the NMDA receptor pathway negatively. Intriguingly, the activity of protein kinase C (PKC), an enzyme regulated downstream of NMDA receptors, is increased in lyn-/- mice. The present data suggest that the NMDA receptor signal that is enhanced in the absence of Lyn suppresses the motor activity, probably through inhibition of dopaminergic pathway at striatum. We conclude that Lyn contributes to coordination of motor activity through regulation of the NMDA pathway. It appears that this negative regulation involves suppression of downstream signaling of NMDA receptor such as those mediated by PKC.

  20. Antimalarial activity enhancement in hydroxymethylcarbonyl (HMC) isostere-based dipeptidomimetics targeting malarial aspartic protease plasmepsin

    PubMed Central

    Hidaka, Koushi; Kimura, Tooru; Ruben, Adam J.; Uemura, Tsuyoshi; Kamiya, Mami; Kiso, Aiko; Okamoto, Tetsuya; Tsuchiya, Yumi; Hayashi, Yoshio; Freire, Ernesto; Kiso, Yoshiaki

    2015-01-01

    Plasmepsin (Plm) is a potential target for new antimalarial drugs, but most reported Plm inhibitors have relatively low antimalarial activities. We synthesized a series of dipeptide-type HIV protease inhibitors, which contain an allophenylnorstatine-dimethylthioproline scaffold to exhibit potent inhibitory activities against Plm II. Their activities against Plasmodium falciparum in the infected erythrocyte assay were largely different from those against the target enzyme. To improve the antimalarial activity of peptidomimetic Plm inhibitors, we attached substituents on a structure of the highly potent Plm inhibitor KNI-10006. Among the derivatives, we identified alkylamino compounds such as 44 (KNI-10283) and 47 (KNI-10538) with more than 15-fold enhanced antimalarial activity, to the sub-micromolar level, maintaining their potent Plm II inhibitory activity and low cytotoxicity. These results suggest that auxiliary substituents on a specific basic group contribute to deliver the inhibitors to the target Plm. PMID:18952439

  1. Purified yeast aspartic protease 3 cleaves anglerfish pro-somatostatin I and II at di- and monobasic sites to generate somatostatin-14 and -28.

    PubMed

    Cawley, N X; Noe, B D; Loh, Y P

    1993-10-18

    Anglerfish somatostatin-14 (SS-14) and somatostatin-28 (aSS-28) are derived from pro-somatostatin I (aPSS-I) and pro-somatostatin II (PSS-II), respectively. Purified yeast aspartic protease 3 (YAP3), was shown to cleave aPSS-I at the Arg81-Lys82 to yield SS-14 and Lys-1SS-14. In contrast, YAP3 cleaved aPSS-II only at the monobasic residue, Arg73 to yield aSS-28. Since the paired basic and monobasic sites are present in both precursors, the results indicate that the structure and conformation of these substrates dictate where cleavage occurs. Furthermore, the data show that YAP3 has specificity for both monobasic and paired basic residues. PMID:8104828

  2. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1

    PubMed Central

    Lehrbach, Nicolas J; Ruvkun, Gary

    2016-01-01

    Proteasomes are essential for protein homeostasis in eukaryotes. To preserve cellular function, transcription of proteasome subunit genes is induced in response to proteasome dysfunction caused by pathogen attacks or proteasome inhibitor drugs. In Caenorhabditis elegans, this response requires SKN-1, a transcription factor related to mammalian Nrf1/2. Here, we use comprehensive genetic analyses to identify the pathway required for C. elegans to detect proteasome dysfunction and activate SKN-1. Genes required for SKN-1 activation encode regulators of ER traffic, a peptide N-glycanase, and DDI-1, a conserved aspartic protease. DDI-1 expression is induced by proteasome dysfunction, and we show that DDI-1 is required to cleave and activate an ER-associated isoform of SKN-1. Mammalian Nrf1 is also ER-associated and subject to proteolytic cleavage, suggesting a conserved mechanism of proteasome surveillance. Targeting mammalian DDI1 protease could mitigate effects of proteasome dysfunction in aging and protein aggregation disorders, or increase effectiveness of proteasome inhibitor cancer chemotherapies. DOI: http://dx.doi.org/10.7554/eLife.17721.001 PMID:27528192

  3. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1.

    PubMed

    Lehrbach, Nicolas J; Ruvkun, Gary

    2016-01-01

    Proteasomes are essential for protein homeostasis in eukaryotes. To preserve cellular function, transcription of proteasome subunit genes is induced in response to proteasome dysfunction caused by pathogen attacks or proteasome inhibitor drugs. In Caenorhabditis elegans, this response requires SKN-1, a transcription factor related to mammalian Nrf1/2. Here, we use comprehensive genetic analyses to identify the pathway required for C. elegans to detect proteasome dysfunction and activate SKN-1. Genes required for SKN-1 activation encode regulators of ER traffic, a peptide N-glycanase, and DDI-1, a conserved aspartic protease. DDI-1 expression is induced by proteasome dysfunction, and we show that DDI-1 is required to cleave and activate an ER-associated isoform of SKN-1. Mammalian Nrf1 is also ER-associated and subject to proteolytic cleavage, suggesting a conserved mechanism of proteasome surveillance. Targeting mammalian DDI1 protease could mitigate effects of proteasome dysfunction in aging and protein aggregation disorders, or increase effectiveness of proteasome inhibitor cancer chemotherapies. PMID:27528192

  4. Ethanol inhibition of N-methyl-D-aspartate-activated current in mouse hippocampal neurones: whole-cell patch-clamp analysis

    PubMed Central

    Peoples, Robert W; White, Geoffrey; Lovinger, David M; Weight, Forrest F

    1997-01-01

    The action of ethanol on N-methyl-D-aspartate (NMDA)-activated ion current was studied in mouse hippocampal neurones in culture using whole-cell patch-clamp recording. Ethanol inhibited NMDA-activated current in a voltage-independent manner, and did not alter the reversal potential of NMDA-activated current. Concentration–response analysis of NMDA- and glycine-activated current revealed that ethanol decreased the maximal response to both agonists without affecting their EC50 values. The polyamine spermine (1 μM) increased amplitude of NMDA-activated current but did not alter the percentage inhibition of ethanol. Compared to an extracellular pH of 7.0, pH 6.0 decreased and pH 8.0 increased the amplitude of NMDA-activated current, but these changes in pH did not significantly alter the percentage inhibition by ethanol. The sulphydryl reducing agent dithiothreitol (2 mM) increased the amplitude of NMDA-activated current, but did not affect the percentage inhibition by ethanol. Mg2+ (10, 100, 500 μM), Zn2+ (5, 20 μM) or ketamine (2, 10 μM) decreased the amplitude of NMDA-activated current, but did not affect the percentage inhibition by ethanol. The observations are consistent with ethanol inhibiting the function of NMDA receptors by a non-competitive mechanism that does not involve several modulatory sites on the NMDA receptor–ionophore complex. PMID:9401766

  5. Serum γ-Glutamyltransferase, Alanine Aminotransferase and Aspartate Aminotransferase Activity in Healthy Blood Donor of Different Ethnic Groups in Gorgan

    PubMed Central

    Mehrpouya, Masoumeh; Pourhashem, Zeinab

    2016-01-01

    Introduction Measure of liver enzymes may help to increase safety of blood donation for both blood donor and recipient. Determination of liver enzymes may prepare valuable clinical information. Aim To assess serum γ-Glutamyltransferase (GGT), Alanine Aminotransferase (ALT), and Aspartate Aminotransferase (AST) activities in healthy blood donors in different ethnic groups in Gorgan. Materials and Methods This study was performed in 450 healthy male blood donors, in three ethnic groups (Fars, Sistanee and Turkman) who attended Gorgan blood transfusion center. Liver enzymes (GGT, ALT and AST) were determined. Results Serum AST and ALT in three ethnic groups were significant except for serum GGT levels. There was significant correlation between family histories of liver disease and systolic blood pressure and AST in Fars, and GGT in Sistanee ethnic groups. Conclusion Several factors, such as age, family history of diabetes mellitus, family history of liver disease and smoking habit had no effect on some liver enzymes in different ethnic groups in this area. Variation of AST, ALT, and GGT enzyme activities in healthy subjects was associated with some subjects in our study groups. According to our study, it suggests that screening of AST and GGT enzymes in subjects with family history of liver disease is necessary in different ethnic groups. PMID:27630834

  6. Substitution of a single amino acid (aspartic acid for histidine) converts the functional activity of human complement C4B to C4A

    SciTech Connect

    Carroll, M.C.; Fathallah, D.M.; Bergamaschini, L.; Alicot, E.M. ); Isenman, D.E. )

    1990-09-01

    The C4B isotype of the fourth component of human complement (C4) displays 3- to 4-fold greater hemolytic activity than does its other isotype C4A. This correlates with differences in their covalent binding efficiencies to erythrocytes coated with antibody and complement C1. C4A binds to a greater extent when C1 is on IgG immune aggregates. The differences in covalent binding properties correlate only with amino acid changes between residues 1101 and 1106 (pro-C4 numbering)-namely, Pro-1101, Cys-1102, Leu-1105, and Asp-1106 in C4A and Leu-1101, Ser-1102, Ile-1105, and His-1106 in C4B, which are located in the C4d region of the {alpha} chain. To more precisely identify the residues that are important for the functional differences, C4A-C4B hybrid proteins were constructed by using recombinant DNA techniques. Comparison of these by hemolytic assay and binding to IgG aggregates showed that the single substitution of aspartic acid for histidine at position 1106 largely accounted for the change in functional activity and nature of the chemical bond formed. Surprisingly, substitution of a neutral residue, alanine, for histidine at position 1106 resulted in an increase in binding to immune aggregates without subsequent reduction in the hemolytic activity. This result strongly suggests that position 1106 is not catalytic as previously proposed but interacts sterically/electrostatically with potential acceptor sites and serves to select binding sites on potential acceptor molecules.

  7. Neuroendocrine mechanism of onset of puberty. Sequential reduction in activity of inhibitory and facilitatory N-methyl-D-aspartate receptors.

    PubMed Central

    Bourguignon, J P; Gérard, A; Alvarez Gonzalez, M L; Franchimont, P

    1992-01-01

    In humans and in several animal species, puberty results from changes in pulsatile gonadotropin-releasing hormone (GnRH) secretion in the hypothalamus. In particular, the frequency of pulsatile GnRH secretion increases at the onset of puberty, as can be shown by using hypothalamic explants of male rats of 15 and 25 d. Previous observations from us and others suggested that the initiation of puberty could involve a facilitatory effect of excitatory amino acids mediated through N-methyl-D-aspartate (NMDA) receptors. We found that GnRH secretion could be activated through NMDA receptors only around the time of onset of puberty (25 d). The aim of this study was to clarify why this activation did not occur earlier (at 15 d) and could no longer be observed by the end of puberty (at 50 d). We studied GnRH secretion in the presence of MK-801, a noncompetitive antagonist of NMDA receptors or AP-5, a competitive antagonist. We showed that, in the hypothalamus of immature male rats (15 d), a highly potent inhibitory control of pulsatile GnRH secretion in vitro was mediated through NMDA receptors. These data were confirmed in vivo because administration of the antagonist MK-801 (0.001 mg/kg) to immature male rats resulted in early pubertal development. Onset of puberty (25 d) was characterized by the disappearance of that NMDA receptor-mediated inhibition, thus unmasking a facilitatory effect also mediated through NMDA receptors. During puberty, there was a reduction in activity of this facilitatory control which was no longer opposed by its inhibitory counterpart. We conclude that a sequential reduction in activity of inhibitory and facilitatory NMDA receptors provides a developmental basis for the neuroendocrine mechanism of onset of puberty. Images PMID:1430201

  8. Adenosine A1 receptor activation modulates N-methyl-d-aspartate (NMDA) preconditioning phenotype in the brain.

    PubMed

    Constantino, Leandra C; Pamplona, Fabrício A; Matheus, Filipe C; Ludka, Fabiana K; Gomez-Soler, Maricel; Ciruela, Francisco; Boeck, Carina R; Prediger, Rui D; Tasca, Carla I

    2015-04-01

    N-methyl-d-aspartate (NMDA) preconditioning is induced by subtoxic doses of NMDA and it promotes a transient state of resistance against subsequent lethal insults. Interestingly, this mechanism of neuroprotection depends on adenosine A1 receptors (A1R), since blockade of A1R precludes this phenomenon. In this study we evaluated the consequences of NMDA preconditioning on the hippocampal A1R biology (i.e. expression, binding properties and functionality). Accordingly, we measured A1R expression in NMDA preconditioned mice (75mg/kg, i.p.; 24h) and showed that neither the total amount of receptor, nor the A1R levels in the synaptic fraction was altered. In addition, the A1R binding affinity to the antagonist [(3)H] DPCPX was slightly increased in total membrane extracts of hippocampus from preconditioned mice. Next, we evaluated the impact of NMDA preconditioning on A1R functioning by measuring the A1R-mediated regulation of glutamate uptake into hippocampal slices and on behavioral responses in the open field and hot plate tests. NMDA preconditioning increased glutamate uptake into hippocampal slices without altering the expression of glutamate transporter GLT-1. Interestingly, NMDA preconditioning also induced antinociception in the hot plate test and both effects were reversed by post-activation of A1R with the agonist CCPA (0.2mg/kg, i.p.). NMDA preconditioning or A1R modulation did not alter locomotor activity in the open field. Overall, the results described herein provide new evidence that post-activation of A1R modulates NMDA preconditioning-mediated responses, pointing to the importance of the cross-talk between glutamatergic and adenosinergic systems to neuroprotection.

  9. Aspartate protects Lactobacillus casei against acid stress.

    PubMed

    Wu, Chongde; Zhang, Juan; Du, Guocheng; Chen, Jian

    2013-05-01

    The aim of this study was to investigate the effect of aspartate on the acid tolerance of L. casei. Acid stress induced the accumulation of intracellular aspartate in L. casei, and the acid-resistant mutant exhibited 32.5 % higher amount of aspartate than that of the parental strain at pH 4.3. Exogenous aspartate improved the growth performance and acid tolerance of Lactobacillus casei during acid stress. When cultivated in the presence of 50 mM aspartate, the biomass of cells increased 65.8 % compared with the control (without aspartate addition). In addition, cells grown at pH 4.3 with aspartate addition were challenged at pH 3.3 for 3 h, and the survival rate increased 42.26-fold. Analysis of the physiological data showed that the aspartate-supplemented cells exhibited higher intracellular pH (pHi), intracellular NH4 (+) content, H(+)-ATPase activity, and intracellular ATP pool. In addition, higher contents of intermediates involved in glycolysis and tricarboxylic acid cycle were observed in cells in the presence of aspartate. The increased contents of many amino acids including aspartate, arginine, leucine, isoleucine, and valine in aspartate-added cells may contribute to the regulation of pHi. Transcriptional analysis showed that the expression of argG and argH increased during acid stress, and the addition of aspartate induced 1.46- and 3.06-fold higher expressions of argG and argH, respectively, compared with the control. Results presented in this manuscript suggested that aspartate may protect L. casei against acid stress, and it may be used as a potential protectant during the production of probiotics. PMID:23292549

  10. Effect of N-methyl-D-aspartic acid on activity of superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione level in selected organs of the mouse.

    PubMed

    Szaroma, Waldemar; Dziubek, K; Kapusta, E

    2014-09-01

    One of the major classes of ionotropic glutamate receptors is the class of N-methyl-D-aspartate receptors (NMDARs). Receptor activation recruits, via calcium signal transduction mechanisms which play important roles in oxidative metabolism, mitochondrial free radical production and occurrence of other mitochondrial factors which potentially contribute to excitotoxicity and neuronal death. In the present study, the effects of stimulation of NMDARs by applying N-methyl-D-aspartic acid (NMDA) in the brain, liver, kidneys and pancreas on change of the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSHPx) and in the amount of reduced glutathione (GSH) in blood, brain, liver and kidneys has been investigated. Statistically significant decrease of the activity of SOD, CAT and GSHPx and in the amount of reduced glutathione (GSH) was found in the examined organs after administration of NMDA, an agonist of NMDA receptors, demonstrating that NMDA administration compromises the antioxidant status in the investigated organs of the mouse.

  11. N-Methyl-d-Aspartate Receptor and Neuronal Nitric Oxide Synthase Activation Mediate Bilirubin-Induced Neurotoxicity

    PubMed Central

    Brito, Maria A; Vaz, Ana R; Silva, Sandra L; Falcão, Ana S; Fernandes, Adelaide; Silva, Rui FM; Brites, Dora

    2010-01-01

    Hyperbilirubinemia may lead to neurotoxicity and neuronal death. Although the mechanisms of nerve cell damage by unconjugated bilirubin (UCB) appear to involve a disruption of the redox status and excitotoxicity, the contribution of nitric oxide (NO·) and of N-methyl-d-aspartate (NMDA) glutamate receptors is unclear. We investigated the role of NO· and NMDA glutamate receptors in the pathways of nerve cell demise by UCB. Neurons were incubated with 100 μmol/L UCB, in the presence of 100 μmol/L human serum albumin for 4 h at 37ºC, alone or in combination with N-ω-nitro-l-arginine methyl ester (l-NAME) (an inhibitor of neuronal nitric oxide synthase [nNOS]), hemoglobin (an NO· scavenger) or (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) (an NMDA-receptor antagonist). Exposure to UCB led to increased expression of nNOS and production of both NO· and cyclic guanosine 3′,5′-monophosphate (cGMP), along with protein oxidation and depletion of glutathione. These events concurred for cell dysfunction and death and were counteracted by l-NAME. Moreover, the UCB-induced loss of neuronal viability was abolished by hemoglobin, whereas the activation of nNOS and production of both NO· and cGMP were counteracted by MK-801, resulting in significant protection from cell dysfunction and death. These results reinforce the involvement of oxidative stress by showing that nerve cell damage by UCB is mediated by NO· and therefore is counteracted by NO· inhibitors or scavengers. Our findings strongly suggest that the activation of nNOS and neurotoxicity occur through the engagement of NMDA receptors. These data reveal a role for overstimulation of glutamate receptors in mediating oxidative damage by UCB. PMID:20593111

  12. Casein Kinase 2-mediated Synaptic GluN2A Up-regulation Increases N-Methyl-d-aspartate Receptor Activity and Excitability of Hypothalamic Neurons in Hypertension*

    PubMed Central

    Ye, Zeng-You; Li, Li; Li, De-Pei; Pan, Hui-Lin

    2012-01-01

    Increased glutamatergic input, particularly N-methyl-d-aspartate receptor (NMDAR) activity, in the paraventricular nucleus (PVN) of the hypothalamus is closely associated with high sympathetic outflow in essential hypertension. The molecular mechanisms underlying augmented NMDAR activity in hypertension are unclear. GluN2 subunit composition at the synaptic site critically determines NMDAR functional properties. Here, we found that evoked NMDAR-excitatory postsynaptic currents (EPSCs) of retrogradely labeled spinally projecting PVN neurons displayed a larger amplitude and shorter decay time in spontaneously hypertensive rats (SHRs) than in Wistar-Kyoto (WKY) rats. Blocking GluN2B caused a smaller decrease in NMDAR-EPSCs of PVN neurons in SHRs than in WKY rats. In contrast, GluN2A blockade resulted in a larger reduction in evoked NMDAR-EPSCs and puff NMDA-elicited currents of PVN neurons in SHRs than in WKY rats. Blocking presynaptic GluN2A, but not GluN2B, significantly reduced the frequency of miniature EPSCs and the firing activity of PVN neurons in SHRs. The mRNA and total protein levels of GluN2A and GluN2B in the PVN were greater in SHRs than in WKY rats. Furthermore, the GluN2B Ser1480 phosphorylation level and the synaptosomal GluN2A protein level in the PVN were significantly higher in SHRs than in WKY rats. Inhibition of protein kinase CK2 normalized the GluN2B Ser1480 phosphorylation level and the contribution of GluN2A to NMDAR-EPSCs and miniature EPSCs of PVN neurons in SHRs. Collectively, our findings suggest that CK2-mediated GluN2B phosphorylation contributes to increased synaptic GluN2A, which potentiates pre- and postsynaptic NMDAR activity and the excitability of PVN presympathetic neurons in hypertension. PMID:22474321

  13. Properties of a recombinant human hemoglobin with aspartic acid 99(beta), an important intersubunit contact site, substituted by lysine.

    PubMed Central

    Yanase, H.; Cahill, S.; Martin de Llano, J. J.; Manning, L. R.; Schneider, K.; Chait, B. T.; Vandegriff, K. D.; Winslow, R. M.; Manning, J. M.

    1994-01-01

    Site-directed mutagenesis of an important subunit contact site, Asp-99(beta), by a Lys residue (D99K(beta)) was proven by sequencing the entire beta-globin gene and the mutant tryptic peptide. Oxygen equilibrium curves of the mutant hemoglobin (Hb) (2-15 mM in heme) indicated that it had an increased oxygen affinity and a lowered but significant amount of cooperativity compared to native HbA. However, in contrast to normal HbA, oxygen binding of the recombinant mutant Hb was only marginally affected by the allosteric regulators 2,3-diphosphoglycerate or inositol hexaphosphate and was not at all responsive to chloride. The efficiency of oxygen binding by HbA in the presence of allosteric regulators was limited by the mutant Hb. At concentrations of 0.2 mM or lower in heme, the mutant D99K(beta) Hb was predominantly a dimer as demonstrated by gel filtration, haptoglobin binding, fluorescence quenching, and light scattering. The purified dimeric recombinant Hb mutant exists in 2 forms that are separable on isoelectric focusing by about 0.1 pH unit, in contrast to tetrameric hemoglobin, which shows 1 band. These mutant forms, which were present in a ratio of 60:40, had the same masses for their heme and globin moieties as determined by mass spectrometry. The elution positions of the alpha- and beta-globin subunits on HPLC were identical. Circular dichroism studies showed that one form of the mutant Hb had a negative ellipticity at 410 nm and the other had positive ellipticity at this wavelength. The findings suggest that the 2 D99K(beta) recombinant mutant forms have differences in their heme-protein environments. PMID:7987216

  14. Deciphering the Role of Aspartate and Prephenate Aminotransferase Activities in Plastid Nitrogen Metabolism1[C][W][OPEN

    PubMed Central

    de la Torre, Fernando; El-Azaz, Jorge; Ávila, Concepción; Cánovas, Francisco M.

    2014-01-01

    Chloroplasts and plastids of nonphotosynthetic plant cells contain two aspartate (Asp) aminotransferases: a eukaryotic type (Asp5) and a prokaryotic-type bifunctional enzyme displaying Asp and prephenate aminotransferase activities (PAT). We have identified the entire Asp aminotransferase gene family in Nicotiana benthamiana and isolated and cloned the genes encoding the isoenzymes with plastidic localization: NbAsp5 and NbPAT. Using a virus-induced gene silencing approach, we obtained N. benthamiana plants silenced for NbAsp5 and/or NbPAT. Phenotypic and metabolic analyses were conducted in silenced plants to investigate the specific roles of these enzymes in the biosynthesis of essential amino acids within the plastid. The NbAsp5 silenced plants had no changes in phenotype, exhibiting similar levels of free Asp and glutamate as control plants, but contained diminished levels of asparagine and much higher levels of lysine. In contrast, the suppression of NbPAT led to a severe reduction in growth and strong chlorosis symptoms. NbPAT silenced plants exhibited extremely reduced levels of asparagine and were greatly affected in their phenylalanine metabolism and lignin deposition. Furthermore, NbPAT suppression triggered a transcriptional reprogramming in plastid nitrogen metabolism. Taken together, our results indicate that NbPAT has an overlapping role with NbAsp5 in the biosynthesis of Asp and a key role in the production of phenylalanine for the biosynthesis of phenylpropanoids. The analysis of NbAsp5/NbPAT cosilenced plants highlights the central role of both plastidic aminotransferases in nitrogen metabolism; however, only NbPAT is essential for plant growth and development. PMID:24296073

  15. The swaposin-like domain of potato aspartic protease (StAsp-PSI) exerts antimicrobial activity on plant and human pathogens.

    PubMed

    Muñoz, Fernando F; Mendieta, Julieta R; Pagano, Mariana R; Paggi, Roberto A; Daleo, Gustavo R; Guevara, María G

    2010-05-01

    Plant-specific insert domain (PSI) is a region of approximately 100 amino acid residues present in most plant aspartic protease (AP) precursors. PSI is not a true saposin domain; it is the exchange of the N- and C-terminal portions of the saposin like domain. Hence, PSI is called a swaposin domain. Here, we report the cloned, heterologous expression and purification of PSI from StAsp 1 (Solanum tuberosum aspartic protease 1), called StAsp-PSI. Results obtained here show that StAsp-PSI is able to kill spores of two potato pathogens in a dose-dependent manner without any deleterious effect on plant cells. As reported for StAPs (S. tuberosum aspartic proteases), the StAsp-PSI ability to kill microbial pathogens is dependent on the direct interaction of the protein with the microbial cell wall/or membrane, leading to increased permeability and lysis. Additionally, we demonstrated that, like proteins of the SAPLIP family, StAsp-PSI and StAPs are cytotoxic to Gram-negative and Gram-positive bacteria in a dose dependent manner. The amino acid residues conserved in SP_B (pulmonary surfactant protein B) and StAsp-PSI could explain the cytotoxic activity exerted by StAsp-PSI and StAPs against Gram-positive bacteria. These results and data previously reported suggest that the presence of the PSI domain in mature StAPs could be related to their antimicrobial activity.

  16. Active Site Characterization of Proteases Sequences from Different Species of Aspergillus.

    PubMed

    Morya, V K; Yadav, Virendra K; Yadav, Sangeeta; Yadav, Dinesh

    2016-09-01

    A total of 129 proteases sequences comprising 43 serine proteases, 36 aspartic proteases, 24 cysteine protease, 21 metalloproteases, and 05 neutral proteases from different Aspergillus species were analyzed for the catalytically active site residues using MEROPS database and various bioinformatics tools. Different proteases have predominance of variable active site residues. In case of 24 cysteine proteases of Aspergilli, the predominant active site residues observed were Gln193, Cys199, His364, Asn384 while for 43 serine proteases, the active site residues namely Asp164, His193, Asn284, Ser349 and Asp325, His357, Asn454, Ser519 were frequently observed. The analysis of 21 metalloproteases of Aspergilli revealed Glu298 and Glu388, Tyr476 as predominant active site residues. In general, Aspergilli species-specific active site residues were observed for different types of protease sequences analyzed. The phylogenetic analysis of these 129 proteases sequences revealed 14 different clans representing different types of proteases with diverse active site residues.

  17. Interaction with sigma(1) protein, but not N-methyl-D-aspartate receptor, is involved in the pharmacological activity of donepezil.

    PubMed

    Maurice, Tangui; Meunier, Johann; Feng, Bihua; Ieni, John; Monaghan, Daniel T

    2006-05-01

    In the present study, we examined the interaction of (+/-)-2,3-dihydro-5,6-dimethoxy-2-[[1-(phenylmethyl)-4-piperidinyl]-methyl]-1H-inden-1-one hydrochloride (donepezil), a potent cholinesterase inhibitor, with two additional therapeutically relevant targets, N-methyl-d-aspartate (NMDA) and sigma(1) receptors. Donepezil blocked the responses of recombinant NMDA receptors expressed in Xenopus oocytes. The blockade was voltage-dependent, suggesting a channel blocker mechanism of action, and was not competitive at either the l-glutamate or glycine binding sites. The low potency of donepezil (IC(50) = 0.7-3 mM) suggests that NMDA receptor blockade does not contribute to the therapeutic actions of donepezil. Of potential therapeutic relevance, donepezil binds to the sigma(1) receptor with high affinity (K(i) = 14.6 nM) in an in vitro preparation (Neurosci Lett 260:5-8, 1999). Thus, we sought to determine whether an interaction with the sigma(1) receptor may occur in vivo under physiologically relevant conditions by evaluating the sigma(1) receptor dependence effects of donepezil in behavioral tasks. Donepezil showed antidepressant-like activity in the mouse-forced swimming test as did the sigma(1) receptor agonist igmesine. This effect was not displayed by the other cholinesterase inhibitors, rivastigmine and tacrine. The donepezil and igmesine effects were blocked by preadministration of the sigma(1) receptor antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino) ethylamine (BD1047) and an in vivo antisense probe treatment. The memory-enhancing effect of donepezil was also investigated. All cholinesterase inhibitors attenuated dizocilpine-induced learning impairments. However, only the donepezil and igmesine effects were blocked by BD1047 or the antisense treatment. Therefore, donepezil behaved as an effective sigma(1) receptor agonist on these behavioral responses, and an interaction of the drug with the sigma(1) receptor must be considered in its

  18. Aspartate 46, a second sphere ligand to the catalytic zinc, is essential for activity of yeast alcohol dehydrogenase

    SciTech Connect

    Ganzhorn, A.J.; Plapp, B.V.

    1987-05-01

    The crystal structure of horse liver alcohol dehydrogenase (ADH) shows a hydrogen bond between the imidazole of His-67, a ligand to the active site zinc, and the carboxylate of Asp-49. Both residues are conserved in alcohol dehydrogenases. Directed mutagenesis was used to replace the homologous Asp-46 in ADH I from S. cerevisiae with asparagine. The substitution did not alter the overall structure of the enzyme, as judged by CD measurements, but the removal of a negative charge was evident in electrophoresis, and in the absorption and fluorescence spectra. The mutant and wild-type enzymes had similar zinc contents as determined by atomic absorption spectroscopy. Active site titration and steady state kinetics indicated that binding of coenzymes, substrates and substrate analogs is 4-24 fold weaker in the asparagine enzyme. The turnover numbers were reduced by a factor of 70 for ethanol oxidation and 30 for acetaldehyde reduction at pH 7.3, 30/sup 0/C. Dead end inhibition studies and the kinetic isotope effect showed that NAD and ethanol binding follow a rapid equilibrium random mechanism as opposed to the ordered mechanism found for ADH I. They conclude that the carboxyl group of Asp-46 is essential for the electrostatic environment near the active site zinc. Amidation may affect the geometry and/or coordination of the metal complex.

  19. Interaction of aspartate aminotransferase with mercurochrome. Relationship of an exposed thiol group of the enzyme to the active centre.

    PubMed Central

    Kalogerakos, T G; Oikonomakos, N G; Dimitropoulos, C G; Karni-katsadima, I A; Evangelopoulos, A E

    1977-01-01

    Mercurochrome strongly inhibits aspartate transaminase and 2,3-dicarboxyethylated aspartate transaminase. The native enzyme exhibits a biphasic time-course of inactivation by mercurochrome with second-order rate constants 1.62 x 10(4) M-1 - min-1 and 2.15 x 10(3) M-1 - min-1, whereas the modified enzyme is inactivated more slowly (second-order rate constant 6.1 x 10(2) M-1 - min-1) under the same conditions. The inhibitor inactivates native and modified enzyme in the absence as well as in the presence of substrates. Mercurochrome-transaminase interaction is accompanied by a red shift in the absorption maximum of the fluorochrome of about 10 nm. Difference spectra of the mercurochrome-enzyme system versus mercurochrome, compared with analogous spectra of mercurochrome-ethanol, revealed that the spectral shifts recorded during mercurochrome-transaminase interaction are similar to those that occur when mercurochrome is dissolved in non-polar solvents. Studies of mercurochrome complexes with native or modified transaminase, isolated by chromatography on Sephadex G-25, revealed that native transaminase is able to conjugate with four mercurochrome molecules per molecule, but the modified enzyme is able to conjugate with only two mercurochrome molecules per molecule. PMID:73375

  20. Atomic resolution crystal structure of Sapp2p, a secreted aspartic protease from Candida parapsilosis.

    PubMed

    Dostál, Jiří; Pecina, Adam; Hrušková-Heidingsfeldová, Olga; Marečková, Lucie; Pichová, Iva; Řezáčová, Pavlina; Lepšík, Martin; Brynda, Jiří

    2015-12-01

    The virulence of the Candida pathogens is enhanced by the production of secreted aspartic proteases, which therefore represent possible targets for drug design. Here, the crystal structure of the secreted aspartic protease Sapp2p from Candida parapsilosis was determined. Sapp2p was isolated from its natural source and crystallized in complex with pepstatin A, a classical aspartic protease inhibitor. The atomic resolution of 0.83 Å allowed the protonation states of the active-site residues to be inferred. A detailed comparison of the structure of Sapp2p with the structure of Sapp1p, the most abundant C. parapsilosis secreted aspartic protease, was performed. The analysis, which included advanced quantum-chemical interaction-energy calculations, uncovered molecular details that allowed the experimentally observed equipotent inhibition of both isoenzymes by pepstatin A to be rationalized.

  1. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  2. Molecular cloning and enzymological characterization of pyridoxal 5'-phosphate independent aspartate racemase from hyperthermophilic archaeon Thermococcus litoralis DSM 5473.

    PubMed

    Washio, Tsubasa; Kato, Shiro; Oikawa, Tadao

    2016-09-01

    We succeeded in expressing the aspartate racemase homolog gene from Thermococcus litoralis DSM 5473 in Escherichia coli Rosetta (DE3) and found that the gene encodes aspartate racemase. The aspartate racemase gene consisted of 687 bp and encoded 228 amino acid residues. The purified enzyme showed aspartate racemase activity with a specific activity of 1590 U/mg. The enzyme was a homodimer with a molecular mass of 56 kDa and did not require pyridoxal 5'-phosphate as a coenzyme. The enzyme showed aspartate racemase activity even at 95 °C, and the activation energy of the enzyme was calculated to be 51.8 kJ/mol. The enzyme was highly thermostable, and approximately 50 % of its initial activity remained even after incubation at 90 °C for 11 h. The enzyme showed a maximum activity at a pH of 7.5 and was stable between pH 6.0 and 7.0. The enzyme acted on L-cysteic acid and L-cysteine sulfinic acid in addition to D- and L-aspartic acids, and was strongly inhibited by iodoacetic acid. The site-directed mutagenesis of the enzyme showed that the essential cysteine residues were conserved as Cys83 and Cys194. D-Forms of aspartic acid, serine, alanine, and valine were contained in T. litoralis DSM 5473 cells. PMID:27438592

  3. Plasmin potentiates synaptic N-methyl-D-aspartate receptor function in hippocampal neurons through activation of protease-activated receptor-1.

    PubMed

    Mannaioni, Guido; Orr, Anna G; Hamill, Cecily E; Yuan, Hongjie; Pedone, Katherine H; McCoy, Kelly L; Berlinguer Palmini, Rolando; Junge, Candice E; Lee, C Justin; Yepes, Manuel; Hepler, John R; Traynelis, Stephen F

    2008-07-18

    Protease-activated receptor-1 (PAR1) is activated by a number of serine proteases, including plasmin. Both PAR1 and plasminogen, the precursor of plasmin, are expressed in the central nervous system. In this study we examined the effects of plasmin in astrocyte and neuronal cultures as well as in hippocampal slices. We find that plasmin evokes an increase in both phosphoinositide hydrolysis (EC(50) 64 nm) and Fura-2/AM fluorescence (195 +/- 6.7% above base line, EC(50) 65 nm) in cortical cultured murine astrocytes. Plasmin also activates extracellular signal-regulated kinase (ERK1/2) within cultured astrocytes. The plasmin-induced rise in intracellular Ca(2+) concentration ([Ca(2+)](i)) and the increase in phospho-ERK1/2 levels were diminished in PAR1(-/-) astrocytes and were blocked by 1 microm BMS-200261, a selective PAR1 antagonist. However, plasmin had no detectable effect on ERK1/2 or [Ca(2+)](i) signaling in primary cultured hippocampal neurons or in CA1 pyramidal cells in hippocampal slices. Plasmin (100-200 nm) application potentiated the N-methyl-D-aspartate (NMDA) receptor-dependent component of miniature excitatory postsynaptic currents recorded from CA1 pyramidal neurons but had no effect on alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate- or gamma-aminobutyric acid receptor-mediated synaptic currents. Plasmin also increased NMDA-induced whole cell receptor currents recorded from CA1 pyramidal cells (2.5 +/- 0.3-fold potentiation over control). This effect was blocked by BMS-200261 (1 microm; 1.02 +/- 0.09-fold potentiation over control). These data suggest that plasmin may serve as an endogenous PAR1 activator that can increase [Ca(2+)](i) in astrocytes and potentiate NMDA receptor synaptic currents in CA1 pyramidal neurons.

  4. Plasma aspartate aminotransferase (AST), glutamate dehydrogenase (GLDH) and gamma-glutamyl transpeptidase (GGT) activities in water buffaloes with experimental subclinical fasciolosis.

    PubMed

    Yang, Q; Mao, W H; Ferre, I; Bayón, J E; Mao, X Z; González-Gallego, J

    1998-07-31

    The effect of chronic Fasciola hepatica infection on the activity of plasma aspartate aminotransferase (AST), glutamate dehydrogenase (GLDH) and gamma-glutamyl transpeptidase (GGT) was investigated in water buffaloes dosed daily with 60 F. hepatica metacercariae over 20 days. Experimental fluke infection caused no clinical signs but provoked an increase in plasma level of IgG directed against F. hepatica from 4 weeks after infection. There was a significant increase in plasma AST from 6 weeks post-infection. Maximal values were reached at 14 weeks and remained significantly elevated by 23 weeks. Plasma GLDH was significantly elevated from 6 to 21 weeks post-infection. Significant increases in plasma GGT occurred from 8 to 26 weeks post-infection, reaching maximal values at 15 weeks. This study shows that plasma enzyme activities may be useful in studies of fluke-induced liver damage in water buffaloes.

  5. A reciprocal allosteric mechanism for efficient transfer of labile intermediates between active sites in CAD, the mammalian pyrimidine-biosynthetic multienzyme polypeptide.

    PubMed

    Irvine, H S; Shaw, S M; Paton, A; Carrey, E A

    1997-08-01

    Carbamoyl phosphate is the product of carbamoyl phosphate synthetase (CPS II) activity and the substrate of the aspartate transcarbamoylase (ATCase) activity, each of which is found in CAD, a large 240-kDa multienzyme polypeptide in mammals that catalyses the first three steps in pyrimidine biosynthesis. In our study of the transfer of the labile intermediate between the two active sites, we have used assays that differentiate the synthesis of carbamoyl phosphate from the overall reaction of CPS II and ATCase that produces carbamoyl aspartate. We provided excess exogenous carbamoyl phosphate and monitored its access to the respective active sites through the production of carbamoyl phosphate and carbamoyl aspartate from radiolabelled bicarbonate. Three features indicate interactions between the folded CPS II and ATCase domains causing reciprocal conformational changes. First, even in the presence of approximately 1 mM unlabelled carbamoyl phosphate, when the aspartate concentration is high ATCase uses endogenous carbamoyl phosphate for the synthesis of radiolabelled carbamoyl aspartate. In contrast, the isolated CPS II forward reaction is inhibited by excess unlabelled carbamoyl phosphate. Secondly, the affinity of the ATCase for carbamoyl phosphate and aspartate is modulated when substrates bind to CPS II. Thirdly, the transition-state analogue phosphonacetyl-L-aspartate is a less efficient inhibitor of the ATCase when the substrates for CPS II are present. All these effects operate when CPS II is in the more active P state, which is induced by high concentrations of ATP and magnesium ions and when 5'-phosphoribosyl diphosphate (the allosteric activator) is present with low concentrations of ATP; these are conditions that would be met during active biosynthesis in the cell. We propose a phenomenon of reciprocal allostery that encourages the efficient transfer of the labile intermediate within the multienzyme polypeptide CAD. In this model, binding of aspartate to

  6. Identification of a small molecule [beta]-secretase inhibitor that binds without catalytic aspartate engagement

    SciTech Connect

    Steele, Thomas G.; Hills, Ivory D.; Nomland, Ashley A.; de León, Pablo; Allison, Timothy; McGaughey, Georgia; Colussi, Dennis; Tugusheva, Katherine; Haugabook, Sharie J.; Espeseth, Amy S.; Zuck, Paul; Graham, Samuel L.; Stachel, Shawn J.

    2010-09-02

    A small molecule inhibitor of beta-secretase with a unique binding mode has been developed. Crystallographic determination of the enzyme-inhibitor complex shows the catalytic aspartate residues in the active site are not engaged in inhibitor binding. This unprecedented binding mode in the field of aspartyl protease inhibition is described.

  7. Mechanism of adenylate kinase. Demonstration of a functional relationship between aspartate 93 and Mg2+ by site-directed mutagenesis and proton, phosphorus-31, and magnesium-25 NMR.

    PubMed

    Yan, H G; Tsai, M D

    1991-06-01

    Earlier magnetic resonance studies suggested no direct interaction between Mg2+ ions and adenylate kinase (AK) in the AK.MgATP (adenosine 5'-triphosphate) complex. However, recent NMR studies concluded that the carboxylate of aspartate 119 accepts a hydrogen bond from a water ligand of the bound Mg2+ ion in the muscle AK.MgATP complex [Fry, D.C., Kuby, S.A., & Mildvan, A.S. (1985) Biochemistry 24, 4680-4694]. On the other hand, in the 2.6-A crystal structure of the yeast AK.MgAP5A [P1,P5-bis(5'-adenosyl)pentaphosphate] complex, the Mg2+ ion is in proximity to aspartate 93 [Egner, U., Tomasselli, A.G., & Schulz, G.E. (1987) J. Mol. Biol. 195, 649-658]. Substitution of Asp-93 with alanine resulted in no change in dissociation constants, 4-fold increases in Km, and a 650-fold decrease in kcat. Notable changes have been observed in the chemical shifts of the aromatic protons of histidine 36 and a few other aromatic residues. However, the results of detailed analyses of the free enzymes and the AK.MgAP5A complexes by one- and two-dimensional NMR suggested that the changes are due to localized perturbations. Thus it is concluded that Asp-93 stabilizes the transition state by ca. 3.9 kcal/mol. The next question is how. Since proton NMR results indicated that binding of Mg2+ to the AK.AP5A complex induces some changes in the proton NMR signals of WT but not those of D93A, the functional role of Asp-93 should be in binding to Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. N-methyl-D-aspartate (NMDA) and the regulation of mitogen-activated protein kinase (MAPK) signaling pathways: a revolving neurochemical axis for therapeutic intervention?

    PubMed

    Haddad, John J

    2005-11-01

    Excitatory synaptic transmission in the central nervous system (CNS) is mediated by the release of glutamate from presynaptic terminals onto postsynaptic channels gated by N-methyl-D-aspartate (NMDA) and non-NMDA (AMPA and KA) receptors. Extracellular signals control diverse neuronal functions and are responsible for mediating activity-dependent changes in synaptic strength and neuronal survival. Influx of extracellular calcium ([Ca(2+)](e)) through the NMDA receptor (NMDAR) is required for neuronal activity to change the strength of many synapses. At the molecular level, the NMDAR interacts with signaling modules, which, like the mitogen-activated protein kinase (MAPK) superfamily, transduce excitatory signals across neurons. Recent burgeoning evidence points to the fact that MAPKs play a crucial role in regulating the neurochemistry of NMDARs, their physiologic and biochemical/biophysical properties, and their potential role in pathophysiology. It is the purpose of this review to discuss: (i) the MAPKs and their role in a plethora of cellular functions; (ii) the role of MAPKs in regulating the biochemistry and physiology of NMDA receptors; (iii) the kinetics of MAPK-NMDA interactions and their biologic and neurochemical properties; (iv) how cellular signaling pathways, related cofactors and intracellular conditions affect NMDA-MAPK interactions and (v) the role of NMDA-MAPK pathways in pathophysiology and the evolution of disease conditions. Given the versatility of the NMDA-MAPK interactions, the NMDA-MAPK axis will likely form a neurochemical target for therapeutic interventions.

  9. [Evalution of activity of acid aspartic proteinase in Candida strains isolated from oral cavity of patients with increased risk of mycosis].

    PubMed

    Rózga, A; Kurnatowska, A J; Raczyńsak-Witońska, G; Loga, G

    2001-01-01

    We have evaluated the activity of acid aspartic protease in 195 strains of Candida isolated from the oral cavity of three groups of patients. The first group comprised patients with cancer of the larynx qualified for surgery, the second- patients with neoplastic disease ( Hodgkin s disease, lymphoma, acute granulocytic leukaemia, lymphatic leukaemia, lung cancer, multiple myeloma, stomach cancer, breast cancer) who were not treated, the third group- patients with neoplastic diseases treated by chemotherapy. The strains of fungi were differentiated using API 20C and Api 20C AUX tests according to the protocol adopted at the Department of Medical Parasitology and Biology, Medical University of Lódz. The activity of acid protease was studied by Staib method in Rózga modification. Almost all strains showed high and very high proteolytic activity. The rang of proteolysis zone of Candida strains from the three groups of patients varied from 2,5 to 12,5 mm. We have found the mean proteolytic zones of strains isolated from groups I and III differed statistically significantly (p<0,001). Similarly, statisticall sihnificant difference was seen between these parameters for groups II and III (p<0,05), while there was no difference between strains from group I and II.

  10. Crystal structure of Saccharomyces cerevisiae cytosolic aspartate aminotransferase.

    PubMed Central

    Jeffery, C. J.; Barry, T.; Doonan, S.; Petsko, G. A.; Ringe, D.

    1998-01-01

    The crystal structure of Saccharomyces cerevisiae cytoplasmic aspartate aminotransferase (EC 2.6.1.1) has been determined to 2.05 A resolution in the presence of the cofactor pyridoxal-5'-phosphate and the competitive inhibitor maleate. The structure was solved by the method of molecular replacement. The final value of the crystallographic R-factor after refinement was 23.1% with good geometry of the final model. The yeast cytoplasmic enzyme is a homodimer with two identical active sites containing residues from each subunit. It is found in the "closed" conformation with a bound maleate inhibitor in each active site. It shares the same three-dimensional fold and active site residues as the aspartate aminotransferases from Escherichia coli, chicken cytoplasm, and chicken mitochondria, although it shares less than 50% sequence identity with any of them. The availability of four similar enzyme structures from distant regions of the evolutionary tree provides a measure of tolerated changes that can arise during millions of years of evolution. PMID:9655342

  11. [Histochemical study of the activity of aspartate aminotransferase in the spinal cord, the medulla oblongata and the central cerebellar nuclei of several vertebrates].

    PubMed

    Garcia-Segura, L M; Martinez-Rodriguez, R; Toledano, A

    1976-01-01

    The aspartate aminotransferase activity (AAT) is reserched into the spinal cord, the medulla oblongata and the cerebellar nuclei of the rat, chicken, Lacerta lepida and Bufo calamitas. It's proved that the AAT activity shows in many locations, that are mainly: 1. In the nerve fibers 2. In the cytoplasmic membrane, and in the nuclear membrane of the neurons 3. In all neuronal cytoplasm, and 4. In the mitochondria of neurons and choroid plexus cells. The results base the idea that there's more than one pool of glutamic acid in relation to that AAT. It's suggested that the role that AAT plays is different in everyone of the described locations, and may be it's connected with transport phenomenons in the membrane, with energetic function on the mitochondria and with functions of the nerve impulse transmission in the synapsis. We remark, finally, the interest that the enzymatical works can have the time comming to establish homologies among similar structures of several animal's nervous system. PMID:1023552

  12. Identification of a Tumor Specific, Active-Site Mutation in Casein Kinase 1α by Chemical Proteomics.

    PubMed

    Okerberg, Eric S; Hainley, Anna; Brown, Heidi; Aban, Arwin; Alemayehu, Senait; Shih, Ann; Wu, Jane; Patricelli, Matthew P; Kozarich, John W; Nomanbhoy, Tyzoon; Rosenblum, Jonathan S

    2016-01-01

    We describe the identification of a novel, tumor-specific missense mutation in the active site of casein kinase 1α (CSNK1A1) using activity-based proteomics. Matched normal and tumor colon samples were analyzed using an ATP acyl phosphate probe in a kinase-targeted LC-MS2 platform. An anomaly in the active-site peptide from CSNK1A1 was observed in a tumor sample that was consistent with an altered catalytic aspartic acid. Expression and analysis of the suspected mutant verified the presence of asparagine in the probe-labeled, active-site peptide for CSNK1A1. Genomic sequencing of the colon tumor samples confirmed the presence of a missense mutation in the catalytic aspartic acid of CSNK1A1 (GAC→AAC). To our knowledge, the D163N mutation in CSNK1A1 is a newly defined mutation to the conserved, catalytic aspartic acid of a protein kinase and the first missense mutation identified using activity-based proteomics. The tumorigenic potential of this mutation remains to be determined. PMID:27031502

  13. Identification of a Tumor Specific, Active-Site Mutation in Casein Kinase 1α by Chemical Proteomics

    PubMed Central

    Okerberg, Eric S.; Hainley, Anna; Brown, Heidi; Aban, Arwin; Alemayehu, Senait; Shih, Ann; Wu, Jane; Patricelli, Matthew P.; Kozarich, John W.; Nomanbhoy, Tyzoon; Rosenblum, Jonathan S.

    2016-01-01

    We describe the identification of a novel, tumor-specific missense mutation in the active site of casein kinase 1α (CSNK1A1) using activity-based proteomics. Matched normal and tumor colon samples were analyzed using an ATP acyl phosphate probe in a kinase-targeted LC-MS2 platform. An anomaly in the active-site peptide from CSNK1A1 was observed in a tumor sample that was consistent with an altered catalytic aspartic acid. Expression and analysis of the suspected mutant verified the presence of asparagine in the probe-labeled, active-site peptide for CSNK1A1. Genomic sequencing of the colon tumor samples confirmed the presence of a missense mutation in the catalytic aspartic acid of CSNK1A1 (GAC→AAC). To our knowledge, the D163N mutation in CSNK1A1 is a newly defined mutation to the conserved, catalytic aspartic acid of a protein kinase and the first missense mutation identified using activity-based proteomics. The tumorigenic potential of this mutation remains to be determined. PMID:27031502

  14. Structure-function relationships in the Na,K-ATPase. cap alpha. subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme

    SciTech Connect

    Price, E.M.; Lingrel, J.B.

    1988-11-01

    Na,K-ATPases from various species differ greatly in their sensitivity to cardiac glycosides such as ouabain. The sheep and human enzymes are a thousand times more sensitive than the corresponding ones from rat and mouse. To define the region of the ..cap alpha..1 subunit responsible for this differential sensitivity, chimeric cDNAs of sheep and rat were constructed and expressed in ouabain-sensitive HeLa cells. The construct containing the amino-terminal half of the rat ..cap alpha..1 subunit coding region and carboxyl-terminal half of the sheep conferred the ouabain-resistant phenotype to HeLa cells while the reverse construct did not. This indicates that the determinants involved in ouabain sensitivity are located in the amino-terminal half of the Na,K-ATPase ..cap alpha.. subunit. By use of site-directed mutagenesis, the amino acid sequence of the first extracellular domain (H1-H2) of the sheep ..cap alpha..1 subunit was changed to that of the rat. When expressed in HeLa cells, this mutated sheep ..cap alpha..1 construct, like the rat/sheep chimera, was able to confer ouabain resistance to these cells. Furthermore, similar results were observed when HeLa cells were transfected with a sheep ..cap alpha..1 cDNA containing only two amino acid substitutions. The resistant cells, whether transfected with the rat ..cap alpha..1 cDNA, the rat/sheep chimera, or the mutant sheep ..cap alpha..1 cDNAs, exhibited identical biochemical characteristics including ouabain-inhibitable cell growth, /sup 86/Rb/sup +/ uptake, and Na,K-ATPase activity. These results demonstrate that the presence of arginine and aspartic acid on the amino end and carboxyl end, respectively, of the H1-H2 extracellular domain of the Na,K-ATPase ..cap alpha.. subunit together is responsible for the ouabain-resistant character of the rat enzyme and the corresponding residues in the sheep ..cap alpha..1 subunit (glutamine and asparagine) are somehow involved in ouabain binding.

  15. Identification of enzyme activity that conjugates indole-3-acetic acid to aspartate in immature seeds of pea (Pisum sativum).

    PubMed

    Ostrowski, Maciej; Jakubowska, Anna

    2008-01-01

    This study describes the first identification of plant enzyme activity catalyzing the conjugation of indole-3-acetic acid to amino acids. Enzymatic synthesis of indole-3-acetylaspartate (IAA-Asp) by a crude enzyme preparation from immature seeds of pea (Pisum sativum) was observed. The reaction yielded a product with the same Rf as IAA-Asp standard after thin layer chromatography. The identity of IAA-Asp was verified by HPLC analysis. IAA-Asp formation was dependent on ATP and Mg2+, and was linear during a 60 min period. The enzyme preparation obtained after poly(ethylene glycol) 6000 fractionation showed optimum activity at pH 8.0, and the temperature optimum for IAA-Asp synthesis was 30 degrees C. PMID:17920159

  16. Examining the anti-candidal activity of 10 selected Indian herbs and investigating the effect of Lawsonia inermis extract on germ tube formation, protease, phospholipase, and aspartate dehydrogenase enzyme activity in Candida albicans

    PubMed Central

    Ravichandran, Sripathy; Muthuraman, Sundararaman

    2016-01-01

    Objective: The objective of the study is to identify potential anti-candidal agents from natural resources and elucidate the effect of Lawsonia inermis extract on major virulent factors of Candida albicans. Materials and Methods: Plants, the most abundant and readily available resource of diverse bioactives, were chosen for the anti-candidal screening study. Ten different plants that were proven to have antimicrobial activity but not explored much for anti-candidal activity were chosen for this study. Ethyl acetate extract of these plant leaves were tested for the anti-candidal activity. Extracts with good anti-candidal activity were further screened for its effect in C. albicans germ tube formation and enzyme (protease, phospholipase, and aspartate dehydrogenase) activity. Results: Among 10 plants screened, L. inermis extract showed complete inhibition of C. albicans. On further evaluation, this extract completely inhibited C. albicans germ tube formation in serum until the end of incubation period (3 h). This extract also exhibited dose-dependent inhibitory activity against two major virulent enzymes of C. albicans, proteases (27–33%) and phospholipases (44.5%). In addition to it, this extract completely inhibited both the isoforms of constitutive candidal enzyme aspartate dehydrogenase, thereby affecting amino acid biosynthesis. Conclusion: Thus, this study confirms the anti-candidal potential of L. inermis and hence can be considered further for development of anti-candidal drug. PMID:26997722

  17. Corticosterone enhances N-methyl-D-aspartate receptor signaling to promote isolated ventral tegmental area activity in a reconstituted mesolimbic dopamine pathway.

    PubMed

    Berry, Jennifer N; Saunders, Meredith A; Sharrett-Field, Lynda J; Reynolds, Anna R; Bardo, Michael T; Pauly, James R; Prendergast, Mark A

    2016-01-01

    Elevations in circulating corticosteroids during periods of stress may influence activity of the mesolimbic dopamine reward pathway by increasing glutamatergic N-methyl-D-aspartate (NMDA) receptor expression and/or function in a glucocorticoid receptor-dependent manner. The current study employed organotypic co-cultures of the ventral tegmental area (VTA) and nucleus accumbens (NAcc) to examine the effects of corticosterone exposure on NMDA receptor-mediated neuronal viability. Co-cultures were pre-exposed to vehicle or corticosterone (CORT; 1 μM) for 5 days prior to a 24 h co-exposure to NMDA (200 μM). Co-cultures pre-exposed to a non-toxic concentration of corticosterone and subsequently NMDA showed significant neurotoxicity in the VTA only. This was evidenced by increases in propidium iodide uptake as well as decreases in immunoreactivity of the neuronal nuclear protein (NeuN). Co-exposure to the NMDA receptor antagonist 2-amino-7-phosphonovaleric acid (APV; 50 μM) or the glucocorticoid receptor (GR) antagonist mifepristone (10 μM) attenuated neurotoxicity. In contrast, the combination of corticosterone and NMDA did not produce any significant effects on either measure within the NAcc. Cultures of the VTA and NAcc maintained without synaptic contact showed no response to CORT or NMDA. These results demonstrate the ability to functionally reconstitute key regions of the mesolimbic reward pathway ex vivo and to reveal a GR-dependent enhancement of NMDA receptor-dependent signaling in the VTA. PMID:26631585

  18. Presynaptic N-Methyl-d-aspartate (NMDA) Receptor Activity Is Increased Through Protein Kinase C in Paclitaxel-induced Neuropathic Pain.

    PubMed

    Xie, Jing-Dun; Chen, Shao-Rui; Chen, Hong; Zeng, Wei-An; Pan, Hui-Lin

    2016-09-01

    Painful peripheral neuropathy is a severe adverse effect of chemotherapeutic drugs such as paclitaxel (Taxol). The glutamate N-methyl-d-aspartate receptors (NMDARs) are critically involved in the synaptic plasticity associated with neuropathic pain. However, paclitaxel treatment does not alter the postsynaptic NMDAR activity of spinal dorsal horn neurons. In this study, we determined whether paclitaxel affects presynaptic NMDAR activity by recording excitatory postsynaptic currents (EPSCs) of dorsal horn neurons in spinal cord slices. In paclitaxel-treated rats, the baseline frequency of miniature EPSCs (mEPSCs) was significantly increased; the NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5) completely normalized this frequency. Also, AP5 significantly reduced the amplitude of monosynaptic EPSCs evoked by dorsal root stimulation and reversed the reduction in the paired-pulse ratio of evoked EPSCs in paclitaxel-treated rats. Blocking GluN2A-containing, but not GluN2B-containing, NMDARs largely decreased the frequency of mEPSCs and the amplitude of evoked EPSCs of dorsal horn neurons in paclitaxel-treated rats. Furthermore, inhibition of protein kinase C fully reversed the increased frequency of mEPSCs and the amplitude of evoked EPSCs in paclitaxel-treated rats. Paclitaxel treatment significantly increased the protein level of GluN2A and phosphorylated GluN1 in the dorsal root ganglion. In addition, intrathecal injection of AP5 or systemic administration of memantine profoundly attenuated pain hypersensitivity induced by paclitaxel. Our findings indicate that paclitaxel treatment induces tonic activation of presynaptic NMDARs in the spinal cord through protein kinase C to potentiate nociceptive input from primary afferent nerves. Targeting presynaptic NMDARs at the spinal cord level may be an effective strategy for treating chemotherapy-induced neuropathic pain. PMID:27458019

  19. Structures of aspartate aminotransferases from Trypanosoma brucei, Leishmania major and Giardia lamblia

    PubMed Central

    Abendroth, Jan; Choi, Ryan; Wall, Abigail; Clifton, Matthew C.; Lukacs, Christine M.; Staker, Bart L.; Van Voorhis, Wesley; Myler, Peter; Lorimer, Don D.; Edwards, Thomas E.

    2015-01-01

    The structures of three aspartate aminotransferases (AATs) from eukaryotic pathogens were solved within the Seattle Structural Genomics Center for Infectious Disease (SSGCID). Both the open and closed conformations of AAT were observed. Pyridoxal phosphate was bound to the active site via a Schiff base to a conserved lysine. An active-site mutant showed that Trypanosoma brucei AAT still binds pyridoxal phosphate even in the absence of the tethering lysine. The structures highlight the challenges for the structure-based design of inhibitors targeting the active site, while showing options for inhibitor design targeting the N-terminal arm. PMID:25945710

  20. Structures of aspartate aminotransferases from Trypanosoma brucei, Leishmania major and Giardia lamblia.

    PubMed

    Abendroth, Jan; Choi, Ryan; Wall, Abigail; Clifton, Matthew C; Lukacs, Christine M; Staker, Bart L; Van Voorhis, Wesley; Myler, Peter; Lorimer, Don D; Edwards, Thomas E

    2015-05-01

    The structures of three aspartate aminotransferases (AATs) from eukaryotic pathogens were solved within the Seattle Structural Genomics Center for Infectious Disease (SSGCID). Both the open and closed conformations of AAT were observed. Pyridoxal phosphate was bound to the active site via a Schiff base to a conserved lysine. An active-site mutant showed that Trypanosoma brucei AAT still binds pyridoxal phosphate even in the absence of the tethering lysine. The structures highlight the challenges for the structure-based design of inhibitors targeting the active site, while showing options for inhibitor design targeting the N-terminal arm. PMID:25945710

  1. Pathologically activated neuroprotection via uncompetitive blockade of N-methyl-D-aspartate receptors with fast off-rate by novel multifunctional dimer bis(propyl)-cognitin.

    PubMed

    Luo, Jialie; Li, Wenming; Zhao, Yuming; Fu, Hongjun; Ma, Dik-Lung; Tang, Jing; Li, Chaoying; Peoples, Robert W; Li, Fushun; Wang, Qinwen; Huang, Pingbo; Xia, Jun; Pang, Yuanping; Han, Yifan

    2010-06-25

    Uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists with fast off-rate (UFO) may represent promising drug candidates for various neurodegenerative disorders. In this study, we report that bis(propyl)-cognitin, a novel dimeric acetylcholinesterase inhibitor and gamma-aminobutyric acid subtype A receptor antagonist, is such an antagonist of NMDA receptors. In cultured rat hippocampal neurons, we demonstrated that bis(propyl)-cognitin voltage-dependently, selectively, and moderately inhibited NMDA-activated currents. The inhibitory effects of bis(propyl)-cognitin increased with the rise in NMDA and glycine concentrations. Kinetics analysis showed that the inhibition was of fast onset and offset with an off-rate time constant of 1.9 s. Molecular docking simulations showed moderate hydrophobic interaction between bis(propyl)-cognitin and the MK-801 binding region in the ion channel pore of the NMDA receptor. Bis(propyl)-cognitin was further found to compete with [(3)H]MK-801 with a K(i) value of 0.27 mum, and the mutation of NR1(N616R) significantly reduced its inhibitory potency. Under glutamate-mediated pathological conditions, bis(propyl)-cognitin, in contrast to bis(heptyl)-cognitin, prevented excitotoxicity with increasing effectiveness against escalating levels of glutamate and much more effectively protected against middle cerebral artery occlusion-induced brain damage than did memantine. More interestingly, under NMDA receptor-mediated physiological conditions, bis(propyl)-cognitin enhanced long-term potentiation in hippocampal slices, whereas MK-801 reduced and memantine did not alter this process. These results suggest that bis(propyl)-cognitin is a UFO antagonist of NMDA receptors with moderate affinity, which may provide a pathologically activated therapy for various neurodegenerative disorders associated with NMDA receptor dysregulation. PMID:20404346

  2. Pathologically activated neuroprotection via uncompetitive blockade of N-methyl-D-aspartate receptors with fast off-rate by novel multifunctional dimer bis(propyl)-cognitin.

    PubMed

    Luo, Jialie; Li, Wenming; Zhao, Yuming; Fu, Hongjun; Ma, Dik-Lung; Tang, Jing; Li, Chaoying; Peoples, Robert W; Li, Fushun; Wang, Qinwen; Huang, Pingbo; Xia, Jun; Pang, Yuanping; Han, Yifan

    2010-06-25

    Uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists with fast off-rate (UFO) may represent promising drug candidates for various neurodegenerative disorders. In this study, we report that bis(propyl)-cognitin, a novel dimeric acetylcholinesterase inhibitor and gamma-aminobutyric acid subtype A receptor antagonist, is such an antagonist of NMDA receptors. In cultured rat hippocampal neurons, we demonstrated that bis(propyl)-cognitin voltage-dependently, selectively, and moderately inhibited NMDA-activated currents. The inhibitory effects of bis(propyl)-cognitin increased with the rise in NMDA and glycine concentrations. Kinetics analysis showed that the inhibition was of fast onset and offset with an off-rate time constant of 1.9 s. Molecular docking simulations showed moderate hydrophobic interaction between bis(propyl)-cognitin and the MK-801 binding region in the ion channel pore of the NMDA receptor. Bis(propyl)-cognitin was further found to compete with [(3)H]MK-801 with a K(i) value of 0.27 mum, and the mutation of NR1(N616R) significantly reduced its inhibitory potency. Under glutamate-mediated pathological conditions, bis(propyl)-cognitin, in contrast to bis(heptyl)-cognitin, prevented excitotoxicity with increasing effectiveness against escalating levels of glutamate and much more effectively protected against middle cerebral artery occlusion-induced brain damage than did memantine. More interestingly, under NMDA receptor-mediated physiological conditions, bis(propyl)-cognitin enhanced long-term potentiation in hippocampal slices, whereas MK-801 reduced and memantine did not alter this process. These results suggest that bis(propyl)-cognitin is a UFO antagonist of NMDA receptors with moderate affinity, which may provide a pathologically activated therapy for various neurodegenerative disorders associated with NMDA receptor dysregulation.

  3. Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis).

    PubMed

    Guha, Anirban; Gera, Sandeep; Sharma, Anshu

    2012-03-01

    Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu), iron (Fe), zinc (Zn), cobalt (Co) and manganese (Mn) and enzyme activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in riverine buffalo milk can be used as an indicator of subclinical mastitis (SCM) with the aim of developing suitable diagnostic kit for SCM. Trace elements and enzyme activity in milk were estimated with Atomic absorption Spectrophotometer, GBC 932 plus and biochemical methods, respectively. Somatic cell count (SCC) was done microscopically. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. A statistically significant (p<0.01) increase in SCC, Fe, Zn, Co and LDH occurred in SCM milk containing gram positive bacterial agents only. ALP was found to be elevated in milk infected by both gram positive and negative bacteria. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and SCC≥2×10(5) cells/ml of milk as the benchmark. Only ALP and Zn, the former being superior, were found to be suitable for diagnosis of SCM irrespective of etiological agents. LDH, Co and Fe can be introduced in the screening programs where Gram positive bacteria are omnipresent. It is recommended that both ALP and Zn be measured together in milk to diagnose buffalo SCM, irrespective of etiology. PMID:25049573

  4. The Crystal Structure of the Pseudomonas dacunhae Aspartate-[beta]-Decarboxylase Dodecamer Reveals an Unknown Oligomeric Assembly for a Pyridoxal-5′-Phosphate-Dependent Enzyme

    SciTech Connect

    Lima, Santiago; Sundararaju, Bakthavatsalam; Huang, Christina; Khristoforov, Roman; Momany, Cory; Phillips, Robert S.

    2010-09-01

    The Pseudomonas dacunhae L-aspartate-{beta}-decarboxylase (ABDC, aspartate 4-decarboxylase, aspartate 4-carboxylyase, E.C. 4.1.1.12) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the {beta}-decarboxylation of L-aspartate to produce L-alanine and CO{sub 2}. This catalytically versatile enzyme is known to form functional dodecamers at its optimal pH and is thought to work in conjunction with an L-Asp/L-Ala antiporter to establish a proton gradient across the membrane that can be used for ATP biosynthesis. We have solved the atomic structure of ABDC to 2.35 {angstrom} resolution using single-wavelength anomalous dispersion phasing. The structure reveals that ABDC oligomerizes as a homododecamer in an unknown mode among PLP-dependent enzymes and has highest structural homology with members of the PLP-dependent aspartate aminotransferase subfamily. The structure shows that the ABDC active site is very similar to that of aspartate aminotransferase. However, an additional arginine side chain (Arg37) was observed flanking the re-side of the PLP ring in the ABDC active site. The mutagenesis results show that although Arg37 is not required for activity, it appears to be involved in the ABDC catalytic cycle.

  5. Aspartic acid racemization in tooth enamel from living humans.

    PubMed Central

    Helfman, P M; Bada, J L

    1975-01-01

    The aspartic acid in human tooth enamel shows increasing racemization with age. This increase is not seen in the metabolically active protein hemoglobin. The rate constant for the racemization reaction of aspartic acid in human tooth enamel was found to be 8.29 X 10(-4) yr-1. This rate constant suggests that in any protein with a long in vivo lifetime, D-aspartic acid will accumulate with age (about 8% of total aspartic acid in enamel will be the D-enantiomer after 60 years). Thus, racemization may play some role in the aging process affecting metabolically stable tissues in long-lived homeotherms. Aspartic acid racemization in toogh enamel also provides a biochronological tool for assessing the age of living mammals. PMID:1059082

  6. Catalysis: Elusive active site in focus

    NASA Astrophysics Data System (ADS)

    Labinger, Jay A.

    2016-08-01

    The identification of the active site of an iron-containing catalyst raises hopes of designing practically useful catalysts for the room-temperature conversion of methane to methanol, a potential fuel for vehicles. See Letter p.317

  7. Critical catalytic functional groups in the mechanism of aspartate-beta-semialdehyde dehydrogenase.

    PubMed

    Blanco, Julio; Moore, Roger A; Faehnle, Christopher R; Viola, Ronald E

    2004-10-01

    Aspartate-beta-semialdehyde dehydrogenase (ASADH) catalyzes the reductive dephosphorylation of beta-aspartyl phosphate to L-aspartate-beta-semialdehyde in the aspartate biosynthetic pathway. This pathway is not found in humans or other eukaryotic organisms, yet is required for the production of threonine, isoleucine, methionine and lysine in most microorganisms. The mechanism of this enzyme has been examined through the structures of two active-site mutants of ASADH from Haemophilus influenzae. Replacement of the enzyme active-site cysteine with serine (C136S) leads to a dramatic loss of catalytic activity caused by the expected decrease in nucleophilicity, but also by a change in the orientation of the serine hydroxyl group relative to the cysteine thiolate. In contrast, in the H277N active-site mutant the introduced amide is oriented in virtually the same position as that of the histidine imidazole ring. However, a shift in the position of the bound reaction intermediate to accommodate this shorter asparagine side chain, coupled with the inability of this introduced amide to serve as a proton acceptor, results in a 100-fold decrease in the catalytic efficiency of H277N relative to the native enzyme. These mutant enzymes have the same overall fold and high structural identity to native ASADH. However, small perturbations in the positioning of essential catalytic groups or reactive intermediates have dramatic effects on catalytic efficiency. PMID:15388927

  8. Homotropic effects in aspartate transcarbamoylase. What happens when the enzyme binds a single molecule of the bisubstrate analog N-phosphonacetyl-L-aspartate?

    PubMed

    Foote, J; Schachman, H K

    1985-11-01

    The active sites of aspartate transcarbamoylase from Escherichia coli were titrated by measuring the decrease in the enzyme-catalyzed arsenolysis of N-carbamoyl-L-aspartate caused by the addition of the tight-binding inhibitor, N-phosphonacetyl-L-aspartate. Because the enzyme is a poor catalyst for this non-physiological reaction, high concentrations are required for the assays (more than 1000-fold the dissociation constant of the reversibly bound inhibitor) and, therefore, virtually all of the bisubstrate analog is bound. From the endpoint of the titration, 5.7 active sites were calculated, in excellent agreement with the number, six, based on the structure of the enzyme. Simple inhibition was observed only when the molar ratio of inhibitor to enzyme exceeded five; under these conditions, as shown in earlier physical chemical studies, the R-conformational state of the enzyme is the sole or predominant species. At low ratios of inhibitor to enzyme, the addition of inhibitor caused an increase in activity which is attributable to the conversion of the enzyme from the low-activity T-state to the much more active R-state. Comparison of the linear increase in activity as a function of inhibitor concentration at the low molar ratio (0.01, i.e. 1 inhibitor/600 active sites) with the activity lost at the high ratio provided a direct value for the mean number of active sites converted from the T-state to the R-state as a result of the binding of one bisubstrate analog to an enzyme molecule. This number was four with Mg X ATP or carbamoyl phosphate present and 4.7 for the enzyme in the presence of Mg X PPi, values approaching or identical to the theoretical maximum, 4.7, for a concerted transition with all of the active sites of the molecule changing from the T- to R-state upon the formation of a binary complex of hexameric enzyme with a single inhibitor. With the enzyme in the absence of effectors or with Mg X CTP present, the titrations showed that an average of two and

  9. Critical aspartic acid residues in pseudouridine synthases.

    PubMed

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  10. Enzymatic milk clotting activity in artichoke (Cynara scolymus) leaves and alpine thistle (Carduus defloratus) flowers. Immobilization of alpine thistle aspartic protease.

    PubMed

    Esposito, Marilena; Di Pierro, Prospero; Dejonghe, Winnie; Mariniello, Loredana; Porta, Raffaele

    2016-08-01

    Two different milk clotting enzymes, belonging to the aspartic protease family, were extracted from both artichoke leaves and alpine thistle flowers, and the latter was covalently immobilized by using a polyacrylic support containing polar epoxy groups. Our findings showed that the alpine thistle aspartic protease was successfully immobilized at pH 7.0 on Immobeads IB-150P beads and that, under these experimental conditions, an immobilization yield of about 68% and a recovery of about 54% were obtained. Since the enzyme showed an optimal pH of 5.0, a value very similar to the one generally used for milk clotting during cheese making, and exhibited a satisfactory stability over time, the use of such immobilized vegetable rennet for the production of novel dairy products is suggested. PMID:26988483

  11. Enzymatic milk clotting activity in artichoke (Cynara scolymus) leaves and alpine thistle (Carduus defloratus) flowers. Immobilization of alpine thistle aspartic protease.

    PubMed

    Esposito, Marilena; Di Pierro, Prospero; Dejonghe, Winnie; Mariniello, Loredana; Porta, Raffaele

    2016-08-01

    Two different milk clotting enzymes, belonging to the aspartic protease family, were extracted from both artichoke leaves and alpine thistle flowers, and the latter was covalently immobilized by using a polyacrylic support containing polar epoxy groups. Our findings showed that the alpine thistle aspartic protease was successfully immobilized at pH 7.0 on Immobeads IB-150P beads and that, under these experimental conditions, an immobilization yield of about 68% and a recovery of about 54% were obtained. Since the enzyme showed an optimal pH of 5.0, a value very similar to the one generally used for milk clotting during cheese making, and exhibited a satisfactory stability over time, the use of such immobilized vegetable rennet for the production of novel dairy products is suggested.

  12. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  13. Two N-glycosylation Sites in the GluN1 Subunit Are Essential for Releasing N-methyl-d-aspartate (NMDA) Receptors from the Endoplasmic Reticulum*

    PubMed Central

    Lichnerova, Katarina; Kaniakova, Martina; Park, Seung Pyo; Skrenkova, Kristyna; Wang, Ya-Xian; Petralia, Ronald S.; Suh, Young Ho; Horak, Martin

    2015-01-01

    NMDA receptors (NMDARs) comprise a subclass of neurotransmitter receptors whose surface expression is regulated at multiple levels, including processing in the endoplasmic reticulum (ER), intracellular trafficking via the Golgi apparatus, internalization, recycling, and degradation. With respect to early processing, NMDARs are regulated by the availability of GluN subunits within the ER, the presence of ER retention and export signals, and posttranslational modifications, including phosphorylation and palmitoylation. However, the role of N-glycosylation, one of the most common posttranslational modifications, in regulating NMDAR processing has not been studied in detail. Using biochemistry, confocal and electron microscopy, and electrophysiology in conjunction with a lentivirus-based molecular replacement strategy, we found that NMDARs are released from the ER only when two asparagine residues in the GluN1 subunit (Asn-203 and Asn-368) are N-glycosylated. Although the GluN2A and GluN2B subunits are also N-glycosylated, their N-glycosylation sites do not appear to be essential for surface delivery of NMDARs. Furthermore, we found that removing N-glycans from native NMDARs altered the receptor affinity for glutamate. Our results suggest a novel mechanism by which neurons ensure that postsynaptic membranes contain sufficient numbers of functional NMDARs. PMID:26045554

  14. Evaluation of the Lactate-to-N-Acetyl-aspartate Ratio Defined With Magnetic Resonance Spectroscopic Imaging Before Radiation Therapy as a New Predictive Marker of the Site of Relapse in Patients With Glioblastoma Multiforme

    SciTech Connect

    Deviers, Alexandra; Ken, Soléakhéna; Filleron, Thomas; Rowland, Benjamin; Laruelo, Andrea; Catalaa, Isabelle; Lubrano, Vincent; Celsis, Pierre; and others

    2014-10-01

    Purpose: Because lactate accumulation is considered a surrogate for hypoxia and tumor radiation resistance, we studied the spatial distribution of the lactate-to-N-acetyl-aspartate ratio (LNR) before radiation therapy (RT) with 3D proton magnetic resonance spectroscopic imaging (3D-{sup 1}H-MRSI) and assessed its impact on local tumor control in glioblastoma (GBM). Methods and Materials: Fourteen patients with newly diagnosed GBM included in a phase 2 chemoradiation therapy trial constituted our database. Magnetic resonance imaging (MRI) and MRSI data before RT were evaluated and correlated to MRI data at relapse. The optimal threshold for tumor-associated LNR was determined with receiver-operating-characteristic (ROC) curve analysis of the pre-RT LNR values and MRI characteristics of the tumor. This threshold was used to segment pre-RT normalized LNR maps. Two spatial analyses were performed: (1) a pre-RT volumetric comparison of abnormal LNR areas with regions of MRI-defined lesions and a choline (Cho)-to- N-acetyl-aspartate (NAA) ratio ≥2 (CNR2); and (2) a voxel-by-voxel spatial analysis of 4,186,185 voxels with the intention of evaluating whether pre-RT abnormal LNR areas were predictive of the site of local recurrence. Results: A LNR of ≥0.4 (LNR-0.4) discriminated between tumor-associated and normal LNR values with 88.8% sensitivity and 97.6% specificity. LNR-0.4 voxels were spatially different from those of MRI-defined lesions, representing 44% of contrast enhancement, 64% of central necrosis, and 26% of fluid-attenuated inversion recovery (FLAIR) abnormality volumes before RT. They extended beyond the overlap with CNR2 for most patients (median: 20 cm{sup 3}; range: 6-49 cm{sup 3}). LNR-0.4 voxels were significantly predictive of local recurrence, regarded as contrast enhancement at relapse: 71% of voxels with a LNR-0.4 before RT were contrast enhanced at relapse versus 10% of voxels with a normal LNR (P<.01). Conclusions: Pre-RT LNR-0.4 in GBM

  15. Investigation of the Roles of Allosteric Domain Arginine, Aspartate, and Glutamate Residues of Rhizobium etli Pyruvate Carboxylase in Relation to Its Activation by Acetyl CoA.

    PubMed

    Sirithanakorn, Chaiyos; Jitrapakdee, Sarawut; Attwood, Paul V

    2016-08-01

    The mechanism of allosteric activation of pyruvate carboxylase by acetyl CoA is not fully understood. Here we have examined the roles of residues near the acetyl CoA binding site in the allosteric activation of Rhizobium etli pyruvate carboxylase using site-directed mutagenesis. Arg429 was found to be especially important for acetyl CoA binding as substitution with serine resulted in a 100-fold increase in the Ka of acetyl CoA activation and a large decrease in the cooperativity of this activation. Asp420 and Arg424, which do not make direct contact with bound acetyl CoA, were nonetheless found to affect acetyl CoA binding when mutated, probably through changed interactions with another acetyl CoA binding residue, Arg427. Thermodynamic activation parameters for the pyruvate carboxylation reaction were determined from modified Arrhenius plots and showed that acetyl CoA acts to decrease the activation free energy of the reaction by both increasing the activation entropy and decreasing the activation enthalpy. Most importantly, mutations of Asp420, Arg424, and Arg429 enhanced the activity of the enzyme in the absence of acetyl CoA. A main focus of this work was the detailed investigation of how this increase in activity occurred in the R424S mutant. This mutation decreased the activation enthalpy of the pyruvate carboxylation reaction by an amount consistent with removal of a single hydrogen bond. It is postulated that Arg424 forms a hydrogen bonding interaction with another residue that stabilizes the asymmetrical conformation of the R. etli pyruvate carboxylase tetramer, constraining its interconversion to the symmetrical conformer that is required for catalysis. PMID:27379711

  16. [Ulysses retrotransposon aspartate proteinase (Drosophila virilis)].

    PubMed

    Volkov, D A; Savvateeva, L V; Dergousova, N I; Rumsh, L D

    2002-01-01

    Retrotransposones are mobile genetic elements occurring in genomes of bacteria, plants or animals. Retrotransposones were found to contain nucleotide sequences encoding proteins which are homological to retroviral aspartic proteinases. Our research has been focused on Ulysses which is mobile genetic element found in Drosophila virilis. We suggested a primary structure of Ulysses proteinase using comparative analysis of amino acid sequences of retroviral proteinases and proteinases from retrotransposones. The appropriate cDNA fragment has been cloned and expressed in E. coli. The purification of recombinant protein (12 kD) has been carried out by affinity chromatography using pepstatine-agarose. The obtained protein has proteolytic activity at optimum pH 5.5 like the majority of aspartic proteinases.

  17. Sustained activation of N-methyl-D-aspartate receptors in podoctyes leads to oxidative stress, mobilization of transient receptor potential canonical 6 channels, nuclear factor of activated T cells activation, and apoptotic cell death.

    PubMed

    Kim, Eun Young; Anderson, Marc; Dryer, Stuart E

    2012-10-01

    Atypical N-methyl-D-aspartate (NMDA) receptors are expressed in podocytes. Sustained (≥24 h) application of 50 to100 μM NMDA to immortalized mouse podocytes evoked a marked increase in the production of reactive oxygen species(ROS) such as H₂O₂. This effect of NMDA was associated with increased cell-surface expression of p47(phox), a cytosolic regulatory subunit of the NADPH oxidase NOX2. NMDA-evoked generation of ROS drove an increase in steady-state surface expression of transient receptor potential canonical (TRPC) 6 channels, which was blocked by the NMDA antagonist dizocilpine(MK-801) and by a membrane-permeable scavenger of ROS. The effect of NMDA on TRPC6 was observed using cell surface biotinylation assays and also with whole-cell recordings made under conditions designed to facilitate detection of current through TRPC6. NMDA mobilization of TRPC6 channels was blocked by concurrent treatment with the NMDA antagonist MK-801 and by a membrane-permeable scavenger ofROS. Mobilization of TRPC6 was also evoked by L-homocysteic acid. NMDA treatment also increased nuclear localization of endogenous nuclear factor of activated T cells, which could be blocked by MK-801, by scavenging ROS, by the calcineurin inhibitor cyclosporine, and by the TRPC channel inhibitor 1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl]imidazole (SKF-96365). NMDA treatment also evoked robust activation of Rho but not Rac,consistent with previous studies of downstream effectors of TRPC6 activation. Exposing cells to NMDA for 24 h reduced total and cell surface expression of the podocyte markers nephrin and podocin, but there was no loss of cells. With longer NMDA exposure (72 h), we observed loss of cells associated with nuclear fragmentation and increased expression of caspase-3, caspase-6, and Bax, suggesting an apoptotic process.

  18. Crystal Structures of the Histo-Aspartic Protease (HAP) from Plasmodium falciparum

    SciTech Connect

    Bhaumik, Prasenjit; Xiao, Huogen; Parr, Charity L.; Kiso, Yoshiaki; Gustchina, Alla; Yada, Rickey Y.; Wlodawer, Alexander

    2009-08-07

    The structures of recombinant histo-aspartic protease (HAP) from malaria-causing parasite Plasmodium falciparum as apoenzyme and in complex with two inhibitors, pepstatin A and KNI-10006, were solved at 2.5-, 3.3-, and 3.05-{angstrom} resolutions, respectively. In the apoenzyme crystals, HAP forms a tight dimer not seen previously in any aspartic protease. The interactions between the monomers affect the conformation of two flexible loops, the functionally important 'flap' (residues 70-83) and its structural equivalent in the C-terminal domain (residues 238-245), as well as the orientation of helix 225-235. The flap is found in an open conformation in the apoenzyme. Unexpectedly, the active site of the apoenzyme contains a zinc ion tightly bound to His32 and Asp215 from one monomer and to Glu278A from the other monomer, with the coordination of Zn resembling that seen in metalloproteases. The flap is closed in the structure of the pepstatin A complex, whereas it is open in the complex with KNI-10006. Although the binding mode of pepstatin A is significantly different from that in other pepsin-like aspartic proteases, its location in the active site makes unlikely the previously proposed hypothesis that HAP is a serine protease. The binding mode of KNI-10006 is unusual compared with the binding of other inhibitors from the KNI series to aspartic proteases. The novel features of the HAP active site could facilitate design of specific inhibitors used in the development of antimalarial drugs.

  19. Cloning, expression, and characterization of a milk-clotting aspartic protease gene (Po-Asp) from Pleurotus ostreatus.

    PubMed

    Yin, Chaomin; Zheng, Liesheng; Chen, Liguo; Tan, Qi; Shang, Xiaodong; Ma, Aimin

    2014-02-01

    An aspartic protease gene from Pleurotus ostreatus (Po-Asp) had been cloned based on the 3' portion of cDNA in our previous work. The Po-Asp cDNA contained 1,324 nucleotides with an open reading frame (ORF) of 1,212 bp encoding 403 amino acid residues. The putative amino acid sequence included a signal peptide, an activation peptide, two most possible N-glycosylation sites and two conserved catalytic active site. The mature polypeptide with 327 amino acid residues had a calculated molecular mass of 35.3 kDa and a theoretical isoelectric point of 4.57. Basic Local Alignment Search Tool analysis showed 68-80 % amino acid sequence identical to other basidiomycetous aspartic proteases. Sequence comparison and evolutionary analysis revealed that Po-Asp is a member of fungal aspartic protease family. The DNA sequence of Po-Asp is 1,525 bp in length without untranslated region, consisting of seven exons and six introns. The Po-Asp cDNA without signal sequence was expressed in Pichia pastoris and sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated the molecular mass of recombinant Po-Asp was about 43 kDa. The crude recombinant aspartic protease had milk-clotting activity.

  20. Molecular modeling studies suggest that zinc ions inhibit HIV-1 protease by binding at catalytic aspartates.

    PubMed Central

    York, D M; Darden, T A; Pedersen, L G; Anderson, M W

    1993-01-01

    Human immunodeficiency virus type 1 protease is inhibited in vitro by zinc ions at neutral pH. The binding site of these ions is not known; however, experimental data suggest that binding may occur in the active site. To examine the possibility of zinc binding in the active site, molecular dynamics simulations in the presence and absence of zinc have been carried out to 200 psec. The results are compared with the 2.8-A crystallographic structures of a synthetic HIV-1 protease, and a zinc binding site at the catalytic aspartate residues (Asp-25, Asp-25') is proposed. Molecular dynamics simulations show that the zinc ion remains stably bound in this region, coordinating the carboxylate side chains of both aspartate residues. Interaction with zinc does not disrupt the dimeric structure of the protein or significantly alter the structure of the active site. These data are consistent with experimental studies of HIV-1 protease inhibition by zinc and give strong evidence that this is the binding site that leads to inactivation. Images p246-a Figure 1. Figure 2. Figure 3. PMID:8404763

  1. Structural Insights into a Novel Class of Aspartate Aminotransferase from Corynebacterium glutamicum

    PubMed Central

    Son, Hyeoncheol Francis; Kim, Kyung-Jin

    2016-01-01

    Aspartate aminotransferase from Corynebacterium glutamicum (CgAspAT) is a PLP-dependent enzyme that catalyzes the production of L-aspartate and α-ketoglutarate from L-glutamate and oxaloacetate in L-lysine biosynthesis. In order to understand the molecular mechanism of CgAspAT and compare it with those of other aspartate aminotransferases (AspATs) from the aminotransferase class I, we determined the crystal structure of CgAspAT. CgAspAT functions as a dimer, and the CgAspAT monomer consists of two domains, the core domain and the auxiliary domain. The PLP cofactor is found to be bound to CgAspAT and stabilized through unique residues. In our current structure, a citrate molecule is bound at the active site of one molecule and mimics binding of the glutamate substrate. The residues involved in binding of the PLP cofactor and the glutamate substrate were confirmed by site-directed mutagenesis. Interestingly, compared with other AspATs from aminotransferase subgroup Ia and Ib, CgAspAT exhibited unique binding sites for both cofactor and substrate; moreover, it was found to have unusual structural features in the auxiliary domain. Based on these structural differences, we propose that CgAspAT does not belong to either subgroup Ia or Ib, and can be categorized into a subgroup Ic. The phylogenetic tree and RMSD analysis also indicates that CgAspAT is located in an independent AspAT subgroup. PMID:27355211

  2. Active Sites Environmental Monitoring Program: Action levels

    SciTech Connect

    Ashwood, J.S.; Ashwood, T.L.

    1991-10-01

    The Active Sites Environmental Monitoring Program (ASEMP) was established at Oak Ridge National Laboratory to provide for early leak detection and to monitor performance of the active low-level waste disposal facilities in Solid Waste Storage Area (SWSA) 6 and the transuranic waste storage areas in SWSA 5 North. Early leak detection is accomplished by sampling runoff, groundwater, and perched water in burial trenches. Sample results are compared to action levels that represent background contamination by naturally occurring and fallout-derived radionuclides. 15 refs., 3 figs., 12 tabs.

  3. Kinetic analysis of a general model of activation of aspartic proteinase zymogens involving a reversible inhibitor. II. Contribution of the uni- and bimolecular activation routes.

    PubMed

    Muñoz-López, A; Sotos-Lomas, A; Arribas, E; Escribano, J; Masia-Perez, J; Muñoz-Muñoz, J L; Varon, R

    2007-04-01

    From the kinetic study carried out in part I of this series (preceding article) an analysis quantifying the relative contribution to the global process of the uni- and bimolecular routes has been carried out. This analysis suggests a way to predict the time course of the relative contribution as well as the effect on this relative weight of the initial zymogen, inhibitor and activating enzyme concentrations.

  4. Crystallographic Snapshots of the Complete Catalytic Cycle of the Unregulated Aspartate Transcarbamoylase from Bacillus subtilis

    SciTech Connect

    K Harris; G Cockrell; D Puleo; E Kantrowitz

    2011-12-31

    Here, we report high-resolution X-ray structures of Bacillus subtilis aspartate transcarbamoylase (ATCase), an enzyme that catalyzes one of the first reactions in pyrimidine nucleotide biosynthesis. Structures of the enzyme have been determined in the absence of ligands, in the presence of the substrate carbamoyl phosphate, and in the presence of the bisubstrate/transition state analog N-phosphonacetyl-L-aspartate. Combining the structural data with in silico docking and electrostatic calculations, we have been able to visualize each step in the catalytic cycle of ATCase, from the ordered binding of the substrates, to the formation and decomposition of the tetrahedral intermediate, to the ordered release of the products from the active site. Analysis of the conformational changes associated with these steps provides a rationale for the lack of cooperativity in trimeric ATCases that do not possess regulatory subunits.

  5. Crystallographic snapshots of the complete catalytic cycle of the unregulated aspartate transcarbamoylase from Bacillus subtilis.

    PubMed

    Harris, Katharine M; Cockrell, Gregory M; Puleo, David E; Kantrowitz, Evan R

    2011-08-01

    Here, we report high-resolution X-ray structures of Bacillus subtilis aspartate transcarbamoylase (ATCase), an enzyme that catalyzes one of the first reactions in pyrimidine nucleotide biosynthesis. Structures of the enzyme have been determined in the absence of ligands, in the presence of the substrate carbamoyl phosphate, and in the presence of the bisubstrate/transition state analog N-phosphonacetyl-L-aspartate. Combining the structural data with in silico docking and electrostatic calculations, we have been able to visualize each step in the catalytic cycle of ATCase, from the ordered binding of the substrates, to the formation and decomposition of the tetrahedral intermediate, to the ordered release of the products from the active site. Analysis of the conformational changes associated with these steps provides a rationale for the lack of cooperativity in trimeric ATCases that do not possess regulatory subunits. PMID:21663747

  6. Rheb Protein Binds CAD (Carbamoyl-phosphate Synthetase 2, Aspartate Transcarbamoylase, and Dihydroorotase) Protein in a GTP- and Effector Domain-dependent Manner and Influences Its Cellular Localization and Carbamoyl-phosphate Synthetase (CPSase) Activity*

    PubMed Central

    Sato, Tatsuhiro; Akasu, Hitomi; Shimono, Wataru; Matsu, Chisa; Fujiwara, Yuki; Shibagaki, Yoshio; Heard, Jeffrey J.; Tamanoi, Fuyuhiko; Hattori, Seisuke

    2015-01-01

    Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis. PMID:25422319

  7. Characterization of active sites in zeolite catalysts

    SciTech Connect

    Eckert, J.; Bug, A.; Nicol, J.M.

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Atomic-level details of the interaction of adsorbed molecules with active sites in catalysts are urgently needed to facilitate development of more effective and/or environmentally benign catalysts. To this end the authors have carried out neutron scattering studies combined with theoretical calculations of the dynamics of small molecules inside the cavities of zeolite catalysts. The authors have developed the use of H{sub 2} as a probe of adsorption sites by observing the hindered rotations of the adsorbed H{sub 2} molecule, and they were able to show that an area near the four-rings is the most likely adsorption site for H{sub 2} in zeolite A while adsorption of H{sub 2} near cations located on six-ring sites decreases in strength as Ni {approximately} Co > Ca > Zn {approximately} Na. Vibrational and rotational motions of ethylene and cyclopropane adsorption complexes were used as a measure for zeolite-adsorbate interactions. Preliminary studies of the binding of water, ammonia, and methylamines were carried out in a number of related guest-host materials.

  8. Modulating the pH-activity profile of cellulase by substitution: replacing the general base catalyst aspartate with cysteinesulfinate in cellulase A from Cellulomonas fimi.

    PubMed

    Cockburn, Darrell W; Vandenende, Chris; Clarke, Anthony J

    2010-03-01

    Cellulase A (CenA) from Cellulomonas fimi is an inverting glycoside hydrolase and a member of family 6 of the CAZy database classification system. We replaced its putative catalytic base aspartyl residues, Aps392 and Asp216, with cysteinesulfinate using a combination of site-directed mutagenesis and chemical modification to investigate the applicability of this approach for the modulation of enzymatic properties. The substituted cysteinyl residues were oxidized to cysteinesulfinic acid with hydrogen peroxide, and the resulting protein products were demonstrated to retain their native structure. Oxidation of the Asp392Cys mutant enzyme restored 52% of wild-type activity when assessed at pH 7.5, whereas Asp216Cys CenA remained inactive. This suggests that Asp216 is not the catalytic base and provides further support for Asp392 performing this role. Similar substitution of the catalytic acid residue Asp252 or the catalytic nucleophile of the retaining enzyme Cel5A from Thermobifida fusca failed to produce active enzymes. This indicates a potential utility of this approach for uniquely identifying catalytic base residues. The replacement of Asp392 with cysteinesulfinate induced an acidic shift in the pH profile of the enzyme such that this enzyme derivative was more active than wild-type CenA below pH 5.5. These data demonstrate the potential of combining site-directed mutagenesis with chemical modification as a viable approach for the modulation of cellulases, and potentially other glycoside hydrolases, at low pH.

  9. Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis

    PubMed Central

    Yao, Xuan; Xiong, Wei; Ye, Tiantian; Wu, Yan

    2012-01-01

    Drought is one of the most severe environmental stresses affecting plant growth and limiting crop production. Although many genes involved in adaptation to drought stress have been disclosed, the relevant molecular mechanisms are far from understood. This study describes an Arabidopsis gene, ASPG1 (ASPARTIC PROTEASE IN GUARD CELL 1), that may function in drought avoidance through abscisic acid (ABA) signalling in guard cells. Overexpression of the ASPG1 gene enhanced ABA sensitivity in guard cells and reduced water loss in ectopically overexpressing ASPG1 (ASPG1-OE) transgenic plants. In ASPG1-OE plants, some downstream targets in ABA and/or drought-signalling pathways were altered at various levels, suggesting the involvement of ASPG1 in ABA-dependent drought avoidance in Arabidopsis. By analysing the activities of several antioxidases including superoxide dismutase and catalase in ASPG1-OE plants, the existence was demonstrated of an effective detoxification system for drought avoidance in these plants. Analysis of ProASPG1-GUS lines showed a predominant guard cell expression pattern in various aerial tissues. Moreover, the protease activity of ASPG1 was characterized in vitro, and two aspartic acid sites, D180 and D379, were found to be key residues for ASPG1 aspartic protease activity in response to ABA. In summary, these findings suggest that functional ASPG1 may be involved in ABA-dependent responsiveness and that overexpression of the ASPG1 gene can confer drought avoidance in Arabidopsis. PMID:22268147

  10. Mutational analysis of human immunodeficiency virus type 1 protease suggests functional homology with aspartic proteinases.

    PubMed Central

    Loeb, D D; Hutchison, C A; Edgell, M H; Farmerie, W G; Swanstrom, R

    1989-01-01

    Processing of the retroviral gag and pol gene products is mediated by a viral protease. Bacterial expression systems have been developed which permit genetic analysis of the human immunodeficiency virus type 1 protease as measured by cleavage of the pol protein precursor. Deletion analysis of the pol reading frame locates the sequences required to encode a protein with appropriate proteolytic activity near the left end of the pol reading frame but largely outside the gag-pol overlap region, which is at the extreme left end of pol. Most missense mutations within an 11-amino-acid domain highly conserved among retroviral proteases and with sequence similarity to the active site of aspartic proteinases abolish appropriate processing, suggesting that the retrovirus proteases share a catalytic mechanism with aspartic proteinases. Substitution of the amino acids flanking the scissile bond at three of the processing sites encoded by pol demonstrates distinct sequence requirements for cleavage at these different sites. The inclusion of a charged amino acid at the processing site blocks cleavage. A subset of these substitutions also inhibits processing at the nonmutated sites. Images PMID:2642305

  11. Crystal structure of a putative aspartic proteinase domain of the Mycobacterium tuberculosis cell surface antigen PE_PGRS16☆

    PubMed Central

    Barathy, Deivanayaga V.; Suguna, Kaza

    2013-01-01

    We report the crystal structure of the first prokaryotic aspartic proteinase-like domain identified in the genome of Mycobacterium tuberculosis. A search in the genomes of Mycobacterium species showed that the C-terminal domains of some of the PE family proteins contain two classic DT/SG motifs of aspartic proteinases with a low overall sequence similarity to HIV proteinase. The three-dimensional structure of one of them, Rv0977 (PE_PGRS16) of M. tuberculosis revealed the characteristic pepsin-fold and catalytic site architecture. However, the active site was completely blocked by the N-terminal His-tag. Surprisingly, the enzyme was found to be inactive even after the removal of the N-terminal His-tag. A comparison of the structure with pepsins showed significant differences in the critical substrate binding residues and in the flap tyrosine conformation that could contribute to the lack of proteolytic activity of Rv0977. PMID:23923105

  12. Active site of ribulosebisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.; Stringer, C.D.; Milanez, S.; Lee, E.H.

    1985-01-01

    Previous affinity labeling studies and comparative sequence analyses have identified two different lysines at the active site of ribulosebisphosphate carboxylase/oxygenase and have suggested their essentiality to function. The essential lysines occupy positions 166 and 329 in the Rhodospirillum rubrum enzyme and positions 175 and 334 in the spinach enzyme. Based on the pH-dependencies of inactivations of the two enzymes by trinitrobenzene sulfonate, Lys-166 (R. rubrum enzyme) exhibits a pK/sub a/ of 7.9 and Lys-334 (spinach enzyme) exhibits a pK/sub a/ of 9.0. These low pK/sub a/ values as well as the enhanced nucleophilicities of the lysyl residues argue that both are important to catalysis rather than to substrate binding. Lys-166 may correspond to the essential base that initiates catalysis and that displays a pK/sub a/ of 7.5 in the pH-curve for V/sub max//K/sub m/. Cross-linking experiments with 4,4'-diisothiocyano-2,2'-disulfonate stilbene demonstrate that the two active-site lysines are within 12 A. 50 refs., 7 figs., 1 tab.

  13. Human immunodeficiency virus 1 protease expressed in Escherichia coli behaves as a dimeric aspartic protease.

    PubMed Central

    Meek, T D; Dayton, B D; Metcalf, B W; Dreyer, G B; Strickler, J E; Gorniak, J G; Rosenberg, M; Moore, M L; Magaard, V W; Debouck, C

    1989-01-01

    Recombinant human immunodeficiency virus 1 (HIV-1) protease, purified from a bacterial expression system, processed a recombinant form of its natural substrate, Pr55gag, into protein fragments that possess molecular weights commensurate with those of the virion gag proteins. Molecular weights of the protease obtained under denaturing and nondenaturing conditions (11,000 and 22,000, respectively) and chemical crosslinking studies were consistent with a dimeric structure for the active enzyme. The protease appropriately cleaved the nonapeptide Ac-Arg-Ala-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2 between the tyrosine and proline residues. HIV-1 protease was sensitive to inactivators of the aspartic proteases. The aspartic protease inactivator 1,2-epoxy-3-(4-nitrophenoxy)propane produced irreversible, time-dependent inactivation of the protease. The pH-dependent kinetics of this inactivator were consistent with the requirement of an unprotonated carboxyl group in the active site of the enzyme, suggesting that HIV-1 protease is also an aspartic protease. Images PMID:2648384

  14. Release of biologically active kinin peptides, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin from human kininogens by two major secreted aspartic proteases of Candida parapsilosis.

    PubMed

    Bras, Grazyna; Bochenska, Oliwia; Rapala-Kozik, Maria; Guevara-Lora, Ibeth; Faussner, Alexander; Kamysz, Wojciech; Kozik, Andrzej

    2013-10-01

    In terms of infection incidence, the yeast Candida parapsilosis is the second after Candida albicans as causative agent of candidiases in humans. The major virulence factors of C. parapsilosis are secreted aspartic proteases (SAPPs) which help the pathogen to disseminate, acquire nutrients and dysregulate the mechanisms of innate immunity of the host. In the current work we characterized the action of two major extracellular proteases of C. parapsilosis, SAPP1 and SAPP2, on human kininogens, proteinaceous precursors of vasoactive and proinflammatory bradykinin-related peptides, collectively called the kinins. The kininogens, preferably the form with lower molecular mass, were effectively cleaved by SAPPs, with the release of two uncommon kinins, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin. While optimal at acidic pH (4-5), the kinin release yield was only 2-3-fold lower at neutral pH. These peptides were able to interact with cellular kinin receptors of B2 subtype and to stimulate the human endothelial cells HMEC-1 to increased secretion of proinflammatory interleukins (ILs), IL-1β and IL-6. The analysis of the stability of SAPP-generated kinins in plasma suggested that they are biologically equivalent to bradykinin, the best agonist of B2 receptor subtype and can be quickly converted to des-Arg(9)-bradykinin, the agonist of inflammation-inducible B1 receptors. PMID:23954712

  15. Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity.

    PubMed

    Watanabe, T; Kobori, K; Miyashita, K; Fujii, T; Sakai, H; Uchida, M; Tanaka, H

    1993-09-01

    Prokaryotic chitinases, class III plant chitinases, yeast chitinases, and endo-beta-N-acetylglucosaminidases share weak amino acid sequence similarities at the certain region of each enzyme. These regions have been assumed to be important for catalytic activities of the enzymes. To verify this assumption, three amino acid residues (Ser-160, Asp-200, Glu-204) in chitinase A1 of Bacillus circulans WL-12 were chosen, based on the amino acid sequence alignment of the regions sharing sequence similarity, and were replaced by site-directed mutagenesis. Kinetic parameters for 4-methylumbelliferyl-N,N',N"-triacetylchitotriose hydrolysis were determined with wild-type and seven mutant chitinases. Chitinases with Glu-204-->Gln mutation and Glu-204-->Asp mutation were essentially inactive and kcat values of these chitinases were approximately 1/5,000 and 1/17,000 of that of wild-type chitinase, respectively. Asp-200-->Asn mutation decreased the kcat value to approximately 1/350 of that of the wild-type enzyme, while the Km value decreased only slightly. On the other hand, neither the kcat value nor the Km value was affected by Asp-200-->Glu mutation. Thus, it appeared that Glu-204 and Asp-200 are directly involved in the catalytic events of chitinase A1. The role of the carboxyl group of Asp-200 can be fully substituted by that of Glu residue. The Ser-160-->Ala mutant retained 10% activity of the wild-type chitinase indicating that the hydroxyl group of Ser-160 is not absolutely required for the catalytic activity. These results indicate a lysozyme-type catalytic mechanism of the chitinase.

  16. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  17. An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis.

    PubMed

    Birsoy, Kıvanç; Wang, Tim; Chen, Walter W; Freinkman, Elizaveta; Abu-Remaileh, Monther; Sabatini, David M

    2015-07-30

    The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibition. GOT1 normally consumes aspartate to transfer electrons into mitochondria, but, upon ETC inhibition, it reverses to generate aspartate in the cytosol, which partially compensates for the loss of mitochondrial aspartate synthesis. Pyruvate stimulates aspartate synthesis in a GOT1-dependent fashion, which is required for pyruvate to rescue proliferation of cells with ETC dysfunction. Aspartate supplementation or overexpression of an aspartate transporter allows cells without ETC activity to proliferate. Thus, enabling aspartate synthesis is an essential role of the ETC in cell proliferation. PMID:26232224

  18. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis

    PubMed Central

    Birsoy, Kıvanç; Wang, Tim; Chen, Walter; Freinkman, Elizaveta; Abu-Remaileh, Monther; Sabatini, David M.

    2015-01-01

    Summary The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibition. GOT1 normally consumes aspartate to transfer electrons into mitochondria, but, upon ETC inhibition, it reverses to generate aspartate in the cytosol, which partially compensates for the loss of mitochondrial aspartate synthesis. Pyruvate stimulates aspartate synthesis in a GOT1-dependent fashion, which is required for pyruvate to rescue proliferation of cells with ETC dysfunction. Aspartate supplementation or overexpression of an aspartate transporter allows cells without ETC activity to proliferate. Thus, enabling aspartate synthesis is an essential role of the ETC in cell proliferation. PMID:26232224

  19. [Aspartate aminotransferase--key enzyme in the human systemic metabolism].

    PubMed

    Otto-Ślusarczyk, Dagmara; Graboń, Wojciech; Mielczarek-Puta, Magdalena

    2016-01-01

    Aspartate aminotransferase is an organ-nonspecific enzyme located in many tissues of the human body where it catalyzes reversible reaction of transamination. There are two aspartate aminotransferase isoforms--cytoplasmic (AST1) and mitochondrial (AST2), that usually occur together and interact with each other metabolically. Both isoforms are homodimers containing highly conservative regions responsible for catalytic properties of enzyme. The common feature of all aspartate aminotransfeses is Lys - 259 residue covalent binding with prosthetic group - pyridoxal phosphate. The differences in the primary structure of AST isoforms determine their physico-chemical, kinetic and immunological properties. Because of the low concentration of L-aspartate (L-Asp) in the blood, AST is the only enzyme, which supply of this amino acid as a substrate for many metabolic processes, such as urea cycle or purine and pyrimidine nucleotides in the liver, synthesis of L-arginine in the kidney and purine nucleotide cycle in the brain and the skeletal muscle. AST is also involved in D-aspartate production that regulates the metabolic activity at the auto-, para- and endocrine level. Aspartate aminotransferase is a part of the malate-aspartate shuttle in the myocardium, is involved in gluconeogenesis in the liver and kidney, glyceroneogenesis in the adipose tissue, and synthesis of neurotransmitters and neuro-glial pathway in the brain. Recently, the significant role of AST in glutaminolysis - normal metabolic pathway in tumor cells, was demonstrated. The article is devoted the role of AST, known primarily as a diagnostic liver enzyme, in metabolism of various human tissues and organs. PMID:27117097

  20. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants.

    PubMed

    de la Torre, Fernando; Cañas, Rafael A; Pascual, M Belén; Avila, Concepción; Cánovas, Francisco M

    2014-10-01

    In the chloroplasts and in non-green plastids of plants, aspartate is the precursor for the biosynthesis of different amino acids and derived metabolites that play distinct and important roles in plant growth, reproduction, development or defence. Aspartate biosynthesis is mediated by the enzyme aspartate aminotransferase (EC 2.6.1.1), which catalyses the reversible transamination between glutamate and oxaloacetate to generate aspartate and 2-oxoglutarate. Plastids contain two aspartate aminotransferases: a eukaryotic-type and a prokaryotic-type bifunctional enzyme displaying aspartate and prephenate aminotransferase activities. A general overview of the biochemistry, regulation, functional significance, and phylogenetic origin of both enzymes is presented. The roles of these plastidic aminotransferases in the biosynthesis of essential amino acids are discussed.

  1. New paradigm for allosteric regulation of Escherichia coli aspartate transcarbamoylase.

    PubMed

    Cockrell, Gregory M; Zheng, Yunan; Guo, Wenyue; Peterson, Alexis W; Truong, Jennifer K; Kantrowitz, Evan R

    2013-11-12

    For nearly 60 years, the ATP activation and the CTP inhibition of Escherichia coli aspartate transcarbamoylase (ATCase) has been the textbook example of allosteric regulation. We present kinetic data and five X-ray structures determined in the absence and presence of a Mg(2+) concentration within the physiological range. In the presence of 2 mM divalent cations (Mg(2+), Ca(2+), Zn(2+)), CTP does not significantly inhibit the enzyme, while the allosteric activation by ATP is enhanced. The data suggest that the actual allosteric inhibitor of ATCase in vivo is the combination of CTP, UTP, and a divalent cation, and the actual allosteric activator is a divalent cation with ATP or ATP and GTP. The structural data reveals that two NTPs can bind to each allosteric site with a divalent cation acting as a bridge between the triphosphates. Thus, the regulation of ATCase is far more complex than previously believed and calls many previous studies into question. The X-ray structures reveal that the catalytic chains undergo essentially no alternations; however, several regions of the regulatory chains undergo significant structural changes. Most significant is that the N-terminal region of the regulatory chains exists in different conformations in the allosterically activated and inhibited forms of the enzyme. Here, a new model of allosteric regulation is proposed.

  2. Rescue of Na+ affinity in aspartate 928 mutants of Na+,K+-ATPase by secondary mutation of glutamate 314.

    PubMed

    Holm, Rikke; Einholm, Anja P; Andersen, Jens P; Vilsen, Bente

    2015-04-10

    The Na(+),K(+)-ATPase binds Na(+) at three transport sites denoted I, II, and III, of which site III is Na(+)-specific and suggested to be the first occupied in the cooperative binding process activating phosphorylation from ATP. Here we demonstrate that the asparagine substitution of the aspartate associated with site III found in patients with rapid-onset dystonia parkinsonism or alternating hemiplegia of childhood causes a dramatic reduction of Na(+) affinity in the α1-, α2-, and α3-isoforms of Na(+),K(+)-ATPase, whereas other substitutions of this aspartate are much less disruptive. This is likely due to interference by the amide function of the asparagine side chain with Na(+)-coordinating residues in site III. Remarkably, the Na(+) affinity of site III aspartate to asparagine and alanine mutants is rescued by second-site mutation of a glutamate in the extracellular part of the fourth transmembrane helix, distant to site III. This gain-of-function mutation works without recovery of the lost cooperativity and selectivity of Na(+) binding and does not affect the E1-E2 conformational equilibrium or the maximum phosphorylation rate. Hence, the rescue of Na(+) affinity is likely intrinsic to the Na(+) binding pocket, and the underlying mechanism could be a tightening of Na(+) binding at Na(+) site II, possibly via movement of transmembrane helix four. The second-site mutation also improves Na(+),K(+) pump function in intact cells. Rescue of Na(+) affinity and Na(+) and K(+) transport by second-site mutation is unique in the history of Na(+),K(+)-ATPase and points to new possibilities for treatment of neurological patients carrying Na(+),K(+)-ATPase mutations.

  3. In Vitro antioxidative activity of pumpkin seed (Cucurbita pepo) protein isolate and its In Vivo effect on alanine transaminase and aspartate transaminase in acetaminophen-induced liver injury in low protein fed rats.

    PubMed

    Nkosi, C Z; Opoku, A R; Terblanche, S E

    2006-09-01

    The antioxidative effects of pumpkin seed protein isolate (Cucurbita pepo) were investigated in vitro. The isolate exhibited about 80% radical scavenging activity, chelating activity of approximately 64% on Fe2+ ions and an inhibition of approximately 10% of xanthine oxidase. Subsequently the effects of the isolate on the plasma activity levels of alanine transaminase and aspartate transaminase against acetaminophen induced acute liver injury in low-protein fed male Sprague-Dawley rats were ascertained. The rats were maintained on a low-protein diet for 5 days and divided into three subgroups. Two subgroups were injected with acetaminophen and the other with an equivalent amount of polyethylene glycol 400. Two hours after intoxication one of the two subgroups was administered with the protein isolate. Rats from the different subgroups were killed at 24, 48 and 72 h after treatment. After 5 days on the low-protein diet the activity levels of the enzymes were significantly higher than their counterparts on a normal balanced diet. The administration of protein isolate after acetaminophen intoxication resulted in significantly reduced activity levels. It is concluded that the protein isolate has promising antioxidative properties. Furthermore, the isolate administration was effective in alleviating the detrimental effects associated with protein malnutrition and acetaminophen intoxication.

  4. Control of active sites in flocculation: Concept of equivalent active sites''

    SciTech Connect

    Behl, S.; Moudgil, B.M. . Dept. of Materials Science and Engineering)

    1993-12-01

    Flocculation and dispersion of solids are strong functions of the amount and conformation of the adsorbed polymer. Regions of dispersion and flocculation of solids with particular polymer molecules may be deduced from saturation adsorption data. The concept of equivalent active sites'' is proposed to explain flocculation and dispersion behavior irrespective of the amount or conformation of the adsorbed polymer. The concept has been further extended to study the selective flocculation process.

  5. Aspartic cathepsin D endopeptidase contributes to extracellular digestion in clawed lobsters Homarus americanus and Homarus gammarus.

    PubMed

    Rojo, Liliana; Muhlia-Almazan, Adriana; Saborowski, Reinhard; García-Carreño, Fernando

    2010-11-01

    Acid digestive proteinases were studied in the gastric fluids of two species of clawed lobster (Homarus americanus and Homarus gammarus). An active protein was identified in both species as aspartic proteinase by specific inhibition with pepstatin A. It was confirmed as cathepsin D by mass mapping, N-terminal, and full-length cDNA sequencing. Both lobster species transcribed two cathepsin D mRNAs: cathepsin D1 and cathepsin D2. Cathepsin D1 mRNA was detected only in the midgut gland, suggesting its function as a digestive enzyme. Cathepsin D2 mRNA was found in the midgut gland, gonads, and muscle. The deduced amino acid sequence of cathepsin D1 and cathepsin D2 possesses two catalytic DTG active-site motifs, the hallmark of aspartic proteinases. The putatively active cathepsin D1 has a molecular mass of 36.4 kDa and a calculated pI of 4.14 and possesses three potential glycosylation sites. The sequences showed highest similarities with cathepsin D from insects but also with another crustacean cathepsin D. Cathepsin D1 transcripts were quantified during a starvation period using real-time qPCR. In H. americanus, 15 days of starvation did not cause significant changes, but subsequent feeding caused a 2.5-fold increase. In H. gammarus, starvation caused a 40% reduction in cathepsin D1 mRNA, and no effect was observed with subsequent feeding. PMID:20169386

  6. Effects of test spills of chemically dispersed and nondispersed oil on the activity of aspartate aminotransferase and glucose-6-phosphate dehydrogenase in two intertidal bivalves, Mya arenaria and Mytilus edulis

    SciTech Connect

    Gilfillan, E.S.; Foster, J.; Gerber, R.; Hanson, S.A.; Page, D.S.; Vallas, D.

    1982-10-01

    In 1981, two test oil spills were made in Maine. One spill was 975 L (250 gal) of Murban crude oil; the other was 975 L of Murban crude oil premixed with 97 L (25 gal) of Corexit 9527. The uptake of the oil and its effects on enzymatic activity in two species of common intertidal bivalve mollusks, Mya arenaria and Mytilus edulis, were studied. Data were obtained on uptake and depuration of the oil for each species; data were also obtained on the activity of glucose-6-phosphate dehydrogenase and aspartate aminotransferase for each species. Data were collected both before and after each of the spills. Much less oil was taken up by the populations of animals exposed to chemically dispersed oil than by those exposed to nondispersed oil. Rates of depuration were the same for each species; they were also the same regardless of oil exposure. Significant long-term effects on enzyme activity were detected only in those animals exposed to nondispersed oil.

  7. Erythrocyte L-aspartyl-L-phenylalanine hydrolase activity and plasma phenylalanine and aspartate concentrations in children consuming diets high in aspartame.

    PubMed

    Stegink, L D; Lindgren, S D; Brummel, M C; Stumbo, P J; Wolraich, M L

    1995-12-01

    A deficit of alpha-aspartyl-phenylalanine (alpha-Asp-Phe) hydrolase activity has been suggested as a cause of possible adverse effects of aspartame ingestion. Twenty-five normal preschool children and 23 school-age children described by their parents as sensitive to sugar were fed diets high in sucrose, aspartame, or saccharin for three successive 3-wk periods. Blood samples were obtained at baseline (fasting) and within the last 3 d of each dietary period (postprandial). alpha-Asp-Phe concentrations were below detection limits (0.5 mumol/L) in all plasma samples and Phe and Asp concentrations remained within normal limits, alpha-Asp-Phe hydrolase activities in baseline hemolysate samples did not differ between groups. One subject had a plasma alpha-Asp-Phe hydrolase activity > 2 SD below the mean. Despite this low activity, this subject did not show consistent cognitive or behavioral anomalies that could be linked to low hydrolase activity.

  8. Characterization of the aspartate transcarbamoylase from Methanococcus jannaschii.

    PubMed

    Hack, E S; Vorobyova, T; Sakash, J B; West, J M; Macol, C P; Hervé, G; Williams, M K; Kantrowitz, E R

    2000-05-26

    The genes from the thermophilic archaeabacterium Methanococcus jannaschii that code for the putative catalytic and regulatory chains of aspartate transcarbamoylase were expressed at high levels in Escherichia coli. Only the M. jannaschii PyrB (Mj-PyrB) gene product exhibited catalytic activity. A purification protocol was devised for the Mj-PyrB and M. jannaschii PyrI (Mj-PyrI) gene products. Molecular weight measurements of the Mj-PyrB and Mj-PyrI gene products revealed that the Mj-PyrB gene product is a trimer and the Mj-PyrI gene product is a dimer. Preliminary characterization of the aspartate transcarbamoylase from M. jannaschii cell-free extract revealed that the enzyme has a similar molecular weight to that of the E. coli holoenzyme. Kinetic analysis of the M. jannaschii aspartate transcarbamoylase from the cell-free extract indicates that the enzyme exhibited limited homotropic cooperativity and little if any regulatory properties. The purified Mj-catalytic trimer exhibited hyperbolic kinetics, with an activation energy similar to that observed for the E. coli catalytic trimer. Homology models of the Mj-PyrB and Mj-PyrI gene products were constructed based on the three-dimensional structures of the homologous E. coli proteins. The residues known to be critical for catalysis, regulation, and formation of the quaternary structure from the well characterized E. coli aspartate transcarbamoylase were compared.

  9. Dissecting the active site of a photoreceptor protein

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter; Hara, Miwa; Ren, Jie; Moghadam, Farzaneh; Xie, Aihua; Kumauchi, Masato

    While enzymes are quite large molecules, functionally important chemical events are often limited to a small region of the protein: the active site. The physical and chemical properties of residues at such active sites are often strongly altered compared to the same groups dissolved in water. Understanding such effects is important for unraveling the mechanisms underlying protein function and for protein engineering, but has proven challenging. Here we report on our ongoing efforts on using photoactive yellow protein (PYP), a bacterial photoreceptor, as a model system for such effects. We will report on the following questions: How many residues affect active site properties? Are these residues in direct physical contact with the active site? Can functionally important residues be recognized in the crystal structure of a protein? What structural resolution is needed to understand active sites? What spectroscopic techniques are most informative? Which weak interactions dominate active site properties?

  10. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program --now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history The missions will develop technology and acquire data necessary for eventual human Exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines be opportunities for the Mars community to provide input into the landing site selection process.

  11. Mars Surveyor Project Landing Site Activities

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Briggs, Geoffrey; Saunders, R. Stephen; Gilmore, Martha; Soderblom, Larry

    1999-01-01

    The Mars Surveyor Program -- now a cooperative program led by NASA and CNES along with other international partners -- is underway. It has the primary science objective of furthering our understanding of the biological potential and possible biological history of Mars and has the complementary objective of improving our understanding of martian climate evolution and planetary history. The missions will develop technology and acquire data necessary for eventual human exploration. Launches of orbiters, landers and rovers will take place in 2001 and in 2003; in 2005 a complete system will be launched capable of returning samples to Earth by 2008. A key aspect of the program is the selection of landing sites. This abstract 1) reports on the status of the landing site selection process that begins with the 2001 lander mission and 2) outlines the opportunities for the Mars community to provide input into the landing site selection process.

  12. Activation of Inhibitors by Sortase Triggers Irreversible Modification of the Active Site*S

    PubMed Central

    Maresso, Anthony W.; Wu, Ruiying; Kern, Justin W.; Zhang, Rongguang; Janik, Dorota; Missiakas, Dominique M.; Duban, Mark-Eugene; Joachimiak, Andrzej; Schneewind, Olaf

    2011-01-01

    Sortases anchor surface proteins to the cell wall of Gram-positive pathogens through recognition of specific motif sequences. Loss of sortase leads to large reductions in virulence, which identifies sortase as a target for the development of antibacterials. By screening 135,625 small molecules for inhibition, we report here that aryl (β-amino)ethyl ketones inhibit sortase enzymes from staphylococci and bacilli. Inhibition of sortases occurs through an irreversible, covalent modification of their active site cysteine. Sortases specifically activate this class of molecules via β-elimination, generating a reactive olefin intermediate that covalently modifies the cysteine thiol. Analysis of the three-dimensional structure of Bacillus anthracis sortase B with and without inhibitor provides insights into the mechanism of inhibition and reveals binding pockets that can be exploited for drug discovery. PMID:17545669

  13. Ligands Binding to Cell Surface Ganglioside GD2 Cause Src-Dependent Activation of N-Methyl-D-Aspartate Receptor Signaling and Changes in Cellular Morphology

    PubMed Central

    Gagnon, Martin; Saragovi, H. Uri

    2015-01-01

    Ganglioside GD2 is a plasma membrane glycosphinogolipid. In healthy adults it is expressed at low levels, but it is over-expressed in many cancers. For cancer therapy, GD2 is targeted with anti-GD2 monoclonal antibodies (mAbs), and one adverse side effect is severe visceral pain. Pain is not neuropathic, cannot be blocked with morphine, and stops on discontinuation of mAb therapy. Here, we provide evidence that ligand binding to cell surface GD2 induces rapid and transient activation of Src-family kinases, followed by Src-dependent phosphorylation of NMDA-receptor NR2B subunits selectively, activation of Ca++ fluxes, production of cAMP, and changes in cellular morphology. These GD2-ligand activated signals differ in kinetics and in pharmacology from activation of the same signals in the same cells by BDNF, the growth factor agonist of the TrkB receptor, suggesting biological specificity. Hence, cell surface GD2 regulates pathways that can be associated with neoplasia and with morphine-intractable pain; and this can explain why expression of GD2 correlates with these two pathologies. PMID:26252487

  14. Characterization and sequencing of an active-site cysteine-containing peptide from the xylanase of a thermotolerant Streptomyces.

    PubMed

    Keskar, S S; Rao, M B; Deshpande, V V

    1992-02-01

    The kinetics of chemical modification of the xylanase from a thermotolerant Streptomyces T7 indicated the involvement of 1 mol of cysteine residue/mol of enzyme [Keskar, Srinivasan & Deshpande (1989) Biochem. J. 261, 49-55]. The chromophoric reagent N-(2,4-dinitroanilino)maleimide (DAM) reacts covalently with thiol groups of xylanase with complete inactivation. Protection against inactivation was provided by the substrate (xylan). The purified xylanase that had been modified with DAM was digested with pepsin and the peptides were purified by gel filtration followed by peptide mapping. The active-site peptide was distinguished from the other thiol-containing peptides by comparison of the peptides generated by labelling the enzyme in the presence and in the absence of the substrate. The peptide mapping of the modified enzyme in the absence of xylan showed three yellow peptides, whereas in the presence of xylan only two yellow peptides were detected. The active-site peptide protected by the substrate failed to form the complex with DAM. The modified active-site peptide was isolated and sequenced. Gas-phase sequencing provided the following sequence: Ser-Val-Ile-Met-Xaa-Ile-Asp-His-Ile-Arg-Phe. This is the first report on the isolation and sequencing of the active-site peptide from a xylanase. The comparison of reactive cysteine-containing peptide sequence with the catalytic regions of other glucanases revealed the presence of a conserved aspartic acid residue.

  15. The crystal structure of the secreted aspartic protease 1 from Candida parapsilosis in complex with pepstatin A

    SciTech Connect

    Dostál, Jiří; Brynda, Jiří; Hrušková-Heidingsfeldová, Olga; Sieglová, Irena; Pichová, Iva; Řezáčová, Pavlína

    2010-09-01

    Opportunistic pathogens of the genus Candida cause infections representing a major threat to long-term survival of immunocompromised patients. Virulence of the Candida pathogens is enhanced by production of extracellular proteolytic enzymes and secreted aspartic proteases (Saps) are therefore studied as potential virulence factors and possible targets for therapeutic drug design. Candida parapsilosis is less invasive than C. albicans, however, it is one of the leading causative agents of yeast infections. We report three-dimensional crystal structure of Sapp1p from C. parapsilosis in complex with pepstatin A, the classical inhibitor of aspartic proteases. The structure of Sapp1p was determined from protein isolated from its natural source and represents the first structure of Sap from C. parapsilosis. Overall fold and topology of Sapp1p is very similar to the archetypic fold of monomeric aspartic protease family and known structures of Sap isoenzymes from C. albicans and Sapt1p from C. tropicalis. Structural comparison revealed noticeable differences in the structure of loops surrounding the active site. This resulted in differential character, shape, and size of the substrate binding site explaining divergent substrate specificities and inhibitor affinities. Determination of structures of Sap isoenzymes from various species might contribute to the development of new Sap-specific inhibitors.

  16. Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases.

    PubMed

    Liu, Pingyang; Torrens-Spence, Michael P; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2013-02-01

    Animal aspartate decarboxylase (ADC), glutamate decarboxylase (GDC) and cysteine sulfinic acid decarboxylase (CSADC) catalyze the decarboxylation of aspartate, glutamate and cysteine sulfinic acid to β-alanine, γ-aminobutyric acid and hypotaurine, respectively. Each enzymatic product has been implicated in different physiological functions. These decarboxylases use pyridoxal 5-phosphate (PLP) as cofactor and share high sequence homology. Analysis of the activity of ADC in the presence of different amino determined that beta-alanine production from aspartate was diminished in the presence of cysteine. Comparative analysis established that cysteine also inhibited GDC and CSADC in a concentration-dependent manner. Spectral comparisons of free PLP and cysteine, together with ADC and cysteine, result in comparable spectral shifts. Such spectral shifts indicate that cysteine is able to enter the active site of the enzyme, interact with the PLP-lysine internal aldimine, form a cysteine-PLP aldimine and undergo intramolecular nucleophilic cyclization through its sulfhydryl group, leading to irreversible ADC inactivation. Cysteine is the building block for protein synthesis and a precursor of cysteine sulfinic acid that is the substrate of CSADC and therefore is present in many cells, but the presence of cysteine (at comparable concentrations to their natural substrates) apparently could severely inhibit ADC, CSADC and GDC activity. This raises an essential question as to how animal species prevent these enzymes from cysteine-mediated inactivation. Disorders of cysteine metabolism have been implicated in several neurodegenerative diseases. The results of our study should promote research in terms of mechanism by which animals maintain their cysteine homeostasis and possible relationship of cysteine-mediated GDC and CSADC inhibition in neurodegenerative disease development. PMID:22718265

  17. Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases.

    PubMed

    Liu, Pingyang; Torrens-Spence, Michael P; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2013-02-01

    Animal aspartate decarboxylase (ADC), glutamate decarboxylase (GDC) and cysteine sulfinic acid decarboxylase (CSADC) catalyze the decarboxylation of aspartate, glutamate and cysteine sulfinic acid to β-alanine, γ-aminobutyric acid and hypotaurine, respectively. Each enzymatic product has been implicated in different physiological functions. These decarboxylases use pyridoxal 5-phosphate (PLP) as cofactor and share high sequence homology. Analysis of the activity of ADC in the presence of different amino determined that beta-alanine production from aspartate was diminished in the presence of cysteine. Comparative analysis established that cysteine also inhibited GDC and CSADC in a concentration-dependent manner. Spectral comparisons of free PLP and cysteine, together with ADC and cysteine, result in comparable spectral shifts. Such spectral shifts indicate that cysteine is able to enter the active site of the enzyme, interact with the PLP-lysine internal aldimine, form a cysteine-PLP aldimine and undergo intramolecular nucleophilic cyclization through its sulfhydryl group, leading to irreversible ADC inactivation. Cysteine is the building block for protein synthesis and a precursor of cysteine sulfinic acid that is the substrate of CSADC and therefore is present in many cells, but the presence of cysteine (at comparable concentrations to their natural substrates) apparently could severely inhibit ADC, CSADC and GDC activity. This raises an essential question as to how animal species prevent these enzymes from cysteine-mediated inactivation. Disorders of cysteine metabolism have been implicated in several neurodegenerative diseases. The results of our study should promote research in terms of mechanism by which animals maintain their cysteine homeostasis and possible relationship of cysteine-mediated GDC and CSADC inhibition in neurodegenerative disease development.

  18. Mutational analysis of the active site of indoleglycerol phosphate synthase from Escherichia coli.

    PubMed Central

    Darimont, B.; Stehlin, C.; Szadkowski, H.; Kirschner, K.

    1998-01-01

    Indoleglycerol phosphate synthase catalyzes the ring closure of 1-(2-carboxyphenylamino)-1-deoxyribulose 5'-phosphate to indoleglycerol phosphate, the fifth step in the pathway of tryptophan biosynthesis from chorismate. Because chemical synthesis of indole derivatives from arylamino ketones requires drastic solvent conditions, it is interesting by what mechanism the enzyme catalyzes the same condensation reaction. Seven invariant polar residues in the active site of the enzyme from Escherichia coli have been mutated directly or randomly, to identify the catalytically essential ones. A strain of E. coli suitable for selecting and classifying active mutants by functional complementation was constructed by precise deletion of the trpC gene from the genome. Judged by growth rates of transformants on selective media, mutants with either S58 or S60 replaced by alanine were indistinguishable from the wild-type, but R186 replaced by alanine was still partially active. Saturation random mutagenesis of individual codons showed that E53 was partially replaceable by aspartate and cysteine, whereas K114, E163, and N184 could not be replaced by any other residue. Partially active mutant proteins were purified and their steady-state kinetic and inhibitor binding constants determined. Their relative catalytic efficiencies paralleled their relative complementation efficiencies. These results are compatible with the location of the essential residues in the active site of the enzyme and support a chemically plausible catalytic mechanism. It involves two enzyme-bound intermediates and general acid-base catalysis by K114 and E163 with the support of E53 and N184. PMID:9605328

  19. Cauliflower mosaic virus produces an aspartic proteinase to cleave its polyproteins.

    PubMed

    Torruella, M; Gordon, K; Hohn, T

    1989-10-01

    Cauliflower mosaic virus (CaMV), a plant pararetrovirus, produces polyproteins from its adjacent genes for the coat protein (ORF IV) and for enzymatic functions (ORF V). The N-terminal domain of the latter gene includes a sequence showing homology to the active site of other retroviral and acid proteases. We have now shown that this domain does indeed produce a functional aspartic protease that can process both the polyproteins. Mutations in the putative active site abolished virus infectivity. In transient expression studies in protoplasts, the N-terminal domain of ORF V was able to free active CAT enzyme from a precursor containing an N-terminal fusion of a portion of ORF IV. The junction between the two domains of this artificial polyprotein comprised sequences from the ORF IV product that had previously been shown to include a proteolytic processing site. The protease mutants were not able to free active CAT enzyme from this precursor. Direct analysis of cleavage at the same site in the ORF IV product using proteins expressed in Escherichia coli revealed the expected products. In vitro translation of a synthetic transcript covering ORF V was used to study the autocatalytic cleavage of the ORF product. Pulse-chase experiments showed that the 80 kd initial translation product was processed to yield a N-terminal doublet of polypeptides of 22 and 20 kd apparent mol. wt, which cover the protease domain. The mutants in the active site were not processed. PMID:2684630

  20. Synthesis, structure activity relationship, radiolabeling and preclinical evaluation of high affinity ligands for the ion channel of the N-methyl-d-aspartate receptor as potential imaging probes for positron emission tomography.

    PubMed

    Klein, Pieter J; Christiaans, Johannes A M; Metaxas, Athanasios; Schuit, Robert C; Lammertsma, Adriaan A; van Berckel, Bart N M; Windhorst, Albert D

    2015-03-01

    The N-methyl-d-aspartate receptor (NMDAr) is involved in many neurological and psychiatric disorders including Alzheimer's disease and schizophrenia. Currently, it is not possible to assess NMDAr availability in vivo. The purpose of this study was to develop a positron emission tomography (PET) ligand for the NMDAr ion channel. A series of di- and tri-N-substituted diarylguanidines was synthesized. In addition, in vitro binding affinity for the NMDAr ion channel in rat forebrain membrane fractions was assessed. Compounds 10, 11 and 32 were radiolabeled with either carbon-11 or fluorine-18. Ligands [(11)C]10 and [(18)F]32 were evaluated ex vivo in B6C3 mice. Biodistribution studies showed higher uptake of [(11)C]10 and [(18)F]32 in forebrain regions compared with cerebellum. In addition, for [(11)C]10 54% and for [(18)F]32 70% of activity in the brain at 60min was due to intact tracer. Pre-treatment with MK-801 (0.6mg·kg(-1), ip) slightly decreased uptake in NMDAr-specific regions for [(18)F]32, but not for [(11)C]10. As such [(18)F]32 has the best characteristics as a PET tracer for the ion channel of the NMDAr. PMID:25648682

  1. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  2. In vivo activation of N-methyl-D-aspartate receptors in the rat hippocampus increases prostaglandin E(2) extracellular levels and triggers lipid peroxidation through cyclooxygenase-mediated mechanisms.

    PubMed

    Pepicelli, O; Fedele, E; Bonanno, G; Raiteri, M; Ajmone-Cat, M A; Greco, A; Levi, G; Minghetti, L

    2002-06-01

    Cyclooxygenases (COX) are a family of enzymes involved in the biosynthesis of prostaglandin (PG) and thromboxanes. The inducible enzyme cyclooxygenase-2 (COX-2) is the major isoform found in normal brain, where it is constitutively expressed in neurons and is further up-regulated during several pathological events, including seizures and ischaemia. Emerging evidence suggests that COX-2 is implicated in excitotoxic neurodegenerative phenomena. It remains unclear whether PGs or other products associated to COX activity take part in these processes. Indeed, it has been suggested that reactive oxygen species, produced by COX, could mediate neuronal damage. In order to obtain direct evidence of free radical production during COX activity, we undertook an in vivo microdialysis study to monitor the levels of PGE(2) and 8-epi-PGF(2alpha) following infusion of N-methyl-D-aspartate (NMDA). A 20-min application of 1 mm NMDA caused an immediate, MK-801-sensitive increase of both PGE(2) and 8-epi-PGF(2alpha) basal levels. These effects were largely prevented by the specific cytosolic phospholipase A(2) (cPLA(2) ) inhibitor arachidonyl trifluoromethyl ketone (ATK), by non- selective COX inhibitors indomethacin and flurbiprofen or by the COX-2 selective inhibitor NS-398, suggesting that the NMDA-evoked prostaglandin synthesis and free radical-mediated lipid peroxidation are largely dependent on COX-2 activity. As several lines of evidence suggest that prostaglandins may be potentially neuroprotective, our findings support the hypothesis that free radicals, rather than prostaglandins, mediate the toxicity associated to COX-2 activity.

  3. Aspartate inhibits Staphylococcus aureus biofilm formation.

    PubMed

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp.

  4. Aspartate inhibits Staphylococcus aureus biofilm formation.

    PubMed

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp. PMID:25687923

  5. Savannah River Site prioritization of transition activities

    SciTech Connect

    Finley, R.H.

    1993-11-01

    Effective management of SRS conversion from primarily a production facility to other missions (or Decontamination and Decommissioning (D&D)) requires a systematic and consistent method of prioritizing the transition activities. This report discusses the design of a prioritizing method developed to achieve systematic and consistent methods of prioritizing these activities.

  6. DOE site performance assessment activities. Radioactive Waste Technical Support Program

    SciTech Connect

    Not Available

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

  7. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  8. Mutations of fumarase that distinguish between the active site and a nearby dicarboxylic acid binding site.

    PubMed Central

    Weaver, T.; Lees, M.; Banaszak, L.

    1997-01-01

    Two mutant forms of fumarase C from E. coli have been made using PCR and recombinant DNA. The recombinant form of the protein included a histidine arm on the C-terminal facilitating purification. Based on earlier studies, two different carboxylic acid binding sites, labeled A- and B-, were observed in crystal structures of the wild type and inhibited forms of the enzyme. A histidine at each of the sites was mutated to an asparagine. H188N at the A-site resulted in a large decrease in specific activity, while the H129N mutation at the B-site had essentially no effect. From the results, we conclude that the A-site is indeed the active site, and a dual role for H188 as a potential catalytic base is proposed. Crystal structures of the two mutant proteins produced some unexpected results. Both mutations reduced the affinity for the carboxylic acids at their respective sites. The H129N mutant should be particularly useful in future kinetic studies because it sterically blocks the B-site with the carboxyamide of asparagine assuming the position of the ligand's carboxylate. In the H188N mutation at the active site, the new asparagine side chain still interacts with an active site water that appears to have moved slightly as a result of the mutation. PMID:9098893

  9. Accommodation of GDP-Linked Sugars in the Active Site of GDP-Perosamine Synthase

    SciTech Connect

    Cook, Paul D.; Carney, Amanda E.; Holden, Hazel M.

    2009-01-12

    Perosamine (4-amino-4,6-dideoxy-d-mannose), or its N-acetylated form, is one of several dideoxy sugars found in the O-antigens of such infamous Gram-negative bacteria as Vibrio cholerae O1 and Escherichia coli O157:H7. It is added to the bacterial O-antigen via a nucleotide-linked version, namely GDP-perosamine. Three enzymes are required for the biosynthesis of GDP-perosamine starting from mannose 1-phosphate. The focus of this investigation is GDP-perosamine synthase from Caulobacter crescentus, which catalyzes the final step in GDP-perosamine synthesis, the conversion of GDP-4-keto-6-deoxymannose to GDP-perosamine. The enzyme is PLP-dependent and belongs to the aspartate aminotransferase superfamily. It contains the typically conserved active site lysine residue, which forms a Schiff base with the PLP cofactor. Two crystal structures were determined for this investigation: a site-directed mutant protein (K186A) complexed with GDP-perosamine and the wild-type enzyme complexed with an unnatural ligand, GDP-3-deoxyperosamine. These structures, determined to 1.6 and 1.7 {angstrom} resolution, respectively, revealed the manner in which products, and presumably substrates, are accommodated within the active site pocket of GDP-perosamine synthase. Additional kinetic analyses using both the natural and unnatural substrates revealed that the K{sub m} for the unnatural substrate was unperturbed relative to that of the natural substrate, but the k{sub cat} was lowered by a factor of approximately 200. Taken together, these studies shed light on why GDP-perosamine synthase functions as an aminotransferase whereas another very similar PLP-dependent enzyme, GDP-4-keto-6-deoxy-d-mannose 3-dehydratase or ColD, catalyzes a dehydration reaction using the same substrate.

  10. Pulse of nitric oxide release in response to activation of N-methyl-D-aspartate receptors in the rat striatum: rapid desensitization, inhibition by receptor antagonists, and potentiation by glycine.

    PubMed

    Crespi, Francesco; Rossetti, Zvani L

    2004-05-01

    Increased activity of glutamate N-methyl-d-aspartate (NMDA) receptors is the dominant mechanism by which nitric oxide (NO.) is generated. By using a selective direct-current amperometry method, we characterized real time NO* release in vivo in response to chemical stimulation of NMDA receptors in the rat striatum. The application of NMDA caused the appearance of a sharp and transient oxidation signal. Concentration-response studies (10-500 microM) indicated an EC(50) of 48 microM. The NMDA-induced amperometric signal was suppressed by focal application of the nitric-oxide synthase inhibitor L-nitro-arginine methyl ester (L-NAME, 100 microM) or D-(-)-2-amino-5-phosphonopentanoic acid (AP-5, 100 microM) or by systemic injection of dizocilpine (1 mg/kg i.p.), drugs that, when given alone, had no effect on baseline oxidation current. Repeated injections of NMDA at short intervals (approximately 80 s) resulted in a progressive reduction of the amperometric signal with a decay half-life of 1.36 min. Sixty min after the last NMDA application the amperometric response was restored to initial levels. Finally, the coapplication of glycine (50 or 100 microM), which, when given alone had no effect, potentiated the NMDA-induced response. Thus, NMDA receptor-mediated activation of striatal NO* system shuts off quickly and undergoes rapid desensitization, suggesting a feedback inhibition of NMDA receptor function. To the extent of NO* release can represent a correlate of NMDA receptor activity, its amperometric detection could be useful to assess in vivo the state of excitatory transmission under physiological, pharmacological, or pathological conditions.

  11. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  12. New aspartic proteinase of Ulysses retrotransposon from Drosophila virilis.

    PubMed

    Volkov, D A; Dergousova, N I; Rumsh, L D

    2004-06-01

    This work is focused on the investigation of a proteinase of Ulysses mobile genetic element from Drosophila virilis. The primary structure of this proteinase is suggested based on comparative analysis of amino acid sequences of aspartic proteinases from retroviruses and retrotransposons. The corresponding cDNA fragment has been cloned and expressed in E. coli. The protein accumulated in inclusion bodies. The recombinant protein (12 kD) was subjected to refolding and purified by affinity chromatography on pepstatin-agarose. Proteolytic activity of the protein was determined using oligopeptide substrates melittin and insulin B-chain. It was found that the maximum of the proteolytic activity is displayed at pH 5.5 as for the majority of aspartic proteinases. We observed that hydrolysis of B-chain of insulin was totally inhibited by pepstatin A in the micromolar concentration range. The molecular weight of the monomer of the Ulysses proteinase was determined by MALDI-TOF mass-spectrometry.

  13. Lithium stimulates glutamate "release" and inositol 1,4,5-trisphosphate accumulation via activation of the N-methyl-D-aspartate receptor in monkey and mouse cerebral cortex slices.

    PubMed Central

    Dixon, J F; Los, G V; Hokin, L E

    1994-01-01

    Beginning at therapeutic concentrations (1-1.5 mM), the anti-manic-depressive drug lithium stimulated the release of glutamate, a major excitatory neurotransmitter in the brain, in monkey cerebral cortex slices in a time- and concentration-dependent manner, and this was associated with increased inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] accumulation. (+/-)-3-(2-Carboxypiperazin-4-yl)propyl-1-phosphoric acid (CPP), dizocilpine (MK-801), ketamine, and Mg(2+)-antagonists to the N-methyl-D-aspartate (NMDA) receptor/channel complex selectively inhibited lithium-stimulated Ins(1,4,5)P3 accumulation. Antagonists to cholinergic-muscarinic, alpha 1-adrenergic, 5-hydroxytryptamine2 (serotoninergic), and H1 histaminergic receptors had no effect. Antagonists to non-NMDA glutamate receptors had no effect on lithium-stimulated Ins(1,4,5)P3 accumulation. Possible reasons for this are discussed. Similar results were obtained in mouse cerebral cortex slices. Carbetapentane, which inhibits glutamate release, inhibited lithium-induced Ins(1,4,5)P3 accumulation in this model. It is concluded that the primary effect of lithium in the cerebral cortex slice model is stimulation of glutamate release, which, presumably via activation of the NMDA receptor, leads to Ca2+ entry. Ins(1,4,5)P3 accumulation increases due to the presumed increased influx of intracellular Ca2+, which activates phospholipase C. These effects may have relevance to the therapeutic action of lithium in the treatment of manic depression as well as its toxic effects, especially at lithium blood levels above 1.5 mM. Images PMID:8078888

  14. Elaboration of a fragment library hit produces potent and selective aspartate semialdehyde dehydrogenase inhibitors.

    PubMed

    Thangavelu, Bharani; Bhansali, Pravin; Viola, Ronald E

    2015-10-15

    Aspartate-β-semialdehyde dehydrogenase (ASADH) lies at the first branch point in the aspartate metabolic pathway which leads to the biosynthesis of several essential amino acids and some important metabolites. This pathway is crucial for many metabolic processes in plants and microbes like bacteria and fungi, but is absent in mammals. Therefore, the key microbial enzymes involved in this pathway are attractive potential targets for development of new antibiotics with novel modes of action. The ASADH enzyme family shares the same substrate binding and active site catalytic groups; however, the enzymes from representative bacterial and fungal species show different inhibition patterns when previously screened against low molecular weight inhibitors identified from fragment library screening. In the present study several approaches, including fragment based drug discovery (FBDD), inhibitor docking, kinetic, and structure-activity relationship (SAR) studies have been used to guide ASADH inhibitor development. Elaboration of a core structure identified by FBDD has led to the synthesis of low micromolar inhibitors of the target enzyme, with high selectivity introduced between the Gram-negative and Gram-positive orthologs of ASADH. This new set of structures open a novel direction for the development of inhibitors against this validated drug-target enzyme.

  15. Elaboration of a fragment library hit produces potent and selective aspartate semialdehyde dehydrogenase inhibitors.

    PubMed

    Thangavelu, Bharani; Bhansali, Pravin; Viola, Ronald E

    2015-10-15

    Aspartate-β-semialdehyde dehydrogenase (ASADH) lies at the first branch point in the aspartate metabolic pathway which leads to the biosynthesis of several essential amino acids and some important metabolites. This pathway is crucial for many metabolic processes in plants and microbes like bacteria and fungi, but is absent in mammals. Therefore, the key microbial enzymes involved in this pathway are attractive potential targets for development of new antibiotics with novel modes of action. The ASADH enzyme family shares the same substrate binding and active site catalytic groups; however, the enzymes from representative bacterial and fungal species show different inhibition patterns when previously screened against low molecular weight inhibitors identified from fragment library screening. In the present study several approaches, including fragment based drug discovery (FBDD), inhibitor docking, kinetic, and structure-activity relationship (SAR) studies have been used to guide ASADH inhibitor development. Elaboration of a core structure identified by FBDD has led to the synthesis of low micromolar inhibitors of the target enzyme, with high selectivity introduced between the Gram-negative and Gram-positive orthologs of ASADH. This new set of structures open a novel direction for the development of inhibitors against this validated drug-target enzyme. PMID:26404410

  16. Effect of acidic amino acids engineered into the active site cleft of Thermopolyspora flexuosa GH11 xylanase.

    PubMed

    Li, He; Turunen, Ossi

    2015-01-01

    Thermopolyspora flexuosa GH11 xylanase (XYN11A) shows optimal activity at pH 6-7 and 75-80 °C. We studied how mutation to aspartic acid (N46D and V48D) in the vicinity of the catalytic acid/base affects the pH activity of highly thermophilic GH11 xylanase. Both mutations shifted the pH activity profile toward acidic pH. In general, the Km values were lower at pH 4-5 than at pH 6, and in line with this, the rate of hydrolysis of xylotetraose was slightly faster at pH 4 than at pH 6. The N46D mutation and also lower pH in XYN11A increased the hydrolysis of xylotriose. The Km value increased remarkably (from 2.5 to 11.6 mg/mL) because of V48D, which indicates the weakening of binding affinity of the substrate to the active site. Xylotetraose functioned well as a substrate for other enzymes, but with lowered reaction rate for V48D. Both N46D and V48D increased the enzyme inactivation by ionic liquid [emim]OAc. In conclusion, the pH activity profile could be shifted to acidic pH due to an effect from two different directions, but the tightly packed GH11 active site can cause steric problems for the mutations.

  17. Identification and metabolic role of the mitochondrial aspartate-glutamate transporter in Saccharomyces cerevisiae.

    PubMed

    Cavero, S; Vozza, A; del Arco, A; Palmieri, L; Villa, A; Blanco, E; Runswick, M J; Walker, J E; Cerdán, S; Palmieri, F; Satrústegui, J

    2003-11-01

    The malate-aspartate NADH shuttle in mammalian cells requires the activity of the mitochondrial aspartate-glutamate carrier (AGC). Recently, we identified in man two AGC isoforms, aralar1 and citrin, which are regulated by calcium on the external face of the inner mitochondrial membrane. We have now identified Agc1p as the yeast counterpart of the human AGC. The corresponding gene was overexpressed in bacteria and yeast mitochondria, and the protein was reconstituted in liposomes where it was identified as an aspartate-glutamate transporter from its transport properties. Furthermore, yeast cells lacking Agc1p were unable to grow on acetate and oleic acid, and had reduced levels of valine, ornithine and citrulline; in contrast they grew on ethanol. Expression of the human AGC isoforms can replace the function of Agc1p. However, unlike its human orthologues, yeast Agc1p catalyses both aspartate-glutamate exchange and substrate uniport activities. We conclude that Agc1p performs two metabolic roles in Saccharomyces cerevisiae. On the one hand, it functions as a uniporter to supply the mitochondria with glutamate for nitrogen metabolism and ornithine synthesis. On the other, the Agc1p, as an aspartate-glutamate exchanger, plays a role within the malate-aspartate NADH shuttle which is critical for the growth of yeast on acetate and fatty acids as carbon sources. These results provide strong evidence of the existence of a malate-aspartate NADH shuttle in yeast. PMID:14622413

  18. Concordance of collagen-based radiocarbon and aspartic-acid racemization ages.

    PubMed

    Bada, J L; Schroeder, R A; Protsch, R; Berger, R

    1974-03-01

    By determining the extent of racemization of aspartic acid in a well-dated bone, it is possible to calculate the in situ first-order rate constant for the interconversion of the L and D enantiomers of aspartic acid. Collagen-based radiocarbon-dated bones are shown to be suitable samples for use in "calibrating" the racemization reaction. Once the aspartic-acid racemization reaction has been "calibrated" for a site, the reaction can be used to date other bones from the deposit. Ages deduced by this method are in good agreement with radiocarbon ages. These results provide evidence that the aspartic-acid racemization reaction is an important chronological tool for dating bones either too old or too small for radiocarbon dating. As an example of the potential application of the technique for dating fossil man, a piece of Rhodesian Man from Broken Hill, Zambia, was analyzed and tentatively assigned an age of about 110,000 years.

  19. Contribution of active-site glutamine to rate enhancement in ubiquitin carboxy terminal hydrolases

    PubMed Central

    Boudreaux, David; Chaney, Joseph; Maiti, Tushar K.; Das, Chittaranjan

    2012-01-01

    Ubiquitin carboxy terminal hydrolases (UCHs) are cysteine proteases featuring a classical cysteine-histidine-aspartate catalytic triad, also a highly conserved glutamine thought to be a part of the oxyanion hole. However, the contribution of this side chain to the catalysis by UCH enzymes is not known. Herein, we demonstrate that the glutamine side chain contributes to rate enhancement in UCHL1, UCHL3 and UCHL5. Mutation of the glutamine to alanine in these enzymes impairs the catalytic efficiency mainly due to a 16 to 30-fold reduction in kcat, which is consistent with a loss of approximately 2 kcal/mol in transition-state stabilization. However, the contribution to transition-state stabilization observed here is rather modest for the side chain’s role in oxyanion stabilization. Interestingly, we discovered that the carbonyl oxygen of this side chain is engaged in a C—H•••O hydrogen-bonding contact with the CεH group of the catalytic histidine. Upon further analysis, we found that this interaction is a common active-site structural feature in most cysteine proteases, including papain, belonging to families with the QCH(N/D) type of active-site configuration. It is possible that removal of the glutamine side chain might have abolished the C—H•••O interaction, which typically accounts for 2 kcal/mol of stabilization, leading to the effect on catalysis observed here. Additional studies performed on UCHL3 by mutating the glutamine to glutamate (strong C—H•••O acceptor but oxyanion destabilizer) and to lysine (strong oxyanion stabilizer but lacking C—H•••O hydrogen-bonding property) suggest that the C—H•••O hydrogen bond could contribute to catalysis. PMID:22284438

  20. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    SciTech Connect

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-03-20

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme.

  1. A Deficiency in Aspartate Biosynthesis in Lactococcus lactis subsp. lactis C2 Causes Slow Milk Coagulation†

    PubMed Central

    Wang, Hua; Yu, Weizhu; Coolbear, Tim; O’Sullivan, Dan; McKay, Larry L.

    1998-01-01

    A mutant of fast milk-coagulating (Fmc+) Lactococcus lactis subsp. lactis C2, designated L. lactis KB4, was identified. Although possessing the known components essential for utilizing casein as a nitrogen source, which include functional proteinase (PrtP) activity and oligopeptide, di- and tripeptide, and amino acid transport systems, KB4 exhibited a slow milk coagulation (Fmc−) phenotype. When the amino acid requirements of L. lactis C2 were compared with those of KB4 by use of a chemically defined medium, it was found that KB4 was unable to grow in the absence of aspartic acid. This aspartic acid requirement could also be met by aspartate-containing peptides. The addition of aspartic acid to milk restored the Fmc+ phenotype of KB4. KB4 was found to be defective in pyruvate carboxylase and thus was deficient in the ability to form oxaloacetate and hence aspartic acid from pyruvate and carbon dioxide. The results suggest that when lactococci are propagated in milk, aspartate derived from casein is unable to meet fully the nutritional demands of the lactococci, and they become dependent upon aspartate biosynthesis. PMID:9572935

  2. A novel approach to predict active sites of enzyme molecules.

    PubMed

    Chou, Kuo-Chen; Cai, Yu-dong

    2004-04-01

    Enzymes are critical in many cellular signaling cascades. With many enzyme structures being solved, there is an increasing need to develop an automated method for identifying their active sites. However, given the atomic coordinates of an enzyme molecule, how can we predict its active site? This is a vitally important problem because the core of an enzyme molecule is its active site from the viewpoints of both pure scientific research and industrial application. In this article, a topological entity was introduced to characterize the enzymatic active site. Based on such a concept, the covariant discriminant algorithm was formulated for identifying the active site. As a paradigm, the serine hydrolase family was demonstrated. The overall success rate by jackknife test for a data set of 88 enzyme molecules was 99.92%, and that for a data set of 50 independent enzyme molecules was 99.91%. Meanwhile, it was shown through an example that the prediction algorithm can also be used to find any typographic error of a PDB file in annotating the constituent amino acids of catalytic triad and to suggest a possible correction. The very high success rates are due to the introduction of a covariance matrix in the prediction algorithm that makes allowance for taking into account the coupling effects among the key constituent atoms of active site. It is anticipated that the novel approach is quite promising and may become a useful high throughput tool in enzymology, proteomics, and structural bioinformatics. PMID:14997541

  3. Growth exponents in surface models with non-active sites

    NASA Astrophysics Data System (ADS)

    Santos, M.; Figueiredo, W.; Aarão Reis, F. D. A.

    2006-11-01

    In this work, we studied the role played by the inactive sites present on the substrate of a growing surface. In our model, one particle sticks at the surface if the site where it falls is an active site. However, we allow the deposited particle to diffuse along the surface in accordance with some mechanism previously defined. Using Monte Carlo simulations, and some analytical results, we have investigated the model in (1+1) and (2+1) dimensions considering different relaxation mechanisms. We show that the consideration of non-active sites is a crucial point in the model. In fact, we have seen that the saturation regime is not observed for any value of the density of inactive sites. Besides, the growth exponent β turns to be one, at long times, whatever the mechanism of diffusion we consider in one and two dimensions.

  4. Properties of single-step mutants of Syrian hamster cell lines resistant to N-(phosphonacetyl)-L-aspartate.

    PubMed Central

    Zieg, J; Clayton, C E; Ardeshir, F; Giulotto, E; Swyryd, E A; Stark, G R

    1983-01-01

    Eleven independent lines of Syrian hamster cells were selected by using very low levels of N-(phosphonacetyl)-L-aspartate (PALA), an inhibitor of aspartate transcarbamylase. The protocol employed insured that each resistant cell arose during one of the last divisions before selection was applied. Cells of each mutant line contained an amplification of the structural gene for CAD, a trifunctional protein which includes aspartate transcarbamylase and two other enzymes of UMP biosynthesis. Strikingly, despite the minimal selection employed, the degree of amplification of the CAD gene was 6 to 10 times the normal diploid number in all 11 cases. In situ hybridization indicated that the amplified CAD genes were almost always present at a single chromosomal site in each line. Therefore, one of the two alleles was amplified 11- to 19-fold. The rates at which cells became resistant to PALA, determined by fluctuation analysis, were 100 times less dependent on drug concentration than were the frequencies of resistant cells in steady-state populations. The relatively shallow dependence of this rate upon PALA concentration is consistent with our independent observation that most events gave rise to a similar degree of amplification. In six of six cell lines examined, the levels of CAD mRNA and aspartate transcarbamylase activity were elevated two- to fourfold. These lines were resistant to PALA concentrations 20- to 80-fold higher than the ones used for selection. The organization of amplified DNA was examined by hybridizing Southern blots with cloned DNA fragments containing amplified sequences, previously isolated from two cell lines resistant to high levels of PALA. A contiguous region of DNA approximately 44 kilobases long which included the CAD gene was amplified in five of five single-step mutants examined. Outside this region, these mutants shared amplified sequences with only one of the two highly resistant lines. Images PMID:6656764

  5. Changes in the hydrogen exchange kinetics of Escherichia coli aspartate transcarbamylase produced by effector binding and subunit association.

    PubMed Central

    Lennick, M; Allewell, N M

    1981-01-01

    Large changes in solvent accessibility to aspartate transcarbamylase (aspartate carbamoyltransferase, carbamoylphosphate:L-aspartate carbamoyltransferase, EC 2.1.3.2), as monitored by tritium exchange, result from binding of substrates and substrate analogs to the catalytic subunit (c3), binding of nucleoside triphosphates to the regulatory subunit (r2), and subunit association. Rates of exchange are reduced in each of these cases, although to different degrees. Succinate, in the presence of carbamoyl phosphate, retards exchange from c3 no more than carbamoyl phosphate alone, and less than N-phosphonacetyl-L-aspartate, a bisubstrate analog. Larger changes in rates of exchange from r2 are produced by CTP than by ATP; however, both CTP and ATP accelerate exchange from c3 to the same extent. The changes in the kinetics of exchange that result from binding of both substrate analogs and nucleoside triphosphates to the native enzyme (c6r6) are much smaller. Carbamoyl phosphate, with or without succinate, retards exchange only slightly, while the bisubstrate analog has a somewhat larger effect. Experiments with reconstituted enzyme, in which only c3 is tritium labeled, indicate that changes in solvent accessibility produced by active site ligands are largely confined to c3. Neither CTP nor ATP alters the overall rate of exchange from c6r6 significantly. The possibility of opposing changes in the two types of subunits was ruled out in experiments in which only one subunit was labeled. The nonadditive effects of ligation and subunit association imply a set of responsive protons common to both processes and suggest that they are linked not only thermodynamically and functionally but also dynamically. PMID:7031660

  6. A small ribozyme with dual-site kinase activity

    PubMed Central

    Biondi, Elisa; Maxwell, Adam W.R.; Burke, Donald H.

    2012-01-01

    Phosphoryl transfer onto backbone hydroxyls is a recognized catalytic activity of nucleic acids. We find that kinase ribozyme K28 possesses an unusually complex active site that promotes (thio)phosphorylation of two residues widely separated in primary sequence. After allowing the ribozyme to radiolabel itself by phosphoryl transfer from [γ-32P]GTP, DNAzyme-mediated cleavage yielded two radiolabeled cleavage fragments, indicating phosphorylation sites within each of the two cleavage fragments. These sites were mapped by alkaline digestion and primer extension pausing. Enzymatic digestion and mutational analysis identified nucleotides important for activity and established the active structure as being a constrained pseudoknot with unusual connectivity that may juxtapose the two reactive sites. Nuclease sensitivities for nucleotides near the pseudoknot core were altered in the presence of GTPγS, indicating donor-induced folding. The 5′ target site was more strongly favored in full-length ribozyme K28 (128 nt) than in truncated RNAs (58 nt). Electrophoretic mobilities of self-thiophosphorylated products on organomercurial gels are distinct from the 5′ mono-thiophosphorylated product produced by reaction with polynucleotide kinase, potentially indicating simultaneous labeling of both sites within individual RNA strands. Our evidence supports a single, compact structure with local dynamics, rather than global rearrangement, as being responsible for dual-site phosphorylation. PMID:22618879

  7. Blockade by ifenprodil of high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones: comparison with N-methyl-D-aspartate receptor antagonist actions.

    PubMed Central

    Church, J; Fletcher, E J; Baxter, K; MacDonald, J F

    1994-01-01

    1. The block by ifenprodil of voltage-activated Ca2+ channels was investigated in intracellular free calcium concentration ([Ca2+]i) evoked by 50 mM K+ (high-[K+]o) in Fura-2-loaded rat hippocampal pyramidal neurones in culture and on currents carried by Ba2+ ions (IBa) through Ca2+ channels in mouse cultured hippocampal neurones under whole-cell voltage-clamp. The effects of ifenprodil on voltage-activated Ca2+ channels were compared with its antagonist actions on N-methyl-D-aspartate- (NMDA) evoked responses in the same neuronal preparations. 2. Rises in [Ca2+]i evoked by transient exposure to high-[K+]o in our preparation of rat cultured hippocampal pyramidal neurones are mediated predominantly by Ca2+ flux through nifedipine-sensitive Ca2+ channels, with smaller contributions from nifedipine-resistant, omega-conotoxin GVIA-sensitive Ca2+ channels and Ca2+ channels sensitive to crude funnel-web spider venom (Church et al., 1994). Ifenprodil (0.1-200 microM) reversibly attenuated high-[K+]o-evoked rises in [Ca2+]i with an IC50 value of 17 +/- 3 microM, compared with an IC50 value of 0.7 +/- 0.1 microM for the reduction of rises in [Ca2+]i evoked by 20 microM NMDA. Tested in the presence of nifedipine 10 microM, ifenprodil (1-50 microM) produced a concentration-dependent reduction of the dihydropyridine-resistant high-[K+]o-evoked rise in [Ca2+]i with an IC50 value of 13 +/- 4 microM. The results suggest that ifenprodil blocks Ca2+ flux through multiple subtypes of high voltage-activated Ca2+ channels. 3. Application of the polyamine, spermine (0.25-5 mM), produced a concentration-dependent reduction of rises in [Ca2+]i evoked by high-[K+]o.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7834201

  8. Novel human D-amino acid oxidase inhibitors stabilize an active-site lid-open conformation

    PubMed Central

    Terry-Lorenzo, Ryan T.; Chun, Lawrence E.; Brown, Scott P.; Heffernan, Michele L. R.; Fang, Q. Kevin; Orsini, Michael A.; Pollegioni, Loredano; Hardy, Larry W.; Spear, Kerry L.; Large, Thomas H.

    2014-01-01

    The NMDAR (N-methyl-D-aspartate receptor) is a central regulator of synaptic plasticity and learning and memory. hDAAO (human D-amino acid oxidase) indirectly reduces NMDAR activity by degrading the NMDAR co-agonist D-serine. Since NMDAR hypofunction is thought to be a foundational defect in schizophrenia, hDAAO inhibitors have potential as treatments for schizophrenia and other nervous system disorders. Here, we sought to identify novel chemicals that inhibit hDAAO activity. We used computational tools to design a focused, purchasable library of compounds. After screening this library for hDAAO inhibition, we identified the structurally novel compound, ‘compound 2’ [3-(7-hydroxy-2-oxo-4-phenyl-2H-chromen-6-yl)propanoic acid], which displayed low nM hDAAO inhibitory potency (Ki=7 nM). Although the library was expected to enrich for compounds that were competitive for both D-serine and FAD, compound 2 actually was FAD uncompetitive, much like canonical hDAAO inhibitors such as benzoic acid. Compound 2 and an analog were independently co-crystalized with hDAAO. These compounds stabilized a novel conformation of hDAAO in which the active-site lid was in an open position. These results confirm previous hypotheses regarding active-site lid flexibility of mammalian D-amino acid oxidases and could assist in the design of the next generation of hDAAO inhibitors. PMID:25001371

  9. Intersubunit communication in the dihydroorotase-aspartate transcarbamoylase complex of Aquifex aeolicus: Intersubunit Communication in a Pyrimidine Biosynthetic Complex

    SciTech Connect

    Evans, Hedeel Guy; Fernando, Roshini; Vaishnav, Asmita; Kotichukkala, Mahalakshmi; Heyl, Deborah; Martin, Philip D.; Hachem, Fatme; Brunzelle, Joseph S.; Edwards, Brian F. P.; Evans, David R.

    2013-12-19

    Aspartate transcarbamoylase and dihydroorotase, enzymes that catalyze the second and third step in de novo pyrimidine biosynthesis, are associated in dodecameric complexes in Aquifex aeolicus and many other organisms. The architecture of the dodecamer is ideally suited to channel the intermediate, carbamoyl aspartate from its site of synthesis on the ATC subunit to the active site of DHO, which catalyzes the next step in the pathway, because both reactions occur within a large, internal solvent-filled cavity. Channeling usually requires that the reactions of the enzymes are coordinated so that the rate of synthesis of the intermediate matches its rate of utilization. The linkage between the ATC and DHO subunits was demonstrated by showing that the binding of the bisubstrate analog, N-phosphonacetyl-L-aspartate to the ATC subunit inhibits the activity of the distal DHO subunit. Structural studies identified a DHO loop, loop A, interdigitating between the ATC domains that would be expected to interfere with domain closure essential for ATC catalysis. Mutation of the DHO residues in loop A that penetrate deeply between the two ATC domains inhibits the ATC activity by interfering with the normal reciprocal linkage between the two enzymes. Moreover, a synthetic peptide that mimics that part of the DHO loop that binds between the two ATC domains was found to be an allosteric or noncompletive ATC inhibitor (Ki = 22 μM). A model is proposed suggesting that loop A is an important component of the functional linkage between the enzymes.

  10. Dinuclear complexes of copper and zinc with m-xylene/cyclohexane-linked bis-aspartic acids: synthesis, characterization, dioxygen activation, and catalytic oxidation of nitrobenzene in pure aqueous solution.

    PubMed

    Zhu, Shourong; Qiu, Zhixiang; Ni, Tianjun; Zhao, Xiujuan; Yan, Shikai; Xing, Feifei; Zhao, Yongmei; Bai, Yueling; Li, Mingxing

    2013-08-14

    Two new m-xylene/cyclohexane-linked bis-aspartic acid ligands, L(b) and L(c), were synthesized via Michael addition in basic aqueous solution. Their structures were characterized by elemental analysis, NMR and MS spectrometry. Both ligands react with Cu(II) and Zn(II) to form dinuclear complexes, with M2L(OH)(-) the major species in neutral/weak basic aqueous solution. To quantify the relative interaction strength between a Lewis acid and base, a new parameter σ = log K/14 was proposed which compares the stability constant with the binding constant between H(+) and OH(-). The dinuclear copper complexes (L(b)-2Cu and L(c)-2Cu) react with H2O2 in aqueous solution. The reaction in 0.020 M phosphate buffer at pH 7.5 is first-order for [L(c)-2Cu], but second-order for [L(b)-2Cu]. The oxidation products are oxygenated and/or dehydrogenated species. Radical trapping tests indicate that both complexes slightly scavenge the OH˙ radical, but generate the H˙ radical. L(c)-2Cu generates the H˙ radical much more effectively than that of L(b)-2Cu when reacted with H2O2. Both complexes are excellent catalysts for the oxidation of nitrobenzene in the presence of H2O2 in weakly basic aqueous solution. The oxidation follows the rate-law v = k[complex][nitrobenzene][H2O2]. The k values in pH 8.0 phosphate buffer at 25 °C are 211.2 ± 0.3 and 607.9 ± 1.7 mol(-2) L(2) s(-1) for L(b)-2Cu and L(c)-2Cu, respectively. The Arrhenius activation energies are 69.4 ± 2.2 and 70.0 ± 4.3 kJ mol(-1) for L(b)-2Cu and L(c)-2Cu, respectively, while the Arrhenius pre-exponential factors are 2.62 × 10(14) and 1.06 × 10(15), respectively. The larger pre-exponential factor makes L(c)-2Cu more catalytically active than L(b)-2Cu. These complexes are some of the most effective oxidation catalysts known for the oxidation of nitrobenzene.

  11. Architecture and active site of particulate methane monooxygenase

    PubMed Central

    Culpepper, Megen A.; Rosenzweig, Amy C.

    2012-01-01

    Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria, organisms that live on methane gas as their sole carbon source. Understanding pMMO function has important implications for bioremediation applications and for the development of new, environmentally friendly catalysts for the direct conversion of methane to methanol. Crystal structures of pMMOs from three different methanotrophs reveal a trimeric architecture, consisting of three copies each of the pmoB, pmoA, and pmoC subunits. There are three distinct metal centers in each protomer of the trimer, mononuclear and dinuclear copper sites in the periplasmic regions of pmoB and a mononuclear site within the membrane that can be occupied by copper or zinc. Various models for the pMMO active site have been proposed within these structural constraints, including dicopper, tricopper, and diiron centers. Biochemical and spectroscopic data on pMMO and recombinant soluble fragments, denoted spmoB proteins, indicate that the active site involves copper and is located at the site of the dicopper center in the pmoB subunit. Initial spectroscopic evidence for O2 binding at this site has been obtained. Despite these findings, questions remain about the active site identity and nuclearity and will be the focus of future studies. PMID:22725967

  12. Aspartic proteinases in the digestive tract of marine decapod crustaceans.

    PubMed

    Navarrete del Toro, María de Los Angeles; García-Carreño, Fernando; López, Manuel Díaz; Celis-Guerrero, Laura; Saborowski, Reinhard

    2006-08-01

    Decapod crustaceans synthesize highly active proteolytic enzymes in the midgut gland and release at least a part of them into the stomach where they facilitate the first step in peptide hydrolysis. The most common proteinases in the gastric fluid characterized so far are serine proteinases, that is, trypsin and chymotrypsin. These enzymes show highest activities at neutral or slightly alkaline conditions. The presence of acid proteinases, as they prevail in vertebrates, has been discussed contradictorily yet in invertebrates. In this study, we show that acid aspartic proteinases appear in the gastric fluid of several decapods. Lobsters Homarus gammarus showed the highest activity with a maximum at pH 3. These activities were almost entirely inhibited by pepstatin A, which indicates a high share of aspartic proteinases. In other species (Panulirus interruptus, Cancer pagurus, Callinectes arcuatus and Callinectes bellicosus), proteolytic activities were present at acid conditions but were distinctly lower than in H. gammarus. Zymograms at pH 3 showed in each of the studied species at least one, but mostly two-four bands of activity. The apparent molecular weight of the enzymes ranged from 17.8 to 38.6 kDa. Two distinct bands were identified which were inhibited by pepstatin A. Acid aspartic proteinases may play an important role in the process of extracellular digestion in decapod crustaceans. Activities were significantly higher in clawed lobster than in spiny lobster and three species of brachyurans. Therefore, it may be suggested that the expression of acid proteinases is favored in certain groups and reduced in others. PMID:16788916

  13. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site.

    PubMed

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-04-20

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  14. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  15. Age-Related Changes in D-Aspartate Oxidase Promoter Methylation Control Extracellular D-Aspartate Levels and Prevent Precocious Cell Death during Brain Aging.

    PubMed

    Punzo, Daniela; Errico, Francesco; Cristino, Luigia; Sacchi, Silvia; Keller, Simona; Belardo, Carmela; Luongo, Livio; Nuzzo, Tommaso; Imperatore, Roberta; Florio, Ermanno; De Novellis, Vito; Affinito, Ornella; Migliarini, Sara; Maddaloni, Giacomo; Sisalli, Maria Josè; Pasqualetti, Massimo; Pollegioni, Loredano; Maione, Sabatino; Chiariotti, Lorenzo; Usiello, Alessandro

    2016-03-01

    The endogenous NMDA receptor (NMDAR) agonist D-aspartate occurs transiently in the mammalian brain because it is abundant during embryonic and perinatal phases before drastically decreasing during adulthood. It is well established that postnatal reduction of cerebral D-aspartate levels is due to the concomitant onset of D-aspartate oxidase (DDO) activity, a flavoenzyme that selectively degrades bicarboxylic D-amino acids. In the present work, we show that d-aspartate content in the mouse brain drastically decreases after birth, whereas Ddo mRNA levels concomitantly increase. Interestingly, postnatal Ddo gene expression is paralleled by progressive demethylation within its putative promoter region. Consistent with an epigenetic control on Ddo expression, treatment with the DNA-demethylating agent, azacitidine, causes increased mRNA levels in embryonic cortical neurons. To indirectly evaluate the effect of a putative persistent Ddo gene hypermethylation in the brain, we used Ddo knock-out mice (Ddo(-/-)), which show constitutively suppressed Ddo expression. In these mice, we found for the first time substantially increased extracellular content of d-aspartate in the brain. In line with detrimental effects produced by NMDAR overstimulation, persistent elevation of D-aspartate levels in Ddo(-/-) brains is associated with appearance of dystrophic microglia, precocious caspase-3 activation, and cell death in cortical pyramidal neurons and dopaminergic neurons of the substantia nigra pars compacta. This evidence, along with the early accumulation of lipufuscin granules in Ddo(-/-) brains, highlights an unexpected importance of Ddo demethylation in preventing neurodegenerative processes produced by nonphysiological extracellular levels of free D-aspartate. PMID:26961959

  16. Aspartate Aminotransferase in Alfalfa Root Nodules 1

    PubMed Central

    Farnham, Mark W.; Griffith, Stephen M.; Miller, Susan S.; Vance, Carroll P.

    1990-01-01

    Aspartate aminotransferase (AAT) plays an important role in nitrogen metabolism in all plants and is particularly important in the assimilation of fixed N derived from the legume-Rhizoblum symbiosis. Two isozymes of AAT (AAT-1 and AAT-2) occur in alfalfa (Medicago sativa L.). Antibodies against alfalfa nodule AAT-2 do not recognize AAT-1, and these antibodies were used to study AAT-2 expression in different tissues and genotypes of alfalfa and also in other legume and nonlegume species. Rocket immunoelectrophoresis indicated that nodules of 38-day-old alfalfa plants contained about eight times more AAT-2 than did nodules of 7-day-old plants, confirming the nodule-enhanced nature of this isozyme. AAT-2 was estimated to make up 16, 15, 5, and 8 milligrams per gram of total soluble protein in mature nodules, roots, stems, and leaves, respectively, of effective N2-fixing alfalfa. The concentration of AAT-2 in nodules of ineffective non-N2-fixing alafalfa genotypes was about 70% less than that of effective nodules. Western blots of soluble protein from nodules of nine legume species indicated that a 40-kilodalton polypeptide that reacts strongly with AAT-2 antibodies is conserved in legumes. Nodule AAT-2 immunoprecipitation data suggested that amide- and ureide-type legumes may differ in expression and regulation of the enzyme. In addition, Western blotting and immunoprecipitations of AAT activity demonstrated that antibodies against alfalfa AAT-2 are highly cross-reactive with AAT enzyme protein in leaves of soybean (Glycine max L.), wheat (Triticum aestivum L.), and maize (Zea mays L.) and in roots of maize, but not with AAT in soybean and wheat roots. Results from this study indicate that AAT-2 is structurally conserved and localized in similar tissues among diverse species. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:16667896

  17. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  18. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  19. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  20. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  1. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  2. Aspartic Peptidases of Human Pathogenic Trypanosomatids: Perspectives and Trends for Chemotherapy

    PubMed Central

    Santos, L.O.; Garcia-Gomes, A.S.; Catanho, M.; Sodré, C.L.; Santos, A.L.S.; Branquinha, M.H.; d’Avila-Levy, C.M.

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas’ disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  3. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  4. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  5. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined. PMID:27243042

  6. Studies on the active site of pig plasma amine oxidase.

    PubMed Central

    Collison, D; Knowles, P F; Mabbs, F E; Rius, F X; Singh, I; Dooley, D M; Cote, C E; McGuirl, M

    1989-01-01

    Amine oxidase from pig plasma (PPAO) has two bound Cu2+ ions and at least one pyrroloquinoline quinone (PQQ) moiety as cofactors. It is shown that recovery of activity by copper-depleted PPAO is linear with respect to added Cu2+ ions. Recovery of e.s.r. and optical spectral characteristics of active-site copper parallel the recovery of catalytic activity. These results are consistent with both Cu2+ ions contributing to catalysis. Further e.s.r. studies indicate that the two copper sites in PPAO, unlike those in amine oxidases from other sources, are chemically distinct. These comparative studies establish that non-identity of the Cu2+ ions in PPAO is not a requirement for amine oxidase activity. It is shown through the use of a new assay procedure that there are two molecules of PQQ bound per molecule of protein in PPAO; only the more reactive of these PQQ moieties is required for activity. PMID:2559715

  7. Computer simulation of the active site of human serum cholinesterase

    SciTech Connect

    Kefang Jiao; Song Li; Zhengzheng Lu

    1996-12-31

    The first 3D-structure of acetylchelinesterase from Torpedo California electric organ (T.AChE) was published by JL. Sussman in 1991. We have simulated 3D-structure of human serum cholinesterase (H.BuChE) and the active site of H.BuChE. It is discovered by experiment that the residue of H.BuChE is still active site after a part of H.BuChE is cut. For example, the part of 21KD + 20KD is active site of H.BuChE. The 20KD as it is. Studies on these peptides by Hemelogy indicate that two active peptides have same negative electrostatic potential maps diagram. These negative electrostatic areas attached by acetyl choline with positive electrostatic potency. We predict that 147...236 peptide of AChE could be active site because it was as 20KD as with negative electrostatic potential maps. We look forward to proving from other ones.

  8. A cautionary tale of structure-guided inhibitor development against an essential enzyme in the aspartate-biosynthetic pathway.

    PubMed

    Pavlovsky, Alexander G; Thangavelu, Bharani; Bhansali, Pravin; Viola, Ronald E

    2014-12-01

    The aspartate pathway is essential for the production of the amino acids required for protein synthesis and of the metabolites needed in bacterial development. This pathway also leads to the production of several classes of quorum-sensing molecules that can trigger virulence in certain microorganisms. The second enzyme in this pathway, aspartate β-semialdehyde dehydrogenase (ASADH), is absolutely required for bacterial survival and has been targeted for the design of selective inhibitors. Fragment-library screening has identified a new set of inhibitors that, while they do not resemble the substrates for this reaction, have been shown to bind at the active site of ASADH. Structure-guided development of these lead compounds has produced moderate inhibitors of the target enzyme, with some selectivity observed between the Gram-negative and Gram-positive orthologs of ASADH. However, many of these inhibitor analogs and derivatives have not yet achieved the expected enhanced affinity. Structural characterization of these enzyme-inhibitor complexes has provided detailed explanations for the barriers that interfere with optimal binding. Despite binding in the same active-site region, significant changes are observed in the orientation of these bound inhibitors that are caused by relatively modest structural alterations. Taken together, these studies present a cautionary tale for issues that can arise in the systematic approach to the modification of lead compounds that are being used to develop potent inhibitors.

  9. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  10. Multi-site Phosphorylation Regulates Bim Stability and Apoptotic Activity

    PubMed Central

    Hübner, Anette; Barrett, Tamera; Flavell, Richard A.; Davis, Roger J.

    2008-01-01

    The pro-apoptotic BH3-only protein Bim is established to be an important mediator of signaling pathways that induce cell death. Multi-site phosphorylation of Bim by several members of the MAP kinase group is implicated as a regulatory mechanism that controls the apoptotic activity of Bim. To test the role of Bim phosphorylation in vivo, we constructed mice with a series of mutant alleles that express phosphorylation-defective Bim proteins. We show that mutation of the phosphorylation site Thr-112 causes decreased binding of Bim to the anti-apoptotic protein Bcl2 and can increase cell survival. In contrast, mutation of the phosphorylation sites Ser-55, Ser-65, and Ser-73 can cause increased apoptosis because of reduced proteasomal degradation of Bim. Together, these data indicate that phosphorylation can regulate Bim by multiple mechanisms and that the phosphorylation of Bim on different sites can contribute to the sensitivity of cellular apoptotic responses. PMID:18498746

  11. Water in the Active Site of Ketosteroid Isomerase

    PubMed Central

    Hanoian, Philip; Hammes-Schiffer, Sharon

    2011-01-01

    Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two waters in the Y16S mutant, one water in the Y16F and FFF mutants, and intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of 1H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less

  12. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.

    PubMed

    Roberts, Kenneth M; Khan, Crystal A; Hinck, Cynthia S; Fitzpatrick, Paul F

    2014-12-16

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein's regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The k(cat)/K(phe) value is down 10⁴ for the mutant enzyme, and the K(m) value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.

  13. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  14. Energy transfer at the active sites of heme proteins

    SciTech Connect

    Dlott, D.D.; Hill, J.R.

    1995-12-31

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes.

  15. Role of arginine 285 in the active site of Rhodotorula gracilis D-amino acid oxidase. A site-directed mutagenesis study.

    PubMed

    Molla, G; Porrini, D; Job, V; Motteran, L; Vegezzi, C; Campaner, S; Pilone, M S; Pollegioni, L

    2000-08-11

    Arg(285), one of the very few conserved residues in the active site of d-amino acid oxidases, has been mutated to lysine, glutamine, aspartate, and alanine in the enzyme from the yeast Rhodotorula gracilis (RgDAAO). The mutated proteins are all catalytically competent. Mutations of Arg(285) result in an increase ( approximately 300-fold) of K(m) for the d-amino acid and in a large decrease ( approximately 500-fold) of turnover number. Stopped-flow analysis shows that the decrease in turnover is paralleled by a similar decrease in the rate of flavin reduction (k(2)), the latter still being the rate-limiting step of the reaction. In agreement with data from the protein crystal structure, loss of the guanidinium group of Arg(285) in the mutated DAAOs drastically reduces the binding of several carboxylic acids (e.g. benzoate). These results highlight the importance of this active site residue in the precise substrate orientation, a main factor in this redox reaction. Furthermore, Arg(285) DAAO mutants have spectral properties similar to those of the wild-type enzyme, but show a low degree of stabilization of the flavin semiquinone and a change in the redox properties of the free enzyme. From this, we can unexpectedly conclude that Arg(285) in the free enzyme form is involved in the stabilization of the negative charge on the N(1)-C(2)=O locus of the isoalloxazine ring of the flavin. We also suggest that the residue undergoes a conformational change in order to bind the carboxylate portion of the substrate/ligand in the complexed enzyme. PMID:10821840

  16. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    PubMed

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-01

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions. PMID:27551082

  17. Structural Model of the R State of Escherichia coli Aspartate Transcarbamoylase with Substrates Bound

    SciTech Connect

    Wang,J.; Eldo, J.; Kantrowitz, E.

    2007-01-01

    The allosteric enzyme aspartate transcarbamoylase (ATCase) exists in two conformational states. The enzyme, in the absence of substrates is primarily in the low-activity T state, is converted to the high-activity R state upon substrate binding, and remains in the R state until substrates are exhausted. These conformational changes have made it difficult to obtain structural data on R-state active-site complexes. Here we report the R-state structure of ATCase with the substrate Asp and the substrate analog phosphonoactamide (PAM) bound. This R-state structure represents the stage in the catalytic mechanism immediately before the formation of the covalent bond between the nitrogen of the amino group of Asp and the carbonyl carbon of carbamoyl phosphate. The binding mode of the PAM is similar to the binding mode of the phosphonate moiety of N-(phosphonoacetyl)-l-aspartate (PALA), the carboxylates of Asp interact with the same residues that interact with the carboxylates of PALA, although the position and orientations are shifted. The amino group of Asp is 2.9 {angstrom} away from the carbonyl oxygen of PAM, positioned correctly for the nucleophilic attack. Arg105 and Leu267 in the catalytic chain interact with PAM and Asp and help to position the substrates correctly for catalysis. This structure fills a key gap in the structural determination of each of the steps in the catalytic cycle. By combining these data with previously determined structures we can now visualize the allosteric transition through detailed atomic motions that underlie the molecular mechanism.

  18. Aspartic acid 413 is important for the normal allosteric functioning of ADP-glucose pyrophosphorylase

    SciTech Connect

    Greene, T.W.; Woodbury, R.L.; Okita, T.W.

    1996-11-01

    As part of a structure-function analysis of the higher-plant ADP-glucose pyrophosphorylase (AGP), we used a random mutagenesis approach in combination with a novel bacterial complementation system to isolate over 100 mutants that were defective in glycogen production. One mutant of the large subunit M27 was identified by its capacity to only partially complement a mutation in the structural gene for the bacterial AGP (glg C), as determined by its light-staining phenotype when cells were exposed to I{sub 2} vapors. Enzyme-linked immunosorbent assay and enzymatic pyrophosphorylysis assays of M27 cell extracts showed that the level of expression and AGP activity was comparable to those of cells that expressed the wildtype recombinant enzyme. Kinetic analysis indicated that the M27 AGP displays normal Michaelis constant values for the substrates glucose-1-phosphate and ATP but requires 6- to 10-fold greater levels of 3-phosphoglycerate (3-PGA) than the wild-type recombinant enzyme for maximum activation. DNA sequence analysis showed that M27 contains a single point mutation that resulted in the replacement of aspartic acid 413 to alanine. Substitution of a lysine residue at this site almost completely abolished activation by 3-PGA. Aspartic acid 413 is adjacent to a lysine residue that was previously identified by chemical modification studies to be important in the binding of 3-PGA. The kinetic properties of M27 corroborate the importance of this region in the allosteric regulation of a higher-plant AGP. 28 refs., 3 figs., 1 tab.

  19. Proteolysis of the peanut allergen Ara h 1 by an endogenous aspartic protease.

    PubMed

    Wilson, Karl A; Tan-Wilson, Anna

    2015-11-01

    The 7S and 11S globulins of peanuts are subjected to proteolysis two days after seed imbibition, with Ara h 1 and the arachin acidic chains being among the first storage proteins to be mobilized. Proteolytic activity was greatest at pH 2.6-3 and is inhibited by pepstatin A, characteristic of an aspartic protease. This activity persists in seedling cotyledons up to at least 8 days after imbibition. In vitro proteolysis of Ara h 1 at pH 2.6 by extracts of cotyledons from seedlings harvested 24 h after seed imbibition generates newly appearing bands on SDS-PAGE. Partial sequences of Ara h 1 that were obtained through LC-MS/MS analysis of in-gel trypsin digests of those bands, combined with information on fragment size, suggest that proteolysis begins in the region that links the two cupin domains to produce two 33/34 kD fragments, each one encompassing an intact cupin domain. The later appearance of two 18 and 10/11 kD fragments can be explained by proteolysis within an exposed site in the cupin domains of each of the 33/34 kD fragments. The same or similar proteolytic activity was observed in developing seeds, but Ara h 1 remains intact through seed maturation. This is partly explained by the observation that acidification of the protein storage vacuoles, demonstrated by vacuolar accumulation of acridine orange that was dissipated by a membrane-permeable base, occurs only after germination. These findings suggest a method for use of the seed aspartic protease in reducing peanut allergy due to Ara h 1.

  20. Conformational Transitions in Human AP Endonuclease 1 and Its Active Site Mutant during Abasic Site Repair†

    PubMed Central

    Kanazhevskaya, Lyubov Yu.; Koval, Vladimir V.; Zharkov, Dmitry O.; Strauss, Phyllis R.; Fedorova, Olga S.

    2010-01-01

    AP endonuclease 1 (APE 1) is a crucial enzyme of the base excision repair pathway (BER) in human cells. APE1 recognizes apurinic/apyrimidinic (AP) sites and makes a nick in the phosphodiester backbone 5′ to them. The conformational dynamics and presteady-state kinetics of wild-type APE1 and its active site mutant, Y171F-P173L-N174K, have been studied. To observe conformational transitions occurring in the APE1 molecule during the catalytic cycle, we detected intrinsic tryptophan fluorescence of the enzyme under single turnover conditions. DNA duplexes containing a natural AP site, its tetrahydrofuran analogue, or a 2′-deoxyguanosine residue in the same position were used as specific substrates or ligands. The stopped-flow experiments have revealed high flexibility of the APE1 molecule and the complexity of the catalytic process. The fluorescent traces indicate that wild-type APE1 undergoes at least four conformational transitions during the processing of abasic sites in DNA. In contrast, nonspecific interactions of APE1 with undamaged DNA can be described by a two-step kinetic scheme. Rate and equilibrium constants were extracted from the stopped-flow and fluorescence titration data for all substrates, ligands, and products. A replacement of three residues at the enzymatic active site including the replacement of tyrosine 171 with phenylalanine in the enzyme active site resulted in a 2 × 104-fold decrease in the reaction rate and reduced binding affinity. Our data indicate the important role of conformational changes in APE1 for substrate recognition and catalysis. PMID:20575528

  1. A New Branch in the Family: Structure of Aspartate-[beta]-semialdehyde Dehydrogenase from Methanococcus jannaschii

    SciTech Connect

    Faehnle, Christopher R.; Ohren, Jeffrey F.; Viola, Ronald E.

    2010-07-13

    The structure of aspartate-{beta}-semialdehyde dehydrogenase (ASADH) from Methanococcus jannaschii has been determined to 2.3 {angstrom} resolution using multiwavelength anomalous diffraction (MAD) phasing of a selenomethionine-substituted derivative to define a new branch in the family of ASADHs. This new structure has a similar overall fold and domain organization despite less than 10% conserved sequence identity with the bacterial enzymes. However, the entire repertoire of functionally important active site amino acid residues is conserved, suggesting an identical catalytic mechanism but with lower catalytic efficiency. A new coenzyme-binding conformation and dual NAD/NADP coenzyme specificity further distinguish this archaeal branch from the bacterial ASADHs. Several structural differences are proposed to account for the dramatically enhanced thermostability of this archaeal enzyme. Finally, the intersubunit communication channel connecting the active sites in the bacterial enzyme dimer has been disrupted in the archaeal ASADHs by amino acid changes that likely prevent the alternating sites reactivity previously proposed for the bacterial ASADHs.

  2. Control of active sites in selective flocculation: I -- Mathematical model

    SciTech Connect

    Behl, S.; Moudgil, B.M.; Prakash, T.S. . Dept. of Materials Science and Engineering)

    1993-12-01

    Heteroflocculation has been determined to be another major reason for loss in selectivity for flocculation process. In a mathematical model developed earlier, conditions for controlling heteroflocculation were discussed. Blocking active sites to control selective adsorption of a flocculant oil a desirable solid surface is discussed. It has been demonstrated that the lower molecular weight fraction of a flocculant which is incapable of flocculating the particles is an efficient site blocking agent. The major application of selective flocculation has been in mineral processing but many potential uses exist in biological and other colloidal systems. These include purification of ceramic powders, separating hazardous solids from chemical waste, and removal of deleterious components from paper pulp.

  3. The site of activation of factor X by cancer procoagulant.

    PubMed

    Gordon, S G; Mourad, A M

    1991-12-01

    Cancer procoagulant (CP) is a cysteine proteinase found in a variety of malignant cells and tissues and in human amnion-chorion tissue. It initiates coagulation by activating factor X. However, the amino acid sequence of the substrate protein that determines the cleavage site of cysteine proteinases is different from that of the serine proteinases that normally activate factor X, such as factor IXa, VIIa and Russell's Viper Venom (RVV). Therefore, it was of interest to determine the site of cleavage of human factor X by CP. Purified CP was incubated with purified factor X and the reaction mixture was electrophoresed on a 10% Tris-tricine SDS-PAGE gel. The proteins were electroeluted on to a polyvinylidene difluoride (PVDF) membrane, and stained with Coomassie blue. The heavy chain of activated factor X was cut out of the PVDF membrane and sequenced with an Applied Biosystems 477A with on-line HPLC. The primary cleavage sequence was Asp-Ala-Ala-Asp-Leu-Asp-Pro-; two other secondary sequences Ser-Ile-Thr-Trp-Lys-Pro- and Glu-Asn-Pro-Phe-Asp-Leu were found. The penultimate amino acid on the carbonyl side of the hydrolysed amide bond plays a critical role for the recognition of the cleavage site of cysteine proteinases. These data indicate that the penultimate amino acid for the primary cleavage site of factor X by CP is proline-20 and for the secondary sites, proline-13 and proline-28. This is in contrast to arginine-52 that determines the specificity of the cleavage by normal serine proteinase activation.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Adaptation of the behaviour of an aspartic proteinase inhibitor by relocation of a lysine residue by one helical turn.

    PubMed

    Winterburn, Tim J; Wyatt, David M; Phylip, Lowri H; Berry, Colin; Bur, Daniel; Kay, John

    2006-08-01

    In addition to self-inhibition of aspartic proteinase zymogens by their intrinsic proparts, the activity of certain members of this enzyme family can be modulated through active-site occupation by extrinsic polypeptides such as the small IA3 protein from Saccharomyces cerevisiae. The unprecedented mechanism by which IA3 helicates to inhibit its sole target aspartic proteinase locates an i, i+4 pair of charged residues (Lys18+Asp22) on an otherwise-hydrophobic face of the amphipathic helix. The nature of these residues is not crucial for effective inhibition, but re-location of the lysine residue by one turn (+4 residues) in the helical IA3 positions its side chain in the mutant IA3-proteinase complex in an orientation essentially identical to that of the key lysine residue in zymogen proparts. The binding of the extrinsic mutant IA3 shows pH dependence reminiscent of that required for the release of intrinsic zymogen proparts so that activation can occur. PMID:16895485

  5. Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae

    PubMed Central

    Daniel, Bastian; Wallner, Silvia; Steiner, Barbara; Oberdorfer, Gustav; Kumar, Prashant; van der Graaff, Eric; Roitsch, Thomas; Sensen, Christoph W.; Gruber, Karl; Macheroux, Peter

    2016-01-01

    Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively. The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been structurally and biochemically characterized thus far. The most salient and distinguishing features of the active site found in AtBBE-like 28 are a mono-covalent linkage of a histidine to the 8α-position of the flavin-isoalloxazine ring and the lack of a second covalent linkage to the 6-position, owing to the replacement of a cysteine with a histidine. In addition, the structure reveals the interaction of a glutamic acid (Glu426) with an aspartic acid (Asp369) at the active site, which appear to share a proton. This arrangement leads to the delocalization of a negative charge at the active site that may be exploited for catalysis. The structure also indicates a shift of the position of the isoalloxazine ring in comparison to other members of the BBE-like family. The dioxygen surrogate chloride was found near the C(4a) position of the isoalloxazine ring in the oxygen pocket, pointing to a rapid reoxidation of reduced enzyme by dioxygen. A T-DNA insertional mutant line for AtBBE-like 28 results in a phenotype, that is characterized by reduced biomass and lower salt stress tolerance. Multiple sequence analysis showed that the active site composition found in AtBBE-like 28 is only present in the Brassicaceae, suggesting that it plays a specific role in the metabolism of this plant family. PMID:27276217

  6. Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae.

    PubMed

    Daniel, Bastian; Wallner, Silvia; Steiner, Barbara; Oberdorfer, Gustav; Kumar, Prashant; van der Graaff, Eric; Roitsch, Thomas; Sensen, Christoph W; Gruber, Karl; Macheroux, Peter

    2016-01-01

    Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively. The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been structurally and biochemically characterized thus far. The most salient and distinguishing features of the active site found in AtBBE-like 28 are a mono-covalent linkage of a histidine to the 8α-position of the flavin-isoalloxazine ring and the lack of a second covalent linkage to the 6-position, owing to the replacement of a cysteine with a histidine. In addition, the structure reveals the interaction of a glutamic acid (Glu426) with an aspartic acid (Asp369) at the active site, which appear to share a proton. This arrangement leads to the delocalization of a negative charge at the active site that may be exploited for catalysis. The structure also indicates a shift of the position of the isoalloxazine ring in comparison to other members of the BBE-like family. The dioxygen surrogate chloride was found near the C(4a) position of the isoalloxazine ring in the oxygen pocket, pointing to a rapid reoxidation of reduced enzyme by dioxygen. A T-DNA insertional mutant line for AtBBE-like 28 results in a phenotype, that is characterized by reduced biomass and lower salt stress tolerance. Multiple sequence analysis showed that the active site composition found in AtBBE-like 28 is only present in the Brassicaceae, suggesting that it plays a specific role in the metabolism of this plant family. PMID:27276217

  7. Active-Site-Accessible, Porphyrinic Metal;#8722;Organic Framework Materials

    SciTech Connect

    Farha, Omar K.; Shultz, Abraham M.; Sarjeant, Amy A.; Nguyen, SonBinh T.; Hupp, Joseph T.

    2012-02-06

    On account of their structural similarity to cofactors found in many metallo-enzymes, metalloporphyrins are obvious potential building blocks for catalytically active, metal-organic framework (MOF) materials. While numerous porphyrin-based MOFs have already been described, versions featuring highly accessible active sites and permanent microporosity are remarkably scarce. Indeed, of the more than 70 previously reported porphyrinic MOFs, only one has been shown to be both permanently microporous and contain internally accessible active sites for chemical catalysis. Attempts to generalize the design approach used in this single successful case have failed. Reported here, however, is the synthesis of an extended family of MOFs that directly incorporate a variety of metalloporphyrins (specifically Al{sup 3+}, Zn{sup 2+}, Pd{sup 2+}, Mn{sup 3+}, and Fe{sup 3+} complexes). These robust porphyrinic materials (RPMs) feature large channels and readily accessible active sites. As an illustrative example, one of the manganese-containing RPMs is shown to be catalytically competent for the oxidation of alkenes and alkanes.

  8. Functional constituents of the active site of human neutrophil collagenase.

    PubMed

    Mookhtiar, K A; Wang, F; Van Wart, H E

    1986-05-01

    A series of chemical modification reactions has been carried out to identify functional constituents of the active site of human neutrophil collagenase. The enzyme is reversibly inhibited by the transition metal chelating agent 1,10-phenanthroline, and inhibition is fully reversed by zinc. Removal of weakly bound metal ions by gel filtration inactivates collagenase, and activity is fully restored on immediate readdition of calcium. The enzyme is unaffected by reagents that modify serine, cysteine, and arginine residues. However, reaction with the carboxyl reagents cyclohexylmorpholinocarbodiimide and Woodward's Reagent K lowers the activity of the enzyme substantially. Acetylimidazole inactivates the enzyme, but activity is completely restored on addition of hydroxylamine. The enzyme is also inactivated by tetranitromethane, indicating that it contains an essential tyrosine residue. Acylation of collagenase with diethyl pyrocarbonate, diketene, acetic anhydride, or trinitrobenzenesulfonate inactivates the enzyme, and activity is not restored on addition of hydroxylamine, indicating the presence of an essential lysine residue.

  9. Detection of D-aspartate in tau proteins associated with Alzheimer paired helical filaments.

    PubMed

    Kenessey, A; Yen, S H; Liu, W K; Yang, X R; Dunlop, D S

    1995-03-27

    Paired helical filaments (PHF) characteristic of Alzheimer neurofibrillary lesions are known to contain a modified form of microtubule associated protein tau. These proteins, PHF-tau, differ from normal tau in the extent and the site of phosphorylation. To determine whether PHF-tau, tau proteins from normal adult brains (N-tau), tau proteins from Alzheimer brains not associated with PHF (A-tau), and tau proteins from fetal brains (F-tau) differ in racemization, these proteins were compared for their D-aspartate content. The results demonstrated that PHF-tau contain more D-aspartate than N-tau, A-tau and F-tau. The average percentage D-aspartate for these proteins, after a correction for background, are 4.9%, 2.8%, 1.6%, and 1% for PHF-tau, N-tau, A-tau and F-tau, respectively. It remains to be determined if the increase in D-aspartate is a consequence of PHF formation. It is also unknown if the change in D-aspartate content in PHF-tau is associated with phosphorylation, which alters the susceptibility of tau to proteolysis.

  10. Racemization reaction of aspartic Acid and its use in dating fossil bones.

    PubMed

    Bada, J L; Protsch, R

    1973-05-01

    In the time interval datable by radiocarbon, and at the temperatures of most archeological sites, a substantial amount of racemization of aspartic acid takes place. By determination of the amount of racemization of aspartic acid in bones from a particular location which have been dated by the radiocarbon technique, it is possible to calculate the in situ first-order rate constant for interconversion of the L- and D enantiomers of aspartic acid. Once this "calibration" has been calculated, the reaction can be used to date other bones from the deposit that are either too old to be dated by radiocarbon or that are too small for radiocarbon dating. The only assumption required with this approach is that the average temperature experienced by the "calibration" sample is representative of the average temperature experienced by older samples. This "calibration" technique is used herein to date bones from the Olduvai Gorge area in Tanzania, Africa.

  11. Racemization Reaction of Aspartic Acid and Its Use in Dating Fossil Bones

    PubMed Central

    Bada, Jeffrey L.; Protsch, Reiner

    1973-01-01

    In the time interval datable by radiocarbon, and at the temperatures of most archeological sites, a substantial amount of racemization of aspartic acid takes place. By determination of the amount of racemization of aspartic acid in bones from a particular location which have been dated by the radiocarbon technique, it is possible to calculate the in situ first-order rate constant for interconversion of the L- and D enantiomers of aspartic acid. Once this “calibration” has been calculated, the reaction can be used to date other bones from the deposit that are either too old to be dated by radiocarbon or that are too small for radiocarbon dating. The only assumption required with this approach is that the average temperature experienced by the “calibration” sample is representative of the average temperature experienced by older samples. This “calibration” technique is used herein to date bones from the Olduvai Gorge area in Tanzania, Africa. PMID:16592082

  12. Nest predation increases with parental activity: Separating nest site and parental activity effects

    USGS Publications Warehouse

    Martin, T.E.; Scott, J.; Menge, C.

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection.

  13. Induced synthesis of P450 aromatase and 17β-estradiol by D-aspartate in frog brain.

    PubMed

    Burrone, Lavinia; Santillo, Alessandra; Pinelli, Claudia; Baccari, Gabriella Chieffi; Di Fiore, Maria Maddalena

    2012-10-15

    D-Aspartic acid is an endogenous amino acid occurring in the endocrine glands as well as in the nervous system of various animal phyla. Our previous studies have provided evidence that D-aspartate plays a role in the induction of estradiol synthesis in gonads. Recently, we have also demonstrated that D-aspartic acid induces P450 aromatase mRNA expression in the frog (Pelophylax esculentus) testis. P450 aromatase is the key enzyme in the estrogen synthetic pathway and irreversibly converts testosterone into 17β-estradiol. In this study, we firstly investigated the immunolocalisation of P450 aromatase in the brain of P. esculentus, which has never previously been described in amphibians. Therefore, to test the hypothesis that d-aspartate mediates a local synthesis of P450 aromatase in the frog brain, we administered D-aspartate in vivo to male frogs and then assessed brain aromatase expression, sex hormone levels and sex hormone receptor expression. We found that D-aspartate enhances brain aromatase expression (mRNA and protein) through the CREB pathway. Then, P450 aromatase induces 17β-estradiol production from testosterone, with a consequent increase of its receptor. Therefore, the regulation of d-aspartate-mediated P450 aromatase expression could be an important step in the control of neuroendocrine regulation of the reproductive axis. Accordingly, we found that the sites of P450 aromatase immunoreactivity in the frog brain correspond to the areas known to be involved in neurosteroid synthesis. PMID:22771744

  14. Active sites in char gasification: Final technical report

    SciTech Connect

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  15. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  16. Active Sites Environmental Monitoring Program: FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Hicks, D.S.; Morrissey, C.M.

    1992-11-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from April 1991 through September 1991. The ASEMP was established in 1989 by Solid Waste Operations (SWO) and the Environmental Sciences Division, both of Oak Ridge National Laboratory, to provide early detection and performance monitoring at active low-level (radioactive) waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. A new set of action levels was developed on the basis of a statistical analysis of background contamination. These new action levels have been used to evaluate results in this report. Results of ASEMP monitoring continue to demonstrate that no LLW (except [sup 3]H) is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II, which began in early FY 1991, was >90% complete at the end of September 1991. Results of sampling of groundwater and surface waters is presented.

  17. Inhibition and active-site modelling of prolidase.

    PubMed

    King, G F; Crossley, M J; Kuchel, P W

    1989-03-15

    Consideration of the active-site model of prolidase led us to examine azetidine, pyrrolidine and piperidine substrate analogs as potential in vivo inhibitors of the enzyme. One of these, N-benzyloxycarbonyl-L-proline, was shown to be a potent competitive inhibitor of porcine kidney prolidase (Ki = 90 microM); its rapid protein-mediated permeation of human and sheep erythrocytes suggests that it may be effective in vivo. The higher homolog, N-benzyloxycarbonyl-L-pipecolic acid, was also a potent inhibitor of the enzyme while the antihypertensive drugs, captopril and enalaprilat, were shown to have mild and no inhibitory effects, respectively. Analysis of inhibitor action and consideration of X-ray crystallographic data of relevant Mn2+ complexes allowed the active-site model of prolidase to be further refined; a new model is presented in which the substrate acts as a bidentate ligand towards the active-site manganous ion. Various aspects of the new model help to explain why Mn2+ has been 'chosen' by the enzyme in preference to other biologically available metal ions. PMID:2924773

  18. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    PubMed

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds. PMID:26254042

  19. Adaptation Mechanism of the Aspartate Receptor: Electrostatics of the Adaptation Subdomain Play a Key Role in Modulating Kinase Activity†

    PubMed Central

    Starrett, Diane J.; Falke, Joseph J.

    2010-01-01

    The aspartate receptor of the Escherichia coli and Salmonella typhimurium chemotaxis pathway generates a transmembrane signal that regulates the activity of the cytoplasmic kinase CheA. Previous studies have identified a region of the cytoplasmic domain that is critical to receptor adaptation and kinase regulation. This region, termed the adaptation subdomain, contains a high density of acidic residues, including specific glutamate residues that serve as receptor adaptation sites. However, the mechanism of signal propagation through this region remains poorly understood. This study uses site-directed mutagenesis to neutralize each acidic residue within the subdomain to probe the hypothesis that electrostatics in this region play a significant role in the mechanism of kinase activation and modulation. Each point mutant was tested for its ability to regulate chemotaxis in vivo and kinase activity in vitro. Four point mutants (D273N, E281Q, D288N, and E477Q) were found to superactivate the kinase relative to the wild-type receptor, and all four of these kinase-activating substitutions are located along the same intersubunit interface as the adaptation sites. These activating substitutions retained the wild-type ability of the attractant-occupied receptor to inhibit kinase activity. When combined in a quadruple mutant (D273N/E281Q/D288N/E477Q), the four charge-neutralizing substitutions locked the receptor in a kinase-superactivating state that could not be fully inactivated by the attractant. Similar lock-on character was observed for a charge reversal substitution, D273R. Together, these results implicate the electrostatic interactions at the intersubunit interface as a major player in signal transduction and kinase regulation. The negative charge in this region destabilizes the local structure in a way that enhances conformational dynamics, as detected by disulfide trapping, and this effect is reversed by charge neutralization of the adaptation sites. Finally, two

  20. Attractant Signaling by an Aspartate Chemoreceptor Dimer with a Single Cytoplasmic Domain

    NASA Astrophysics Data System (ADS)

    Gardina, Paul J.; Manson, Michael D.

    1996-10-01

    Signal transduction across cell membranes often involves interactions among identical receptor subunits, but the contribution of individual subunits is not well understood. The chemoreceptors of enteric bacteria mediate attractant responses by interrupting a phosphotransfer circuit initiated at receptor complexes with the protein kinase CheA. The aspartate receptor (Tar) is a homodimer, and oligomerized cytoplasmic domains stimulate CheA activity much more than monomers do in vitro. Intragenic complementation was used to show in Escherichia coli that heterodimers containing one full-length and one truncated Tar subunit mediated responses to aspartate in the presence of full-length Tar homodimers that could not bind aspartate. Thus, a Tar dimer containing only one cytoplasmic domain can initiate an attractant (inhibitory) signal, although it may not be able to stimulate kinase activity of CheA.

  1. Selective permeability of rat liver mitochondria to purified aspartate aminotransferases in vitro.

    PubMed Central

    Marra, E; Doonan, S; Saccone, C; Quagliariello, E

    1977-01-01

    1. A method was devised to allow determination of intramitochondrial aspartate amino-transferase activity in suspensions of intact mitochondria. 2. Addition of purified rat liver mitochondrial aspartate aminotransferase to suspensions of rat liver mitochondria caused an apparent increase in the intramitochondrial enzyme activity. No increase was observed when the mitochondria were preincubated with the purified cytoplasmic isoenzyme. 3. These results suggest that mitochondrial aspartate aminotransferase, but not the cytoplasmic isoenzyme, is able to pass from solution into the matrix of intact rat liver mitochondria in vitro. 4. This system may provide a model for studies of the little-understood processes by which cytoplasmically synthesized components are incorporated into mitochondria in vivo. PMID:883959

  2. Studies on the influence of combustion exhaust gases and the products of their reaction with ammonia on the living organism. II. The influence on aspartate aminotransferase (AspAT) and alanine aminotransferase (AiAt) activities in the liver of guinea pig.

    PubMed

    Lewandowska-Tokarz, A; Stanosek, J; Ludyga, K; Kochanski, L

    1981-01-01

    The behaviour of aspartate aminotransferase (AspAT) an alanine aminotransferase (AIAT) in the whole homogenate and subcellular liver fractions of guinea pigs exposed to combustion exhaust gases and the neutralization products of these gases is presented in this paper. In the liver of animals exposed to the chronic action of combustion exhaust gases a decrease of both enzyme activities in the whole homogenate as well as in the subcellular fractions could be noted. Statistically significant changes are shown by AspAT. In the group of animals subjected to the action of neutralization products an increase of AIAT activity was observed. The activity of AspAT still shows a decrease, but less distinct in comparison with group I. An exception here is the mitochondrial fraction in which the AspAT activity is distinctly increased.

  3. Druggability analysis and classification of protein tyrosine phosphatase active sites

    PubMed Central

    Ghattas, Mohammad A; Raslan, Noor; Sadeq, Asil; Al Sorkhy, Mohammad; Atatreh, Noor

    2016-01-01

    Protein tyrosine phosphatases (PTP) play important roles in the pathogenesis of many diseases. The fact that no PTP inhibitors have reached the market so far has raised many questions about their druggability. In this study, the active sites of 17 PTPs were characterized and assessed for its ability to bind drug-like molecules. Consequently, PTPs were classified according to their druggability scores into four main categories. Only four members showed intermediate to very druggable pocket; interestingly, the rest of them exhibited poor druggability. Particularly focusing on PTP1B, we also demonstrated the influence of several factors on the druggability of PTP active site. For instance, the open conformation showed better druggability than the closed conformation, while the tight-bound water molecules appeared to have minimal effect on the PTP1B druggability. Finally, the allosteric site of PTP1B was found to exhibit superior druggability compared to the catalytic pocket. This analysis can prove useful in the discovery of new PTP inhibitors by assisting researchers in predicting hit rates from high throughput or virtual screening and saving unnecessary cost, time, and efforts via prioritizing PTP targets according to their predicted druggability. PMID:27757011

  4. Key features determining the specificity of aspartic proteinase inhibition by the helix-forming IA3 polypeptide.

    PubMed

    Winterburn, Tim J; Wyatt, David M; Phylip, Lowri H; Bur, Daniel; Harrison, Rebecca J; Berry, Colin; Kay, John

    2007-03-01

    The 68-residue IA(3) polypeptide from Saccharomyces cerevisiae is essentially unstructured. It inhibits its target aspartic proteinase through an unprecedented mechanism whereby residues 2-32 of the polypeptide adopt an amphipathic alpha-helical conformation upon contact with the active site of the enzyme. This potent inhibitor (K(i) < 0.1 nm) appears to be specific for a single target proteinase, saccharopepsin. Mutagenesis of IA(3) from S. cerevisiae and its ortholog from Saccharomyces castellii was coupled with quantitation of the interaction for each mutant polypeptide with saccharopepsin and closely related aspartic proteinases from Pichia pastoris and Aspergillus fumigatus. This identified the charged K18/D22 residues on the otherwise hydrophobic face of the amphipathic helix as key selectivity-determining residues within the inhibitor and implicated certain residues within saccharopepsin as being potentially crucial. Mutation of these amino acids established Ala-213 as the dominant specificity-governing feature in the proteinase. The side chain of Ala-213 in conjunction with valine 26 of the inhibitor marshals Tyr-189 of the enzyme precisely into a position in which its side-chain hydroxyl is interconnected via a series of water-mediated contacts to the key K18/D22 residues of the inhibitor. This extensive hydrogen bond network also connects K18/D22 directly to the catalytic Asp-32 and Tyr-75 residues of the enzyme, thus deadlocking the inhibitor in position. In most other aspartic proteinases, the amino acid at position 213 is a larger hydrophobic residue that prohibits this precise juxtaposition of residues and eliminates these enzymes as targets of IA(3). The exquisite specificity exhibited by this inhibitor in its interaction with its cognate folding partner proteinase can thus be readily explained. PMID:17145748

  5. Crystal Structure of Cockroach Allergen Bla g 2, an Unusual Zinc Binding Aspartic Protease with a Novel Mode of Self-inhibition

    SciTech Connect

    Gustchina, Alla; Li, Mi; Wunschmann, Sabina; Chapman, Martin D.; Pomes, Anna; Wlodawer, Alexander

    2010-07-19

    The crystal structure of Bla g 2 was solved in order to investigate the structural basis for the allergenic properties of this unusual protein. This is the first structure of an aspartic protease in which conserved glycine residues, in two canonical DTG triads, are substituted by different amino acid residues. Another unprecedented feature revealed by the structure is the single phenylalanine residue insertion on the tip of the flap, with the side-chain occupying the S1 binding pocket. This and other important amino acid substitutions in the active site region of Bla g 2 modify the interactions in the vicinity of the catalytic aspartate residues, increasing the distance between them to {approx}4 {angstrom} and establishing unique direct contacts between the flap and the catalytic residues. We attribute the absence of substantial catalytic activity in Bla g 2 to these unusual features of the active site. Five disulfide bridges and a Zn-binding site confer stability to the protein, which may contribute to sensitization at lower levels of exposure than other allergens.

  6. Wheat-germ aspartate transcarbamoylase. Purification and cold-lability.

    PubMed Central

    Grayson, J E; Yon, R J; Butterworth, P J

    1979-01-01

    1. Aspartate transcarbamoylase was purified approx. 3000-fold from wheat (Triticum vulgare) germ in 15-20% yield. The product has a specific activity of 14 mumol/min per mg of protein and is approx. 90% pure. The purification scheme includes the use of biospecific "imphilyte" chromatography as described by Yon [Biochem.J.(1977) 161, 233-237]. The enzyme was passed successively through columns of CPAD [N-(3-carboxypropionyl)aminodecyl]-Sepharose in the absence and presence respectively of the ligands UMP and L-aspartate. In the second passage the enzyme was specifically displaced away from impurities with which it co-migrated in the first passage. These two steps contributed a factor of 80 to the overall purification. 2. The enzyme is slowly inactivated on dilution at 0 degrees C and pH 7.0, the inactivation being partially reversible. A detailed investigation of the temperature- and pH-dependence of the cold-inactivation suggested that it was initiated by the perturbation of the pKa values of groups with a moderately high and positive heat of ionization, which were tentatively identified as histidine residues. These findings support a new concept of cold-lability proposed by Bock, Gilbert & Frieden [Biochem. Biophys. Res. Commun. (1975) 66, 564-569]. PMID:43131

  7. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect

    1981-02-27

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  8. Electrostatic fields in the active sites of lysozymes.

    PubMed

    Sun, D P; Liao, D I; Remington, S J

    1989-07-01

    Considerable experimental evidence is in support of several aspects of the mechanism that has been proposed for the catalytic activity of lysozyme. However, the enzymatically catalyzed hydrolysis of polysaccharides proceeds over 5 orders of magnitude faster than that of model compounds that mimic the configuration of the substrate in the active site of the enzyme. Although several possible explanations for this rate enhancement have been discussed elsewhere, a definitive mechanism has not emerged. Here we report striking results obtained by classical electrodynamics, which suggest that bond breakage and the consequent separation of charge in lysozyme is promoted by a large electrostatic field across the active site cleft, produced in part by a very asymmetric distribution of charged residues on the enzyme surface. Lysozymes unrelated in amino acid sequence have similar distributions of charged residues and electric fields. The results reported here suggest that the electrostatic component of the rate enhancement is greater than 9 kcal.mol-1. Thus, electrostatic interactions may play a more important role in the enzymatic mechanism than has generally been appreciated.

  9. Histidine at the active site of Neurospora tyrosinase.

    PubMed

    Pfiffner, E; Lerch, K

    1981-10-13

    The involvement of histidyl residues as potential ligands to the binuclear active-site copper of Neurospora tyrosinase was explored by dye-sensitized photooxidation. The enzymatic activity of the holoenzyme was shown to be unaffected by exposure to light in the presence of methylene blue; however, irradiation of the apoenzyme under the same conditions led to a progressive loss of its ability to be reactivated with Cu2+. This photoinactivation was paralleled by a decrease in the histidine content whereas the number of histidyl residues in the holoenzyme remained constant. Copper measurements of photooxidized, reconstituted apoenzyme demonstrated the loss of binding of one copper atom per mole of enzyme as a consequence of photosensitized oxidation of three out of nine histidine residues. Their sequence positions were determined by a comparison of the relative yields of the histidine containing peptides of photooxidized holo- and apotyrosinases. The data obtained show the preferential modification of histidyl residues 188, 193, and 289 and suggest that they constitute metal ligands to one of the two active-site copper atoms. Substitution of copper by cobalt was found to afford complete protection of the histidyl residues from being modified by dye-sensitized photooxidation. PMID:6458322

  10. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase

    PubMed Central

    Debler, Erik W.; Jain, Kanishk; Warmack, Rebeccah A.; Feng, You; Clarke, Steven G.; Blobel, Günter; Stavropoulos, Pete

    2016-01-01

    Trypanosoma brucei PRMT7 (TbPRMT7) is a protein arginine methyltransferase (PRMT) that strictly monomethylates various substrates, thus classifying it as a type III PRMT. However, the molecular basis of its unique product specificity has remained elusive. Here, we present the structure of TbPRMT7 in complex with its cofactor product S-adenosyl-l-homocysteine (AdoHcy) at 2.8 Å resolution and identify a glutamate residue critical for its monomethylation behavior. TbPRMT7 comprises the conserved methyltransferase and β-barrel domains, an N-terminal extension, and a dimerization arm. The active site at the interface of the N-terminal extension, methyltransferase, and β-barrel domains is stabilized by the dimerization arm of the neighboring protomer, providing a structural basis for dimerization as a prerequisite for catalytic activity. Mutagenesis of active-site residues highlights the importance of Glu181, the second of the two invariant glutamate residues of the double E loop that coordinate the target arginine in substrate peptides/proteins and that increase its nucleophilicity. Strikingly, mutation of Glu181 to aspartate converts TbPRMT7 into a type I PRMT, producing asymmetric dimethylarginine (ADMA). Isothermal titration calorimetry (ITC) using a histone H4 peptide showed that the Glu181Asp mutant has markedly increased affinity for monomethylated peptide with respect to the WT, suggesting that the enlarged active site can favorably accommodate monomethylated peptide and provide sufficient space for ADMA formation. In conclusion, these findings yield valuable insights into the product specificity and the catalytic mechanism of protein arginine methyltransferases and have important implications for the rational (re)design of PRMTs. PMID:26858449

  11. Structure of RC1339/APRc from Rickettsia conorii, a retropepsin-like aspartic protease

    PubMed Central

    Li, Mi; Gustchina, Alla; Cruz, Rui; Simões, Marisa; Curto, Pedro; Martinez, Juan; Faro, Carlos; Simões, Isaura; Wlodawer, Alexander

    2015-01-01

    The crystal structures of two constructs of RC1339/APRc from Rickettsia conorii, consisting of either residues 105–231 or 110–231 followed by a His tag, have been determined in three different crystal forms. As predicted, the fold of a monomer of APRc resembles one-half of the mandatory homodimer of retroviral pepsin-like aspartic proteases (retropepsins), but the quaternary structure of the dimer of APRc differs from that of the canonical retropepsins. The observed dimer is most likely an artifact of the expression and/or crystallization conditions since it cannot support the previously reported enzymatic activity of this bacterial aspartic protease. However, the fold of the core of each monomer is very closely related to the fold of retropepsins from a variety of retroviruses and to a single domain of pepsin-like eukaryotic enzymes, and may represent a putative common ancestor of monomeric and dimeric aspartic proteases. PMID:26457434

  12. A radiochemical assay for argininosuccinate synthetase with [U-14C]aspartate.

    PubMed

    Ratner, S

    1983-12-01

    A simple and sensitive radiochemical procedure to assay argininosuccinate synthetase activity in crude tissue homogenates and lysates of cultured cells is described. The new method depends on the location of 14C, uniformly, in the four carbons of aspartate. On incubation in the presence of excess of L-[U-14C]aspartate, L-citrulline, ATP, and an ATP-generating system, argininosuccinase and arginase, the [14C]fumarate formed is measured as the sum of malate and fumarate. After acidification the latter two acids are separated from [14C]aspartate on a small Dowex-50 column by elution with a few milliliters of water; the unutilized amino acid substrates remain on the column. With a specific radioactivity of 9 X 10(4) cpm, 1 to 2 nmol of product can be accurately measured under kinetically optimum conditions. PMID:6660522

  13. Trichodiene synthase. Identification of active site residues by site-directed mutagenesis.

    PubMed

    Cane, D E; Shim, J H; Xue, Q; Fitzsimons, B C; Hohn, T M

    1995-02-28

    Derivatization of 5,5'-dithiobis(2-nitrobenzoic acid)-treated trichodiene synthase with [methyl-14C]methyl methanethiosulfonate and analysis of the derived tryptic peptides suggested the presence of two cysteine residues at the active site. The corresponding C146A and C190A mutants were constructed by site-directed mutagenesis. The C190A mutant displayed partial but significantly reduced activity, with a reduction in kcat/Km of 3000 compared to the wild-type trichodiene synthase, while the C146A mutant was essentially inactive. A hybrid trichodiene synthase, constructed from amino acids 1-309 of the Fusarium sporotrichioides enzyme and amino acids 310-383 of the Gibberella pulicaris cyclase, had steady state kinetic parameters nearly identical to those of the wild-type F. sporotrichioides enzyme. From this parent hybrid, a series of mutants was constructed by site-directed mutagenesis in which the amino acids in the base-rich region, 302-306 (DRRYR), were systematically modified. Three of these mutants were overexpressed and purified to homogeneity. The importance of Arg304 for catalysis was established by the observation that the R304K mutant showed a more than 25-fold increase in Km, as well as a 200-fold reduction in kcat. In addition, analysis of the incubation products of the R304K mutant by gas chromatography-mass spectrometry (GC-MS) indicated that farnesyl diphosphate was converted not only to trichodiene but to at least two additional C15H24 hydrocarbons, mle 204. Replacement of the Tyr305 residue of trichodiene synthase with Phe had little effect on kcat, while increasing the Km by a factor of ca. 7-8.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7873527

  14. The copper active site of CBM33 polysaccharide oxygenases.

    PubMed

    Hemsworth, Glyn R; Taylor, Edward J; Kim, Robbert Q; Gregory, Rebecca C; Lewis, Sally J; Turkenburg, Johan P; Parkin, Alison; Davies, Gideon J; Walton, Paul H

    2013-04-24

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme's three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  15. Activation of muscarinic acetylcholine receptors via their allosteric binding sites.

    PubMed Central

    Jakubík, J; Bacáková, L; Lisá, V; el-Fakahany, E E; Tucek, S

    1996-01-01

    Ligands that bind to the allosteric-binding sites on muscarinic acetylcholine receptors alter the conformation of the classical-binding sites of these receptors and either diminish or increase their affinity for muscarinic agonists and classical antagonists. It is not known whether the resulting conformational change also affects the interaction between the receptors and the G proteins. We have now found that the muscarinic receptor allosteric modulators alcuronium, gallamine, and strychnine (acting in the absence of an agonist) alter the synthesis of cAMP in Chinese hamster ovary (CHO) cells expressing the M2 or the M4 subtype of muscarinic receptors in the same direction as the agonist carbachol. In addition, most of their effects on the production of inositol phosphates in CHO cells expressing the M1 or the M3 muscarinic receptor subtypes are also similar to (although much weaker than) those of carbachol. The agonist-like effects of the allosteric modulators are not observed in CHO cells that have not been transfected with the gene for any of the subtypes of muscarinic receptors. The effects of alcuronium on the formation of cAMP and inositol phosphates are not prevented by the classical muscarinic antagonist quinuclidinyl benzilate. These observations demonstrate for the first time that the G protein-mediated functional responses of muscarinic receptors can be evoked not only from their classical, but also from their allosteric, binding sites. This represents a new mechanism of receptor activation. PMID:8710935

  16. Phylobiochemical characterization of class-Ib aspartate/prephenate aminotransferases reveals evolution of the plant arogenate phenylalanine pathway.

    PubMed

    Dornfeld, Camilla; Weisberg, Alexandra J; K C, Ritesh; Dudareva, Natalia; Jelesko, John G; Maeda, Hiroshi A

    2014-07-01

    The aromatic amino acid Phe is required for protein synthesis and serves as the precursor of abundant phenylpropanoid plant natural products. While Phe is synthesized from prephenate exclusively via a phenylpyruvate intermediate in model microbes, the alternative pathway via arogenate is predominant in plant Phe biosynthesis. However, the molecular and biochemical evolution of the plant arogenate pathway is currently unknown. Here, we conducted phylogenetically informed biochemical characterization of prephenate aminotransferases (PPA-ATs) that belong to class-Ib aspartate aminotransferases (AspAT Ibs) and catalyze the first committed step of the arogenate pathway in plants. Plant PPA-ATs and succeeding arogenate dehydratases (ADTs) were found to be most closely related to homologs from Chlorobi/Bacteroidetes bacteria. The Chlorobium tepidum PPA-AT and ADT homologs indeed efficiently converted prephenate and arogenate into arogenate and Phe, respectively. A subset of AspAT Ib enzymes exhibiting PPA-AT activity was further identified from both Plantae and prokaryotes and, together with site-directed mutagenesis, showed that Thr-84 and Lys-169 play key roles in specific recognition of dicarboxylic keto (prephenate) and amino (aspartate) acid substrates. The results suggest that, along with ADT, a gene encoding prephenate-specific PPA-AT was transferred from a Chlorobi/Bacteroidetes ancestor to a eukaryotic ancestor of Plantae, allowing efficient Phe and phenylpropanoid production via arogenate in plants today.

  17. Radiation inactivation study of aminopeptidase: probing the active site

    NASA Astrophysics Data System (ADS)

    Jamadar, V. K.; Jamdar, S. N.; Mohan, Hari; Dandekar, S. P.; Harikumar, P.

    2004-04-01

    Ionizing radiation inactivated purified chicken intestinal aminopeptidase in media saturated with gases in the order N 2O>N 2>air. The D 37 values in the above conditions were 281, 210 and 198 Gy, respectively. OH radical scavengers such as t-butanol and isopropanol effectively nullified the radiation-induced damage in N 2O. The radicals (SCN) 2•-, Br 2•- and I 2•- inactivated the enzyme, pointing to the involvement of aromatic amino acids and cysteine in its catalytic activity. The enzyme exhibited fluorescence emission at 340 nm which is characteristic of tryptophan. The radiation-induced loss of activity was accompanied by a decrease in the fluorescence of the enzyme suggesting a predominant influence on tryptophan residues. The enzyme inhibition was associated with a marked increase in the Km and a decrease in the Vmax and kcat values, suggesting an irreversible alteration in the catalytic site. The above observations were confirmed by pulse radiolysis studies.

  18. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.

    PubMed

    Gutzler, Rico; Stepanow, Sebastian; Grumelli, Doris; Lingenfelder, Magalí; Kern, Klaus

    2015-07-21

    Metal-organic supramolecular chemistry on surfaces has matured to a point where its underlying growth mechanisms are well understood and structures of defined coordination environments of metal atoms can be synthesized in a controlled and reproducible procedure. With surface-confined molecular self-assembly, scientists have a tool box at hand which can be used to prepare structures with desired properties, as for example a defined oxidation number and spin state of the transition metal atoms within the organic matrix. From a structural point of view, these coordination sites in the supramolecular structure resemble the catalytically active sites of metallo-enzymes, both characterized by metal centers coordinated to organic ligands. Several chemical reactions take place at these embedded metal ions in enzymes and the question arises whether these reactions also take place using metal-organic networks as catalysts. Mimicking the active site of metal atoms and organic ligands of enzymes in artificial systems is the key to understanding the selectivity and efficiency of enzymatic reactions. Their catalytic activity depends on various parameters including the charge and spin configuration in the metal ion, but also on the organic environment, which can stabilize intermediate reaction products, inhibits catalytic deactivation, and serves mostly as a transport channel for the reactants and products and therefore ensures the selectivity of the enzyme. Charge and spin on the transition metal in enzymes depend on the one hand on the specific metal element, and on the other hand on its organic coordination environment. These two parameters can carefully be adjusted in surface confined metal-organic networks, which can be synthesized by virtue of combinatorial mixing of building synthons. Different organic ligands with varying functional groups can be combined with several transition metals and spontaneously assemble into ordered networks. The catalytically active metal

  19. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-06-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work.

  20. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    PubMed Central

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-01-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  1. Spectroscopic Definition of the Ferroxidase Site in M Ferritin: Comparison of Binuclear Substrate vs. Cofactor Active Sites

    PubMed Central

    Schwartz, Jennifer K.; Liu, Xiaofeng S.; Tosha, Takehiko; Theil, Elizabeth C.; Solomon, Edward I.

    2008-01-01

    Maxi ferritins, 24 subunit protein nanocages, are essential in humans, plants, bacteria, and other animals for the concentration and storage of iron as hydrated ferric oxide, while minimizing free radical generation or use by pathogens. Formation of the precursors to these ferric oxides is catalyzed at a non-heme biferrous substrate site, which has some parallels with the cofactor sites in other biferrous enzymes. A combination of circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD (VTVH MCD) has been used to probe Fe(II) binding to the substrate active site in frog M ferritin. These data determined that the active site within each subunit consists of two inequivalent five-coordinate (5C) ferrous centers that are weakly anti-ferromagnetically coupled, consistent with a μ-1,3 carboxylate bridge. The active site ligand set is unusual and likely includes a terminal water bound to each Fe(II) center. The Fe(II) ions bind to the active sites in a concerted manner, and cooperativity among the sites in each subunit is observed, potentially providing a mechanism for the control of ferritin iron loading. Differences in geometric and electronic structure – including a weak ligand field, availability of two water ligands at the biferrous substrate site, and the single carboxylate bridge in ferritin – coincide with the divergent reaction pathways observed between this substrate site and the previously studied cofactor active sites. PMID:18576633

  2. An active-site lysine in avian liver phosphoenolpyruvate carboxykinase

    SciTech Connect

    Guidinger, P.F.; Nowak, T. )

    1991-09-10

    The participation of lysine in the catalysis by avian liver phosphoenolpyruvate carboxykinase was studied by chemical modification and by a characterization of the modified enzyme. The rate of inactivation by 2,4-pentanedione is pseudo-first-order and linearly dependent on reagent concentration with a second-order rate constant of 0.36 {plus minus} 0.025 M{sup {minus}1} min{sup {minus}1}. Inactivation by pyridoxal 5{prime}-phosphate of the reversible reaction catalyzed by phosphoenolpyruvate carboxykinase follows bimolecular kinetics with a second-order rate constant of 7,700 {plus minus} 860 m{sup {minus}1} min{sup {minus}1}. Treatment of the enzyme or one lysine residue modified concomitant with 100% loss in activity. A stoichiometry of 1:1 is observed when either the reversible or the irreversible reactions catalyzed by the enzyme are monitored. A study of k{sub obs} vs pH suggests this active-site lysine has a pK{sub a} of 8.1 and a pH-independent rate constant of inactivation of 47,700 m{sup {minus}1} min{sup {minus}1}. Proton relaxation rate measurements suggest that pyridoxal 5{prime}-phosphate modification alters binding of the phosphate-containing substrates. {sup 31}P NMR relaxation rate measurements show altered binding of the substrates in the ternary enzyme {center dot}Mn{sup 2+}{center dot}substrate complex. Circular dichroism studies show little change in secondary structure of pyridoxal 5{prime}-phosphate modified phosphoenolpyruvate carboxykinase. These results indicate that avian liver phosphoenolpyruvate carboxykinase has one reactive lysine at the active site and it is involved in the binding and activation of the phosphate-containing substrates.

  3. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth.

  4. Eel calcitonin binding site distribution and antinociceptive activity in rats

    SciTech Connect

    Guidobono, F.; Netti, C.; Sibilia, V.; Villa, I.; Zamboni, A.; Pecile, A.

    1986-03-01

    The distribution of binding site for (/sup 125/I)-eel-calcitonin (ECT) to rat central nervous system, studied by an autoradiographic technique, showed concentrations of binding in the diencephalon, the brain stem and the spinal cord. Large accumulations of grains were seen in the hypothalamus, the amygdala, in the fasciculus medialis prosencephali, in the fasciculus longitudinalis medialis, in the ventrolateral part of the periventricular gray matter, in the lemniscus medialis and in the raphe nuclei. The density of grains in the reticular formation and in the nucleus tractus spinalis nervi trigemini was more moderate. In the spinal cord, grains were scattered throughout the dorsal horns. Binding of the ligand was displaced equally by cold ECT and by salmon CT(sCT), indicating that both peptides bind to the same receptors. Human CT was much weaker than sCT in displacing (/sup 125/I)-ECT binding. The administration of ECT into the brain ventricles of rats dose-dependently induced a significant and long-lasting enhancement of hot-plate latencies comparable with that obtained with sCT. The antinociceptive activity induced by ECT is compatible with the topographical distribution of binding sites for the peptide and is a further indication that fish CTs are active in the mammalian brain.

  5. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. PMID:26940877

  6. Modulation of N-methyl-d-aspartate receptor function by glycine transport

    PubMed Central

    Bergeron, Richard; Meyer, Torsten M.; Coyle, Joseph T.; Greene, Robert W.

    1998-01-01

    The recent discovery of glycine transporters in both the central nervous system and the periphery suggests that glycine transport may be critical to N-methyl-d-aspartate receptor (NMDAR) function by controlling glycine concentration at the NMDAR modulatory glycine site. Data obtained from whole-cell patch–clamp recordings of hippocampal pyramidal neurons, in vitro, demonstrated that exogenous glycine and glycine transporter type 1 (GLYT1) antagonist selectively enhanced the amplitude of the NMDA component of a glutamatergic excitatory postsynaptic current. The effect was blocked by 2-amino-5-phosphonovaleric acid and 7-chloro-kynurenic acid but not by strychnine. Thus, the glycine-binding site was not saturated under the control conditions. Furthermore, GLYT1 antagonist enhanced NMDAR function during perfusion with medium containing 10 μM glycine, a concentration similar to that in the cerebrospinal fluid in vivo, thereby supporting the hypothesis that the GLYT1 maintains subsaturating concentration of glycine at synaptically activated NMDAR. The enhancement of NMDAR function by specific GLYT1 antagonism may be a feasible target for therapeutic agents directed toward diseases related to hypofunction of NMDAR. PMID:9861038

  7. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    SciTech Connect

    Eren, Elif; Murphy, Megan; Goguen, Jon; van den Berg, Bert

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changes of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.

  8. Distinct Roles of the Active-site Mg2+ Ligands, Asp882 and Asp705, of DNA Polymerase I (Klenow Fragment) during the Prechemistry Conformational Transitions*

    PubMed Central

    Bermek, Oya; Grindley, Nigel D. F.; Joyce, Catherine M.

    2011-01-01

    DNA polymerases catalyze the incorporation of deoxynucleoside triphosphates into a growing DNA chain using a pair of Mg2+ ions, coordinated at the active site by two invariant aspartates, whose removal by mutation typically reduces the polymerase activity to barely detectable levels. Using two stopped-flow fluorescence assays that we developed previously, we have investigated the role of the carboxylate ligands, Asp705 and Asp882, of DNA polymerase I (Klenow fragment) in the early prechemistry steps that prepare the active site for catalysis. We find that neither carboxylate is required for an early conformational transition, reported by a 2-aminopurine probe, that takes place in the open ternary complex after binding of the complementary dNTP. However, the subsequent fingers-closing step requires Asp882; this step converts the open ternary complex into the closed conformation, creating the active-site geometry required for catalysis. Crystal structures indicate that the Asp882 position changes very little during fingers-closing; this side chain may therefore serve as an anchor point to receive the dNTP-associated metal ion as the nucleotide is delivered into the active site. The Asp705 carboxylate is not required until after the fingers-closing step, and we suggest that its role is to facilitate the entry of the second Mg2+ into the active site. The two early prechemistry steps that we have studied take place normally at very low Mg2+ concentrations, although higher concentrations are needed for covalent nucleotide addition, consistent with the second metal ion entering the ternary complex after fingers-closing. PMID:21084297

  9. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    SciTech Connect

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  10. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group.

    PubMed

    Bungard, Christopher J; Williams, Peter D; Ballard, Jeanine E; Bennett, David J; Beaulieu, Christian; Bahnck-Teets, Carolyn; Carroll, Steve S; Chang, Ronald K; Dubost, David C; Fay, John F; Diamond, Tracy L; Greshock, Thomas J; Hao, Li; Holloway, M Katharine; Felock, Peter J; Gesell, Jennifer J; Su, Hua-Poo; Manikowski, Jesse J; McKay, Daniel J; Miller, Mike; Min, Xu; Molinaro, Carmela; Moradei, Oscar M; Nantermet, Philippe G; Nadeau, Christian; Sanchez, Rosa I; Satyanarayana, Tummanapalli; Shipe, William D; Singh, Sanjay K; Truong, Vouy Linh; Vijayasaradhi, Sivalenka; Wiscount, Catherine M; Vacca, Joseph P; Crane, Sheldon N; McCauley, John A

    2016-07-14

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile. PMID:27437081

  11. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group.

    PubMed

    Bungard, Christopher J; Williams, Peter D; Ballard, Jeanine E; Bennett, David J; Beaulieu, Christian; Bahnck-Teets, Carolyn; Carroll, Steve S; Chang, Ronald K; Dubost, David C; Fay, John F; Diamond, Tracy L; Greshock, Thomas J; Hao, Li; Holloway, M Katharine; Felock, Peter J; Gesell, Jennifer J; Su, Hua-Poo; Manikowski, Jesse J; McKay, Daniel J; Miller, Mike; Min, Xu; Molinaro, Carmela; Moradei, Oscar M; Nantermet, Philippe G; Nadeau, Christian; Sanchez, Rosa I; Satyanarayana, Tummanapalli; Shipe, William D; Singh, Sanjay K; Truong, Vouy Linh; Vijayasaradhi, Sivalenka; Wiscount, Catherine M; Vacca, Joseph P; Crane, Sheldon N; McCauley, John A

    2016-07-14

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

  12. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  13. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  14. Importance of domain closure for the catalysis and regulation of Escherichia coli aspartate transcarbamoylase.

    PubMed

    Macol, Christine P; Tsuruta, Hiro; Kantrowitz, Evan R

    2002-07-26

    Two hybrid versions of Escherichia coli aspartate transcarbamoylase were studied to determine the influence of domain closure on the homotropic and heterotropic properties of the enzyme. Each hybrid holoenzyme had one wild-type and one inactive catalytic subunit. In the first case the inactive catalytic subunit had Arg-54 replaced by alanine. The holoenzyme with this mutation in all six catalytic chains exhibits a 17,000-fold reduction in activity, no loss in substrate affinity, and an R state structurally identical to that of the wild-type enzyme. In the second case, the inactive catalytic subunit had Arg-105 replaced by alanine. The holoenzyme with this mutation in all six catalytic chains exhibits a 1,100-fold reduction in activity, substantial loss in substrate affinity, and loss of the ability to be converted to the R state. Thus, the R54A substitution results in a holoenzyme that can undergo closure of the catalytic chain domains to form the high activity, high affinity active site and to undergo the allosteric transition, whereas the R105A substitution results in a holoenzyme that can neither undergo domain closure nor the allosteric transition. The hybrid holoenzyme with one wild-type and one R54A catalytic subunit exhibited the same maximal velocity per active site as the wild-type holoenzyme, reduced cooperativity, and normal heterotropic interactions. The hybrid with one wild-type and one R105A catalytic subunit exhibited significantly reduced maximal velocity per active site as compared with the wild-type holoenzyme, reduced cooperativity, and substantially reduced heterotropic interactions. Small angle x-ray scattered was used to verify that the R105A-containing hybrid could attain an R state structure. These results indicate the global nature of the conformational changes associated with the allosteric transition in the enzyme. If one catalytic subunit cannot undergo domain closure to create the active sites, then the entire molecule cannot attain the

  15. Active site loop conformation regulates promiscuous activity in a lactonase from Geobacillus kaustophilus HTA426.

    PubMed

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a "hot spot" in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity.

  16. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  17. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. PMID:25902402

  18. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.

  19. A thermostable L-aspartate oxidase: a new tool for biotechnological applications.

    PubMed

    Bifulco, Davide; Pollegioni, Loredano; Tessaro, Davide; Servi, Stefano; Molla, Gianluca

    2013-08-01

    L-Amino acid oxidases (LAAOs) are homodimeric flavin adenine dinucleotide (FAD)-containing flavoproteins that catalyze the stereospecific oxidative deamination of L-amino acids to α-keto acids, ammonia, and hydrogen peroxide. Unlike the D-selective counterpart, the biotechnological application of LAAOs has not been thoroughly advanced because of the difficulties in their expression as recombinant protein in prokaryotic hosts. In this work, L-aspartate oxidase from the thermophilic archea Sulfolobus tokodaii (StLASPO, specific for L-aspartate and L-asparagine only) was efficiently produced as recombinant protein in E. coli in the active form as holoenzyme. This recombinant flavoenzyme shows the classical properties of FAD-containing oxidases. Indeed, StLASPO shows distinctive features that makes it attractive for biotechnological applications: high thermal stability (it is fully stable up to 80 °C) and high temperature optimum, stable activity in a broad range of pH (7.0-10.0), weak inhibition by the product oxaloacetate and by D-aspartate, and tight binding of the FAD cofactor. This latter property significantly distinguishes StLASPO from the E. coli counterpart. StLASPO represents an appropriate novel biocatalyst for the production of D-aspartate and a well-suited protein scaffold to evolve a LAAO activity by protein engineering.

  20. Metals in the active site of native protein phosphatase-1.

    PubMed

    Heroes, Ewald; Rip, Jens; Beullens, Monique; Van Meervelt, Luc; De Gendt, Stefan; Bollen, Mathieu

    2015-08-01

    Protein phosphatase-1 (PP1) is a major protein Ser/Thr phosphatase in eukaryotic cells. Its activity depends on two metal ions in the catalytic site, which were identified as manganese in the bacterially expressed phosphatase. However, the identity of the metal ions in native PP1 is unknown. In this study, total reflection X-ray fluorescence (TXRF) was used to detect iron and zinc in PP1 that was purified from rabbit skeletal muscle. Metal exchange experiments confirmed that the distinct substrate specificity of recombinant and native PP1 is determined by the nature of their associated metals. We also found that the iron level associated with native PP1 is decreased by incubation with inhibitor-2, consistent with a function of inhibitor-2 as a PP1 chaperone. PMID:25890482

  1. Metavanadate at the active site of the phosphatase VHZ.

    PubMed

    Kuznetsov, Vyacheslav I; Alexandrova, Anastassia N; Hengge, Alvan C

    2012-09-01

    Vanadate is a potent modulator of a number of biological processes and has been shown by crystal structures and NMR spectroscopy to interact with numerous enzymes. Although these effects often occur under conditions where oligomeric forms dominate, the crystal structures and NMR data suggest that the inhibitory form is usually monomeric orthovanadate, a particularly good inhibitor of phosphatases because of its ability to form stable trigonal-bipyramidal complexes. We performed a computational analysis of a 1.14 Å structure of the phosphatase VHZ in complex with an unusual metavanadate species and compared it with two classical trigonal-bipyramidal vanadate-phosphatase complexes. The results support extensive delocalized bonding to the apical ligands in the classical structures. In contrast, in the VHZ metavanadate complex, the central, planar VO(3)(-) moiety has only one apical ligand, the nucleophilic Cys95, and a gap in electron density between V and S. A computational analysis showed that the V-S interaction is primarily ionic. A mechanism is proposed to explain the formation of metavanadate in the active site from a dimeric vanadate species that previous crystallographic evidence has shown to be able to bind to the active sites of phosphatases related to VHZ. Together, the results show that the interaction of vanadate with biological systems is not solely reliant upon the prior formation of a particular inhibitory form in solution. The catalytic properties of an enzyme may act upon the oligomeric forms primarily present in solution to generate species such as the metavanadate ion observed in the VHZ structure. PMID:22876963

  2. Zymogen Activation and Subcellular Activity of Subtilisin Kexin Isozyme 1/Site 1 Protease*

    PubMed Central

    da Palma, Joel Ramos; Burri, Dominique Julien; Oppliger, Joël; Salamina, Marco; Cendron, Laura; de Laureto, Patrizia Polverino; Seidah, Nabil Georges; Kunz, Stefan; Pasquato, Antonella

    2014-01-01

    The proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P) plays crucial roles in cellular homeostatic functions and is hijacked by pathogenic viruses for the processing of their envelope glycoproteins. Zymogen activation of SKI-1/S1P involves sequential autocatalytic processing of its N-terminal prodomain at sites B′/B followed by the herein newly identified C′/C sites. We found that SKI-1/S1P autoprocessing results in intermediates whose catalytic domain remains associated with prodomain fragments of different lengths. In contrast to other zymogen proprotein convertases, all incompletely matured intermediates of SKI-1/S1P showed full catalytic activity toward cellular substrates, whereas optimal cleavage of viral glycoproteins depended on B′/B processing. Incompletely matured forms of SKI-1/S1P further process cellular and viral substrates in distinct subcellular compartments. Using a cell-based sensor for SKI-1/S1P activity, we found that 9 amino acid residues at the cleavage site (P1–P8) and P1′ are necessary and sufficient to define the subcellular location of processing and to determine to what extent processing of a substrate depends on SKI-1/S1P maturation. In sum, our study reveals novel and unexpected features of SKI-1/S1P zymogen activation and subcellular specificity of activity toward cellular and pathogen-derived substrates. PMID:25378398

  3. Neutralizing Aspartate 83 Modifies Substrate Translocation of Excitatory Amino Acid Transporter 3 (EAAT3) Glutamate Transporters*

    PubMed Central

    Hotzy, Jasmin; Machtens, Jan-Philipp; Fahlke, Christoph

    2012-01-01

    Excitatory amino acid transporters (EAATs) terminate glutamatergic synaptic transmission by removing glutamate from the synaptic cleft into neuronal and glial cells. EAATs are not only secondary active glutamate transporters but also function as anion channels. Gating of EAAT anion channels is tightly coupled to transitions within the glutamate uptake cycle, resulting in Na+- and glutamate-dependent anion currents. A point mutation neutralizing a conserved aspartic acid within the intracellular loop close to the end of transmembrane domain 2 was recently shown to modify the substrate dependence of EAAT anion currents. To distinguish whether this mutation affects transitions within the uptake cycle or directly modifies the opening/closing of the anion channel, we used voltage clamp fluorometry. Using three different sites for fluorophore attachment, V120C, M205C, and A430C, we observed time-, voltage-, and substrate-dependent alterations of EAAT3 fluorescence intensities. The voltage and substrate dependence of fluorescence intensities can be described by a 15-state model of the transport cycle in which several states are connected to branching anion channel states. D83A-mediated changes of fluorescence intensities, anion currents, and secondary active transport can be explained by exclusive modifications of substrate translocation rates. In contrast, sole modification of anion channel opening and closing is insufficient to account for all experimental data. We conclude that D83A has direct effects on the glutamate transport cycle and that these effects result in changed anion channel function. PMID:22532568

  4. Biomimetic study of the Ca(2+)-Mg2+ and K(+)-Li+ antagonism on biologically active sites: new methodology to study potential dependent ion exchange.

    PubMed

    Paczosa-Bator, Beata; Stepien, Milena; Maj-Zurawska, Magdalena; Lewenstam, Andrzej

    2009-03-01

    Competitive divalent (magnesium and calcium) or monovalent (potassium, lithium and sodium) ion exchange and its influence on a membrane potential formation was studied at biological ligands (BL) such as adenosine triphosphate (ATP), asparagine (Asn) and glutamine (Gln) sites. The sites are dispersed electrochemically in membranes made of the conducting polymers (CPs)--poly(N-methylpyrrole) (PMPy) and poly(pyrrole) (PPy). The membranes are made sensitive to calcium and magnesium or to potassium, sodium and lithium by optimized electrodeposition and soaking procedures supported by the study of membrane topography and morphology. Distinctively different electrochemical responses, i.e. electrical potential transients or currents, are observed in the case of "antagonistic" calcium and magnesium or potassium and sodium/lithium ion pairs. Dissimilarity in the responses is ascribed to a difference between on site vs. bulk concentrations of ions, and is dictated by different transport properties of the ions, as shown by using the Nernst-Planck-Poisson (NPP) model and the diffusion-layer model (DLM). The method described allows inspecting potential-dependent competitive ion-exchange processes at the biologically active sites. It is suggested that this approach could be used as an auxiliary tool in study of potential dependent block in realistic membrane channels, such as Mg block in the N-methyl D-aspartate receptor channel (NMDA).

  5. Medial temporal N-acetyl aspartate in pediatric major depression

    PubMed Central

    MacMaster, Frank P.; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S. Preeya; Buhagiar, Christian; Rosenberg, David R.

    2008-01-01

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD-case control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  6. Medial temporal N-acetyl-aspartate in pediatric major depression.

    PubMed

    MacMaster, Frank P; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S Preeya; Buhagiar, Christian; Rosenberg, David R

    2008-10-30

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD case-control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in the left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  7. An Aspartic Protease of the Scabies Mite Sarcoptes scabiei Is Involved in the Digestion of Host Skin and Blood Macromolecules

    PubMed Central

    Mahmood, Wajahat; Viberg, Linda T.; Fischer, Katja; Walton, Shelley F.; Holt, Deborah C.

    2013-01-01

    Background Scabies is a disease of worldwide significance, causing considerable morbidity in both humans and other animals. The scabies mite Sarcoptes scabiei burrows into the skin of its host, obtaining nutrition from host skin and blood. Aspartic proteases mediate a range of diverse and essential physiological functions such as tissue invasion and migration, digestion, moulting and reproduction in a number of parasitic organisms. We investigated whether aspartic proteases may play role in scabies mite digestive processes. Methodology/Principle Findings We demonstrated the presence of aspartic protease activity in whole scabies mite extract. We then identified a scabies mite aspartic protease gene sequence and produced recombinant active enzyme. The recombinant scabies mite aspartic protease was capable of digesting human haemoglobin, serum albumin, fibrinogen and fibronectin, but not collagen III or laminin. This is consistent with the location of the scabies mites in the upper epidermis of human skin. Conclusions/Significance The development of novel therapeutics for scabies is of increasing importance given the evidence of emerging resistance to current treatments. We have shown that a scabies mite aspartic protease plays a role in the digestion of host skin and serum molecules, raising the possibility that interference with the function of the enzyme may impact on mite survival. PMID:24244770

  8. Function of aspartic acid residues in optimum pH control of L-arabinose isomerase from Lactobacillus fermentum.

    PubMed

    Xu, Zheng; Li, Sha; Feng, Xiaohai; Zhan, Yijing; Xu, Hong

    2014-05-01

    L-Arabinose isomerase (L-AI) catalyzes the isomerization of L-arabinose to L-ribulose and D-galactose to D-tagatose. Most reported L-AIs exhibit neutral or alkaline optimum pH, which is less beneficial than acidophilic ones in industrial D-tagatose production. Lactobacillus fermentum L-AI (LFAI) is a thermostable enzyme that can achieve a high conversion rate for D-galactose isomerization. However, its biocatalytic activity at acidic conditions can still be further improved. In this study, we report the single- and multiple-site mutagenesis on LFAI targeting three aspartic acid residues (D268, D269, and D299). Some of the lysine mutants, especially D268K/D269K/D299K, exhibited significant optimum pH shifts (from 6.5 to 5.0) and enhancement of pH stability (half-life time increased from 30 to 62 h at pH 6.0), which are more favorable for industrial applications. With the addition of borate, D-galactose was isomerized into D-tagatose by D268K/D269K/D299K at pH 5.0, resulting in a high conversion rate of 62 %. Based on the obtained 3.2-Å crystal structure of LFAI, the three aspartic acid residues were found to be distant from the active site and possibly did not participate in substrate catalysis. However, they were proven to possess similar optimum pH control ability in other L-AI, such as that derived from Escherichia coli. This study sheds light on the essential residues of L-AIs that can be modified for desired optimum pH and better pH stability, which are useful in D-tagatose bioproduction.

  9. Anticonvulsant effects of phencyclidine-like drugs: relation to N-methyl-D-aspartic acid antagonism.

    PubMed

    Leander, J D; Rathbun, R C; Zimmerman, D M

    1988-06-28

    Various compounds that have been identified in the literature as binding to the [3H]phencyclidine receptor site and as producing behavioral effects similar to phencyclidine (phencyclidine-like) protected mice from maximal electric shock-induced tonic-extensor seizures. These anticonvulsant effects appear to be due to blockade of the N-methyl-D-aspartic acid receptor, as recently reported for phencyclidine-like compounds. Phencyclidine-like compounds produced their anticonvulsant effects at doses that were also neurologically impairing.

  10. Characterization of recombinant CDR1, an Arabidopsis aspartic proteinase involved in disease resistance.

    PubMed

    Simões, Isaura; Faro, Rosário; Bur, Daniel; Faro, Carlos

    2007-10-26

    The Arabidopsis thaliana constitutive disease resistance 1 (CDR1) gene product is an aspartic proteinase that has been implicated in disease resistance signaling (Xia, Y., Suzuki, H., Borevitz, J., Blount, J., Guo, Z., Patel, K., Dixon, R. A., and Lamb, C. (2004) EMBO J. 23, 980-988). This apoplastic enzyme is a member of the group of "atypical" plant aspartic proteinases. As for other enzymes of this subtype, CDR1 has remained elusive until recently as a result of its unusual properties and localization. Here we report on the heterologous expression and characterization of recombinant CDR1, which displays unique enzymatic properties among plant aspartic proteinases. The highly restricted specificity requirements, insensitivity toward the typical aspartic proteinase inhibitor pepstatin A, an unusually high optimal pH of 6.0-6.5, proteinase activity without irreversible prosegment removal, and dependence of catalytic activity on formation of a homo-dimer are some of the unusual properties observed for recombinant CDR1. These findings unveil a pattern of unprecedented functional complexity for Arabidopsis CDR1 and are consistent with a highly specific and regulated biological function. PMID:17650510

  11. Site-specific PEGylation of lidamycin and its antitumor activity.

    PubMed

    Li, Liang; Shang, Boyang; Hu, Lei; Shao, Rongguang; Zhen, Yongsu

    2015-05-01

    In this study, N-terminal site-specific mono-PEGylation of the recombinant lidamycin apoprotein (rLDP) of lidamycin (LDM) was prepared using a polyethyleneglycol (PEG) derivative (M w 20 kDa) through a reactive terminal aldehyde group under weak acidic conditions (pH 5.5). The biochemical properties of mPEG-rLDP-AE, an enediyne-integrated conjugate, were analyzed by SDS-PAGE, RP-HPLC, SEC-HPLC and MALDI-TOF. Meanwhile, in vitro and in vivo antitumor activity of mPEG-rLDP-AE was evaluated by MTT assays and in xenograft model. The results indicated that mPEG-rLDP-AE showed significant antitumor activity both in vitro and in vivo. After PEGylation, mPEG-rLDP still retained the binding capability to the enediyne AE and presented the physicochemical characteristics similar to that of native LDP. It is of interest that the PEGylation did not diminish the antitumor efficacy of LDM, implying the possibility that this derivative may function as a payload to deliver novel tumor-targeted drugs. PMID:26579455

  12. Hybrid [FeFe]-hydrogenases with modified active sites show remarkable residual enzymatic activity.

    PubMed

    Siebel, Judith F; Adamska-Venkatesh, Agnieszka; Weber, Katharina; Rumpel, Sigrun; Reijerse, Edward; Lubitz, Wolfgang

    2015-02-24

    [FeFe]-hydrogenases are to date the only enzymes for which it has been demonstrated that the native inorganic binuclear cofactor of the active site Fe2(adt)(CO)3(CN)2 (adt = azadithiolate = [S-CH2-NH-CH2-S](2-)) can be synthesized on the laboratory bench and subsequently inserted into the unmaturated enzyme to yield fully functional holo-enzyme (Berggren, G. et al. (2013) Nature 499, 66-70; Esselborn, J. et al. (2013) Nat. Chem. Biol. 9, 607-610). In the current study, we exploit this procedure to introduce non-native cofactors into the enzyme. Mimics of the binuclear subcluster with a modified bridging dithiolate ligand (thiodithiolate, N-methylazadithiolate, dimethyl-azadithiolate) and three variants containing only one CN(-) ligand were inserted into the active site of the enzyme. We investigated the activity of these variants for hydrogen oxidation as well as proton reduction and their structural accommodation within the active site was analyzed using Fourier transform infrared spectroscopy. Interestingly, the monocyanide variant with the azadithiolate bridge showed ∼50% of the native enzyme activity. This would suggest that the CN(-) ligands are not essential for catalytic activity, but rather serve to anchor the binuclear subsite inside the protein pocket through hydrogen bonding. The inserted artificial cofactors with a propanedithiolate and an N-methylazadithiolate bridge as well as their monocyanide variants also showed residual activity. However, these activities were less than 1% of the native enzyme. Our findings indicate that even small changes in the dithiolate bridge of the binuclear subsite lead to a rather strong decrease of the catalytic activity. We conclude that both the Brønsted base function and the conformational flexibility of the native azadithiolate amine moiety are essential for the high catalytic activity of the native enzyme. PMID:25633077

  13. Molecular cloning and characterization of the pyrB1 and pyrB2 genes encoding aspartate transcarbamoylase in pea (Pisum sativum L.).

    PubMed

    Williamson, C L; Slocum, R D

    1994-05-01

    We cloned cDNAs encoding two different pea (Pisum sativum L.) aspartate transcarbamoylases (ATCases) by complementation of an Escherichia coli delta pyrB mutant. The two cDNAs, designated pyrB1 and pyrB2, encode polypeptides of 386 and 385 amino acid residues, respectively, both of which exhibit typical chloroplast transit peptide sequences. Wheat germ ATCase antibody recognizes a 36.5-kD polypeptide in pea leaf and root tissues that is similar in size to other plant ATCase polypeptides and to the catalytic polypeptides of bacterial ATCases. Northern analyses indicate that the pyrB1 and pyrB2 transcripts are 1.6 kb in size and are differentially expressed in pea tissues. The small transcript size and data from biochemical studies indicate that plant ATCases are simple homotrimers of 36- to 37-kD catalytic subunits, rather than part of a multifunctional enzyme containing glutamine-dependent carbamoylphosphate synthetase and dihydroorotase activities, as is seen in other eukaryotes. In the pea ATCases, the carbamoylphosphate- and aspartate-binding domains are highly homologous to those of other prokaryotic and eukaryotic ATCases and critical active-site residues are completely conserved. The pea ATCases also exhibit a putative pyrimidine-binding site, consistent with the known allosteric regulation of plant ATCases by UMP in vitro. PMID:8029359

  14. Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?

    SciTech Connect

    Onstott, T. C.; Aubrey, A.D.; Kieft, T L; Silver, B J; Phelps, Tommy Joe; Van Heerden, E.; Opperman, D. J.; Bada, J L.

    2014-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of ~89 years for 1 km depth and 27 C and 1 2 years for 3 km depth and 54 C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.

  15. Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?

    PubMed

    Onstott, T C; Magnabosco, C; Aubrey, A D; Burton, A S; Dworkin, J P; Elsila, J E; Grunsfeld, S; Cao, B H; Hein, J E; Glavin, D P; Kieft, T L; Silver, B J; Phelps, T J; van Heerden, E; Opperman, D J; Bada, J L

    2014-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of ~89 years for 1 km depth and 27 °C and 1-2 years for 3 km depth and 54 °C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 °C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.

  16. Does Aspartic Acid Racemization Constrain the Depth Limit of the Subsurface Biosphere?

    NASA Technical Reports Server (NTRS)

    Onstott, T C.; Magnabosco, C.; Aubrey, A. D.; Burton, A. S.; Dworkin, J. P.; Elsila, J. E.; Grunsfeld, S.; Cao, B. H.; Hein, J. E.; Glavin, D. P.; Kieft, T. L.; Silver, B. J.; Phelps, T. J.; Heerden, E. Van; Opperman, D. J.; Bada, J. L.

    2013-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of approximately 89 years for 1 km depth and 27 C and 1-2 years for 3 km depth and 54 C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.

  17. Immobilized cells of recombinant Escherichia coli strain for continuous production of L-aspartic acid.

    PubMed

    Szymańska, Grazyna; Sobierajski, Bogusław; Chmiel, Aleksander

    2011-01-01

    For L-aspartic acid biosynthesis, high production cells of Escherichia coli mutant B-715 and P1 were immobilized in chitosan gel using a technique developed in our laboratory. The immobilization process reduced initial activity of the intact cells, however, the biocatalyst produced was very stabile for long-term use in multi-repeated batch or continuous processes. Temperature influence on the conversion of ammonium fumarate to L-aspartic acid was investigated. In long-term experiments, over 603 hours, the temperature 40 degrees C was found to be the best for both biocatalyst stability and high conversion rate. The optimum substrate concentration was 1.0 M. Continuous production of L-aspartic acid was investigated in three types of column bioreactors characterized by different volumes as well as different high to biocatalyst bed volume rations (Hz/Vz). The highest conversion rate, 99.8%, and the productivity 6 g/g/h (mass of L-aspartic acid per dry mass of cells in biocatalyst per time unit) was achieved in the bioreactor with the highest value Hz/Vz = 3.1, and liquid hour space velocity value of 5.2, defined as the volume of feeding substrate passed per volume of catalyst in bioreactor per one hour. PMID:21905626

  18. Discovery of HIV Type 1 Aspartic Protease Hit Compounds through Combined Computational Approaches.

    PubMed

    Xanthopoulos, Dimitrios; Kritsi, Eftichia; Supuran, Claudiu T; Papadopoulos, Manthos G; Leonis, Georgios; Zoumpoulakis, Panagiotis

    2016-08-01

    A combination of computational techniques and inhibition assay experiments was employed to identify hit compounds from commercial libraries with enhanced inhibitory potency against HIV type 1 aspartic protease (HIV PR). Extensive virtual screening with the aid of reliable pharmacophore models yielded five candidate protease inhibitors. Subsequent molecular dynamics and molecular mechanics Poisson-Boltzmann surface area free-energy calculations for the five ligand-HIV PR complexes suggested a high stability of the systems through hydrogen-bond interactions between the ligands and the protease's flaps (Ile50/50'), as well as interactions with residues of the active site (Asp25/25'/29/29'/30/30'). Binding-energy calculations for the three most promising compounds yielded values between -5 and -10 kcal mol(-1) and suggested that van der Waals interactions contribute most favorably to the total energy. The predicted binding-energy values were verified by in vitro inhibition assays, which showed promising results in the high nanomolar range. These results provide structural considerations that may guide further hit-to-lead optimization toward improved anti-HIV drugs. PMID:27411556

  19. Discovery of HIV Type 1 Aspartic Protease Hit Compounds through Combined Computational Approaches.

    PubMed

    Xanthopoulos, Dimitrios; Kritsi, Eftichia; Supuran, Claudiu T; Papadopoulos, Manthos G; Leonis, Georgios; Zoumpoulakis, Panagiotis

    2016-08-01

    A combination of computational techniques and inhibition assay experiments was employed to identify hit compounds from commercial libraries with enhanced inhibitory potency against HIV type 1 aspartic protease (HIV PR). Extensive virtual screening with the aid of reliable pharmacophore models yielded five candidate protease inhibitors. Subsequent molecular dynamics and molecular mechanics Poisson-Boltzmann surface area free-energy calculations for the five ligand-HIV PR complexes suggested a high stability of the systems through hydrogen-bond interactions between the ligands and the protease's flaps (Ile50/50'), as well as interactions with residues of the active site (Asp25/25'/29/29'/30/30'). Binding-energy calculations for the three most promising compounds yielded values between -5 and -10 kcal mol(-1) and suggested that van der Waals interactions contribute most favorably to the total energy. The predicted binding-energy values were verified by in vitro inhibition assays, which showed promising results in the high nanomolar range. These results provide structural considerations that may guide further hit-to-lead optimization toward improved anti-HIV drugs.

  20. Characterization of the active site of chloroperoxidase using physical techniques

    SciTech Connect

    Hall, K.S.

    1986-01-01

    Chloroperoxidase (CPO) and Cytochrome P-450, two very different hemeproteins, have been shown to have similar active sites by several techniques. Recent work has demonstrated thiolate ligation from a cysteine residue to the iron in P-450. A major portion of this research has been devoted to obtaining direct evidence that CPO also has a thiolate 5th ligand from a cysteine residue. This information will provide the framework for a detailed analysis of the structure-function relationships between peroxidases, catalase and cytochrome P-450 hemeproteins. To determine whether the 5th ligand is a cysteine, methionine or a unique amino acid, specific isotope enrichment experiments were used. Preliminary /sup 1/H-NMR studies show that the carbon monoxide-CPO complex has a peak in the upfield region corresponding to alpha-protons of a thiolate amino acid. C. fumago was grown on 95% D/sub 2/O media with a small amount of /sup 1/H-cysteine added. Under these conditions C. fumago slows down the biosynthesis of cysteine by at least 50% and utilizes the exogenous cysteine in the media. GC-MS was able to show that the methylene protons next to the sulfur atom in cysteine are 80-90% protonated while these positions in methionine are approximately 73% deuterated. Comparison of the /sup 1/H-NMR spectra of CO-CPO and CO-CPO indicate the presence of a cysteine ligand in chloroperoxidase.

  1. N6-Methyldeoxyadenosine Marks Active Transcription Start Sites in Chlamydomonas

    PubMed Central

    Chen, Kai; Deng, Xin; Yu, Miao; Han, Dali; Hao, Ziyang; Liu, Jianzhao; Lu, Xingyu; Dore, Louis C; Weng, Xiaocheng; Ji, Quanjiang; Mets, Laurens; He, Chuan

    2015-01-01

    SUMMARY N6-methyldeoxyadenosine (6mA or m6A) is a DNA modification preserved in prokaryotes to eukaryotes. It is widespread in bacteria, and functions in DNA mismatch repair, chromosome segregation, and virulence regulation. In contrast, the distribution and function of 6mA in eukaryotes have been unclear. Here we present a comprehensive analysis of the 6mA landscape in the genome of Chlamydomonas using new sequencing approaches. We identified the 6mA modification in 84% of genes in Chlamydomonas. We found that 6mA mainly locates at ApT dinucleotides around transcription start sites (TSS) with a bimodal distribution, and appears to mark active genes. A periodic pattern of 6mA deposition was also observed at base resolution, which is associated with nucleosome distribution near the TSS, suggesting a possible role in nucleosome positioning. The new genome-wide mapping of 6mA and its unique distribution in the Chlamydomonas genome suggest potential regulatory roles of 6mA in gene expression in eukaryotic organisms. PMID:25936837

  2. Detection limit for activation measurements in ultralow background sites

    NASA Astrophysics Data System (ADS)

    Trache, Livius; Chesneanu, D.; Margineanu, R.; Pantelica, A.; Ghita, D. G.; Burducea, I.; Straticiuc, M.; Tang, X. D.

    2014-09-01

    We used 12C +13C fusion at the beam energies E = 6, 7 and 8 MeV to determine the sensitivity and the limits of activation method measurements in ultralow background sites. A 13C beam of 0.5 μA from the 3 MV Tandem accelerator of the Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH impinged on thick graphite targets. After about 24 hrs of irradiation targets were measured in two different laboratories: one with a heavy shielded Ge detector in the institute (at the surface) and one located underground in the microBequerel laboratory, in the salt mine of Slanic-Prahova, Romania. The 1369- and 2754 keV peaks from 24Na deactivation were clearly observed in the γ-ray spectra obtained for acquisitions lasting a few hours, or a few days. Determination of the detection limit in evaluating the cross sections for the target irradiated at Ec . m = 3 MeV indicates the fact that it is possible to measure gamma spectrum in underground laboratory down to Ec . m = 2 . 6 MeV. Cleaning the spectra with beta-gamma coincidences and increasing beam intensity 20 times will take as further down. The measurements are motivated by the study of the 12 C +12 C reaction at astrophysical energies.

  3. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. PMID:25727891

  4. A proposed definition of the 'activity' of surface sites on lactose carriers for dry powder inhalation.

    PubMed

    Grasmeijer, Floris; Frijlink, Henderik W; de Boer, Anne H

    2014-06-01

    A new definition of the activity of surface sites on lactose carriers for dry powder inhalation is proposed which relates to drug detachment during dispersion. The new definition is expected to improve the understanding of 'carrier surface site activity', which stimulates the unambiguous communication about this subject and may aid in the rational design and interpretation of future formulation studies. In contrast to the currently prevailing view on carrier surface site activity, it follows from the newly proposed definition that carrier surface site activity depends on more variables than just the physicochemical properties of the carrier surface. Because the term 'active sites' is ambiguous, it is recommended to use the term 'highly active sites' instead to denote carrier surface sites with a relatively high activity. PMID:24613490

  5. Long-term potentiation and the role of N-methyl-D-aspartate receptors.

    PubMed

    Volianskis, Arturas; France, Grace; Jensen, Morten S; Bortolotto, Zuner A; Jane, David E; Collingridge, Graham L

    2015-09-24

    N-methyl-D-aspartate receptors (NMDARs) are known for their role in the induction of long-term potentiation (LTP). Here we start by reviewing the early evidence for their role in LTP at CA1 synapses in the hippocampus. We then discuss more recent evidence that NMDAR dependent synaptic plasticity at these synapses can be separated into mechanistically distinct components. An initial phase of the synaptic potentiation, which is generally termed short-term potentiation (STP), decays in an activity-dependent manner and comprises two components that differ in their kinetics and NMDAR subtype dependence. The faster component involves activation of GluN2A and GluN2B subunits whereas the slower component involves activation of GluN2B and GluN2D subunits. The stable phase of potentiation, commonly referred to as LTP, requires activation of primarily triheteromeric NMDARs containing both GluN2A and GluN2B subunits. In new work, we compare STP with a rebound potentiation (RP) that is induced by NMDA application and conclude that they are different phenomena. We also report that NMDAR dependent long-term depression (NMDAR-LTD) is sensitive to a glycine site NMDAR antagonist. We conclude that NMDARs are not synonymous for either LTP or memory. Whilst important for the induction of LTP at many synapses in the CNS, not all forms of LTP require the activation of NMDARs. Furthermore, NMDARs mediate the induction of other forms of synaptic plasticity and are important for synaptic transmission. It is, therefore, not possible to equate NMDARs with LTP though they are intimately linked. This article is part of a Special Issue entitled SI: Brain and Memory.

  6. Long-term potentiation and the role of N-methyl-d-aspartate receptors

    PubMed Central

    Volianskis, Arturas; France, Grace; Jensen, Morten S.; Bortolotto, Zuner A.; Jane, David E.; Collingridge, Graham L.

    2015-01-01

    N-methyl-d-aspartate receptors (NMDARs) are known for their role in the induction of long-term potentiation (LTP). Here we start by reviewing the early evidence for their role in LTP at CA1 synapses in the hippocampus. We then discuss more recent evidence that NMDAR dependent synaptic plasticity at these synapses can be separated into mechanistically distinct components. An initial phase of the synaptic potentiation, which is generally termed short-term potentiation (STP), decays in an activity-dependent manner and comprises two components that differ in their kinetics and NMDAR subtype dependence. The faster component involves activation of GluN2A and GluN2B subunits whereas the slower component involves activation of GluN2B and GluN2D subunits. The stable phase of potentiation, commonly referred to as LTP, requires activation of primarily triheteromeric NMDARs containing both GluN2A and GluN2B subunits. In new work, we compare STP with a rebound potentiation (RP) that is induced by NMDA application and conclude that they are different phenomena. We also report that NMDAR dependent long-term depression (NMDAR-LTD) is sensitive to a glycine site NMDAR antagonist. We conclude that NMDARs are not synonymous for either LTP or memory. Whilst important for the induction of LTP at many synapses in the CNS, not all forms of LTP require the activation of NMDARs. Furthermore, NMDARs mediate the induction of other forms of synaptic plasticity and are important for synaptic transmission. It is, therefore, not possible to equate NMDARs with LTP though they are intimately linked. This article is part of a Special Issue entitled SI: Brain and Memory. PMID:25619552

  7. Conservative Tryptophan Mutants of the Protein Tyrosine Phosphatase YopH Exhibit Impaired WPD-Loop Function and Crystallize with Divanadate Esters in Their Active Sites

    PubMed Central

    Moise, Gwendolyn; Gallup, Nathan M.; Alexandrova, Anastassia N.; Hengge, Alvan C.; Johnson, Sean J.

    2016-01-01

    Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution. PMID:26445170

  8. Conservative tryptophan mutants of the protein tyrosine phosphatase YopH exhibit impaired WPD-loop function and crystallize with divanadate esters in their active sites.

    PubMed

    Moise, Gwendolyn; Gallup, Nathan M; Alexandrova, Anastassia N; Hengge, Alvan C; Johnson, Sean J

    2015-10-27

    Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution. PMID:26445170

  9. Recombinant expression, purification and crystallographic studies of the mature form of human mitochondrial aspartate aminotransferase.

    PubMed

    Jiang, Xiuping; Wang, Jia; Chang, Haiyang; Zhou, Yong

    2016-02-01

    Mitochondrial aspartate aminotransferase (mAspAT) was recognized as a moonlighting enzyme because it has not only aminotransferase activity but also a high-affinity long-chain fatty acids (LCFA) binding site. This enzyme plays a key role in amino acid metabolism, biosynthesis of kynurenic acid and transport of the LCFA. Therefore, it is important to study the structure-function relationships of human mAspAT protein. In this work, the mature form of human mAspAT was expressed to a high level in Escherichia coli periplasmic space using pET-22b vector, purified by a combination of immobilized metal-affinity chromatography and cation exchange chromatography. Optimal activity of the enzyme occurred at a temperature of 47.5ºC and a pH of 8.5. Crystals of human mAspAT were grown using the hanging-drop vapour diffusion method at 277K with 0.1 M HEPES pH 6.8 and 25%(v/v) Jeffamine(®) ED-2001 pH 6.8. The crystals diffracted to 2.99 Å and belonged to the space group P1 with the unit-cell parameters a =56.7, b = 76.1, c = 94.2 Å, α =78.0, β =85.6, γ = 78.4º. Elucidation of mAspAT structure can provide a molecular basis towards understanding catalysis mechanism and substrate binding site of enzyme. PMID:26902786

  10. The crystal structure of the Rv0301-Rv0300 VapBC-3 toxin-antitoxin complex from M. tuberculosis reveals a Mg2+ ion in the active site and a putative RNA-binding site

    SciTech Connect

    Min, Andrew B; Miallau, Linda; Sawaya, Michael R; Habel, Jeff; Cascio, Duilio; Eisenberg, David

    2013-01-10

    VapBC pairs account for 45 out of 88 identified toxin-antitoxin (TA) pairs in the Mycobacterium tuberculosis (Mtb) H37Rv genome. A working model suggests that under times of stress, antitoxin molecules are degraded, releasing the toxins to slow the metabolism of the cell, which in the case of VapC toxins is via their RNase activity. Otherwise the TA pairs remain bound to their promoters, autoinhibiting transcription. The crystal structure of Rv0301-Rv0300, an Mtb VapBC TA complex determined at 1.49 Å resolution, suggests a mechanism for these three functions: RNase activity, its inhibition by antitoxin, and its ability to bind promoter DNA. The Rv0301 toxin consists of a core of five parallel beta strands flanked by alpha helices. Three proximal aspartates coordinate a Mg2+ ion forming the putative RNase active site. The Rv0300 antitoxin monomer is extended in structure, consisting of an N-terminal beta strand followed by four helices. The last two helices wrap around the toxin and terminate near the putative RNase active site, but with different conformations. In one conformation, the C-terminal arginine interferes with Mg2+ ion coordination, suggesting a mechanism by which the antitoxin can inhibit toxin activity. At the N-terminus of the antitoxin, two pairs of Ribbon-Helix-Helix (RHH) motifs are related by crystallographic twofold symmetry. The resulting hetero-octameric complex is similar to the FitAB system, but the two RHH motifs are about 30 Å closer together in the Rv0301-Rv0300 complex, suggesting either a different span of the DNA recognition sequence or a conformational change.

  11. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  12. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  13. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  14. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  15. 10 CFR 63.16 - Review of site characterization activities. 2

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Preapplication Review § 63.16 Review of... conduct of site characterization activities at the Yucca Mountain site, DOE shall report the nature and... activities at the Yucca Mountain site, NRC staff shall be permitted to visit and inspect the locations...

  16. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    PubMed

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  17. GAS HYDRATES AT TWO SITES OF AN ACTIVE CONTINENTAL MARGIN.

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Sediment containing gas hydrates from two distant Deep Sea Drilling Project sites (565 and 568), located about 670 km apart on the landward flank of the Middle America Trench, was studied to determine the geochemical conditions that characterize the occurrence of gas hydrates. Site 565 was located in the Pacific Ocean offshore the Nicoya Peninsula of Costa Rica in 3,111 m of water. The depth of the hole at this site was 328 m, and gas hydrates were recovered from 285 and 319 m. Site 568 was located about 670 km to the northwest offshore Guatemala in 2,031 m of water. At this site the hole penetrated to 418 m, and gas hydrates were encountered at 404 m.

  18. Control of active sites in selective flocculation: III -- Mechanism of site blocking

    SciTech Connect

    Behl, S.; Moudgil, B.M. . Dept. of Materials Science and Engineering)

    1993-12-01

    It has been shown in Parts I and II of this paper that heteroflocculation can be controlled by poisoning the sites for flocculant adsorption using a site blocking agent (SBA). An efficient SBA was determined to be the lower molecular weight fraction of the flocculant. In this paper, the underlying mechanism of SBA action is described. Also, the mathematical model detailed in Part I is used to determine the effect of different SBAs on apatite-dolomite separation efficiency. It has been demonstrated that the depression in flocculation is directly related to the site blocking parameter ([bar [Phi

  19. Dynamically achieved active site precision in enzyme catalysis.

    PubMed

    Klinman, Judith P

    2015-02-17

    CONSPECTUS: The grand challenge in enzymology is to define and understand all of the parameters that contribute to enzymes' enormous rate accelerations. The property of hydrogen tunneling in enzyme reactions has moved the focus of research away from an exclusive focus on transition state stabilization toward the importance of the motions of the heavy atoms of the protein, a role for reduced barrier width in catalysis, and the sampling of a protein conformational landscape to achieve a family of protein substates that optimize enzyme-substrate interactions and beyond. This Account focuses on a thermophilic alcohol dehydrogenase for which the chemical step of hydride transfer is rate determining across a wide range of experimental conditions. The properties of the chemical coordinate have been probed using kinetic isotope effects, indicating a transition in behavior below 30 °C that distinguishes nonoptimal from optimal C-H activation. Further, the introduction of single site mutants has the impact of either enhancing or eliminating the temperature dependent transition in catalysis. Biophysical probes, which include time dependent hydrogen/deuterium exchange and fluorescent lifetimes and Stokes shifts, have also been pursued. These studies allow the correlation of spatially resolved transitions in protein motions with catalysis. It is now possible to define a long-range network of protein motions in ht-ADH that extends from a dimer interface to the substrate binding domain across to the cofactor binding domain, over a distance of ca. 30 Å. The ongoing challenge to obtaining spatial and temporal resolution of catalysis-linked protein motions is discussed.

  20. Lethal Factor Active-Site Mutations Affect Catalytic Activity In Vitro

    PubMed Central

    Hammond, S. E.; Hanna, P. C.

    1998-01-01

    The lethal factor (LF) protein of Bacillus anthracis lethal toxin contains the thermolysin-like active-site and zinc-binding consensus motif HEXXH (K. R. Klimpel, N. Arora, and S. H. Leppla, Mol. Microbiol. 13:1093–1100, 1994). LF is hypothesized to act as a Zn2+ metalloprotease in the cytoplasm of macrophages, but no proteolytic activities have been previously shown on any target substrate. Here, synthetic peptides are hydrolyzed by LF in vitro. Mass spectroscopy and peptide sequencing of isolated cleavage products separated by reverse-phase high-pressure liquid chromatography indicate that LF seems to prefer proline-containing substrates. Substitution mutations within the consensus active-site residues completely abolish all in vitro catalytic functions, as does addition of 1,10-phenanthroline, EDTA, and certain amino acid hydroxamates, including the novel zinc metalloprotease inhibitor ZINCOV. In contrast, the protease inhibitors bestatin and lysine CMK, previously shown to block LF activity on macrophages, did not block LF activity in vitro. These data provide the first direct evidence that LF may act as an endopeptidase. PMID:9573135

  1. Crystallization and preliminary X-ray diffraction analysis of the periplasmic domain of the Escherichia coli aspartate receptor Tar and its complex with aspartate

    SciTech Connect

    Mise, Takeshi; Matsunami, Hideyuki; Samatey, Fadel A.; Maruyama, Ichiro N.

    2014-08-27

    The periplasmic domain of the E. coli aspartate receptor Tar was cloned, expressed, purified and crystallized with and without bound ligand. The crystals obtained diffracted to resolutions of 1.58 and 1.95 Å, respectively. The cell-surface receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni{sup 2+}. To understand the molecular mechanisms underlying the induction of Tar activity by its ligands, the Escherichia coli Tar periplasmic domain with and without bound aspartate (Asp-Tar and apo-Tar, respectively) were each crystallized in two different forms. Using ammonium sulfate as a precipitant, crystals of apo-Tar1 and Asp-Tar1 were grown and diffracted to resolutions of 2.10 and 2.40 Å, respectively. Alternatively, using sodium chloride as a precipitant, crystals of apo-Tar2 and Asp-Tar2 were grown and diffracted to resolutions of 1.95 and 1.58 Å, respectively. Crystals of apo-Tar1 and Asp-Tar1 adopted space group P4{sub 1}2{sub 1}2, while those of apo-Tar2 and Asp-Tar2 adopted space groups P2{sub 1}2{sub 1}2{sub 1} and C2, respectively.

  2. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis.

    PubMed

    Rabinovich, Shiran; Adler, Lital; Yizhak, Keren; Sarver, Alona; Silberman, Alon; Agron, Shani; Stettner, Noa; Sun, Qin; Brandis, Alexander; Helbling, Daniel; Korman, Stanley; Itzkovitz, Shalev; Dimmock, David; Ulitsky, Igor; Nagamani, Sandesh C S; Ruppin, Eytan; Erez, Ayelet

    2015-11-19

    Cancer cells hijack and remodel existing metabolic pathways for their benefit. Argininosuccinate synthase (ASS1) is a urea cycle enzyme that is essential in the conversion of nitrogen from ammonia and aspartate to urea. A decrease in nitrogen flux through ASS1 in the liver causes the urea cycle disorder citrullinaemia. In contrast to the well-studied consequences of loss of ASS1 activity on ureagenesis, the purpose of its somatic silencing in multiple cancers is largely unknown. Here we show that decreased activity of ASS1 in cancers supports proliferation by facilitating pyrimidine synthesis via CAD (carbamoyl-phosphate synthase 2, aspartate transcarbamylase, and dihydroorotase complex) activation. Our studies were initiated by delineating the consequences of loss of ASS1 activity in humans with two types of citrullinaemia. We find that in citrullinaemia type I (CTLN I), which is caused by deficiency of ASS1, there is increased pyrimidine synthesis and proliferation compared with citrullinaemia type II (CTLN II), in which there is decreased substrate availability for ASS1 caused by deficiency of the aspartate transporter citrin. Building on these results, we demonstrate that ASS1 deficiency in cancer increases cytosolic aspartate levels, which increases CAD activation by upregulating its substrate availability and by increasing its phosphorylation by S6K1 through the mammalian target of rapamycin (mTOR) pathway. Decreasing CAD activity by blocking citrin, the mTOR signalling, or pyrimidine synthesis decreases proliferation and thus may serve as a therapeutic strategy in multiple cancers where ASS1 is downregulated. Our results demonstrate that ASS1 downregulation is a novel mechanism supporting cancerous proliferation, and they provide a metabolic link between the urea cycle enzymes and pyrimidine synthesis.

  3. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis.

    PubMed

    Rabinovich, Shiran; Adler, Lital; Yizhak, Keren; Sarver, Alona; Silberman, Alon; Agron, Shani; Stettner, Noa; Sun, Qin; Brandis, Alexander; Helbling, Daniel; Korman, Stanley; Itzkovitz, Shalev; Dimmock, David; Ulitsky, Igor; Nagamani, Sandesh C S; Ruppin, Eytan; Erez, Ayelet

    2015-11-19

    Cancer cells hijack and remodel existing metabolic pathways for their benefit. Argininosuccinate synthase (ASS1) is a urea cycle enzyme that is essential in the conversion of nitrogen from ammonia and aspartate to urea. A decrease in nitrogen flux through ASS1 in the liver causes the urea cycle disorder citrullinaemia. In contrast to the well-studied consequences of loss of ASS1 activity on ureagenesis, the purpose of its somatic silencing in multiple cancers is largely unknown. Here we show that decreased activity of ASS1 in cancers supports proliferation by facilitating pyrimidine synthesis via CAD (carbamoyl-phosphate synthase 2, aspartate transcarbamylase, and dihydroorotase complex) activation. Our studies were initiated by delineating the consequences of loss of ASS1 activity in humans with two types of citrullinaemia. We find that in citrullinaemia type I (CTLN I), which is caused by deficiency of ASS1, there is increased pyrimidine synthesis and proliferation compared with citrullinaemia type II (CTLN II), in which there is decreased substrate availability for ASS1 caused by deficiency of the aspartate transporter citrin. Building on these results, we demonstrate that ASS1 deficiency in cancer increases cytosolic aspartate levels, which increases CAD activation by upregulating its substrate availability and by increasing its phosphorylation by S6K1 through the mammalian target of rapamycin (mTOR) pathway. Decreasing CAD activity by blocking citrin, the mTOR signalling, or pyrimidine synthesis decreases proliferation and thus may serve as a therapeutic strategy in multiple cancers where ASS1 is downregulated. Our results demonstrate that ASS1 downregulation is a novel mechanism supporting cancerous proliferation, and they provide a metabolic link between the urea cycle enzymes and pyrimidine synthesis. PMID:26560030

  4. Monoclonal antibody against the active site of caeruloplasmin and the ELISA system detecting active caeruloplasmin.

    PubMed

    Hiyamuta, S; Ito, K

    1994-04-01

    Serum caeruloplasmin deficiency is a characteristic biochemical abnormality found in patients with Wilson's disease, but the mechanism of this disease is unknown. Although the phenylenediamine oxidase activity of serum caeruloplasmin is markedly low in patients with Wilson's disease, mRNA of caeruloplasmin exists to some extent. To investigate the deficiency of caeruloplasmin oxidase activity in Wilson's disease, we generated 14 monoclonal antibodies (MAbs) and selected ID1, which had the strongest reactivity, and ID2, which had neutralizing ability. We also established a system to measure active caeruloplasmin specifically using these MAbs. These MAbs and the system will be useful tools in analyzing the active site of caeruloplasmin in patients with Wilson's disease.

  5. Robotics and Automation Activities at the Savannah River Site: A Site Report for SUBWOG 39F

    SciTech Connect

    Teese, G.D.

    1995-09-28

    The Savannah River Site has successfully used robots, teleoperators, and remote video to reduce exposure to ionizing radiation, improve worker safety, and improve the quality of operations. Previous reports have described the use of mobile teleoperators in coping with a high level liquid waste spill, the removal of highly contaminated equipment, and the inspection of nuclear reactor vessels. This report will cover recent applications at the Savannah River, as well as systems which SRS has delivered to other DOE site customers.

  6. Control of active sites in selective flocculation: II -- Role of site blocking agents

    SciTech Connect

    Behl, S.; Moudgil, B.M. . Dept. of Materials Science and Engineering)

    1993-12-01

    Control of heteroflocculation using a lower molecular weight fraction of the flocculant as a site blocking agent is demonstrated in the apatite-dolomite-polyethylene oxide system. The most effective SBA (site blocking agent) was determined to be the highest molecular weight fraction of the flocculant itself which was not capable of flocculating any of the components of the mixture. In the presence of the SBA, flocculant adsorption decreased significantly on apatite particles, thereby inhibiting coflocculation.

  7. Non-enzymic beta-decarboxylation of aspartic acid.

    NASA Technical Reports Server (NTRS)

    Doctor, V. M.; Oro, J.

    1972-01-01

    Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.

  8. Investigation of the Role of the Histidine-Aspartate Pair in the Human Exonuclease III-like Abasic Endonuclease, Ape1

    SciTech Connect

    Lowry, David F. ); Hoyt, David W. ); Khazi, Fayaz A.; Bagu, John R. ); Lindsey, Andrea G.; Wilson, David M.

    2003-05-30

    Hydrogen bonded histidine-aspartate (His-Asp) pairs are critical constituents in several key enzymatic reactions. To date, the role that these pairs play in catalysis is best understood in serine and trypsin-like proteases, where structural and biochemical NMR studies have revealed important pKa values and hydrogen-bonding patterns within the catalytic pocket. However, the role of the His-Asp pair in metal-assisted catalysis is less clear. Here, we apply liquid state NMR to investigate the role of a critical histidine of apurinic endonuclease 1 (Ape1), a human DNA repair enzyme that cleaves adjacent to abasic sites in DNA using one or more divalent cations and an active site His-Asp pair. The studies within suggest that the Ape1 His- Asp pair functions as neither a general base catalyst nor a metal ligand. Rather, the pair likely stabilizes the pentavalent transition state necessary for phospho-transfer.

  9. Developmental changes in aspartate-family amino acid biosynthesis in pea chloroplasts

    SciTech Connect

    Mills, W.R.; Cato, L.W.; Stephens, B.W.; Reeves, M. )

    1990-05-01

    Isolated chloroplasts are known to synthesize the asp-derived amino acids (ile, hse, lys and thr) from ({sup 14}C)asp (Mills et al, 1980, Plant Physiol. 65, 1166). Now, we have studied the influence of tissue age on essential amino acid biosynthesis in pea (Pisum sativum) plastids. Chloroplasts from the younger (third and fourth) leaves of 12 day old plants, were 2-3 times more active in synthesizing lys and thr from ({sup 14}C)asp than those from older (first or second) leaves. We also examined two key pathway enzymes (aspartate kinase and homoserine dehydrogenase); with each enzyme,a activity in younger leaves was about 2 times that in plastids from older tissue. Both lys- and thr-sensitive forms of aspartate kinase are known in plants; in agreement with earlier work, we found that lys-sensitive activity was about 4 times higher in the younger tissues, while the thr-sensitive activity changed little during development (Davies and Miflin, 1977, Plant Sci. Lett. 9, 323). Recently the role of aspartate kinase and homoserine dehydrogenase in controlling asp-family amino acid synthesis has been questioned (Giovanelli et al, 1989, Plant Physiol. 90, 1584); we hope that measurements of amino acid levels in chloroplasts as well as further enzyme studies will help us to better understand the regulation of asp-family amino acid synthesis.

  10. Subtoxic N-methyl-D-aspartate delayed neuronal death in ischemic brain injury through TrkB receptor- and calmodulin-mediated PI-3K/Akt pathway activation.

    PubMed

    Xu, Jing; Zhang, Quan-Guang; Li, Chong; Zhang, Guang-Yi

    2007-01-01

    Previous studies have shown that subtoxic NMDA moderated the neuronal survival in vitro and vivo. We performed this experiment to clarify the precise mechanism underlie subtoxic NMDA delayed neuronal death in ischemic brain injury. We found that pretreatment of NMDA (100 mg/kg) increased the number of the surviving CA1 pyramidal cells of hippocampus at 5 days of reperfusion. This dose of NMDA could also enhance Akt activation after ischemia/reperfusion (I/R). Here, we examined the possible mechanism that NMDA induced Akt activation. On the one hand, we found NMDA receptor-mediated Akt activation was associated with increased expression of BDNF (brain-derived neurotrophic factor) and activation of its high-affinity receptor TrkB after I/R in the hippocampus CA1 region, which could be held down by TrkB receptor antagonist K252a. On the other hand, we found that NMDA enhanced the binding of Ca2+-dependent calmodulin (CaM) to p85 (the regulation subunit of PI-3K), which led to the activation of Akt. W-13, an active CaM inhibitor, prevented the combination of CaM and p85 and subsequent Akt activation. Furthermore, NMDA receptor-mediated Akt activation was reversed by combined treatment with LY294002, the specific blockade of PI-3K. Taken together, our results suggested that subtoxic NMDA exerts the neuroprotective effect via activation of prosurvival PI-3K/Akt pathway against ischemic brain injury, and BDNF-TrkB signaling and Ca2+-dependent CaM cascade might contribute to NMDA induced activation of PI-3K/Akt pathway.

  11. Purification and some properties of phosphoenolpyruvate carboxylase from Brevibacterium flavum and its aspartate-overproducing mutant.

    PubMed

    Mori, M; Shiio, I

    1985-04-01

    Phosphoenolpyruvate (PEP) carboxylases (PC) were purified from a wild strain and an aspartate-producing mutant of Brevibacterium flavum to electrophoretic homogeneity. The molecular weights of the enzymes were determined to be 4.1 X 10(5) by the gel-filtration technique. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme gave only one protein band with a molecular weight of 1.07 X 10(5). The enzyme was labile and stabilized by substrate PEP, activators, metallic cofactors, an allosteric inhibitor and ammonium sulfate. The mechanism for the PC reaction was rapid equilibrium random Bi Bi with a dead end complex, enzyme-bicarbonate-Pi. The KmS for PEP and bicarbonate were 2.5 and 0.63 mM, respectively, and the apparent KmS were not affected by the secondary substrate concentrations. Dissociation constants for Pi of enzyme-Pi and the dead end complex were 5.0 and 16 mM, respectively. Aspartate inhibition was completely competitive with both the substrates, PEP and bicarbonate, with an inhibitor constant of 0.044 mM. An activator, acetyl-CoA, did not alter the apparent Km for bicarbonate but decreased that for PEP. The activator constants for the enzyme-PEP complex and free enzyme were 6.3 and 40 microM, respectively. Double reciprocal plots of reaction rate against PEP concentration were not linear at lower PEP concentrations. Hill coefficients for PEP were 1.6 in the absence of any effectors, 1.0 in the presence of acetyl-CoA, and 2.3 in the presence of aspartate. As to the mutant enzyme, only the inhibitor constant for aspartate was increased, being 0.18 mM, but other constants, coefficients, as described above, and specific activity were almost the same as those of the wild-type enzyme. PMID:4030719

  12. Mutation at a Strictly Conserved, Active Site Tyrosine in the Copper Amine Oxidase Leads to Uncontrolled Oxygenase Activity

    SciTech Connect

    Chen, Zhi-wei; Datta, Saumen; DuBois, Jennifer L.; Klinman, Judith P.; Mathews, F. Scott

    2010-09-07

    The copper amine oxidases carry out two copper-dependent processes: production of their own redox-active cofactor (2,4,5-trihydroxyphenylalanine quinone, TPQ) and the subsequent oxidative deamination of substrate amines. Because the same active site pocket must facilitate both reactions, individual active site residues may serve multiple roles. We have examined the roles of a strictly conserved active site tyrosine Y305 in the copper amine oxidase from Hansenula polymorpha kinetically, spetroscopically (Dubois and Klinman (2006) Biochemistry 45, 3178), and, in the present work, structurally. While the Y305A enzyme is almost identical to the wild type, a novel, highly oxygenated species replaces TPQ in the Y305F active sites. This new structure not only provides the first direct detection of peroxy intermediates in cofactor biogenesis but also indicates the critical control of oxidation chemistry that can be conferred by a single active site residue.

  13. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  14. IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Iα and IIα through Conserved Catalytic Aspartate Residues

    PubMed Central

    Ando, Hideaki; Hirose, Matsumi; Gainche, Laura; Kawaai, Katsuhiro; Bonneau, Benjamin; Ijuin, Takeshi; Itoh, Toshiki; Takenawa, Tadaomi; Mikoshiba, Katsuhiko

    2015-01-01

    Phosphatidylinositol phosphate kinases (PIPKs) are lipid kinases that generate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a critical lipid signaling molecule that regulates diverse cellular functions, including the activities of membrane channels and transporters. IRBIT (IP3R-binding protein released with inositol 1,4,5-trisphosphate) is a multifunctional protein that regulates diverse target proteins. Here, we report that IRBIT forms signaling complexes with members of the PIPK family. IRBIT bound to all PIPK isoforms in heterologous expression systems and specifically interacted with PIPK type Iα (PIPKIα) and type IIα (PIPKIIα) in mouse cerebellum. Site-directed mutagenesis revealed that two conserved catalytic aspartate residues of PIPKIα and PIPKIIα are involved in the interaction with IRBIT. Furthermore, phosphatidylinositol 4-phosphate, Mg2+, and/or ATP interfered with the interaction, suggesting that IRBIT interacts with catalytic cores of PIPKs. Mutations of phosphorylation sites in the serine-rich region of IRBIT affected the selectivity of its interaction with PIPKIα and PIPKIIα. The structural flexibility of the serine-rich region, located in the intrinsically disordered protein region, is assumed to underlie the mechanism of this interaction. Furthermore, in vitro binding experiments and immunocytochemistry suggest that IRBIT and PIPKIα interact with the Na+/HCO3− cotransporter NBCe1-B. These results suggest that IRBIT forms signaling complexes with PIPKIα and NBCe1-B, whose activity is regulated by PI(4,5)P2. PMID:26509711

  15. N-terminal extension of the yeast IA3 aspartic proteinase inhibitor relaxes the strict intrinsic selectivity.

    PubMed

    Winterburn, Tim J; Phylip, Lowri H; Bur, Daniel; Wyatt, David M; Berry, Colin; Kay, John

    2007-07-01

    Yeast IA(3) aspartic proteinase inhibitor operates through an unprecedented mechanism and exhibits a remarkable specificity for one target enzyme, saccharopepsin. Even aspartic proteinases that are very closely similar to saccharopepsin (e.g. the vacuolar enzyme from Pichia pastoris) are not susceptible to significant inhibition. The Pichia proteinase was selected as the target for initial attempts to engineer IA(3) to re-design the specificity. The IA(3) polypeptides from Saccharomyces cerevisiae and Saccharomyces castellii differ considerably in sequence. Alterations made by deletion or exchange of the residues in the C-terminal segment of these polypeptides had only minor effects. By contrast, extension of each of these wild-type and chimaeric polypeptides at its N-terminus by an MK(H)(7)MQ sequence generated inhibitors that displayed subnanomolar potency towards the Pichia enzyme. This gain-in-function was completely reversed upon removal of the extension sequence by exopeptidase trimming. Capture of the potentially positively charged aromatic histidine residues of the extension by remote, negatively charged side-chains, which were identified in the Pichia enzyme by modelling, may increase the local IA(3) concentration and create an anchor that enables the N-terminal segment residues to be harboured in closer proximity to the enzyme active site, thus promoting their interaction. In saccharopepsin, some of the counterpart residues are different and, consistent with this, the N-terminal extension of each IA(3) polypeptide was without major effect on the potency of interaction with saccharopepsin. In this way, it is possible to convert IA(3) polypeptides that display little affinity for the Pichia enzyme into potent inhibitors of this proteinase and thus broaden the target selectivity of this remarkable small protein. PMID:17608726

  16. The (unusual) aspartic acid in the metal coordination sphere of the prokaryotic zinc finger domain.

    PubMed

    D'Abrosca, Gianluca; Russo, Luigi; Palmieri, Maddalena; Baglivo, Ilaria; Netti, Fortuna; de Paola, Ivan; Zaccaro, Laura; Farina, Biancamaria; Iacovino, Rosa; Pedone, Paolo Vincenzo; Isernia, Carla; Fattorusso, Roberto; Malgieri, Gaetano

    2016-08-01

    The possibility of choices of protein ligands and coordination geometries leads to diverse Zn(II) binding sites in zinc-proteins, allowing a range of important biological roles. The prokaryotic Cys2His2 zinc finger domain (originally found in the Ros protein from Agrobacterium tumefaciens) tetrahedrally coordinates zinc through two cysteine and two histidine residues and it does not adopt a correct fold in the absence of the metal ion. Ros is the first structurally characterized member of a family of bacterial proteins that presents several amino acid changes in the positions occupied in Ros by the zinc coordinating residues. In particular, the second position is very often occupied by an aspartic acid although the coordination of structural zinc by an aspartate in eukaryotic zinc fingers is very unusual. Here, by appropriately mutating the protein Ros, we characterize the aspartate role within the coordination sphere of this family of proteins demonstrating how the presence of this residue only slightly perturbs the functional structure of the prokaryotic zinc finger domain while it greatly influences its thermodynamic properties. PMID:27238756

  17. The role for an invariant aspartic acid in hypoxanthine phosphoribosyltransferases is examined using saturation mutagenesis, functional analysis, and X-ray crystallography.

    PubMed

    Canyuk, B; Focia, P J; Eakin, A E

    2001-03-01

    The role of an invariant aspartic acid (Asp137) in hypoxanthine phosphoribosyltransferases (HPRTs) was examined by site-directed and saturation mutagenesis, functional analysis, and X-ray crystallography using the HPRT from Trypanosoma cruzi. Alanine substitution (D137A) resulted in a 30-fold decrease of k(cat), suggesting that Asp137 participates in catalysis. Saturation mutagenesis was used to generate a library of mutant HPRTs with random substitutions at position 137, and active enzymes were identified by complementation of a bacterial purine auxotroph. Functional analyses of the mutants, including determination of steady-state kinetic parameters and pH-rate dependence, indicate that glutamic acid or glutamine can replace the wild-type aspartate. However, the catalytic efficiency and pH-rate profile for the structural isosteric mutant, D137N, were similar to the D137A mutant. Crystal structures of four of the mutant enzymes were determined in ternary complex with substrate ligands. Structures of the D137E and D137Q mutants reveal potential hydrogen bonds, utilizing several bound water molecules in addition to protein atoms, that position these side chains within hydrogen bond distance of the bound purine analogue, similar in position to the aspartate in the wild-type structure. The crystal structure of the D137N mutant demonstrates that the Asn137 side chain does not form interactions with the purine substrate but instead forms novel interactions that cause the side chain to adopt a nonfunctional rotamer. The results from these structural and functional analyses demonstrate that HPRTs do not require a general base at position 137 for catalysis. Instead, hydrogen bonding sufficiently stabilizes the developing partial positive charge at the N7-atom of the purine substrate in the transition-state to promote catalysis.

  18. An ionizable active-site tryptophan imparts catalase activity to a peroxidase core.

    PubMed

    Loewen, Peter C; Carpena, Xavi; Vidossich, Pietro; Fita, Ignacio; Rovira, Carme

    2014-05-21

    Catalase peroxidases (KatG's) are bifunctional heme proteins that can disproportionate hydrogen peroxide (catalatic reaction) despite their structural dissimilarity with monofunctional catalases. Using X-ray crystallography and QM/MM calculations, we demonstrate that the catalatic reaction of KatG's involves deprotonation of the active-site Trp, which plays a role similar to that of the distal His in monofunctional catalases. The interaction of a nearby mobile arginine with the distal Met-Tyr-Trp essential adduct (in/out) acts as an electronic switch, triggering deprotonation of the adduct Trp.

  19. Nuclear Site Security in the Event of Terrorist Activity

    SciTech Connect

    Thomson, M.L.; Sims, J.

    2008-07-01

    This paper, presented as a poster, identifies why ballistic protection should now be considered at nuclear sites to counter terrorist threats. A proven and flexible form of multi purpose protection is described in detail with identification of trial results that show its suitability for this role. (authors)

  20. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    SciTech Connect

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  1. Active Layer and Moisture Measurements for Intensive Site 0 and 1, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-04-17

    These are measurements of Active Layer Thickness collected along several lines beginning in September, 2011 to the present. The data were collected at several time periods along the Site0 L2 Line, the Site1 AB Line, and an ERT Monitoring Line near Area A in Site1.

  2. Structural mechanism of RuBisCO activation by carbamylation of the active site lysine

    PubMed Central

    Stec, Boguslaw

    2012-01-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a crucial enzyme in carbon fixation and the most abundant protein on earth. It has been studied extensively by biochemical and structural methods; however, the most essential activation step has not yet been described. Here, we describe the mechanistic details of Lys carbamylation that leads to RuBisCO activation by atmospheric CO2. We report two crystal structures of nitrosylated RuBisCO from the red algae Galdieria sulphuraria with O2 and CO2 bound at the active site. G. sulphuraria RuBisCO is inhibited by cysteine nitrosylation that results in trapping of these gaseous ligands. The structure with CO2 defines an elusive, preactivation complex that contains a metal cation Mg2+ surrounded by three H2O/OH molecules. Both structures suggest the mechanism for discriminating gaseous ligands by their quadrupole electric moments. We describe conformational changes that allow for intermittent binding of the metal ion required for activation. On the basis of these structures we propose the individual steps of the activation mechanism. Knowledge of all these elements is indispensable for engineering RuBisCO into a more efficient enzyme for crop enhancement or as a remedy to global warming. PMID:23112176

  3. Discovery of the first inhibitors of bacterial enzyme D-aspartate ligase from Enterococcus faecium (Aslfm).

    PubMed

    Škedelj, Veronika; Perdih, Andrej; Brvar, Matjaž; Kroflič, Ana; Dubbée, Vincent; Savage, Victoria; O'Neill, Alex J; Solmajer, Tom; Bešter-Rogač, Marija; Blanot, Didier; Hugonnet, Jean-Emmanuel; Magnet, Sophie; Arthur, Michel; Mainardi, Jean-Luc; Stojan, Jure; Zega, Anamarija

    2013-09-01

    The D-aspartate ligase of Enterococcus faecium (Aslfm) is an attractive target for the development of narrow-spectrum antibacterial agents that are active against multidrug-resistant E. faecium. Although there is currently little available information regarding the structural characteristics of Aslfm, we exploited the knowledge that this enzyme belongs to the ATP-grasp superfamily to target its ATP binding site. In the first design stage, we synthesized and screened a small library of known ATP-competitive inhibitors of ATP-grasp enzymes. A series of amino-oxazoles derived from bacterial biotin carboxylase inhibitors showed low micromolar activity. The most potent inhibitor compound 12, inhibits Aslfm with a Ki value of 2.9 μM. In the second design stage, a validated ligand-based pharmacophore modeling approach was used, taking the newly available inhibition data of an initial series of compounds into account. Experimental evaluation of the virtual screening hits identified two novel structural types of Aslfm inhibitors with 7-amino-9H-purine (18) and 7-amino-1H-pyrazolo[3,4-d]pyrimidine (30 and 34) scaffolds, and also with Ki values in the low micromolar range. Investigation the inhibitors modes of action confirmed that these compounds are competitive with respect to the ATP molecule. The binding of inhibitors to the target enzyme was also studied using isothermal titration calorimetry (ITC). Compounds 6, 12, 18, 30 and 34 represent the first inhibitors of Aslfm reported to date, and are an important step forward in combating infections due to E. faecium.

  4. Using catalytic atom maps to predict the catalytic functions present in enzyme active sites.

    PubMed

    Nosrati, Geoffrey R; Houk, K N

    2012-09-18

    Catalytic atom maps (CAMs) are minimal models of enzyme active sites. The structures in the Protein Data Bank (PDB) were examined to determine if proteins with CAM-like geometries in their active sites all share the same catalytic function. We combined the CAM-based search protocol with a filter based on the weighted contact number (WCN) of the catalytic residues, a measure of the "crowdedness" of the microenvironment around a protein residue. Using this technique, a CAM based on the Ser-His-Asp catalytic triad of trypsin was able to correctly identify catalytic triads in other enzymes within 0.5 Å rmsd of the CAM with 96% accuracy. A CAM based on the Cys-Arg-(Asp/Glu) active site residues from the tyrosine phosphatase active site achieved 89% accuracy in identifying this type of catalytic functionality. Both of these CAMs were able to identify active sites across different fold types. Finally, the PDB was searched to locate proteins with catalytic functionality similar to that present in the active site of orotidine 5'-monophosphate decarboxylase (ODCase), whose mechanism is not known with certainty. A CAM, based on the conserved Lys-Asp-Lys-Asp tetrad in the ODCase active site, was used to search the PDB for enzymes with similar active sites. The ODCase active site has a geometry similar to that of Schiff base-forming Class I aldolases, with lowest aldolase rmsd to the ODCase CAM at 0.48 Å. The similarity between this CAM and the aldolase active site suggests that ODCase has the correct catalytic functionality present in its active site for the generation of a nucleophilic lysine. PMID:22909276

  5. Using Catalytic Atom Maps to Predict the Catalytic Functions Present in Enzyme Active Sites

    PubMed Central

    Nosrati, Geoffrey R.; Houk, K. N.

    2012-01-01

    Catalytic Atom Maps (CAMs) are minimal models of enzyme active sites. The structures in the Protein Data Bank (PDB) were examined to determine if proteins with CAM-like geometries in their active sites all share the same catalytic function. We combined the CAM-based search protocol with a filter based on the weighted contact number (WCN) of the catalytic residues, a measure of the “crowdedness” of the microenvironment around a protein residue. Using this technique, a CAM based on the Ser-His-Asp catalytic triad of trypsin was able to correctly identify catalytic triads in other enzymes within 0.5 Å RMSD of the Catalytic Atom Map with 96% accuracy. A CAM based on the Cys-Arg-(Asp/Glu) active site residues from the tyrosine phosphatase active site achieved 89% accuracy in identifying this type of catalytic functionality. Both of these Catalytic Atom Maps were able to identify active sites across different fold types. Finally, the PDB was searched to locate proteins with catalytic functionality similar to that present in the active site of orotidine 5′-monophosphate decarboxylase (ODCase), whose mechanism is not known with certainty. A CAM, based on the conserved Lys-Asp-Lys-Asp tetrad in the ODCase active site, was used to search the PDB for enzymes with similar active sites. The ODCase active site has a geometry similar to that of Schiff base-forming Class I aldolases, with lowest aldolase RMSD to the ODCase CAM at 0.48 Å. The similarity between this CAM and the aldolase active site suggests that ODCase has the correct catalytic functionality present in its active site for the generation of a nucleophilic lysine. PMID:22909276

  6. Potent radiolabeled human renin inhibitor, (/sup 3/H)SR42128: enzymatic, kinetic, and binding studies to renin and other aspartic proteases

    SciTech Connect

    Cumin, F.; Nisato, D.; Gagnol, J.P.; Corvol, P.

    1987-12-01

    The in vitro binding of (/sup 3/H)SR42128 (Iva-Phe-Nle-Sta-Ala-Sta-Arg), a potent inhibitor of human renin activity, to purified human renin and a number of other aspartic proteases was examined. SR42128 was found to be a competitive inhibitor of human renin, with a K/sub i/ of 0.35 nM at pH 5.7 and 2.0 nM at pH 7.4; it was thus more effective at pH 5.7 than at pH 7.4. Scatchard analysis of the interaction binding of (/sup 3/H)SR42128 to human renin indicated that binding was reversible and saturable at both pH 5.7 and pH 7.4. There was a single class of binding sites, and the K/sub D/ was 0.9 nM at pH 5.7 and 1 nM at pH 7.4. The association rate was 10 times more rapid at pH 5.7 than at pH 7.4, but there was no difference between the rates of dissociation of the enzyme-inhibitor complex at the two pHs. The effect of pH on the binding of (/sup 3/H)SR42128 to human renin, cathepsin D, pepsin, and gastricsin was also examined over the pH range 3-8. All the aspartic proteases had a high affinity for the inhibitor at low pH. However, at pH 7.4, (/sup 3/H)SR42128 was bound only to human renin and to none of the other aspartic proteases. Competitive binding studies with (/sup 3/H)SR42128 and a number of other inhibitors on human renin or cathepsin D were used to examine the relationships between structure and activity in these systems. The study as a whole indicates that pH plays a major role in the binding of (/sup 3/H)SR42128 to aspartic proteases and that the nature of the inhibitor residue reacting with the renin S/sub 2/ subsites is of critical importance for the specificity of the renin-inhibitor interaction.

  7. Acid-Base Titration of (S)-Aspartic Acid: A Circular Dichroism Spectrophotometry Experiment

    NASA Astrophysics Data System (ADS)

    Cavaleiro, Ana M. V.; Pedrosa de Jesus, Júlio D.

    2000-09-01

    The magnitude of the circular dichroism of (S)-aspartic acid in aqueous solutions at a fixed wavelength varies with the addition of strong base. This laboratory experiment consists of the circular dichroism spectrophotometric acid-base titration of (S)-aspartic acid in dilute aqueous solutions, and the use of the resulting data to determine the ionization constant of the protonated amino group. The work familiarizes students with circular dichroism and illustrates the possibility of performing titrations using a less usual instrumental method of following the course of a reaction. It shows the use of a chiroptical property in the determination of the concentration in solution of an optically active molecule, and exemplifies the use of a spectrophotometric titration in the determination of an ionization constant.

  8. An easy method for diagnosing macro-aspartate aminotransferase: a case series.

    PubMed

    Beşer, Omer Faruk; Laçinel, Sibel; Gülcü, Didem; Kutlu, Tufan; Cullu Çokuğraş, Fügen; Erkan, Tülay

    2014-10-01

    Macro-aspartate transaminase (macro-AST) must be considered when the aspartate transaminase (AST) level is chronically high without any liver, cardiac, or muscle disease. Many specialized laboratory techniques have been recommended for diagnosing macro-AST, including the polyethylene glycol immune precipitate technique, which is simple. This study presents a considerably easier method based on the studies of Davidson and Watson and Castiella et al. Our method is based on the decrease in the plasma AST level after storage of the macroenzyme at 2-8 °C for 5 days, and has the advantages of low cost, reliability, and practicality at any health center. In our eight cases of macro-AST, the AST activity at day 6 had decreased by more than 50% from day 1. This method is practical for primary healthcare facilities because of its easy application and accurate results, and obviated the need for unnecessary tests after diagnosis.

  9. RC1339/APRc from Rickettsia conorii Is a Novel Aspartic Protease with Properties of Retropepsin-Like Enzymes

    PubMed Central

    Cruz, Rui; Huesgen, Pitter; Riley, Sean P.; Wlodawer, Alexander; Faro, Carlos; Overall, Christopher M.; Martinez, Juan J.; Simões, Isaura

    2014-01-01

    Members of the species Rickettsia are obligate intracellular, gram-negative, arthropod-borne pathogens of humans and other mammals. The life-threatening character of diseases caused by many Rickettsia species and the lack of reliable protective vaccine against rickettsioses strengthens the importance of identifying new protein factors for the potential development of innovative therapeutic tools. Herein, we report the identification and characterization of a novel membrane-embedded retropepsin-like homologue, highly conserved in 55 Rickettsia genomes. Using R. conorii gene homologue RC1339 as our working model, we demonstrate that, despite the low overall sequence similarity to retropepsins, the gene product of rc1339 APRc (for Aspartic Protease from Rickettsia conorii) is an active enzyme with features highly reminiscent of this family of aspartic proteases, such as autolytic activity impaired by mutation of the catalytic aspartate, accumulation in the dimeric form, optimal activity at pH 6, and inhibition by specific HIV-1 protease inhibitors. Moreover, specificity preferences determined by a high-throughput profiling approach confirmed common preferences between this novel rickettsial enzyme and other aspartic proteases, both retropepsins and pepsin-like. This is the first report on a retropepsin-like protease in gram-negative intracellular bacteria such as Rickettsia, contributing to the analysis of the evolutionary relationships between the two types of aspartic proteases. Additionally, we have also shown that APRc is transcribed and translated in R. conorii and R. rickettsii and is integrated into the outer membrane of both species. Finally, we demonstrated that APRc is sufficient to catalyze the in vitro processing of two conserved high molecular weight autotransporter adhesin/invasion proteins, Sca5/OmpB and Sca0/OmpA, thereby suggesting the participation of this enzyme in a relevant proteolytic pathway in rickettsial life-cycle. As a novel bona fide member

  10. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    SciTech Connect

    Miao, Yinglong; Baudry, Jerome Y

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  11. Parameterization of an Active Thermal Erosion Site, Caribou Creek, Alaska

    NASA Astrophysics Data System (ADS)

    Busey, R.; Bolton, W. R.; Cherry, J. E.; Hinzman, L. D.

    2012-12-01

    Thermokarst features are thought to be an important mechanism for landscape change in permafrost-dominated cold regions, but few such features have been incorporated into full featured landscape models. The root of this shortcoming is that historic observations are not detailed enough to parameterize a model, and the models typically do not include the relevant processes for thermal erosion. A new, dynamic thermokarst feature has been identified at the Caribou-Poker Creek Research Watershed (CPCRW) in the boreal forest of Interior Alaska. Located adjacent to a traditional use trail, this feature terminates directly in Caribou Creek. Erosion within the feature is driven predominantly by fluvial interflow. CPCRW is a Long-Term Ecological Research site underlain by varying degrees of relatively warm, discontinuous permafrost. This poster will describe the suite of measurements that have been undertaken to parameterize the ERODE model for this site, including thorough surveys, time lapse- and aerial photography, and 3-D structure from motion algorithms.

  12. Blogs and Social Network Sites as Activity Systems: Exploring Adult Informal Learning Process through Activity Theory Framework

    ERIC Educational Resources Information Center

    Heo, Gyeong Mi; Lee, Romee

    2013-01-01

    This paper uses an Activity Theory framework to explore adult user activities and informal learning processes as reflected in their blogs and social network sites (SNS). Using the assumption that a web-based space is an activity system in which learning occurs, typical features of the components were investigated and each activity system then…

  13. The Crystal Structure of a Cardiovirus RNA-Dependent RNA Polymerase Reveals an Unusual Conformation of the Polymerase Active Site

    PubMed Central

    Vives-Adrian, Laia; Lujan, Celia; Oliva, Baldo; van der Linden, Lonneke; Selisko, Barbara; Coutard, Bruno; Canard, Bruno; van Kuppeveld, Frank J. M.

    2014-01-01

    target for the development of antiviral therapies. Solving the X-ray structure of the first cardiovirus RdRp, EMCV 3Dpol, we captured an altered conformation of a conserved motif in the polymerase active site (motif A) containing the aspartic acid residue involved in rNTP selection and binding. This altered conformation of motif A, which interferes with the correct positioning of the rNTP substrate in the active site, is stabilized by a number of residues strictly conserved among picornaviruses. The rearrangements observed suggest that this motif A segment is a dynamic element that can be modulated by external effectors, either activating or inhibiting enzyme activity, and this type of modulation appears to be general to all picornaviruses. PMID:24600002

  14. Early Site Permit Demonstration Program: Recommendations for communication activities and public participation in the Early Site Permit Demonstration Program

    SciTech Connect

    Not Available

    1993-01-27

    On October 24, 1992, President Bush signed into law the National Energy Policy Act of 1992. The bill is a sweeping, comprehensive overhaul of the Nation`s energy laws, the first in more than a decade. Among other provisions, the National Energy Policy Act reforms the licensing process for new nuclear power plants by adopting a new approach developed by the US Nuclear Regulatory Commission (NRC) in 1989, and upheld in court in 1992. The NRC 10 CFR Part 52 rule is a three-step process that guarantees public participation at each step. The steps are: early site permit approval; standard design certifications; and, combined construction/operating licenses for nuclear power reactors. Licensing reform increases an organization`s ability to respond to future baseload electricity generation needs with less financial risk for ratepayers and the organization. Costly delays can be avoided because design, safety and siting issues will be resolved before a company starts to build a plant. Specifically, early site permit approval allows for site suitability and acceptability issues to be addressed prior to an organization`s commitment to build a plant. Responsibility for site-specific activities, including communications and public participation, rests with those organizations selected to try out early site approval. This plan has been prepared to assist those companies (referred to as sponsoring organizations) in planning their communications and public involvement programs. It provides research findings, information and recommendations to be used by organizations as a resource and starting point in developing their own plans.

  15. Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome c Species in Complexes with Cardiolipin.

    PubMed

    Capdevila, Daiana A; Oviedo Rouco, Santiago; Tomasina, Florencia; Tortora, Verónica; Demicheli, Verónica; Radi, Rafael; Murgida, Daniel H

    2015-12-29

    We report a resonance Raman and UV-vis characterization of the active site structure of oxidatively modified forms of cytochrome c (Cyt-c) free in solution and in complexes with cardiolipin (CL). The studied post-translational modifications of Cyt-c include methionine sulfoxidation and tyrosine nitration, which lead to altered heme axial ligation and increased peroxidase activity with respect to those of the wild-type protein. In spite of the structural and activity differences between the protein variants free in solution, binding to CL liposomes induces in all cases the formation of a spectroscopically identical bis-His axial coordination conformer that more efficiently promotes lipid peroxidation. The spectroscopic results indicate that the bis-His form is in equilibrium with small amounts of high-spin species, thus suggesting a labile distal His ligand as the basis for the CL-induced increase in enzymatic activity observed for all protein variants. For Cyt-c nitrated at Tyr74 and sulfoxidized at Met80, the measured apparent binding affinities for CL are ∼4 times larger than for wild-type Cyt-c. On the basis of these results, we propose that these post-translational modifications may amplify the pro-apoptotic signal of Cyt-c under oxidative stress conditions at CL concentrations lower than for the unmodified protein.

  16. Identification of ice nucleation active sites on feldspar dust particles.

    PubMed

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-03-19

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  17. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  18. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  19. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions.

  20. Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts.

    PubMed

    Wang, Lu-Cun; Friend, C M; Fushimi, Rebecca; Madix, Robert J

    2016-07-01

    The activation of molecular O2 as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O2 activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O2 dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O2 dissociation is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O2 dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction. PMID:27376884

  1. Polyamine spider toxins and mammalian N-methyl-D-aspartate receptors. Structural basis for channel blocking and binding of argiotoxin636.

    PubMed

    Raditsch, M; Geyer, M; Kalbitzer, H R; Jahn, W; Ruppersberg, J P; Witzemann, V

    1996-09-01

    Recombinant N-methyl-D-aspartate receptors composed of NR1/NR2A subunits were expressed in Xenopus oocytes to analyse the voltage-dependent and use-dependent channel blocking activity of argiotoxin636. Functional assays demonstrate that the toxin competes with other open channel blockers such as Mg2+ and MK-801. Direct binding or competition assays using radiolabeled ligands and isolated rat brain membranes, in contrast, reveal no specific binding or yield binding constants which differ by orders of magnitude from the IC50 values of the functional assays. One explanation is that argiotoxin636 does not bind with high affinity to the inhibitory site in the N-methyl-D-aspartate-receptor channel under in vitro conditions when membranes are depolarised. The structure of argiotoxin636 was investigated by NMR spectroscopy. In solution the positively charged argiotoxin636 acquires an extended conformation and its dimensions might allow permeation deep into the channel. In the absence of direct structural information on the channel protein, the detailed analysis of blockade in conjunction with structural information, as provided here, may be of aid in the deduction of structural features of glutamate-receptor channel ion pores.

  2. Radioimmunoassay of aspartate aminotransferase isoenzymes in human serum

    SciTech Connect

    Leung, F.Y.; Niblock, A.E.; Henderson, A.R.

    1984-08-01

    A description is given of the development of a sensitive, specific radioimmunoassay for the cytoplasmic and mitochondrial isoenzymes of human aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase; EC 2.6.1.1). Isoenzymes from human heart tissue were purified to homogeneity and used to raise high-titer antisera in rabbits. The antisera were partly purified by selective column chromatography. The Bolton-Hunter reagent was used to radioiodinate the isoenzymes. The assay requires 100 microL of serum, includes a solid-phase second-antibody separation, and can be completed in less than 3 h. There was no cross reactivity between the two isoenzymes. As little as 5 micrograms (50 pmol) of each aspartate aminotransferase can be measured per liter of serum.

  3. Toxoplasma gondii aspartic protease 1 is not essential in tachyzoites.

    PubMed

    Polonais, Valerie; Shea, Michael; Soldati-Favre, Dominique

    2011-08-01

    Aspartic proteases are important virulence factors for pathogens and are recognized as attractive drug targets. Seven aspartic proteases (ASPs) have been identified in Toxoplasma gondii genome. Bioinformatics and phylogenetic analyses regroup them into five monophyletic groups. Among them, TgASP1, a coccidian specific aspartic protease related to the food vacuole plasmepsins, is associated with the secretory pathway in non-dividing cells and relocalizes in close proximity to the nascent inner membrane complex (IMC) of daughter cells during replication. Despite a potential role for TgASP1 in IMC formation, the generation of a conventional knockout of the TgASP1 gene revealed that this protease is not required for T. gondii tachyzoite survival or for proper IMC biogenesis.

  4. Possible active site of the sweet-tasting protein thaumatin.

    PubMed

    Slootstra, J W; De Geus, P; Haas, H; Verrips, C T; Meloen, R H

    1995-10-01

    Epitopes on thaumatin and monellin were studied using the PEPSCAN-technology. The antibodies used were raised against thaumatin. Only antibodies that, in an ELISA, both recognized thaumatin and monellin were used in the PEPSCAN-analyses. On thaumatin two major overlapping epitopes were identified. On monellin no epitopes could be identified. The identified epitope region on thaumatin shares structural features with various peptide and protein sweeteners. It contains an aspartame-like site which is formed by Asp21 and Phe80, tips of the two extruding loops KGDAALDAGGR19-29 and CKRFGRPP77-84, which are spatially positioned next to each other. Furthermore, sub-sequences of the KGDAALDAGGR19-29 loop are similar to peptide-sweeteners such as L-Asp-D-Ala-L-Ala-methyl ester and L-Asp-D-Ala-Gly-methyl ester. Since the aspartame-like Asp21-Phe80 site and the peptide-sweetener-like sequences are also not present in non-sweet thaumatin-like proteins it is postulated that the KGDAALDAGGR19-29- and CKRFGRPP77-84 loop contain important sweet-taste determinants. This region has previously not been implicated as a sweet-taste determinant of thaumatin.

  5. Synthesis and In Vitro Evaluation of Aspartate Transcarbamoylase Inhibitors

    PubMed Central

    Coudray, Laëtitia; Pennebaker, Anne F.; Montchamp, Jean-Luc

    2009-01-01

    The design, synthesis, and evaluation of a series of novel inhibitors of aspartate transcarbamoylase (ATCase) are reported. Several submicromolar phosphorus-containing inhibitors are described, but all-carboxylate compounds are inactive. Compounds were synthesized to probe the postulated cyclic transition-state of the enzyme-catalyzed reaction. In addition, the associated role of the protonation state at the phosphorus acid moiety was evaluated using phosphinic and carboxylic acids. Although none of the synthesized inhibitors is more potent than N-phosphonacetyl-L-aspartate (PALA), the compounds provide useful mechanistic information, as well as the basis for the design of future inhibitors and/or prodrugs. PMID:19828320

  6. Assessment of activation products in the Savannah River Site environment

    SciTech Connect

    Carlton, W.H.; Denham, M.

    1996-07-01

    This document assesses the impact of radioactive activation products released from SRS facilities since the first reactor became operational late in 1953. The isotopes reported here are those whose release resulted in the highest dose to people living near SRS: {sup 32}P, {sup 51}Cr, {sup 60}C, and {sup 65}Zn. Release pathways, emission control features, and annual releases to the aqueous and atmospheric environments are discussed. No single incident has resulted in a major acute release of activation products to the environment. The releases were the result of normal operations of the reactors and separations facilities. Releases declined over the years as better controls were established and production was reduced. The overall radiological impact of SRS activation product atmospheric releases from 1954 through 1994 on the offsite maximally exposed individual can be characterized by a total dose of 0.76 mrem. During the same period, such an individual received a total dose of 14,400 mrem from non-SRS sources of ionizing radiation present in the environment. SRS activation product aqueous releases between 1954 and 1994 resulted in a total dose of 54 mrem to the offsite maximally exposed individual. The impact of SRS activation product releases on offsite populations also has been evaluated.

  7. Occurrence of the malate-aspartate shuttle in various tumor types.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1976-04-01

    The activity of the malate-aspartate shuttle for the reoxidation of cytoplasmic reduced nicotinamide adenine dinucleotide (NADH) by mitochondria was assessed in six lines of rodent ascites tumor cells (two strains of Ehrlich ascites carcinoma, Krebs II carcinoma, Novikoff hepatoma, AS-30D hepatoma, and L1210 mouse leukemia). All the tumor cells examined showed mitochondrial reoxidation of cytoplasmic NADH, as evidenced by the accumulation of pyruvate when the cells were incubated aerobically with L-lactate. Reoxidation of cytoplasmic NADH thus generated was completely inhibited by the transaminase inhibitor aminooxyacetate. The involvement of the respiratory chain in the reoxidation of cytoplasmic NADH was demonstrated by the action of cyanide, rotenone, and antimycin A, which strongly inhibited the formation of pyruvate from added L-lactate. Compounds that inhibit the carrier-mediated entry of malate into mitochondria, such as butylmalonate, benzenetricarboxylate, and iodobenzylmalonate, also inhibited the accumulation of pyruvate from added L-lactate by the tumor cells. The maximal rate of the malate-aspartate shuttle was established by addtion of arsenite to inhibit the mitochondrial oxidation of the pyruvate formed from added lactate. The capacity of the various tumor lines for the reoxidation of cytoplasmic NADH via the malate-aspartate shuttle approaches 20% of the total respiratory rate of the cells and thus appears to be sufficient to account for the mitochondrial reoxidation of that fraction of glycolytic NADH not reoxidized by pyruvate and lactate dehydrognenase in the cytoplasm.

  8. N-Methyl-D-Aspartate Receptor Signaling and Function in Cardiovascular Tissues.

    PubMed

    McGee, Marie A; Abdel-Rahman, Abdel A

    2016-08-01

    Excellent reviews on central N-methyl-D-aspartate receptor (NMDAR) signaling and function in cardiovascular regulating neuronal pools have been reported. However, much less attention has been given to NMDAR function in peripheral tissues, particularly the heart and vasculature, although a very recent review discusses such function in the kidney. In this short review, we discuss the NMDAR expression and complexity of its function in cardiovascular tissues. In conscious (contrary to anesthetized) rats, activation of the peripheral NMDAR triggers cardiovascular oxidative stress through the PI3K-ERK1/2-NO signaling pathway, which ultimately leads to elevation in blood pressure. Evidence also implicates Ca release, in the peripheral NMDAR-mediated pressor response. Despite evidence of circulating potent ligands (eg, D-aspartate and L-aspartate, L-homocysteic acid, and quinolinic acid) and also their coagonist (eg, glycine or D-serine), the physiological role of peripheral cardiovascular NMDAR remains elusive. Nonetheless, the cardiovascular relevance of the peripheral NMDAR might become apparent when its signaling is altered by drugs, such as alcohol, which interact with the NMDAR or its downstream signaling mechanisms. PMID:27046337

  9. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  10. N-Methyl-D-aspartate receptors are clustered and immobilized on dendrites of living cortical neurons.

    PubMed Central

    Benke, T A; Jones, O T; Collingridge, G L; Angelides, K J

    1993-01-01

    The response of nerve cells to synaptic inputs and the propagation of this activation is critically dependent on the cell-surface distribution of ion channels. In the hippocampus, Ca2+ influx through N-methyl-D-aspartate receptors (NMDAR) and/or voltage-dependent calcium channels on dendrites is thought to be critically involved in long-term potentiation, neurite outgrowth, epileptogenesis, synaptogenesis, and cell death. We report that conantokin-G (CntxG), a peptide from Conus geographus venom, competitively blocked with high affinity and specificity NMDAR-mediated currents in hippocampal neurons and is a reliable probe for exploring NMDAR distribution. Fluorescent derivatives of CntxG were prepared and used to directly determine NMDAR distribution on living hippocampal neurons by digital imaging and confocal fluorescence microscopy. In hippocampal slices, the CA1 dendritic subfield was strongly labeled by CntxG, whereas the CA3 mossy fiber region was not. On CA1 hippocampal neurons in culture, dendritic CntkG-sensitive NMDAR were clustered at sites of synaptic contacts, whereas somatic NMDAR were distributed diffusely and in patches. NMDAR distribution differed from the distribution of voltage-dependent calcium channels. A significant fraction of labeled NMDAR on somata and dendrites was found to be highly mobile: rates were consistent with the possible rapid recruitment of NMDAR to specific synaptic locations. The localization of NMDAR and modulation of this distribution demonstrated here may have important implications for the events that underlie neuronal processing and synaptic remodeling during associative synaptic modification. Images Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7689230

  11. Characterization of an Active Thermal Erosion Site, Caribou Creek, Alaska

    NASA Astrophysics Data System (ADS)

    Busey, R.; Bolton, W. R.; Cherry, J. E.; Hinzman, L. D.

    2013-12-01

    The goal of this project is to estimate volume loss of soil over time from this site, provide parameterizations on erodibility of ice rich permafrost and serve as a baseline for future landscape evolution simulations. Located in the zone of discontinuous permafrost, the interior region of Alaska (USA) is home to a large quantity of warm, unstable permafrost that is both high in ice content and has soil temperatures near the freezing point. Much of this permafrost maintains a frozen state despite the general warming air temperature trend in the region due to the presence of a thick insulating organic mat and a dense root network in the upper sub-surface of the soil column. At a rapidly evolving thermo-erosion site, located within the Caribou-Poker Creeks Research Watershed (part of the Bonanza Creek LTER) near Chatanika, Alaska (N65.140, W147.570), the protective organic layer and associated plants were disturbed by an adjacent traditional use trail and the shifting of a groundwater spring. These triggers have led to rapid geomorphological change on the landscape as the soil thaws and sediment is transported into the creek at the valley bottom. Since 2006 (approximately the time of initiation), the thermal erosion has grown to 170 meters length, 3 meters max depth, and 15 meters maximum width. This research combines several data sets: DGPS survey, imagery from an extremely low altitude pole-based remote sensing (3 to 5 meters above ground level), and imagery from an Unmanned Aerial System (UAS) at about 60m altitude.

  12. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    SciTech Connect

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  13. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP.

    PubMed

    Miner, Kyle D; Kurtz, Donald M

    2016-02-16

    HD-GYPs make up a subclass of the metal-dependent HD phosphohydrolase superfamily and catalyze conversion of cyclic di(3',5')-guanosine monophosphate (c-di-GMP) to 5'-phosphoguanylyl-(3'→5')-guanosine (pGpG) and GMP. Until now, the only reported crystal structure of an HD-GYP that also exhibits c-di-GMP phosphodiesterase activity contains a His/carboxylate ligated triiron active site. However, other structural and phylogenetic correlations indicate that some HD-GYPs contain dimetal active sites. Here we provide evidence that an HD-GYP c-di-GMP phosphodiesterase, TM0186, from Thermotoga maritima can accommodate both di- and trimetal active sites. We show that an as-isolated iron-containing TM0186 has an oxo/carboxylato-bridged diferric site, and that the reduced (diferrous) form is necessary and sufficient to catalyze conversion of c-di-GMP to pGpG, but that conversion of pGpG to GMP requires more than two metals per active site. Similar c-di-GMP phosphodiesterase activities were obtained with divalent iron or manganese. On the basis of activity correlations with several putative metal ligand residue variants and molecular dynamics simulations, we propose that TM0186 can accommodate both di- and trimetal active sites. Our results also suggest that a Glu residue conserved in a subset of HD-GYPs is required for formation of the trimetal site and can also serve as a labile ligand to the dimetal site. Given the anaerobic growth requirement of T. maritima, we suggest that this HD-GYP can function in vivo with either divalent iron or manganese occupying di- and trimetal sites.

  14. A rapid and direct method for the determination of active site accessibility in proteins based on ESI-MS and active site titrations.

    PubMed

    O'Farrell, Norah; Kreiner, Michaela; Moore, Barry D; Parker, Marie-Claire

    2006-11-01

    We have developed an electrospray ionisation mass spectrometry (ESI-MS) technique that can be applied to rapidly determine the number of intact active sites in proteins. The methodology relies on inhibiting the protein with an active-site irreversible inhibitor and then using ESI-MS to determine the extent of inhibition. We have applied this methodology to a test system: a serine protease, subtilisin Carlsberg, and monitored the extent of inhibition by phenylmethylsulfonyl fluoride (PMSF), an irreversible serine hydrolase inhibitor as a function of the changes in immobilisation and hydration conditions. Two types of enzyme preparation were investigated, lyophilised enzymes and protein-coated microcrystals (PCMC).

  15. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand.

    PubMed

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2014-12-12

    The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins' active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  16. Marine Biology Field Trip Sites. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  17. Endolysosomes Are the Principal Intracellular Sites of Acid Hydrolase Activity.

    PubMed

    Bright, Nicholas A; Davis, Luther J; Luzio, J Paul

    2016-09-12

    The endocytic delivery of macromolecules from the mammalian cell surface for degradation by lysosomal acid hydrolases requires traffic through early endosomes to late endosomes followed by transient (kissing) or complete fusions between late endosomes and lysosomes. Transient or complete fusion results in the formation of endolysosomes, which are hybrid organelles from which lysosomes are re-formed. We have used synthetic membrane-permeable cathepsin substrates, which liberate fluorescent reporters upon proteolytic cleavage, as well as acid phosphatase cytochemistry to identify which endocytic compartments are acid hydrolase active. We found that endolysosomes are the principal organelles in which acid hydrolase substrates are cleaved. Endolysosomes also accumulated acidotropic probes and could be distinguished from terminal storage lysosomes, which were acid hydrolase inactive and did not accumulate acidotropic probes. Using live-cell microscopy, we have demonstrated that fusion events, which form endolysosomes, precede the onset of acid hydrolase activity. By means of sucrose and invertase uptake experiments, we have also shown that acid-hydrolase-active endolysosomes and acid-hydrolase-inactive, terminal storage lysosomes exist in dynamic equilibrium. We conclude that the terminal endocytic compartment is composed of acid-hydrolase-active, acidic endolysosomes and acid hydrolase-inactive, non-acidic, terminal storage lysosomes, which are linked and function in a lysosome regeneration cycle. PMID:27498570

  18. Outside-binding site mutations modify the active site's shapes in neuraminidase from influenza A H1N1.

    PubMed

    Tolentino-Lopez, Luis; Segura-Cabrera, Aldo; Reyes-Loyola, Paola; Zimic, Mirko; Quiliano, Miguel; Briz, Veronica; Muñoz-Fernández, Angeles; Rodríguez-Pérez, Mario; Ilizaliturri-Flores, Ian; Correa-Basurto, Jose

    2013-01-01

    The recent occurrence of 2009 influenza A (H1N1) pandemic as well as others has raised concern of a far more dangerous outcome should this virus becomes resistant to current drug therapies. The number of clinical cases that are resistant to oseltamivir (Tamiflu®) is larger than the limited number of neuraminidase (NA) mutations (H275Y, N295S, and I223R) that have been identified at the active site and that are associated to oseltamivir resistance. In this study, we have performed a comparative analysis between a set of NAs that have the most representative mutations located outside the active site. The recently crystallized NA-oseltamivir complex (PDB ID: 3NSS) was used as a wild-type structure. After selecting the target NA sequences, their three-dimensional (3D) structure was built using 3NSS as a template by homology modeling. The 3D NA models were refined by molecular dynamics (MD) simulations. The refined models were used to perform a docking study, using oseltamivir as a ligand. Furthermore, the docking results were refined by free-energy analysis using the MM-PBSA method. The analysis of the MD simulation results showed that the NA models reached convergence during the first 10 ns. Visual inspection and structural measures showed that the mutated NA active sites show structural variations. The docking and MM-PBSA results from the complexes showed different binding modes and free energy values. These results suggest that distant mutations located outside the active site of NA affect its structure and could be considered to be a new source of resistance to oseltamivir, which agrees with reports in the clinical literature.

  19. Active site proton delivery and the lyase activity of human CYP17A1

    SciTech Connect

    Khatri, Yogan; Gregory, Michael C.; Grinkova, Yelena V.; Denisov, Ilia G.; Sligar, Stephen G.

    2014-01-03

    equivalents and protons are funneled into non-productive pathways. This is similar to previous work with other P450 catalyzed hydroxylation. However, catalysis of carbon–carbon bond scission by the T306A mutant was largely unimpeded by disruption of the CYP17A1 acid-alcohol pair. The unique response of CYP17A1 lyase activity to mutation of Thr306 is consistent with a reactive intermediate formed independently of proton delivery in the active site, and supports involvement of a nucleophilic peroxo-anion rather than the traditional Compound I in catalysis.

  20. Identification of inhibitors against the potential ligandable sites in the active cholera toxin.

    PubMed

    Gangopadhyay, Aditi; Datta, Abhijit

    2015-04-01

    The active cholera toxin responsible for the massive loss of water and ions in cholera patients via its ADP ribosylation activity is a heterodimer of the A1 subunit of the bacterial holotoxin and the human cytosolic ARF6 (ADP Ribosylation Factor 6). The active toxin is a potential target for the design of inhibitors against cholera. In this study we identified the potential ligandable sites of the active cholera toxin which can serve as binding sites for drug-like molecules. By employing an energy-based approach to identify ligand binding sites, and comparison with the results of computational solvent mapping, we identified two potential ligandable sites in the active toxin which can be targeted during structure-based drug design against cholera. Based on the probe affinities of the identified ligandable regions, docking-based virtual screening was employed to identify probable inhibitors against these sites. Several indole-based alkaloids and phosphates showed strong interactions to the important residues of the ligandable region at the A1 active site. On the other hand, 26 top scoring hits were identified against the ligandable region at the A1 ARF6 interface which showed strong hydrogen bonding interactions, including guanidines, phosphates, Leucopterin and Aristolochic acid VIa. This study has important implications in the application of hybrid structure-based and ligand-based methods against the identified ligandable sites using the identified inhibitors as reference ligands, for drug design against the active cholera toxin.

  1. Encroachment of Human Activity on Sea Turtle Nesting Sites

    NASA Astrophysics Data System (ADS)

    Ziskin, D.; Aubrecht, C.; Elvidge, C.; Tuttle, B.; Baugh, K.; Ghosh, T.

    2008-12-01

    The encroachment of anthropogenic lighting on sea turtle nesting sites poses a serious threat to the survival of these animals [Nicholas, 2001]. This danger is quantified by combining two established data sets. The first is the Nighttime Lights data produced by the NOAA National Geophysical Data Center [Elvidge et al., 1997]. The second is the Marine Turtle Database produced by the World Conservation Monitoring Centre (WCMC). The technique used to quantify the threat of encroachment is an adaptation of the method described in Aubrecht et al. [2008], which analyzes the stress on coral reef systems by proximity to nighttime lights near the shore. Nighttime lights near beaches have both a direct impact on turtle reproductive success since they disorient hatchlings when they mistake land-based lights for the sky-lit surf [Lorne and Salmon, 2007] and the lights are also a proxy for other anthropogenic threats. The identification of turtle nesting sites with high rates of encroachment will hopefully steer conservation efforts to mitigate their effects [Witherington, 1999]. Aubrecht, C, CD Elvidge, T Longcore, C Rich, J Safran, A Strong, M Eakin, KE Baugh, BT Tuttle, AT Howard, EH Erwin, 2008, A global inventory of coral reef stressors based on satellite observed nighttime lights, Geocarto International, London, England: Taylor and Francis. In press. Elvidge, CD, KE Baugh, EA Kihn, HW Kroehl, ER Davis, 1997, Mapping City Lights with Nighttime Data from the DMSP Operational Linescan System, Photogrammatic Engineering and Remote Sensing, 63:6, pp. 727-734. Lorne, JK, M Salmon, 2007, Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean, Endangered Species Research, Vol. 3: 23-30. Nicholas, M, 2001, Light Pollution and Marine Turtle Hatchlings: The Straw that Breaks the Camel's Back?, George Wright Forum, 18:4, p77-82. Witherington, BE, 1999, Reducing Threats To Nesting Habitat, Research and Management Techniques for

  2. Behavioral and cognitive effects of the N-methyl-D-aspartate receptor co-agonist D-serine in healthy humans: initial findings.

    PubMed

    Levin, Raz; Dor-Abarbanel, Adi Ein; Edelman, Shany; Durrant, Andrea R; Hashimoto, Kenji; Javitt, Daniel C; Heresco-Levy, Uriel

    2015-02-01

    The efficacy of compounds having agonistic activity at the glycine site associated with the N-methyl-D-aspartate receptor (NMDAR) is presently assessed in psychiatric disorders. In contrast to NMDAR antagonists, the neuropsychiatric effects of NMDAR agonists in the healthy human organism are not known. We studied neuropsychiatric and neurochemical effects of the NMDAR-glycine site obligatory co-agonist d-serine (DSR) in healthy subjects using a randomized, controlled crossover challenge design including a baseline assessment day and two DSR/placebo administration days. Thirty-five subjects aged 23-29 years participated in the study and received a 2.1 g orally administered DSR dose. The main outcome measures were the changes in scores of mood-related Visual Analogue Scale (VAS), Continuous Performance Test-Identical Pairs (CPT-IP), and Rey Auditory Verbal Learning Test (RAVLT). DSR acute administration: (1) was well tolerated and resulted at 2 h in ≥ 200 times increase in DSR serum levels; (2) elicited reduced VAS-measured depression and anxiety feelings; (3) improved attention and vigilance as measured by CPT-IP D-prime score; (4) preferentially improved performance in RAVLT list 7 reflecting ability to retain information over interference; (5) had significant but nonspecific effects on Category Fluency and Benton Visual Retention tests; and (6) did not affect glycine and glutamate serum levels. These data indicate that in healthy subjects, DSR reduces subjective feelings of sadness and anxiety and has procognitive effects that are overall opposed to the known effects of NMDAR antagonists. The findings are relevant to translational research of NMDAR function and the development of NMDAR-glycine site treatments for specific psychiatric entities. ClinicalTrials.gov: Behavioral and Cognitive Effects of the N-methyl-D-aspartate Receptor (NMDAR) Co-agonist D-serine in Healthy Humans; http://www.clinicaltrials.gov/ct2/show/NCT02051426?term=NCT02051426&rank=1; NCT

  3. Reduction of Urease Activity by Interaction with the Flap Covering the Active Site

    PubMed Central

    Macomber, Lee; Minkara, Mona S.; Hausinger, Robert P.; Merz, Kenneth M.

    2015-01-01

    With the increasing appreciation for the human microbiome coupled with the global rise of antibiotic resistant organisms, it is imperative that new methods be developed to specifically target pathogens. To that end, a novel computational approach was devised to identify compounds that reduce the activity of urease, a medically important enzyme of Helicobacter pylori, Proteus mirabilis, and many other microorganisms. Urease contains a flexible loop that covers its active site; Glide was used to identify small molecules predicted to lock this loop in an open conformation. These compounds were screened against the model urease from Klebsiella aerogenes and the natural products epigallocatechin and quercetin were shown to inhibit at low and high micromolar concentrations, respectively. These molecules exhibit a strong time-dependent inactivation of urease that was not due to their oxygen sensitivity. Rather, these compounds appear to inactivate urease by reacting with a specific Cys residue located on the flexible loop. Substitution of this cysteine by alanine in the C319A variant increased the urease resistance to both epigallocatechin and quercetin, as predicted by the computational studies. Protein dynamics are integral to the function of many enzymes; thus, identification of compounds that lock an enzyme into a single conformation presents a useful approach to define potential inhibitors. PMID:25594724

  4. Aspartate analysis in formulations using a new enzyme sensor.

    PubMed

    Campanella, L; Aturki, Z; Sammartino, M P; Tomassetti, M

    1995-04-01

    A biosensor has been developed for the purpose of directly analysing aspartate in pharmaceutical formulations and aspartame in sweeteners. This biosensor consists of an ammonia-sensitive gas-diffusion electrode and the enzyme L-aspartase immobilized by means of polyazetidine on a dialysis membrane.

  5. Regulation of N-methyl-D-aspartate receptor expression and N-methyl-D-aspartate-induced cellular response during chronic hypoxia in differentiated rat PC12 cells.

    PubMed

    Kobayashi, S; Millhorn, D E

    2000-01-01

    The purpose of the present study was to examine the effect of chronic hypoxia on N-methyl-D-aspartate-mediated cellular responses in differentiated PC12 cells. PC12 cells were differentiated by treatment with nerve growth factor. Patch-clamp analysis in differentiated PC12 cells showed that extracellularly applied N-methyl-D-aspartate induced an inward current that was abolished by the presence of the N-methyl-D-aspartate receptor antagonist MK-801. Results from Ca(2+) imaging experiments showed that N-methyl-D-aspartate induced an elevation in intracellular free Ca(2+) which was also abolished by MK-801. We also examined the effect of hypoxia on the N-methyl-D-aspartate-induced current in nerve growth factor-treated cells. We found that the N-methyl-D-aspartate-induced inward current and the N-methyl-D-aspartate-induced elevation in intracellular free Ca(2+) were markedly attenuated by chronic hypoxia. We next examined the possibility that the reduced N-methyl-D-aspartate responsiveness was due to down-regulation of N-methyl-D-aspartate receptor levels. Northern blot and immunoblot analyses showed that both messenger RNA and protein levels for N-methyl-D-aspartate receptor subunit 1 were markedly decreased during hypoxia. However, the messenger RNA for N-methyl-D-aspartate receptor subunit 2C was increased, whereas the protein level for subunit 2C did not change. Our results indicate that differentiated PC12 cells express functional N-methyl-D-aspartate receptors and that chronic exposure to hypoxia attenuates the N-methyl-D-aspartate-induced Ca(2+) accumulation in these cells via down-regulation of N-methyl-D-aspartate receptor subunit 1. This mechanism may play an important role in protecting PC12 cells against hypoxic stress. PMID:11113364

  6. A thermolabile aspartic proteinase from Mucor mucedo DSM 809: gene identification, cloning, and functional expression in Pichia pastoris.

    PubMed

    Yegin, Sirma; Fernandez-Lahore, Marcelo

    2013-06-01

    In this study, the cDNA encoding the aspartic proteinase of Mucor mucedo DSM 809 has been identified by RNA ligased-mediated and oligo-capping rapid amplification of cDNA ends (RACE) technique. The gene contained an open reading frame of 1,200 bp and encoded for a signal peptide of 21 amino acid residues. Two N-glycosylation sites were observed within the identified sequence. The proteinase gene was cloned into the vector pGAPZαA and expressed in Pichia pastoris X-33 for the first time. The protein has been secreted in functionally active form into the culture medium. The expression system does not require any acid activation process. The factors affecting the expression level were optimized in shaking flask cultures. Maximum enzyme production was observed with an initial medium pH of 3.5 at 20 °C and 220 rpm shaking speed utilizing 4 % glucose as a carbon and energy source. The enzyme was purified with cation exchange chromatography and further studies revealed that the enzyme was secreted in glycosylated form. The purified enzyme exhibited remarkable sensitivity to thermal treatment and became completely inactivated after incubation at 55 °C for 10 min. These results indicated that the recombinant proteinase could be considered as a potential rennet candidate for the cheese-making industry.

  7. Conformational Selection and Submillisecond Dynamics of the Ligand-binding Domain of the N-Methyl-d-aspartate Receptor*

    PubMed Central

    Dolino, Drew M.; Rezaei Adariani, Soheila; Shaikh, Sana A.; Jayaraman, Vasanthi; Sanabria, Hugo

    2016-01-01

    The N-methyl-d-aspartate (NMDA) receptors are heteromeric non-selective cation channels that require the binding of glycine and glutamate for gating. Based on crystal structures, the mechanism of partial agonism at the glycine-binding site is thought to be mediated by a shift in the conformational equilibrium between an open clamshell and a closed clamshell-like structure of the bilobed ligand-binding domain (LBD). Using single-molecule Förster resonance energy transfer (smFRET) and multiparameter fluorescence detection, which allows us to study the conformational states and dynamics in the submillisecond time scale, we show that there are at least three conformational states explored by the LBD: the low FRET, medium FRET, and high FRET states. The distance of the medium and low FRET states corresponds to what has been observed in crystallography structures. We show that the high FRET state, which would represent a more closed clamshell conformation than that observed in the crystal structure, is most likely the state initiating activation, as evidenced by the fact that the fraction of the protein in this state correlates well with the extent of activation. Furthermore, full agonist bound LBDs show faster dynamic motions between the medium and high FRET states, whereas they show slower dynamics when bound to weaker agonists or to antagonists. PMID:27226581

  8. Aspartic acid racemization dating of Holocene brachiopods and bivalves from the southern Brazilian shelf, South Atlantic

    NASA Astrophysics Data System (ADS)

    Barbour Wood, Susan L.; Krause, Richard A.; Kowalewski, Michał; Wehmiller, John; Simões, Marcello G.

    2006-09-01

    The extent of racemization of aspartic acid (Asp) has been used to estimate the ages of 9 shells of the epifaunal calcitic brachiopod Bouchardia rosea and 9 shells of the infaunal aragonitic bivalve Semele casali. Both taxa were collected concurrently from the same sites at depths of 10 m and 30 m off the coast of Brazil. Asp D/L values show an excellent correlation with radiocarbon age at both sites and for both taxa ( r2Site 9 B. rosea = 0.97, r2Site 1 B. rosea = 0.997, r2Site 9 S. casali = 0.9998, r2Site 1 S. casali = 0.93). The Asp ratios plotted against reservoir-corrected AMS radiocarbon ages over the time span of multiple millennia can thus be used to develop reliable and precise geochronologies not only for aragonitic mollusks (widely used for dating previously), but also for calcitic brachiopods. At each collection site, Bouchardia specimens display consistently higher D/L values than specimens of Semele. Thermal differences between sites are also notable and in agreement with theoretical expectations, as extents of racemization for both taxa are greater at the warmer, shallower site than at the cooler, deeper one. In late Holocene marine settings, concurrent time series of aragonitic and calcitic shells can be assembled using Asp racemization dating, and parallel multi-centennial to multi-millennial records can be developed simultaneously for multiple biomineral systems.

  9. Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation.

    PubMed

    Vanelderen, Pieter; Snyder, Benjamin E R; Tsai, Ming-Li; Hadt, Ryan G; Vancauwenbergh, Julie; Coussens, Olivier; Schoonheydt, Robert A; Sels, Bert F; Solomon, Edward I

    2015-05-20

    Two distinct [Cu-O-Cu](2+) sites with methane monooxygenase activity are identified in the zeolite Cu-MOR, emphasizing that this Cu-O-Cu active site geometry, having a ∠Cu-O-Cu ∼140°, is particularly formed and stabilized in zeolite topologies. Whereas in ZSM-5 a similar [Cu-O-Cu](2+) active site is located in the intersection of the two 10 membered rings, Cu-MOR provides two distinct local structures, situated in the 8 membered ring windows of the side pockets. Despite their structural similarity, as ascertained by electronic absorption and resonance Raman spectroscopy, the two Cu-O-Cu active sites in Cu-MOR clearly show different kinetic behaviors in selective methane oxidation. This difference in reactivity is too large to be ascribed to subtle differences in the ground states of the Cu-O-Cu sites, indicating the zeolite lattice tunes their reactivity through second-sphere effects. The MOR lattice is therefore functionally analogous to the active site pocket of a metalloenzyme, demonstrating that both the active site and its framework environment contribute to and direct reactivity in transition metal ion-zeolites.

  10. School Pharmacist/School Environmental Hygienic Activities at School Site.

    PubMed

    Muramatsu, Akiyoshi

    2016-01-01

    The "School Health and Safety Act" was enforced in April 2009 in Japan, and "school environmental health standards" were established by the Minister of Education, Culture, Sports, Science and Technology. In Article 24 of the Enforcement Regulations, the duties of the school pharmacist have been clarified; school pharmacists have charged with promoting health activities in schools and carrying out complete and regular checks based on the "school environmental health standards" in order to protect the health of students and staff. In supported of this, the school pharmacist group of Japan Pharmaceutical Association has created and distributed digital video discs (DVDs) on "check methods of school environmental health standards" as support material. We use the DVD to ensure the basic issues that school pharmacists deal with, such as objectives, criteria, and methods for each item to be checked, advice, and post-measures. We conduct various workshops and classes, and set up Q&A committees so that inquiries from members are answered with the help of such activities. In addition, school pharmacists try to improve the knowledge of the school staff on environmental hygiene during their in-service training. They also conduct "drug abuse prevention classes" at school and seek to improve knowledge and recognition of drugs, including "dangerous drugs". PMID:27252053

  11. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors.

    PubMed

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M; Kenny, Paul J; Lindstrom, Jon

    2015-05-29

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets.

  12. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

    PubMed

    Matsubu, John C; Yang, Vanessa N; Christopher, Phillip

    2015-03-01

    CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability.

  13. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

    PubMed

    Matsubu, John C; Yang, Vanessa N; Christopher, Phillip

    2015-03-01

    CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability. PMID:25671686

  14. Site specific rationale for technical impracticability of active groundwater restoration at a former manufactured gas plant site

    SciTech Connect

    Logan, C.M.; Walden, R.H.; MacFarlane, I.D.

    1995-12-31

    The National Contingency Plan (40 CFR Part 300 ) requires that remedial strategies must, at minimum, protect human health and the environment and meet applicable and relevant or appropriate requirements (ARARs). Where groundwater is impacted, maximum contaminant levels (MCLs) and maximum contaminant level goals (MCLGs) set under the Safe Drinking Water Act are often used as ARARs, whether or not the aquifer is a reasonably anticipated future source of drinking water. The US Environmental Protection Agency now recognizes the difficulty of groundwater restoration at sites where dense nonaqueous phase liquids are present, particularly in certain complex hydrogeological settings (EPA 1993). However, demonstration of impracticability generally does not occur until active remediation (e.g., pump and treat) has been shown to be ineffective. A case study of a former manufactured gas plant (MGP) is used to demonstrate how physical and chemical properties of the aquifer and coal tar, the major waste product from MGP sites, influence the feasibility of active restoration. Field characterization investigations, laboratory studies, and groundwater modeling are integrated into a demonstration following EPA guidelines. Laboratory studies included microbiological characterization and natural biodegradation and suggest that intrinsic bioremediation is occurring at this site. This work will be useful as EPA continues to develop presumptive remedies for cleanup under Superfund.

  15. The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors.

    PubMed

    Janek, Katharina; Niewienda, Agathe; Wöstemeyer, Johannes; Voigt, Jürgen

    2016-11-15

    Particular peptides generated from the vicilin-class(7S) globulin of the cocoa beans by acid-induced proteolysis during cocoa fermentation are essential precursors of the cocoa-specific aroma notes. As revealed by in vitro studies, the formation of the cocoa-specific aroma precursors depends on the particular cleavage specificity of the cocoa aspartic protease, which cannot be substituted by pepsin. Therefore, we have investigated the effects of aspartic protease inhibitors on both enzymes and comparatively studied their cleavage specificities using different protein substrates and MALDI-TOF mass spectrometric analyses of the generated oligopeptides. Three classes of cleavage sites have been identified and characterized: (I) sequences exclusively cleaved by the cocoa enzyme, (II) sequences cleaved by both pepsin and the cocoa enzyme, and (III) those cleaved exclusively by pepsin. In contrast to most aspartic proteases from other origins, basic amino acid residues, particularly lysine, were found to be abundant in the specific cleavage sites of the cocoa enzyme.

  16. The calculation of surface orbital energies for specific types of active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.; Cole, F.

    1992-11-01

    An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  17. The calculation of surface orbital energies for specific types of active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.; Cole, F.

    1992-01-01

    An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  18. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  19. Activity of site-specific endonucleases on complexes of plasmid DNA with multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Egorova, V. P.; Krylova, H. V.; Lipnevich, I. V.; Veligura, A. A.; Shulitsky, B. G.; Asayonok, A. A.; Vaskovtsev, E. V.

    2016-08-01

    We have synthesized and investigated structural and functional properties of plasmid DNA complexes with multi-walled carbon nanotubes (MWCNTs) for detection of changes in structural state of the plasmid DNA at its recognition by site-specific endonuclease. It has been also established that the site-specific endonuclease is functionally active on the surface of MWCNTs.

  20. 77 FR 5560 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... project proposals on those leases) in identified Wind Energy Areas (WEAs) on the OCS offshore New Jersey... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on the... site assessment plans (SAPs) on those leases. BOEM may issue one or more commercial wind energy...

  1. The balance of flexibility and rigidity in the active site residues of hen egg white lysozyme

    NASA Astrophysics Data System (ADS)

    Qi, Jian-Xun; Jiang, Fan

    2011-05-01

    The crystallographic temperature factors (B factor) of individual atoms contain important information about the thermal motion of the atoms in a macromolecule. Previously the theory of flexibility of active site has been established based on the observation that the enzyme activity is sensitive to low concentration denaturing agents. It has been found that the loss of enzyme activity occurs well before the disruption of the three-dimensional structural scaffold of the enzyme. To test the theory of conformational flexibility of enzyme active site, crystal structures were perturbed by soaking in low concentration guanidine hydrochloride solutions. It was found that many lysozyme crystals tested could still diffract until the concentration of guanidine hydrochloride reached 3 M. It was also found that the B factors averaged over individually collected data sets were more accurate. Thus it suggested that accurate measurement of crystal temperature factors could be achieved for medium-high or even medium resolution crystals by averaging over multiple data sets. Furthermore, we found that the correctly predicted active sites included not only the more flexible residues, but also some more rigid residues. Both the flexible and the rigid residues in the active site played an important role in forming the active site residue network, covering the majority of the substrate binding residues. Therefore, this experimental prediction method may be useful for characterizing the binding site and the function of a protein, such as drug targeting.

  2. INTERACTIONS OF DIFFERENT INHIBITORS WITH ACTIVE-SITE ASPARTYL RESIDUES OF HIV-1 PROTEASE AND POSSIBLE RELEVANCE TO PEPSINS

    PubMed Central

    Sayer, Jane M.; Louis, John M.

    2008-01-01

    The importance of the active site region aspartyl residues 25 and 29 of the mature HIV-1 protease (PR) for the binding of five clinical and three experimental protease inhibitors (symmetric cyclic urea inhibitor DMP323, non-hydrolysable substrate analog (RPB) and the generic aspartic protease inhibitor acetyl-pepstatin (Ac-PEP)) was assessed by differential scanning calorimetry. ΔTm values, defined as the difference in Tm for a given protein in the presence and absence of inhibitor, for PR with DRV, ATV, SQV, RTV, APV, DMP323, RPB and Ac-PEP are 22.4, 20.8, 19.3, 15.6, 14.3, 14.7, 8.7, and 6.5 °C, respectively. Binding of APV and Ac-PEP is most sensitive to the D25N mutation, as shown by ΔTm ratios [ΔTm(PR)/ΔTm(PRD25N)] of 35.8 and 16.3, respectively, whereas binding of DMP323 and RPB (ΔTm ratios of 1-2) is least affected. Binding of the substrate-like inhibitors RPB and Ac-PEP is nearly abolished (ΔTm(PR)/ΔTm(PRD29N) ≥ 44) by the D29N mutation, whereas this mutation only moderately affects binding of the smaller inhibitors (ΔTm ratios of 1.4-2.2). Of the 9 FDA approved clinical HIV-1 protease inhibitors screened, APV, RTV and DRV competitively inhibit porcine pepsin with Ki values of 0.3, 0.6 and 2.14 μM, respectively. DSC results were consistent with this relatively weak binding of APV (ΔTm 2.7 °C) compared with the tight binding of AcPEP (ΔTm ≥17 °C). Comparison of superimposed structures of the PR/APV complex with those of PR/Ac-PEP and pepsin/pepstatin A complexes suggests a role for Asp215, Asp32 and Ser219 in pepsin, equivalent to Asp25, Asp25′ and Asp29 in PR, in the binding and stabilization of the pepsin/APV complex. PMID:18951411

  3. Synthesis of β-alanine from L-aspartate using L-aspartate-α-decarboxylase from Corynebacterium glutamicum.

    PubMed

    Shen, Yan; Zhao, Lianzhen; Li, Youran; Zhang, Liang; Shi, Guiyang

    2014-08-01

    β-Alanine is mainly produced by chemical methods in current industrial processes. Here, panD from Corynebacterium glutamicum encoding L-aspartate-α-decarboxylase (ADC) was cloned and expressed in Escherichia coli BL21(DE3). ADC C.g catalyzes the α-decarboxylation of L-aspartate to β-alanine. The purified ADC C.g was optimal at 55 °C and pH 6 with excellent stability at 16-37 °C and pH 4-7. A pH-stat directed, fed-batch feeding strategy was developed for enzymatic synthesis of β-alanine to keep the pH value within 6-7.2 and thus attenuate substrate inhibition. A maximum conversion of 97.2 % was obtained with an initial 5 g L-aspartate/l and another three feedings of 0.5 % (w/v) L-aspartate at 8 h intervals. The final β-alanine concentration was 12.85 g/l after 36 h. This is the first study concerning the enzymatic production of β-alanine by using ADC.

  4. Chemical modification studies on arginine kinase: essential cysteine and arginine residues at the active site.

    PubMed

    Zhu, Wen-Jing; Li, Miao; Wang, Xiao-Yun

    2007-12-01

    Chemical modification was used to elucidate the essential amino acids in the catalytic activity of arginine kinase (AK) from Migratoria manilensis. Among six cysteine (Cys) residues only one Cys residue was determined to be essential in the active site by Tsou's method. Furthermore, the AK modified by DTNB can be fully reactivated by dithiothreitol (DTT) in a monophasic kinetic course. At the same time, this reactivation can be slowed down in the presence of ATP, suggesting that the essential Cys is located near the ATP binding site. The ionizing groups at the AK active site were studied and the standard dissociation enthalpy (DeltaH degrees ) was 12.38kcal/mol, showing that the dissociation group may be the guanidino of arginine (Arg). Using the specific chemical modifier phenylglyoxal (PG) demonstrated that only one Arg, located near the ATP binding site, is essential for the activity of AK. PMID:17765964

  5. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    SciTech Connect

    Not Available

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  6. Metabolic derangements in deficiency of citrin, a liver-type mitochondrial aspartate-glutamate carrier.

    PubMed

    Saheki, Takeyori; Kobayashi, Keiko; Iijima, Mikio; Moriyama, Mitsuaki; Yazaki, Masahide; Takei, Yo-Ichi; Ikeda, Shu-Ichi

    2005-10-01

    Citrin, encoded by SLC25A13, is a liver-type mitochondrial aspartate-glutamate carrier (AGC), of which deficiency, in autosomal recessive trait, causes neonatal intrahepatic cholestasis (NICCD) and adult-onset type II citrullinemia (CTLN2). NICCD patients have jaundice, hypoproteinemia, hypoglycemia, galactosemia, growth retardation, fatty liver and multiple aminoacidemia including citrulline, methionine, threonine and tyrosine. Some of the neonates who have experienced NICCD suffer from severe CTLN2 more than 10 years or several decades later. In CTLN2, neuropsychotic symptoms such as disorientation, aberrant behavior, coma and death are observed. Laboratory findings reveal hyperammonemia, citrullinemia, fatty liver and liver-specific decrease in a urea cycle enzyme, argininosuccinate synthetase (ASS). In some cases, hyperlipidemia, pancreatitis and hepatoma are accompanied with CTLN2. Citrin as a liver-type AGC plays a role in supplying aspartate to the cytosol for urea, protein and nucleotide synthesis by exchanging mitochondrial aspartate for cytosolic glutamate and proton, and transporting cytosolic NADH reducing equivalent to mitochondria as a member of malate aspartate shuttle essential for aerobic glycolysis. AGC is also important for gluconeogenesis from lactate. Although it is difficult to explain pathogenesis of the symptoms such as cholestasis in NICCD and liver-specific decrease of ASS protein in CTLN2 from the functions of the AGC, some are understandable by the loss of citrin functions. Many CTLN2 patients have been treated with a low protein and high carbohydrate diet and glycerol at the hyperammonemic coma. We argue that those treatments may result in fatty liver, hyperlipidemia, hyperammonemia and even death due to loss of the citrin functions. Loss of citrin first cause deficiency of aspartate in the cytosol, which results in an increase in cytosolic NADH/NAD(+) ratio and then activation of fatty acid synthesis pathway to compensate the aberrant

  7. Anisotropic Covalency Contributions to Superexchange Pathways in Type One Copper Active Sites

    PubMed Central

    2015-01-01

    Type one (T1) Cu sites deliver electrons to catalytic Cu active sites: the mononuclear type two (T2) Cu site in nitrite reductases (NiRs) and the trinuclear Cu cluster in the multicopper oxidases (MCOs). The T1 Cu and the remote catalytic sites are connected via a Cys-His intramolecular electron-transfer (ET) bridge, which contains two potential ET pathways: P1 through the protein backbone and P2 through the H-bond between the Cys and the His. The high covalency of the T1 Cu–S(Cys) bond is shown here to activate the T1 Cu site for hole superexchange via occupied valence orbitals of the bridge. This covalency-activated electronic coupling (HDA) facilitates long-range ET through both pathways. These pathways can be selectively activated depending on the geometric and electronic structure of the T1 Cu site and thus the anisotropic covalency of the T1 Cu–S(Cys) bond. In NiRs, blue (π-type) T1 sites utilize P1 and green (σ-type) T1 sites utilize P2, with P2 being more efficient. Comparing the MCOs to NiRs, the second-sphere environment changes the conformation of the Cys-His pathway, which selectively activates HDA for superexchange by blue π sites for efficient turnover in catalysis. These studies show that a given protein bridge, here Cys-His, provides different superexchange pathways and electronic couplings depending on the anisotropic covalencies of the donor and acceptor metal sites. PMID:25310460

  8. Probing impact of active site residue mutations on stability and activity of Neisseria polysaccharea amylosucrase.

    PubMed

    Daudé, David; Topham, Christopher M; Remaud-Siméon, Magali; André, Isabelle

    2013-12-01

    The amylosucrase from Neisseria polysaccharea is a transglucosidase from the GH13 family of glycoside-hydrolases that naturally catalyzes the synthesis of α-glucans from the widely available donor sucrose. Interestingly, natural molecular evolution has modeled a dense hydrogen bond network at subsite -1 responsible for the specific recognition of sucrose and conversely, it has loosened interactions at the subsite +1 creating a highly promiscuous subsite +1. The residues forming these subsites are considered to be likely involved in the activity as well as the overall stability of the enzyme. To assess their role, a structure-based approach was followed to reshape the subsite -1. A strategy based on stability change predictions, using the FoldX algorithm, was considered to identify the best candidates for site-directed mutagenesis and guide the construction of a small targeted library. A miniaturized purification protocol was developed and both mutant stability and substrate promiscuity were explored. A range of 8 °C between extreme melting temperature values was observed and some variants were able to synthesize series of oligosaccharides with distributions differing from that of the parental enzyme. The crucial role of subsite -1 was thus highlighted and the biocatalysts generated can now be considered as starting points for further engineering purposes.

  9. HIV aspartic peptidase inhibitors are effective drugs against the trypomastigote form of the human pathogen Trypanosoma cruzi.

    PubMed

    Sangenito, Leandro S; Gonçalves, Diego S; Seabra, Sergio H; d'Avila-Levy, Claudia M; Santos, André L S; Branquinha, Marta H

    2016-10-01

    There is a general lack of effective and non-toxic chemotherapeutic agents against Chagas' disease despite more than a century of research. In this regard, we have verified the impact of human immunodeficiency virus aspartic peptidase inhibitors (HIV-PIs) on the viability and morphology of infective trypomastigote forms of Trypanosoma cruzi as well as on the aspartic peptidase and proteasome activities produced by this parasite. The effects of HIV-PIs on viability were assessed by counting motile parasites in a Neubauer chamber. Morphological alterations were detected by light microscopy of Giemsa-stained smears and scanning electron microscopy. Modulation of aspartic peptidase and proteasome activities by the HIV-PIs was measured by cleavage of fluorogenic peptide substrates. The majority of the HIV-PIs (6/9) were able to drastically decrease the viability of trypomastigotes after 4 h of treatment, with nelfinavir and lopinavir being the most effective compounds presenting LD50 values of 8.6 µM and 10.6 µM, respectively. Additionally, both HIV-PIs were demonstrated to be effective in a time- and cell density-dependent manner. Treatment with nelfinavir and lopinavir caused many morphological/ultrastructural alterations in trypomastigotes; parasites became round in shape, with reduced cell size and flagellar shortening. Nelfinavir and lopinavir were also capable of significantly inhibiting the aspartic peptidase and proteasome activities measured in trypomastigote extracts. These results strengthen the data on the positive effects of HIV-PIs on parasitic infections, possibly by targeting the parasite aspartic peptidase(s) and proteasome(s), opening a new possibility for the use of these clinically approved drugs as an alternative chemotherapy to treat Chagas' disease. PMID:27499433

  10. HIV aspartic peptidase inhibitors are effective drugs against the trypomastigote form of the human pathogen Trypanosoma cruzi.

    PubMed

    Sangenito, Leandro S; Gonçalves, Diego S; Seabra, Sergio H; d'Avila-Levy, Claudia M; Santos, André L S; Branquinha, Marta H

    2016-10-01

    There is a general lack of effective and non-toxic chemotherapeutic agents against Chagas' disease despite more than a century of research. In this regard, we have verified the impact of human immunodeficiency virus aspartic peptidase inhibitors (HIV-PIs) on the viability and morphology of infective trypomastigote forms of Trypanosoma cruzi as well as on the aspartic peptidase and proteasome activities produced by this parasite. The effects of HIV-PIs on viability were assessed by counting motile parasites in a Neubauer chamber. Morphological alterations were detected by light microscopy of Giemsa-stained smears and scanning electron microscopy. Modulation of aspartic peptidase and proteasome activities by the HIV-PIs was measured by cleavage of fluorogenic peptide substrates. The majority of the HIV-PIs (6/9) were able to drastically decrease the viability of trypomastigotes after 4 h of treatment, with nelfinavir and lopinavir being the most effective compounds presenting LD50 values of 8.6 µM and 10.6 µM, respectively. Additionally, both HIV-PIs were demonstrated to be effective in a time- and cell density-dependent manner. Treatment with nelfinavir and lopinavir caused many morphological/ultrastructural alterations in trypomastigotes; parasites became round in shape, with reduced cell size and flagellar shortening. Nelfinavir and lopinavir were also capable of significantly inhibiting the aspartic peptidase and proteasome activities measured in trypomastigote extracts. These results strengthen the data on the positive effects of HIV-PIs on parasitic infections, possibly by targeting the parasite aspartic peptidase(s) and proteasome(s), opening a new possibility for the use of these clinically approved drugs as an alternative chemotherapy to treat Chagas' disease.

  11. 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site.

    PubMed

    Martin, David P; Blachly, Patrick G; Marts, Amy R; Woodruff, Tessa M; de Oliveira, César A F; McCammon, J Andrew; Tierney, David L; Cohen, Seth M

    2014-04-01

    The binding of three closely related chelators: 5-hydroxy-2-methyl-4H-pyran-4-thione (allothiomaltol, ATM), 3-hydroxy-2-methyl-4H-pyran-4-thione (thiomaltol, TM), and 3-hydroxy-4H-pyran-4-thione (thiopyromeconic acid, TPMA) to the active site of human carbonic anhydrase II (hCAII) has been investigated. Two of these ligands display a monodentate mode of coordination to the active site Zn(2+) ion in hCAII that is not recapitulated in model complexes of the enzyme active site. This unprecedented binding mode in the hCAII-thiomaltol complex has been characterized by both X-ray crystallography and X-ray spectroscopy. In addition, the steric restrictions of the active site force the ligands into a 'flattened' mode of coordination compared with inorganic model complexes. This change in geometry has been shown by density functional computations to significantly decrease the strength of the metal-ligand binding. Collectively, these data demonstrate that the mode of binding by small metal-binding groups can be significantly influenced by the protein active site. Diminishing the strength of the metal-ligand bond results in unconventional modes of metal coordination not found in typical coordination compounds or even carefully engineered active site models, and understanding these effects is critical to the rational design of inhibitors that target clinically relevant metalloproteins.

  12. Site-directed mutagenesis and high-resolution NMR spectroscopy of the active site of porphobilinogen deaminase

    SciTech Connect

    Scott, A.I.; Roessner, C.A.; Stolowich, N.J.; Karuso, P.; Williams, H.J.; Grant, S.K.; Gonzalez, M.D.; Hoshino, T. )

    1988-10-18

    The active site of porphobilinogen (PBG){sup 1} deaminase from Escherichia coli has been found to contain an unusual dipyrromethane derived from four molecules of 5-aminolevulinic acid (ALA) covalently linked to Cys-242, one of the two cysteine residues conserved in E. coli and human deaminase. By use of a hemA{sup {minus}} strain of E. coli the enzyme was enriched from (5-{sup 13}C)ALA and examined by {sup 1}H-detected multiple quantum coherence spectroscopy, which revealed all of the salient features of a dipyrromethane composed of two PBG units linked heat to tail and terminating in a CH{sub 2}-S bond to a cysteine residue. Site-specific mutagenesis of Cys-99 and Cys-242, respectively, has shown that substitution of Ser for Cys-99 does not affect the enzymatic activity, whereas substitution of Ser for Cys-242 removes essentially all of the catalytic activity as measured by the conversion of the substrate PBG to uro'gen I. The NMR spectrum of the covalent complex of deaminase with the suicide inhibitor 2-bromo-(2,11-{sup 13}C{sub 2})PBG reveals that the aminomethyl terminus of the inhibitor reacts with the enzyme's cofactor at the {alpha}-free pyrrole. NMR spectroscopy of the ES{sub 2} complex confirmed a PBG-derived head-to-tail dipyrromethane attached to the {alpha}-free pyrrole position of the enzyme. A mechanistic rationale for deaminase is presented.

  13. Nuclear waste: Status of DOE`s nuclear waste site characterization activities

    SciTech Connect

    1987-12-31

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE`s relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult.

  14. XAFS Study of the Photo-Active Site of Mo/MCM-41

    NASA Astrophysics Data System (ADS)

    Miyamoto, Daisuke; Ichikuni, Nobuyuki; Shimazu, Shogo

    2007-02-01

    An Mo/MCM-41 catalyst was prepared and used for study of propene and 1-butene photo-metathesis reactions. XAFS analysis revealed that hydrogen reduction leads to a decreased role for the Mo=O site. The Mo-O site plays an important role for the olefin photo-metathesis reaction on the H2 reduced Mo/MCM-41. From EXAFS analysis, the active site of photo-metathesis reaction is the Mo=O part for oxidized Mo/MCM-41, whereas it is the Mo-O site for reduced Mo/MCM-41.

  15. The Three Mycobacterium tuberculosis Antigen 85 Isoforms Have Unique Substrates and Activities Determined by Non-active Site Regions*

    PubMed Central

    Backus, Keriann M.; Dolan, Michael A.; Barry, Conor S.; Joe, Maju; McPhie, Peter; Boshoff, Helena I. M.; Lowary, Todd L.; Davis, Benjamin G.; Barry, Clifton E.

    2014-01-01

    The three isoforms of antigen 85 (A, B, and C) are the most abundant secreted mycobacterial proteins and catalyze transesterification reactions that synthesize mycolated arabinogalactan, trehalose monomycolate (TMM), and trehalose dimycolate (TDM), important constituents of the outermost layer of the cellular envelope of Mycobacterium tuberculosis. These three enzymes are nearly identical at the active site and have therefore been postulated to exist to evade host immunity. Distal to the active site is a second putative carbohydrate-binding site of lower homology. Mutagenesis of the three isoforms at this second site affected both substrate selectivity and overall catalytic activity in vitro. Using synthetic and natural substrates, we show that these three enzymes exhibit unique selectivity; antigen 85A more efficiently mycolates TMM to form TDM, whereas C (and to a lesser extent B) has a higher rate of activity using free trehalose to form TMM. This difference in substrate selectivity extends to the hexasaccharide fragment of cell wall arabinan. Mutation of secondary site residues from the most active isoform (C) into those present in A or B partially interconverts this substrate selectivity. These experiments in combination with molecular dynamics simulations reveal that differences in the N-terminal helix α9, the adjacent Pro216–Phe228 loop, and helix α5 are the likely cause of changes in activity and substrate selectivity. These differences explain the existence of three isoforms and will allow for future work in developing inhibitors. PMID:25028517

  16. Transcriptional activation through ETS domain binding sites in the cytochrome c oxidase subunit IV gene

    SciTech Connect

    Virbasius, J.V.; Scarpulla, R.C. )

    1991-11-01

    A mutational analysis of the rat cytochrome c oxidase subunit IV (RCO4) promoter region revealed the presence of a major control element consisting of a tandemly repeated pair of binding sites for a nuclear factor from HeLa cells. This factor was designated NRF-2 (nuclear respiratory factor 2) because a functional recognition site was also found in the human ATP synthase {beta}-subunit gene. Deletion or site-directed point mutations of the NRF-2 binding sites in the RCO4 promoter resulted in substantial loss of transcriptional activity, and synthetic oligomers of the NRF-2 binding sites from both genes stimulated a heterologous promoter when cloned in cis. NRF-2 binding a transcriptional activation required a purine-rich core sequence, GGAA. This motif is characteristic of the recognition site for a family of activators referred to as ETS domain proteins because of the similarity within their DNA-binding domains to the ets-1 proto-oncogene product. NRF-2 recognized an authentic Ets-1 site within the Moloney murine sarcoma virus long terminal repeat, and this site was able to compete for NRF-2 binding to the RCO4 promoter sequence. However, in contrast to Ets-1, which appears to be exclusive to lymphoid tissues, NRF-2 has the broad tissue distribution expected of a regulator of respiratory chain expression.

  17. Quantitative, directional measurement of electric field heterogeneity in the active site of ketosteroid isomerase.

    PubMed

    Fafarman, Aaron T; Sigala, Paul A; Schwans, Jason P; Fenn, Timothy D; Herschlag, Daniel; Boxer, Steven G

    2012-02-01

    Understanding the electrostatic forces and features within highly heterogeneous, anisotropic, and chemically complex enzyme active sites and their connection to biological catalysis remains a longstanding challenge, in part due to the paucity of incisive experimental probes of electrostatic properties within proteins. To quantitatively assess the landscape of electrostatic fields at discrete locations and orientations within an enzyme active site, we have incorporated site-specific thiocyanate vibrational probes into multiple positions within bacterial ketosteroid isomerase. A battery of X-ray crystallographic, vibrational Stark spectroscopy, and NMR studies revealed electrostatic field heterogeneity of 8 MV/cm between active site probe locations and widely differing sensitivities of discrete probes to common electrostatic perturbations from mutation, ligand binding, and pH changes. Electrostatic calculations based on active site ionization states assigned by literature precedent and computational pK(a) prediction were unable to quantitatively account for the observed vibrational band shifts. However, electrostatic models of the D40N mutant gave qualitative agreement with the observed vibrational effects when an unusual ionization of an active site tyrosine with a pK(a) near 7 was included. UV-absorbance and (13)C NMR experiments confirmed the presence of a tyrosinate in the active site, in agreement with electrostatic models. This work provides the most direct measure of the heterogeneous and anisotropic nature of the electrostatic environment within an enzyme active site, and these measurements provide incisive benchmarks for further developing accurate computational models and a foundation for future tests of electrostatics in enzymatic catalysis.

  18. Solution structure of the squash aspartic acid proteinase inhibitor (SQAPI) and mutational analysis of pepsin inhibition.

    PubMed

    Headey, Stephen J; Macaskill, Ursula K; Wright, Michele A; Claridge, Jolyon K; Edwards, Patrick J B; Farley, Peter C; Christeller, John T; Laing, William A; Pascal, Steven M

    2010-08-27

    The squash aspartic acid proteinase inhibitor (SQAPI), a proteinaceous proteinase inhibitor from squash, is an effective inhibitor of a range of aspartic proteinases. Proteinaceous aspartic proteinase inhibitors are rare in nature. The only other example in plants probably evolved from a precursor serine proteinase inhibitor. Earlier work based on sequence homology modeling suggested SQAPI evolved from an ancestral cystatin. In this work, we determined the solution structure of SQAPI using NMR and show that SQAPI shares the same fold as a plant cystatin. The structure is characterized by a four-strand anti-parallel beta-sheet gripping an alpha-helix in an analogous manner to fingers of a hand gripping a tennis racquet. Truncation and site-specific mutagenesis revealed that the unstructured N terminus and the loop connecting beta-strands 1 and 2 are important for pepsin inhibition, but the loop connecting strands 3 and 4 is not. Using ambiguous restraints based on the mutagenesis results, SQAPI was then docked computationally to pepsin. The resulting model places the N-terminal strand of SQAPI in the S' side of the substrate binding cleft, whereas the first SQAPI loop binds on the S side of the cleft. The backbone of SQAPI does not interact with the pepsin catalytic Asp(32)-Asp(215) diad, thus avoiding cleavage. The data show that SQAPI does share homologous structural elements with cystatin and appears to retain a similar protease inhibitory mechanism despite its different target. This strongly supports our hypothesis that SQAPI evolved from an ancestral cystatin.

  19. Molecular dynamics explorations of active site structure in designed and evolved enzymes.

    PubMed

    Osuna, Sílvia; Jiménez-Osés, Gonzalo; Noey, Elizabeth L; Houk, K N

    2015-04-21

    This Account describes the use of molecular dynamics (MD) simulations to reveal how mutations alter the structure and organization of enzyme active sites. As proposed by Pauling about 70 years ago and elaborated by many others since then, biocatalysis is efficient when functional groups in the active site of an enzyme are in optimal positions for transition state stabilization. Changes in mechanism and covalent interactions are often critical parts of enzyme catalysis. We describe our explorations of the dynamical preorganization of active sites using MD, studying the fluctuations between active and inactive conformations normally concealed to static crystallography. MD shows how the various arrangements of active site residues influence the free energy of the transition state and relates the populations of the catalytic conformational ensemble to the enzyme activity. This Account is organized around three case studies from our laboratory. We first describe the importance of dynamics in evaluating a series of computationally designed and experimentally evolved enzymes for the Kemp elimination, a popular subject in the enzyme design field. We find that the dynamics of the active site is influenced not only by the original sequence design and subsequent mutations but also by the nature of the ligand present in the active site. In the second example, we show how microsecond MD has been used to uncover the role of remote mutations in the active site dynamics and catalysis of a transesterase, LovD. This enzyme was evolved by Tang at UCLA and Codexis, Inc., and is a useful commercial catalyst for the production of the drug simvastatin. X-ray analysis of inactive and active mutants did not reveal differences in the active sites, but relatively long time scale MD in solution showed that the active site of the wild-type enzyme preorganizes only upon binding of the acyl carrier protein (ACP) that delivers the natural acyl group to the active site. In the absence of bound ACP

  20. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity.

    PubMed

    Schöne, Stefanie; Jurk, Marcel; Helabad, Mahdi Bagherpoor; Dror, Iris; Lebars, Isabelle; Kieffer, Bruno; Imhof, Petra; Rohs, Remo; Vingron, Martin; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H

    2016-09-01

    The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes.

  1. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site

    SciTech Connect

    Grossman, Moran; Born, Benjamin; Heyden, Matthias; Tworowski, Dmitry; Fields, Gregg B.; Sagi, Irit; Havenith, Martina

    2011-09-18

    Solvent dynamics can play a major role in enzyme activity, but obtaining an accurate, quantitative picture of solvent activity during catalysis is quite challenging. Here, we combine terahertz spectroscopy and X-ray absorption analyses to measure changes in the coupled water-protein motions during peptide hydrolysis by a zinc-dependent human metalloprotease. These changes were tightly correlated with rearrangements at the active site during the formation of productive enzyme-substrate intermediates and were different from those in an enzyme–inhibitor complex. Molecular dynamics simulations showed a steep gradient of fast-to-slow coupled protein-water motions around the protein, active site and substrate. Our results show that water retardation occurs before formation of the functional Michaelis complex. We propose that the observed gradient of coupled protein-water motions may assist enzyme-substrate interactions through water-polarizing mechanisms that are remotely mediated by the catalytic metal ion and the enzyme active site.

  2. An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein.

    PubMed

    Hirschi, Alexander; Cecchini, Matthew; Steinhardt, Rachel C; Schamber, Michael R; Dick, Frederick A; Rubin, Seth M

    2010-09-01

    The phosphorylation state and corresponding activity of the retinoblastoma tumor suppressor protein (Rb) are modulated by a balance of kinase and phosphatase activities. Here we characterize the association of Rb with the catalytic subunit of protein phosphatase 1 (PP1c). A crystal structure identifies an enzyme docking site in the Rb C-terminal domain that is required for efficient PP1c activity toward Rb. The phosphatase docking site overlaps with the known docking site for cyclin-dependent kinase (Cdk), and PP1 competition with Cdk-cyclins for Rb binding is sufficient to retain Rb activity and block cell-cycle advancement. These results provide the first detailed molecular insights into Rb activation and establish a novel mechanism for Rb regulation in which kinase and phosphatase compete for substrate docking. PMID:20694007

  3. Design and production of peptides mimicking the active site of serine esterases with covalent binding to the organophosphorous poison soman. Annual report, 1 July 1984-30 June 1985

    SciTech Connect

    Seltzman, H.H.

    1985-12-09

    The objective of this research program is to design, synthesize, and test peptides and peptide mimics that will scavange soman in vivo and thereby provide protection against this CW agent. The test compounds were designed to mimic the active site of serine esterases (AChE), which are the natural targets of soman, enabling them to react with soman and thus protect endogenous AChE. Cyclodextrins derivatized with peptide functional groups and their equivalents such as imidazole, histamine, ethylene diamine, diethylene triamine, catechol, and ethane dithiol were synthesized for testing. The synthesis of precursors to cyclohexapeptides containing histidine, serine, and aspartic acid, which are amino acids that have been implicated in the active site of numerous esterases, were pursued. Testing of the ability of alpha-, beta, and gamma-cyclodextrins to protect AChE frominactivation by soman was carried out in vitro. From this group of compounds, beta-cyclodextrin was observed to preserve the activity of AChE in a dose response manner achieving a 72.1% preservation of activity when present in 200,000 fold excess versus soman after only ten minutes incubation time (beta-cyclodextrin + soman). Neither alpha, nor gamma-cyclodextrin showed any protective effect at the same doses. The test results suggest that beta cyclodextrin is uniquely suited to scavange soman. Improved scavanging might be achieved with the modified cyclodextrins prepared above for testing.

  4. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1.

    PubMed Central

    Lowther, W. T.; Majer, P.; Dunn, B. M.

    1995-01-01

    Rhizopuspepsin and other fungal aspartic proteinases are distinct from the mammalian enzymes in that they are able to cleave substrates with lysine in the P1 position. Sequence and structural comparisons suggest that two aspartic acid residues, Asp 30 and Asp 77 (pig pepsin numbering), may be responsible for generating this unique specificity. Asp 30 and Asp 77 were changed to the corresponding residues in porcine pepsin, Ile 30 and Thr 77, to create single and double mutants. The zymogen forms of the wild-type and mutant enzymes were overexpressed in Escherichia coli as inclusion bodies. Following solubilization, denaturation, refolding, activation, and purification to homogeneity, structural and kinetic comparisons were made. The mutant enzymes exhibited a high degree of structural similarity to the wild-type recombinant protein and a native isozyme. The catalytic activities of the recombinant proteins were analyzed with chromogenic substrates containing lysine in the P1, P2, or P3 positions. Mutation of Asp 77 resulted in a loss of 7 kcal mol-1 of transition-state stabilization energy in the hydrolysis of the substrate containing lysine in P1. An inhibitor containing the positively charged P1-lysine side chain inhibited only the enzymes containing Asp 77. Inhibition of the Asp 77 mutants of rhizopuspepsin and several mammalian enzymes was restored upon acetylation of the lysine side chain. These results suggest that an exploitation of the specific electrostatic interaction of Asp 77 in the active site of fungal enzymes may lead to the design of compounds that preferentially inhibit a variety of related Candida proteinases in immunocompromised patients. PMID:7613467

  5. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    SciTech Connect

    Crichlow, G.; Lubetsky, J; Leng, L; Bucala, R; Lolis, E

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic data indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.

  6. Quantification of the novel N-methyl-d-aspartate receptor ligand [11C]GMOM in man

    PubMed Central

    van der Doef, Thalia F; Klein, Pieter J; Oropeza-Seguias, Gisela M; Schuit, Robert C; Metaxas, Athanasios; Jobse, Ellen; Schwarte, Lothar A; Windhorst, Albert D; Lammertsma, Adriaan A; van Berckel, Bart NM; Boellaard, Ronald

    2015-01-01

    [11C]GMOM (carbon-11 labeled N-(2-chloro-5-thiomethylphenyl)-N′-(3-[11C]methoxy-phenyl)-N′-methylguanidine) is a PET ligand that binds to the N-methyl-d-aspartate receptor with high specificity and affinity. The purpose of this first in human study was to evaluate kinetics of [11C]GMOM in the healthy human brain and to identify the optimal pharmacokinetic model for quantifying these kinetics, both before and after a pharmacological dose of S-ketamine. Dynamic 90 min [11C]GMOM PET scans were obtained from 10 subjects. In six of the 10 subjects, a second PET scan was performed following an S-ketamine challenge. Metabolite corrected plasma input functions were obtained for all scans. Regional time activity curves were fitted to various single- and two-tissue compartment models. Best fits were obtained using a two-tissue irreversible model with blood volume parameter. The highest net influx rate (Ki) of [11C]GMOM was observed in regions with high N-methyl-d-aspartate receptor density, such as hippocampus and thalamus. A significant reduction in the Ki was observed for the entire brain after administration of ketamine, suggesting specific binding to the N-methyl-d-aspartate receptors. This initial study suggests that the [11C]GMOM could be used for quantification of N-methyl-d-aspartate receptors. PMID:26661185

  7. Quantification of the novel N-methyl-d-aspartate receptor ligand [11C]GMOM in man.

    PubMed

    van der Doef, Thalia F; Golla, Sandeep Sv; Klein, Pieter J; Oropeza-Seguias, Gisela M; Schuit, Robert C; Metaxas, Athanasios; Jobse, Ellen; Schwarte, Lothar A; Windhorst, Albert D; Lammertsma, Adriaan A; van Berckel, Bart Nm; Boellaard, Ronald

    2016-06-01

    [(11)C]GMOM (carbon-11 labeled N-(2-chloro-5-thiomethylphenyl)-N'-(3-[(11)C]methoxy-phenyl)-N'-methylguanidine) is a PET ligand that binds to the N-methyl-d-aspartate receptor with high specificity and affinity. The purpose of this first in human study was to evaluate kinetics of [(11)C]GMOM in the healthy human brain and to identify the optimal pharmacokinetic model for quantifying these kinetics, both before and after a pharmacological dose of S-ketamine. Dynamic 90 min [(11)C]GMOM PET scans were obtained from 10 subjects. In six of the 10 subjects, a second PET scan was performed following an S-ketamine challenge. Metabolite corrected plasma input functions were obtained for all scans. Regional time activity curves were fitted to various single- and two-tissue compartment models. Best fits were obtained using a two-tissue irreversible model with blood volume parameter. The highest net influx rate (Ki) of [(11)C]GMOM was observed in regions with high N-methyl-d-aspartate receptor density, such as hippocampus and thalamus. A significant reduction in the Ki was observed for the entire brain after administration of ketamine, suggesting specific binding to the N-methyl-d-aspartate receptors. This initial study suggests that the [(11)C]GMOM could be used for quantification of N-methyl-d-aspartate receptors. PMID:26661185

  8. Enhancement of insecticides against codling moth (Lepidoptera: Tortricidae) with L-aspartate in laboratory and field experiments.

    PubMed

    Pszczolkowski, Maciej A; Brown, John J

    2014-06-01

    The idea of enhancing insecticide efficacy against phytophagous insects with feeding stimulators was proposed as early as the 1960s, and a number of insect feeding stimulators based on sugars, molasses, and cottonseed extracts, biologically active at relatively high (5% and higher) concentrations, have been advocated. Here, we show that an acidic amino acid, L-aspartate, stimulates feeding in codling moth neonates at much lower concentrations and acts as an effective tank-mixed additive for increasing efficacy of insecticides, reducing fruit damage, and increasing yield of the fruit. In laboratory experiments, 1 mg/ml L-aspartate increased foliage consumption by 40-60% and, when added to Assail 30 SG, Baythroid XL, Delegate WG, or Carbaryl 80S, maintained its feeding stimulatory properties and reduced LD50(s) by approximately 10 times. In a 3-yr field trial, addition of L-aspartate to the aforementioned insecticides at 395 g/ha reduced fruit damage from approximately 6%, on average to < 1% for first-generation codling moth, and from approximately 20 to approximately 5% for the second generation. Interestingly, addition of L-aspartate also increased the average weight of apples by 11-27%, as measured at the time of harvest.

  9. D-Aspartate Induces Proliferative Pathways in Spermatogonial GC-1 Cells.

    PubMed

    Santillo, Alessandra; Falvo, Sara; Chieffi, Paolo; Di Fiore, Maria Maddalena; Senese, Rosalba; Chieffi Baccari, Gabriella

    2016-02-01

    D-aspartate (D-Asp) is an endogenous amino acid present in vertebrate tissues, with particularly high levels in the testis. In vivo studies indicate that D-Asp indirectly stimulates spermatogenesis through the hypothalamic-pituitary-gonadal axis. Moreover, in vitro studies have demonstrated that D-Asp up-regulates testosterone production in Leydig cells by enhancing expression of the steroidogenic acute regulatory protein. In this study, a cell line derived from immortalized type-B mouse spermatogonia retaining markers of mitotic germ cells (GC-1) was employed to explore more direct involvement of D-Asp in spermatogenesis. Activity and protein expression of markers of cell proliferation were determined at intervals during incubation in D-Asp-containing medium. D-Asp induced phosphorylation of ERK and Akt proteins, stimulated expression of PCNA and Aurora B, and enhanced mRNA synthesis and protein expression of P450 aromatase and protein expression of Estrogen Receptor β (ERβ). These results are the first demonstration of a direct effect of D-Asp on spermatogonial mitotic activity. Considering that spermatogonia express the NR1 subunit of the N-Methyl-D-Aspartic Acid receptor (NMDAR), we suggest that their response to D-Asp depends on NMDAR-mediated activation of the ERK and Akt pathways and is further enhanced by activation of the P450 aromatase/ERβ pathway.

  10. Behavior of aspartic acid as a corrosion inhibitor for steel

    SciTech Connect

    Kalota, D.J.; Silverman, D.C. )

    1994-02-01

    Corrosion inhibition of steel by aspartic acid (C[sub 4]H[sub 7]NO[sub 4]), an amino acid of low molecular weight, was found to depend strongly on pH. At a pH less than the ionization constant at [approximately]9.5 to 10 (measured at 25 C), C[sub 4]H[sub 7]NO[sub 4] appeared to accelerate corrosion. Above the pH, it acted as a corrosion inhibitor for steel. A specially constructed potential-pH diagram for iron (Fe) that incorporated C[sub 4]H[sub 7]NO[sub 4] showed the change in behavior was accompanied by the most stable thermodynamic state changing from an iron aspartate complex to iron oxide. Polymerized C[sub 4]H[sub 7]NO[sub 4] (polyaspartic acid) behaved in a similar manner. Some other amino acids of low molecular weight behaved similarly.

  11. Enhanced Enzyme Kinetic Stability by Increasing Rigidity within the Active Site*

    PubMed Central

    Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan

    2014-01-01

    Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser105 residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T5015, the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability. PMID:24448805

  12. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.

    PubMed

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  13. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  14. Distribution and evolution of the serine/aspartate racemase family in invertebrates.

    PubMed

    Uda, Kouji; Abe, Keita; Dehara, Yoko; Mizobata, Kiriko; Sogawa, Natsumi; Akagi, Yuki; Saigan, Mai; Radkov, Atanas D; Moe, Luke A

    2016-02-01

    Free D-amino acids have been found in various invertebrate phyla, while amino acid racemase genes have been identified in few species. The purpose of this study is to elucidate the distribution, function, and evolution of amino acid racemases in invertebrate animals. We searched the GenBank databases, and found 11 homologous serine racemase genes from eight species in eight different invertebrate phyla. The cloned genes were identified based on their maximum activity as Acropora millepora (Cnidaria) serine racemase (SerR) and aspartate racemase (AspR), Caenorhabditis elegans (Nematoda) SerR, Capitella teleta (Annelida) SerR, Crassostrea gigas (Mollusca) SerR and AspR, Dugesia japonica (Platyhelminthes) SerR, Milnesium tardigradum (Tardigrada) SerR, Penaeus monodon (Arthropoda) SerR and AspR and Strongylocentrotus purpuratus (Echinodermata) AspR. We found that Acropora, Aplysia, Capitella, Crassostrea and Penaeus had two amino acid racemase paralogous genes and these paralogous genes have evolved independently by gene duplication at their recent ancestral species. The transcriptome analyses using available SRA data and enzyme kinetic data suggested that these paralogous genes are expressed in different tissues and have different functions in vivo. Phylogenetic analyses clearly indicated that animal SerR and AspR are not separated by their particular racemase functions and form a serine/aspartate racemase family cluster. Our results revealed that SerR and AspR are more widely distributed among invertebrates than previously known. Moreover, we propose that the triple serine loop motif at amino acid positions 150-152 may be responsible for the large aspartate racemase activity and the AspR evolution from SerR. PMID:26352274

  15. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (20″×14″) upright format signs specified in 29 CFR 1910.145(d)(4) and this paragraph; and (iii... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an...

  16. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (20″×14″) upright format signs specified in 29 CFR 1910.145(d)(4) and this paragraph; and (iii... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an...

  17. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (20″×14″) upright format signs specified in 29 CFR 1910.145(d)(4) and this paragraph; and (iii... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an...

  18. 77 FR 39508 - Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... specific project proposals on those leases) in an identified Wind Energy Area (WEA) on the OCS offshore... Bureau of Ocean Energy Management Commercial Wind Lease Issuance and Site Assessment Activities on the... Activities on the Atlantic OCS Offshore RI and MA'' to: Program Manager, Office of Renewable Energy...

  19. Effects of resource activities upon repository siting and waste containment with reference to bedded salt

    SciTech Connect

    Ashby, J.; Rowe, J.

    1980-02-01

    The primary consideration for the suitability of a nuclear waste repository site is the overall ability of the repository to safely contain radioactive waste. This report is a discussion of the past, present, and future effects of resource activities on waste containment. Past and present resource activities which provide release pathways (i.e., leaky boreholes, adjacent mines) will receive initial evaluation during the early stages of any repository site study. However, other resource activities which may have subtle effects on containment (e.g., long-term pumping causing increased groundwater gradients, invasion of saline water causing lower retardation) and all potential future resource activities must also be considered during the site evaluation process. Resource activities will affect both the siting and the designing of repositories. Ideally, sites should be located in areas of low resource activity and low potential for future activity, and repository design should seek to eliminate or minimize the adverse effects of any resource activity. Buffer zones should be created to provide areas in which resource activities that might adversely affect containment can be restricted or curtailed. This could mean removing large areas of land from resource development. The impact of these frozen assets should be assessed in terms of their economic value and of their effect upon resource reserves. This step could require a major effort in data acquisition and analysis followed by extensive numerical modeling of regional fluid flow and mass transport. Numerical models should be used to assess the effects of resource activity upon containment and should include the cumulative effects of different resource activities. Analysis by other methods is probably not possible except for relatively simple cases.

  20. Computational approaches to the determination of active site structures and reaction mechanisms in heterogeneous catalysts.

    PubMed

    Catlow, C R A; French, S A; Sokol, A A; Thomas, J M

    2005-04-15

    We apply quantum chemical methods to the study of active site structures and reaction mechanisms in mesoporous silica and metal oxide catalysts. Our approach is based on the use of both molecular cluster and embedded cluster (QM/MM) techniques, where the active site and molecular complex are described using density functional theory (DFT) and the embedding matrix simulated by shell model potentials. We consider three case studies: alkene epoxidation over the microporous TS-1 catalyst; methanol synthesis on ZnO and Cu/ZnO and C-H bond activation over Li-doped MgO.

  1. Computational approaches to the determination of active site structures and reaction mechanisms in heterogeneous catalysts.

    PubMed

    Catlow, C R A; French, S A; Sokol, A A; Thomas, J M

    2005-04-15

    We apply quantum chemical methods to the study of active site structures and reaction mechanisms in mesoporous silica and metal oxide catalysts. Our approach is based on the use of both molecular cluster and embedded cluster (QM/MM) techniques, where the active site and molecular complex are described using density functional theory (DFT) and the embedding matrix simulated by shell model potentials. We consider three case studies: alkene epoxidation over the microporous TS-1 catalyst; methanol synthesis on ZnO and Cu/ZnO and C-H bond activation over Li-doped MgO. PMID:15901543

  2. Rapid binding of a cationic active site inhibitor to wild type and mutant mouse acetylcholinesterase: Brownian dynamics simulation including diffusion in the active site gorge.

    PubMed

    Tara, S; Elcock, A H; Kirchhoff, P D; Briggs, J M; Radic, Z; Taylor, P; McCammon, J A

    1998-12-01

    It is known that anionic surface residues play a role in the long-range electrostatic attraction between acetylcholinesterase and cationic ligands. In our current investigation, we show that anionic residues also play an important role in the behavior of the ligand within the active site gorge of acetylcholinesterase. Negatively charged residues near the gorge opening not only attract positively charged ligands from solution to the enzyme, but can also restrict the motion of the ligand once it is inside of the gorge. We use Brownian dynamics techniques to calculate the rate constant kon, for wild type and mutant acetylcholinesterase with a positively charged ligand. These calculations are performed by allowing the ligand to diffuse within the active site gorge. This is an extension of previously reported work in which a ligand was allowed to diffuse only to the enzyme surface. By setting the reaction criteria for the ligand closer to the active site, better agreement with experimental data is obtained. Although a number of residues influence the movement of the ligand within the gorge, Asp74 is shown to play a particularly important role in this function. Asp74 traps the ligand within the gorge, and in this way helps to ensure a reaction.

  3. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    SciTech Connect

    Parashar, Abhinav; Venkatachalam, Avanthika; Gideon, Daniel Andrew; Manoj, Kelath Murali

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  4. Denaturation studies of active-site labeled papain using electron paramagnetic resonance and fluorescence spectroscopy.

    PubMed Central

    Ping, Z A; Butterfiel, D A

    1991-01-01

    A spin-labeled p-chloromercuribenzoate (SL-PMB) and a fluorescence probe, 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan), both of which bind to the single SH group located in the active site of papain, were used to investigate the interaction of papain (EC 3.4.22.2) with two protein denaturants. It was found that the active site of papain was highly stable in urea solution, but underwent a large conformational change in guanidine hydrochloride solution. Electron paramagnetic resonance and fluorescence results were in agreement and both paralleled enzymatic activity of papain with respect to both the variation in pH and denaturation. These results strongly suggest that SL-PMB and Acrylodan labels can be used to characterize the physical state of the active site of the enzyme. PMID:1657229

  5. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor

    PubMed Central

    Spatzal, Thomas; Perez, Kathryn A; Howard, James B; Rees, Douglas C

    2015-01-01

    Dinitrogen reduction in the biological nitrogen cycle is catalyzed by nitrogenase, a two-component metalloenzyme. Understanding of the transformation of the inert resting state of the active site FeMo-cofactor into an activated state capable of reducing dinitrogen remains elusive. Here we report the catalysis dependent, site-selective incorporation of selenium into the FeMo-cofactor from selenocyanate as a newly identified substrate and inhibitor. The 1.60 Å resolution structure reveals selenium occupying the S2B site of FeMo-cofactor in the Azotobacter vinelandii MoFe-protein, a position that was recently identified as the CO-binding site. The Se2B-labeled enzyme retains substrate reduction activity and marks the starting point for a crystallographic pulse-chase experiment of the active site during turnover. Through a series of crystal structures obtained at resolutions of 1.32–1.66 Å, including the CO-inhibited form of Av1-Se2B, the exchangeability of all three belt-sulfur sites is demonstrated, providing direct insights into unforeseen rearrangements of the metal center during catalysis. DOI: http://dx.doi.org/10.7554/eLife.11620.001 PMID:26673079

  6. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor.

    PubMed

    Spatzal, Thomas; Perez, Kathryn A; Howard, James B; Rees, Douglas C

    2015-12-16

    Dinitrogen reduction in the biological nitrogen cycle is catalyzed by nitrogenase, a two-component metalloenzyme. Understanding of the transformation of the inert resting state of the active site FeMo-cofactor into an activated state capable of reducing dinitrogen remains elusive. Here we report the catalysis dependent, site-selective incorporation of selenium into the FeMo-cofactor from selenocyanate as a newly identified substrate and inhibitor. The 1.60 Å resolution structure reveals selenium occupying the S2B site of FeMo-cofactor in the Azotobacter vinelandii MoFe-protein, a position that was recently identified as the CO-binding site. The Se2B-labeled enzyme retains substrate reduction activity and marks the starting point for a crystallographic pulse-chase experiment of the active site during turnover. Through a series of crystal structures obtained at resolutions of 1.32-1.66 Å, including the CO-inhibited form of Av1-Se2B, the exchangeability of all three belt-sulfur sites is demonstrated, providing direct insights into unforeseen rearrangements of the metal center during catalysis.

  7. Single exposure to cocaine impairs aspartate uptake in the pre-frontal cortex via dopamine D1-receptor dependent mechanisms.

    PubMed

    Sathler, Matheus Figueiredo; Stutz, Bernardo; Martins, Robertta Silva; Dos Santos Pereira, Maurício; Pecinalli, Ney Roner; Santos, Luis E; Taveira-da-Silva, Rosilane; Lowe, Jennifer; de Freitas, Isis Grigorio; de Melo Reis, Ricardo Augusto; Manhães, Alex C; Kubrusly, Regina C C

    2016-08-01

    Dopamine and glutamate play critical roles in the reinforcing effects of cocaine. We demonstrated that a single intraperitoneal administration of cocaine induces a significant decrease in [(3)H]-d-aspartate uptake in the pre-frontal cortex (PFC). This decrease is associated with elevated dopamine levels, and requires dopamine D1-receptor signaling (D1R) and adenylyl cyclase activation. The effect was observed within 10min of cocaine administration and lasted for up to 30min. This rapid response is related to D1R-mediated cAMP-mediated activation of PKA and phosphorylation of the excitatory amino acid transporters EAAT1, EAAT2 and EAAT3. We also demonstrated that cocaine exposure increases extracellular d-aspartate, l-glutamate and d-serine in the PFC. Our data suggest that cocaine activates dopamine D1 receptor signaling and PKA pathway to regulate EAATs function and extracellular EAA level in the PFC.

  8. Single exposure to cocaine impairs aspartate uptake in the pre-frontal cortex via dopamine D1-receptor dependent mechanisms.

    PubMed

    Sathler, Matheus Figueiredo; Stutz, Bernardo; Martins, Robertta Silva; Dos Santos Pereira, Maurício; Pecinalli, Ney Roner; Santos, Luis E; Taveira-da-Silva, Rosilane; Lowe, Jennifer; de Freitas, Isis Grigorio; de Melo Reis, Ricardo Augusto; Manhães, Alex C; Kubrusly, Regina C C

    2016-08-01

    Dopamine and glutamate play critical roles in the reinforcing effects of cocaine. We demonstrated that a single intraperitoneal administration of cocaine induces a significant decrease in [(3)H]-d-aspartate uptake in the pre-frontal cortex (PFC). This decrease is associated with elevated dopamine levels, and requires dopamine D1-receptor signaling (D1R) and adenylyl cyclase activation. The effect was observed within 10min of cocaine administration and lasted for up to 30min. This rapid response is related to D1R-mediated cAMP-mediated activation of PKA and phosphorylation of the excitatory amino acid transporters EAAT1, EAAT2 and EAAT3. We also demonstrated that cocaine exposure increases extracellular d-aspartate, l-glutamate and d-serine in the PFC. Our data suggest that cocaine activates dopamine D1 receptor signaling and PKA pathway to regulate EAATs function and extracellular EAA level in the PFC. PMID:27208619

  9. Immunohistochemical localization of D-aspartate oxidase in porcine peripheral tissues.

    PubMed

    Yamamoto, Atsushi; Tanaka, Hiroyuki; Ishida, Tetsuo; Horiike, Kihachiro

    2011-07-01

    D-Aspartate (D-Asp) is an endogenous substance in mammals. Degradation of D-Asp is carried out only by D-aspartate oxidase (DDO). We measured DDO activity in porcine tissues, and produced an anti-porcine DDO antibody to examine the cellular localization of DDO. All the tissues examined showed DDO activities, whereas the substrate D-Asp was not detected in kidney cortex, liver, heart, and gastric mucosa. In the kidney, intensive immunohistochemical staining for DDO was found in the epithelial cells of the proximal tubules. In the liver, the epithelial cells of interlobular bile ducts, liver sinusoid-lining cells with cytoplasmic processes, and the smooth muscle cells of arterioles were strongly stained for DDO. In the heart, cardiomyocytes and the smooth muscle cells of arterioles showed DDO-immunoreactivity. In the gastric mucosa, only the chief cells were DDO-positive. These newly identified DDO-positive cells seem to actively degrade D-Asp to prevent an excess of D-Asp from exerting harmful effects on the respective functions of porcine tissues.

  10. Therapeutic effects of D-aspartic acid beta-hydroxamate (DAH) on Friend erythroleukemia.

    PubMed

    Tournaire, R; Malley, S; Hamedi-Sangsari, F; Thomasset, N; Grange, J; Dore, J F; Vila, J

    1994-08-01

    D-aspartic acid beta-hydroxamate (DAH), an aspartic acid analogue, exerts anti-tumoral activity against murine leukemia L5178Y both in vitro and in vivo. We show here that DAH displays activity against Friend leukemia cells (FLC) in vitro: a concentration of 2 mM results in a total inhibition of cell growth. DAH is also active in vivo against Friend virus (FV-P)-induced erythroleukemia. Treatment with DAH, given for 95 days as a single daily i.p. injection to DBA/2 mice 3 days following FV-P inoculation, induced a marked increase of 212% in the mean survival time (MST) of treated animals. Since FV-P-induced erythroleukemia is characterized by the proliferation of mature erythroid precursors, we examined the effect of DAH treatment on erythroid colony-forming cells (CFU-E) and observed that the number of CFU-E per spleen was 30 times lower in DAH-treated mice than in the controls. To gain further insight into the early effects of DAH treatment on the early phase of Friend disease, we examined the effects of short DAH treatment on spleen size, hematocrit and viremia in FV-P-infected mice. DAH treatment initiated 3 days post infection (p.i.) inhibited splenomegaly, prevented virus-induced polycythemia, and reduced serum viremia. Late DAH treatment (18 days p.i.) induced regression of FVP-induced disease as evidenced by reduction of spleen weight.

  11. Vesicular uptake and exocytosis of l-aspartate is independent of sialin

    PubMed Central

    Morland, Cecilie; Nordengen, Kaja; Larsson, Max; Prolo, Laura M.; Farzampour, Zoya; Reimer, Richard J.; Gundersen, Vidar

    2013-01-01

    The mechanism of release and the role of l-aspartate as a central neurotransmitter are controversial. A vesicular release mechanism for l-aspartate has been difficult to prove, as no vesicular l-aspartate transporter was identified until it was found that sialin could transport l-aspartate and l-glutamate when reconstituted into liposomes. We sought to clarify the release mechanism of l-aspartate and the role of sialin in this process by combining l-aspartate uptake studies in isolated synaptic vesicles with immunocyotchemical investigations of hippocampal slices. We found that radiolabeled l-aspartate was taken up into synaptic vesicles. The vesicular l-aspartate uptake, relative to the l-glutamate uptake, was twice as high in the hippocampus as in the whole brain, the striatum, and the entorhinal and frontal cortices and was not inhibited by l-glutamate. We further show that sialin is not essential for exocytosis of l-aspartate, as there was no difference in ATP-dependent l-aspartate uptake in synaptic vesicles from sialin-knockout and wild-type mice. In addition, expression of sialin in PC12 cells did not result in significant vesicle uptake of l-aspartate, and depolarization-induced depletion of l-aspartate from hippocampal nerve terminals was similar in hippocampal slices from sialin-knockout and wild-type mice. Further, there was no evidence for nonvesicular release of l-aspartate via volume-regulated anion channels or plasma membrane excitatory amino acid transporters. This suggests that l-aspartate is exocytotically released from nerve terminals after vesicular accumulation by a transporter other than sialin.—Morland, C., Nordengen, K., Larsson, M., Prolo, L. M., Farzampour, Z., Reimer, R. J., Gundersen, V. Vesicular uptake and exocytosis of l-aspartate is independent of sialin. PMID:23221336

  12. E2 superfamily of ubiquitin-conjugating enzymes: constitutively active or activated through phosphorylation in the catalytic cleft

    PubMed Central

    Valimberti, Ilaria; Tiberti, Matteo; Lambrughi, Matteo; Sarcevic, Boris; Papaleo, Elena

    2015-01-01

    Protein phosphorylation is a modification that offers a dynamic and reversible mechanism to regulate the majority of cellular processes. Numerous diseases are associated with aberrant regulation of phosphorylation-induced switches. Phosphorylation is emerging as a mechanism to modulate ubiquitination by regulating key enzymes in this pathway. The molecular mechanisms underpinning how phosphorylation regulates ubiquitinating enzymes, however, are elusive. Here, we show the high conservation of a functional site in E2 ubiquitin-conjugating enzymes. In catalytically active E2s, this site contains aspartate or a phosphorylatable serine and we refer to it as the conserved E2 serine/aspartate (CES/D) site. Molecular simulations of substrate-bound and -unbound forms of wild type, mutant and phosphorylated E2s, provide atomistic insight into the role of the CES/D residue for optimal E2 activity. Both the size and charge of the side group at the site play a central role in aligning the substrate lysine toward E2 catalytic cysteine to control ubiquitination efficiency. The CES/D site contributes to the fingerprint of the E2 superfamily. We propose that E2 enzymes can be divided into constitutively active or regulated families. E2s characterized by an aspartate at the CES/D site signify constitutively active E2s, whereas those containing a serine can be regulated by phosphorylation. PMID:26463729

  13. Substrate Shuttling Between Active Sites of Uroporphyrinogen Decarboxylase in Not Required to Generate Coproporphyrinogen

    SciTech Connect

    Phillips, J.; Warby, C; Whitby, F; Kushner, J; Hill, C

    2009-01-01

    Uroporphyrinogen decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of four acetate side chains in the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer, with the active-site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single-chain protein (single-chain URO-D) in which the two subunits were connected by a flexible linker. The crystal structure of this protein was shown to be superimposable with wild-type activity and to have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of single-chain URO-D resulted in approximately half of wild-type activity. The distributions of reaction intermediates were the same for mutant and wild-type sequences and were unaltered in a competition experiment using I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function and suggest that the dimeric structure of URO-D is required to achieve conformational stability and to create a large active-site cleft.

  14. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    SciTech Connect

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  15. Evaluation of physical activity web sites for use of behavior change theories.

    PubMed

    Doshi, Amol; Patrick, Kevin; Sallis, James F; Calfas, Karen

    2003-01-01

    Physical activity (PA) Web sites were assessed for their use of behavior change theories, including constructs of the health belief model, Transtheoretical Model, social cognitive theory, and the theory of reasoned action and planned behavior. An evaluation template for assessing PA Web sites was developed, and content validity and interrater reliability were demonstrated. Two independent raters evaluated 24 PA Web sites. Web sites varied widely in application of theory-based constructs, ranging from 5 to 48 on a 100-point scale. The most common intervention strategies were general information, social support, and realistic goal areas. Coverage of theory-based strategies was low, varying from 26% for social cognitive theory to 39% for health belief model. Overall, PA Web sites provided little assessment, feedback, or individually tailored assistance for users. They were unable to substantially tailor the on-line experience for users at different stages of change or different demographic characteristics.

  16. Inactivation of the Antifungal and Immunomodulatory Properties of Human Cathelicidin LL-37 by Aspartic Proteases Produced by the Pathogenic Yeast Candida albicans

    PubMed Central

    Bochenska, Oliwia; Zawrotniak, Marcin; Wolak, Natalia; Trebacz, Grzegorz; Gogol, Mariusz; Ostrowska, Dominika; Aoki, Wataru; Ueda, Mitsuyoshi; Kozik, Andrzej

    2015-01-01

    Constant cross talk between Candida albicans yeast cells and their human host determines the outcome of fungal colonization and, eventually, the progress of infectious disease (candidiasis). An effective weapon used by C. albicans to cope with the host defense system is the release of 10 distinct secreted aspartic proteases (SAPs). Here, we validate a hypothesis that neutrophils and epithelial cells use the antimicrobial peptide LL-37 to inactivate C. albicans at sites of candidal infection and that C. albicans uses SAPs to effectively degrade LL-37. LL-37 is cleaved into multiple products by SAP1 to -4, SAP8, and SAP9, and this proteolytic processing is correlated with the gradual decrease in the antifungal activity of LL-37. Moreover, a major intermediate of LL-37 cleavage—the LL-25 peptide—is antifungal but devoid of the immunomodulatory properties of LL-37. In contrast to LL-37, LL-25 did not affect the generation of reactive oxygen species by neutrophils upon treatment with phorbol esters. Stimulating neutrophils with LL-25 (rather than LL-37) significantly decreased calcium flux and interleukin-8 production, resulting in lower chemotactic activity of the peptide against neutrophils, which may decrease the recruitment of neutrophils to infection foci. LL-25 also lost the function of LL-37 as an inhibitor of neutrophil apoptosis, thereby reducing the life span of these defense cells. This study indicates that C. albicans can effectively use aspartic proteases to destroy the antimicrobial and immunomodulatory properties of LL-37, thus enabling the pathogen to survive and propagate. PMID:25847962

  17. Sweet potato SPAP1 is a typical aspartic protease and participates in ethephon-mediated leaf senescence.

    PubMed

    Chen, Hsien-Jung; Huang, Yu-Hsuan; Huang, Guan-Jhong; Huang, Shyh-Shyun; Chow, Te-Jin; Lin, Yaw-Huei

    2015-05-15

    Plant aspartic proteases are generally divided into three categories: typical, nucellin-like, and atypical aspartic proteases based on their gene and protein structures. In this report, a full-length cDNA SPAP1 was cloned from sweet potato leaves, which contained 1515 nucleotides (504 amino acids) and exhibited high amino acid sequence identity (ca. 51-72%) with plant typical aspartic proteases, including tomato LeAspP, potato StAsp, and wheat WAP2. SPAP1 also contained conserved DTG and DSG amino acid residues within its catalytic domain and plant specific insert (PSI) at the C-terminus. The cDNA corresponding to the mature protein (starting from the 66th to 311th amino acid residues) without PSI domain was constructed with pET30a expression vector for fusion protein and antibody production. RT-PCR and protein blot hybridization showed that SPAP1 expression level was the highest in L3 mature leaves, then gradually declined until L5 completely yellow leaves. Ethephon, an ethylene-releasing compound, also enhanced SPAP1 expression at the time much earlier than the onset of leaf senescence. Exogenous application of SPAP1 fusion protein promoted ethephon-induced leaf senescence, which could be abolished by pre-treatment of SPAP1 fusion protein with (a) 95 °C for 5 min, (b) aspartic protease inhibitor pepstatin A, and (c) anti-SPAP1 antibody, respectively. Exogenous SPAP1 fusion protein, whereas, did not significantly affect leaf senescence under dark. These data conclude that sweet potato SPAP1 is a functional typical aspartic protease and participates in ethephon-mediated leaf senescence. The SPAP1-promoted leaf senescence and its activity are likely not associated with the PSI domain. Interaction of ethephon-inducible components for effective SPAP1 promotion on leaf senescence is also suggested.

  18. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115.

    PubMed

    Nakamichi, Yusuke; Oiki, Sayoko; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2016-08-01

    Bacterial unsaturated glucuronyl hydrolase (UGL) degrades unsaturated disaccharides generated from mammalian extracellular matrices, glycosaminoglycans, by polysaccharide lyases. Two Asp residues, Asp-115 and Asp-175 of Streptococcus agalactiae UGL (SagUGL), are completely conserved in other bacterial UGLs, one of which (Asp-175 of SagUGL) acts as a general acid and base catalyst. The other Asp (Asp-115 of SagUGL) also affects the enzyme activity, although its role in the enzyme reaction has not been well understood. Here, we show substitution of Asp-115 in SagUGL with Asn caused a conformational change in the active site. Tertiary structures of SagUGL mutants D115N and D115N/K370S with negligible enzyme activity were determined at 2.00 and 1.79 Å resolution, respectively, by X-ray crystallography. The side chain of Asn-115 is drastically shifted in both mutants owing to the interaction with several residues, including Asp-175, by formation of hydrogen bonds. This interaction between Asn-115 and Asp-175 probably prevents the mutants from triggering the enzyme reaction using Asp-175 as an acid catalyst.

  19. Isolation and characterization of a gene coding for a novel aspartate aminotransferase from Rhizobium meliloti.

    PubMed Central

    Alfano, J R; Kahn, M L

    1993-01-01

    Aspartate aminotransferase (AAT) is an important enzyme in aspartate catabolism and biosynthesis and, by converting tricarboxylic acid cycle intermediates to amino acids, AAT is also significant in linking carbon metabolism with nitrogen metabolism. To examine the role of AAT in symbiotic nitrogen fixation further, plasmids encoding three different aminotransferases from Rhizobium meliloti 104A14 were isolated by complementation of an Escherichia coli auxotroph that lacks three aminotransferases. pJA10 contained a gene, aatB, that coded for a previously undescribed AAT, AatB. pJA30 encoded an aromatic aminotransferase, TatA, that had significant AAT activity, and pJA20 encoded a branched-chain aminotransferase designated BatA. Genes for the latter two enzymes, tatA and batA, were previously isolated from R. meliloti. aatB is distinct from but hybridizes to aatA, which codes for AatA, a protein required for symbiotic nitrogen fixation. The DNA sequence of aatB contained an open reading frame that could encode a protein 410 amino acids long and with a monomer molecular mass of 45,100 Da. The amino acid sequence of aatB is unusual, and AatB appears to be a member of a newly described class of AATs. AatB expressed in E. coli has a Km for aspartate of 5.3 mM and a Km for 2-oxoglutarate of 0.87 mM. Its pH optimum is between 8.0 and 8.5. Mutations were constructed in aatB and tatA and transferred to the genome of R. meliloti 104A14. Both mutants were prototrophs and were able to carry out symbiotic nitrogen fixation. Images PMID:8320232

  20. Counting Active Sites on Titanium Oxide-Silica Catalysts for Hydrogen Peroxide Activation through In Situ Poisoning with Phenylphosphonic Acid

    SciTech Connect

    Eaton, Todd R.; Boston, Andrew M.; Thompson, Anthony B.; Gray, Kimberly A.; Notestein, Justin M.

    2015-06-04

    Quantifying specific active sites in supported catalysts improves our understanding and assists in rational design. Supported oxides can undergo significant structural changes as surface densities increase from site-isolated cations to monolayers and crystallites, which changes the number of kinetically relevant sites. Herein, TiOx domains are titrated on TiOx–SiO2 selectively with phenylphosphonic acid (PPA). An ex situ method quantifies all fluid-accessible TiOx, whereas an in situ titration during cis-cyclooctene epoxidation provides previously unavailable values for the number of tetrahedral Ti sites on which H2O2 activation occurs. We use this method to determine the active site densities of 22 different catalysts with different synthesis methods, loadings, and characteristic spectra and find a single intrinsic turnover frequency for cis-cyclooctene epoxidation of (40±7) h-1. This simple method gives molecular-level insight into catalyst structure that is otherwise hidden when bulk techniques are used.

  1. Active site of tripeptidyl peptidase II from human erythrocytes is of the subtilisin type.

    PubMed Central

    Tomkinson, B; Wernstedt, C; Hellman, U; Zetterqvist, O

    1987-01-01

    The present report presents evidence that the amino acid sequence around the serine of the active site of human tripeptidyl peptidase II is of the subtilisin type. The enzyme from human erythrocytes was covalently labeled at its active site with [3H]diisopropyl fluorophosphate, and the protein was subsequently reduced, alkylated, and digested with trypsin. The labeled tryptic peptides were purified by gel filtration and repeated reversed-phase HPLC, and their amino-terminal sequences were determined. Residue 9 contained the radioactive label and was, therefore, considered to be the active serine residue. The primary structure of the part of the active site (residues 1-10) containing this residue was concluded to be Xaa-Thr-Gln-Leu-Met-Asx-Gly-Thr-Ser-Met. This amino acid sequence is homologous to the sequence surrounding the active serine of the microbial peptidases subtilisin and thermitase. These data demonstrate that human tripeptidyl peptidase II represents a potentially distinct class of human peptidases and raise the question of an evolutionary relationship between the active site of a mammalian peptidase and that of the subtilisin family of serine peptidases. PMID:3313395

  2. Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy

    PubMed Central

    Cao, Yue; Chen, Shiyou; Li, Yadong; Gao, Yi; Yang, Deheng; Shen, Yuen Ron; Liu, Wei-Tao

    2016-01-01

    Surface active sites of crystals often govern their relevant surface chemistry, yet to monitor them in situ in real atmosphere remains a challenge. Using surface-specific sum-frequency spectroscopy, we identified the surface phonon mode associated with the active sites of undercoordinated titanium ions and conjoint oxygen vacancies, and used it to monitor them on anatase (TiO2) (101) under ambient conditions. In conjunction with theory, we determined related surface structure around the active sites and tracked the evolution of oxygen vacancies under ultraviolet irradiation. We further found that unlike in vacuum, the surface oxygen vacancies, which dominate the surface reactivity, are strongly regulated by ambient gas molecules, including methanol and water, as well as weakly associated species, such as nitrogen and hydrogen. The result revealed a rich interplay between prevailing ambient species and surface reactivity, which can be omnipresent in environmental and catalytic applications of titanium dioxides. PMID:27704049

  3. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase.

    PubMed

    Fenwick, Michael K; Mehta, Angad P; Zhang, Yang; Abdelwahed, Sameh H; Begley, Tadhg P; Ealick, Steven E

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  4. Solvent Tuning of Electrochemical Potentials in the Active Sites of HiPIP Versus Ferredoxin

    SciTech Connect

    Dey, A.; Francis, E.J.; Adams, M.W.W.; Babini, E.; Takahashi, Y.; Fukuyama, K.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.; /Stanford U., Chem. Dept. /Georgia U. /Bologna U. /Osaka U. /SLAC, SSRL

    2009-04-29

    A persistent puzzle in the field of biological electron transfer is the conserved iron-sulfur cluster motif in both high potential iron-sulfur protein (HiPIP) and ferredoxin (Fd) active sites. Despite this structural similarity, HiPIPs react oxidatively at physiological potentials, whereas Fds are reduced. Sulfur K-edge x-ray absorption spectroscopy uncovers the substantial influence of hydration on this variation in reactivity. Fe-S covalency is much lower in natively hydrated Fd active sites than in HiPIPs but increases upon water removal; similarly, HiPIP covalency decreases when unfolding exposes an otherwise hydrophobically shielded active site to water. Studies on model compounds and accompanying density functional theory calculations support a correlation of Fe-S covalency with ease of oxidation and therefore suggest that hydration accounts for most of the difference between Fd and HiPIP reduction potentials.

  5. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    SciTech Connect

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; Abdelwahed, Sameh H.; Begley, Tadhg P.; Ealick, Steven E.

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  6. Wasp recruitment to the T cell:APC contact site occurs independently of Cdc42 activation.

    PubMed

    Cannon, J L; Labno, C M; Bosco, G; Seth, A; McGavin, M H; Siminovitch, K A; Rosen, M K; Burkhardt, J K

    2001-08-01

    Cdc42 and WASP are critical regulators of actin polymerization whose function during T cell signaling is poorly understood. Using a novel reagent that specifically detects Cdc42-GTP in fixed cells, we found that activated Cdc42 localizes to the T cell:APC contact site in an antigen-dependent manner. TCR signaling alone was sufficient to induce localization of Cdc42-GTP, and functional Lck and Zap-70 kinases were required. WASP also localized to the T cell:APC contact site in an antigen-dependent manner. Surprisingly, WASP localization was independent of the Cdc42 binding domain but required the proline-rich domain. Our results indicate that localized WASP activation requires the integration of multiple signals: WASP is recruited via interaction with SH3 domain-containing proteins and is activated by Cdc42-GTP concentrated at the same site. PMID:11520460

  7. Mutations Closer to the Active Site Improve the Promiscuous Aldolase Activity of 4-Oxalocrotonate Tautomerase More Effectively than Distant Mutations.

    PubMed

    Rahimi, Mehran; van der Meer, Jan-Ytzen; Geertsema, Edzard M; Poddar, Harshwardhan; Baas, Bert-Jan; Poelarends, Gerrit J

    2016-07-01

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which catalyzes enol-keto tautomerization as part of a degradative pathway for aromatic hydrocarbons, promiscuously catalyzes various carbon-carbon bond-forming reactions. These include the aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde. Here, we demonstrate that 4-OT can be engineered into a more efficient aldolase for this condensation reaction, with a >5000-fold improvement in catalytic efficiency (kcat /Km ) and a >10(7) -fold change in reaction specificity, by exploring small libraries in which only "hotspots" are varied. The hotspots were identified by systematic mutagenesis (covering each residue), followed by a screen for single mutations that give a strong improvement in the desired aldolase activity. All beneficial mutations were near the active site of 4-OT, thus underpinning the notion that new catalytic activities of a promiscuous enzyme are more effectively enhanced by mutations close to the active site. PMID:27238293

  8. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  9. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    SciTech Connect

    Fitzner, R.E.; Weiss, S.G.; Stegen, J.A.

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  10. The active site of low-temperature methane hydroxylation in iron-containing zeolites.

    PubMed

    Snyder, Benjamin E R; Vanelderen, Pieter; Bols, Max L; Hallaert, Simon D; Böttger, Lars H; Ungur, Liviu; Pierloot, Kristine; Schoonheydt, Robert A; Sels, Bert F; Solomon, Edward I

    2016-08-18

    An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(ii), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species-α-Fe(ii) and α-O-are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive 'spectator' iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(ii) to be a mononuclear, high-spin, square planar Fe(ii) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(iv)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function-producing what is known in the context of metalloenzymes as an 'entatic' state-might be a useful way to tune the activity of heterogeneous catalysts. PMID:27535535

  11. The active site of low-temperature methane hydroxylation in iron-containing zeolites

    NASA Astrophysics Data System (ADS)

    Snyder, Benjamin E. R.; Vanelderen, Pieter; Bols, Max L.; Hallaert, Simon D.; Böttger, Lars H.; Ungur, Liviu; Pierloot, Kristine; Schoonheydt, Robert A.; Sels, Bert F.; Solomon, Edward I.

    2016-08-01

    An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(II), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species—α-Fe(II) and α-O—are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive ‘spectator’ iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(II) to be a mononuclear, high-spin, square planar Fe(II) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(IV)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function—producing what is known in the context of metalloenzymes as an ‘entatic’ state—might be a useful way to tune the activity of heterogeneous catalysts.

  12. A Tale of Two Isomerases: Compact versus Extended Active Sites in Ketosteroid Isomerase and Phosphoglucose Isomerase

    SciTech Connect

    Somarowthu, Srinivas; Brodkin, Heather R.; D’Aquino, J. Alejandro; Ringe, Dagmar; Ondrechen, Mary Jo; Beuning, Penny J.

    2012-07-11

    Understanding the catalytic efficiency and specificity of enzymes is a fundamental question of major practical and conceptual importance in biochemistry. Although progress in biochemical and structural studies has enriched our knowledge of enzymes, the role in enzyme catalysis of residues that are not nearest neighbors of the reacting substrate molecule is largely unexplored experimentally. Here computational active site predictors, THEMATICS and POOL, were employed to identify functionally important residues that are not in direct contact with the reacting substrate molecule. These predictions then guided experiments to explore the active sites of two isomerases, Pseudomonas putida ketosteroid isomerase (KSI) and human phosphoglucose isomerase (PGI), as prototypes for very different types of predicted active sites. Both KSI and PGI are members of EC 5.3 and catalyze similar reactions, but they represent significantly different degrees of remote residue participation, as predicted by THEMATICS and POOL. For KSI, a compact active site of mostly first-shell residues is predicted, but for PGI, an extended active site in which residues in the first, second, and third layers around the reacting substrate are predicted. Predicted residues that have not been previously tested experimentally were investigated by site-directed mutagenesis and kinetic analysis. In human PGI, single-point mutations of the predicted second- and third-shell residues K362, H100, E495, D511, H396, and Q388 show significant decreases in catalytic activity relative to that of the wild type. The results of these experiments demonstrate that, as predicted, remote residues are very important in PGI catalysis but make only small contributions to catalysis in KSI.

  13. SABER: A computational method for identifying active sites for new reactions

    PubMed Central

    Nosrati, Geoffrey R; Houk, K N

    2012-01-01

    A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644–1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were l-Ala d/l-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. PMID:22492397

  14. SABER: a computational method for identifying active sites for new reactions.

    PubMed

    Nosrati, Geoffrey R; Houk, K N

    2012-05-01

    A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644-1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were L-Ala D/L-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. PMID:22492397

  15. Structural Insights into the Tetrameric State of Aspartate-β-semialdehyde Dehydrogenases from Fungal Species

    PubMed Central

    Li, Qinqin; Mu, Zhixia; Zhao, Rong; Dahal, Gopal; Viola, Ronald E.; Liu, Tao; Jin, Qi; Cui, Sheng

    2016-01-01

    Aspartate-β-semialdehyde dehydrogenase (ASADH) catalyzes the second reaction in the aspartate pathway, a pathway required for the biosynthesis of one fifth of the essential amino acids in plants and microorganisms. Microarray analysis of a fungal pathogen T. rubrum responsible for most human dermatophytoses identified the upregulation of ASADH (trASADH) expression when the fungus is exposed to human skin, underscoring its potential as a drug target. Here we report the crystal structure of trASADH, revealing a tetrameric ASADH with a GAPDH-like fold. The tetramerization of trASADH was confirmed by sedimentation and SAXS experiments. Native PAGE demonstrated that this ASADH tetramerization is apparently universal in fungal species, unlike the functional dimer that is observed in all bacterial ASADHs. The helical subdomain in dimeric bacteria ASADH is replaced by the cover loop in archaeal/fungal ASADHs, presenting the determinant for this altered oligomerization. Mutations that disrupt the tetramerization of trASADH also abolish the catalytic activity, suggesting that the tetrameric state is required to produce the active fungal enzyme form. Our findings provide a basis to categorize ASADHs into dimeric and tetrameric enzymes, adopting a different orientation for NADP binding and offer a structural framework for designing drugs that can specifically target the fungal pathogens. PMID:26869335

  16. The Aspartate-Less Receiver (ALR) Domains: Distribution, Structure and Function

    PubMed Central

    Weiner, Joshua J.; Han, Lanlan; Peterson, Francis C.; Volkman, Brian F.; Silvaggi, Nicholas R.; Ulijasz, Andrew T.

    2015-01-01

    Two-component signaling systems are ubiquitous in bacteria, Archaea and plants and play important roles in sensing and responding to environmental stimuli. To propagate a signaling response the typical system employs a sensory histidine kinase that phosphorylates a Receiver (REC) domain on a conserved aspartate (Asp) residue. Although it is known that some REC domains are missing this Asp residue, it remains unclear as to how many of these divergent REC domains exist, what their functional roles are and how they are regulated in the absence of the conserved Asp. Here we have compiled all deposited REC domains missing their phosphorylatable Asp residue, renamed here as the Aspartate-Less Receiver (ALR) domains. Our data show that ALRs are surprisingly common and are enriched for when attached to more rare effector outputs. Analysis of our informatics and the available ALR atomic structures, combined with structural, biochemical and genetic data of the ALR archetype RitR from Streptococcus pneumoniae presented here suggest that ALRs have reorganized their active pockets to instead take on a constitutive regulatory role or accommodate input signals other than Asp phosphorylation, while largely retaining the canonical post-phosphorylation mechanisms and dimeric interface. This work defines ALRs as an atypical REC subclass and provides insights into shared mechanisms of activation between ALR and REC domains. PMID:25875291

  17. Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia

    PubMed Central

    Di Fiore, Maria Maddalena; Santillo, Alessandra; Falvo, Sara; Longobardi, Salvatore; Chieffi Baccari, Gabriella

    2016-01-01

    A bulk of evidence suggests that d-aspartate (d-Asp) regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR) in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK) pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA) and aurora kinase B (AURKB). Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor β (ESR2) interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation. PMID:27428949